
Politecnico di Milano

School of Industrial and Information

Engineering

Department of Electronic, Informatics and

Bioengineering

Engineering of Computer Systems

Heaven: Supporting Systematic Comparative

Research of RDF Stream Processing Engines

Advisor: Emanuele DELLA VALLE

Co-Advisor: Daniele DELL’AGLIO

Master thesis by: Riccardo TOMMASINI matr. 799120

Academic Year 2013-2014

To Aldo

and to my family,

thanks for all your support (and the fish). . .

Acknowledgements

Milano, 1 Aprile 2015

Ringrazio il Professor Emanuele Della Valle, che ha reso la tesi un percorso in-

credibilmente formativo. È stato un lavoro impegnativo, ma sempre stimolante

e divertente. Grazie per l’opportunità, il tempo dedicatomi e l’infinita quan-

tità di suggerimenti ricevuti. Sono grato anche a Daniele Dell’Aglio, per la sua

guida e l’aiuto tecnico e per aver reso stimolante ogni discussione. Un sentito

ringraziamento anche a Marco Balduini, per il suo prezioso contributo, in un

momento, per lui, sicuramente molto difficile.

Ringrazio la mia famiglia, per avermi sostenuto nelle piccole difficoltà quo-

tidiane, che da solo non avrei mai potuto superare, e per avermi insegnato che

vale sempre la pena impegnarsi al massimo.

Ringrazio gli amici, per non avermi permesso di abbandonarli del tutto e

per aver condiviso momenti unici e di incredibile sincerità.

Ringrazio Teto. Cinque anni fa abbiamo iniziato insieme questa corsa e,

come uno di famiglia, ci sei stato fino alla fine.

Ringrazio Francesco, per tutte le discussioni assurde che abbiamo fatto, i

consigli onesti e per essere un vero amico da più di dieci anni.

Ringrazio Fabiana, per essere stata una guida spirituale, per avermi moti-

vato e per aver sciolto nodi che stanno nella mia testa e nel cuore, non solo nei

muscoli. Ringrazio anche Alberto, perchè lavora sempre dietro le quinte.

Ringrazio i Bomber, Fabio e Lorenzo. Per avermi mostrato come ci si

diverte lavorando; per avermi dimostrato che chi punta in alto arriva in alto

e soprattutto per avermi insegnato che ”Nobody Works Like Us”. Che dire

ragazzi, se non ”we were stuck in a blender, and now we are saving lives.

WHAT?”

Riccardo

Abstract

Stream Reasoning (SR) research field is grown enough to prove that reasoning

upon rapidly changing information is possible. RDF Stream Processing (RSP)

Engines, systems capable to handle at semantic level RDF-encoded information

flows, are increasing in number of implemented solutions. Now the Stream

Reasoning community is working on the standardisation of the methods and

tools that supported their development.

Many Computer Science (CS) research fields shown their interest for a

deeper comprehension of their own work nature. Studies like [46, 51] investi-

gated the publications in those field, highlighting that the majority of them

are allied to an Engineering epistemology. However, they also evinced and

criticised the concrete differences with other engineering research areas, which

focus on evaluation of the proposed systems and not only on their design and

development.

The lacks of an empirical approach can be ascribed to the complex nature

of the software systems. However, it is possible to face such studies that

can not be easily modelled, reducing the complexity of the analysis keeping

intact the relevance of each involved system. In social science and economy,

where researchers deal with cross case studies, it is commonly used a System-

atic Comparative Research Approach (SCRA) within an experimental setting,

which grants properties like repeatability, reproducibility and comparability to

build the evaluation upon.

The SR community agreed that it is mandatory evaluating RSP Engines,

understanding how these systems perform in real uses cases. Recent works in

the filed [53, 41, 19] pursued this goal, providing benchmarks for RSP Engines

evaluation. Further analysis pointed out the challenges involved by the Stream

Reasoning research and posed the basis for a proper RSP Engines evaluation,

describing in detail where previous works have failed and how the can be

improved [44].

The limitations of the existing benchmarking proposals proved that the

empirical evaluation of RSP Engines is just at the beginning. What is still

missing in an infrastructure that allows to compare, possibly automatically,

the performances of many RSP Engines and that grants the properties of an

experimental setting. In this thesis we brace this challenge borrowing from the

aerospace engineering the idea of an engine test stand, which is an automatic

facility for engine testing and development.

A test stand allows to design experiments and to execute them, evaluat-

ing engines in a controlled environment. Thus, we formulate the following

research question: ”Can an engine test stand, together with queries, datasets

and methods, support Systematic Comparative Research Approach for Stream

Reasoning?”

In this thesis we propose Heaven, an open source framework that enables

the Systematic Comparative Approach in the Stream Reasoning research field.

Heaven consists of: an RSP Engine Test Stand, which emulates the aerospace

engineering facility in the Stream Reasoning context; the Analyser, which

enables the Systematic Comparative Approach trough a set of methods and

tools for the investigation, hierarchically organised into a stack; and, finally,

four naive implementations of RSP Engines, called Baselines, which represent

simple terms of comparison to start the comparative research upon.

viii

Estratto

Lo Stream Reasoning è il settore di ricerca che ha dimostrato la possiblità di

applicare procedure di reasoning su flussi informativi in rapido cambiamento.

Un RDF Stream Processing (RSP) Engine è un sistema in grado di processare

a livello semantico questi flussi, quando sono codificati secondo lo standard

RDF. Il numero di RSP Engine implementati è in crescita e di conseguenza

la comunità scientifica sta formalizzando i metodi e gli strumenti che hanno

consentito lo sviluppo di queste soluzioni.

Diversi settori di ricerca nell’ambito della Computer Science, hanno

mostrato interesse per una maggiore comprensione della natura del proprio

lavoro. Sono stati fatti diversi studi che hanno analizzato i frutti della ricerca

in questi settori [46, 51]. Questi hanno dimostrato anzitutto la natura ingeg-

neristica di molte pubblicazioni nell’ambito della Computer Science, ma anche

una discreta mancanza di valutazioni empiriche delle soluzioni implementate.

Questa è una differenza evidente con le altre aree di ricerca legate al mondo

dell’ingegneria, che si focalizzano su questo tipo di analisi.

Solitamente, nei settori informatici in cui la valutazione empirica è tralasci-

ata, i sistemi proposti hanno una natura complessa e sfaccettata che è difficile

da valutare. Tuttavia è possibile, con gli strumenti adatti, studiare anche casi

complessi. Questo accade per le scienze sociali o l’economia, i cui soggetti

d’indagine non sono di certo facilmente modellabili. In questi settori viene co-

munemente usato un approccio comparativo sistematico, che semplifica il prob-

lema di affrontare soggetti complessi, senza tralasciare gli aspetti che li rendono

rilevanti. Questo approccio diventa applicabile solo in un contesto sperimen-

tale appropriato, che garantisce proprietà come riproducibilità, ripetibilità e

comparabilità.

La comunità dello Stream Reasoning ha colto la necessità di fornire stru-

menti per valutare correttamente gli RSP Engine, comprenderne il comporta-

mento e quantificarne il valore comparando le prestazioni in casi d’uso reali.

Qualche passo in questa direzione è stato già fatto. Lavori recenti [53, 41, 19]

hanno fornito framework di benchmarking per RSP Engine, mentre altri hanno

posto le basi di queste valutazioni [44], mostrando quali erano le mancanze di

tali framework.

Le soluzioni proposte si sono dimostrate limitate, e la valutazione empirica

di RSP Engine è solo all’inizio. Quello che ancora manca è una infrastruttura

che permetta la comparazione sistematica di RSP Engine, all’interno di un

contesto sperimentale che goda delle proprità sopracitate. Per affrontare il

problema, in questa tesi, abbiamo preso dall’ingegneria aerospaziale l’idea di

un banco di prova, uno strumento di valutatione e sviluppo per motori.

Un banco di prova permette di progettare esperimenti ed eseguirli su qualsi-

asi motore, raccogliendo i dati per una successiva valutazione delle prestazioni.

La nostra domanda di ricerca quindi è : ”Un banco di lavoro per RSP Engine

è la soluzione che permetta la ricerca comparativa e sistematica nell’ambito

dello Stream Reasoning?”

In questa tesi proponiamoHeaven, un framework open source per la ricerca

comparativa e sistematica nell’ambito dello Stream Reasoning. Il framework

si compone di un Banco di Lavoro, l’equivalente di quanto abbiamo visto

nell’ingegneria aerospaziale ma per RSP Engine. Include quattro implemen-

tazioni naive di RSP Engine, dette Baselines. Questi sistemi semplificati per-

mettono di iniziare la ricerca comparativa. Infine Heaven contiene l’Analyser,

un insieme di metodi di indagine e strumenti di supporto, organizzati gerarchi-

camente ed atti ad analizzare e comparare i dati raccolti attraverso l’esecuzione

di esperimenti su RSP Engine tramite il banco di lavoro.

x

Table of Contents

List of Figures xv

List of Tables xix

1 Introduction 3

1.1 Related Works & Motivations 4

1.2 Research Question . 4

1.3 Heaven . 5

1.4 Outline of this Thesis . 6

2 Background 7

2.1 Semantic Web . 7

2.1.1 Resource Description Framework (RDF) 10

2.1.2 RDF Schema . 12

2.1.3 ρDF . 13

2.1.4 Web Ontology Language 13

2.1.5 Linked Data . 15

2.1.6 SPARQL . 16

2.2 Information Flow Processing . 19

2.2.1 Data Stream Management System 20

2.2.2 Complex Event Processing 23

2.3 Stream Reasoning . 24

2.3.1 RDF Stream . 24

2.3.2 Continuous Extensions of SPARQL 26

2.3.3 RDF Stream Processing Engine 26

2.4 Empirical Research . 29

2.5 Software Testing . 31

TABLE OF CONTENTS

2.6 Benchmarking . 33

2.6.1 Domain Specifc Benchmarks 33

2.6.2 Reasoning Benchmarks 34

2.6.3 DSMS & CEP Benchmarks 35

2.6.4 RDF Stream Processing (RSP) Benchmarks 37

3 Problem Setting 43

3.1 Comparative Research . 43

3.2 Requirements . 47

4 Heaven - Design 49

4.1 Test Stand . 49

4.1.1 Modules . 50

4.1.2 Data Model . 51

4.1.3 Workflow . 53

4.2 Baselines . 55

4.3 Analyser . 58

4.3.1 Steady State Identification Block 59

4.3.2 Analysis Block . 60

5 Heaven - Implementation Experience 65

5.1 Test Stand . 65

5.1.1 Abstractions . 66

5.1.2 Data Model . 68

5.2 Test Stand - Modules . 70

5.2.1 Streamer . 70

5.2.2 Result Collector . 73

5.2.3 Test Stand Supporting Structure 76

5.3 Baselines . 79

5.4 Analyser . 83

5.4.1 Steady State Identification Block 84

5.4.2 Analysis Block . 85

6 Evaluation 91

6.1 Experiment Design . 91

6.1.1 Engine E . 93

xii

TABLE OF CONTENTS

6.1.2 Dataset D and Ontology T 93

6.1.3 Query Q . 94

6.2 Experiment Set-Up . 95

6.2.1 SOAK: Tests and Hypothesis 96

6.2.2 Step Response Tests . 98

6.2.3 Execution Environment 99

6.3 SOAK Test Evaluation Results 99

6.3.1 Steady State Identification Block Results 100

6.3.2 Level 0 - Dashboard Views 101

6.3.3 Level 1 - Statistical Values Comparison 108

6.3.4 Level 2 - Patter Identification 111

6.3.5 Level 3 - Single Visual Comparison 113

6.4 Step Response Test Evaluation Results 124

6.4.1 Steady State Identification Block 124

6.4.2 Level 0 - Dashboard Views 125

6.4.3 Level 1 - Statistical Values Comparison 126

6.4.4 Level 2 - Pattern Identification 129

6.4.5 Level 3 - Single Visual Comparison 129

7 Conclusions and Future Works 133

7.1 Comparative Research of RSP Engines 134

7.2 Limitations And Future Works 136

Bibliography 139

xiii

List of Figures

2.1 Semantic Web Stack . 8

2.2 RDF Model Graph . 11

2.3 Linked Data Cloud . 16

2.4 IFP general Model . 19

2.5 General Continuous Queries Architecture 21

2.6 CLQ DSMS Model . 22

2.7 General CEP Model . 24

2.8 RSP Engine Model . 27

2.9 RSP Engine Block Schema . 28

2.10 BiCEP Benchmarking Schema 37

4.1 Test Stand Data Stream ER-Diagram 52

4.2 Heaven Modules and Workflow 54

4.3 Heaven Baselines Architecture 56

4.4 Analyser Block Schema - Design Detail Level 59

4.5 Time Series Behaviour Example in Temporal Domain 60

4.6 Dashboard Example - Radar Plot 61

4.7 Analyser Investigation Stack 64

5.1 EventProcessor States Diagram 67

5.2 Heaven Execution Events - UML Schema 69

5.3 RDF2RDFStream Streamer Implementation - UML Schema . 70

5.4 Internal Components of RDF2RDFStream - UML Schema . . . 71

5.5 Example of FlowRateProfiler Triple Distribution 72

5.6 ResultCollector Current Implementation - UML Schema . 74

5.7 ResultCollector Events - UML Schema 75

5.8 Heaven TestStand - UML Schema 76

5.9 Heaven TestStand and Modules - UML Schema 78

LIST OF FIGURES

5.10 RSPEngine Implementation Through Esper and Jena - UML

Schema . 79

5.11 RSPListener Implementations - UML Schema 81

5.12 Esper-level Graph based and Triple based - UML Schema 82

5.13 Analyser Block Schema: Implementation Detail Level 83

5.14 Analyser Investigation Stack - Level 0 - Dashboard Represen-

tation Examples . 86

5.15 Analyser Investigation Stack - Level 3 - Visual Comparison

Examples . 89

6.1 Experiment Design Process . 92

6.2 Dashboard Legend . 101

6.3 Analyser Investigation Stack - Level 0 - Dashboard One -

Multiplot Version . 102

6.4 Analyser Investigation Stack - Level 0 - Dashboard One - Split

Version . 103

6.5 Analyser Investigation Stack - Level 0 - Dashboard Two -

Multiplot Version . 104

6.6 Analyser Investigation Stack - Level 0 - Dashboard Two -

Split Version . 105

6.7 Analyser Investigation Stack - Level 0 - Dashboard Three -

Multiplot Version . 106

6.8 Analyser Investigation Stack - Level 0 - Dashboard Three -

Split Version . 107

6.9 Analyser Investigation Stack - Level 2 - Recognised Latency

Patterns for SOAK Experiments 111

6.10 Analyser Investigation Stack - Level 3 - Intra Experiment

Comparison - SOAK Test Latency vs Memory Not Steady State

Reaching . 121

6.11 Analyser Investigation Stack - Level 3 - Intra Experiment

Comparison - SOAK Test Latency vs Memory Steady State

Reaching . 122

6.12 Analyser Investigation Stack - Level 3 - Intra Experiment

Comparison - SOAK Test Latency vs Memory Not Steady State

Reaching . 123

xvi

LIST OF FIGURES

6.13 Analyser Investigation Stack - Level 0 - Step Response Dash-

board One . 127

6.14 Analyser Investigation Stack - Level 0 - Step Response Dash-

board Two - Related SOAK Experiments 128

6.15 Analyser Investigation Stack - Level 3 - Inter Experiment

Comparison - Step Response Test 132

xvii

List of Tables

5.1 Analyser Investigation Stack - Level 1 - Qualitative and Quan-

titative Comparison Examples 87

5.2 Analyser Investigation Stack - Level 2 - Pattern Recognition

Examples . 88

6.1 Baselines Naming Convention 93

6.2 SOAK Tests Summary Table . 96

6.3 SOAK Tests Summary Table Alternative Layout 97

6.4 SOAK Tests Enumeration Table - Alternative Layout 97

6.5 Step Response Tests Summary Table 99

6.6 Steady State Identification Block - Output Summary Table . . . 100

6.7 Analyser Investigation Stack - Level 1 - SOAK Test Average

Latency Comparison . 109

6.8 Analyser Investigation Stack - Level 1 - SOAK Test Average

Memory Comparison . 110

6.9 Analyser Investigation Stack - Level 2 - Pattern Identification

- Latency - Baselines GN and GI 115

6.10 Analyser Investigation Stack - Level 2 - Pattern Identification

- Latency - Baselines TN and TI 116

6.11 Analyser Investigation Stack - Level 2 - Pattern Identification

- Memory - Baselines GN and GI 117

6.12 Analyser Investigation Stack - Level 2 - Pattern Identification

- Memory - Baselines TN and NI 118

6.13 Analyser Investigation Stack - Level 2 - Pattern Identification

- Memory Distribution - Baselines GN and GI 119

6.14 Analyser Investigation Stack - Level 2 - Pattern Identification

- Memory Distribution - Baselines TN and TI 120

LIST OF TABLES

6.15 Steady State Identification Block - Step Response Summary Ta-

ble - Latency . 125

6.16 Steady State Identification Block - Step Response Summary Ta-

ble - Memory . 125

6.17 Analyser Investigation Stack - Level 1 Step Response Test

Average Latency Comparison 131

6.18 Analyser Investigation Stack - Level 1 Step Response Test

Average Memory Comparison 131

6.19 Analyser Investigation Stack - Level 1 - Step Response Test

Maximum Latency Comparison 131

6.20 Analyser Investigation Stack - Level 1 - Step Response Test

Maximum Memory Comparison 131

1

Chapter 1

Introduction

Stream Reasoning (SR) is a multidisciplinary research field. It focuses on

developing and supporting methods and tools to continuously answer complex

queries on a variety of fast flowing information. Example of queries across

multiple social media stream are: ”What are the top five trend topics, under

discussion, and who is driving the discussions in Dayton?” or ”How a cer-

tain event in Milan influences the user activity?”. However, the application

domains of SR are not limited to social media analytics only. Semantic inter-

pretation of sensor data, traffic monitoring and stream data integration are all

possible use cases for SR [50].

Stream Reasoning research aims of integrating data streams and reasoning

systems to answer queries. It has already posed theoretical formalisations

that go beyond DSMS, CEP [32, 33, 25] and it has defined good basis to

semantically handle Data Stream encoded in RDF [49, 10]. Despite Stream

Reasoning application domains are heterogeneous and wide, recent works have

demonstrated that reasoning upon rapidly changing information is possible.

Successful application of SR techniques were applied for sensor data stream

integration [16, 34] and Social Media Analytics [7]

The number of implemented solutions is rising and the need of standards

and evaluation method is consequently growing too. Nowadays the SR com-

munity1 is focusing on the formalisation of data, protocols an methods for

RSP Engine development, but also benchmarks and evaluation frameworks to

compare the results are required.

1http://www.w3.org/community/rsp/

Introduction

1.1 Related Works & Motivations

Stream Reasoning over RDF-Encoded information flows (formally, RDF

Streams) has its foundations in DSMS and CEP research field and RDF rea-

soning theories and technologies. Nowadays, the community is focused on the

formalization of three points: (i) a data model for RDF stream; (ii) syntax and

semantics of an extensions of SPARQL for continuous query answering under

different entailment regimes; (iii) a protocol to interact with an RDF Stream

Processing Engine (shortly, RSP Engine).

RDF Stream standardization was developed in early works [50, 33] and

recently extended [8]. Continuous extensions of SPARQL, like C-SPARQL,

are mature and their development is proceeding [9]. Last but not least, many

works in the field [53, 41] try to provide benchmarks and frameworks in order

to evaluate all the RSP Engine implementations proposed.

What it is still missing is a systematic comparison of RSP Engines under

repeatable conditions. As in many other fields of Computer Science, the re-

searchers focused to model proposals and implementations only, lacking meth-

ods and tools to empirically evaluate complete systems [40]. A Comparative

approach is required to improve SR research, which is being part of an engi-

neering epistemology as many works have pointed out [46, 51].

Actually RDF streams, continuous queries, and performance measurements

for benchmarking RSP Engines were proposed [41, 53, 19]. However the com-

munity still lacks an infrastructure for rigorous comparative research, which

provides repeatability and reproducibility of typical of experiments.

1.2 Research Question

In Section 1.1 we present which lack affects the empirical evaluation of RSP

Engines as a challenge for the current SR research. The number of the involved

variables, together with the complex and multifaceted nature of RSP Engines,

motivate the difficulties of conducting realistic evaluations, but it does not

legitimate the lack. Research fields like economy [30], history [45], psychology

and other social sciences [22], in which the subjects complexity is too high to

be simplified into models and thus investigated, typically apply a Systematic

Comparative Research Approach (SCRA).

4

1.3 Heaven

Other engineering areas give a central role to empirical evaluation. The

aerospace engineering, for example, enables experiments design, their system-

atic execution and the automatic comparison of results through the usage of

Engine Test Stand. Such a tool allows an engine to be evaluated not only from

an architectural viewpoint, but during the working state within a controlled

experimental environment.

Existing queries, dataset and methods partially answer the problem of SR

community to support SRCA on RSP Engines. It is possible to evaluate RSP

Engines, but it is hard to make it systematically. Thus, we can formulate our

research question as: ”Can an engine test stand, together with queries, datasets

and methods, support SCRA for Stream Reasoning?”.

1.3 Heaven

This thesis work tries to answer the research question posed in Section 1.2:

”Can an engine test stand, together with queries, datasets and methods, support

SCRA for Stream Reasoning?”. We propose the description of Heaven – a

proposal for an RSP Engine test stand, four baseline RSP Engines and the

Analyser, whose aim is enabling rigorous comparative research of RSP engines.

Heaven is a modular and extendible software environment for automated

evaluating of RSP Engines.

The aerospace engineering inspired the development of a Test Stand,

which allows design and run experiments over RSP Engines. The Test Stand

accepts input RDF streams through the Streamer specific module; it gathers

performance measures during the experiment execution and it saves this data

through the Result Collector module, allowing post-experimental analysis.

The framework ensures the analysis through the Analyser, which consists

of a set of methods and tools for the RSP Engine performances investigation.

The Analyser methods describe how to drill down the analysis through different

levels of details, while the tool-set allows to visualise, analyse and compare

experiments w.r.t the required analysis level.

Last but not least, Heaven also includes four baseline implementations

of RSP Engines under the ρDF [39] entailment regime. The Baselines can be

exploited as Simple, Eligible, Relevant and Elementary (Section 3.2) terms of

comparison.

5

Introduction

Finally, this thesis work brings an experimental evidence of Heaven poten-

tial. We include an example of RSP Engine comparison evaluating Heaven

Baselines. The insights we gathered from those experiments demonstrate how

Heaven can lead to empirical evaluation of RSP Engines, enabling SCRA for

the Stream Reasoning research field.

The entire Heaven (i.e. the test stand, the four baselines and the analyser)

are released open source2 with the intention to foster comparative research of

RSP Engines.

1.4 Outline of this Thesis

This thesis is organized as follow:

• Chapter 2 contains an overview of the main research areas related to

this thesis, like Semantic Web, Software Testing and Benchmarking. It

also presents a background of the Stream Reasoning research field from

the DSMS and CEP point view.

• Chapter 3 describes the motivations that inspired our work. It formu-

late our research question and the requirements Heaven must satisfy to

successfully answer the question.

• Chapter 4 introduces Heaven design. It describes the Test Stand and

the Baselines and the Analyser methodological approach.

• Chapter 5 contains the details of Heaven implementation. How we

realised the Test Stand; how the baselines were developed and finally

which tools compose the Analyser.

• Chapter 6 describes the experiment design process we followed. It

provides the evaluation of Heaven Baselines as an empirical proof of the

Test Stand potential.

• Chapter 7 draws the conclusion of this thesis work and it proposes the

future extensions of our research.

2https://github.com/streamreasoning/HeavenTeststand

6

Chapter 2

Background

In this chapter we include an overview of the main research areas related

to this thesis. The Stream Reasoning research context, to which this thesis

belongs, is introduced in Section 2.3. It has the aim of unifying the Semantic

Web research area, we briefly present in Section 2.1 and the Information Flow

Processing (IFP) research one, described in Section 2.2.

This thesis proposes Heaven, an open source framework for the System-

atic Comparative Research Approach. Section 2.4 contains the state of the

are of the Empirical Research in the Computer Science. It is worth to note

that Software Testing and Benchmarking are the two most relevant approach

to empirically evaluate software systems. For this reason we include in this

Chapter an introduction about Software Testing in Section 2.5 and one about

Benchmarking in Section 2.6.

2.1 Semantic Web

The Semantic Web (SW) is the World Wide Web extension that provides a

common framework to share and reuse data across applications, enterprise,

and community boundaries. Tim Berners-Lee, the inventor of the World Wide

Web and director of the World Wide Web Consortium (W3C), supervises

the development of proposed Semantic Web standards. Nowadays, a large

number of researchers and industrial partners collaborate with the W3C to

the Semantic Web research.

Background

”The Web can reach its full potential if it becomes a place where data can be

processed by automated tools as well as people”. [W3C, 2001].

The Tim’s definition above highlights the Semantic Web vision of the new

era, the Web 3.0, where the information can be processed and manipulated

by machines. SW can give to the information a well defined meaning. The

way to reach this goal is adding a new layer of meta-data to the existing

documents and data. The semantic definition of data and documents enables

to understand and respond to complex human needs. The outcome of this

vision is an evolution to a new Web, where intelligent agents can browse data

on behalf of the user and make knowledge easier to be reached.

Figure 2.1 – Semantic Web Stack

Semantic Web world involves several technologies. Due to the complexity

of the concept, the W3C proposed a layered approach, presented in Figure 2.1,

in which each level contains a set of standards for semantic technologies.

8

2.1 Semantic Web

The first level of the Semantic Web stack includes two standards of World

Wide Web:

• The Uniform Resource Identifier (URI) and Internationalised Resource

Identifier(IRI), which guarantee the interoperability between heteroge-

neous systems. They stay at the lowest level.

• The Unicode standard is a character encoding standard to represent and

manipulate text in many languages.

On the top of them, the basic syntax level is provided by the eXtensible

Markup Language (XML), a wide-spread standard for data exchange in the

Web. The XML parsers support the lower-level syntax checking of the Seman-

tic Web documents. However, the XML standard is not enough for the data

exchange in the semantic web, because it is suited to recognize syntax, but not

equivalent models. For this reason, three middle layers are required to ensure

the semantic interoperability:

• The Resource Description Framework (RDF) is a language for expressing

data models, which are usually encoded in XML.

• RDF Schema (RDFS) defines a vocabulary for describing classes and

properties of RDF resources.

• The Web Ontology Language (OWL) extends the RDF Schema by

adding advanced concepts in order to facilitate a more realistic repre-

sentation of knowledge based on the RDF resources.

Last but not least, another important standard, which covers multiple lay-

ers, is the official Semantic Web Query Language: SPARQL, the official query

language for the SW and a W3C Recommendation since January 2008.

In the following subsections, we will present some basic concepts of the

Semantic Web: RDF in Subsection 2.1.1, OWL in Subsection 2.1.4, Linked

Data in Subsection 2.1.5 and SPARQL language 2.1.6

Finally, technologies at the top layers are not yet standardized or imple-

mented:

• The Rule Interchange Format (RIF) or SWRL allows knowledge inference

from existing data.

9

Background

• Cryptography is important to verify if semantic web statements are com-

ing from trusted source.

• Trust involves the trustworthiness and reliability of the data.

• User interface is the final layer that will enable humans to use Semantic

2.1.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is the W3C standard for data

interchange on the Semantic Web [31]. Through RDF we can describe a con-

ceptual model of information in any given domain of knowledge. Information

is represented in the statement form subject-predicate-object. In general a

statement is composed by three different resources, indeed statements are also

called triples and set of triples is called a graph. More formally, we provide

the definition of RDF triples and RDF graphs:

Definition: Let I, B and L be three pairwise disjoint sets, defined as IRIs,

Blank Nodes and Literals, respectively. A triple

(s, p, o) ∈ (I ∪B)I(I ∪B ∪ L)

is an RDF triple, while a set of RDF triples is called an RDF graph.

Notice that:

• IRIs are Internationalized Resource Identifiers, an extension of Uniform

Resource Identifiers (URIs) that enlarge the character set from ASCII

to Unicode. IRIs provide the linking structure of the Web and allow a

globally connection between any different RDF graph.

• Literals are constant values, represented by character strings, which can

be associated to a XML Schema datatype.

• Blank nodes represent anonymous resources, usually resources that group

a number of other resources and which are never directly referenced.

The Resource Description Framework has several possible representations.

The most natural representation for triples is the N3 notation, which con-

sists in explicit each triple in the form:

< subjectIRI >< predicateIRI >< objectIRI > /objectLiteral

10

2.1 Semantic Web

The official syntax for RDF models is RDF/XML, which is an XML dialect

for describing RDF. Many applications exploit the XML Language in the Web,

indeed the XML document validation of the basic syntax of RDF/XML is

possible through the RDF/XML standard schema.

1 <rdf:RDF xmlns : rd f=” ht t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”

2 xml sn : rd f s=” h t t p : //www. w3 . org /2000/01/ rdf−schema#”

3 xml n s : f o a f=” h t t p : //XMLns . com/ f o a f /0 .1/ ”>

4 <r d f : D e s c r i p t i o n rd f : ID=”marvin”>

5 <foa f :name>Marvin</ foa f :name>

6 <r d f : t y p e>

7 <r d f s : C l a s s rd f : about=”#ManicDepressiveRobot ”/>

8 </ r d f : t y p e>

9 </ r d f : D e s c r i p t i o n>

10 </rdf:RDF>

Listing 2.1 – An example of a simple RDF/XML document:

The Code Snippet 2.1 contains an example of a simple RDF/XML doc-

ument. Each RDF/XML document starts with an unique rdf:RDF element

and the definition of the useful namespaces (lines 1-3). The rdf:Description

tag (lines 4-9) represents an RDF Statement and it includes the subject of the

statement, in our case Marvin. Inside the rdf:Description element we define

two predicates: foaf:name (line 5) which contains an object literal, a string

with the name of the resource; rdf:type (lines 6-8), a special predicate, which

relates the individual resource to its class. In this case Marvin is an individual

of the class ManicDepressiveRobot (line 7).

subject object
predicate

Figure 2.2 – RDF Model Graph

Last but not least, Figure 2.2 shows the graphical representation of an RDF

model as RDF graph: subjects and objects are the graph nodes and proprieties

are represented as edges connecting a subject to an object.

11

Background

2.1.2 RDF Schema

RDF Schema (RDFS) is a semantic extension of the RDF. It allows to de-

scribe taxonomies of classes and properties, to define groups or restrictions of

resources which are related and it enables to detail the relations between these

resources. It is written in RDF and it also extends some RDF elements. Its

constructs can be used to determine characteristics of other resources, such as

the domains and ranges of properties.

RDFS class and property system is similar to the one of traditional Object-

Oriented programming languages. RDF Schema describes properties in terms

of the classes of resource to which they apply, through the domain and range

properties. This property-centric approach aims of being easy-to-extend.

RDFS contains fifteen classes and the most relevant ones are:

• rdfs:Resource - everything in RDFS is an instance of this class.

• rdfs:Literal - sub class of rdfs:Resource represents a text string.

• rdf:Property - sub class of rdfs:Resource and represents the properties.

• rdfs:Class - sub class of rdfs:Resource, it represents the type concept

typical of the OO programming languages and thus it is related to the

rdf:type property. Every class is an instance of rdfs:Class.

It also contains sixteen properties, all instances of rdf:Property, and the

most important ones are:

• rdf:type - used to state that a resource is an instance of a certain

rdf:Class.

• rdfs:subClassOf - used to state that all the instances of one class are

instances of another.

• rdfs:subPropertyOf - used to state that all resources related by one prop-

erty are also related by another.

• rdfs:range - used to state that the values of a given property are an

instance of one or more classes.

• rdfs:domain - used to state that any resource that has a given property

is an instance of one or more classes.

12

2.1 Semantic Web

2.1.3 ρDF

Efficient data processing in SW depends on the trade off between the expres-

siveness of the language that describes the data and the dimension of the

dataset. Nowadays, developers have to face with scalability problems, due to

the enormous size of data to process. For this reason, several RDF and RDFS

fragments, with good trade off between performances and expressiveness, have

been proposed.

ρDF [39], is a fragment of RDFS that conserves the original semantic and

covers only those vocabulary and axiomatic information that serves to reason

about the data it describes and not about the structure of the language itself.

ρDF comprehends:

• rdfs:subPropertyOf.

• rdfs:subClassOf.

• rdfs:domain.

• rdfs:range.

• rdf:type.

Notice that w.r.t RDFS (see Section 2.1.2) it does not include the rdfs:Class,

which is relevant for Semantic Web ontological level, but it does not play any

relevant role in the frame of RDFS deductions. A similar argument can be done

for rdfs:subClassOf and rdfs:subPropertyOf reflexivity, which do not play any

relevant role in the semantics and thus can be avoided without having side-

effects.

[39] provides the evidences that ρDF reserves the normative semantics and

core functionalities of RDFS. Moreover, ρDF can be considered relevant from

the Stream Reasoning research point of view, because several works in the field

has already successfully chosen it as entailment regime [48, 35].

2.1.4 Web Ontology Language

The Web Ontology Language (OWL) is the W3C standard for describing rich

and complex knowledge about resources, groups of resources, and relations

13

Background

between resources, or more formally an Ontology. Tom Gruber define an on-

tology as a specification of a conceptualization [26]. Practically, it can be a set

of Description Logic axioms which tries to represent a fragment of reality.

OWL is obtained extending the RDF Schema Language with additional

language constructs and some constrain on the usage of RDF(S) ones. The aim

of these constrains is to restrain the language to a subset of First Order Logic.

Different constrains define different levels of expressiveness and complexity.

The W3C has standardized three different OWL dialects called Profiles1, in

Dec. 2012. In the following we present them in order of increasing level of

complexity:

• OWL 2 EL - this profile is suitable for ontologies with a huge number

of classes to manage the terminology or which include complex struc-

tural descriptions. It works well for applications domains that have

structurally complex objects. OWL 2 EL does not support negation,

disjunction, and universal quantification on properties.

• OWL 2 QL - this profile is suitable for applications that aim to both

represent database schemas and translate reasoning into queries. It can

be used as an high level database schema language, because it is realized

using standard relational database technology (e.g., SQL). It also pro-

vides many of the main features necessary to express conceptual models

such as UML class diagrams and ER diagrams. OWL 2 QL does not

allow existential quantification of roles to a class expression, property

chain axioms and equality.

• The OWL 2 RL - this profile is tailored for applications that demand a

good trade off between scalable reasoning and expressive power. Rule-

based implementations of OWL 2 RL, under RDF-Based Semantics, can

be used with arbitrary RDF graphs. An ideal way to enrich existing RDF

data, especially when the data must be massaged by additional rules.

OWL 2 RL disallows statements where the existence of an individual

enforces the existence of another individual: for instance, the statement

”every person has a parent” is not expressible in OWL RL.

1http://www.w3.org/TR/owl2-profiles/#OWL 2 EL

14

2.1 Semantic Web

1 <rdf:RDF xmlns : rd f=” ht t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”

2 xml sn : rd f s=” h t t p : //www. w3 . org /2000/01/ rdf−schema#”

3 x ml n s : f o a f=” h t t p : //XMLns . com/ f o a f /0 .1/ ”>

4 <ow l :C la s s rd f : ID=” ManicDepressiveRobot ”>

5 <rd f s : subC la s sO f r d f : r e s o u r c e=”#Robot”/>

6 <rd f s : subC la s sO f>

7 <o w l : R e s t r i c t i o n>

8 <owl :onProperty r d f : r e s o u r c e=”#hasMood”/>

9 <owl :minCard ina l i ty>2</ owl :minCard ina l i ty>

10 </ o w l : R e s t r i c t i o n>

11 </ rd f s : subC la s sO f>

12 </ owl :C la s s>

Listing 2.2 – An example of a simple OWL DL RDF/XML document:

OWL can be serialized in the RDF/XML syntax. In the Code Snippet 2.2,

we use OWL to describe the Class of ManicDepressiveRobot, which is a Sub-

Class of Robot that has at least two Moods. The owl:Class tag (lines 4-12) is

a shortcut to represent an RDF Statement about a resource with a rdf:type of

owl:Class. The subject of the statement is the resource ManicDepressiveRobot,

which represents the class of individual Manic Depressive Robots. This state-

ment has two predicates, both of the type rdfs:subClassOf. The first predicate

(line 5) relates the OWL class ManicDepressiveRobot to its super-class, the

resource Robot. The second predicate (lines 6-11) states that ManicDepres-

siveRobot is a subclass of the OWL restriction class, which contains all the

individuals that are in relationship hasMood (line 8) with at least 2 resources

(line 9).

2.1.5 Linked Data

The Linked Data concept indicates a set of best practices in publishing and

connecting Semantic Web data. Bizer, the Linked Data creator, defines the

term as follow:

Linked Data refers to data published on the Web in such a way

that it is machine-readable, its meaning is explicitly defined, it is

linked to other external readable, defined, data sets, and can in

turn be linked to from external data sets [28].

15

Background

Figure 2.3 – Linked Data Cloud of August 20142

Datasets that are published according to the Linked Data principles can

be navigated using Semantic Web browsers. Figure 2.3 presents Linked Data

Cloud updated to August 2014. It is the connected graph which comprises

all the dataset published according to the LD principles. Each node of the

graph represents a dataset, while each edge represents the connections between

datasets.

The number datasets that follow the Linked Data paradigm is increasing

every day and among the most important of them we can cite DBpedia, which

wraps Wikipedia articles into a Semantic Web compliant form. Moreover,

several governments, like the UK government3, decide to publish their public

data and connect them to the Linked Data cloud.

2.1.6 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) are, since Jan-

uary 2008, the W3C standard query language for retrieving data in RDF for-

mat [42].

3http://data.gov.uk/

16

2.1 Semantic Web

The SPARQL query language was initially designed to meet the require-

ments identified in the RDF Data Access Use Cases and Requirements. Only

successively it has been formalized through the definition of an official algebra,

developed as an evolution of previous RDF query languages such as rdfDB,

RDQL, and SeRQL.

Recently, W3C released a working draft describing the new version of

SPARQL4. SPARQL 1.1, this is the name of the new relase, is completely

compatible with the SPARQL specification, but it has some new additional

features, like aggregates, subqueries, negation and project expressions, i.e. the

possibility to use expressions in the SELECT clause. These features were

already part of several implementations of SPARQL, for example in the ARQ

query engine.

SPARQL is defined as a graph-matching query language to face the RDF

labelled graph. The language specifies four different query variations, each of

which takes a WHERE Block to describe and restrict the searched graph:

• SELECT query: used to extract a set of variables and their matching

values, called set of mappings in the table format.

• CONSTRUCT query: used to provide an RDF graph created directly

from the results of the query.

• ASK query: used to provide a simple boolean value expressing if there

are any matches in the graph.

• DESCRIBE query: used to extract an RDF graph based on the infor-

mation related to the retrieved resources.

1 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

2 SELECT ? person ?name

3 WHERE {
4 ? person a f o a f : Person .

5 ? person f o a f : name ?name }
6 ORDERBY ?name

7 LIMIT 3

Listing 2.3 – An example of a simple SPARQL query

4http://www.w3.org/TR/sparql11-query/.

17

Background

The code snippet 2.3 contains a simple example of SPARQL Select query.

In general the structure of such queries (SELECT) consists of five clauses:

• PREFIX: The PREFIX keyword associates a prefix label with an IRI. A

qualified name is a prefix label and a local part, separated by a colon,

which is mapped to an IRI.

• SELECT: The SELECT keyword specifies the form of returning variables

and their combinations by introducing new variable.

• FROM: The FROM keyword allows a query to specify an RDF dataset

by reference.

• WHERE: The WHERE keyword provides the graph pattern to match

against the data graph. The graph pattern can be in different form of

simple graph pattern, group graph pattern, optional graph pattern, alter-

native graph pattern. Different keywords can be used in this clause such

as OPTIONAL (for optional patterns), UNION (for unions of patterns),

FILTER (for filtering patterns).

• Solution modifiers: this clause use different keywords like ORDER BY,

LIMIT,. . . in order to modify the result of the query.

Further restrictions can be applied using keywords like FILTER, ORDER

BY, LIMIT, AND, or UNION.

18

2.2 Information Flow Processing

2.2 Information Flow Processing

The application domain of Information Flow Processing (IFP) includes systems

able to collect information flows produced by multiple, distributed sources.

Such systems, called IFP Engines, process the information in a timely way,

extracting new knowledge from the information flow as soon as it is collected.

Information Flow Processing
Engine

Sources

Information

flows

Sinks

Information

flows

Rule Managers

Figure 2.4 – The Information Flow Processing general Model proposed in [17]

highlights the distributed and heterogeneous nature of information flows. The

IFP Engine is a rule-based system that processes information flows. Practically

it applies rules filtering, combining and aggregating different data flows, which

have heterogeneous domain origins, in order to produce a new information flow

that will be consumed by other systems.

An IFP Engine is capable of timely processing large amount of information,

which flows from the peripheral to the center of the system as can be seen if

Figure 2.4, which shows the general IFP Engine model proposed in [17]. The

IFP Engine receives many input information flows and it processes the flow

items, as soon as they are available, through a set of processing rules. The

ruleset specifies how to filter, combine, and aggregate the different flows of

information. Item by item the IFP generates a new flow, which represents the

output of the engine.

19

Background

The research works in the IFP context have developed two main mod-

els: the Data Stream Processing Model (DSMS) [4] and the Complex Event

Processing (CEP) Model [36]. DSMS processing is led by two concepts, the

Relational Data Stream and the Window. On the other hand, CEP processing

exploits the notion of event and by considering the input flow as sequence of

notifications, which can be aggregated to obtain catch the semantic value of

the stream.

We detail these two models of IFP respectively for DSMS in Subsec-

tion 2.2.1 and for CEP in Subsection 2.2.2

2.2.1 Data Stream Management System

The DSMS research field views the IFP problem as an evolution of tradi-

tional data processing, describing it as processing streams of data coming from

different sources to produce new data streams as an output. A Data Stream

Management Systems (DSMS) extends the traditional DBMSs, in particular

for the following considerations:

• streams are usually unbounded, while tables are not,

• no assumption on data arrival order and rate can be formulated and

• size and time constraints make hard, probable impossible, storing and

processing data stream: one-time processing is the typical mechanism

used to deal with streams.

DSMSs present also two main practical differences from traditional DBSMs:

(i) DBMSs are designed to work on persistent data, while DSMSs are focused

into transient data management, because data are continuously updated. (ii)

DBMSs queries are run once and then return a complete answer. DSMSs

queries instead are continuous queries, which continuously answer as new data

arrives.

Figure 2.5 reports the general continuous queries architecture proposed

in [6]. This model aims of highlighting several architectural choices and their

consequences. A DSMS is modelled as a set of standing queries Q and one or

more input streams, the DSMS can produce four outputs [17]:

20

2.2 Information Flow Processing

Q
Q

Q
Q

Throw

Scratch

Store

Stream

Stream 1

Stream2

Stream n

…

Figure 2.5 – The Continuous queries architecture proposed in [6] shows that a

set of continuous queries may produce four different outputs, as a consequences

of data streams processing: the Stream, which is composed by all the element

of the answer that are produced once and never changed; the Store, which is

composed by the a part of the answer that may change; the Scratch, which

represents the working memory of the system; the Throw, a sort of garbage

collector of stream tuples.

• The Stream - it is formed by all the elements of the answer that are

produced once and never changed;

• The Store - it is filled with parts of the answer that may be changed or

removed at a certain point in the future.

• The Scratch - it represents the working memory of the system. It is

exploited to store data that is not part of the answer, but that may be

useful to compute the answer;

• The Throw - it where the used unneeded tuples are collected and throw

away.

Notice that the Stream and the Store together define the current answer

to queries Q.

Moreover, the DB group of the Stanford University proposed the CQL

stream processing model, which defines a generic DSMS through three classes

of operators [2].

A DSMS system is is composed by operators that are able to manage the

information stream in different phases. Figure 2.6 gives a representation of

21

Background

Relations

Stream-to-Relation
(S2R)

Relation-to-Stream
(R2S)

Relation-to-Relation
(R2R)

Relational
Data

Stream

Figure 2.6 – The CLQ DSMS Model was proposed in [2]. The S2R operator

transforms the incoming Relational Data Stream, which is possibly unbounded,

into a bag of timestamped data items, we call Relations. The R2R operator

applies relational algebra to the existing relations in order to transform into

new ones. Finally, if the relations have to be transformed back to relational

data stream, the R2S operator appends the results to the output stream.

the general model, composed by three modules that belong to three classes of

operators:

The Stream-to-Relation (S2R) is the first class of operators that manage

data streams. A stream is potentially unbounded, thus the S2R operators

extracts finite bags of timestamped data items, transforming streams in rela-

tions. There are several operators of this class and the sliding window is one

of the most studied. A sliding window creates a view over a portion of the

stream that changes (slides) over time. Time-based sliding windows are sliding

windows that create the window and slide it accordingly to time constraints:

they are defined by two parameters, the width ω i.e. the time range that

has to be considered by the window and the slide β i.e. how much time the

window moves ahead when it slides.

The second class of operatos is the Relation-to-Relation (R2R). Relations

may be transformed in another ones through relational algebraic expressions,

which are applied by operators that belong to the R2R class.

Finally, the third class of operators is the Relation-to-Stream (R2S). This

kind of operators are necessary when the output of the query processor should

be a stream. Every time the continuous query is evaluated, the results are

processed by the R2S operator, which determines the data items it has to

22

2.2 Information Flow Processing

stream out and appends results to the output stream. There are usually three

R2S operators:

Rstream, which streams out the computed timestamped results at each

step. Rstream answers can be verbose as the same results can be computed at

different evaluation times, and consequently streamed out. It is suitable when

it is important to have the whole query answered at each step.

Istream streams out the difference between the timestamped results com-

puted at the last step and the one computed at the previous step. Answers are

usually short (they contain only the differences) and consequently this operator

is used when data exchange is expensive. Istream is useful when the focus in

on the results that are computed by the system.

Dstream does the opposite of Istream: it streams out the difference be-

tween the computed timestamped results at the previous step and at the last

step. Dstream is normally considered less relevant than Rstream and Istream,

but it can be useful.

2.2.2 Complex Event Processing

The Complex Event Processing (CEP) finds its origins in the publish-subscribe

domain [21]. It comes from interpreting IFP items as notifications of events

which arrive from external world. The traditional publish-subscribes systems

process the incoming information flows one event at time, applying the filtering

methods at topic level or at content level and evaluating the event relevance

w.r.t the subscribers.

Complex Event Processing systems, namely CEP Engines, extend this be-

haviour, filtering and combining the events to understand what is happening

in terms of higher-level information. The CEP model focuses on detecting

occurrences of particular event patterns, which actually represent the higher-

level information flows. For this reason, CEP Engines increase the expressive

power of the subscription language to consider complex event patterns that

involve the occurrence of multiple, related events [17].

Figure 2.7 shows the CEP Engine Model proposed in [17]. A CEP Engine is

responsible for processing such events as explained above, in order understand

what is happening in terms of higher-level information. Sinks aim to be notified

about this new information level and thus they act as consumers of the CEP

23

Background

Complex Event

Processing

Engine

Event Observers Event Consumers

Figure 2.7 – The CEP model in figure is proposed in [17]. It relies on the

ability to identify patterns that match multiple incoming events, which are seen

as notifications. The processing consist in filtering and correlating the incoming

events on the basis of their content. The goal is notify to subscribed sinks the

presence of a certain pattern or some ordering relationships between events.

The CEP Engine output is an event stream too.

Engine output events. CEP Engines are designed to face the main limitation

of most DSMSs: the ability to detect complex patterns of incoming items,

involving sequencing and ordering relationships.

2.3 Stream Reasoning

Answering such queries like What are the top 10 emerging topics under dis-

cussion on Twitter, Facebook and Goolge+ and who is driving the discussions?

requires systems that can manage rapidly changing worlds at the semantic

level. Stream Reasoning is a novel research trend focused on combining

DSMSs, which can analyse data on the fly (see Section 2.2.1) and reasoners,

which can perform such complex reasoning tasks (see Section 2.1), in order to

make possible reasoning on rapidly changing information.

2.3.1 RDF Stream

Traditional DSMS system work with relational data stream, as the CQL gen-

eral model in Figure 2.6 reports. In the Stream Reasoning context the data

streams have to be semantically processed. Thus, the information flows re-

quire a semantic consolidation, which must consider both performances and

24

2.3 Stream Reasoning

expressiveness. We focus RDF streams, which are data streams where the data

items are modelled through RDF 5.

For example, let’s consider the following stream: at time 1, an event e1

states that an article :paper1 is written by :alice, while at time 5, a data item

e2 states that :paper2 is written by :bob. The stream ((e1, 1), (e2, 5)) can be

represented by the following RDF stream:

(:paper1 ub:publicationAuthor :alice), 1

(:paper2 ub:publicationAuthor :bob), 5

Initial works on RDF Stream formalisation have proposed two alternative

formats for the Stream consolidation [49]:

• RDF molecules stream - it is an unbounded bag of pairs < ρ, τ >, where

ρ is a RDF molecule [20] and τ is the timestamp that denotes the logical

arrival time of RDF molecule ρ on the stream;

• RDF statements stream, is a special case of RDF molecules stream in

which ρ is an RDF statement instead of an RDF molecule .

The single RDF statement representation for events was exploited in dif-

ferent works [9, 33], while more recent researches [8] are studying the cases

where events are modelled through RDF graphs (i.e. set of RDF statements).

The RDF stream definition is based on the relational data stream one.

RDF streams are sequences of timestamped data items, where a data item is a

self- consumable informative unit. Some the main characteristics of relational

data streams still hold [5], thus RDF Stream are:

• continuous: new data items are continuously added to the stream;

• potentially unbounded : a data stream could be infinite;

• transient: it is not always possible to store data streams in secondary

memory;

• ordered: data items are intrinsically characterised by recency.

5Cf. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

25

Background

2.3.2 Continuous Extensions of SPARQL

There are many extension of SPARQL, which extends the SPARQL 1.1 (see

Section 2.1.6) to include continuous operators (see Section 2.2.1):

Continuous SPARQL (C-SPARQL) is a language for continuous queries

over streams of RDF data that extends SPARQL 1.1 [11].

For instance, the following C-SPARQL query asks to report every day the

people mentioned during the last week in the stream of those who have pub-

lished a paper:

SELECT ?person

FROM STREAM <http://www.ex.org/lubm-stream> [RANGE 1w STEP 1d]

WHERE {?person a ub:Person}

Query: 2.3.2: Example of C-SPARQL QUERY.

The requested information is not explicitly stated, but being the range of

the ub:publicationAuthor property a ub:Person, an RDFS reasoner can deduce

it and, thus, it can allow to answer the query.

Another example is CQELS-QL [33] a declarative query language built

from SPARQL 1.1 grammar. As C-SPARQL, it extends SPARQL with opera-

tors to query streams. The main difference between C-SPARQL and CQELS-

QL is in the R2S operator supported: CQELS-QL supports only Istream,

whereas C-SPARQL supports only Rstream.

Last but not least, SPARQLstream [15] is another extension of SPARQL

used in Morphstream. Unlike CQELS and the C-SPARQL Engine, SPARQL-

stream supports all the streaming operators presented in Section 2.3.4.

2.3.3 RDF Stream Processing Engine

Sections above report that RDF Stream Processing has three basic building

blocks: 1) RDF streams, we introduced in Section 2.3.1 2) continuos extensions

of SPARQL, like the ones we briefly described in Section 2.3.2, and 3) reasoning

algorithms able to cope with rapidly changing information.

Collectively, IFP Engines that process RDF streams using those SPARQL

extensions and reasoning algorithm are known as RDF Stream Processing

(RSP) Engines.

26

2.3 Stream Reasoning

Mappings
(relational format)

Stream-to-Relation
(S2R)

Relation-to-Stream
(R2S)

Relation-to-Relation
(R2R)

RDF
Stream

Figure 2.8 – This RSP Engine model is inspired to the CQL DSMS Model

proposed in [2] and reported inf Figure 2.6. The incoming relation stream

is now an RDF Stream. The S2R operator is usually implemented with a

sliding window, which logically selects a portion of the RDF Stream. The

evaluation of the continuous queries represents the R2R operator. The RSP

Engine transforms the queries results back into an RDF Stream, applying the

R2S operator.

Among RSP Engines, we target window-based RSP Engines, i.e. proces-

sors whose continuous query language allows to open sliding windows to

capture segments of RDF streams. The C-SPARQL Engine6, Sparkwave [32],

CQELS [33], and Morphstream [16] are examples of window-based RSP En-

gines. The first two processes C-SPARQL [9], continuous queries, where as

the second two proposes their own extensions (respectively, CQELS-QL and

SPARQLstream). The first two can also process C-SPARQL queries under

RDFS entailment regime7. Morphstream uses Ontology-Based Data Access

techniques for the continuous execution of SPARQLstream queries against

virtual RDF streams that logically represent relational data streams.

The logical processing model of RSP Engines in Figure 2.8 follows the one

initially proposed in DSMS (see Figure 2.6).

The following three logical steps8 compose such model:

1. A portion of the RDF stream is logically selected using a sliding window

operator; This is the stream-to-relation step.

6https://github.com/streamreasoning/CSPARQL-engine
7http://www.w3.org/TR/sparql11-entailment/#RDFSEntRegime
8Physical evaluation may differ from this logical steps.

27

Background

2. The WHERE clause of the query is evaluated (including the possibly

required reasoning tasks) and a sequences of results are produced, this

is the relation-to-relation step.

3. Results are transformed back in timestamped elements and are appended

to the output, this is the relation-to-stream step

Figure 2.9 proposes a block schema for RSP Engines, with the aim to clarify

the general process presented in Figure 2.8. The schema disposes the S2R, the

R2R and the R2S operators into a pipeline, drawing the RDF Stream path

through the RSP Engine.

S2R
Operator

Window

R2R
Operator

SPARQL

R2S
Operator

Rstream,Itream,Dstream

RDF Stream
RDF Stream

Engine Stream
Mappings Mappings

Figure 2.9 – This block schema translates the general RSP Engine model

presented in Figure 2.8. It disposes each RSP Engine operator into a pipeline,

clarifying the RDF Stream path: it is transformed into a set of relations upon

which it is possible to perform continuous queries (S2R); the R2R operator

applies a relation algebra which can handle data stream and produces new

relations, then the query results are transformed back into an RDF Stream

(R2S).

28

2.4 Empirical Research

2.4 Empirical Research

The problem of understating the nature of the Computer Science (CS) research

has one stronghold in Tichy’s work of 1995 [46]. He and his collaborators

evaluated 400 articles published in 1993, randomly selecting papers form ACM

and from a few journals in Systems and Software Engineering. Tichy’s research

had the aim of classify Computer Scientist research habits. He proposed the

following taxonomy [46] for the classification of the CS research works:

• Formal theory : theorems and their proofs, which provide formally

tractable main contributions.

• Design and modelling : techniques and methods definition, models design

and their implementation. Works like software tools or performance

prediction models provide a contribution that cannot be proven formally.

• Empirical work : collection, analysis and observations about known tech-

niques, systems, or models, or about abstract theories or subjects. The

contribution of these works focuses on evaluation.

• Hypothesis testing : hypotheses definition and the design of experiments

for their verification. The contribution of these papers is opening new

research scenarios.

• Others : articles that do not fit any of the four categories above.

Tichy’s evaluation showed that, despite the engineering epistemology of the

majority of the evaluated paper, there was a deficiency in term of empirical

evaluation w.r.t model Design and Modelling works. Researchers prefer to

focus on the proposal of new models and their implementation rather than

evaluating the existing ones. More recent works [51] observe and confirm

Tichy’s observations: the amount of evaluation reported in the Computer Sci-

ence papers is still low.

Practically, an empirical study requires to define experiments for testing

one or multiple systems. Comparing different results allows to distinguish what

we believe it is truth from what we observe. The empirical evaluation has the

aim of supporting the scientific method and rather plays a fundamental role

in other research fields.

29

Background

Software Engineering (SE) and many other Computer Science research ar-

eas have failed to produce the models and analytical tools that are common

in other sciences [40]. CS research lacks the knowledge about the mechanisms

which drive the costs and benefits of software tools and methods, making hard

to understand whether analysis are based on faulty assumptions or the new

evaluation methods are properly.

It is important to remember that empirical studies can be used not only

retrospectively to validate systems or idea after they have been implemented,

but also proactively to direct the research. Formal experiments, case studies

and prototyping exercises are all adequate empirical studies. Independently

from their form, they are a key way to fill the lack and sustains with credible

observations those CS research fields which requires an evaluation of the pro-

posals. Indeed empirical studies allow to learn something useful by comparing

theory to reality through the following steps [40]:

• formulating an hypothesis or question to test,

• observing a situation,

• abstracting observations into data,

• analysing the data and

• drawing conclusions with respect to the tested hypothesis.

30

2.5 Software Testing

2.5 Software Testing

Software Testing (ST) techniques start with the intent of finding software bugs

and ends with methods to evaluate system behaviour under testing conditions.

In general ST is an investigation over software products to evaluate the software

quality. According to IEEE Standards [29] there are two basic classes of

software testing, black box testing and white box testing:

• Black box testing [BBT] - it ignores the internal mechanisms of a system

or component and focuses solely on the outputs generated in response to

selected inputs and execution conditions.

• White box testing [WBT] - is takes into account the internal mechanism

of a system or component.

Black-box testing methods examine the functionality of a system with-

out peering into its internal structures or workings. BBT exploits test cases

built around specifications and requirements of the software. An external

descriptions of the software is mandatory, and it must also include software

specifications, requirements and design parameters. The test designer selects

both valid and invalid inputs and determines the correct output without any

knowledge of the test object’s internal structure.

White-box testing method instead exploits complete knowledge about soft-

ware internal structures. In WBT an internal perspective of the system is re-

quired to design test cases. The test designer analyses the code, understands

the expected output and chooses many inputs to properly exercise the paths

he has found.

The ST sub-field which tries to offer an objective and independent view

of the software is Software Performance Testing (SPT), defined as testing

conducted to evaluate the compliance of a system or component with specified

performance requirements [29]. SPT requires to identify the key transactions

and their data requirements. Once it is done, the test designer creates a

number of different types of tests, in order to evaluate software performance

w.r.t test variations. The design of the test follows the researcher needs about

metrics evaluation. The choice depends on the nature of the application and

how much time is available for performance testing.

31

Background

The following testing terms are generally well known in the industry [38]:

• Load testing - it is the simplest form of performance testing, its aim

is to understand the behaviour of the system under an expected load

(the load kind depends on the software system). Moreover, it points

to meet performance targets for availability, concurrency or throughput,

and response time. This test will give out the response times of all the

critical transactions and it can point out bottlenecks in the application

software. Load testing is the closest approximation of real application

use.

• Stress testing - it is used to understand the upper limits of capacity of a

system and determine the system’s robustness in terms of extreme load.

A stress test may causes the application or some part of the support-

ing infrastructure to fail. The results of this kind of test are capacity

measure as much as performance. It’s important to understand software

limitations, in order to face future growth of application traffic, which

may be hard to predict.

• Soak testing - it is performed to determine if the system can sustain the

continuous expected load. It essentially involves applying a significant

load to a system for an significant period of time. The goal is to discover

how the system behaves under sustained use or identify steady state

conditions. During soak tests, memory utilization is monitored to detect

potential leaks. Also important, but often overlooked is performance

degradation, i.e. to ensure that the throughput and/or response times

after some long period of sustained activity are as good as or better than

at the beginning of the test.

32

2.6 Benchmarking

2.6 Benchmarking

Benchmarking is the primary method for measuring the performance of a

systems, hardware or an application. Indeed a benchmark is a procedure,

problem, or test that can be used to compare systems or components to each

other or to a standard [29]. Thus, benchmark results are used to evaluate the

performance of a given system on a well-defined workload [37].

Many benchmark tests exist to evaluate a wide variety system or applica-

tions under different types of workloads. The user groups like the Transaction

Processing Performance Council (TPC) 9, a non-profit corporation founded to

define transaction processing and database benchmarks, or analogues corpora-

tions are useful resources of be informed about updated types of benchmarks.

Generic benchmarks allows the quantitative comparison of system perfor-

mances or price/cost. In database context performance is typically a through-

put metric (work/second) and price is typically a five-year cost-of-ownership

metric [24]. The quantitative comparison requires the benchmark to be run

on several different systems and to record each system is measurements. The

estimation evaluated from results is usually the relative system performance,

because the cost of implementing and measuring a specific application on many

different systems is almost always prohibitive.

2.6.1 Domain Specifc Benchmarks

A single metric can not measure the performance relative to all applications

of a computer systems [24]. Performances depend strictly on the application

domain, because each system is designed for a few problem in a domain and

may be inadequate to perform other tasks.

It is worth to note the work of Jim Gray about Domain-specific bench-

marks [24], a kind of benchmarking methods and tools which responds to

computer system diversity. A Domain-specific benchmark specifies a synthetic

workload characterising typical applications in that problem domain.

In order to distinguish among several solutions and workload, Gray states

four key criteria that a Domain-Specific Benchmark must meet to be useful.

9http://www.tpc.org/information

33

Background

Thus, an useful Domain-specific benchmark must be:

• Relevant: It must measure the peak performance and price/performance

of systems when performing typical operations within that problem do-

main.

• Portable: It should be easy to implement the benchmark on many dif-

ferent systems and architectures.

• Scalable: The benchmark should apply to small and large computer sys-

tems. It should be possible to scale the benchmark up to larger systems,

and to parallel computer systems as computer performance and archi-

tecture evolve.

• Simple: The benchmark must be understandable, otherwise it will lack

credibility.

2.6.2 Reasoning Benchmarks

The number of different reasoners available is increasing and many of them

are already commercial solutions. Usually, reasoners are able to process very

expressive ontology languages, which can represent rather complete knowledge.

However, there is an high demand of less expressive ontology languages, which

are less expensive in term of reasoning or other computational tasks. Commer-

cial reasoners try to solve the issue called computational cliff. They face the

trade-off between complexity and expressiveness versus scalability. Benchmark-

ing tools are useful to evaluate reasoning system w.r.t. ontology languages [13],

and the most important one is the Lehigh University Benchmark (LUBM) [27].

This work proposes a method for benchmarking Semantic Web knowledge base

systems and provides an example of such a benchmarks.

Reasoning benchmarking environment requires:

• Ontology: LUBM exploits a synthetic ontology named Univ-Bench10,

which describes universities, departments and the activities that occur

at them. The popularity of OWL is high many benchmarking tools allow

testing performance with new ontologies [23].

10http://www.lehigh.edu/ zhp2/2004/0401/univ-bench.owl

34

2.6 Benchmarking

• Workload: LUBM provides a random data generator, called UBA (Univ-

Bench Artificial data generator), which creates extensional data over the

Univ-Bench ontology [27].

• Queries: LUBM comes with fourteen testing queries to stress the rea-

soning capabilities over the workload. LUBM contains criteria for query

definition which consider for example Input size or Complexity to stress

the reasoner and evaluate performances.

Finally. LUBM contains three metrics for reasoners evaluation, which are

commonly used in also database benchmarks:

• Load Time - the stand alone elapsed time for storing the specified dataset

to the system;

• Repository Size - the resulting size of the repository after loading the

specified benchmark data into the system;

• Query Response Time - it similar to databases benchmarking: for each

test query the evaluation consist into 1) Opening the repository; 2) Exe-

cuting the query for 10 times and computing the average response time.

3) Closing the repository.

LUBM contains two specific reasoning metrics: Query Completeness and

Soundness : partial answering is possible in semantic web, indeed LUBM eval-

uate the degree of completeness of each query answer as the percentage of

the entailed answers that are returned by the system. Moreover, LUBM also

provides a metric for measuring the combination of query response time and

answer completeness and soundness, to appreciate the potential trade-off.

2.6.3 DSMS & CEP Benchmarks

The Linear Road [3] is a stronghold about DSMS and CEP benchmarking. It

posed several challenges about IFP system benchmark design which are:

• Semantically Valid Input - Input data can not be randomised but should

have some semantic validity.

35

Background

• Continuous Query Performance Metrics - Standard DBMS time to com-

pletion metrics is inadequate, it must also be considered Query Response

Time and Supported Query Load.

• Results Correctness - benchmark implementations must be validated

w.r.t the registered queries to ensure that results are consistent with

the benchmark specifications.

• Query Language Independence: no standard query language for stream-

ing systems exists, thus the query requirements must be language inde-

pendent.

[3] defines the requirements a benchmarking system for IFP must fulfil accord-

ing with these challenges. It provides also an implementation of a benchmark

that meets all the requirements by design. The benchmark consists into a

simulation of an urban highways system where toll charges are dynamically

determined. The input data contains: a stream of position reports, which

specify the location of a vehicle every 30 seconds; an historical query requests,

which may be issued by a vehicle with some fixed probability every time it

emits a position report.

Further works, like the BiCEP project11, try to identify some o require-

ments for CEP benchmarking and they develop a synthetic benchmarking set

to measure the event processing activity such systems. CEP Benchmarking

are evaluated with Jim Gray criteria, we already presented in Section 2.6.1.

BiCEP project presents an first schema model for a CEP Engine bench-

marking system. Figure 2.10 displays the schema: the input data are generated

by the Event Generator Module; the CEP Engine results are consumed by the

Answer Validation Module. Figure 2.10 shows also the CEP Engine interface,

which ensures that any buffering, event cleaning or event transformation phase,

that happens at the CEP Engine, is part of the overall performance measure.

Synthetic benchmarks offers many benefits like data availability, experi-

mental control, and scalability. However, it is hard to develop a synthetic

benchmark that is representative of such a wide range of CEP applications at

the same time. BiCEP development is oriented towards a set of small domain

specific benchmarks with different data sets and different queries [12].

11http://bicep.dei.uc.pt

36

2.6 Benchmarking

BiCEP

Event
Generation

Module
CEP Engine

Query
Generation

Module

Answer
Validation
Module

Figure 2.10 – BiCEP Benchmarking Schema proposed in [12]. The Event

Generator Module produces the input consumed by the CEP Engine through

the application of the queries provided by the Query Generation Module. The

Answer Validation Module consumes CEP Engine results and states their valid-

ity. The CEP Engine interface ensures that any pre processing of the incoming

events is part of the performance measurement.

Finally, BiCEP project presents a set of metrics for CEP benchmarking,

the most relevant ones in performance evaluation context are: Response time:

the time since the last event of some event pattern is fed into the system

until the system notifies the event pattern detection. Scalability in order to

compare system with different scale levels; Adaptivity. the system response to

input variation, which is mandatory because CEP system rarely face stable

input streams.

2.6.4 RDF Stream Processing (RSP) Benchmarks

RSP Engines are a clearly example of complex systems that face heterogeneous

domains of application. This should be enough to follow the Tichy’s suggestion

and start their empirical evaluation. Moreover, the number of implemented

RSP Engines is increasing, but the works about their evaluation are still limited

and do not address properly the definition of the key performance indicators

(see Section 2.3), making harder any comparison of the different systems.

Recent works on RSP benchmarking try to follow the Linear Road example,

posing the main challenges for the SR benchmarking and developing them one

by one into Seven Commandments for RSP Engine benchmarking [44].

37

Background

In the following we report the these commandments as they are described

in [44]:

RDF Stream Processing Engines must implement good strategies for Load

Balancing [S.1], because they usually consider several input information

streams with possible bursts. It is possible to stress the system under various

conditions by repeatedly applying a set of changes to the input.

A stress test is required to measure the performance of Flow Data Joins

And Inference [S.2]. It has to consider increasingly complex cascades of joins

in order to design the stress test for Simple joins, which put no further con-

straints on the join but on the join-equality. The benchmark has to add further

constraints on the joins, and subsequently to the data. In this way is possible:

(i) enabling the testing og Sequential joins, which add a sequential constrains;

(ii) allowing the testing of Temporal joins, which extend sequential joins by

enabling advanced temporal constraints. On the other and, joining stream

and background data [S.3] always results in simple joins. A stress-test must

consider single joins and increasingly complex cascades.

The benchmark must test Aggregates [S.4], which enable counts, averages

and any other arithmetic operation on groups of entities or literals. Moreover,

it must take count of properly groups scaling: group number, group complexity

or tuning the data to provide a big number of candidate, but a small number

of selected groups.

In distributed settings, an RSP benchmark must ensure the correctness

of query answers, handling Unexpected Data [S.5] like out-of-order arrival of

information and data loss. A benchmark should be able to measure this ability

evaluating precision and recall of the amount of missing data with two tests,

(i) by increasing the number of out-of-order events or (ii) by testing how long

and how many data can be handled until some nosily data observation will be

no longer considered for processing.

A benchmark has two possibility for stressing the system through Schema

[S.6] variations: (a) Evaluating the system ability to handle an increasing

number of axioms in system ontology. (b) Changing statements that generate

a more complex reasoning. It is important to know that: the axioms extension

proposed by (a) could not have been deduced from existing ones and that

the changes proposed by (b) may stress an RSP system significantly if they

increase the expressive power of the schema, not only for the background data

38

2.6 Benchmarking

but also of the data flow.

Finally, a benchmark should evaluate an RSP Engine through Changes in

Background-Data [S.7]. Any stress test on background data changes should

variate the update frequency and the entire amount of data involved in the

update, forcing the system to access background-data from disk as much as

possible.

Implemented proposals for RSP benchmarking has been published, but

none of them impacts the community as the Linear Road did for DSMSs.

More careful analysis of those solutions, presented in the following section,

evidence some lacks w.r.t the commandments proposed in [44]

SRBench

SRBench is presented as a general-purpose benchmark primarily designed for

streaming RDF/SPARQL Engines and based on real-world data sets [53]. The

SRBench dataset is composed by: the LinkedSensorData, which is a real-world

data set containing the US weather data published by Kno.e.sis12; GeoNames

and DBpedia data sets, which allow to demonstrate the ability of the bench-

marked system to deal with interlinked data.

Moreover, [53] provides some relevant metrics to evaluate the performance

of the system:

• Correctness of the query results - it must be validated and the validation

results should be expressed in terms of precision and recall.

• Throughput - it is defined as limit number of incoming data an RSP

system is able to process per time unit.

• Scalability - it means evaluating how the system reacts to an increas-

ing number of incoming streams and variation on number of registered

continuous queries.

• Response time - it is the amount of time between a data item enters the

system and the RSP Engine outputs the query results.

SRBench provides a query set composed by seventeen queries, which are

designed upon a real use case in LSD. The queries vary involving single or mul-

12http://knoesis.wright.edu

39

Background

tiple input streams, in order test many properties of RSP Engines. They cover

the most important SPARQL operators and the common streaming SPARQL

extensions and several queries require RDFS reasoning.

SRBench was criticised w.r.t. proposed commandments above [44]. It only

cover [S.3] and [S.6] but with some limitations: the queries are fixed and thus

do not allow an exhaustive assessment of join performance required by [S.3].

Testing variations of the expressive power is possible in SRBench, but it was not

done yet as demanded by [S.6]. The commandments [S.2] and [S.4] are partially

satisfied. The SRBench provides data and use-cases for sequential joins but it

does not implement stress tests for temporal joins [S.2]. About [S.4], SRBench

tests the aggregates only through single queries. The other commandments

are not cover yet, even if some of them were marked as potential extensions

of the current SRBench implementation. In [44], Table 1 summarises which

features SRBench fulfil, which not, and which are only potential.

LSBench

LS Bench proposes methods that enables meaningful comparisons of RSP pro-

cessing Engines and a framework that provides several customisable tools for

simulating realistic data, running engines, and analysing the output. LSBench

also includes three tests to evaluate the RSP stream Engines [19]:

• A functional test to verify the operators and the functionalities supported

by the engines, similar to SR Bench.

• A correctness test is to verify if the tested RSP Engine produces the

correct output. Actually the test assumes that the content of the output

is correct, and it analyses only the number of produced answers.

• A maximum input throughput test, whose aim is evaluating the maxi-

mum throughput of the RSP Engine, by increasing the data streak rate

and checking the number of the answers

[41] provides a data generator system for benchmarking, the S2Gen, which

creates data set according to the Social Network Data Stream Logic Schema,

presented again in Figure 1 of [41]. S2Gen allows to tune three parameters

which influence the data generation task: 1) Generating period, the period in

40

2.6 Benchmarking

which the social activities are generated; 2) Maximum number of posts/com-

ments/photos for each user per week 3) the Correlation probabilities : there

are various parameters for the data correlations which can be customized to

specify how data is related according to each data attribute.

Finally, LSBench [41] provides for each test a set of 12 fixed queries. The

queries in the set vary to address different features of the engines.

The Seven commandments for RSP benchmarking are not completely cov-

ered by LS Bench (see [44] Table 1). LSBench cover [S.3], but fixed queries do

not allow to stress the system properly with the aim of evaluate join perfor-

mances. [S.2] is only partially supported, because, LS Bench does not support

stress testing for temporal joins but only for sequential. [S.4] is again only par-

tially fulfilled: LS Bench tests aggregates only implementing single queries [44].

Benchmarking Query Result Correctness: CSRBench

Further works on correctness of the RSP Engine operational semantics, showed

how this variates on different implementations and influence the query results

correctness [19].

All Stream Reasoning benchmarks presented above have a common limita-

tion: they do not check the correctness of output produced by the benchmarked

RDF Engine. SRBench verifies only through functional tests the query lan-

guage supported by the engines while, LSBench does not check the answers

correctness, but it limits the analysis to the number of outputs. SR Bench and

LS Bench make two assumptions on the tested systems which may be consid-

ered erroneous: (i) they work correctly; (ii) They all have the same operational

semantics. However, these assumptions do not hold for RSP Engines in general

and hence these benchmarks may supply misleading information about them.

An extension of the SR Bench for correctness checking, CSRBench, was

proposed in [19]. It takes into account the issues that affect query results in

their three main dimensions: system, query and input stream data. It includes

in the benchmark three new types of parametrised queries, with the aim of

stressing the S2R operators. Finally, it provides an oracle that generates and

compares results of RDF stream processors and check their correctness.

41

Chapter 3

Problem Setting

In this chapter, we present the motivations behind our research work presenting

the issues we aim to face. The chapter is organised in two sections: in Sec-

tion 3.1 we introduce the comparative method, explaining why it is meaningful

for the Stream Reasoning research, and we conclude presenting our research

question. In Section 3.2, we formalise the requirements that any solution must

satisfy to properly answer the research question we posed.

3.1 Comparative Research

Recent works, like [51, 46], have tried to classify the Computer Science (CS)

research activity. They showed that the majority of the research works follows

an engineering epistemology, in particular they belong to empirical work and

design & modelling classes of Tichy’s taxonomy (see Section 2.6.1). Despite

what happens in other engineering areas, where the experimental research is

almost dominant, for many CS research fields the proposals of new systems

or models are more common then the evaluations of existing ones. Now the

question is: What are the motivation under this CS research lack? The main

problem in evaluating software systems or models regards their complex and

multifaceted nature. Other explanations concern the difficulties of conducting

realistic evaluations, because of the number of the involved variables.

A Systematic Comparative Research Approach (SCRA) is typically used

in those fields where the complexity of the subjects goes beyond the possible

observable models. This is the case of the social sciences [22] or history [45],

which exploit techniques to deal with complex cases that can not be simplified

Problem Setting

in experimental setting. The analysis of a single case study allows to deeply un-

derstand it, but it makes difficult to engage any form of generalisation. On the

other hand, cross-case studies are more relevant and allow general thinking, but

their final complexity represents a problem. We need a strategy that reduces

the analysis complexity without losing the relevance of each involved system.

In this regard, Russel Schutt discusses four stages to systematic qualitative

comparative studies for history social phenomena:

S.1 Premise of the investigation: identification of possible causes.

S.2 Choose the cases to examine (location, language, gender).

S.3 Examine the similarities and the differences with shared methods.

S.4 Propose a causal explanation for the phenomena.

We will return on these stages later. Before, it is important to understand

that this investigation method becomes meaningful inside the experimental

environment. An experiment is a test under controlled conditions that is

made to demonstrate a known truth or examine the validity of an hypoth-

esis 1. Complex cases are seen as a combination of known properties, which

is possible to identify parallelism or state contrasts upon and which are used

to set up experiment configuration. Researchers can exploit the notions of

reproducibility to appreciate variations on changing experiment conditions, re-

peatability to consolidate observations through multiple identical executions

and comparability to contrast the results to identify the differences.

Some Computer Science sub-fields attempted to lead case-driven analysis

by the notion of experiment. Database community explores the idea of com-

parative research through benchmarking techniques and actually the quality

of empirical studies is rising [51]. It is worth to note Jim Gray’s work about

transactional benchmarking (see Section 2.6.1) and Domain Specific Bench-

marks (DSB). He states that any comparison on performances starts with the

definition of a benchmark or a workload, but we need know the relevance of

the metrics. From one application to another the performances frequently

variate, because each system is thought to solve a small set of problems. A

DSB must response properly to system diversities, by specifying a synthetic

1http://dictionary.reference.com/browse/experiment

44

3.1 Comparative Research

workload to describe typical applications in the problem domain; moreover it

must provide a performances workload on various systems and an estimation of

relative performance on the problem domain. Gray proposes also four criteria

that a DSB must meet, which are:

G.1 Relevance, it must measure the performance peak of systems when

performing domain typical operations.

G.2 Portability, it must be easy-to-implement on many different systems.

G.3 Scalability, it must be meaningful for both small and large computer

systems.

G.4 Simplicity, it must be understandable to obtain credibility.

Let’s consider the relation between this criteria and Schutt’s stages pre-

sented above. Gray states G.1 to identify the relevant metrics for the eval-

uation, as Schutt does in his first stage (S.1), which demands a pre-analysis

phase of the phenomenon. Moreover, Social Science does not care about prob-

lem scaling, because those properties that define the case also determine the

problem dimension (S.2). Gray poses the same concept in the DB context

with G.2, demanding implementation-related conditions, but it also explicit

the need to consider the dimension-related issues in G.3, because DB must

consider the scaling problem. Last but not least, G.4 demands simplicity to

obtain credibility while S.3 suggests to exploit those evaluation methods that

are commonly accepted (shared) by the research community.

Motivated by the growing number of RDF Stream Processing techniques,

the Stream Reasoning (SR) community strongly demands evaluation and com-

parison practices. RSP Engines, the systems that implement this techniques,

have an high resulting complexity (see Section 2.3). Complex implementa-

tions of such system together with their execution semantic demonstrate that

a meaningful comparison between RSP Engines is non-trivial. The interest on

cross-case analysis between complex subjects draw the need of a comparative

research approach. Initial efforts in this direction try to define frameworks

that resume DSMSs [3] and Reasoning [27] benchmarking studies. LS Bench

and SR Bench propose a set of queries, data sets and methods to test and

compare existing RSP engines (see Section 2.6.4). Both these works share

45

Problem Setting

a common background: the Linear Road Benchmark (LRB) is the only ex-

isting benchmark for relational data stream processing engines. LRB states

the requirements DSMS benchmarking. However, LS Bench and SR Bench

implement and extend this work without re-contextualising this requirements

in SR context. Following discussions identify other lacks, i.e none of them com-

pletely face the problem of evaluating query result correctness, because they

do not analyse engine semantics. LS Bench concentrates attention to the eval-

uation of engines throughput and it checks the correctness of the query result

measuring the mismatch after comparing different RSP Engines. SR Bench

entirely ignores this issue and analyses the coverage of SPARQL constructs

for each commercial engine. More recent works describe deeply all the RSP

Engine properties, identify the future challenges and provide a standardization

benchmarking requirements: commandments for a meaningful testing on RSP

Engines [44].

The SR community still lacks an infrastructure that can control the execu-

tion environment and allow to systematic testing. LRB provides a simulator to

validate the benchmarked DSMS systems, but it does not face the problem of

an online evaluation it. Researches in this area demonstrate that RSP Engine

execution semantic is relevant [14], but does not evaluate its cost.

From the aerospace engineering we borrow the idea of an Engine Test

Stand, a tool that allows experiments design, their systematic execution and

automatic results comparison. An engine can not be evaluated only by an

architectural viewpoint, it is necessary to understand its behaviour during the

execution: A process cannot be understood by stopping it. Understanding must

move with the flow of the process, must join it and flow with it2. Thus, the

community questioned How to support SRCA on RSP Engines? Now we have

queries, dataset and methods, that partially answer such question and, thus,

the new research one is:

Can an engine test stand, together with queries, datasets and meth-

ods, support SCRA for Stream Reasoning?

The next section poses the requirements a proper answer to this research ques-

tion must satisfy.

2The First Law of Mentat, quoted by Paul Atreides to Reverend Mother Gaius Helen

Mohiam

46

3.2 Requirements

3.2 Requirements

In order to enable the Systematic Comparative Research Approach on RSP

engines through an Engine Test Stand, we need to answer the following ques-

tions:

Q.1 How can the behaviour of an RSP Engine be evaluated?

Q.2 What makes this evaluation rigorous?

Q.3 How can this rigorous evaluation be automated?

To answer Question Q.1, we exploit traditional definition of experiment pre-

sented above. We answer Q.2 referring to reproducibility, repeatability, and

comparability of experiments. Through this concepts, it is easy to answer Q.3

formalising the requirements for the solution.

Reproducibility refers to measurement variations on a subject under chang-

ing conditions. We gather these conditions into experiment configuration,

whose specification is up to the user. For this reason the solution must be

independent from:

R.1 Test data, relevant RDF Streams and ontologies chosen from user’s do-

main of interest.

R.2 Query, relevant queries registered from user’s domain of interest.

R.3 Engine, any RSP Engine tested by the means of easy-to-implement soft-

ware interfaces.

Repeatability refers to variations on repeated measurements on a subject

under identical conditions. The solution must not affect the RSP engine eval-

uation, which, from a practical point of view, poses two requirements:

R.4 it must not be running when the RSP engine is under execution.

R.5 it must have reduced (and possibly constant) memory footprint.

Comparability refers to performance measurements nature and the relations

between experimental conditions. The SCRA demands both the definition

of comparable metrics and the standardization of evaluation methods, which

means the solution must:

47

Problem Setting

R.6 include basic set of performance measurements [44].

R.7 enable extensions of the basic set of performance measurements with

user’s new ones.

R.8 support performance measurements collection for further analysis.

R.9 allow qualitative analysis through tools for result visualization.

In terms of software engineering, any solution which satisfies the require-

ments above demands also some technical ones:

R.10 Extendible Design, the possibility to replace each module with one with

the same interfaces, but different behaviour, without affecting architec-

ture stability.

R.11 Event-base architecture to properly communicate with event-based sys-

tems like RSP Engines.

R.12 Easy-to-Parse RDF Serialisation for the events pushed to the RSP En-

gine in exam.

SCRA is case-oriented, it needs initial terms of comparison and successful

evaluations examples to pose research guidelines. A baseline is an elementary

solution for the RSP problem, which is relevant from an experimental view-

point. Thus, to properly answer to the research question, we must have at

least a baseline which satisfies the following requirements:

R.13 It must be Elementary: requiring the minimum design effort and being

a naive solution without focusing on performances.

R.14 It must be Eligible: being a fair term of comparison w.r.t. available

solutions.

R.15 It must be Relevant: covering one of the theoretical solutions.

R.16 It must be Simple: allowing to identify easily those characteristics which

support hypothesis formulation and comparison.

48

Chapter 4

Heaven - Design

In this chapter we present Heaven, an open source framework for Systematic

Comparative Research Approach on RSP Engine. It consists in four Base-

lines and two main components: the Test Stand and the Analyser. Firstly,

Section 4.1 introduces the Test Stand, which satisfies requirements from R.1

to R.8 and from R.10 to R.12, by executing experiments on an RSP Engine.

Section 4.2 describes the Baselines, four RSP Engines that are included in

Heaven as naive terms of comparison, since they fulfil requirements R.13 and

R.14. Finally, Section 4.3 presents the Analyser, which addresses requirements

R.9 and R.10 allowing the user to visualise, investigate and compare experi-

ment results.

4.1 Test Stand

Aerospace engineering defines an engine test stand as a facility used to develop,

study and characterise engines. It allows to test operating regimes and offers

measurement of several variables associated with engine process. A test stand

may use actuators for attaining a specific engine state, which is a unique

combination of the engine properties. The information collected through the

sensors depends on the engine manufacturer, which usually provides his own

stand or the facilities to test the engine with commercial solutions. The test

stand executes black box testing over engines, because its users can not rely

on the knowledge of engine internal mechanisms.

The definition above still holds its relevance in the SR context, with the

difference that engines subject of the testing, RSP Engines, are IO-Systems.

Heaven - Design

An RSP Engine consumes RDF Streams and it produces new ones, by applying

queries under some entailment regime and w.r.t. an ontology which does not

change over time. Describing an RSP Engine means understanding the relation

between input streams, the queries registered to it and what we call operational

semantics, which requires to know the RSP Engine internal processes. Indeed,

black box testing is the only possibility to analyse such system with a test

stand. Even having access to the entire RSP Engine code, may result hard to

characterise all the RSP Engine properties a priori.

In the following section we describe each elements that Figure 4.2 sum-

marises. In Section 4.1.1 we describe the Test Stand pipeline and each module

that composes it. In Section 4.1.2, we detail the Data Model exploited to

represent experiments, events, query results and measurements. Finally, in

Section 4.1.3, we describe the Test Stand workflow, representing in Figure 4.2

how it executes experiments to stress the RSP Engine that we want to test.

4.1.1 Modules

An aerospace test stand exploits different modules to simulate the operating

regime for the engine in use i.e a module for fuel distribution, one for the

engine mechanic support or to enable users interaction during the execution.

Modularity allows to extend the test stand and specify testing procedure.

For the same reasons, requirement [R.10] demands to design Heaven Test

Stand as a modular system and, thus, it consists in the following three stand-

alone modules:

• the Streamer, a source for the input RDF Stream;

• the RSP Engine we want to test;

• the Result Collector, a data acquisition system for both the query

results and the gathered measurements.

The architecture of Heaven Test Stand is represented in Figure 4.2. The

Test Stand modules are arranged into a pipeline and communicate exchang-

ing events [R.11].

The execution starts with the Streamer that hides the data generation

logic in order to obtain data independence [R.1]. It pushes an RDF Stream

50

4.1 Test Stand

directly to the mounted RSP Engine. It is up to the Streamer to respect

[R.5] and not to influence the memory footprint with heavy data loading tasks.

An interface fulfils [R.2] and [R.3] (Query and Engine independence). It

adapts the event flow to the RSP Engine in use and hides the query registration

process, which happens at engine level and it is up to the RSP Engine provider.

The Result Collector is at the tail of the pipeline. It is part of the

Test Stand because the performance measurements are gathered during the

execution together with the queries results data. The Result Collector

is responsible to save this data at the end of each cycle without influencing

the system. The evaluation usually happens a-posteriori through the Analyser

(Section 4.3). However, real time analysis of the performance measurements

are possible, but they may violate requirements like [R.4] and [R.5].

Last but not least, the Test Stand has an external structure that sustains

other modules and it provides APIs through which control the process. It

gathers the data during the execution adding them to the query results. It

controls the process ensuring that the Test Stand does not run when the

RSP Engine is running, as required by [R.4]. Finally, the Test Stand Supporting

Structure allows the user (the RSP Engine developer) to develop a specific

testing procedure for a given engine, extending the measurements set with

new metrics, according to requirements [R.7] and [R.10].

4.1.2 Data Model

The Test Stand accepts as input an Experiment in the form of a tuple

< E ,D, T ,Q, > where:

• E is the RSP Engine subject of the evaluation [R.3];

• D is the input dataset [R.1];

• T is the ontology [R.1];

• Q is the query to be continuously answered by E [R.2].

From an experimental point of view, which metrics we sample during the

execution have a different influence on the measurements. For example, ask-

ing to the system for the memory usage may influence the latency calculus or

saving on disk the query results may influence the memory footprint. Thus,

51

Heaven - Design

we define there main kinds of experiment, which can also be combined, distin-

guishing on the data we want to sample and save. The choice of the experiment

kind depends on the goal and the error tolerance of the research.

• Query Experiment, query results are saved on file.

• Latency Experiment, only latency metrics are saved on file.

• Memory Experiment, only memory metrics are saved on file.

Result

Event

output

contain

(1,1)

contain

Triple

(0,n)

(1,n)

(0,n)

(1,n)

(1,1)

(1,1)

Experiment

stream

(1,n)

(1,1)
Measurehas

(1,n)

Figure 4.1 – Test Stand Data Stream ER-Diagram. The entities Event

and Result represent unique events within an Experiment. Their relation-

ships with Triple is described in two many-to-many relations. Result is also

related to Measure by another many-to-many relation.

In order to describe the Test Stand Data Model, Figure 4.1 shows its Entity-

Relation diagram. The entity attributes are not reported to simplify the in-

terpretation, but they are included in the relative Logic Schema.

Experiment(ID, Timestamp Start, Timestamp End, Engine, Ontology,

Query, Dataset, Description)

Event(ID, Experiment ID, Timestamp)

Result(Result ID, Experiment ID, Event ID)

Measure(ID, Value)

Measurement Set(Measure ID, Result ID, Experiment ID)

Triple(S,P,O)

Output Triple(Result ID, Experiment ID, S, P, O)

Input Triple(Event ID, Experiment ID, S, P, O)

52

4.1 Test Stand

The Experiment entity contains the metadata of the tuple

< E ,D, T ,Q, >, which semantic is explained above. ”Timestamp Start”

and ”Timestamp End” are relevant metrics for further analysis and system

control.

An Event is unique inside an Experiment, it is possible to send two

events with the same timestamp and identical tripleset. The Timestamp field

allows to order events after the execution.

A Result is associated with one and only one Event. It contains the

results to the engine queries w.r.t the active window and the set of the measure

gathered during the execution.

The Measurement Set table represents the many-to-many relation be-

tween the Result and a number of measure that may variate to fulfil require-

ment [R.7] (extendible measurement set).

We include the concept of the Triple in order to model the content of

Event and Result. Input Triple and Output Triple are the tables

which represent two many-to-many relations, respectively between Triple

and Event and Triple and Result.

4.1.3 Workflow

The Test Stand orchestrates the communication between the upstanding

models, forcing the Streamer to push events to the RSP Engine and the

Result Collector to listen the output and collect the results. To explain

the Test Stand workflow, we split the process at the points when the modules

exchange events. Indeed, each message represents a different logic step in the

experiment execution cycle.

Six different steps are identified by six events exchanged by Test Stand,

Streamer and RSP Engine. The Result Collector only receives events,

terminating each cycle.

In step (1), the Test Stand takes the experiment and starts the execution.

It executes the experiment < E ,D, T ,Q > stressing E for a certain period of

time looping through the steps from (2) to (5) illustrated in Figure 4.2.

In step (2), the Streamer pushes to E an event CTEvent. This event

is a portion of an RDF Stream picked from the data D and it consists of a set

53

Heaven - Design

Disk

1

 ResultCollector Streamer
RSPEngine

Experiment
Analyser

Start
 MB

Stop

5

64

Experiment1

2 CTEvent

OutCTEvent3

TSResult4

5 Data

6 Analysis

TestStand

3

 MB

2

Figure 4.2 – The execution starts when the Test Stand received the Exper-

iment < E ,D, T ,Q > as an input (1). The Streamer pushes a CTEvent, an

RSP Stream D fragment, to the RSP Engine in in use E (2). In (3) E pushes

to the ResultCollector and OutCTEvent with the results of the queries

Q w.r.t the Ontology T . The event is wrapped by the TestStand into an

TSResult event which contains also the measurement data sampled in (1)

and (2) when E is not running. In (5) the data are persisted and then they are

analysed in (6) by the Analyser.

of RDF triples with the same timestamp. In order to satisfy [R.12], it sends

triple in N-Triple1, which is the easiest RDF serialisation to parse.

In step (3), E pushes to the Result Collector an event OutCTEvent.

It contains the current answer to the queryQ registered in E given the ontology

T . The Test Stand expects E to output result in N-Triple format.

Notably, to place any RSP engine on the Test Stand (requirement [R.3])

Heaven provides a simple software wrapper that, when it receives a CTEvent,

adapts it to the RSP engine specific format, pushes it in the RSP engine,

and listens to the RSP engine output so to transform such an output in a

OutCTEvent.

To measure performances (requirement [R.6]) the Test Stand performs

several actions both before step (2) and after step (3). Previous works about

Stream reasoning [44] shows that the minimal performance measure set in-

cludes Latency – defined as the delay between the injection of an event in the

RSP engine and its response to it –, Memory Load – defined as the differ-

1http://www.w3.org/2001/sw/RDFCore/ntriples/

54

4.2 Baselines

ence between total system memory and the free one – and Completeness &

Soundness of query-answering results. To measure latency, it starts a timer

before (2) and stops it after (3). To measure memory load, it asks for the free

memory of the system after step (3). Completeness & Soundness are evaluated

with post-processing analysis of the query results data.

In step (4), those observations are added to the outputs of E as annotations

and are pushed to the Result Collector. We name TSResult the event

that contains the sensor data plus the query results produced by the engine.

The Test Stand works in a single thread mode, blocking the execution

of its components when it performs the measurements in (2) and (3) [R.4].

In step (5), the Result Collector saves the content of any TSResult

[R.8] for post process analysis [R.9] executed through the Analyzer.

4.2 Baselines

In Chapter 3, we state that a Systematic Comparative Research Approach

needs initial terms of comparison to lead the investigation. Heaven contains a

set simple and easy-to-use RSP Engines called ”Baseline”. As the name lets

to guess, these engines fulfil the four characteristics, detailed in Section 3.2,

required by an RSP Engine to be classified as a baseline inside the SR research

field. Thus, Heaven Baselines are Elementary, Relevant, Simple and Eligible.

Early works on SR describe the most simple approach to create a stream

reasoning system as pipelining a DSMS with a reasoner [49, 52]. The DSMS

is responsible to handle the data stream, moving from infinite sequences to

finite (and processable) sets of events. The reasoner instead applies SPARQL

queries on this set of events, exploiting its reasoning capabilities over a context

that can be considered as static, but remains continuous. We focus on RDF

Stream Processing, whose foundations, as explained in Section 2.3, are:

1. RDF streams, detailed in Section 2.3.1,

2. A continuous extensions of SPARQLs, detailed in Section 2.3.2,

3. reasoning algorithms.

RSP Engine are those systems that can apply reasoning techniques upon

rapidly changing information encoded in RDF (RDF Stream) and allow to

55

Heaven - Design

continuous querying on the data stream (Section 2.3.3). It is possible to de-

velop an RSP Engine following the approach described above, which actually

requires to develop the integration of two existing technologies, DSMS and rea-

soner, and to define how they can communicate. In the following, we describe

how this design model fulfils the requirements we posed in Section 3.2.

Baselines Elementarity can be granted by choosing a DSMS which is a

reliable solution in the Information Flow Processing context and a general

purpose rule engine which is comparable with mature solutions.

Elementarity is reached when the coupled elements are simple and valid

terms of comparison w.r.t the state of the art.

Baselines Relevance requires to cover all the most important theoretical

variants that the ”pipeline approach” conveys. In terms of reasoning we can

choose between two possible approaches and with reference to the data stream

processing the choices are again two.

Four baseline implementations cover these two main design decisions about

the RDF Stream Model and the Reasoning procedures.

DSMS REASONER

RDF Snapshot RDF StreamRDF Stream

(a) Baseline A: Naive

DSMS

∆+

RDF StreamRDF Stream

REASONER∆-

(b) Baseline B: Incremental

Figure 4.3 – The Architecture of Heaven Baselines: (A) The Naive reasoning

approach, the DSMS outputs an RDF Snapshot of the active windows at each

time it slides. (B) The Incremental reasoning approach, the DSMS outputs a

IRStream, the differences between the active window and the previous one: a

∆+ represents the new incoming triples while ∆− represents the outgoing ones.

The RDF Stream model describes how the input RDF Stream is processed,

different systems accept data in different models, which depends on how RDF

Stream is considered in terms of events contemporaneity. The two most rele-

vant ones are:

56

4.2 Baselines

• Triple-based model, where the events pushed in the DSMS are times-

tamped triples. The timestamps are non decreasing, i.e. different triples

could have the same timestamp to denote that they are contemporary.

• RDF Graphs-based: the event pushed in the DSMS are timestamped

RDF graph. The timestamps are increasing and the graph is used as

a form of punctuation [47] to separate consequent portions of the RDF

stream.

The Stream Reasoning depends on the way data flow from the DSMS to

the reasoner. Figure 4.3 shows the two reasoning solutions related to the two

triples data flow above:

• Naive solution: (Figure 4.3-A) the DSMS produces an RDF Snapshot

of the active window. It sends the entire content of the window to the

reasoner that materialises all the implied triples at each cycle. This is

the approach implemented in the C-SPARQL Engine [10] and in Spark-

wave [32].

• Incremental solution: (Figure 4.3-B) the DSMS outputs an IRStream,

the differences between the active window and the previous one. The

∆+ snapshot contains the triples that have just entered in the window,

while the ∆− snapshot contains the triples that have just exited from the

window. The reasoner, using ∆+ and ∆−, incrementally maintains the

materialisation over time. This approach is taken as term of comparison

in [18] and it is inspired from [43].

Baseline Eligibility requires fair performance measurements w.r.t ma-

ture RSP Engines. The choice of the DSMS and the reasoner affect baselines

Elementarily and it influences their performances too. To evaluate the

Baselines, we must use the minimal measure set presented in Section 4.1: the

latency, memory and the Completeness and Soundness of the query results. It

is easy to compare latency and memory performance values, while for Com-

pleteness and Soundness further consideration are needed. To be fair with ma-

ture RSP Engine the baselines query results must output the correct answers

under a given entailment regime. The recent work [19] explains the importance

of external time control to ensure the RSP Engine output correctness (even

57

Heaven - Design

when overloaded). The Baselines must exploit the ability of some DSMS to be

temporally controlled by an external agent, in order to ensure Completeness

and Soundness of the results even in case of high stress condition. Compara-

ble measure of latency and memory and external time control can prove the

Baseline Eligibility.

Finally, baselines Simplicity comes from the registered query Q, and the

entailment regime in use. Q should be eligible in terms of reasoning, which

means having an high materialisation effort of the implicit information en-

tailed by the content of the window, given the ontology chosen by the user.

The entailment regime should be an RDF(S) fragment with a good trade off

between complexity and the normative semantics and the core functionalities,

for example ρDF (see Section 2.1.3).

4.3 Analyser

The Analyser design can be faced in two ways: (i) from an engineering

viewpoint, it is composed by automatic tools that process experiment results

to obtain human readable data; (ii) from a research point of view, it is a set of

methods for data analysis which have the aim of hypothesis confirmation and

of the improvement of theoretical models.

We follow the researcher vision (ii) and, thus, in this section define the

methods that compose the analysis. Further details of the implemented tools,

which sustain our investigation can be found in Section 5.4.

Figure 4.4 shows the different phases of the data processing. The methods

that compose the Analyser can be divided into three main blocks, each one

with different supporting tools and different goals.

The Analyser takes as input the raw data produced by the Test Stand

by executing the experiment, and the variables on which the analysis will be

based on. The Test Stand outputs raw data in times series format. The

Test Stand measurements set may vary according to requirement [R.7]. To

this extent, the Analyser should be extendible too, and the variables of the

analysis must be seen as an input provided by Heaven user.

To properly compare results between n different RSP Engines data must

be standardized. In the Steady State Identification block data are processed

58

4.3 Analyser

Raw Result Data

Variable

Definition

Result Data

With Steady State

Annotations

Analyser

Figure 4.4 – Two inputs start the Analyser processing: the Test Stand

output and the investigation variables. At first, Steady State Identification

(SSI) block indicates if a variable reached the Steady State. Analysis block

(AB) builds the analysis exploiting both the initial inputs and the SSI block

results. AS outputs an human readable data to answer hypothesis or state new

insights upon.

according to the variables, identifying which variable has reached a Steady

State condition.

The last step of the high level Analyser Block Schema, in the figure, consists

in the formalisation of theoretical results. The aim of this step is obviously

confirm or refute hypothesis formulated at experiment design level. However,

Heaven has the aim of sustaining the empirical research over RSP Engine,

which allows a new kind of observation that may improve existing theoretical

models of the Stream Reasoning area.

In the next sections we provided further details on the Steady State Iden-

tification block, Section 4.3.1, and about the Analysis block, Section 4.3.2.

4.3.1 Steady State Identification Block

The Steady State Identification (SSI) block is the first element in Figure 4.4. In

general, it applies a pre-analysis of the raw data, evaluating the final condition

of each variable and establishing if it has reached or not the Steady State

condition. The Steady State is the moment when a dynamic system reaches

the equilibrium for a certain variable. The SSI is a common step in almost any

research on dynamic systems, because those systems usually have an initial

transitory phase which inhibits generalisations and comparisons. Figure 4.5

59

Heaven - Design

shows the typical behaviour, in the time domain, for a certain variable and it

also evidences the point when the series reaches the Steady State condition.

The Steady State Identification block allows to understand the degree of reli-

ability of the data, i.e. how we can assume a certain observation is confirmed

and generalizable.

time

Steady
State

Raise time

v
a
ri
a
b

le

Figure 4.5 – Time Series Behaviour Example in Temporal Domain

4.3.2 Analysis Block

Once the Steady State is identified, it is possible to proceed with the central

data analysis, which is summarised in Figure 4.4 by the Analysis block. This

block exploits the Steady State Identification output to study the transitory

phase, which is a crucial part of the dynamic system comprehension and, thus,

of the Hypothesis confirmation.

The investigation can be decomposed in four levels with increasing details

degree and different goals. Figure 4.7 is a graphical representation of the

investigation stack implemented within the Analysis block, the detail level

grows from the top to the bottom.

Before presenting the levels of the stack one by one, we introduce two concepts

about the experiment analysis:

• Intra Experiment Comparison - it means building comparisons between

variables upon a single, well-determined experiment.

• Inter Experiment Comparison - it means building comparisons of differ-

ent experiments upon a single variable.

60

4.3 Analyser

Level 0 - Dashboards

Dashboards are the highest level of analysis offered by Heaven for Inter-

Experiment comparison. Some statistical values like average (or maximum,

minimum, median, etc.) are presented in a n-dimension radar plot, as the one

in Figure 4.6, which involves all the variables selected during the experiment

design phase. Visual comparison of the data through dashboards is natural

when few variable are involved. It is easy to compare many solutions and iden-

tify which one is the best. The aim of dashboard is to compare experiments

and pointing out the relation that occurs among the involved variables.

Serie 2

Serie 1

10

100

1000

Figure 4.6 – Dashboard Example - Radar Plot

The idea of a single visualisation method, which allows to answer to any

hypothesis, is desirable but not probable. Unfortunately, the reliability of the

methods depend on the system complexity and not only on the complexity of

the method itself. Thus, this level of analysis may not be able to represent

the entire system complexity. The Steady State condition represents another

point of weakness. If it is not reached by all the variable involved, the analy-

sis generalisation can not be granted and dashboard relevance becomes frail.

Further levels of analysis are required, at least for a better comprehension of

those unpredictable results that refute even naive hypothesis, formulated on

well known theoretical truths.

61

Heaven - Design

Level 1 - Statistical Values Comparison

This Analysis level focuses on a single variable at time (Latency, Memory

etc.), in a certain statistical condition (Maximum, Minimum, Mean Value etc.)

exploiting Inter-Experiment comparison.

To verify an hypothesis researches design and execute multiple experiments

which variates for few parameters. This analysis is focused on the entries

experiment set. The experiments must be arranged into an smart layout that

highlights the differences between experiments upon one or more well-defined

characteristics. The analysis involves one variable at a time, comparing the

results over the experiment set.

The aim of Level 1 is identifying which parameter, if any, determines be-

haviour of the solution w.r.t the observed variable. Heaven enables two possi-

ble analysis approaches within Level 1:

• Quantitative - The comparison results are present in percentage form,

quantifying how much a solution is better than another one under some

conditions.

• Qualitative - it is a simplification of the Quantitative approach. Some-

times we only need to understand which solution is the best, without

focusing on numeric values. The Qualitative approach requires the def-

inition of a tolerance threshold, for example 5%, to distinguish when a

solution is better, worse or equal to another one.

Level 2 - Patter Identification

The comparison of a single statistical value over multiple variable (Level 0) or

a single one (Level 1) may be insufficient to explain the RSP Engine behaviour.

Starting from Level 2, visual analysis for Inter-Experiment comparison is in-

troduced. As in Level 1, the investigation involves a single variable over the

entire experiment set, disposed into an easy-to-read layout which points out

experiment differences. Level 2 instead enables the comparison of the exper-

iment set, presenting result data in a graphical way, which shows the system

behaviour over all the experiment executions.

The aim of this level is highlighting if a certain variable follows one or

more patterns among the experiment set. How to choose the correct graphical

62

4.3 Analyser

representation depends on the variable nature and requires specific analysis.

However, the most common ones for time-series are time domain form, value

distribution or frequency domain representations. In general, Level 2 allows

to visualise how the system behaves, which is not visible with a mere model

investigation.

Level 3 - Visual Comparison

The Level 3 is the bottom level of the investigation stack. It focuses on a single

solution at time and it exploits both Inter-Experiment comparison, with the

aim to understand how different experiment execution are related, and Intra-

Experiment comparison, with the goal of pointing out the relation between

the variables over all the experiment. In the first case, Level 3 reproduces

the Dashboard idea but over all the experiment execution. In the second

case instead, it extends what done in Level 1 and 2, but focusing on a single

visualisation at a time.

63

Heaven - Design

L
E

V
E

L
 0

L
E

V
E

L
 1

L
E

V
E

L
 2

L
E

V
E

L
 3

Figure 4.7 – Analyser Investigation Stack - At Level 0, all the variables are

compared through statistical dashboard representation. At Level 1, statistical

values of each single variable are globally compared. At Level 2, global graphical

comparisons of the RSP Engine dynamics allow pattern identification. At Level

3 experiments (Inter) or properties (Intra) are compared one by one.

64

Chapter 5

Heaven - Implementation

Experience

In Chapter 3, we posed the requirements that any solution must fulfil, in order

to properly answer our research question. Then, in Chapter 4, we faced each

requirement at design level, stating how an implementation of Heaven must

be realised to fulfil them.

In this chapter, we describe the implementation experience of Heaven:

Firstly in Section 5.1, we present the pillar concepts of this development:

the basis abstractions, in Section 5.1.1, and the data model of the Test

Stand, in Section 5.1.2. In Section 5.2, we introduce each Heaven module:

the Streamer, the ResultCollector and the Test Stand Supporting

Structure. In Section 5.3, we present how we implement the four baseline

RSP Engines. Finally, in Section 5.4, we describe how the Analyser Investi-

gation Stack is realised w.r.t the Evaluation we will present in Chapter 6.

5.1 Test Stand

The architecture of the Test Stand consists of three stand alone modules

that establish a mono-directional communication flow: the Streamer, the

RSP Engine and the Result Collector. Moreover, the idea of an exter-

nal structure which supports the other modules brings to the concept of the

Test Stand Supporting Structure. All these components communicate

exchanging events data, exploiting an event-based and modular architecture

Heaven - Implementation Experience

as demanded by [R.10] and [R.11]. In the following, we presents the two ab-

stractions that allow this architecture: EventProcessor and the Event. Then,

we detail how the Test Stand Data Model is implemented.

5.1.1 Abstractions

Among all the requirements reported in Section 3.2, two of them are imme-

diately relevant: [R.10], i.e. the need of an Extendible Design, and [R.11],

which states the necessity of an Event-base architecture to properly face any

RSPEngine. In order to to fulfil both, the Test Stand requires two main

abstractions:

• The Event - which is required to build a hierarchical communication.

Indeed, the Test Stand may handle three event flows: one internal to

the RSP Engine module, one for the communication between modules

and one to communicate with the user. Next section about data clarifies

the communication structured.

• The Event Processor - guarantees the system to be modular and it stan-

dardizes the interaction simplifying the behaviour of each component

in the system. Thus, a module is an Event Processor which can be

positioned everywhere in the the Test Stand pipeline.

The requirement [R.4] directly influences the the Test Stand workflow stat-

ing that it must not be running when the RSP Engine is under execution. To

cover this requirement, we designed each module as a Finite State Machine

(FSM), which can work only specific states that allow processing (READY).

Each Heaven module, the Baselines, and also for the Test Stand Ex-

ternal Structure follows the FSM in Figure 5.1, implemented through two

interfaces:

The Startable interface standardises two methods, init() and close() which

allow to control the behaviour of the module at the beginning and the end of

the execution. The interface allows to move from the CLOSED state to the

READY through the init() method and from the READY to the CLOSED

through the close() method.

EventProcessor interface completes the FSM schema, exposing the process

(Event e) method. The method brings the module into the RUNNING state

66

5.1 Test Stand

Figure 5.1 – The finite state machine diagram of any Heaven module and

the Baselines. It is realised through the Startable interfaces, which provide the

init() and close() methods, and through the EventProcessor interface, which

declares the process(Event e) method. The execution is possible only during the

RUNNING state, which can be achieved by one and only module at time, as a

constrain. The ERROR state prevents the propagation of erroneous behaviour

to the data.

until the processing ends, and then back to the READY one. As a constrain,

one and only one module can be in the RUNNING state in a certain moment

during the execution.

Finally, the ERROR State, which can be reached from any point of the

execution, prevents the propagation of errors over result data: when a module

fails the execution is stopped without saving the erroneous data (last event)

and reporting the error to the user.

[R.4] is fulfilled because each module in the systems fulfils [R.10] and [R.11].

Heaven Modules can be explicitly controlled by the Test Stand Support-

ing Structure, which starts and stops the processing through the methods

exposed by the Startable and EventProcessor interfaces. It bring the modules

from one status to another one, according with the FSM schema in Figure 5.1.

67

Heaven - Implementation Experience

5.1.2 Data Model

In the previous sections, we stated that the Test Stand and its modules

exploit an event-based communication, as required by [R.11]. Chapter 4 de-

scribes Heaven workflow and how it exchanges events during the execution.

Each event represents different data, depending on its position in the workflow.

The Event concept we introduced, which is implemented as an interface, allows

to give a hierarchy to the exchanged events. In general, the Test Stand handles

four kinds of event, which are reported in Figure 5.2 and defined as follow:

• Experiment - it represents the tuple < E ,D, T ,Q >, indicating which

RSP Engine (E) will be tested and with which queries (Q), data (D) and

ontology (T) will be used. It contains the execution start time and the

end time. A specific field indicates if the current implementation of the

engine exploit external timing, while the type parameter indicates which

kind of testing will be applied (SOAK o Stress for example).

• CTEvent - it contains a set of contemporary triples, wrapped in the

TripleContainer. The id field identifies is unique for the event within the

experiment.

• OutCTEvent - it represents the event produced by the RSPEngine after

processing the active window. Figure 5.2 shows the inheritance relation

with CTEvent : OutCTEvent extends the CTEvent adding the output-

Timestamp field.

• TSResult - it wraps the OutCTEvent adding the information about the

measurements data gathered during the execution: memory, sampled

ante e post processing, and latency. Two boolean fields allow to mark

complete and soundness result, if it is evaluated at runtime (see Sec-

tion 3.2)

Heaven requires an initialization phase to prepare and input the Experiment

into the Test Stand. The current implementation exploits a property file

with the Experiment parameters: ID and the tuple < E ,D, T ,Q >.

The CTEvent and the OutCTEvent contain RDF triples in NT-Triple1,

which is the easiest RDF serialisation to parse. This serialisation was chosen to

1http://www.w3.org/2001/sw/RDFCore/ntriples/

68

5.1 Test Stand

+hashCode()
+equals(obj: Object)
+getTriple()

-triple: String[n]

TripleContainer

+size()
+getEventTriples()

-id: String
-inputTimestamp: long

CTEvent

+size()
+save(where: String)
+saveTrig(where: String)
+saveCSV(where: String)

-id: String
-inputTimestamp: long
-memoryAnteProcessing: double
-memoryPostProcessing: double
-completeness: Boolean
-soundess: Boolean

TSResult

-outputTimestamp: long

OutCTEvent

+save(where: String)

-experimentNumber: int
-experimentName: String
-engine: String
-date: String
-type: String
-timeControl: Boolean
-timestampStart: Long
-timestampSnd: long
-comment: String

Experiment

«interface»

Event

-eventTriples

-result

Figure 5.2 – The figure shows the events that Heaven Test Stand and

its modules exchange during the execution of an experiment. All of them

implement the Event interfaces that is at the top of the class hierarchy.

fulfil requirement [R.12], which demands an Easy-to-Parse RDF Serialisation

for the events presented to the RSP Engine in exam. Figure 5.2 shows also that

the RDF Triples are stored in the events into the TripleContainer wrapper: we

redefine the triple hashcode and equals method guaranteeing their uniqueness

within an CTEvent or OutCTEvent.

69

Heaven - Implementation Experience

5.2 Test Stand - Modules

In this section we present the two of modules which compose Heaven, the

Streamer, in Section 5.2.1 and the ResultCollector in Section 5.2.2,

while the RSPEngine will be introduced in Section 5.3. Moreover, in Sec-

tion 5.2.3 we details the Test Stand Supporting Structure.

In Section 5.1.1, we define a module as an EventProcessor which can be

positioned everywhere in the the Test Stand pipeline. We state that a

module must implements the Startable interface, which completes the FSM

schema in Figure 5.1 with the init() and close() methods.

5.2.1 Streamer

«interface»

Streamer

+process(event: Event)

«interface»

EventProcessorTSStreamer

+init()

+close()

«interface»

Startable

+init()

+process(e: Experiment)

+close()

RDF2RDFStream

#next

Figure 5.3 – RDF2RDFStream Streamer Implementation. The

RDF2RDFStream extends the TSStreamer abstract class, which defines the

module as a Startable EventProcessor of Experiments

Figure 5.3 shows the current implementation of the Streamer interface, which

is the head of the Test Stand pipeline. Actually, the Streamer is imple-

mented as the TSStreamer abstract class, which is specialised into processing

of Experiment events.

The Experiment events are externally instantiated and then TSStreamer

receives them. It can start the processing only if it is initialised. It communi-

cates with another EventProcessor, called next, which can receive CTEvents.

In Figure 5.3 the next is represented by the labelled arrow. Notice that, also

the next must be initialised before starting the communication, otherwise the

ERROR state will be reached, since the processing is not allowed.

70

5.2 Test Stand - Modules

Figure 5.3 contains also the RDF2RDFStream implementation, whose internal

structure can be seen in Figure 5.4. The RDF2RDFStream was developed to

conduct experiments as they are presented in Chapter 6. We use the LUBM

Benchmark to generate the data for the experiments, but it actually generates

static data and, thus, we translate them to a streaming scenario through the

RDF2RDFStream, which builds an RDF Stream attaching a timestamp to the

static data produced by LUBM.

+parseTriple(tripleInput: String)

Parser

+getEvent()
+isReady()
+append(triple: TripleContainer)

FlowRateProfilerImpl

+getEvent()
+isReady()
+append(triple: TripleContainer)

«interface»

FlowRateProfiler

+init()
+process(e: Experiment)
+close()

RDF2RDFStream

+updateSize()

StepFlowRateProfiler

+updateSize()

ConstantFlowRateProfiler

#profiler

Figure 5.4 – The RDF2RDFStream exploits two subcomponents to build

an RDF Stream: the Parser, which allows to read in memory RDF Triples,

and the FlowRateProfiler, which attaches to RDF triple a timestamp and it

builds CTEvents according to a function f . The FlowRateProfileImpl pro-

vides implementation of the append(TripleContainer tc) method and of the

two utility methods isReady() and getEvent(). Specific implementations of the

FlowRateProfiler control the function f through the updateSize() method.

The Parser component, in Figure 5.4, can be accessed statically. It reads

in memory, one by one the triples, in the file, guaranteeing data independence

[R.1] and it does not influence the memory footprint [R.5], because it allocates

only the memory necessary to parse a triple.

Figure 5.4 also includes the FlowRateProfiler. This component determines

the number of triples to add to a CTEvent and it builds such an event. In this

way, RDF2RDFStream can generate many RDF Streams to use as D, which

differ on the number of contemporary triples.

71

Heaven - Implementation Experience

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
·106

CTEvent

C
T
E
v
en
tS
iz
e

(a) Exponential Growing CTEvent

Size: y = 2x

0 5 10 15 20
0

500

1,000

CTEvent

C
T
E
v
en
tS
iz
e

(b) Step Growing Size with K1=100 and

K2=1000 after 9 CTEvents

Figure 5.5 – The FlowRateProfiler is able to calculate CTEvent size

according to a function which relates the number of triple to the CTEvent id.

The FlowRateProfilerImpl implements FlowRateProfiler interface. It pro-

vides a common implementation for the method append(TripleContainer tc),

which adds to the current CTEvent an RDF triple, and of the two utility

methods isReady() and getEvent(). What variates between different imple-

mentations of this component, is the updateSize() method.

The FlowRateProfiler creates CTEvent according to a function y = f(x),

in which x is the CTEvent id and it results that y is the number of triple

this CTEvent will contain. f is implemented within the updateSize() method.

For example if we decide to increase linearly the number of triples inside a

CTEvent the function f will be:

y = x, where x, y ∈ N

The first event (E0) will contain zero triple, E1 will contain only one triple,

E4 will contain four triples and so forth. Another possibility is to increase

exponentially the number of triples inside a CTEvent :

y = 2x, where x, y ∈ N

The first event (E0) will contain one triple, E1 will contain two triple, E3 will

contain eight triples and so forth. Figure 5.5.a shows the resulting behaviour

plotting the triple number on y-axis and CTEvent id on x-axis.

72

5.2 Test Stand - Modules

In the current stage of development, we include four implementations of

the FlowRateProfiler, two of them are related to our experiments:

• ConstantFlowRateProfiler - it maintains the same number of triples for

each event over all the experiment:

y = K, where K ∈ N

• StepFlowRateProfiler - it maintains a constant number of tripleK1 inside

a CTEvent for x occurrences, then it suddenly changes the number of

triple y form K1 to K2 where K2 >> K1. The number of CTEvents x

is specified in the set-up phase of the component. Figure 5.5.b contains

the resulting plot of implemented function which follows:

y =

K1, if x < M where K1,M ∈ N

K2, if x >= M where K2 >> K1, K2 ∈ N

The remaining two FlowRateProfiler implementations in Heaven that are

not related to our evaluation are:

• LinearStepFlowRateProfile - it streams x CTEvents of dimension y, in

terms of triples, then linearly increase the number of a quantity M :

y = x ∗M, where x, y,M ∈ N

• PoissonFlowRateProfiler - it changes y and x according with a parameter

λ, which indicates the Expected Value of a Poisson Distribution that is

y = e−λ
λn

n , where n ∈ N

5.2.2 Result Collector

The ResultCollector is the data acquisition system that receives and

persists the query results and the measurements data gathered by the Test

Stand during the execution of an experiment.

The UML Schema, in Figure 5.6, shows the ResultCollector interface, an-

other proxy for the EventProcessor and the Startable ones. The current im-

plementation is the TSResultCollector, which stays at the end of the Test

73

Heaven - Implementation Experience

+process(event: Event)

«interface»

EventProcessor

+process(r: EventResult, where: String)

«interface»

ResultCollector

+init()
+close()

«interface»

Startable

+init()
+process(EventResult)
+process(EventResult, String)
+close()

TSResultCollector

Figure 5.6 – The current implementation of the ResultCollector interface

is the TSResultCollector which processes events that implement the EventRe-

sult Interface. ResultEvent interface hides the saving procedure, delegating the

implementation to the event provider through the save() method. TSResult-

Collector exposes also the method process(Event e, String where), which allows

the caller to specify the destination.

Stand pipeline. The ResultCollector is responsible of saving data indepen-

dently from their format, since requirement [R.7] demands to enable users

extensions to the basic measurement set. The TSResultCollector applies a

general saving procedure exploiting the EventResult interface, which exposes

the save(String where) method, delegating the implementation of such proce-

dure to the provider of the event. Figure 5.6 shows the relation between the

EventResult interface and the TSResultCollector, which specialises the pro-

cessing method to process(EventResult) and it knowns the general destination

of the data, but it also exposes a secondary one process(EventResult er, String

where), which allows the caller to specify the saving path.

74

5.2 Test Stand - Modules

+write(where: String, data: String)

FileService

+save(where: String)

«interface»

EventResult

+write(sql: String)
+close()

SQLListeService

+size()
+save(where: String)
+saveTrig(where: String)
+saveCSV(where: String)

-id: String
-inputTimestamp: long
-memoryAnteProcessing: double
-memoryPostProcessing: double
-completeness: Boolean
-soundess: Boolean

TSResult

+save(where: String)

-experimentNumber: int
-experimentName: String
-engine: String
-date: String
-type: String
-timeControl: Boolean
-timestampStart: Long
-timestampSnd: long
-comment: String

Experiment

Figure 5.7 – The Experiment, the TSResult and the OutCTEvent implement

the EventResult interface, hiding the saving procedure through the save(String

where) method. In the current implementation, they exploit the FileService and

the SQLLIsteService classes, to avoid concurrent accesses to the file system.

Figure 5.7 shows which events in the system exploit the EventResult interface.

In the current implementation, the TSResultCollector handles two kinds of

event:

• TSResult - it saves the data of the query results into a TriG2 file where

the graph name is the event id inside the experiment, while it saves the

measurements data into a CSV3 file that represents the time series w.r.t

events id.

• Experiment - it saves the experiment metadata and the tuple

< E ,D, T ,Q > collapsed into a generic description field into SQLite4

database.

Both saving procedures exploit a service class, respectively the FileService

and the SQLLIsteService. In Figure 5.7, we describe such services, which ex-

pose static methods to interact with the file-system. The goal is reduce system

complexity and avoid parallel interactions that may influence the experiment,

offering a single point to interact with the file-system.

2http://www.w3.org/TR/trig/
3http : //en.wikipedia.org/wiki/Comma− separatedvalues
4https://sqlite.org/

75

Heaven - Implementation Experience

5.2.3 Test Stand Supporting Structure

+process(event: Event)

«interface»

EventProcessor

+init()

+run(e: Experiment)

+close()

TestStand

+process(e: CTEvent)

TestStandImpl

+init()

+close()

«interface»

Startable

Figure 5.8 – The EventProcessor and the Startable method are implemented

in two class levels: the init() and close() methods depend on the TestStand

abstract class, while the process(CTEvent e) method is implemented by Test-

StandImpl class, which represents the Test Stand Supporting Structure.

Moreover, it exposes also the run(Experiment e) method to start the processing.

Heaven Test Stand was defined as set of modules which interact exchanging

events during the execution. However, Chapter 4 describes at the design level

the presence of an supporting structure which orchestrates the communication

between the Streamer, the RSP Engine and the ResultCollector. This

supporting structure also exposes the APIs for users interaction. Figure 5.8

represents this idea into an UML schema where the abstract class TestStand

implements both the Startable interface, defining the init() and close() meth-

ods and also the EventProcessor interface, however it leaves the implementa-

tion of the process(CTEvent e) method to the current implementation: the

TestStandImpl.

The relation between the TestStand and other modules is presented in

Figure 5.9. The TSStreamer, the RSPEngine and the TSResulCollector are

linked to the TestStandImpl through an initialisation class which receives the

configuration file, and sets up these modules according with the requirements

[R.1] [R.2] and [R.3] (respectively data independence, engine independence and

76

5.2 Test Stand - Modules

query independence). Once the set-up phase is completed, the TestStandImpl

is initialized and it consequently initialises all the upstanding modules. The

Experiment is created externally and the TestStandImpl receives it to start the

execution.

During the execution, TestStandImpl gets the CTEvents from the

TSStreamer and it sends them to the RSPEngine (see Section 4.1.3). The

TestStandImpl gathers the measurements data according with the Experiment

specification. It calculates latency starting a timer when the CTEvent

arrives and stopping the timer when the RSPEngine outputs the results as

OutCTEvent. It retrieves the memory usage asking the JVM in both the

points above [R.6]. To fulfil requirements [R.7] any new measurement can

take place only when the RSPEngine is not running. Once the OutCTEvents

comes form the RSPEngine, the TestStandImpl immediately wraps the event

into a TSResult, which is sent to the TSResultCollector to persist the query

results and the measurement data, fulfilling [R.8] and supporting [R.9] for

further analysis with the Analyser.

77

Heaven - Implementation Experience

+init()
+close()
+run(e: Experiment)

TestStand

+process(e: CTEvent)
+processRSPTripleSet(e: CTEvent)
+process(engineResult: OutCTEvent)

TestStandImpl

+process(e: Experiment)

TSStreamer

#streamer

#collector

#engine

#next

+init()
+process(r: EventResult)
+process(r: EventResult, w: String)
+close()

TSResultCollector

+startProcessing()
+process(event: CTEvent)
+moveTime()
+stopProcessing()

«interface»

RSPEngine

Figure 5.9 – The TestStand contains references of the TSStreamer, the engine

behind the RSPEngine interface and the TSResultCollector. The TSStreamer

and current RSPEngine are linked to the next element in the pipeline through

the TestStand. Two arrows, labelled with ”next”, point to the TestStand in-

dicating that it receives the events from all modules and it orchestrates the

communication. The arrow that starts from the RSPEngine is coloured in gray

to highlight that it can not be seen at this level of detail, because RSPEngine

is an interface. The ResultCollector receives the result to save at the end of

each cycle and, when it returns the call, the process ends.

78

5.3 Baselines

5.3 Baselines

Heaven Baselines are four elementary implementations of an RSP Engine,

which cover the requirements from [R.13] to [R.16] and implement the pipeline

of a DSMS with a reasoner following the proposal presented in Section 4.2. The

RSP Engine pipeline is composed by Esper5, a mature commercial DSMS, with

the Jena general purpose rule engine6, a flexible reasoning engine. The aim of

the choice of Esper and Jena is fulfilling requirement [R.14], baselines Eligibility

by coupling two mature solutions for stream processing and reasoning and,

thus, obtaining a fair solution in the SR context. Moreover, both Esper and

Jena are open source solution, which allow us to release Heaven as open source

too.

+process(event: Event)

«interface»

EventProcessor

+init()
+close()

«interface»

Startable

+moveTime()

+next

RSPEsperEngine

+startProcessing()
+process(event: CTEvent)
+moveTime()
+stopProcessing()

«interface»

RSPEngine

+init()
+startProcessing()
+process(e: CTEvent)
+stopProcessing()
+close()

-query: String

JenaEngine

«interface»

RSPListener
-listener

Figure 5.10 – The RSPEngine interface extends both the EventProcessor and

the Startable one. The RSPEsperEngine class implements the interface adding

the Esper runtime to handle its internal events. The JenaEngine together with

the RSPListener integrate the Jena reasoning system into the engine.

Figure 5.10 presents how the baselines are implemented. The general structure

exploits the RSPEngine interface, a proxy for both the EventProcessor and

the Startable interfaces described in Section 5.1.1.

Heaven Baselines integrate Esper as the DSMS, which composes the first

half of the RSP Engine pipeline. The RSPEsperEngine abstract class imple-

ments the RSPEngine interface in order to share the Esper runtime definition

for all the Baselines. They exploit the ability of Esper to be temporally con-

5http : //www.espertech.com/esper/
6http://jena.apache.org/documentation/inference/#rules

79

Heaven - Implementation Experience

trolled by an external agent7. Thus, the internal time flow can be synchronised

by sending time-keeping events. In this way, it possible to ensure the complete

and soundness of query results, even in case of high traffic load. To enable ex-

ternal time control the RSPEngine interface exposes the moveTime() method.

The RSPEsperEngine implements moveTime() encapsulating the logic to send

a time-keeping event into Esper: one time-keeping event is sent before injecting

the triples within a CTEvent and the next one after all triples in CTEvent

were sent. In this way, all the triples in the CTEvent are considered contem-

porary by the Baselines.

The RSP Engine is in the middle of the Test Stand pipeline and, thus,

it is has to communicate with the following module. The RSPEsperEngine

has a reference to a general EventProcessor, represented in Figure 5.10 by the

arrow labelled as ”next”, which can be any module which processes CTEvent.

In the current implementation, the Test Stand Supporting Structure,

implemented as the TestStandImpl class, follows a RSP Engine to intercept

the outcoming OUTCTEvents.

We draw, in Figure 5.10, the UML schema of the Baseline implementation.

The JenaEngine abstract class links the DSMS to the reasoner, an thus it

requires a further component, the RSPListener, to complete the RSP Engine

pipeline and realise the system we describe in Section 4.2

The reasoner stage is realised as shown in Figure 5.11. Different implemen-

tations of the listener, which all belong to the RSPListener interface, variate

the reasoning approaches between Naive or Incremental. The JenaNaiveLis-

tener or the JenaIncrementalListener partially fulfil requirement [R.15] (base-

line relevance) in terms of reasoning. None of the two specifies the entailment

regime and the TBox, which must be defined with specific implementations

like the JenaRHODFNaiveListener, as it is visible again in the Figure 5.11.

The Baselines relevance, demanded by [R.15], is only partially fulfilled by

the alternative reasoning approaches. It comes also from the different imple-

mentations of the RDF Stream model, graph based or triple based. Esper

runtime demands to registers the events that it has to handle. Figure 5.12

shows how events are implemented: they belongs to the JenaEsperEvent in-

terface, which exposes three methods used by the RSPListener to manage the

7http://esper.sourceforge.net/esper-0.7.5/doc/reference/en/html_single/

index.html#api-controlling-time

80

5.3 Baselines

-aBoxRuleset: String

.JenaRhoDFIncListener

-aBoxRuleset: String

JenaRhoDFNaiveListener JenaSmplIncListenerJenaSmplNaiveListener

+update(newData: EventBean[], oldData: EventBean[])

-eventNumber: int

JenaIncrementalListener

+update(newData: EventBean[], oldData: EventBean[])

-eventNumber: int

.JenaNaiveListener

«interface»

RSPListener

Figure 5.11 – The RSPListener is actually a proxy for the native Esper Up-

dateListener. We implement the interface following two possible reasoning ap-

proaches, Naive and Incremental, respectively into the JenaNaiveListener and

the JenaIncrementalListener. Further implementations like the JenaNaiveR-

hoDFListener allows to specify to the listeners the entailment regime and the

TBox.

active window independently from the event implementation. The methods

addTo(Graph g) and removeFrom(Graph g) delegate to the event the insert-

ing and deleting operations, in a transparent way for the RSPListener ; the

method serialise() unrolls the event into a set of statements, in this way the

RSP Engine can output an OutCTEvent independently from the RDF Stream

implementation: GraphEvent or TripleEvent

When a CTEvents comes to the RSP Engine, it will be transformed into

the events handled by the DSMS, contained in Figure 5.12. This translation

process influences the latency calculus, because the time spent by the engine

to translate events from the RDF Stream into its internal mechanism may be

relevant. Once the processing is complete, the output of the RSP Engine is

translated again into an OutCTEvent and passed to the next EventProcessor,

again spending time that influences the latency.

This assumption is inspired by the related work [12], which endorses the

idea of black box testing provided by Heaven. [12] states that every buffering

or translation process, which is applied by the engine in use, must be considered

part of its internal mechanism and, thus, part of the performance measurement.

81

Heaven - Implementation Experience

+addTo(g: Graph)
+serialize()
+removeFrom(g: Graph)

-appTimestamp: long
-timestamp: long

GraphEvent

+addTo(g: Graph)
+removeFrom(g: Graph)
+serialize()

«interface»

JenaEsperEvent

+addTo(g: Graph)
+serialize()
+removeFrom(g: Graph)

-appTimestamp: long
-timestamp: long

StatementEvent

Figure 5.12 – All the event registered to Esper belong to the JenaEsperEvent

interface, which exposes methods to handle the reasoning independently from

the RDF Stream implementation: GraphEvent or TripleEvent. The triples

received by the RSPEngine can be pushed into Esper as a complete graph or

as a set statements. To handle the active window, independently from the

event implementation, the interface exposes the method addTo(Graph g) and

removeFrom(Graph g), while the serialise() methods unroll the event into a set

of statements, in order to build an outgoing OutCTEvent.

The current Baseline implementations divide the different architectural el-

ements and delegate to each element a specific task to share the majority of

the code and thus fulfilling [R.16], which demands baseline Simplicity.

82

5.4 Analyser

5.4 Analyser

Raw Result Data

of Multiple

Experiment Execution

Variable

Definition

Statistical Data

Result Data

with Steady State

Annotations

Multi

Experiment

AVG

Analyser

Figure 5.13 – The Analyser block schema in figure extends the one in Fig-

ure 4.4, with several implementation details. In particular, a new initial block,

named Pre-Processing, operates before the other ones on the experiment raw

data: it averages among multiple executions of the same experiment, to obtain

a single reliable dataset; it calculates statistical relevant values (maximum,

minimum, median etc) for each experiment w.r.t the involved variables that

it receives as input. The Pre-Processing outputs are consumed by both the

Steady State Identification block and the Analysis block.

In this section, we introduce which analysis tools sustain each level in the

investigation stack described in Section 4.3 and how they are realized in the

current implementation of Heaven.

The relation between the hypothesis and the tools that sustain the analysis

is deep and, thus, it is hard to generalise the investigation toolset. The Hy-

pothesis depend on the the research question, while the tools are related to the

nature of the data and to the experiment. However, there are several genera

characteristics, which are meaningful independently from both the hypothesis

and experiment. Thus, we can develop a basic toolset which sustains the entire

investigation stack presented in Section 4.3.

Figure 5.13 shows the different phases of data processing. It refers to the

original block schema presented in Chapter 4, but Figure 5.13 provides further

implementation details.

83

Heaven - Implementation Experience

The Figure 5.13 shows the Analyser receives two inputs:

• the raw data form the experiments,

• the variables to build the analysis.

In the original block schema, (see Figure 4.4) both inputs directly enter

the Steady State Identification block (SSI) and the Analysis block (AB). In

Figure 5.13 instead, the first block in the process is the Pre-Processing block.

Empirical analysis can not rely on a single execution of an experiment, because

even if the Test Stand is designed to be system independent, we do not have

the complete control of the active processes within the execution environment.

Strange behaviours may happen while an experiment is running. In order to

reduce, and possibly eliminate, the outliers, multiple runs of the same exper-

iment must be mediated obtaining the average measures. The Pre-Processing

block ensures data reliability extrapolating a unique dataset from multiple ex-

ecutions. Moreover, time series describes how a dynamic system evolves over

time, so it is meaningful to attempt hypothesis verification through statistical

values, which always consider the the Steady State to allow the generalisation

of the insights. The Pre-Processing block calculates most common statistical

metrics as average, standard deviation and maximum or minimum for a certain

variable.

Once we have reliable data, the Steady State Identification block and the

Analysis block cans start the analysis process on the input variables and the

Pre-Processing outputs.

Finally, researches can read the analysis point out insight and theoretical

results as the last block in the process describes.

The following sections contain further details about the Steady State Iden-

tification block implementation, Section 5.4.1, and about the Analyser block

with the investigation stack, Section 5.4.2.

5.4.1 Steady State Identification Block

The Steady State Identification block aims of determining if a a certain variable

has reached the Steady State condition (see Section 4.3.2). Automatic proce-

dures to identify the State State condition exist, but they require dedicated

studies, which will be faced as future works. Currently, the SSI block is not

84

5.4 Analyser

automated. It exploits data visualisation techniques, to identify if and when a

variable reaches the Steady State condition. We plot each variable trend in the

time domain over all the experiment execution. Then, we manually exclude

the initial warm-up phase from the data evaluation.

We know that the graphical method is limited, because it must be applied

for each system variable, and human criteria cannot be reliable in this kind

of analysis as automatic procedures, which exploit tested algorithms. More-

over, different variables may reach the equilibrium at different times, so it is

researcher responsibility to properly identify the different conditions for each

variable involved. Thus, we include this further development as future work.

5.4.2 Analysis Block

The Analyser block includes five analysis levels, (see Section 4.3 with in-

creasing degrees of detail, and where the comparative research approach is

declined either via visual analysis or statistical investigation. The graphical

analysis method is more qualitative then the statistical one, but reading the

information presented in graphical way can be preferred in those cases where

numerical data are not so meaningful. On the other hand, the statistical

investigation method demands more complex instruments to obtain the data,

but they allow to answer also more elaborate questions. In the following, we

present the current implementation of all the analysis levels.

Level 0 - Dashboards

Figure 5.14 contains an example of the possible Dashboard representations.

We implement the dashboard to represent data on a bi-dimensional Cartesian

space where memory and latency are the axis of the graph. This kind of

representation allows to define solution dominance, w.r.t the involved variable,

through inter-experiment comparisons. Thus, we can easily state which RSP

Engine, if any, is better then another.

Level 1 - Statistical Values Comparison

Tables 5.1 (a) and (b) show two examples of statistical investigation. Ta-

ble 5.1.a contains the qualitative comparison of two solution over a given vari-

able, while Table 5.1.b offers a deeper detail level, the quantitative comparison,

85

Heaven - Implementation Experience

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EXPERIMENT 1

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EXPERIMENT 2

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EXPERIMENT 3

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EXPERIMENT 4

Figure 5.14 – Analyser Investigation Stack - Level 0 - Dashboard Represen-

tation Examples.

86

5.4 Analyser

showing how much a solution is better than an other. How to choose the proper

level depends on the needs of the research.

(a) Symbolic Comparison of variables A

vs B on Experiment 1

A vs B Experiment 1 Condition A

Comparison

'
Experiment 1 A ' A B

Condition A ' ' B

B A ' B A

(b) Symbolic Comparison of variables A

vs B on Experiment 1

A vs B Experiment 1 Condition A

Comparison

'
Experiment 1 10% ' 42% 33%

Condition 23% ' ' 12%

B 20% ' 22% 22%

Table 5.1 – Analyser Investigation Stack - Level 1 - Example of qualitative-

comparison over two variables (a) and quantitative-comparison over a common

variable (b).

Table layout is a key-point for Level 1 representations. Table axes repre-

sent the variation of two different experiment properties A and B. Different

experiments influence the behaviour of an RSP Engine in different ways, and

Level 1 allows to point out this differences with Inter-Experiment comparisons.

Thus, we can move on the horizontal axis of Table 5.1.a, which means variate

the Condition A, to appreciate those differences.

Actually this kind of analysis is possible thanks to a report, which contains

all the meaningful statistical values for the experiments. The report can be

further manipulated to obtain the table visualisation.

Level 2 - Patter Identification

Level 2 exploits the same experiment layout of Level 1 to compare many

graphical representation of the experiment variable. Two examples of mem-

ory analysis at Level 2 are reported in Tables 5.2 (a) and (b). Table 5.2.a

show the memory behaviour in time domain. It allows to answer questions

like ”How does the system change the memory behaviour modifying the input

dimension?”. Table 5.2.b reports the memory distribution values upon several

intervals. It allows to understand how memory distribution is influenced by

changing the variable on the table axes or diagonals.

Level 3 aims at pattern identification for a given variable. It is an example

of Inter-Experiment comparison which enables a new kind of global analysis,

because it requires to state observation upon the entire set of experiment.

87

Heaven - Implementation Experience

(a) Pattern Recognition Example: Memory Time Domain

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Pattern Recognition Example: Memory Distribution

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 5.2 – Two examples of pattern recognition. Level 2 exploits easy-to-read

layouts which highlights the experiment difference to enable Inter Experiment

comparisons.

88

5.4 Analyser

Level 3 - Visual Comparison

Finally, Level 3 focuses on single graphical visualisation. Figure 5.15 contains

two examples of the possible analysis. Figure 5.15.a shows a case of Inter Ex-

periment comparison, highlighting the relation between the same variable over

multiple experiments; Figure 5.15.b provides an example of Intra Experiment

comparison, highlighting the relation between memory and latency within the

same experiment.

(a) Multi-Experiment Comparison

(b) Multi-Variables Comparison

Figure 5.15 – Analyser Investigation Stack - Level 3 - Figure (a) shows a

case of Inter Experiment visual comparison of the memory usage while Figure

(b) presents a case of Intra Experiment comparison of latency and memory.

89

Chapter 6

Evaluation

In this chapter, we present an evaluation ofHeaven Baselines (See Chapter 4.2)

in order to demonstrate how Heaven can extend the traditional hypothesis-

based research, towards the Systematic Comparative Research Approach that

we presented in Chapter 3. The content of this chapter is organised as follows:

In section 6.1, we describe the method we use to design experiments for RSP

Engine testing, and two test sets: SOAK Tests and Step Response Stress Tests.

A complete description of the assumptions behind these two experimental sets

can be found in Section 6.2.1 for the SOAK Test set and in Section 6.2.2 for

the Step Response one.

With the SOAK Test set, we aim at providing a simple use case with

naive hypothesis, which highlights the limitations of the traditional top-down

analysis approach applied to the SR research and which, consequently, demon-

strates the fundamental role of Heaven for RSP Engines evaluation. The Step-

Response tests are designed with the goal to show Heaven potential and to

provide an alternative use case, which shows Heaven flexibility in supporting

the Systematic Comparative Research Approach.

Finally, we present the experiment results respectively for SOAK test, in

Section 6.3, and for the Step Response Test, in Section 6.4.

6.1 Experiment Design

Experiment Design (ED) means defining our experiment in order to prove or

refute one or more hypothesis, evidencing the behaviour of the system in a

controlled execution environment. ED starts with some assumptions, which

Evaluation

compose the Experimental Setting. Researchers formulate hypothesis on the

base of these assumptions, Figure 6.1 summarises the collocation of ED within

the Top-down approach.

Figure 6.1 – The traditional top-down research designs experiments in or-

der to confirm or refuse hypothesis. The process starts from the theoretical

knowledge, through which it is possible to formulate assumptions. Hypothesis

are formulated observing an exiting model and considering the assumptions as

known truths that simplify the environment. The design of a certain experiment

depends on variations of the assumptions or on the variables involved.

From a theoretical point of view we decide to study RSP Engine facing their

nature of dynamic systems. (see Section 2.3). Experiment design requires to

point out which variable are observed. We simplify the study analysing their

behaviour in term of Latency and Memory, which is, together with results

completeness and soundness, the minimal meaningful measurement set for an

RSP Engine (Chapter 4).

In Chapter 4, we describe the experiment tuple: < D, T , E ,Q > as:

• E is the RSP Engine,

• D is the Dataset,

• T is the Ontology and

• Q is the Query that E continuously answers.

In this section, we present our choices about the four elements that compose

an experiment, upon which the evaluation is built.

92

6.1 Experiment Design

6.1.1 Engine E

The architecture complexity of mature RSP Engines like the C-SPARQL En-

gine or CQELS is high, and it cannot be easily faced in order formulate hy-

pothesis of comparison. However, the purpose of this evaluation is showing

how Heaven can improve the research of RSP Engine. Thus, we can simplify

the research survey evaluating less complex systems. To this extent we design

and implement the Baselines (Section 4.2) and we evaluate them as the RSP

Engines E subject of our experiments.

In Chapter 3, we describe which requirements guarantee that an RSP En-

gine is a baselines: Simplicity, Elementarily, Relevance and Eligibility (SERE

properties) legitimate the evaluation. Thus, the Baselines can be considered as

a simple term of comparison for further research on Stream Reasoning systems

and this investigation can be followed as a guideline.

The four baselines differ for two characteristics: RDF Stream Model and

Reasoning architecture. Table 6.1 summarises these few but well determined

differences, naming the four baselines for the evaluation:

Naive Incremental

Graph GN GI

Triple TN TI

Table 6.1 – We name each baselines according to the reasoning approach and

the RDF Stream encoding. Thus an Incremental approach with a graph-based

RDF Stream becomes GI.

Among these four configurations we can formulate simple hypothesis, stating

which approach is better than an other one within an experiment. Notice that

we have a complete model of the baseline systems and we also know many

implementation details that can help during the analysis. We can exploit the

know-how about their internal mechanisms, described in Section 5.3, to lead

our analysis from hypothesis formulation towards empirical results.

6.1.2 Dataset D and Ontology T

The RDF Streams (see in Section 2.3.1)D used in the experiments are obtained

streaming in different ways the data generated with LUBM (see Section 2.6.2).

93

Evaluation

Consequently, we chose LUBM ontology1 as T for all the experiment. We as-

sume that the ontology does not change over time, therefore the materialisation

of T is computed before starting the experiment and the RSP engine does not

have to perform this task.

It is worth to discuss the choice of using data from LUBM rather than

SRbench or LSbench. The first one has data, which are not adequate for the

experiments, since they do not require any reasoning. The SRbench data,

on the contrary, requires reasoning, but, being real-data, do not have the

possibility to be scaled up and down nor the flow rate can be adapted. Further

details on SRbench and LSBench can be found in Section 2.6.4. Moreover,

LUBM has been already used in the Stream Reasoning context [48].

Being LUBM static data, we exploit the RDF2RDFStream component of

the Test Stand that takes care to adapt the data generate by LUBM to

a streaming scenario (see Section 5.2.1). RDF2RDFStream is responsible to

build D w.r.t. T , scaling both in terms of dimension of the dataset and the

reasoning effort. The component can be set up to obtain an RDF Stream where

the number of triples with the same timestamps follows a given distribution.

6.1.3 Query Q

The query Q used in our experiment depends on the reasoning approach of

the RSP Engine in use. Actually, all experiments use variants of the same

basic identity query that continuously asks for the materialisation of the

active sliding window ω. These variants differ for the sliding factor β.

REGISTER QUERY Q AS

SELECT ?s ?p ?o

FROM STREAM S [RANGE ω STEP β]

WHERE ?s ?p ?o

UNDER ρDF ENTAILMENT REGIME

Query: 6.1.3: Query Q registered to the Heaven Baselines.

1http://swat.cse.lehigh.edu/onto/univ-bench.owl

94

6.2 Experiment Set-Up

The entailment regime of the RSP Engines influence performances. For this

reason we take for the Baselines ρDF, an RDF-S fragment that reduces com-

plexity while preserving the normative semantics and core functionalities [39].

Several works in the field [48, 35] choose ρDF, because it is the minimal mean-

ingful task for a Stream Reasoner.

6.2 Experiment Set-Up

The RDF2RDFStream allows to control the triple distribution in the

RDF Stream, thus it is possible to build experiment upon this distribution.

We design set of SOAK Tests to evidence Baselines dynamics and, thus,

evaluating their performances.

In order to show Heaven potential, we design a small set of Stress Test,

which belongs to the Step Response subcategory. In summary:

• SOAK: the number of contemporary triples in the RDF Stream does

not change during the experiment.

• Step Response the number of contemporary triples in the RDF Stream

does not changes for a certain period of time, which guarantees the sys-

tem to reach the Steady State condition, then it suddenly increase or

decrease. The number of triples in the RDF Stream does not changes

any more, giving to the system the possibility to reach the Steady State

condition again.

The queries registered to Heaven Baselines during all the experiments vari-

ate for the size of the sliding window ω. In particular, we use windows in which

ω is an integer multiple of the slide parameter β of the window, i.e., it holds

that ω = β ∗ N . In other words, N is the number of CTEvents that the

window contains.

Section 5.3 shows how the proposed baselines take advantage of the ability

of Esper to be temporally controlled by an external agent2 which sends time-

keeping events to synchronise the internal time flow. All the triples in the

2http://esper.sourceforge.net/esper-0.7.5/doc/reference/en/html_single/

index.html#api-controlling-time

95

Evaluation

CTEvent are consider contemporary by the baselines and each CTEvent can

be seen as a proxy for the timing event.

External time keeping and the RDF2RDFStream makes it possible to esti-

mate the content of the active window in terms of number of RDF Triples in

any moment of the experiment.

All experiment are execute 10 times to reduce the presence of the outlier.

The following sections contain further details about the two test sets, re-

spectively in Section 6.2.1 for SOAK Test and in Section 6.2.2 for Step Re-

sponse tests.

6.2.1 SOAK: Tests and Hypothesis

SOAK testing shows the system dynamics, injecting into the RSP Engine in

use a constant and continuous input flow (see Section 2.5). We maintain

constant the number of contemporary triples in the RDF Stream through the

RDF2RDFStream module.

SOAK Experiment are 30000 CTEvents long. Each event contains a

fixed number of RDF triples, which depends on the specific experiment. Un-

likely, it is not possible to foretell how many events are required to reach the

Steady State condition for each variable involved, especially memory. Multi-

ple attempts and empirical evaluations are the only way to set up the correct

duration.

CTEvent Number of Slot

Size 1 10 100 1000 10000

1 1 10 100 1000 10000

10 10 100 1000 10000

100 100 1000 10000

1000 1000 10000

10000 10000

Table 6.2 – The number of triples in the window in the fifteen SOAK tests

as a function of the window size (in terms of N) and of the triples in each

CTEvent.

Table 6.2 presents the fifteen SOAK tests we run for. The columns of the

table are the different window sizes measured in terms of the values assumed by

96

6.2 Experiment Set-Up

Triple in Number of Slots

Window 1 10 100 1000 10000

1 1

10 10 1

100 100 10 1

1000 1000 100 10 1

10000 10000 1000 100 10 1

Table 6.3 – The number of triples in a CTEvent in the fifteen SOAK tests

as a function of the window size (in terms of N) and of the total triples in the

active window, assuming one and only one CTEvent per slot.

Triple in Number of Slots

Window 1 10 100 1000 10000

1 1

10 2 6

100 3 7 10

1000 4 8 11 13

10000 5 9 12 14 15

Table 6.4 – The enumeration of the fifteen SOAK tests with the layout out

Table 6.3.

the number of slots N (see Section 6.1.3). Being β = 100 ms., they correspond

to a window that spans 100 ms., 1 sec., 10 sec. and 100 sec.. The rows are the

different number of triples in each CTEvent sent by the RDF2RDFStream

to E .

Table 6.3 is an alternative layout where the columns of the table still contain

the different window sizes measured in terms of the values assumed by the

number of slots N , while the rows are the different number of triples in the

active window. This layout allows to highlight the window dimension, focusing

on the element which actually influences the reasoning.

Table 6.4 shows the enumeration of the fifteen SOAK test exploiting the

layout of Table 6.3.

Following the traditional research method, we formulate two naive hypothesis

based on the knowledge of the easiest RSP Engine model (see in Section 4.2).

97

Evaluation

From theory we know that the incremental maintenance of the materiali-

sation is more convenient when the dimension of the changes is small w.r.t the

entire window, otherwise for large changes it is more computationally expensive

than naive materialisation [18, 43, 48]. This knowledge allow us to formulate

a first hypothesis, which can state that the incremental reasoning approach is

always better than the naive one, notably for small changes we consider small

changes equal or less 20% of the active window content.

From recent works like [8] we know that the graph data structure may

speed up reasoning when it contains multiple triples, but it does so introducing

an overhead that may hinder performances when it contains few triples. Thus,

we can formulate a second hypothesis, which affirms that the triple-based

model for RDF Stream is always better than the graph-based one when the

number of triples in the graphs is small, as in the previous hypothesis we

consider 20% of the active window.

More formally the hypothesis to verify with SOAK experiments are:

• HP.1 The Incremental reasoning approach is always better than the

naive one for small changes.

• HP.2 The Triple-based model for RDFStream is always better than the

Graph-based one if we consider few triples, to compose each graph.

6.2.2 Step Response Tests

Step Response testing allows to see how the system reacts to a sudden changing

in the input condition (see Section 2.5). They are related to SOAK test,

because they allow to study deeply the initial warm-up phase of the system.

This set of experiments evidences the different responses of an RSP Engine if

we move from an input condition to another instead of starting from scratch.

Step Response experiments are 40000 CTEvents long. Since this duration

requires hours of execution we investigate only few configurations, all with a

slots number of 10. Table 6.5 summarises the step experiment set-up, where

the step is positioned at the half of the execution, 20000 events.

We do not formulate hypothesis for Step experiments. The purpose of this

test set is to show Heaven potential in term of analysis an experiment design.

98

6.3 SOAK Test Evaluation Results

CTEvent size

Number of Slots Initial Size Final Size

10 10 100

10 100 1000

10 10 1000

Table 6.5 – Step Response Test Summary Table - the first column indicates

that every Step Response test is executed with a number of slot equals to 10.

At the beginning of the experiment the CTEvent sizes are indicated in the

second column, while their sizes at the end of the experiment is reported in

the third and last column. All the Step Response tests are 40.000 CTEvents

long, and the step position is always at the half of the experiment duration,

thus 20.000 CTEvents

They shows how it is possible to set up Heaven in order to stress an RSP

Engine in different ways.

6.2.3 Execution Environment

Before presenting experiment results, a brief description of the execution en-

vironment is required. All experiment are executed exploiting a dedicated

machine, an iMac mid-2011 with 12GB RAM and 3.6 Ghz of a Intel i5 64 Bit,

which run OS X 10.10.2 Yosemite. Since Heaven is developed with Java 73,

we use the version 1.7.0.71 of the JVM. The execution happens in a controlled

environment, which tries to reduce the number of disturbing elements like

network, graphical interface and other running processes.

6.3 SOAK Test Evaluation Results

In this section, we analyse the results of the SOAK Test experiments, exploiting

the investigation stack presented in Chapter 4. The analysis goes through the

four levels of the stack, with the aim of confirming or refusing the hypothesis

presented in Section 6.2.1.

The content of this section is organised as follow: Section 6.3.1 presents

the output of the Steady State Identification block. Section 6.3.2 presents

3http://www.oracle.com/technetwork/java/javase/javase7locales-334809.html

99

Evaluation

the results obtained at Level 0, the dashboard visualisation. Section 6.3.3

provides a qualitative comparison for latency and memory, built at Level 1.

Section 6.3.4 contains example of pattern identification at Level 2. Finally,

in Section 6.3.5, we include some examples of the Level 3 Intra Experiment

comparisons and in Section 6.4 we include examples of Inter Experiment ones

w.r.t the Step Response tests.

6.3.1 Steady State Identification Block Results

The Steady State Identification (SSI) block, as reported in Chapter 5, anno-

tates the averaged raw data received by the Pre-Processing block, indicating

which variable has reached a Steady State condition for an experiment. Ta-

ble 6.6 contains all the results the SSI Block, distinguishing between latency

and memory for each variables.

Steady State Condition Identification Result

CTEvent GN — GI — TN — TI

EN Size Slot Num. Lat Mem Lat Mem Lat Mem Lat Mem

1 1 1 Yes Yes Yes No Yes Yes Yes Yes

2 10 1 Yes Yes Yes Yes Yes Yes Yes Yes

3 100 1 Yes Yes Yes Yes Yes Yes Yes Yes

4 1000 1 Yes Yes Yes Yes Yes Yes Yes Yes

5 10000 1 NA NA NA NA NA NA NA NA

6 1 10 Yes Yes Yes Yes Yes Yes Yes Yes

7 10 10 Yes Yes Yes Yes Yes Yes Yes Yes

8 100 10 Yes No Yes No Yes No Yes No

9 1000 10 Yes Yes Yes Yes Yes Yes Yes Yes

10 1 100 Yes No Yes Yes Yes Yes Yes Yes

11 10 100 Yes No Yes No Yes No Yes No

12 100 100 Yes Yes Yes Yes Yes Yes Yes Yes

13 1 1000 Yes No Yes No Yes No Yes No

14 10 1000 Yes Yes Yes Yes Yes Yes Yes Yes

15 1 10000 Yes Yes Yes Yes Yes Yes Yes Yes

Table 6.6 – Steady State Identification Block - Output Summary Table -

Experiment number follows the layout of Table 6.3, filling the columns from

the top to the bottom. The Steady State condition is evaluated after the

average value of 25.000 CTEvents, corresponding to the 85% of the experiment

duration. It is an enough for the Steady State evaluation of latency, even in

case of filling phenomena, but it is not for memory in several experiments.

All the SOAK Experiments reach the Steady State condition for latency,

but some of them did not for memory. Notice in particular that GI does not

100

6.3 SOAK Test Evaluation Results

reach the memory Steady State for experiment 1 (CTEvent Size = 1000 and

a number of slot = 1). Moreover, all the baselines do not reach the memory

Steady State for experiments 8, 11, 13 (CTEvent Size = 1000 and a number

of slot from 10 to 1000).

Experiment number 5 (the CTEvent Size = 10000 a slot Nnumber = 1=)

did not terminate correctly for all the baselines, due to an execution error and

thus, its results are not part of our evaluation.

6.3.2 Level 0 - Dashboard Views

Figure 6.2 – Dashboard Legend

The SOAK test result analysis starts with the dashboard view at Level 0.

Each dashboard presented is composed by two charts which show, in different

form, the relation between the different four baselines. Figure 6.2 shows the

dashboard legend, which is fixed for all the charts related to the SOAK tests.

Dashboard One - Fixed Size CTEvent = 1

Figures 6.4 shows how the behaviour of the four Baselines change between a

set of experiments, which have a fixed CTEvent size of 1 triple and variates

the number of slot in the active window, from 1 (Tumbling) to 10000. This

configuration means moving on the latest diagonal of Table 6.3.

In Figure 6.4, we can appreciate that increasing the number of slots in the

active window, and thus the window size in terms of triple, all the baselines

show latency worsening. The Baselines which exploit the Incremental reason-

ing approach, GI and TI, are not represented in the figure when the number

of slides is equal to one (Tumbling window of only one triple), because their

latency it too small to be represented in this scale. Increasing the number of

slot, GI and TI have the bigger worsening in term of latency than GN and

TN. Actually, they do not became worse, but the Incremental approach is at

least comparable with the naive one, when the number of slots became high

(10000) and the variation is about 2/10000.

101

Evaluation

0.05 0.10 0.20 0.50 1.00 2.00 5.00

3
4

5
6

7
8

Latency (ms)

M
e

m
o

ry
 (

m
b

)

NAIVE GRAPH
NAIVE STMT
INCREMENTAL GRAPH
INCREMENTAL STMT

Figure 6.3 – Analyser Investigation Stack - Level 0 - Dashboard One - The

figure shows how the Baseline performances (avg memory (y) and latency (x))

variate between a subset of SOAK Test experiments, composed by experiments

with a constant CTEvent Size (K) = 1 triple (Experiment (EN) 1,6,10,13,15).

Observing Figure 6.3, which shows all the experiment within a single image,

we can also individuate the worsening for the memory consumption. A first

obvious insight may be that Bigger problem requires in general more resources.

Dashboard One (Figure 6.4 and Figure 6.4) confirms Hypothesis [Hp.1],

the incremental approach performs better than the naive one for both latency

and memory, and it partially confirms [Hp.2]: the latest results in Figure 6.4

shows that the memory usage depends on the reasoning approach and thus the

relation between graph-based streams and triple-based one depends on it too.

The figure confirms [Hp.2], the latency is smaller in experiments with a big

window and a triple-based stream, while for smaller windows a graph-based

one may work better.

102

6.3 SOAK Test Evaluation Results

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

EN 1 EW 1 K 1

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

EN 6 EW 10 K 1

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

EN 10 EW 100 K 1

Latency(ms)

M
e

m
o

ry
 (

m
b

)

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

EN 13 EW 1000 K 1

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

EN 15 EW 10000 K 1

Figure 6.4 – Analyser Investigation Stack - Level 0 - Dashboard One -

The figure shows how the Baseline performances (average memory (y) and

latency (x)) variate between a subset of SOAK Test experiments, composed by

experiments with a constant CTEvent Size (K) = 1 triple (Experiment (EN)

1,6,10,13,15); EW indicates the number of slots in the window. The results are

reported comparing experiments on different stand alone plots.

103

Evaluation

Dashboard Two - Fixed Number of Slot = 10

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
6

8
1
0

Latency (ms)

M
e

m
o

ry
 (

m
b

)

NAIVE GRAPH
NAIVE STMT
INCREMENTAL GRAPH
INCREMENTAL STMT

Figure 6.5 – Analyser Investigation Stack - Level 0 - Dashboard Two -

The figure shows how the Baseline performances (average memory (y) and

latency (x)) variate between a subset of SOAK Test experiments, composed by

experiments with a constant number of slots in window (EW) of 10 (Experiment

(EN) 6,2,8,9).

Figure 6.6 shows how the behaviour of the four Baselines changes between a

set of experiments which have a fixed number of 10 slots in the active window,

while the size of the CTEvent changes from 1 to 10000. This analysis means,

w.r.t Table 6.3 layout, moving from the top to the bottom of the second column.

From the observation of the two figures emerges that: (1) Latency wors-

ening is still clearly visible in Figure 6.6, while the memory ones requires

Figure 6.5; (2) The behaviour of the baselines becomes indistinguishable when

the window size in terms of triple become 10000.

104

6.3 SOAK Test Evaluation Results

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EN 6 EW 10 K 1

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EN 7 EW 10 K 10

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EN 8 EW 10 K 100

NOT STEADY FOR B1 B2 B3 B4 MEMORY

0.05 0.10 0.20 0.50 1.00 2.00 5.00

4
8

Latency

M
e

m
o

ry

EN 9 EW 10 K 1000

Figure 6.6 – Analyser Investigation Stack - Level 0 - Dashboard Two - The

figure shows how the Baseline performances (average memory (y) and latency

(x)) variate between a subset of SOAK Test experiments, composed by experi-

ments with a constant number of slot in window (EW) of 10 (Experiment (EN)

6,2,8,9). K indicates the CTEvent size. The results are reported comparing

experiments on different stand alone plots.

105

Evaluation

[Hp.1] is confirmed for the latency performance, as can be seen in Figure 6.5,

GN and TN are always slower than GI and TI.

For memory, the results are ambiguous and requires further investigations,

only 50% of the experiments confirm the hypothesis. Figure 6.5 shows that

[Hp.2] is confirmed within a single reasoning approach, while in general the

results are similar to the ones of [Hp.1].

Dashboard Three - Fixed Windows Size (Triples) = 10000

4.0 4.5 5.0 5.5

4
5

6
7

8

Latency (ms)

M
e

m
o

ry
 (

m
b

)

NAIVE GRAPH
NAIVE STMT
INCREMENTAL GRAPH
INCREMENTAL STMT

Figure 6.7 – Analyser Investigation Stack - Level 0 - Dashboard Three - The

figure shows how the Baseline performances (average memory (y) and latency

(x)) variate between a subset of SOAK Test experiments, composed by exper-

iments with a constant number of triple in the active window, thus a constant

product of CTEvent Size (K) * Num.Slots (EW) = 10000 (Experiment (EN)

9,12,14,15, experiment 5 is excluded for an erroneous execution).

106

6.3 SOAK Test Evaluation Results

4.0 4.5 5.0 5.5

4
5

7

Latency

M
e
m

o
ry

EN 9 EW 10 K 1000

4.0 4.5 5.0 5.5

4
5

7

Latency

M
e
m

o
ry

EN 12 EW 100 K 100

4.0 4.5 5.0 5.5

4
5

7

Latency

M
e
m

o
ry

EN 14 EW 1000 K 10

4.0 4.5 5.0 5.5

4
5

7

Latency

M
e
m

o
ry

EN 15 EW 10000 K 1

Figure 6.8 – Analyser Investigation Stack - Level 0 - Dashboard Three -

The figure shows how the Baseline performances (average memory (y) and

latency (x)) variate between a subset of SOAK Test experiments, composed

by experiments with a constant product of CTEvent Size (K) * Num.Slots

(EW) = 10000 (Experiment (EN) 9,12,14,15 - 5 is excluded for an erroneous

execution). The results are reported comparing experiments on different stand

alone plots.

107

Evaluation

Figure 6.8 shows how the behaviour of the four Baselines changes between

a set of experiments, which have a constant number triples within the active

window equal to 10000, stated by maintaining the product CTEvent size (K)

and Slot Number (EW) constant to 10000 triples. Fixing the window size in

terms of triple to 10000 means moving from the left to the right on the lowest

row of Table 6.3.

The main observation, we can state on Figures 6.8 and 6.7, is that the

Baseline performances seem depending only on the dimension of the active

windows, indeed for all the observed experiment Baseline memory usage and

latency are disposed in a small interval.

[Hp.1] is confirmed for both the memory and the latency as the figures

show. However the difference are very small between the approaches. [Hp.2] is

confirmed again observing a single reasoning approach at time, while in general

it is not possible to say that Triple-based RDF Stream performs better than

the Graph-based one.

Level 0 allows to state that there is no strong dominance of a Baseline

w.r.t. the other ones in the provided analysis. Moreover, a weak dominance

can be observed in different steps both in term for latency and memory. The

most clear examples are the medium size problems in Figures 6.4 and 6.3

and in Figures 6.6 and 6.5. However, result hierarchy is not absolute and it

may change by changing experiment configurations. This observation refutes

explicitly [Hp.2] formulated in Section 6.2.1, while [Hp.1] was not completely

confirmed. There are experiments where the naive reasoning approach seems

performing better than the incremental one, at least in term of latency.

6.3.3 Level 1 - Statistical Values Comparison

As Expected, the research over RSP Engines requires further analysis to mo-

tivate these unexpected findings. Level 1 exploits statistical investigation

through an easy to ready layout, which simplify the inter-experiment com-

parison (see 4.3 Level 1).

The current evaluation operates over the average values of latency and

memory. Tables 6.7 and 6.8 contain in all the experiment results respectively

for latency and memory at Steady State. Both the tables lay the results out,

according with the layout of Table 6.3. We decide to use the qualitative result

108

6.3 SOAK Test Evaluation Results

(a) Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1 G

10 G '
100 G ' '
1000 G ' ' '
10000 NA T S T T

(b) Triple

Triple Slots

in Number

Window 1 10 100 1000 10000

1 I

10 I I

100 N I I

1000 N I I I

10000 NA I I I I

(c) Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1 '
10 ' '
100 G ' T

1000 G ' T T

10000 NA ' ' T T

(d) Graph

Triple Slots

in Number

Window 1 10 100 1000 1000

1 I

10 I I

100 ' I I

1000 N I I I

10000 NA I I I I

Table 6.7 – Analyser Investigation Stack - Level 1 - SOAK Test average

latency comparison trough a qualitative approach. The following convention

indicates the baseline has not reached the Steady State Condition: G, T, N, I.

(a), (c) - latency results comparison between Incremental and Naive approaches;

(b), (d) - latency results comparison between Graph-based and Triple-based

models.

representation, butHeaven allows also more detailed analysis with quantitative

comparisons as shows in Section 5.4. To properly read the tables note that

they report that a baseline is better than another one when the difference in

term of latency or memory is bigger than 5%, otherwise we consider the two

terms of comparison as equal and we use the simble '. Moreover, we indicate

that the better solution has not reached the Steady State Condition with the

underlined symbols G, T, N, I.

When N >1, the results in Table 6.7.a and 6.7.c allow to say that using

a Triple-base RDF stream is faster than Graph-based one. In particular, for

the case N=1000 when the window contains 1000 triples (i.e., each CTEvent

contains only one triple), the Naive Triple-based approach is about 10% faster

than the Naive Graph-based one while the Incremental Graph-based is even

about 20% faster. This findings confirm [Hp.2], while the cases when N=10

the does not confirm the hypothesis because the results can be consider as

equal (result differences are smaller than 5%). A possible explanation is that

109

Evaluation

(a) Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1 T

10 G T

100 G T G

1000 G G G T

10000 NA G G G G

(b) Triple

Triple Slots

in Number

Window 1 10 100 1000 10000

1 N

10 I N

100 N N I

1000 N I I I

10000 NA I I I I

(c) Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1 G

10 G T

100 G G T

1000 G G G T

10000 NA G G T T

(d) Graph

Triple Slots

in Number

Window 1 10 100 1000 10000

1 N

10 N N

100 ' N I

1000 ' I I I

100000 NA N I I I

Table 6.8 – Analyser Investigation Stack - Level 1 - SOAK Test average

memory comparison trough a qualitative approach.The following convention

indicates the baseline has not reached the Steady State Condition: G, T,

N, I. (a), (c) - memory results comparison between Incremental and Naive

approaches; (b), (d) - memory results comparison between Graph-based and

Triple-based models

the dimension of the graph cannot be considered small w.r.t the window when

N=10.

When N=1 (i.e., the window contains only one CTEvent) instead, the

results in Table 6.7.b and Table 6.7.d show that for large events the Naive

approach is faster than the Incremental one, as we stated when we formulate

[Hp.1]. Instead, when CTEvent contains only few triples, the Incremental

approach is faster and this is not intuitive, because to formulate [Hp.1] we

consider the changes dimension in percentage.

The results in Table 6.7.b and 6.7.d support [Hp.1] by stating that when

the number of changing triples in ∆ + ∆− (Section 4.2) is a small fraction of

those in the window an Incremental approach is faster than the Naive one. The

exception of case N=1, but it can be seen as a limit case, where the reasoner

is asked to deduce all the implicit triples implied by the only explicit triple in

the window.

110

6.3 SOAK Test Evaluation Results

While is possible to state meaningful observation over latency data, the

same is not possible for memory ones. Heaven shows that the study of the

memory can not be faced with the same methods to study latency (comparison

of the average values under a clearly identified the Steady State condition).

Table 6.8 reports the results for the memory usage during the experiments.

Table entries do not confirm what we observed in Table 6.7 and sometimes it

even refutes our findings. It is clear that memory usage does not follow the

same behaviour of latency, even if [Hp.1] and [Hp.2] are not totally refused by

the results.

Further statistical analysis are certainly meaningful. Comparing maximum

or minimum as we did for the average values may detail much more the system

memory usage.

6.3.4 Level 2 - Patter Identification

Statistical analysis are meaningful, but may reduce too much the RSP Engine

complexity by focusing on single element of comparison. A more complete

analysis is required and Heaven can investigate the behaviour of the system

over all the experiment execution.

Level 2 exploits again the layout of Table 6.3, disposing in table cell a

graphical representation of a certain variable (Latency, Memory). The graph-

ical representation choice depends on the research necessities: time domain

representations and value distribution are the ones we explored during our

evaluation, both in log scale or linear scale.

time

la
te
n
c
y

time

la
te
n
c
y

Figure 6.9 – Recognised Latency Pattern for SOAK Experiments

The Tables 6.9 and 6.10 represent in linear scale the latency time series of

the four Baselines. Immediately we can see that most of the systems reach a

111

Evaluation

Steady State condition in a short period, between the 10% and the 20% of the

entire experiment duration. Some of them show filling phenomena, when the

sizes of the window start to be relevant w.r.t. the experiment duration. In

general, the latency trend follows one of the pattern showed in Table 6.9.

The Tables 6.11 and 6.12 show the representation in linear scale of the

memory time series of the four Baselines. Despite what happens for latency, we

can observe that the memory usage does not reach a Steady State condition for

all the experiments (Baseline GI and TI for windows of dimension 1000 Triples

with more than one slot). To reach the Steady State condition for memory, the

system requires from 3.000 to 25.000 CTEvents, but in general it has not a

common behaviour. The variance of these results is high and can be motivated

arguing about how Java is managing the memory during the execution. The

optimisation policies work better when the system have to handle a lot of

triples. The proof of this insight can be seen in Tables 6.11 and 6.12. The

lower levels of the Tables reach the Steady State condition before the higher

ones. For those experiments that involved GI and TI, the Baselines with an

incremental reasoning approach, the Steady State is not even reached, maybe

because the memory consume does not alert the JVM at all.

The filling phenomena we identified for latency are still visible in both the

tables. This denotes the existence of a relation between memory and latency.

This is one of the point we can further investigate through the next analysis

step: Level 3.

Tables 6.13 and 6.14 represent the distribution of memory time series values

of the four Baselines. To obtain this representation we individuate the min-

imum and the maximum between all the experiments. We divided the span

in some intervals and automatically we count how many values of the mem-

ory time series fit the intervals, repeating this count for all the experiment.

through this representation we can see how the memory usage is distributed

during the experiment execution. We can observe that the memory values for

the baselines that exploit incremental reasoning, GI and TI, are distributed

in a smaller interval w.r.t the baselines which exploit the Naive reasoning

approach and thus GI and T I have a smarter usage of the memory. When the

window size increases, the memory consumption shift to the right, towards the

intervals with higher values.

All the four tables about memory time series and memory distribution show

112

6.3 SOAK Test Evaluation Results

that there are strong difference between the experiment subset with window

dimension of 1000 triples and the ones with window dimension 10000 triples.

This is a meta-insight that improves the Experiment Design model. Actually

we are still not able to predict the baselines behaviour, but we can further

investigate through Heaven.

The quantitative nature of the hypothesis formulated in Section 6.2.1 does

not allow to exploit Level 2 for Hypothesis verification. Actually [Hp.1] and

[Hp.2] consider the performance as the main evaluation metric, while Level 2

fulfils the necessity to understand the system nature. The insights above allow

to improve the RSP Engine model, upon which is possible to formulate more

precise hypothesis and to explain the unpredictable results we obtained from

Level 0 and Level 1.

6.3.5 Level 3 - Single Visual Comparison

Level 3 operates a drill down from Level 2, providing examples of Intra Ex-

periment comparisons, in order to highlight the relation between memory and

latency performances. Level 2 has shown several differences that can explain

the absence of a dominant Baseline solution over all the experiment and w.r.t

[Hp.1] and [Hp.2]. Thus Level 3 starts from three important findings:

• All the experiments reach the Steady State for latency, but several of

them do not reach it for memory.

• When the Steady State condition is reached: latency requires about

2.000-5.000 CTEvents w.r.t the total experiment duration of 30.000,

while memory requires from 5.000 to 25.000 CTEvents.

• Both memory and latency analysis show the presence of filling phenom-

ena, which should be further investigated.

Figure 6.12 contains two examples of experiment that reach the Steady

State condition for latency but not for memory. Figure 6.12.a shows the la-

tency and memory usage for the Baseline GN within the experiment eleven

(CTEvent size = 10, Number of Slot = 100), Figure 6.12.b shows the latency

and memory usage of the Baseline TI, within the same experiment.

If we consider only the memory trend, we note an oscillating behaviour

which contrast with the idea of Steady State. A more careful analysis identifies

113

Evaluation

the presence of some spikes in the latency time series. It represents a certain

period of time where the content of the window requires a strong reasoning

effort. This may also influence the memory usage. Moreover, this kind of

analysis can not be seen from higher level.

Figure 6.11 (a) and (b) show two examples of steady state condition reach-

ing. The figure 6.11.a describes that the Baseline GN for experiment seven

(CTEvent size = 10, Number of Slot = 10) reaches the Steady State around

the 10% of the entire experiment duration for latency and about 45% for mem-

ory. Java probably focuses on speeding up the execution rather than saving

resources. A completely different behaviour can be appreciate in the subfigure

(b), where both latency and memory reach the Steady State around the 10% of

the entire execution. It seems that bigger is the amount of resources required

by the program, faster Java’s optimization policies work.

Figures 6.12 (a) and (b) show the relation between the filling phenomena

together for latency and memory for the Baselines TN and TI within Experi-

ment 15 (CTEvent size = 1 Num. Slots = 10000). The main insight regards

how Java manages the initial warm-up phase. We have seen that the JVM

usually over-estimates the necessary amount of memory at the beginning of

the execution, then it tries to optimize. When the window dimension in terms

of triple is increasing the memory occupation has a worsening and latency

follows the same behaviour. Finally, latency and memory reach the stability

when the filling phenomenon ends, since the number of triples in the active

window is now constant.

114

6.3 SOAK Test Evaluation Results

(a) Graph Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Graph Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 6.9 – The figure shows the representation in the time domain of latency

for GN (a) and GI (b).

115

Evaluation

(a) Triple Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Triple Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 6.10 – The figure shows the representation in the time domain of latency

for TN (a) and TI (b).

116

6.3 SOAK Test Evaluation Results

(a) Graph Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Graph Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 6.11 – The figure shows the representation in the time domain of mem-

ory for GN (a) and GI (b).

117

Evaluation

(a) Triple Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Triple Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 6.12 – The figure shows the representation in the time domain of mem-

ory for TN (a) and TI (b).

118

6.3 SOAK Test Evaluation Results

(a) Graph Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Graph Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 6.13 – Figure shows how memory values for GN (a) and GI (b) are

distributed over ten intervals between the global minimum and maximum of

all the SOAK tests results.
119

Evaluation

(a) Triple Naive

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

(b) Triple Incremental

Triple Slots

in Number

Window 1 10 100 1000 10000

1

10

100

1000

10000

Table 6.14 – Figure shows how memory values for TN (a) and TI (b) are

distributed over ten intervals between the global minimum and maximum of

all the SOAK tests results.
120

6.3 SOAK Test Evaluation Results

0 5000 10000 15000 20000 25000 30000

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0
9

0
0

M
e

m
o

ry
 (

M
B

)

memory

latency

Experiment 11 Incremental Triple

CTEvents

L
a

te
n

c
y
 (

m
s
)

(a) GN Exp 11, CTEvent Size = 10 Num.Slot = 100

0 5000 10000 15000 20000 25000 30000

0
2

0
4

0
6

0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0

M
e

m
o

ry
 (

M
B

)
memory

latency

Experiment 11 Incremental Triple

CTEvents

L
a

te
n

c
y
 (

m
s
)

(b) TI Exp 11, CTEvent Size = 10 Num.Slot = 100

Figure 6.10 – Analyser Investigation Stack - Level 3 - Memory (Y) and

latency (Y) behaviours in time domain (X) - SOAK Test Exp 11, CTEvent

Size = 10 Num.Slot = 100, w.r.t baseline GN (a) and TI (b).

121

Evaluation

0 5000 10000 15000 20000 25000 30000

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0

M
e

m
o

ry
 (

M
B

)

memory

latency

Experiment 11 Incremental Triple

CTEvents

L
a

te
n

c
y
 (

m
s
)

(a) GN Exp 7, CTEvent Size = 10, Num.Slot = 10

0 5000 10000 15000 20000 25000 30000

0
5

0
1

0
0

1
5

0

0
1

0
0

3
0

0
5

0
0

7
0

0
9

0
0

M
e

m
o

ry
 (

M
B

)
memory

latency

Experiment 11 Incremental Triple

CTEvents

L
a

te
n

c
y
 (

m
s
)

(b) GI Exp 12, CTEvent Size = 100, Num.Slot = 100

Figure 6.11 – Analyser Investigation Stack - Level 3 - Memory (Y) and

latency (Y) behaviours in time domain (X) - SOAK Test Exp 7, GN, CTEvent

Size = 10 N.Slot = 10 (a) and Exp 12, GI, CTEvent Size = 100 N.Slot = 100

(B).

122

6.3 SOAK Test Evaluation Results

0 5000 10000 15000 20000 25000 30000

0
5

0
1

0
0

1
5

0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

M
e

m
o

ry
 (

M
B

)

memory

latency

Experiment 15 Naive Triple

CTEvents

L
a

te
n

c
y
 (

m
s
)

(a) TN Exp 15, CTEvent Size = 1 Num.Slot = 10000

0 5000 10000 15000 20000 25000 30000

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

0
1

0
0

2
0

0
3

0
0

4
0

0

M
e

m
o

ry
 (

M
B

)

memory

latency

Experiment 15 Incremental Triple

CTEvents

L
a

te
n

c
y
 (

m
s
)

(b) TI Exp 15, CTEvent Size = 1 Num.Slot = 10000

Figure 6.12 – Analyser Investigation Stack - Level 3 - Memory (Y) and

latency (Y) behaviours in time domain (X) - SOAK Test Exp 15, CTEvent

Size = 1 Num.Slot = 10000, w.r.t baseline TN (a) and TI (b).

123

Evaluation

6.4 Step Response Test Evaluation Results

In the previous sections of this chapter we presented the three contributes that

Heaven provides to the SR research: (i) we explain how to design experiments

through the Heaven definition < E ,D, T ,Q > (Section 6.1); (ii) we include

two examples of test sets and the lecture-key to drive the result analysis for one

of them (Section 6.2); (iii) we provide a concrete use-case analysis, exploiting

one of the test set provided in (ii) (Section 6.3). However, in other to prove

that Heaven supports the SCRA we are still missing a forth contribution:

(iv) proving the generality of (i), (ii), (iii) and consequently demonstrate the

flexibility of the research powered by Heaven.

Further examples of (i), (ii) and (iii) are not enough to show Heaven ca-

pabilities proving (iv). We have to change the research paradigm, providing

a complete different kind of analysis. SOAK Testing is a standard testing

procedure for dynamic systems (see Section 2.5) and Step Response Testing is

a standard complementary procedure for it. In order to prove the generality

of the SCRA enabled by Heaven, we provide an example of Inter Experiment

analysis. We exploit the Step Response Test set presented in Section 6.2.2

together with the results of the SOAK Test set of Section 6.2.1, presenting a

new kind of insight.

In the following we briefly show the Step Response testing results, exploit-

ing the Analyser Investigation Stack, except for Level 2 as we explain in

Section 6.4.4. We focus on the evaluation, because further details of each level

of the Investigation Stack can be found in Section 4.3 and Section 5.4, while

the design of this experimental set is described in Section 6.2.2.

6.4.1 Steady State Identification Block

The analysis starts with the identification of the Steady State condition for

the variables involved in the experiments, memory and latency, as we did in

Section 6.4.1. For SOAK Test experiments the Steady State condition has a

single meaning w.r.t the execution. Instead, for Step Response Test experi-

ments we can identify two possible Steady State conditions: ante step (AS)

and post step (PS). In this section, we apply a different comparative approach,

124

6.4 Step Response Test Evaluation Results

contrasting the results of Step Response and SOAK experiment, which are

relate as reported in Section 6.2.2.

The SSI block analysis is extended to reach this experimental characteristic.

Tables 6.15 and 6.16 report the results from the SSI block. Each of them

includes the results for the two phases which compose a Step Response Test:

ante-step (AS) and post-step (PS).

As we expected, latency reaches Steady State condition for both the AS and

the PS phases in all experiments. Instead memory does not reach the Steady

State condition for several experiments, which are highlighted in Table 6.16,

and independently from AS and PS phases.

CTEvent CTEvent GN GI TN TI

Init Size Final Size AS PS AS PS AS PS AS PS

10 100 Yes Yes Yes Yes Yes Yes Yes Yes

10 1000 Yes Yes Yes Yes Yes Yes Yes Yes

100 1000 Yes Yes Yes Yes Yes Yes Yes Yes

Table 6.15 – Steady State Identification Block - Step Response Summary

Table - The Steady State condition is evaluated for both the two phases of the

Step Response Test execution: Ante Step (AS) and Post Step (PS). This tables

report the SSI block results for the evaluation of the latency variable. All the

experiment reach the Steady State for both the AS and the PS phases.

CTEvent CTEvent GN GI TN TI

Init Size Final Size AS PS AS PS AS PS AS PS

10 100 Yes No No No Yes No Yes No

10 1000 Yes Yes No Yes Yes Yes Yes Yes

100 1000 No Yes No Yes No Yes No Yes

Table 6.16 – Steady State Identification Block - Step Response Summary

Table - The Steady State condition is evaluated for both the two phases of the

Step Response Test execution: Ante Step (AS) and Post Step (PS). This tables

report the SSI block results for the evaluation of the memory variable. Several

experiments, highlighted in the table, do not reach the Steady State in one or

both the AS and the PS phases.

6.4.2 Level 0 - Dashboard Views

In this section, we continue the evaluation providing some examples of an easy-

to-ready dashboard view. As we did Section 6.2.1 where we tried to identify a

125

Evaluation

hierarchy between the tested solution (the Baselines).

The Level 0 comparison is summarised in two separated dashboards: Fig-

ure 6.13 shows the two phases of the Step Response Test execution, AS and

PS. Figure 6.14 displays the results of the relative SOAK experiments. Con-

sidering the figures, SOAK I and AS results refer to a CTEvent size of 10,

while SOAK F and PS refer to a CTEvent size of 1000.

Observing the figures we can read an insight: the performances at Steady

State for both the AS and PS phases are similar to the relative SOAK one. This

means that the transitory phase does not influence the Steady State condition

reached for this particular experiment.

6.4.3 Level 1 - Statistical Values Comparison

In this section, we try to extend the statistical Inter Experiment comparison

proposed in Section 6.3.3. We provide a different layout, which allows to com-

pare the Baseline performances between the two phases of the Step Response

tests and the relative SOAK experiment results.

Tables from 6.17 and 6.20 show the worsening of latency and memory

values. We compare Step Response Test ante-step (AS) phase with the relative

SOAK Test, named as SOAK I, and the Step Response post-step (PS) with the

relative SOAK Test, named as SOAK F. We exploit the quantitative approach

of Level 1 to evidence the differences between the two experiment results.

Tables 6.17 and 6.18 confirm what we have seen in the dashboard views at

Level 0. We can observe that for the average values the variations between AS

and SOAK I and between PS and SOAK F are minimal, around the 0.5% with

some outliers of 10-12%. Exactly what the dashboards present in Figures 6.13

and 6.14.

Thus, the comparison of average data seems to be not so interesting. A

better point of analysis is given by Tables 6.19 and 6.20, which apply the same

layout to the comparison of memory and latency maximum values. Notice that

we take all the execution, considering also the initial transitory phase which

usually contains the most high values.

We compare the maximum latency values for the Test SOAK I and SOAK

F, observing that: (i) the differences between SOAK I and AS, which involved

the Step Response test warm-up, follow the same behaviour and confirms the

126

6.4 Step Response Test Evaluation Results

0.2 0.5 1.0 2.0 5.0 10.0

0
.5

1
.0

2
.0

5
.0

1
0
.0

Latency (ms)

M
e

m
o

ry
 (

m
b

)

AS INCREMENTAL STMT
AS NAIVE STMT
AS INCREMENTAL GRAPH
AS NAIVE GRAPH

PS INCREMENTAL STMT
PS NAIVE STMT
PS INCREMENTAL GRAPH
PS NAIVE GRAPH

Step Test 79 CTEvent Size from 10 to 1000

Figure 6.13 – Analyser Investigation Stack - Level 0 - Step Response Dash-

board One - The figure shows in log-scale the average performance values for

memory (Y) and latency (X) of the Step Response Test with an CTEvent

Initial Size of 10 and with a CTEvent Final Size of 1000. We distinguish the

two phases that compose the experiment as ante-step (AS) and post-step (PS)

with different representation explained in the Legend

127

Evaluation

0.2 0.5 1.0 2.0 5.0 10.0

0
.5

1
.0

2
.0

5
.0

1
0

.0

Latency (ms)

M
e

m
o

ry
 (

m
b

)

SOAK I INCREMENTAL STMT
SOAK I NAIVE STMT
SOAK I INCREMENTAL GRAPH
SOAK I NAIVE GRAPH

SOAK F INCREMENTAL STMT
SOAK F NAIVE STMT
SOAK F INCREMENTAL GRAPH
SOAK F NAIVE GRAPH

SOAK Exp 7 and 9 − CTEvent Size from 10 to 1000

Figure 6.14 – Analyser Investigation Stack - Level 0 - Step Response Dash-

board Two - Related SOAK Experiments - The figure shows in log-scale the

average performance values for memory (Y) and latency (X) of the SOAK

Experiment related to the Step Test of Figure 6.13. The SOAK test related

to the first Step Response phase (SOAK I) has a CTEvent size of 10, while

the SOAK test related to the second Step Response phase (SOAK F) has a

CTEvent size of 1000.

128

6.4 Step Response Test Evaluation Results

insight from Table 6.17. (ii) The performance improvement between PS and

SOAK F is much more relevant, always greater than 50% and some over the

80%. This insight points out that there is a initialisation cost that influences

the performances, and it must be considered during the deployment of an RSP

Engine.

Table 6.20 shows a different situation for memory. Nothing can be said

about the comparison between SOAK I and Step Response AS except that the

Step Response AS always consumes more memory w.r.t the SOAK I. Consider-

ing the comparison between Step Response PS and SOAK F, we cannot observe

in general the same situation of Table Table 6.19, but a similar behaviour is

present for Baselines GI and GN, which have a bigger increase in the Step

Response PS than TN and TI.

6.4.4 Level 2 - Pattern Identification

As we reported in the introduction, we actually do not apply this level analysis.

The motivation can be found in the restricted dimension of the Step Response

test set, which lacks the minimum amount of information to perform pattern

identification step. Moreover the number of slots, which compose the active

window, is fixed to ten for this experiment set. In general DSMSs do not

allow to change the window dimension during the execution. This limitation

makes even less interesting the pattern analysis, since we have only a single

controlling variable.

6.4.5 Level 3 - Single Visual Comparison

Finally, we conclude the SOAK Testing analysis through several examples of

Intra Experiment comparison (see Section 6.3.5). In this section we provide

the alternative analysis method of Level 3, presented in Section 4.3: the Inter

Experiment comparison method.

Figures 6.15 (a) and (b) draw, on the same graphl, the latency and the

memory series for three experiments. We build the comparison diversifying

the CTEvent size, since the number of slots is fixed to ten.

129

Evaluation

Thus, the involved experiments are:

• Step Response Test with CTEvent initial size fixed to 10 Triples and

Final Size fixed to 100 triples.

• SOAK Test Number 7, with CTEvent size fixed to 10 Triples.

• SOAK Test Number 8, with CTEvent size fixed to 100 Triples.

Notice that, Figure 6.15.a reports the latency time series for the Baseline

TI, while 6.15.b presents the memory usage for the Baseline GI. We selected

the two most expressive graphs, in order to show the following insight.

In Figure 6.15.a it is possible to see that after the step there is no transitory

phase for the RSP Engine latency. A similar behaviour is observable, for

memory, in Figure 6.15.b. About the Steady State condition, we can observe

that latency behaviour does not changes if compare the SOAK Tests 7 and 8

with the relative Step Response phases AS and PS. The insight is quite more

complex for memory. The growth trend is still present in both the SOAK and

Step Response tests, but in the second one Java anticipates its optimisation

policies, limiting the variance of memory oscillations.

130

6.4 Step Response Test Evaluation Results

In
it

S
iz

e
F

in
a
lS

iz
e

G
ra

p
h

N
a
iv

e
T

ri
p

le
N

a
iv

e
G

ra
p

h
In

c
T

ri
p

le
In

c

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

1
0

1
0
0

-0
,8

3
%

2
,3

1
%

-1
,3

1
%

1
,4

2
%

-2
,1

2
%

0
,9

3
%

0
,1

2
%

-0
,4

9
%

1
0

1
0
0
0

-0
,9

9
%

0
,3

2
%

-1
,8

0
%

0
,0

7
%

-1
,7

4
%

-0
,9

9
%

0
,1

2
%

-0
,5

6
%

1
0
0

1
0
0
0

0
,4

7
%

1
,1

7
%

-0
,6

9
%

0
,0

0
%

-0
,9

3
%

-1
,0

6
%

-1
,5

4
%

0
,1

6
%

T
a
b
le

6
.1
7

–
A
n
a
ly

se
r

In
ve

st
ig

a
ti

on
S

ta
ck

-
L

ev
el

1
-

S
te

p
R

es
p

on
se

T
es

t
av

er
a
ge

la
te

n
cy

co
m

p
a
ri

so
n

.

In
it

S
iz

e
F

in
a
lS

iz
e

G
ra

p
h

N
a
iv

e
T

ri
p

le
N

a
iv

e
G

ra
p

h
In

c
T

ri
p

le
In

c

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

1
0

1
0
0

-9
,5

0
%

-1
2
,0

4
%

-1
,3

9
%

-0
,4

4
%

3
0
,1

5
%

-1
4
,5

7
%

-0
,2

2
%

-1
,0

8
%

1
0

1
0
0
0

2
4
,6

3
%

2
,2

8
%

2
,1

5
%

-0
,7

1
%

1
,3

5
%

-9
,3

9
%

-5
,8

9
%

-0
,5

2
%

1
0
0

1
0
0
0

1
,9

6
%

0
,2

4
%

0
,1

6
%

-0
,3

9
%

1
,6

9
%

-1
3
,0

0
%

0
,6

2
%

2
,0

2
%

T
a
b
le

6
.1
8

–
A
n
a
ly

se
r

In
ve

st
ig

a
ti

on
S

ta
ck

-
L

ev
el

1
-

S
te

p
R

es
p

on
se

T
es

t
av

er
ag

e
m

em
o
ry

co
m

p
a
ri

so
n

.

In
it

S
iz

e
F

in
a
lS

iz
e

G
ra

p
h

N
a
iv

e
T

ri
p

le
N

a
iv

e
G

ra
p

h
In

c
T

ri
p

le
In

c

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

1
0

1
0
0

-4
,1

9
%

8
6
,8

6
%

-8
,8

2
%

8
8
,5

6
%

-2
,1

2
%

9
1
,6

7
%

-3
,0

3
%

9
1
,9

1
%

1
0

1
0
0
0

-3
,1

4
%

5
0
,6

5
%

-1
4
,8

8
%

5
4
,6

4
%

-1
,7

4
%

5
5
,1

2
%

-1
,8

2
%

6
1
,7

8
%

1
0
0

1
0
0
0

-1
,4

0
%

5
1
,5

3
%

-6
,6

1
%

5
7
,8

9
%

-0
,9

3
%

5
3
,8

0
%

-2
,4

0
%

6
0
,9

1
%

T
a
b
le

6
.1
9

–
A
n
a
ly

se
r

In
ve

st
ig

a
ti

on
S

ta
ck

-
L

ev
el

1
S
te

p
R

es
p

on
se

T
es

t
m

ax
im

u
m

la
te

n
cy

co
m

p
a
ri

so
n

.

In
it

S
iz

e
F

in
a
lS

iz
e

G
ra

p
h

N
a
iv

e
T

ri
p

le
N

a
iv

e
G

ra
p

h
In

c
T

ri
p

le
In

c

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

S
O

A
K

I
S

O
A

K
F

1
0

1
0
0

4
2
,9

7
%

5
7
,5

9
%

1
0
,8

2
%

2
5
,5

6
%

4
9
,8

7
%

6
7
,4

8
%

2
7
,9

9
%

1
7
,6

4
%

1
0

1
0
0
0

3
9
,4

2
%

2
2
,0

6
%

1
7
,2

5
%

1
2
,8

7
%

2
5
,1

2
%

6
4
,6

2
%

3
7
,6

9
%

1
0
,8

7
%

1
0
0

1
0
0
0

2
0
,7

5
%

2
9
,7

1
%

5
,1

3
%

1
2
,4

3
%

3
3
,8

4
%

6
9
,0

9
%

8
,9

7
%

2
7
,4

8
%

T
a
b
le

6
.2
0

–
A
n
a
ly

se
r

In
ve

st
ig

at
io

n
S

ta
ck

-
L

ev
el

1
S

te
p

R
es

p
on

se
T

es
t

m
ax

im
u

m
m

em
or

y
co

m
p

ar
is

on
.

131

Evaluation

0 10000 20000 30000 40000

0
5

0
1

0
0

1
5

0
2

0
0

Start Experiment 7 End Experiment 8

CTEvents

L
a
te

n
c
y
 [
m

s
]

SOAK

STEP

(a) TI Step Response vs SOAK Tests - CTEvent Init Size = 10 Final Size 100 N.Slots = 10

0 10000 20000 30000 40000

0
2

0
0

6
0

0
1

0
0

0

Start Experiment 7 End Experiment 8

CTEvents

L
a
te

n
c
y
 [
m

s
] SOAK

STEP

(b) GI Step Response vs SOAK Tests - CTEvent Init Size = 10 Final Size 100 N.Slots = 10

Figure 6.15 – Analyser Investigation Stack - Level 3 - Inter Experiment

comparisons of latency (Y) in Figure (a) and memory (Y) in Figure (b) over

the all the experiment execution CTEvent (X).

132

Chapter 7

Conclusions and Future Works

In this thesis work, we presented Heaven – an open source framework for

empirical research of RSP Engines. Heaven aims at enabling the Systematic

Comparative Research Approach in the Stream Reasoning field, through an

RSP Engine Test Stand, four Baselines of RSP Engines, and an Analyser.

The motivations that led this work are included in Chapter 3, while in

Chapter 4 we described Heaven design and in Chapter 5 we detailed the imple-

mentation of the Test Stand, the four Baselines and the Analyser. Finally,

we presented an empirical proof of Heaven potential in Chapter 6, providing

examples of Experiment Design, two Test sets (SOAK and Step Response),

and an evaluation of Heaven Baselines, which exploits them.

We learnt that, even when RSP Engines are extremely simple (e.g., the

baselines), it is hard to demonstrate hypothesis formulated only from a the-

oretical knowledge and, thus, empirical evaluation is required. Experiment

results emphasised the importance of conducting comparative research based

on controlled experimental conditions. Thus, we confirmed that the SR com-

munity needs an open source1 framework like Heaven.

The focus on the experimental infrastructure is the main difference be-

tween Heaven and previous works. While SRbench and LSbench focus on

RDF Streams and a suite of continuous SPARQL queries, Heaven allows to

compare RSP Engines based on any RDF Stream, ontology, continuous query

and entailment regime. It even enables to run experiments connecting to live

data streams as those used in [8].

1https://github.com/streamreasoning/HeavenTeststand

Conclusions and Future Works

In this chapter, we recap this thesis works, presenting in Section 7.1 our

Research Question and a brief description of Heaven design and implementa-

tion, which answers such research question. Last but not least, in Section 7.2

we point out Heaven limitations and the future works of this thesis.

7.1 Comparative Research of RSP Engines

Stream Processing research field is growing and the number of techniques to

semantically handle data stream is increasing. RDF Stream Processing En-

gines, a.k.a. RSP Engines, are systems able to answer continuous extensions

of SPARQL queries over RDF Streams. Due to their complexity, it is hard to

systematic compare them under repeatable conditions,.

It is worth to note that, despite the Engineering epistemology of the Com-

puter Science works, it is still present the lack of a Systematic Comparative

Research Approach (SCRA) [46]. SCRA is typical of those research areas

which have to face very complex systems, and have difficulty to simplify

the models. Architectural analysis are useful, but they are not sufficient to

evaluate RSP Engines, because their behaviour must be studied during the

execution. For this reason, the Stream Reasoning community has tried to

define and develop solutions to evaluates RSP Engines [44]. Recent works

like [53, 41, 19] supported this approach with queries, dataset and methods.

However the SR community still lacks an experimental infrastructure which

enables the comparison of RSP Engines independently from RDF Stream,

ontology, continuous query and entailment regime. From aerospace engineering

we borrow the idea of engine test stand: a facility to develop engine through

systematic testing under precise experimental conditions. Thus, we can

formulate our research question as follow:

Can an engine test stand, together with queries, datasets and methods,

support Systematic Comparative Research Approach for Stream Reasoning?

In the following we provide an evidence of how Heaven positively answers the

research question.

In Chapter 3, we describe how an engine test stand must be in the Stream

Reasoning research field. We exploit the traditional experiment definition to

134

7.1 Comparative Research of RSP Engines

formulate the requirements that a Test Stand for RSP Engine must fulfil, in

order to answer our research question and to grant the rigorous and system-

atic test of RSP Engines. SCRA, due to its case-oriented nature, demands

simple terms of comparison, namely baselines, to exploit for initial evaluation

examples. In Chapter 3, we detail which properties a baseline must have and

we formulate them as requirements for their implementation.

In Chapter 4, we describeHeaven design. We explain how the Test Stand

and the Baselines should be to fulfil the requirements we posed. We introduce

also the idea of the Analyser as an investigation stack that extends the

research of RSP Engines from the traditional hypothesis based approach to the

empirical and comparative one. In Chapter 5, we describe how Heaven Test

Stand and the Baselines are implemented. We also show how we realised

the investigation stack, providing a statistical evaluation of experiment results

at higher levels, while the lower ones offer an overview of the RSP Engine

dynamics over all the experiment execution.

In Chapter 6, we show how the traditional top-down analysis are not enough

for evaluating complex systems like RSP Engines, even in case of naive imple-

mentations. Our evaluation exploits an experimental set composed by SOAK

Tests and Step Response Stress Tests, executed on the Baselines implementa-

tions that we included in Heaven framework. The results of the analysis show

how the traditional research, which formulate hypothesis only on the RSP

Engine model knowledge, is still meaningful, but it can be improved through

an infrastructure like Heaven Test Stand. The evaluation conducted in

Chapter 6 has shown that it is hard to demonstrate even naive hypothesis.

RSP Engine dynamics can be only partially investigated from the statistical

viewpoint. We need further knowledge about the RSP Engine dynamics, which

means observing their behaviour at once and over the entire execution of an

experiment.

Heaven allows to drill down the analysis over an investigation stack which

covers all the aspects of the dynamic system performance analysis. Through

Heaven is now possible to improve existing theoretical models thanks to the

empirical findings that were not available before. Thus, we can positively

answer our research question, stating that Heaven sustains SCRA and extends

the traditional top-down analysis.

135

Conclusions and Future Works

7.2 Limitations And Future Works

During Heaven development, we faced many issues related to the heteroge-

neous nature of RSP application domains. These concerns limit our work in

different ways. They influence Heaven development in term of both design and

implementation. Moreover, our research of RSP Engines is actually restricted

to Heaven Baselines within an extremely controlled experimental setting.

The limitations on Heaven design and its implementation must be faced,

improving its models and further developing the current implementation of

the Streamer, the ResultCollector and the Test Stand External

Structure. On the other hand, the restrictions on the research of RSP

Engines require to exploitHeaven Test Stand in order to pursue the analysis.

Finally, we consider a further possible contribution continuing the research

on the Baselines, which has its own scientific value, as Chapter 6 partially

evidenced.

Due to these limitations, the future works and possible extensions of

Heaven belong to the following categories:

• Research of RSP Engine - it involves the empirical evaluation of RSP En-

gine and the comparison of benchmarking results, which are our main re-

search interests. Thus, we plan to support our research through Heaven.

• Software Engineering and Development - it involves future works focus on

the different aspects of Heaven software, which is extendible by design.

• Research on Baselines - it aims to provide a complete evaluation of the

Baselines as simple terms of comparison for mature RSP Engines.

We aim extending the Research Work, creating a ready-to-use benchmarking

suite built upon Heaven, which allows to test any RSP Engine with a set of

well defined experiments. From preliminary studies we know that which is

the essential test set to cover the most important uses cases.

An essential set of experiments must include the following tests:

• T1 SOAK.

• T2 Stress Step.

136

7.2 Limitations And Future Works

• T3 Stress Sine Wave.

• T4 Poisson Distribution.

The experiments definition still follows the tuple < E ,D, T ,Q >. The

ready-to-use benchmarking suite will give the users the possibility to execute

those test on their own RSP Engines. Moreover, it should include Heaven

Baselines as simple terms of comparison for benchmarking results.

SOAK Test [T1] and Stress Step Test [T2] are already part of this thesis

work in a restricted form, while the other ones are not implemented yet.

In the current stage of development, it is possible to configure only the

ontology and the entailment regime of the Baselines. Thus we develop [T1]

and [T2] registering to our E as queries Q variations of the identity query,

which differ for window size ω. We intend to continue the development of the

Baselines, adding the possibility to register one or more continuous queries into

them and exploiting more complex entailment regime than ρDF. Moreover, we

have to define which queries Q to include in all the experiments, considering

many works in the field [44, 53, 41, 19].

The current experiment sets [T1] and [T2] exploit LUBM ontology as T and

the RDF Stream D is generated through a module, the RDF2RDFStream,

which adapts LUBM data to a streaming scenario (See Chapter 5). In order to

generate data for all the remaining test sets [T3] and [T4] we have to extend the

RDF2RDFStream to generate: a random flow with a Poisson distribution,

and a sine wave flow (to mimic the periodic changes in the flow rates observed

on social media streams [8]).

Independently from the experiment set, we aim to extend the Test Stand

measurement as suggested in [44]:

• Response time over all queries (Average/1th Percentile/Maximum).

• Maximum input throughput in terms of number of data element in the

input stream consumed by the system per time unit.

• Minimum latency to accuracy and minimum latency to completeness for

all queries.

As we stated in Chapter 6, the content of the active window influences

the RSP Engine performances for two factors: the window size before the

137

Conclusions and Future Works

reasoning and after. The second metrics is relevant for the RSP Engine

evaluation. When the system has to handle a big number of outgoing triples

we can observe a degradation in terms of memory and latency. Thus, an

evaluation of the number of inferred triples w.r.t the window content at time t

allows to weight the engine performance results in relation to the input RDF

Stream, helping to eliminate outliers and properly evaluate RSP Engines.

Moreover, this observation opens new scenarios in the Stress Testing design,

where the stress factor depends on the reasoning potential of the current

window w.r.t a certain entailment regime.

Future works on Software Engineering and Development regard the Anal-

yser. We aim to completely automate the analysis procedure, involving at

least the current measurement set and tools.

As a long term goal, we intend to standardise the entire tool-set which

supports analysis methods presented in Chapter 4. We are imagining the

Analyser as a Web-based environment where all existing RSP Engines are

already available; the experiments design and execution are accessible as a

service through the selection of RDF Streams, ontologies, and queries; the

results analysis of any external RSP Engine is allowed providing the data

and the involved variables. Finally, a visual facility to compare different

experiments and the publication of experiment result as linked data would

complete this environment.

Last but not least, we would like to continue the Research on Baselines, because

we identified an intrinsic scientific value in their evaluation, which can be

another contribution itself. In order to study the problem of responsiveness

we have to add four alternative implementations of the Baselines, which do not

exploit the external time control. The Baselines should be evaluated by [T1],

[T2], [T3] and [T4] but also with real data and a T different from LUBM, for

example exploiting LS Bench queries and data to design an experiment set.

138

Bibliography

[1] Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris Bie-

mann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty,

and Krzysztof Janowicz, editors. The Semantic Web - ISWC 2013 - 12th

International Semantic Web Conference, Sydney, NSW, Australia, Octo-

ber 21-25, 2013, Proceedings, Part II, volume 8219 of Lecture Notes in

Computer Science. Springer, 2013.

[2] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous

query language: semantic foundations and query execution. VLDB J.,

15(2):121–142, 2006.

[3] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag

Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts.

Linear road: A stream data management benchmark. In (e)Proceedings

of the Thirtieth International Conference on Very Large Data Bases,

Toronto, Canada, August 31 - September 3 2004, pages 480–491, 2004.

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-

nifer Widom. Models and issues in data stream systems. In Proceedings of

the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems, June 3-5, Madison, Wisconsin, USA, pages

1–16, 2002.

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-

nifer Widom. Models and issues in data stream systems. In Proceedings of

the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems, June 3-5, Madison, Wisconsin, USA, pages

1–16, 2002.

BIBLIOGRAPHY

[6] Shivnath Babu and Jennifer Widom. Continuous queries over data

streams. SIGMOD Record, 30(3):109–120, 2001.

[7] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle,

Yi Huang, Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. BOT-

TARI: an augmented reality mobile application to deliver personalized

and location-based recommendations by continuous analysis of social me-

dia streams. J. Web Sem., 16:33–41, 2012.

[8] Marco Balduini, Emanuele Della Valle, Daniele Dell’Aglio, Mikalai Tsyt-

sarau, Themis Palpanas, and Cristian Confalonieri. Social listening of city

scale events using the streaming linked data framework. In Alani et al.

[1], pages 1–16.

[9] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della

Valle, and Michael Grossniklaus. C-SPARQL: a continuous query lan-

guage for RDF data streams. Int. J. Semantic Computing, 4(1):3–25,

2010.

[10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della

Valle, and Michael Grossniklaus. Querying RDF streams with C-

SPARQL. SIGMOD Record, 39(1):20–26, 2010.

[11] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della

Valle, and Michael Grossniklaus. Querying rdf streams with c-sparql.

SIGMOD Rec., 39(1):20–26, September 2010.

[12] Pedro Bizarro. Bicep - benchmarking complex event processing systems.

In Event Processing, 6.5. - 11.5.2007, 2007.

[13] Jürgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking owl

reasoners. In Proc. of the ARea2008 Workshop, Tenerife, Spain (June

2008), 2008.

[14] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J.

Miller, and Nesime Tatbul. Secret: A model for analysis of the execution

semantics of stream processing systems. Proc. VLDB Endow., 3(1-2):232–

243, September 2010.

140

BIBLIOGRAPHY

[15] Jean-Paul Calbimonte, Óscar Corcho, and Alasdair J. G. Gray. Enabling

ontology-based access to streaming data sources. In The Semantic Web

- ISWC 2010 - 9th International Semantic Web Conference, ISWC 2010,

Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I,

pages 96–111, 2010.

[16] Jean-Paul Calbimonte, Hoyoung Jeung, Óscar Corcho, and Karl Aberer.

Enabling query technologies for the semantic sensor web. Int. J. Semantic

Web Inf. Syst., 8(1):43–63, 2012.

[17] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-

mation: From data stream to complex event processing. ACM Comput.

Surv., 44(3):15:1–15:62, June 2012.

[18] Emanuele Della Valle Daniele Dell’Aglio. Incremental reasoning on rdf

streams. In Andreas Harth, Katja Hose, and Ralf Schenkel, editors, Linked

Data Management, chapter 16, pages 413–436. CRC Press, 2014.

[19] Daniele Dell’Aglio, Jean-Paul Calbimonte, Marco Balduini, Óscar Cor-

cho, and Emanuele Della Valle. On correctness in RDF stream processor

benchmarking. In Alani et al. [1], pages 326–342.

[20] Li Ding, Yun Peng, Paulo Pinheiro da Silva, and Deborah L. McGuinness.

Tracking RDF Graph Provenance using RDF Molecules. Technical report,

UMBC, April 2005.

[21] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,

35(2):114–131, 2003.

[22] Joseph Felsenstein. Phylogenies and the comparative method. The Amer-

ican Naturalist, 125(1):pp. 1–15, 1985.

[23] Tom Gardiner, Ian Horrocks, and Dmitry Tsarkov. Automated bench-

marking of description logic reasoners. 2006.

[24] Jim Gray, editor. The Benchmark Handbook for Database and Transaction

Systems (2nd Edition). Morgan Kaufmann, 1993.

141

BIBLIOGRAPHY

[25] Sven Groppe, Jinghua Groppe, Dirk Kukulenz, and Volker Linnemann.

A SPARQL engine for streaming RDF data. In Third International

IEEE Conference on Signal-Image Technologies and Internet-Based Sys-

tem, SITIS 2007, Shanghai, China, December 16-18, 2007, pages 167–174,

2007.

[26] Thomas R. Gruber. A translation approach to portable ontology specifi-

cations. Knowl. Acquis., 5(2):199–220, June 1993.

[27] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for

OWL knowledge base systems. Journal of Web Semantics, 3(2-3):158–

182, 2005.

[28] Tom Heath and Christian Bizer. Linked data: Evolving the web into a

global data space. Synthesis lectures on the semantic web: theory and

technology, 1(1):1–136, 2011.

[29] IEEE. IEEE Standard Glossary of Software Engineering Terminology.

Technical report, 1990.

[30] Thomas Janoski and Alexander M. Hicks. Methodological innovations

in comparative political economy: an introduction. In The Comparative

Political Economy of the Welfare State, pages 1–28. Cambridge University

Press, 1994. Cambridge Books Online.

[31] Graham Klyne and Jeremy J. Carroll. Resource description framework

(RDF): Concepts and abstract syntax. World Wide Web Consortium

Recommendation, February 2004.

[32] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: continuous

schema-enhanced pattern matching over RDF data streams. In Proceed-

ings of the Sixth ACM International Conference on Distributed Event-

Based Systems, DEBS 2012, Berlin, Germany, July 16-20, 2012, pages

58–68, 2012.

[33] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred

Hauswirth. A native and adaptive approach for unified processing of

linked streams and linked data. In Proceedings of the 10th International

142

BIBLIOGRAPHY

Conference on The Semantic Web - Volume Part I, ISWC’11, pages 370–

388, Berlin, Heidelberg, 2011. Springer-Verlag.

[34] Freddy Lécué, Simone Tallevi-Diotallevi, Jer Hayes, Robert Tucker, Veli

Bicer, Marco Luca Sbodio, and Pierpaolo Tommasi. Smart traffic analyt-

ics in the semantic web with STAR-CITY: scenarios, system and lessons

learned in dublin city. J. Web Sem., 27:26–33, 2014.

[35] Chang Liu, Jacopo Urbani, and Guilin Qi. Efficient RDF stream reasoning

with graphics processingunits (gpus). In 23rd International World Wide

Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014,

Companion Volume, pages 343–344, 2014.

[36] David C. Luckham. The Power of Events: An Introduction to Com-

plex Event Processing in Distributed Enterprise Systems. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[37] Daniel A. Menasce and Virgilio Almeida. Capacity Planning for Web Ser-

vices: Metrics, Models, and Methods. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 2001.

[38] Ian Molyneaux. The Art of Application Performance Testing: Help for

Programmers and Quality Assurance. O’Reilly Media, Inc., 1st edition,

2009.

[39] Sergio Muñoz, Jorge Pérez, and Claudio Gutiérrez. Minimal deductive

systems for RDF. In The Semantic Web: Research and Applications, 4th

European Semantic Web Conference, ESWC 2007, Innsbruck, Austria,

June 3-7, 2007, Proceedings, pages 53–67, 2007.

[40] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical

studies of software engineering: a roadmap. In 22nd International Confer-

ence on on Software Engineering, Future of Software Engineering Track,

ICSE 2000, Limerick Ireland, June 4-11, 2000., pages 345–355, 2000.

[41] Danh Le Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter A. Boncz,

Thomas Eiter, and Michael Fink. Linked stream data processing engines:

143

BIBLIOGRAPHY

Facts and figures. In The Semantic Web - ISWC 2012 - 11th Interna-

tional Semantic Web Conference, Boston, MA, USA, November 11-15,

2012, Proceedings, Part II, pages 300–312, 2012.

[42] Eric PrudHommeaux, Andy Seaborne, et al. SPARQL query language for

RDF, W3C recommendation, 2008.

[43] Yuan Ren and Jeff Z. Pan. Optimising ontology stream reasoning with

truth maintenance system. In Proceedings of the 20th ACM Conference on

Information and Knowledge Management, CIKM 2011, Glasgow, United

Kingdom, October 24-28, 2011, pages 831–836, 2011.

[44] Thomas Scharrenbach, Jacopo Urbani, Alessandro Margara,

Emanuele Della Valle, and Abraham Bernstein. Seven commandments

for benchmarking semantic flow processing systems. In The Semantic

Web: Semantics and Big Data, 10th International Conference, ESWC

2013, Montpellier, France, May 26-30, 2013. Proceedings, pages 305–319,

2013.

[45] Theda Skocpol and Margaret Somers. The uses of comparative history in

macrosocial inquiry. Comparative Studies in Society and History, 22:174–

197, 4 1980.

[46] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Ex-

perimental evaluation in computer science: A quantitative study. J. Syst.

Softw., 28(1):9–18, January 1995.

[47] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Ex-

ploiting punctuation semantics in continuous data streams. IEEE Trans.

Knowl. Data Eng., 15(3):555–568, 2003.

[48] Jacopo Urbani, Alessandro Margara, Ceriel J. H. Jacobs, Frank van

Harmelen, and Henri E. Bal. Dynamite: Parallel materialization of dy-

namic RDF data. In The Semantic Web - ISWC 2013 - 12th International

Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,

Proceedings, Part I, pages 657–672, 2013.

[49] Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele

Braga, and Alessandro Campi. A first step towards stream reasoning. In

144

BIBLIOGRAPHY

Future Internet - FIS 2008, First Future Internet Symposium, FIS 2008,

Vienna, Austria, September 29-30, 2008, Revised Selected Papers, pages

72–81, 2008.

[50] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter

Fensel. It’s a streaming world! reasoning upon rapidly changing infor-

mation. IEEE Intelligent Systems, 24(6):83–89, 2009.

[51] Jacques Wainer, Claudia G. Novoa Barsottini, Danilo Lacerda, and Le-

andro Rodrigues Magalhães de Marco. Empirical evaluation in computer

science research published by acm. Inf. Softw. Technol., 51(6):1081–1085,

June 2009.

[52] Onkar Walavalkar, Anupam Joshi, Tim Finin, and Yelena Yesha. Stream-

ing Knowledge Bases. In Proceedings of the Fourth International Work-

shop on Scalable Semantic Web knowledge Base Systems, , Karlsruhe, DE,

October 2008.

[53] Ying Zhang, Minh-Duc Pham, Óscar Corcho, and Jean-Paul Calbimonte.

Srbench: A streaming RDF/SPARQL benchmark. In The Semantic Web -

ISWC 2012 - 11th International Semantic Web Conference, Boston, MA,

USA, November 11-15, 2012, Proceedings, Part I, pages 641–657, 2012.

145

