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Abstract 
 
 
 
 
This thesis is part of a study with the purpose of designing a technology for 
underground inspections based on acoustic imaging. A membrane situated in a 
borehole excavated at high depth in the underground generates pressure signals and 
detects with sensors the reflected waves travelling backward from the ground. Once 
the soil acoustic parameters, as well as the amplitudes of those reflected wavelets 
and their time of travelling are known, the geologic conformation of the inspected 
ground portion can be reconstructed. 
Since my working period started in the preliminary phase of this entire study, a basic 
acoustic parameter, the acoustic impedance, had to be inspected.  
The method of evaluation adopted in this work aims to be applicable in a large 
variety of engineering problems where the internal structure of materials needs to 
be inspected in a non-destructive way. 
The first part of this thesis deals with the target of identifying the best software for 
the Fluid-Structure Interaction (FSI) numerical calculations. This is necessary for the 
correct modeling of the motional response to defined stresses configurations for the 
solid and fluid matrices.  
An exact analytical solution has been used as a test case for the comparison of 
different FSI solvers, looking for the one who best fitted this known solution. 
After that, given the complexity of the simulation domain and the number of factors 
composing the problem, it has been decided to analyze the influence of simpler 
models on the desired parameter of the acoustic impedance. 
Some representative fluid geometries have been recreated with basic singularities. 
Given input signals have been tested with the aim of detecting the impedance of 
precise sections before and after those configurations. 
Those fluid domains, in a preliminary phase, have been surrounded by a rigid body 
fully constraining the interface between the two media and not reacting to the fluid 
stress waves. Analysis on fluid pressure and velocity fields have been useful in order 
to understand the behavior of those models to pressure wave solicitations.  
Impedance characterization of fixed sections has been performed and compared 
with some theoretical acoustics cases to prove their validity. 
Then, the rigid boundary has been substituted by a linear elastic solid rock reacting 
to fluid stresses through a contact interface.  
FSI simulations have been conducted on the same domains analyzed in the previous 
part. However, in order to catch the reactions of the solid phase to the fluid stresses, 
the single fluid domain was charged in the inlet surface. 
Results for the fluid phase have been compared with those obtained in the previous 
part, noticing some different factors affecting the FSI solution. 
In the final section of this thesis, different boundary conditions have been imposed 
on the solid input section with the aim of studying the different influences they had 
on the stresses propagation fields both in the solid and the fluid domains.  
These last considerations permitted some useful insights for the following parts of 
the entire study, connecting this work with the rest of the analysis. 
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Estratto in italiano 
 
 
 
 
In molti campi dell’ingegneria è possibile dover affrontare la necessit{ di operare con 
strutture la cui conformazione non è omogenea, e può risultare composta da diversi 
materiali o da diverse fasi in contatto tra loro. Frequentemente l’alternarsi di queste 
parti non è distinguibile ad una prima analisi e richiede quindi l’utilizzo di metodi 
speciali per la loro identificazione. 
È di fondamentale importanza ad esempio, in molte applicazioni dell’ingegneria 
geotecnica o strutturale, conoscere le proprietà di materiali, come il calcestruzzo 
armato o semplicemente il terreno, per poterne riconoscere le capacità di resistenza 
a determinati sforzi. La loro micro-struttura porosa e l’impossibilit{ di prelevarne dei 
campioni rappresentativi in molti casi necessita di prove non distruttive per poterne 
riconoscere le proprietà effettive. Una tipologia di queste prove può riguardare 
l’analisi della propagazione di onde sonore all’interno di questi materiali, dei quali 
può quindi essere necessario conoscerne le principali caratteristiche acustiche. 
Non solo, metodi di ispezione tramite segnali acustici sono utilizzati all’interno di 
altri campi dell’ingegneria come quella meccanica o quella acustica. Per 
l’individuazione di difetti all’interno di materiali metallici in fase di produzione o in 
fase di monitoraggio, l’analisi della propagazione di segnali predefiniti può 
determinare la presenza di imperfezioni che riducono le capacità portanti della 
struttura. Lo studio dei segnali non è tuttavia utilizzato solamente in fase di 
controllo, bensì anche in fase di progettazione, come può capitare durante la 
creazione di materiali fonoassorbenti. 
Nel caso di questo studio, il dominio in questione è rappresentato da una porzione di 
terreno situato in profondità, di cui quindi risulta impossibile o estremamente 
costoso estrarne un campione per lo studio della sua composizione. L’indagine, 
tramite strumenti dotati di tecnologia per l’emissione di onde di pressione e il 
rilevamento delle conseguenti onde riflesse, risulta di conseguenza necessaria per 
l’individuazione di particolari formazioni sotterranee. Queste possono essere ad 
esempio giacimenti petroliferi o altre singolarità che possono essere rilevate come 
deviazioni dalla prevista propagazione di un prefissato segnale. 
Per la progettazione di tali strumenti e la loro corretta interpretazione dei dati è 
necessario conoscere le caratteristiche acustiche di un campione di terreno. Una 
grandezza fondamentale per la caratterizzazione acustica di un materiale è 
l’impedenza acustica, e la sua valutazione, attraverso un’analisi della sua struttura 
complessa rappresentata nella formula sottostante, è affrontabile tramite diversi 
metodi. 
 

   
 ̂

 ̂
       

 
La simulazione numerica di domini complessi, come può essere ad esempio un 
campione di terreno poroso, comporta lunghi tempi di calcolo e una notevole 
difficoltà di interpretazione dei risultati, data la grande quantità di fattori che 
intervengono alla sua formazione. 
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Per questi motivi, in questo lavoro, è stato deciso di scomporre il problema in casi 
elementari ma rappresentativi di ciò che può accadere all’interno di uno di questi 
domini in seguito all’applicazione di un onda di pressione. 
 
 

 
 

Estrazione di geometrie elementari dal dominio complesso rappresentato dal campione di terreno poroso. 

 
Con questo obiettivo sono state modellate delle particolari geometrie, rappresentanti 
configurazioni topologiche di base, la cui analisi è stata effettuata tramite una 
successiva addizione di complessità al problema più semplice. Dalla valutazione di 
domini fluidi contornati da parti solide rigide e non reattive alle sollecitazioni che si 
propagano nel fluido, si è poi passati all’assunzione di una matrice solida elastica e 
quindi reagente attraverso gli sforzi scambiati all’interfaccia solido-fluido, ricavando 
prima la distribuzione delle pressioni nel solo fluido dovuti all’azione del solido, e 
infine analizzando i principali fenomeni che contraddistinguono la distribuzione 
degli stress nel solido. 
In prima analisi quindi, sono state approntate simulazioni numeriche su domini fluidi 
rappresentanti un canalicolo di sezione e sviluppo longitudinale costanti e uno con 
invece una brusca variazione di sviluppo assiale, l’incontro di un poro in uno di 
questi canalicoli, assunto come un allargamento della sezione trasversale, e 
l’incontro, come caso speculare al precedente, di un restringimento. Per il caso 
dell’allargamento sono inoltre stati considerati due tipi di variazione di sezione: uno 
più brusco e uno più graduale, con il raggiungimento della sezione allargata dopo una 
lunghezza maggiore. L’area indisturbata di questi canalicoli è stata mantenuta in tutti 
i casi con diametro D di 10 μm, utilizzato come dimensione caratteristica per 
l’adimensionalizzazione spaziale dei risultati.  
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Su questi domini è stata simulata l’azione di tre treni di onde di pressione 
monocromatiche a diversa frequenza: 106, 107, 108 Hz. Questo perché l’impedenza 
acustica è una grandezza funzione della frequenza, ed è quindi corretto analizzarne 
le variazioni a seconda della frequenza di input considerata. 
Sui risultati di pressione e velocità è quindi stata eseguita la trasformata di Fourier 
per la loro analisi nel campo delle frequenze e infine, dopo aver effettuato il rapporto 
tra le loro rappresentazioni complesse, sono stati estratti i valori di impedenza per 
particolari sezioni situate prima, in corrispondenza e successivamente ciascuna 
analizzata singolarità topologica. 
Nella figura sottostante sono riassunte, a titolo di esempio, i risultati di impedenza 
per la frequenza di 107 Hz ottenuti in varie sezioni dei sopra citati domini fluidi. 
 
 

 
 

Risultati di parte reale ed immaginaria dell’impedenza per le sezioni osservate ottenuti per geometrie 
fluide sollecitate con una frequenza di 107 Hz. 

 
I comportamenti di parte reale e parte immaginaria sono risultati rappresentativi dei 
fenomeni in atto all’interno di ciascuna configurazione.  
Il valore della parte reale, cioè della parte direttamente proporzionale all’intensità 
del segnale rilevato e quindi la parte che testimonia il passaggio di energia, risulta, 
per la geometria del canalicolo rettilineo, stabile attorno al valore ricavabile tramite 
la semplicistica formulazione dell’impedenza caratteristica data dal prodotto tra 
densità del materiale e celerità della perturbazione, che in questo caso è circa 106 
Pa·m-1·s, fornendo un indice della correttezza delle simulazioni effettuate. 
Non solo, dai risultati emergono comportamenti correttamente speculari tra 
l’allargamento e il restringimento di sezione. Questo perché l’impedenza si basa sulla 
forma e l’entit{ delle onde riflesse e trasmesse da ciascuna sezione considerata. Su 
queste geometrie è rilevabile come la trasformazione dell’energia, rappresentata 
tramite variazione della parte immaginaria o reattanza dell’impedenza, avvenga per 
l’allargamento come una compressione elastica del maggior volume di fluido 
incontrato, che si traduce in un incremento negativo della reattanza, mentre per il 
restringimento in un’accelerazione del volume fluido, che si traduce invece in un 
incremento positivo. 
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La sensibilit{ dell’impedenza rispetto alla frequenza di input è stata riscontrata in 
tutti i domini analizzati, ma rappresentativi sono i risultati per la geometria con 
variazione di direzione longitudinale, chiamata in questo lavoro “gomito”, riassunti 
dal grafico sottostante. 
 
 

 
 

Risultati di parte reale ed immaginaria dell’impedenza per le sezioni osservate ottenuti la geometria fluida 
rappresentante il cambio di direzione al variare della frequenza di input. 

 
 Si è evinto infatti come il gomito si comporti per le frequenze 106 e 107 Hz come il 
tubo rettilineo, mentre per 108 Hz il segnale inizi a subire l’effetto del cambiamento 
di direzione. Questo perché, se la lunghezza d’onda del segnale in ingresso risulta 
comparabile con la dimensione caratteristica del dominio, cioè il diametro, il segnale 
subisce maggiori riflessioni e quindi si perde la frequenza desiderata in fenomeni di 
dispersione e dissipazione di energia. 
Per tutte le considerate geometrie, inoltre, più la lunghezza d’onda del segnale di 
input si avvicina alle dimensioni del diametro più l’ampiezza del segnale di pressione 
diminuisce, indicando una peggiore trasmissione ed una maggiore impedenza di 
determinate sezioni. 
Successivamente è stato considerato il dominio solido circondante il fluido come 
elastico e quindi reagente alle sollecitazioni esercitate all’interfaccia. Quindi 
simulazioni FSI sono state effettuate sui domini sopra elencati per poter infine 
analizzare tramite un confronto l’influenza della FSI sulla valutazione dell’impedenza 
acustica. 
Per comprendere meglio l’azione del fluido sul solido in queste simulazioni 
solamente la parte fluida è stata caricata con i tre segnali di pressione sopra indicati, 
trasmettendo la sollecitazione al solido principalmente per effetto Poisson che per il 
solido considerato, roccia, è determinato da un coefficiente ν uguale a 0,3. 
Allargamento, restringimento e tubo dritto sono stati confrontati, ottenendo risultati 
con andamenti simili a quelli già ottenuti per i soli domini fluidi, come si può notare 
dalla figura sottostante per la frequenza di 107 Hz. 
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Risultati di parte reale ed immaginaria dell’impedenza per le sezioni osservate ottenuti per geometrie FSI 
sollecitate con una frequenza di 107 Hz. 

 
Come esempio dell’influenza del solido sulla parte fluida si può notare dalla figura 
seguente l’esistenza della cosiddetta “precursor wave”, un’onda creata per effetto 
Poisson sul solido che, data la maggiore rigidezza di questo, si propaga ad una 
celerità superiore a quella delle perturbazioni del fluido, sollecitando a sua volta il 
fluido stesso. 
 
 

 
 

Precursor wave nel solido per la sollecitazione iniziale di 107 Hz. 

 
Esempio della differente reazione alla stessa onda in ingresso, e rappresentazione 
spaziale dell’influenza della geometria sulle grandezze che caratterizzano 
l’impedenza di una sezione, cioè pressione e velocit{, viene fornita della seguente 
immagine. Ad un fissato istante di tempo si può notare come campi di velocità 
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speculari vengano creati nelle sezioni antecedenti le singolarità, formando quindi i 
valori di impedenza sopra presentati. 
 
 

 
 

Campi di velocità nei domini FSI per le geometrie rappresentanti l’allargamento e il restringimento 
sottoposti a una sollecitazione di frequenza 107 Hz. 

 
Si sono infine confrontati i risultati ottenuti tramite l’utilizzo di un contorno rigido o 
di un contorno elastico per ciascuna geometria. Dai grafici, come quello sottostante 
ricavato per l’allargamento sottoposto al segnale di frequenza 107 Hz, è emerso come 
la reazione del solido elastico porti ad un decremento in generale della parte reale 
del segnale, indicando peggiore trasmissione. Questa divergenza tra gli andamenti è 
risultata maggiore in media del 15% in sezioni lontane dalla singolarità analizzata, 
mentre diventa nettamente minore in corrispondenza di queste ultime. 
 

 
 

Risultati di parte reale ed immaginaria dell’impedenza per le sezioni osservate ottenuti per l’allargamento 
simulato con solido rigido ed elastico al contorno, sollecitato con una frequenza di 107 Hz. 
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Questi risultati confermano la bontà del metodo utilizzato per la valutazione 
dell’impedenza acustica in determinate sezioni, che quindi può essere utilizzato 
anche in domini più complessi, che comportano però una maggiore difficoltà nella 
comprensione dei risultati. 
In ultima analisi si è osservato il comportamento delle distribuzioni degli stress nella 
matrice solida in seguito alla sua sollecitazione in fase iniziale assieme alla parte 
fluida. Alle simmetrie sulle superfici laterali a priori imposte per rappresentare 
l’infinita continuit{ spaziale del dominio creato, sono state considerate differenti 
condizioni di vincolo alla traslazione longitudinale del sistema. 
Due principali fenomeni sono stati riscontrati. Il primo è l’aumento dell’ampiezza 
della precursor wave funzione della maggior mobilità del sistema, data da inferiori 
nodi del dominio solido vincolati, come si può riscontrare dal grafico sottostante 
ottenuto vincolando il solido alla traslazione longitudinale solamente negli angoli 
esterni. 
 
 

 
 

Segnali di pressione per tre sezioni osservate nel caso di nodi agli angoli esterni della sezione solida di 
input vincolati. Dominio sollecitato con una frequenza di 107 Hz. 

 
Mentre il secondo è riscontrabile dalla rappresentazione degli sforzi nel solido al 
variare del tempo per le fissate sezioni considerate, esemplificata nella figura di 
seguito per il caso con gli angoli esterni della sezione di input vincolati. L’effetto 
Poisson genera infatti onde longitudinali nel solido che riflettono sui nodi vincolati e 
provocano onde che modulano longitudinalmente la distribuzione degli sforzi nel 
solido. Infine si noti come la viscosità del fluido fa si che le oscillazioni in ampiezza  
degli stress nel solido si stabilizzino solo dopo un transitorio iniziale. 
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Sviluppo temporale della componente longitudinale dello stress Szz nel solido per le diverse sezioni 
osservate. Dominio sollecitato con una frequenza di 107 Hz. 

 
Gli studi intrapresi dal gruppo di ricerca in cui questo lavoro si è inserito 
continueranno inserendo sempre più gradi di complessità al problema finora 
presentato. Pertanto questa tesi può essere considerata come un passaggio 
all’interno della ben più lunga analisi da effettuare per arrivare al risultato finale, 
cioè la caratterizzazione dell’impedenza acustica per un dominio complesso come un 
solido poroso. Tuttavia, come è noto ai più, per raggiungere la cima della scala è 
prima obbligatorio percorrerla gradino per gradino, e questo lavoro mira a 
rappresentare uno di questi gradini. 
 
 
 
 
 
 
 
 
 
 
 
 



 

XI 
 

Contents 

 

ABSTRACT .......................................................................................................................... I 

ESTRATTO IN ITALIANO ................................................................................................... III 

CONTENTS.........................................................................................................................XI 

LIST OF FIGURES ............................................................................................................. XV 

LIST OF TABLES ........................................................................................................... XXIV 

1 INTRODUCTION ........................................................................................................... 1 

2 BASICS AND METHODS FOR SUBSURFACE GEOLOGICAL INTERPRETATION .................. 3 

2.1 RESERVOIRS GEOMETRY AND GEOLOGY .............................................................................................. 3 

2.2 ACOUSTIC LOGGING .................................................................................................................................. 5 

2.3 BOREHOLE IMAGING ................................................................................................................................ 9 

3 ACOUSTIC IMPEDANCE : DEFINITIONS AND METHODS OF EVALUATION .................... 13 

3.1 ACOUSTICS AND IMPEDANCE DEFINITION ........................................................................................ 13 

3.2 IMPEDANCE FORMULATION FROM ACOUSTIC ENERGY IN FLUIDS ................................................ 15 

3.3 COMPLEX ACOUSTIC IMPEDANCE ........................................................................................................ 17 

3.3.1 Complex definition ....................................................................................................................... 17 

3.3.2 Acoustic inertance ........................................................................................................................ 19 

3.3.3 Acoustic compliance .................................................................................................................... 20 

3.4 FORMS OF IMPEDANCE FOR MECHANICAL SOLID SYSTEMS ........................................................... 22 

4 THE CHOICE OF THE SOLVER : ANSYS AND LSDYNA COMPARISON ........................ 27 

4.1 TEST CASE FOR THE COMPARISON ...................................................................................................... 27 

4.2 EXACT ANALYTICAL SOLUTIONS.......................................................................................................... 28 

4.2.1 Fluid-Structure Interaction part ............................................................................................ 28 

4.2.1.1 Solid part ........................................................................................................................................ 33 



 

XII 
 

4.2.1.2 Fluid part ........................................................................................................................................38 

4.3 OVERVIEW OF THE SOFTWARE ........................................................................................................... 41 

4.3.1 ANSYS Mechanical ........................................................................................................................ 41 

4.3.2 ANSYS CFX........................................................................................................................................ 42 

4.3.3 LS-DYNA ............................................................................................................................................ 42 

4.4 FLUID DYNAMICS SOLVER EVALUATION ........................................................................................... 44 

4.4.1 Fluid domain and mesh ............................................................................................................. 44 

Geometry and material properties ...................................................................................................... 45 

4.4.2 Mesh .................................................................................................................................................... 46 

4.4.3 Loads and boundary conditions ............................................................................................ 47 

4.4.4 Simulation settings ...................................................................................................................... 48 

4.4.5 Computational aspects ............................................................................................................... 48 

4.4.6 Results ................................................................................................................................................ 48 

4.4.7 ANSYS CFX simulation description ...................................................................................... 49 

4.4.8 Comparison between LS-DYNA, ANSYS CFX and exact analytical solution ...... 50 

4.5 STRUCTURAL MECHANICS SOLVER EVALUATION ........................................................................... 51 

4.5.1 Structure domain and mesh .................................................................................................... 51 

4.5.2 Geometry and material properties....................................................................................... 52 

4.5.3 Mesh .................................................................................................................................................... 52 

4.5.4 Loads and boundary conditions ............................................................................................ 52 

4.5.5 Simulation settings ...................................................................................................................... 53 

4.5.6 Computational aspects ............................................................................................................... 54 

4.5.7 Results ................................................................................................................................................ 54 

4.5.8 ANSYS Mechanical simulation description....................................................................... 55 

4.5.9 Comparison between LS-DYNA, ANSYS Mechanical and exact analytical 
solution ............................................................................................................................................................. 57 

4.6 FLUID – STRUCTURE INTERACTION SOLVER EVALUATION .......................................................... 59 

4.6.1 Domain and mesh ......................................................................................................................... 59 

4.6.2 Geometry and materials properties .................................................................................... 60 

4.6.3 Mesh .................................................................................................................................................... 61 

4.6.4 Loads and boundary conditions ............................................................................................ 62 

4.6.5 Simulation settings ...................................................................................................................... 62 

4.6.6 Computational aspects ............................................................................................................... 63 

4.6.7 Results ................................................................................................................................................ 63 

4.6.8 ANSYS FSI Solution ...................................................................................................................... 66 

4.6.9 ANSYS and LSDYNA FSI comparison ................................................................................... 66 



 

XIII 
 

5 FLUID ANALYSIS ........................................................................................................ 67 

5.1 OVERVIEW OF THE PROBLEM .............................................................................................................. 67 

5.2 FLUID GEOMETRIES ............................................................................................................................... 69 

5.2.1 Straight tube geometry ............................................................................................................... 69 

5.2.2 Elbow geometry ............................................................................................................................. 69 

5.2.3 Enlargement geometries ........................................................................................................... 70 

5.2.3.1 Enlargement type 1 .................................................................................................................... 70 

5.2.3.2 Enlargement type 2 .................................................................................................................... 70 

5.2.4 Constriction geometry ................................................................................................................ 71 

5.3 BOUNDARY CONDITIONS ....................................................................................................................... 72 

5.3.1 Constraints ....................................................................................................................................... 72 

5.3.2 Inflow and outflow conditions ................................................................................................ 72 

5.3.3 Initial conditions ............................................................................................................................ 73 

5.4 MESH IMPLEMENTATION ..................................................................................................................... 74 

5.5 SIMULATION TIMES ................................................................................................................................ 75 

5.6 MESH VALIDATION ................................................................................................................................. 75 

5.7 RESULTS ................................................................................................................................................... 76 

5.7.1 Straight tube geometry ............................................................................................................... 77 

5.7.2 Elbow geometry ............................................................................................................................. 86 

5.7.3 Enlargement geometries ........................................................................................................... 89 

5.7.3.1 Enlargement type 1 .................................................................................................................... 89 

5.7.3.2 Enlargement type 2 .................................................................................................................... 92 

5.7.4 Constriction geometry ................................................................................................................ 93 

5.7.5 Results comparison ...................................................................................................................... 96 

6 FLUID-STRUCTURE INTERACTION ANALYSIS ......................................................... 101 

6.1 OVERVIEW OF THE PROBLEM ........................................................................................................... 101 

6.2 FSI GEOMETRIES ................................................................................................................................. 102 

6.2.1 Straight tube ................................................................................................................................. 102 

6.2.2 Enlargement geometry ............................................................................................................ 103 

6.2.3 Constriction geometry ............................................................................................................. 104 

6.3 BOUNDARY CONDITIONS .................................................................................................................... 105 

6.3.1 Constraints .................................................................................................................................... 105 

6.3.2 Inflow and outflow conditions ............................................................................................. 105 



 

XIV 
 

6.3.3 Initial conditions .........................................................................................................................105 

6.4 MESH IMPLEMENTATION ...................................................................................................................106 

6.5 SIMULATION TIMES .............................................................................................................................107 

6.6 RESULTS ................................................................................................................................................108 

6.6.1 Straight tube geometry ............................................................................................................108 

6.6.2 Enlargement geometry ............................................................................................................113 

6.6.3 Constriction geometry..............................................................................................................115 

6.6.4 Results comparison ...................................................................................................................118 

6.6.5 Fluid analysis and FSI analysis results comparison ...................................................123 

7 A FURTHER EVALUATION: BOUNDARY CONDITIONS FOR THE SOLID STRUCTURE .. 125 

7.1 OVERVIEW OF THE PROBLEM............................................................................................................125 

7.2 FSI GEOMETRY .....................................................................................................................................126 

7.3 ANALYZED CONSTRAINTS FOR SOLID SURFACES ..........................................................................126 

7.4 MESH IMPLEMENTATION ...................................................................................................................128 

7.5 SIMULATION TIMES .............................................................................................................................128 

7.6 RESULTS ................................................................................................................................................129 

7.6.1 Inlet solid surface constrained .............................................................................................129 

7.6.2 External edges constrained ...................................................................................................131 

7.6.3 External corner constrained .................................................................................................133 

7.6.4 Different constraints comparison .......................................................................................134 

8 CONCLUSIONS ......................................................................................................... 137 

9 REFERENCES ........................................................................................................... 141 

RINGRAZIAMENTI ......................................................................................................... 143 

 
 

  



 

XV 
 

List of figures 
 
 

Figure 2.1 - Some typical seals; HCH is the hydrocarbon-column height that the 

weakest seal will hold (Figure courtesy of Sneider Exploration Inc.). ..... 4 

Figure 2.2 - Diagram showing the maximum and minimum ranges vs. the resolution 

for various acoustic methods (PetroWiki, 

http://petrowiki.org/PetroWiki). ............................................................................ 5 

Figure 2.3 – Crosswell imaging (http://en.openei.org/wiki/Single-Well_And_Cross-

Well_Seismic_Imaging). ................................................................................................ 6 

Figure 2.4 - Applications of borehole acoustic data to specific disciplines (PetroWiki, 

http://petrowiki.org/PetroWiki). ............................................................................ 7 

Figure 2.5 - Near-well acoustic image of a fractured reservoir using direct 

(compressional) (right panel) and converted (shear) (left panel) 

acoustic modes (PetroWiki, http://petrowiki.org/PetroWiki). .................. 8 

Figure 2.6 - A simplified representation of the path of the televiewer pulse-echo 

signal (upper) and the measurements made (lower) (PetroWiki, 

http://petrowiki.org/PetroWiki). ......................................................................... 10 

Figure 2.7 - Example of breakout detection using an ultrasonic borehole televiewer. 

Breakouts are indicated by the low acoustic amplitude of the reflected 

signal, shown here as darker areas. The breakouts are rotated because 

of a drilling-induced slippage of localized faults (Courtesy of SPWLA.).

 .............................................................................................................................................. 11 

Figure 3.1 – Elementary domain for inertance example (School of Physics, Sydney 

Australia, http://www.animations.physics.unsw.edu.au). ......................... 19 

Figure 3.2 – Elementary domain for compliance example (School of Physics, Sydney 

Australia, http://www.animations.physics.unsw.edu.au). ......................... 20 

Figure 3.3 - a) beam under longitudinal wavelet; b) beam under shear wavelet; c) 

beam under bending (flexural) wavelet (Frank J. Fahy, Foundations of 

Engineering Acoustics, 2001). ................................................................................ 22 

Figure 3.4 - Lumped mass system (Frank J. Fahy, Foundations of Engineering 

Acoustics, 2001). ........................................................................................................... 23 

Figure 3.5 - Lumped striffness system (Frank J. Fahy, Foundations of Engineering 

Acoustics, 2001). ........................................................................................................... 23 

Figure 3.6 - Impedance 'seen through' a rigid mass (Frank J. Fahy, Foundations of 

Engineering Acoustics, 2001). ................................................................................ 24 

Figure 3.7 - Impedance 'seen through' a spring (Frank J. Fahy, Foundations of 

Engineering Acoustics, 2001). ................................................................................ 24 



 

XVI 
 

Figure 3.8 - Earthed mass-spring system (Frank J. Fahy, Foundations of Engineering 

Acoustics, 2001). ........................................................................................................... 25 

Figure 3.9 - Ideal viscous damper element (Frank J. Fahy, Foundations of 

Engineering Acoustics, 2001). ................................................................................. 25 

Figure 4.1 - Non-equilibrium situation at time t = 0 (A. Tijsseling, "Skalak’s extended 

theory of water hammer",2008). ........................................................................... 29 

Figure 4.2 - Dimensionless wave height (A. Tijsseling, "Skalak’s extended theory of 

water hammer",2008). ............................................................................................... 31 

Figure 4.3 - Comparison between Skalak's theory and elementary theory (J. D. 

Achenbach, “Wave propagation in elastic solids”, 1973) [20]. ................. 37 

Figure 4.4 - Representation of f(z-ct) in a fixed time t. .......................................................... 39 

Figure 4.5 - Difference between what really happens when a step perturbation is 

applied and what should theoretically happen, here varying in time 

with a fixed space coordinate (http://www.brains-minds-media.org).

 .............................................................................................................................................. 39 

Figure 4.6 - LS-DYNA long pipe fluid domain............................................................................. 44 

Figure 4.7 - LS-DYNA coarser fluid mesh. .................................................................................... 44 

Figure 4.8 - LS-DYNA finer fluid mesh. .......................................................................................... 44 

Figure 4.9 - Comparison between two different equations of state. The graph is 

obtained using the properties of water in Table 4.1. .................................... 45 

Figure 4.10 - Pressure load applied at inlet. ............................................................................... 47 

Figure 4.11 - Normalized fluid pressure at the cylinder axis (z = 50D): comparison 

between analytic solution and LS-DYNA simulations with different 

meshes. .............................................................................................................................. 49 

Figure 4.12 - Normalized fluid pressure at the cylinder axis (z = 20D): comparison 

between analytic solution, CFX and LS-DYNA simulations......................... 50 

Figure 4.13 - Solid domain. ................................................................................................................ 51 

Figure 4.14 - LS-DYNA coarser solid mesh. ................................................................................. 51 

Figure 4.15 - LS-DYNA finer solid mesh. ....................................................................................... 51 

Figure 4.16 - Pressure load applied at inlet. ............................................................................... 53 

Figure 4.17 - Longitudinal strain. ................................................................................................... 54 

Figure 4.18 - Longitudinal stress. .................................................................................................... 55 

Figure 4.19 - Normalized longitudinal stress at the beam axis (z = 50D): comparison 

between analytic solution, LS-DYNA simulation and ANSYS simulation.

 .............................................................................................................................................. 55 



 

XVII 
 

Figure 4.20 - View of XY-plane. ........................................................................................................ 56 

Figure 4.21 - Normalized longitudinal stress at the beam axis (z = 50D): comparison 

between analytical solution, LS-DYNA simulation and ANSYS 

simulation. ....................................................................................................................... 57 

Figure 4.22 - Normalized longitudinal stress at the beam axis (z = 50D, z =80D): 

comparison between analytical solution, LS-DYNA simulation and 

ANSYS simulation. ........................................................................................................ 58 

Figure 4.23 - Model domain. ............................................................................................................. 59 

Figure 4.24 - View of XY-plane, mesh 1. ....................................................................................... 59 

Figure 4.25 - View of XY-plane, mesh 2. ....................................................................................... 59 

Figure 4.26 - View of XY-plane, mesh 3. ....................................................................................... 60 

Figure 4.27 - Tube pressure due to water hammer wave. .................................................... 63 

Figure 4.28 - Tube pressure due to precursor wave. .............................................................. 64 

Figure 4.29 - Normalized fluid pressure at the beam axis (z = 20D): comparison 

between analytic solution and LS-DYNA simulations with different 

meshes. .............................................................................................................................. 65 

Figure 4.30 - Normalized fluid pressure at the beam axis (z = 20D and z=40D): 

comparison between analytic solution and LS-DYNA simulation with 

the finest mesh. .............................................................................................................. 66 

Figure 5.1 - From macro to micro-scale, identifying simple structures from soil 

whole complexity. ......................................................................................................... 67 

Figure 5.2 - Straight tube geometry. ............................................................................................. 69 

Figure 5.3 - Elbow geometry. ............................................................................................................ 70 

Figure 5.4 - Enlargement type 1 geometry. ................................................................................ 70 

Figure 5.5 - Enlargement type 2 geometry. ................................................................................ 71 

Figure 5.6 - Constriction geometry................................................................................................. 71 

Figure 5.7 - 106 Hz input signal. ...................................................................................................... 72 

Figure 5.8 - 107 Hz input signal. ...................................................................................................... 73 

Figure 5.9 - 108 Hz input signal. ...................................................................................................... 73 

Figure 5.10 - Meshed tube section. ................................................................................................. 74 

Figure 5.11 - Sections of observation in straight tube domain. ......................................... 76 

Figure 5.12 - Sections of observation in elbow geometry domain. ................................... 76 

Figure 5.13 - Sections of observation in enlargements and constriction geometries 

domains. ........................................................................................................................... 77 



 

XVIII 
 

Figure 5.14 - Pressure signal for 106 Hz input frequency for straight tube geometry.

 .............................................................................................................................................. 78 

Figure 5.15 - Velocity signal for 106 Hz input frequency for straight tube geometry.

 .............................................................................................................................................. 78 

Figure 5.16 - Pressure signal for 107 Hz input frequency for straight tube geometry.

 .............................................................................................................................................. 79 

Figure 5.17 - Velocity signal for 107 Hz input frequency for straight tube geometry.

 .............................................................................................................................................. 79 

Figure 5.18 - Pressure signal for 108 Hz input frequency for straight tube geometry.

 .............................................................................................................................................. 80 

Figure 5.19 - Pressure signal for 108 Hz input frequency for straight tube geometry.

 .............................................................................................................................................. 80 

Figure 5.20 - Pressure evolution in the straight tube domain at t=5·10-7 s. ................. 81 

Figure 5.21 – Velocity evolution in the straight tube domain at t=5·10-7 s. ................. 81 

Figure 5.22 - Z-component of fluid velocity profile represented in blue with mean z-

velocity indicated with the green plane. Profile obtained at a fixed time 

t/T0=0.5132 with T0 simulation time. .................................................................. 82 

Figure 5.23 – Modulus and phase of pressure and velocity FFT. ....................................... 82 

Figure 5.24 - Impedance modulus and phase in frequency domain for straight tube 

geometry and 107 Hz input signal. ........................................................................ 83 

Figure 5.25 - Impedance real and imaginary in frequency domain for straight tube 

geometry and 107 Hz input signal. ........................................................................ 83 

Figure 5.26 - Impedance modulus and phase in spatial non-dimensional domain for 

straight tube geometry and 107 Hz input signal. ............................................ 84 

Figure 5.27 - Impedance real and imaginary part in spatial non-dimensional 

domain for straight tube geometry and 107 Hz input signal. .................... 84 

Figure 5.28 - Impedance modulus and phase in spatial non-dimensional domain for 

straight tube geometry and  every simulated input frequency. ............... 85 

Figure 5.29 - Impedance real and imaginary part in spatial non-dimensional 

domain for straight tube geometry and every simulated input 

frequency. ......................................................................................................................... 85 

Figure 5.30 - Pressure signal for 107 Hz input frequency for elbow geometry. ........... 86 

Figure 5.31 - Velocity signal for 107 Hz input frequency for elbow geometry. ............ 86 

Figure 5.32 - Impedance modulus and phase in spatial non-dimensional domain for 

elbow geometry and every simulated input frequency. ............................... 87 



 

XIX 
 

Figure 5.33 - Impedance real and imaginary part in spatial non-dimensional 

domain for elbow geometry and every simulated input frequency. ....... 87 

Figure 5.34 - Reflections on rigid walls of a waveguide (Frank J. Fahy, Foundations 

of Engineering Acoustics, 2001). ........................................................................... 88 

Figure 5.35 - Effects of wavelength on the signal propagation after the elbow 

(Frank J. Fahy, Foundations of Engineering Acoustics, 2001). ................. 88 

Figure 5.36 - Pressure signal for 107 Hz input frequency for enlargement type 1 

geometry. ......................................................................................................................... 89 

Figure 5.37 - Velocity signal for 107 Hz input frequency for enlargement type 1 

geometry. ......................................................................................................................... 89 

Figure 5.38 - Impedance modulus and phase in spatial non-dimensional domain for 

enlargement type 1 geometry and every simulated input frequency. ... 90 

Figure 5.39 - Impedance real and imaginary part in spatial non-dimensional 

domain for enlargement type 1 geometry and every simulated input 

frequency. ........................................................................................................................ 90 

Figure 5.40 - Archetypal Helmholtz resonator (Frank J. Fahy, Foundations of 

Engineering Acoustics, 2001). ................................................................................ 91 

Figure 5.41 - Enlargement type 2 and type 1 velocity distributions at time t=3.5e-07 

s. Velocities in micron/s. ............................................................................................ 92 

Figure 5.42 - Impedance modulus and phase in spatial non-dimensional domain for 

enlargement type 2 geometry and every simulated input frequency. ... 92 

Figure 5.43 - Impedance real and imaginary part in spatial non-dimensional 

domain for enlargement type 2 geometry and every simulated input 

frequency. ........................................................................................................................ 93 

Figure 5.44 - Pressure signal for 107 Hz input frequency for constriction geometry.

 .............................................................................................................................................. 93 

Figure 5.45 - Velocity signal for 107 Hz input frequency for constriction geometry. 94 

Figure 5.46 - Enlargement type 2 and constriction velocity distributions at time 

t=3.5e-07 s. Velocities in micron/s. ....................................................................... 94 

Figure 5.47 - Impedance modulus and phase in spatial non-dimensional domain for 

constriction geometry and every simulated input frequency. .................. 95 

Figure 5.48 - Impedance real and imaginary part in spatial non-dimensional 

domain for constriction geometry and every simulated input frequency.

 .............................................................................................................................................. 95 

Figure 5.49 - Impedance modulus and phase the in spatial non-dimensional domain 

for every simulated fluid geometry for an input frequency of 106 Hz. .. 96 



 

XX 
 

Figure 5.50 - Impedance real and imaginary part in the spatial non-dimensional 

domain for every simulated fluid geometry for an input frequency of 

106 Hz................................................................................................................................. 96 

Figure 5.51 - Impedance modulus and phase in the spatial non-dimensional domain 

for every simulated fluid geometry for an input frequency of 107 Hz. ... 97 

Figure 5.52 - Impedance real and imaginary part in the spatial non-dimensional 

domain for every simulated fluid geometry for an input frequency of 

107 Hz................................................................................................................................. 97 

Figure 5.53 - Impedance modulus and phase in the spatial non-dimensional domain 

for every simulated fluid geometry for an input frequency of 108 Hz. ... 98 

Figure 5.54 - Impedance real and imaginary part in the spatial non-dimensional 

domain for every simulated fluid geometry for an input frequency of 

108 Hz................................................................................................................................. 98 

Figure 6.1 - Straight tube FSI domain. Fluid part is represented in light blue and 

solid part in red. ......................................................................................................... 102 

Figure 6.2 - Straight tube geometry section. ........................................................................... 103 

Figure 6.3 - Enlargement FSI domain. Fluid part is represented in light blue and 

solid part in red. ......................................................................................................... 103 

Figure 6.4 – Enlargement FSI geometry section. ................................................................... 104 

Figure 6.5 - Constriction FSI domain. Fluid part is represented in light blue and solid 

part in red. .................................................................................................................... 104 

Figure 6.6 – Constriction FSI geometry section...................................................................... 105 

Figure 6.7 - Surfaces with imposed boundary conditions. ................................................. 105 

Figure 6.8 - Discretization for fluid and solid domains....................................................... 106 

Figure 6.9 - Monitored sections for every FSI domain simulation. ................................ 108 

Figure 6.10 – Fluid pressure signals for the straight tube FSI geometry for an input 

pressure of 107 Hz...................................................................................................... 109 

Figure 6.11 – Fluid velocity signals for the straight tube FSI geometry for an input 

pressure of 107 Hz...................................................................................................... 109 

Figure 6.12 - Pressure distributions in both fluid and solid parts at time t=6e-08 for 

input pressure of 107 Hz. The precursor wave is clearly visible. ........... 110 

Figure 6.13 – Fluid pressure signals for the straight tube FSI geometry for an input 

pressure of 107 Hz...................................................................................................... 110 

Figure 6.14 – Fluid pressure signals for the straight tube FSI geometry for an input 

pressure of 107 Hz...................................................................................................... 111 



 

XXI 
 

Figure 6.15 - Pressure distributions in the solid part at time t=2.4e-07 for input 

pressure of 107 Hz. The displacements are magnified 1000 times....... 111 

Figure 6.16 - Impedance Z modulus and phase for the straight tube FSI domain for 

every simulated frequency. ................................................................................... 112 

Figure 6.17 - Impedance Z real and imaginary parts for the straight tube FSI 

domain for every simulated frequency. ........................................................... 112 

Figure 6.18 – Fluid pressure signals for the enlargement FSI geometry for an input 

pressure of 107 Hz. .................................................................................................... 113 

Figure 6.19 – Fluid velocity signals for the enlargement FSI geometry for an input 

pressure of 107 Hz. .................................................................................................... 114 

Figure 6.20 - Impedance Z modulus and phase for the enlargement FSI geometry for 

every simulated frequency. ................................................................................... 114 

Figure 6.21 - Impedance Z real and imaginary parts for the enlargement FSI 

geometry for every simulated frequency. ....................................................... 115 

Figure 6.22 – Fluid pressure signals for the constriction FSI geometry for an input 

pressure of 107 Hz. .................................................................................................... 115 

Figure 6.23 – Fluid velocity signals for the constriction FSI geometry for an input 

pressure of 107 Hz. .................................................................................................... 116 

Figure 6.24 - Impedance Z modulus and phase for the constriction geometry for 

every simulated frequency. ................................................................................... 116 

Figure 6.25 - Impedance Z real and imaginary part for the constriction geometry 

for every simulated frequency. ............................................................................ 117 

Figure 6.26 - Impedance modulus and phase in the spatial non-dimensional domain 

for every simulated FSI geometry for an input frequency of 106 Hz. .. 118 

Figure 6.27 - Impedance real and imaginary parts in the spatial non-dimensional 

domain for every simulated FSI geometry for an input frequency of 106 

Hz. .................................................................................................................................... 119 

Figure 6.28 - Impedance modulus and phase in the spatial non-dimensional domain 

for every simulated FSI geometry for an input frequency of 107 Hz. .. 119 

Figure 6.29 - Impedance real and imaginary parts in the spatial non-dimensional 

domain for every simulated FSI geometry for an input frequency of 107 

Hz. .................................................................................................................................... 120 

Figure 6.30 - Pressure spatial distributions in enlargement and constriction FSI 

domains at time t=4.8e-07s for an input frequency of 107 Hz. .............. 121 

Figure 6.31 - Velocity spatial distributions in enlargement and constriction FSI 

domains at time t=4.8e-07s for an input frequency of 107 Hz. .............. 121 



 

XXII 
 

Figure 6.32 - Impedance modulus and phase in the spatial non-dimensional domain 

for every simulated FSI geometry for an input frequency of 108 Hz. .. 122 

Figure 6.33 - Impedance real and imaginary parts in the spatial non-dimensional 

domain for every simulated FSI geometry for an input frequency of 108 

Hz. ..................................................................................................................................... 122 

Figure 6.34 - Real and imaginary parts of the impedance Z for the straight tube 

fluid (rigid boundary) and FSI (elastic boundary) domains, for an input 

pressure wave frequency of 107 Hz. ................................................................... 123 

Figure 6.35 - Real and imaginary parts of the impedance Z for the enlargement fluid 

(rigid boundary) and FSI (elastic boundary) domains, for an input 

pressure wave frequency of 107 Hz. ................................................................... 124 

Figure 6.36 - Real and imaginary parts of the impedance Z for the constriction fluid 

(rigid boundary) and FSI (elastic boundary) domains, for an input 

pressure wave frequency of 107 Hz. ................................................................... 124 

Figure 7.1 - What is the better constraint condition? ......................................................... 125 

Figure 7.2 – All solid surface nodes constrained in the z-axis translational degree of 

freedom. ......................................................................................................................... 126 

Figure 7.3 – External solid edges nodes constrained in the z-axis translational 

degree of freedom. ..................................................................................................... 127 

Figure 7.4 – External solid corner node constrained in the z-axis translational 

degree of freedom. ..................................................................................................... 127 

Figure 7.5 – Fluid pressure signal for inlet solid surface constrained model. ........... 129 

Figure 7.6 – Fluid velocity signal for inlet solid surface constrained model. ............. 130 

Figure 7.7 - Z-component of the resultant stress in every monitored section for the 

case of inlet solid surface completely constrained. ..................................... 131 

Figure 7.8 – Fluid pressure signal for the model with external edges of the inlet solid 

surface constrained. ................................................................................................. 131 

Figure 7.9 – Fluid velocity signal for the model with external edges of the inlet solid 

surface constrained. ................................................................................................. 132 

Figure 7.10 - Z-component of the resultant stress in every monitored section for the 

case of external edges of the inlet solid surface constrained. ................. 132 

Figure 7.11 – Fluid pressure signal for the model with external corner of the inlet 

solid surface constrained. ...................................................................................... 133 

Figure 7.12 – Fluid velocity signal for the model with external corner of the inlet 

solid surface constrained. ...................................................................................... 133 



 

XXIII 
 

Figure 7.13 - Z-component of the resultant stress in every monitored section for the 

case of external corner of the inlet solid surface constrained. .............. 134 

Figure 7.14 - Real and imaginary parts of the acoustic impedance Z for the fluid 

domain varying in space along the inspected model sections for every 

constraints condition examined for input frequency of 107 Hz. ............ 135 

Figure 7.15 - Real and imaginary parts of the acoustic impedance Z for the solid 

domain varying in space along the inspected model sections for every 

constraints condition examined for input frequency of 107 Hz. ............ 135 

 

  



 

XXIV 
 

List of tables 
 
 

Table 4.1 - Geometry of the simulated domain and material properties. ...................... 46 

Table 4.2 - Features of the two simulated meshes. .................................................................. 46 

Table 4.3 - Applied loads and boundary conditions. ............................................................... 47 

Table 4.4 - Main settings of the simulations. .............................................................................. 48 

Table 4.5 - Main characteristics of the simulation process. ................................................. 48 

Table 4.6 - Main settings of CFX simulation................................................................................ 49 

Table 4.7 - Main characteristics of CFX simulation process. ............................................... 49 

Table 4.8 - Geometry of the simulated domain and material properties. ...................... 52 

Table 4.9 - Features of the two simulated meshes. .................................................................. 52 

Table 4.10 - Applied load and boundary condition. ................................................................ 52 

Table 4.11 - Main settings of the simulations. ........................................................................... 53 

Table 4.12 - Main characteristics of the simulation process. .............................................. 54 

Table 4.13 - Features of the mesh simulated in ANSYS. ......................................................... 56 

Table 4.14 - Main settings of ANSYS simulation. ...................................................................... 56 

Table 4.15 - Main characteristics of ANSYS simulation process. ....................................... 56 

Table 4.16 - Geometry of the simulated domains and materials properties. ............... 60 

Table 4.17 - Features of the three simulated meshes.............................................................. 61 

Table 4.18 - Applied loads and boundary conditions.............................................................. 62 

Table 4.19 - Main settings of the simulations. ........................................................................... 62 

Table 4.20 - Main characteristics of the simulation process. .............................................. 63 

Table 5.1 - "Standard oil" parameters. ......................................................................................... 68 

Table 5.2 - Meshes main characteristics. ..................................................................................... 74 

Table 5.3 - Simulation times. ............................................................................................................. 75 

Table 6.1 - Rock portion main features. .................................................................................... 101 

Table 6.2 – FSI meshes main characteristics. .......................................................................... 106 

Table 6.3 – FSI simulation times. .................................................................................................. 107 

Table 7.1 – FSI meshes for constraints test main characteristics. ................................. 128 

Table 7.2 – FSI constraints test simulation times. ................................................................. 128 

 



   
                                                                                                Chapter   1 

1 
 

1 Introduction 
 
 
 
 
Nowadays underground investigations have become one of the primary interest 
for the companies producing energy with sources deriving from hydrocarbons. 
Geologic explorations represent the way to improve production and as a 
consequence economic power in the most important markets. 
The costs of these research operations get balanced only with sure earnings from 
future production, that’s why the aim of tracing soil’s structure is to get maps of 
the geologic configuration as large and precise as possible. 
This requires high levels of knowledge of the physics and material properties of 
the underground sections of interest, which are in most of the cases not directly 
available because of the great depths of reservoirs. Main coefficients and 
parameters used to solve the motion equations of solid and fluid media are in 
that way not achievable. 
However, this lack of information can be filled acting on this problem with 
another prospective: the acoustic logging of the subsoil through the acoustic 
impedance tracing. 
Chapter two provides brief explications on how these investigations are 
performed in most of the cases. 
In Chapter 3, this work aims to understand variations of this acoustic parameter 
in a different way from the mainstream theories, which are mainly based on 
semi-empirical models for impedance formulations [1], reflection coefficients 
calculations [2] or simply observing the behavior of the phase velocity into 
desired materials after the imposition of a pressure signal [3]. The acoustic 
impedance is in fact evaluated through the simple pressure and velocity signals 
to estimate its basic variations in sections of fluid and solid domains. 
Since pressure and velocity are measurable quantities in many fluid and solid 
domains, this approach can be adopted simply extracting those variables, with  
suitable technologies, also for other similar problems which imply an 
impossibility to analyze experimentally a part of physic material.  
In a large variety of engineering problems in fact there is the need to inspect 
material non visible properties. 
For example, in underground engineering a preliminary geological investigation, 
similar to the one needed for oil extractions, has to be completed before starting 
ground movements, and acoustic technologies are frequently employed to detect 
particular formations or the presence of water.     
With regard to structural engineering, non-destructive testing is necessary for 
faults inspection of structural parts, such as concrete blocks or metal 
components. Pipelines require also in the monitoring phase acoustic inspections 
for leakage detection and flow obstructions. 
Furthermore, for soundproof materials design [4], the structure is similar to the 
one present in a porous ground, and an impedance characterization is necessary 
for those complex domains. 
One of the main purposes of this study is, consequently, to identify a numerical 
solver and with proper modeled domains and boundary conditions able to solve 
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these kind of engineering problems, including the porous acoustic 
characterization one.    
In order to correctly set up numerical simulations and properly model those 
types of issues, in chapter 4 is described the method adopted to find the fluid-
structure interaction solver which best fitted the results of an exact analytical FSI 
solution. This one has been obtained from the theories concerning pipelines 
design, with regard to the stress calculations after a suddenly imposed pressure 
condition such as the case of water hammer waves.   
Once found the best solver, in chapter 5 is provided the acoustic impedance 
analysis of some representative fluid geometries, ideally surrounded by a rigid 
solid body. Proofs of reliability of the obtained results have been provided by 
many theoretical examples, taken from the acoustic engineering for waveguides 
and confined fluids.  
These acoustic impedance values have been adopted as a comparison case for the 
investigations performed in the following chapter. 
Chapter six in fact reports the analysis of the same fluid geometries previously 
treated, without neglecting the interaction between fluid and solid matrices. The 
solid portion is, in this case, considered as linear elastic with predefined 
properties. A final comparison of results obtained in chapter five and six is then 
provided. 
As a further evaluation, in chapter seven the influence of various boundary 
conditions combinations on the stress distribution in the solid matrix is then 
performed. 
The final conclusions this study led to are reported in chapter eight and, as 
already said, they are applicable not only for inspections in the field where this 
research is started, but also in many other similar contexts. 
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2 Basics and methods for subsurface 
geological interpretation 

 
 
 

2.1 Reservoirs geometry and geology 
 
The efficient extraction of oil and gas requires that the reservoir is visualized in 
3D space. Engineers need a conceptual model of reservoirs. Conceptual models 
are an integral part of the decision-making process, whether that process 
involves selecting perforations or forecasting future production. However, most 
engineering measurements made on reservoirs have little or no spatial 
information. For example, a core measurement has no dimensional information, 
wireline logs and continuous core measurements are 1D, and production data 
and pressure information are volumetric but with unconstrained spatial 
information. Geologic information, on the other hand, contains valuable spatial 
information that can be used to visualize the reservoir in 3D space. Therefore, 
engineers should understand the geologic data that can improve their conceptual 
model of the reservoir and, thus, their engineering decisions [5].  
The most important geologic information is the external geometry of the 
reservoir, defined by flow barriers called “seals” that inhibit the migration of 
hydrocarbons, forming a hydrocarbon trap. The buoyancy force produced by the 
difference in density between water and hydrocarbons drives migration. 
Migration will cease, and a hydrocarbon reservoir will form, only where 
hydrocarbons encounter a trap. 
To visualize the reservoir in petrophysical terms, the engineer must be able to 
equate measurements (log, core, or production) with geologic models because 
the measurements themselves do not contain spatial information. Linking 
engineering measurements with geologic descriptions is best done at the rock-
fabric level because rock fabric controls pore-size distribution, which, in turn, 
controls porosity, permeability and capillary properties. Rock fabrics can be tied 
directly to stratigraphic models and, thus, to 3D space. 
Hydrocarbons are formed by anaerobic decomposition of organic matter that 
accumulates from the deposition of plankton in deep ocean basins. Oil and gas 
are generated as the sediments are buried and the temperature rises. Oil is the 
first hydrocarbon to be generated, followed by wet gas, and lastly by dry gas. 
Once generated, oil and gas flow vertically and laterally through overlying 
sediments because of the density difference between hydrocarbons and 
formation water and they migrate through permeable formations until they 
encounter a reservoir trap in which oil and gas accumulate. Oil will fill the traps 
first because it is first to be generated. Higher temperatures resulting from 
continued burial cause gas to be generated. Migrating gas will displace oil from 
the traps because gas has a lower density. The displaced oil will migrate further 
updip and fill any trap encountered. 
Traps filled with hydrocarbons are often referred to as pools. However, engineers 
normally use the term reservoir instead of pool for an oil and gas accumulation. A 
field is composed of one or more reservoirs in a single area. A trap is defined by 
the geometry of its seals, which are formations with very low permeability and 
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very small pores that will impede or stop the flow of hydrocarbons. To trap 
migrating hydrocarbons, seals must contain flow in 3D: the seals must form a 
closure. In the simplest terms, a trap is similar to a box with its bottom removed. 
The box is the seal composed of top and lateral seals. A trap may also contain a 
bottom seal. Imagine a smaller box inserted into the base of the original box. The 
smaller box is also a seal and confines the reservoir to a layer within the larger 
box. 
Seals may be in the form of impermeable lithologies or faults (Figure 2.1). The 
simplest traps are convex structures in which the sealing layer dips in all 
directions from a central structural high, forming domes or doubly dipping 
anticlines. More complex structural traps are formed when convex structures are 
truncated by faults or when faulting occurs around a piercement structure. Many 
traps are combinations of structural uplift, faulting, and stratigraphy, such as an 
updip pinchout of a sand body into an impermeable shale. A purely stratigraphic 
trap may form when deposition creates a topographic high that is encased by 
impermeable lithology, such as shale or salt. 
The volume of oil and gas that can accumulate is defined partly by the height of 
the trap because any additional hydrocarbons will spill out the bottom. The base 
of the trap is therefore called the spill point. The trap may not be full because the 
height of the oil column will be controlled by the capacity of the seal to impede 
flow and the volume of oil that migrates to the trap. In addition, oil/water 
contacts need not be horizontal because subsurface fluids are rarely static, and 
the flow can cause the oil/water contact to tilt in the direction of flow. 
 
 

 
 

Figure 2.1 - Some typical seals; HCH is the hydrocarbon-column height that the weakest seal will hold 
(Figure courtesy of Sneider Exploration Inc.). 
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2.2 Acoustic logging 
 
Petroleum applications of acoustic-wave-propagation theory and physics include 
both: surface-geophysical methods, borehole-geophysical methods. Acoustic 
logging is a subset of borehole-geophysical acoustic techniques. 
Historically, the primary and the most routine uses of acoustic logs in reservoir 
engineering have been: porosity determination, identification of gas-bearing 
intervals, cement evaluation. 
Continuing developments in tool hardware and in interpretation techniques have 
expanded the utility of these logs in formation evaluation and completion 
(fracture) design and evaluation. 
A virtual explosion in the volume of acoustic research conducted over the past 20 
years has resulted in significant advances in the fundamental understanding of 
downhole acoustic measurements. These advances, in turn, have greatly 
influenced practical logging technology by allowing logging-tool designs to be 
optimized for specific applications. 
Acoustic-wave data-acquisition methods cover a broad range of scales from 
millimeters to hundreds of meters, as shown in Figure 2.2. 
 
 

 
 

Figure 2.2 - Diagram showing the maximum and minimum ranges vs. the resolution for various 
acoustic methods (PetroWiki, http://petrowiki.org/PetroWiki). 

 
For the first 4 or 5 decades that seismic-reflection data were acquired, sources 
and receivers were deployed along the same straight line to create 2D seismic 
profiles. Two-dimensional seismic data do not yield a correct image of subsurface 
stratigraphy when a 2D seismic line crosses a complex subsurface structure 
because the acquisition geometry cannot distinguish reflections that originate 
from outside the profile plane from reflections that occur within the 2D vertical 
image plane. 
This imaging deficiency of 2D seismic profiling has been remedied by the 
implementation of 3D seismic data acquisition, which allows data processing to 
migrate reflections to their correct image coordinates in 3D space. Industry 
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largely abandoned 2D seismic profiling in the 1990s and now relies almost 
entirely on 3D seismic data acquisition. 
In some reservoir applications, seismic data are acquired with downhole sources 
and receivers. If the receiver is stationed at various depth levels in a well and the 
source remains on the surface, the measurement is called vertical seismic 
profiling (VSP). This technique produces a high-resolution, 2D image that begins 
at the receiver well and extends a short distance (a few tens of meters or a few 
hundred meters, depending on the source offset distance) toward the source 
station. This image, a 2D profile restricted to the vertical plane passing through 
the source and receiver coordinates, is useful in tying seismic responses to 
subsurface geologic and engineering control. 
If the source is deployed at various depth levels in one well and the receiver is 
placed at several depth stations in a second well, the measurement is called 
crosswell seismic profiling (CSP) as shown in Figure 2.3. Images made from CSP 
data have the best spatial resolution of any seismic measurement used in 
reservoir characterization because a wide range of frequencies is recorded. CSP 
data are useful for creating high-resolution images of interwell spaces and for 
monitoring fluid movements between wells. However, a CSP image is also a 2D 
profile with the image limited to the vertical plane that passes through the source 
and receiver coordinates. 
 
 

 
 

Figure 2.3 – Crosswell imaging (http://en.openei.org/wiki/Single-Well_And_Cross-
Well_Seismic_Imaging). 

 
Borehole acoustic-logging measurements are used in a wide variety of 
geophysical, geological, and engineering applications and play an important role 
in the undertakings resumed in the following picture (Figure 2.4). 
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Figure 2.4 - Applications of borehole acoustic data to specific disciplines (PetroWiki, 
http://petrowiki.org/PetroWiki). 

 
Modern logging tools include conventional borehole-compensated (BHC) 
monopole devices as well as the newer array devices—both monopole and 
multipole (monopole/dipole)—and logging-while-drilling (LWD) acoustic 
services. These logging tools provide acoustic measurements in all borehole mud 
types (but not in air- or foam-filled boreholes) in vertical, deviated, and 
horizontal wells, in both open and cased hole. They are combinable with other 
logging devices and are available in a variety of sizes to accommodate a range of 
borehole and casing diameters. 
In every cited case, acoustic-log data provide a fundamental and essential 
element of modern seismic reservoir characterization. 
Acoustic data acquired using modern array tools can provide high-resolution (0.5 
m), microscale "seismic" 2D and 3D images of structural features in the near-
borehole region (10 to 15 m). Conventional seismic-processing techniques, 
including filtering and migration, are used to extract compressional and shear 
reflections from the acoustic data. The reflections are then used to image 
geological features near the borehole. This technique allows the imaging of bed 
boundaries, thin beds (stringers), fractures, faults in open hole and cased wells, 
and the results is an image similar to Figure 2.5. 
 
 



 
2.2  Acoustic logging 
 

8 
 

 
 

Figure 2.5 - Near-well acoustic image of a fractured reservoir using direct (compressional) (right 
panel) and converted (shear) (left panel) acoustic modes (PetroWiki, 

http://petrowiki.org/PetroWiki). 
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2.3 Borehole imaging 
 
Acoustic borehole-imaging devices are known as "borehole televiewers." They 
are mandrel tools and provide 100% coverage of the borehole wall. The first 
borehole televiewer, operating at a relatively high ultrasonic frequency of 1.35 
MHz, was developed by Mobil Corp. in the late 1960s. Since then, a succession of 
improvements have been made, principally through advances in digital 
instrumentation and computer-image enhancement. Modern tools contain a 
magnetometer to provide azimuthal information. 
The borehole televiewer operates with pulsed acoustic energy so that it can 
image the borehole wall in the presence of opaque drilling muds. Short bursts of 
acoustic energy are emitted by a rotating transducer in pulse-echo mode. These 
travel through the drilling mud and undergo partial reflection at the borehole 
wall. Reflected pulses are received by the transducer. The amplitudes of the 
reflected pulses form the basis of the acoustic image of the borehole wall. These 
amplitudes are governed by several factors. The first is the shape of the borehole 
wall itself: irregularities cause the reflected energy to scatter so that a weaker 
reflected signal is received by the transducer. Examples of these irregularities are 
fractures, vugs, and breakouts. Moreover, the reflected signal is degraded in 
elliptical and oval wellbores because of non-normal incidence. The second factor 
is the contrast in acoustic impedance between the drilling mud and the material 
that makes up the borehole wall. Acoustic impedance provides an acoustic 
measure of the relative firmness of the formations penetrated by the wellbore 
material and, thus, it has the capability of discriminating between different 
lithologies, with high acoustic impedance giving rise to high reflected amplitudes. 
Borehole televiewers work best where the borehole walls are smooth and the 
contrast in acoustic impedance is high. The third factor is the scattering or 
absorption of acoustic energy by particles in the drilling mud. This problem is 
more serious in heavily weighted muds, which are the most opaque acoustically, 
and it gives rise to a loss of image resolution. 
The borehole televiewer can provide a 360° image in open or cased holes. It can 
operate in all downhole environments other than gas-filled holes. The travel time 
for the acoustic pulse depends on the distance between the transducer and the 
borehole wall, as well as the mud velocity. Modern televiewers allow some 
independent method of measuring the mud velocity. Thus, the borehole 
televiewer also operates as an acoustic caliper log. For best results, the tool 
should be centered, although correction algorithms have been developed for 
eccentered surveys. 
An example of a modern ultrasonic imaging tool is Schlumberger’s Ultrasonic 
Borehole Imager (UBI™), which is based on the cased-hole USI with two 
hardware modifications: a focused transducer was fitted for improved resolution, 
and an openhole centralizer was added. The tool incorporates a rotating 
transducer within a subassembly. The size of the subassembly is selected on the 
basis of the diameter of the hole that is to be logged. The direction of rotation of 
the subassembly governs the orientation of the transducer. There are two 
positional modes: the standard measurement mode with the transducer facing 
the borehole wall (Figure 2.6), the fluid-property mode with the transducer 
facing a target within the tool. 
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Figure 2.6 - A simplified representation of the path of the televiewer pulse-echo signal (upper) and the 
measurements made (lower) (PetroWiki, http://petrowiki.org/PetroWiki). 

 

Data are usually presented as depth plots of enhanced images of amplitude and 
borehole radius. Applications include: fracture detection, analysis of borehole 
stability, identification of breakouts. 
Figure 2.7 shows an example of breakout identification using an ultrasonic 
borehole televiewer. The data presented are from the Cajon Pass scientific 
borehole in southeastern California. The aim was to investigate the orientation 
and magnitudes of in-situ stresses using borehole-image data. The televiewer has 
superseded multiarm dipmeter calipers for these applications. Although the 
caliper can reveal the orientation of breakouts, the tool provides little 
information about their size and, more generally, about the overall shape of the 
borehole wall. The ultrasonic televiewer can detect much smaller features than 
the multiarm caliper and can distinguish between features that are stress 
induced and those that are drilling artifacts. 
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Figure 2.7 - Example of breakout detection using an ultrasonic borehole televiewer. Breakouts are 
indicated by the low acoustic amplitude of the reflected signal, shown here as darker areas. The 

breakouts are rotated because of a drilling-induced slippage of localized faults (Courtesy of SPWLA.). 
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3 Acoustic Impedance : definitions and 
methods of evaluation 

 
 
 

3.1 Acoustics and impedance definition 
 
Although the acoustic behavior of most commonly encountered materials in the 
audio-frequency range may be analyzed without explicit reference to their molecular 
nature, it may be helpful to analyze briefly the different molecular structures of 
solids, liquids and gases. The molecules that form material substances attract each 
other except where they are in very close proximity, when they exert strong forces of 
mutual repulsion. Therefore, when molecules approach each other under the 
influence of the mutually attractive force, they lose potential energy. At the point 
where the interaction force changes from attractive to repulsive, the sum of the 
potential energies associated with the two forces is a minimum, known as the 'pair 
dissociation energy'. This state of equilibrium may be disturbed by the impact of 
other molecules. If the average kinetic energy of the intruder is much less than the 
dissociation energy it will be captured, and eventually a large conglomerate of bound 
atoms will form: this is the case in the solid phase of matter. On the other hand, if the 
average kinetic energy greatly exceeds the dissociation energy, molecules will never 
'bond' for any significant time: this is the gaseous phase of matter. Liquids fall in 
between these two states where 'bonds' are temporarily made and then broken by 
encounter with molecules of higher than average energy [2]. 
The spacing of molecules in solids is such that the shape of the structure is 
maintained by strong attractive forces. The molecules simply undergo very small 
vibrational motions unless they acquire so much energy due to heating that they 
break free of the attractive forces to form a liquid (or, where supplied with 
sufficiently high thermal energy, to sublime directly into a vapor). In liquids, the 
molecules move relative to each other in complex paths under the combined 
influence of forces of attraction and repulsion, allowing the fluid readily to undergo 
large changes of geometric form under the action of applied forces, so that they adapt 
their shape to conform to that of a rigid container. In gases, the average spacing of 
the molecules is so large that attractive forces are very weak; any individual 
molecule may translate over a substantial distance before coming sufficiently close 
to another for the force of repulsion to produce a rapid exchange of momentum, in 
analogy with the collision of billiards balls. 
The term 'fluid' implies flow. Flow is usually spatially non-uniform in that it entails 
relative motion of different elements of the medium and frequently involves 
intermixing of fluid elements. A principal distinction between fluids and solids is that 
the former cannot resist steady applied shear forces, which act so as to 'slide' 
adjacent layers of material over each other. Liquids and gases are therefore both 
fluids. Solids react to steady shear forces by undergoing shear distortion, which 
generates proportional opposing forces, so that a state of static equilibrium is 
attained. Fluids produce no equivalent reaction to steady shear. However, in 
common with solids, fluids resist changes of volume occupied by any fixed mass of 
molecules (volumetric strain); this property is essential to the phenomenon of sound 
in fluids. Fluids also exhibit fluid friction, or viscosity, whereby they resist relative 
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'sliding' motion associated with differential velocities of adjacent elements; this acts 
most noticeably in boundary layers close to bodies moving through fluids. The 
principal mechanism of viscosity in liquids is intermolecular attraction. The principal 
mechanism is an exchange of mean (time-average) molecular momentum via 
random molecular transport between adjacent fluid layers moving at different mean 
velocities. Molecules moving from a fluid element possessing a certain mean velocity 
into one having lower mean velocity bring with them greater mean momentum than 
those in the slower element. Satisfaction of conservation of momentum in the 
absence of external forces requires that the mean momentum of the slower element 
increases, and vice versa. The effect is to reduce the relative velocities between the 
elements; the associated rates of change of momentum may be attributed to an 
internal viscous stress. Fluid viscosity has profound effects within the fibrous and 
porous materials and that’s why they’re frequently used as sound absorbers. 
Furthermore, if we consider also geometry variations of the considered domains as 
curves or section variations, we would see how those changes are also obstacles for 
sound propagation, and correctly evaluating their impact would be a non trivial 
purpose. One of the typical problems in acoustics is to analyze and predict the 
acoustical and vibrational behavior of systems consisting of assemblages of 
structural components surrounded by, and/or containing, one or more types of fluid.  
The former support vibrational waves of various types and the latter support 
acoustic waves. The dynamic behavior of a system is determined partly by the 
properties of the individual components and partly by the dynamic interactions 
between them. These interactions involve the incidence of vibrational or acoustic 
waves upon the junctions, connections and interfaces between components, together 
with their reflection and transmission. Wave energy may also be dissipated into heat 
at interfaces such as metal-to-metal joints, bolted, riveted or screwed connections, 
and by gaskets between engine components and seals of all sorts. It is of the essence 
of wave-bearing systems that the dynamic response of any one element or 
component to external excitation is influenced by the dynamic properties of all 
directly, or indirectly, connected components; this influence will tend to decrease 
with increase of separation distance through the agencies of dissipation and 
diffusion. The degree to which waves incident upon junctions are scattered, 
transmitted and dissipated depends upon the dynamic behaviors of both connected 
components.  This is where the concept of 'impedance', and its companion 'mobility', 
come into play. They characterize the dynamic behavior of components in such a 
manner that the system that they form can be represented as a network. 
Mathematical expression of the impedances, together with the conditions governing 
forces and motions at connections, produce a set of equations that can be solved once 
the external excitation mechanisms are specified. 
In acoustics, impedance relates the complex amplitude of fluid pressure, or the 
corresponding force, to the complex amplitude of fluid particle velocity or volume 
velocity: the ratio of particle velocity to sound pressure is termed 'admittance', 
instead of mobility. Transfer impedances and mobilities may also be defined: these 
relate forces at one point to velocities at another. These quantities may only be 
employed to describe the dynamic behavior of linear systems. In most practical 
cases, excitations and responses are not harmonic, and not necessarily even time-
stationary; but application of the Fourier integral transform, which expresses 
arbitrary time dependence in terms of a superposition of time-harmonic 
components, allows us to exploit the concept of impedance in all linear cases. 
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3.2 Impedance formulation from acoustic energy in fluids 
 
The acoustic energy definition is not so trivial when considering the acoustic field in 
its linearized equations [6]. Considering the acoustics of a steady fluid, the Kirchhoff 
approach is based on the following linearized equations (3.1 ). 
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where    is the pressure perturbation,   is the entropy, and    is the source term. 
The source term represents with its first part a dilatation caused by a heat transfer, 
while with the second part the production of sound dued by an external non-
stationary force field (  is related to the variation in time of the velocity perturbation 

  . If the source term is zero, the sound is related only to initial and boundary 
conditions. 
After a few passages this can lead to the acoustic energy equation (3.2): 
 
 

 
  

  
          (3.2)   

 
 
where the acoustic energy E and the intensity I are defined by the following relations 
(3.3). 
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The dissipation   is the power for unit volume given by the acoustic field to the 
sources (3.4) 
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Considering harmonic fields varying with time as     ̂     and          , the 
time average energy 〈 〉 is obviously time independent, reducing equation (3.4) to 
the following relation (3.5) 
 

     〈 〉 (3.5) 
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From the integration of this equation on a volume including the sources, the 
expression of the source power can be found (3.6): 
 

 〈 〉   ∫ 〈 〉   
 

∫ 〈 〉
 

     (3.6)  

 
 
where n is the outward normal of the control surface S.  
Finally it can be chosen as boundary condition for this surface, the acoustic 
impedance of this surface, which can be represented as           (3.7): 
 

 Z(ω)    
 ̂

 ̂  
           (3.7) 

 
 
having this expression for the acoustic intensity. 
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This last equation has an important meaning. In fact it can be easily seen that the real 
part of the acoustic impedance is associated with the energy transport through the 
surface S.  
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3.3 Complex acoustic impedance 
 
As seen before, acoustic impedance is the measure of the opposition that a system 
presents to an acoustic flow when an acoustic pressure is applied to it. 
In quantitative terms, it is the ratio of the complex acoustic pressure applied to a 
system to the resulting complex acoustic volume flow rate through a surface 
perpendicular to the direction of this acoustic pressure at its point of application. 
There is a close analogy with electrical impedance, the ratio of the complex electrical 
voltage applied to a system to the resulting complex electrical current intensity [7]. 
 

3.3.1 Complex definition 
 
Acoustic impedance is the complex representation (also called analytic 
representation) of acoustic resistance. It is the ratio of the complex acoustic pressure 
applied to a system to the resulting complex acoustic volume flow rate through a 
surface perpendicular to the direction of this acoustic pressure at its point of 
application. 
Acoustic impedance, denoted Z and measured in Pa·m−3·s or in raylMKS·m−2, is given 
by the (3.9): 
 

   
 ̂

 ̂
      (3.9) 

 
where: 
 
 ̂ =  complex acoustic pressure [Pa]; 

 ̂ =  complex acoustic volume flow rate [m3·s-1]; 
R =  acoustic resistance [Pa ·m3s-1]; 
X =  acoustic reactance [Pa ·m3s-1]; 
 
Sometimes is useful to set a value for the impedance which is independent from the 
surface on which it is calculated, that’s why the specific acoustic impedance is 
defined. 
Specific acoustic impedance is the complex representation of specific acoustic 
resistance. It is the ratio of the complex acoustic pressure applied to a system to the 
resulting complex particle velocity, and not particle flux as before, in the direction of 
this acoustic pressure at its point of application. 
Specific acoustic impedance, denoted z and measured in Pa·m−1·s or in raylMKS is 
given by (3.10): 
 

   
 ̂

 ̂
      (3.10) 

 
The relation between these two impedance is now explained. 
Consider a one dimensional wave passing through an aperture with area A. The 
acoustic volume flow rate Q is the volume of medium passing per second through the 
aperture. If the acoustic flow moves a distance dx = vdt, then the volume of medium 
passing through is   dV = Adx. The acoustic impedance Z is the ratio of complex 
acoustic pressure to complex acoustic volume flow rate, so provided that the wave is 
only one-dimensional, it yields: 
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With the aim of estimate the acoustic impedance for a plane wave travelling in an 
infinite medium [8], the solution of the sound wave equation can be used                                
(3.12). 
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where: 
  =adiabatic bulk modulus [Pa]; 
A = signal amplitude [Pa]; 
y = displacement coordinate [m]; 
x = domain coordinate [m]; 
 
Having defined the specific impedance as the ratio of the pressure and the velocity, it 
can be derived the value of the so called “characteristic” specific acoustic impedance                                
(3.13): 
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considering      and      ⁄ . 
However, the characteristic specific acoustic impedance represents only the real 
resistive part of the whole impedance, and it is not enough to completely 
characterize the problem. That’s why it is necessary to introduce and describe the 
values and the physics behind the imaginary part, which doesn’t transport energy 
but plays an important role in these phenomena. 
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3.3.2 Acoustic inertance 
 
As mentioned above Z usually depends strongly on frequency. When a small volume 
is compressed by a sound wave, the volume flow acts to compress the air and raise 
its pressure. So it acts as a compliance, strictly related to the stiffness of the material. 
When a small volume is accelerated by the difference in sound pressure, acoustic 
flow is determined by pressure difference and we have an acoustic inertance [9]. 
Acoustic inertance and acoustic compliance introduce two very important special 
cases. Both use the idea of a compact region: a region whose dimensions are much 
smaller than the wavelengths we are considering. As a consequence, the variation in 
the phase of the sound wave is small in the region, and so the pressure is 
approximately uniform. 
A small cylinder with area A and length L is vibrating due to an acoustic pressure 
difference p applied across it.  
 
 

 
 

Figure 3.1 – Elementary domain for inertance example (School of Physics, Sydney Australia, 
http://www.animations.physics.unsw.edu.au). 

 
Let it vibrate in the x direction with position y = ymcos ωt, so its acceleration and its 
velocity are is (3.14): 
 

                                                            
   

  2                                         

                                                                                                                                                 (3.14) 
                

 
From the definition of density ρ = mass/volume, the mass of the cylinder is ρV  =  
ρAL. The net force acting on it is pA. So substitution in Newton's second law (F = ma) 
gives        (3.15): 
 

      (          )   
                                                                                                                                                 (3.15) 
                                                                         (       )  
 
which tells us that p and U are 90° out of phase, and also their ratio, that is to say the 
impedance. When the inertia of the material plays an important role in this 
phenomenon we would see the pressure preceding the flow, because of the positive 
phase of 90°. 
Impedance due to inertia in this case will assume the following form, resolving the 
ratio of p and U (3.16). 
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 (3.16) 

 
This relation states that vibration at higher frequency requires greater acceleration 
and therefore greater acoustic pressure. 
 
 

3.3.3 Acoustic compliance 
 
Now let's consider a small volume V, this time, the applied pressure will compress it, 
so let's imagine a cylinder of air in a duct with cross section A, that is closed at the 
right hand end. We apply an acoustic pressure p at the left hand end.  
 
 

 
 

Figure 3.2 – Elementary domain for compliance example (School of Physics, Sydney Australia, 
http://www.animations.physics.unsw.edu.au). 

 
This compresses it with an oscillating displacement, at the left end only, y = ymcos ωt. 
At the instant of my sketch, p is positive and ΔV negative. The volume is changed over 
time by                 (3.17): 
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The pressure change p required to produce fractional volume change ΔV/V in a gas 
initially at pressure P is (3.18): 
 

        ⁄  (3.18) 
 
where   is the adiabatic factor. 
Now the pressure at equilibrium is atmospheric pressure PA. So the fractional change 
in pressure is (3.19): 
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where we observe that the pressure (a minus cosine function) is 90° behind the flow 
(a sine function). In complex notation, we would write this as (3.20): 
 
 

    
    

  
  

 

   
 (3.20) 

 
 
where C is the acoustic compliance. 
Here, it is gas flowing in that increases the pressure. That's why Z is inversely 
proportional to omega: vibration at higher frequency has a shorter period, so the 
amount of gas that flows in during the half period for which flow is inwards is 
smaller, and produces a smaller pressure. The air in the confined volume acts like a 
spring. In analogy with mechanical compliance, a compact enclosed volume is called 
a compliance and an acoustical impedance in which the pressure lags the flow by 90° 
is called a compliant impedance. 
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3.4 Forms of impedance for mechanical solid systems 
 
The term 'mechanical impedance' relates principally to solid structures, although, as 
we have already seen, the reaction forces imposed by fluids on vibrating structures 
may also be expressed in terms of an equivalent mechanical impedance [2]. 
Vibrational excitation generates a number of different forms of wave in solid 
structures; those most important in vibroacoustics are illustrated in Figure 3.3. 
 
 

 
 

 
 

 
 

Figure 3.3 - a) beam under longitudinal wavelet; b) beam under shear wavelet; c) beam under bending 
(flexural) wavelet (Frank J. Fahy, Foundations of Engineering Acoustics, 2001). 

 
As shown previously in this chapter, the same concept referred to a region of fluid 
which has dimensions very much less than an acoustic wavelength may be applied to 
structural lumped mass systems. 
In fact the most elementary vibrational model consists of a lumped mass connected 
to a rigid 'earth' by means of a lumped, linear, massless spring element. More 
complex systems may be modeled as networks of masses and springs, which is how J. 
L. Lagrange first modeled wave motion in a stretched string. The mechanical 
impedance of a lumped mass is defined as the ratio of complex amplitude of the net 
harmonic force on the body to that of the associated velocity (Figure 3.4). 
 
 

(a) 

(b) 

(c) 
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Figure 3.4 - Lumped mass system (Frank J. Fahy, Foundations of Engineering Acoustics, 2001). 

 
The relation between the net force on the mass and its acceleration is the following   
(3.21). 
 

    
   

     
  

  
   (3.21) 

 
The mechanical impedance of the mass under harmonic excitation   ̃   (   ) is    
(3.22): 
 

     ̃  ̃⁄            (3.22) 
 
where the inertial impedance is characteristically imaginary, proportional to   and, 
if the harmonic motion is represented by    (   ), positive. 
The stiffness of a massless elastic spring is defined as the inverse of the net change of 
length per unit applied force: the internal force must necessarily be uniform 
throughout the spring (Figure 3.5).  
 

 
 

Figure 3.5 - Lumped striffness system (Frank J. Fahy, Foundations of Engineering Acoustics, 2001). 

 
The impedance is defined as the ratio of the complex amplitude of the force applied 
at one end to that of the associated differential velocity of the two ends (3.23).  
Hence it is 
 

     ̃     ̃⁄          (3.23) 
 
where K is the spring stiffness. Elastic impedance is characteristically imaginary, 
inversely proportional to  , and negative. These models have acoustic analogues in 
fluids as shown before. 
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We now consider how mathematical expressions can be derived for combinations of 
inertial and elastic elements. 
For this work it’s useful consider how mathematical expressions can be derived for 
combinations of inertial and elastic elements. Figure 3.6 shows a rigid inertial 
lumped element 'attached' to an arbitrary system having an impedance Zt . 
 

 
 

Figure 3.6 - Impedance 'seen through' a rigid mass (Frank J. Fahy, Foundations of Engineering Acoustics, 
2001). 

 
Equilibrium gives         (3.24): 
 

    ̃      ̃      ̃         (3.24) 
 
and the impedance of the combined system 'seen through' the mass is         (3.25): 
 

       ̃  ̃⁄                 (3.25) 
 
In electrical terminology, the two components are connected in series because they 
share the same velocity, so that the impedances simply sum.  
 
 

 
 

Figure 3.7 - Impedance 'seen through' a spring (Frank J. Fahy, Foundations of Engineering Acoustics, 
2001). 

 
Figure 3.7 shows an elastic spring terminated by a system of impedance Zt. The 
spring force is given by        (3.26): 
 

    ̃       ̃    (  ̃    ̃)        (3.26) 
 
Elimination of    ̃  gives the impedance of the combined system 'seen through' the 
spring as (3.27): 
 

       ̃   ̃⁄      (⁄       ) (3.27) 
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In electrical terms, the components are in parallel because they share the same force.  
 

 
 

Figure 3.8 - Earthed mass-spring system (Frank J. Fahy, Foundations of Engineering Acoustics, 2001). 

 
The impedance of the earthed mass-spring system shown in Figure 3.8 is the sum of 
the impedance of the mass and of the spring with Zt put to infinity in (3.28): 
 

       ̃  ̃⁄   (      ) (3.28) 
 
The natural frequency of free vibration    is given by the condition that the Zm is 
zero - no driving force necessary. Hence it’s trivial to achieve (3.29). 
 

      (  ⁄ )
 

 ⁄  (3.29) 

 
At frequencies well below    , Zs dominates; at frequencies well above    , ZM 
dominates. 
A further generic lumped element may be added to the mass-spring system in the 
form of a linear, massless, viscous damper (Figure 3.9). 
 
 

 
 

Figure 3.9 - Ideal viscous damper element (Frank J. Fahy, Foundations of Engineering Acoustics, 2001). 

 
Its damping rate (or coefficient) C is given by the inverse of the differential velocity 
   of its terminals per unit force applied to either terminal. Hence it can be derived 
(3.30): 
 

     ̃    ̃⁄       (3.30) 
 
It is characteristically real and positive. It is conventional to represent structural 
damping by assuming the elastic modulus (or spring stiffness) to be a complex 
quantity of which the imaginary part is called the 'loss factor'. It represents a 
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dissipative force proportional to displacement but in phase with velocity. Care 
should be exercised in using this model because it is strictly invalid for all except 
harmonic motion.  
The impedance of the viscously damped single-degree-of-freedom (s-d-o-f) system is 
finally explained by the (3.31): 
 

         (      ) (3.31) 
 
The resonance frequency of the damped s-d-o-f system, defined as the excitation 
frequency which produces maximum displacement response, is obtained by 
maximizing the modulus of the inverse      . 
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4 The choice of the solver : ANSYS and LSDYNA 
comparison 

 
 
 

4.1 Test case for the comparison 
 
With the aim of numerically simulating flow and stress distributions in the domain 
object of the study, a previous analysis to choose the software which best 
reproduced the physics of the real case has been performed. There are many 
commercial software able to solve computational mechanics and fluid-dynamics 
problems, already tested by their own producers with classical analytical solutions 
or benchmark cases to demonstrate that numerical models rightly fit the physics of 
the real problems. However, considering problems concerning Fluid-Structure 
Interaction (FSI), most methods and solvers are still to be robustly proved, and so 
some a priori examinations have to be performed before choosing the right software 
for each case. 
For these reasons, since a Fluid-Structure Interaction issue has to be approached, it 
has been decided to calibrate some commercial software with a so called “test case” 
whose exact analytical solution was already provided by previous studies.  This case 
has to nearly represent the details that interested the study assessments but with a 
simpler model, permitting to recognize which product correctly simulates the nature 
of the study case with numerical models. 
Since this problem involves pressure waves in a porous portion of solid material, 
whose pores are filled with fluid, it’s been necessary to look for  a typical benchmark 
case which similarly treats this Fluid-Solid Interaction due to pressure waves 
propagating in a fluid fully covered by a solid shell. One of the most popular cases in 
the Hydraulics about Fluid-Structure Interaction is the study of the propagation of 
water-hammer waves in conduits. Typically these conduits are filled with water, with 
a cylindrical geometry and a circular cross section, which can be considered as a thin 
shell ring of solid material. Those conditions seem to be simpler from the point of 
view of the geometry and the physics than the original problem, and this allows to 
proceed with a reliable comparison of the numerical models applied by different 
software.  
Generally FSI solvers use systems of coupled equation between solid and fluid 
portion. This led to the instance of verifying also which single mechanics and fluid-
dynamics solver provided the best set of boundary conditions, in terms of how they 
numerically approach real cases. In particular, one of the objects of this comparison, 
is the pursuit of a condition which prevented, or strongly decreased, reflections after 
the passing of a wave front.  That aspect permitted furthermore to compare the 
results given by numerical models with exact analytical solutions such as the cases of 
pressure waves propagating in an infinite homogeneous solid bar of circular cross 
section and in a cylindrical infinite fluid domain. 
From these statements it’s been decided to divide this first part of the study into 
three main sections: the analysis of the single solid problem, the examination of the 
single fluid part, and then the comparison in the FSI field with the conjunction of the 
two main parts.   
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4.2 Exact analytical solutions 
 

4.2.1 Fluid-Structure Interaction part 
 
As mentioned before the case of water hammer pressure waves propagation in 
conduits can nearly represent some important details needed to test in our primary 
investigation. That’s why it has been necessary to look for an exact analytical 
solution for this type of problem, and with this aim it has been found strongly 
probative the case analyzed and by Richard Skalak in 1956 with the article “An 
extension of the theory of water hammer” [10], referring to the previous basic theory 
of Joukowsky. This theory is in fact considered as a milestone for those fluid-
structure interaction problems, and permitted developments such as those 
promoted by Tijsseling and Zhang with different constraint conditions and pipe 
thickness [11] [12] [13] [14] [15], and also many numerical codes [16] [17]. 
The object of his theory was to calculate the magnitude and the speed of pressure 
waves in both the fluid and the solid part of the system composed by a flexible 
conduit fully filled with liquid flowing under pressure. 
Stress waves in the solid are generated when water hammer waves force the tube to 
expand radially and therefore, thanks to the so called Poisson effect, creating 
longitudinal stress waves which are usually faster the those in the fluid, because of 
the higher density of the solid material. 
Skalak primarily made some approximations. He assumed this unsteady problem as 
one-dimensional, considering the tube domain axisymmetric and infinitely long with 
radius a and thickness h, the fluid non viscous and both liquid and solid parts were 
treated as linear elastic bodies. This model also neglects axisymmetric shear 
deformations and lobar (non-circular) modes of wall vibration. The influence of lobar 
modes on axial vibration is small at low frequencies because there is no significant 
oval–axial interaction mechanism. Coupling effects between solid and fluid equations 
are assumed ruled by the Poisson effect, which links radial expansion of the fluid, 
due the propagation of the pressure wave, to longitudinal stresses in the tube.  
A final constraint has been considered: he obtained this solution for large values of 
the ratio ct/a , where c is the stress wave speed and t is the time instant. This means 
that this solution is valid for large distances from the edges of the domain.  
Skalak got an analytical solution for this initial-value problem but the expressions 
are quite complex and almost all subsequent research on water hammer has used a 
simplified version. This simplified model shown in the equations below, is also called 
“four equation model” (4.1) and was recently used by Arris S. Tijsseling, from the 
Department of Mathematics and Computer Science of the Eindhoven University of 
Technology, to predict water hammer and precursor waves speed and magnitude 
[18]. 
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So far, applied to water hammer problems, Tijsseling demonstrated the validity of 
this model giving same wave speeds of the complete model, and according also to 
measured pressures and stresses (Dynamic Failure of Materials and Structures, Arun 
Shukla, Guruswami , 2009).  
In the simple model bending stresses, shear effects and rotatory inertia are 
neglected. But the main difference is the absence of an equation of motion for the 
radial inertia of the tube, and so radial stresses are converted into longitudinal 
stresses directly by the Poisson coefficient. This equation led in the full model to 
dispersive effects and to the spreading of the wave front sharpness with time, while 
in the simple model the front remain sharp. 
In his work, Skalak considered a fluid of density ρ0 and elasticity K, the tube wall 
material has density ρs, elasticity E and a Poisson’s ratio of ν. 
The assumed non-equilibrium situation at time t = 0 is shown in (Figure 4.1).  
 
 

 
 

Figure 4.1 - Non-equilibrium situation at time t = 0 (A. Tijsseling, "Skalak’s extended theory of water 
hammer",2008). 

 
The pressure p and axial fluid velocity v have positive initial values p0  and v0 in the 
left half of the tube (z<0), respectively, related by (4.2): 
 

           (4.2) 
 
 
where c is given by (4.3) 
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   (4.3) 

 



 
4.2  Exact analytical solutions 
 

30 
 

All other pressures, velocities and displacements are zero. These initial conditions 
correspond to a step wave moving in the positive axial direction (z=0) at speed c. The 
wave would propagate in an unchanged form in a pipe with entirely rigid walls, but 
not so in a pipe with elastic walls. 
Skalak used the following data in his test problem: a = 0.3048 m, h = 4.857 mm, ρ0 = 
999.8 kg/m3, K = 2.322 GPa, ρs = 7849 kg/m3, E = 206.8GPa, ν = 0.3, and herein p0 = 
100 kPa. Thus, c = 1524 m/s and v0 = 0.06563 m/s. 
Skalak applied Fourier and Laplace transforms to find dispersion relationships for 
the modes of free vibration of the coupled fluid–pipe system. He applied inverse 
Fourier and Laplace transforms to arrive at solutions in the form of single indefinite 
integrals of real-valued functions. The integrals were too difficult to solve exactly, but 
Skalak was able to find asymptotic solutions for large values of axial distance z and 
time t. He calculated the speed of water hammer and precursor waves (4.4), in this 
work indicated respectively with index 1 and 2: 
 
 

        {
         (    )   √[         (    )]     (    )(    )

 (    )
}

 
 ⁄

 (4.4) 

 
 
where c1 has the minus sign and c2 the plus sign, and where 
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with c0 defined below (4.6).  
To be sure about the reliability of these values, Tijsseling provided the following 
relations [19] previously used to evaluate the wave speed in the fluid and in the solid 
domains, 
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where ce is the Korteweg formula, and we can see that c1 is an extended version of 
this expression, and c0 is the common form for the wave speed in thin plates. 
Considering these oscillations with a non-dimensional approach, Skalak introduced a 
dimensionless distance relative to the wave front, expressed as follows (4.7) where 
index n = 1,2. 
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The constants dn are defined by the relation (4.8) 
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He also expressed (4.9) the wave height with the non-dimensional parameter I(βn) 
with Ai(ξ) expressing the Airy function of the first type: 
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which has been drawn as a function of   
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The upper bound in the first integral is      for    0 and     for    0. Three 
integrals can be calculated analytically and their results are shown below (4.11). 
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Plotting these two dimensionless variable Skalak obtained the following wave form, 
as we can see from the chart of figure (Figure 4.2). 
 
 

 
 

Figure 4.2 - Dimensionless wave height (A. Tijsseling, "Skalak’s extended theory of water hammer",2008). 
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The dimensional pressure for water hammer (n = 1) and precursor (n = 2) waves 
travelling in the positive z direction is finally evaluated through the relations below 
(4.12) (up to a constant, vertical shift): 
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4.2.1.1 Solid part 
 
In engineering applications, for example in machinery, it is often required to transmit 
a signal from one position to another. Very often the transmission is accomplished 
through a cylindrical rod. In such cases it may be necessary to take into account wave 
propagation effects if the signal varies rapidly in time. The most elementary theory 
capable of describing the propagation of longitudinal pulses in a rod, composed by a 
linear elastic solid material, is governed by the following equation (4.14), based on 
the assumption of a one-dimensional state of stress in the rod [20]. 
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 (4.14) 

 
 
Here w is the axial displacement, z is the space axial coordinate, ρ and E are the mass 
density and Young's modulus, respectively. Since this is a simple one-dimensional 
wave equation with no damping terms, it predicts that a pulse does not change shape 
as it propagates along the rod. 
Skalak [20] [21] [22] chose a system of cylindrical coordinates with the z-axis 
coinciding with the axis of the cylinder. The expressions relating the radial 
displacement u(r,z,t) and the axial displacement w(r,z,t), components of the 
displacement vector u, to the displacement potentials getting the expressions (4.15): 
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where f and y  are the scalar and the vector potentials respectively, defined by the 

following relation. 
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Potentials must satisfy the previous wave equation giving (4.17), 
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is the Laplace operator in cylindrical coordinates, and 
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are the longitudinal and the transverse wave speed respectively (4.19), with   and   
Lamè parameters. The pertinent components of the stress tensor are (4.20): 
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Solutions to these equations must satisfy boundary conditions at the end of the rod 
and at the lateral surface. From this we have (4.21). 
 
  
                                      at       ,                        (     )     ( ) 
                                                                                              (     )    

           (4.21) 
                                      at       ,         0                    (     )    
                                                                                                (     )      
 
 
Where H(t) is the common Heaviside step function. A further condition is that the 
displacements and the stresses, hence the potentials vanish at infinity (    ). Since 
the rod is at rest prior to time t = 0 the initial conditions (4.22) are 
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Combining these relations together, the boundary conditions for this problem at z = 0 
can be subsequently written as follows (4.23). 
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The particle velocity in the axial direction, 
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has been considered in some detail. In terms of the displacement potentials, V 
assumes this form: 
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In his analysis Skalak applied the cosine Fourier transform, the Laplace transform, 
and then he inverted the two transforms to obtain, passing through the frequency 
equation of longitudinal motions of a rod (Pochhammer-Chree equation), this exact 
relation for the particle velocity: 
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with    function of the n-th mode of vibration    and the wave number  . 
Evaluating this equation for large times and for low frequencies, Skalak deduced the 
following expression for the lowest longitudinal mode: 
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with cb speed of a wave propagating in an infinite rod defined as √  ⁄  .  

The terms J1 and J2 are respectively: 
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and operating a change of variable become: 
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Recognizing the Airy integrals of the first type 
 

   (  )   
 

 
∫    (        )   

 

 

 (4.33) 

 
 
then he evaluated J1 and J2 as  
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Once evaluated the particle velocity V, Skalak plotted his results obtaining the 
following chart (Figure 4.3). 
 
 



   
                                                                                                Chapter   4 

37 
 

 
 

Figure 4.3 - Comparison between Skalak's theory and elementary theory (J. D. Achenbach, “Wave 
propagation in elastic solids”, 1973) [20]. 

 
 
For small values of t the integrals vanish. Thus, the results show that some distance 
ahead and some distance behind the wave front z = cbt  the improved approximation 
agrees with the elementary theory. 
Then the stress in the axial direction is finally estimated with the following relation 
[22]: 
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4.2.1.2 Fluid part 
 
With the aim of calibrating the fluid solvers, it has been decided to find an exact 
solution for the problem involving the one dimensional propagation of pressure 
waves into an homogeneous domain, which in our case is a fluid domain.  
This problem has been solved by J. B. d’Alembert in 1747 [23], obtaining a solution 
(4.37) for the the following general one dimensional equation for propagating sound 
waves (4.36): 
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which is 
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with    √  ⁄   expressing the wave speed in an homogeneous medium. 

Since pressure waves can be considered as sound waves, then equation (4.38) can be 
accepted also with the pressure p(x,t) as unknown, therefore our solution has to be 
in the form: 
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where  (    ) and  (    ) are both wave functions, the first representing a 
progressive wave and the second a regressive one, with f assuming the form of the 
decided perturbation. 
In the other test cases the propagation of an Heaviside step function has been 
considered, then in this situation the function f(z,t) has the following form: 
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However this function has a discontinuity in z = 0, as it can be seen from (4.39), 
which is difficult for computer solvers to treat, that’s why a representation through a 
Fourier integral series of continuous harmonics has been adopted.  
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Figure 4.4 - Representation of f(z-ct) in a fixed time t. 

 
As shown in the picture before (Figure 4.4), the Fourier expansion into harmonic 
functions produces oscillations in the sections after the arrival of the wave front and 
also before, which are not truly representing what really happens in the fluid (Figure 
4.5). With the expansion of the term f(z+ct) oscillations around zero are obtainable, 
at a fixed time, in all the z-coordinates in the proximities of the wave front and 
therefore also before the wave front. Also those oscillations are not physically 
possible, but, taking the number of harmonics to infinite, which is numerically 
impossible, it would result the ideal solution of a moving step of assigned amplitude 
along the domain.  
 
 

 
 

Figure 4.5 - Difference between what really happens when a step perturbation is applied and what should 
theoretically happen, here varying in time with a fixed space coordinate (http://www.brains-minds-

media.org). 

 
That’s why it has been decided to use, as an analytical comparison with the  
numerical results, the Skalak’s FSI solution with particular conditions, which reduces 
to zero the spurious oscillations before the incoming of the wave front, and permits 
to analyze correctly what happens behind it. 
Therefore, taking into account our FSI solution, provided by the analysis of Skalak 
and Tijsseling previously described in this work, if a particular geometry for the solid 
tube is considered it is observable that the solid domain no longer effects the fluid 
domain, yielding to the exact researched solution. 
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As a matter of fact it can be seen from the previously cited Korteweg formula that 
taking the Young’s Modulus of the tube to infinity the wave speed the value of c is 
obtainable, which is the wave speed in a fluid domain with a rigid solid boundary. 
Then, with the same method illustrated in the FSI exact solution analysis but 
inserting these new data for the solid domain, it can again be reached the same non-
dimensional chart for the wave height illustrated in Figure 4.2. 
Than we needed to evaluate the fluid pressure with the product of the coefficients Cp1 
and Cw1 presented in the FSI analysis.  
Acting like this it is finally obtained the desired solution for the one dimensional 
propagation of pressure waves into a fluid undisturbed domain. 
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4.3 Overview of the software 
 
With regard to this comparison, it has been decided to use two different commercial 
software. One, which is the more commonly used for numerical computations of this 
type, is the ANSYS package of software, with ANSYS Mechanical for the resolution of 
the solid part of our model and ANSYS CFX for the fluid part. The other is LS-DYNA, 
less known than the first, but useful for those type of transient dynamics problems 
for both fluid and solid domains. 
 

4.3.1 ANSYS Mechanical 
 
ANSYS Mechanical solves most of the typical solid mechanics problems thanks to the 
presence of many packages approaching in different ways the variety of possible 
issues. Since we can consider our original porous soil sample small with respect to 
the wave pressure speeds and periods taken in count, we needed a package 
containing a boundary condition which prevented from reflection, or significantly 
decreased it, of a wave encountering a wall of our domain. We found this boundary 
condition in the pack named Explicit Dynamics. 
The Explicit Dynamics system enable the possibility to simulate nonlinear structural 
mechanics application involving impacts, stress wave propagation, high frequency 
dynamic response, shock wave propagation through liquid and solid domains and 
rigid or flexible bodies [24]. This system (4.40) solves the partial differential 
equations, shown below, that express the conservation of momentum, relating the 
acceleration to the stress tensor. 
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These are combined with the conservation of energy expressed via (4.41): 
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Through the nodes notion and the mesh deformation the solver obtains the strains. 
These, thanks to the material properties and to constitutive laws, are used to get 
stresses, which are in turn included, with body forces from boundary conditions, in 
the conservation of the momentum to extract the accelerations. Integrating these 
explicitly in time with discrete time steps we finally obtain velocities and 
displacements. This is clearly a cycle which is repeated for each element of the model 
until a user defined time is reached. 
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4.3.2 ANSYS CFX 
 
ANSYS CFX is a computer-based tool for simulating the behavior of system involving 
fluid flow, heat transfer of other related problems. It works by solving the equations 
of fluid flow over a region of interest with specified conditions on the boundary of 
that region. Those equations are the unsteady Navier-Stokes in their conservation 
form [25]. The instantaneous equations of mass, momentum and energy 
conservation can be written as follows (4.42). 
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Where htot is the total enthalpy related to static enthalpy h(T,p) by : 
 

        
 

 
   (4.43) 

 
ANSYS CFX gives numerical solution to Navier-Stokes equation through algebraic 
approximations. It uses an element-based finite volume method which discretize the 
spatial domain with a mesh. Equations are integrated over each control volume after 
discretizing in time volumes and surfaces integrals. 
 

4.3.3 LS-DYNA 
 
LS-DYNA is a general purpose finite element code for analyzing the large 
deformation static and dynamic response of structures including structures coupled 
to fluids. The main solution methodology is based on explicit time integration. A 
contact-impact algorithm allows difficult contact problems to be easily treated with 
heat transfer included across the contact interfaces. By a specialization of this 
algorithm, such interfaces can be rigidly tied to admit variable zoning without the 
need of mesh transition regions [26]. 
The governing equations in the first formulation are the three balance equations that 
describe the conservation of mass, momentum and energy, combined with 
constitutive relations of the material. The numerical solution is achieved thanks to 
discretization in space (Finite Elements) and time (central difference 2nd order 
accurate time integration scheme). In this case the nodes of the mesh are attached to 
the imaginary material “points”  and move and deform with the material. 
In the Eulerian and ALE-formulations the nodes do not follow the material flow, but 
there is flux of material between the elements. So, LS-DYNA first computes the 
Lagrangian time derivative and updates the history variables. Subsequently the 
relative motion between mesh and material is computed and the history variables 
are updated once more (mesh smoothing and advection step). Both spatially 1st and 
2nd order accurate advection algorithms are available. Furthermore in Eulerian and 
ALE-formulation it is possible to allow two or more materials in one element in a 



   
                                                                                                Chapter   4 

43 
 

fixed mesh (Multi Material ALE – MMALE – method). This last resource is often used 
in fluid-structure interaction, where two (or more) materials have to be defined 
within the Eulerian/ALE mesh: the first one in the elements constrained by the 
Lagrangian structure and the second one in the surrounding elements.   
In fluid-structure interaction is generally suitable to treat parts of a model as 
Lagrangian and other parts as Eulerian or with an ALE-formulation. Since the two 
types of mesh don’t share nodes, a coupling algorithm is needed to define the contact 
interfaces between the Lagrangian mesh and the materials defined in the Eulerian 
mesh. 
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4.4 Fluid Dynamics solver evaluation 
 

4.4.1 Fluid domain and mesh 
 
In order to compare the analytical solution to a numerical computation of a shock 
wave propagating in a compressible inviscid fluid, contained in an infinite long pipe 
with rigid walls, the domain shown in  
Figure 4.6 has been created. The pipe length is assumed to be 100 times the diameter 
of the tube to simulate the infinite length condition. Since the problem is axially 
symmetrical, the domain is reduced to one quarter and the appropriate symmetry 
conditions are defined. The fluid has initially null velocity and the pressure is equal 
to the reference pressure. A coarse mesh (Figure 4.7) and a finer mesh (Figure 4.8) 
have been simulated. 
 
 

 
 

Figure 4.6 - LS-DYNA long pipe fluid domain. 

 

 
 

Figure 4.7 - LS-DYNA coarser fluid mesh. 

 

Figure 4.8 - LS-DYNA finer fluid mesh. 

      

   



   
                                                                                                Chapter   4 

45 
 

 

Geometry and material properties 
 
The geometrical dimensions of the domain and the fluid properties used in the 
simulations are listed in Table 4.1. Since the analyzed fluid is compressible, an 
equation of state has been chosen.  Liquids in LS-DYNA may be modeled, if 
deformation is in the nonlinear range, using Gruneisen EOS, that relates the change 
in pressure to the change in the corresponding specific internal energy. The general 
form of the equation is reported in (4.44):  
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Where C is the intercept of the vs-vp curve (shock velocity-particle velocity); S1, S2 and 
S3 are the slope dimensionless coefficients of the vs-vp curve; γ0 is the dimensionless 
Gruneisen gamma; a is the first order volume correction to γ0; and      ⁄   . In  
Figure 4.9 is shown the comparison between two different equations of state for the 
analyzed fluid: Gruneisen and Tait EOS. 
 
 

 
 

Figure 4.9 - Comparison between two different equations of state. The graph is obtained using the 
properties of water in Table 4.1. 
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Quantity  Symbol  Value Unit 

Length  L 60 m 

Radius  R 0.3048 m 

Diameter D 0.6096 m 

Density ρ 999.8 kg/m3 

Dynamic viscosity μ 0 kg/(m∙s) 

Equation of state EOS Gruneisen - 

Sound velocity of material C 1524 m/s 

Coefficients of the slope of the 
vs-vp curve 

S1 1.92 - 

S2 = S3 0 - 

Gruneisen gamma γ0 0.1 - 

Volume correction to γ0   a 0 - 

Initial internal energy E0 1.00E+06 Pa 

Initial relative volume V0 1 - 

Reference pressure Pref 1.00E+05 Pa 
 

Table 4.1 - Geometry of the simulated domain and material properties. 

 
 

4.4.2 Mesh 
 
In Table 4.2 are reported the main properties of the two discretizations of the 
domain, such as number, size and type of cells. 
 
 
 

 
Mesh 1  Mesh 2 

Nr. of nodes 970194 1851984 

Nr. of elements 863247 1680112 

Max characteristic length [m] 0.018 0.014 

Element type Hexahedron Hexahedron  

Nr. of elements on radius 18 22 

Nr. of elements on axial length 3333 4286 
 

Table 4.2 - Features of the two simulated meshes. 
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4.4.3 Loads and boundary conditions 
 
Table 4.3 describes the pressure load (Figure 4.10) due to the shock wave and the 
boundary conditions. 
 
 

Location Boundary condition/load Features 

Inlet 
Shock wave of magnitude  

1.00E+05 Pa 
See Figure 4.10 

Outlet 
Non-reflecting boundary 

condition 
Acts on dilatational and shear waves 

XZ plane Symmetry 

1 translational constraint  
(y-direction) 

3 rotational constraint 

YZ plane Symmetry 

1 translational constraint  
(x-direction) 

3 rotational constraint 

Symmetry axis Symmetry 

2 translational constraint  
(x and y dir.) 

3 rotational constraint 

Wall No slip Fixed nodes 
 

Table 4.3 - Applied loads and boundary conditions. 

 
 

 
 

Figure 4.10 - Pressure load applied at inlet. 
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4.4.4 Simulation settings 
 
In Table 4.4 the numerical methods and the time discretization are reported. 
 
 

End time 0.06 s 

Time step Mesh 1 : 5.45E-06 s  Mesh 2 : 4.63E-06 s 

Integration method (time) Central difference 2nd order accurate scheme 

Advection method (space) Van Leer, 2nd order accurate method  

Element formulation ALE multi-material element 

 

Table 4.4 - Main settings of the simulations. 

 

4.4.5 Computational aspects 
 
Table 4.5 shows the computational costs related to the core number and mesh size. 
 
 

 
Mesh 1 Mesh 2 

Execution 
Distributed memory 

parallel (MPP) 
Distributed memory 

parallel (MPP) 

Core number 4 4 

Precision Double Double 

Simulation time 14156 s = 3.9 h 25981 s = 7.2 h 

Mesh size ∼9x105 elements ∼2x106 elements 

 

Table 4.5 - Main characteristics of the simulation process. 

 

4.4.6 Results 
 
In Figure 4.11 are shown the results obtained with the software LS-DYNA with two 
different meshes compared with the exact analytical solution. It can be seen from the 
chart that with a finer mesh, in our case mesh 2, the numerical solution tend to the 
exact one. Since the analytical solution is obtained by fixing the hypothesis that the 
tube is infinitely rigid, which in practical models is impossible to realize, it can stated 
that the wave speed difference seen in the chart between numerical and exact 
solution is mainly due to the inability to create a model with the same features of the 
theoretical one, but refining the mesh it is only possible to tend and not to reach the 
analytical solution.    
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Figure 4.11 - Normalized fluid pressure at the cylinder axis (z = 50D): comparison between analytic 
solution and LS-DYNA simulations with different meshes. 

 

4.4.7 ANSYS CFX simulation description 
 
The same shock wave propagating in the fluid contained in a rigid wall pipe has been 
analyzed with ANSYS CFX. In order to obtain analogous results, the geometry of the 
domain, the material properties, the loads, the boundary conditions and the mesh  
are identical (the finer mesh was chosen for the comparison, indicated as Mesh 2). 
The main difference lies in the simulation process. For more details, refer to Table 
4.6 and Table 4.7. 
 
 

End time 0.01 s 

Time step Mesh 2 : 1.00E-05 s 

Integration method (time) Second Order Backward Euler 

Advection method (space) High Resolution 
 

Table 4.6 - Main settings of CFX simulation. 

 

Execution HP MPI Local Parallel 

Core number 8 

Precision Double 

Simulation time 3.60E+05 s = 100 h 

Mesh size ∼2x106 elements 
 

Table 4.7 - Main characteristics of CFX simulation process. 
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4.4.8 Comparison between LS-DYNA, ANSYS CFX and exact analytical solution 
 
In Figure 4.12 are resumed the results obtained for the previous descripted 
simulations with the chosen numerical solvers and the exact analytical solution for 
this problem. A gauge point at the distance of twenty diameters from the inlet section 
has been chosen to see the main differences between the three series. It can be seen 
that ANSYS CFX almost captured the position of the wave front but there are 
spurious oscillations which would lead us to refine the mesh with consequent bigger 
simulation times. By the other hand LS-DYNA also catch quite well the front position 
but without spurious oscillations.  
 
 
 

 
 

Figure 4.12 - Normalized fluid pressure at the cylinder axis (z = 20D): comparison between analytic 
solution, CFX and LS-DYNA simulations. 
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4.5 Structural Mechanics solver evaluation 
 

4.5.1 Structure domain and mesh 
 
A cylindrical beam of a linear elastic material and with theoretical infinite length has 
been assumed. In order to render this last condition, the longitudinal length is set 
100 times the diameter (Figure 4.13). The beam, originally at rest, is constrained at 
outlet and the simulation stops before the wave front reaches the end of the domain, 
preventing reflections. Again, a coarse mesh (Figure 4.14) and a finer mesh (Figure 
4.15) have been simulated. 
 
 

 
 

Figure 4.13 - Solid domain. 

 

 

Figure 4.14 - LS-DYNA coarser solid mesh. 

 

Figure 4.15 - LS-DYNA finer solid mesh.
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4.5.2 Geometry and material properties 
 
Geometry and material properties of the domain are listed in Table 4.8. 
 
 

 

Quantity  Symbol  Value Unit 

Length  L 2000 μm 

Radius  R 10 μm 

Diameter D 20 μm 

Density ρ 2300 kg/m3 

Young’s modulus E 1.05E+10 Pa 

Poisson’s ratio ν 0.3 - 
 

 

Table 4.8 - Geometry of the simulated domain and material properties. 

 

4.5.3 Mesh 
 
In Table 4.9 are reported the main features of the two types of discretization of the 
domain. 
 

 
Mesh 1  Mesh 2 

Nr. of nodes 190284 1081550 

Nr. of elements 165907 1000821 

Max characteristic length 1.65 μm 0.9 μm 

Element type Hexahedron Hexahedron  

Nr. of elements on diameter 13 23 

Nr. of elements on axial length 1211 2229 
 

 

Table 4.9 - Features of the two simulated meshes. 

 

4.5.4 Loads and boundary conditions 
 
In Table 4.10 are listed the pressure load at inlet (Figure 4.16) and the solid 
constraints. 
 

Location Boundary condition/load Features 

Inlet 
Shock wave of magnitude 

1.4E+06 Pa 
See  

Figure 4.16 

Outlet Fixed nodes 
3 translational constraint                      

3 rotational constraint 
 

 

Table 4.10 - Applied load and boundary condition. 
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Figure 4.16 - Pressure load applied at inlet. 

 

4.5.5 Simulation settings 
 
Table 4.11 are resumed the numerical methods and the time discretization used for 
this simulation. 
 
 

End time 1.5E-06 s 

Time step Mesh 1: 3.18E-11 s  Mesh 2: 1.68E-11 s 

Integration method (time) Central difference 2nd order accurate scheme 

Element formulation Fully integrated S/R solid 
 

 

Table 4.11 - Main settings of the simulations. 
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4.5.6 Computational aspects 
 
With Table 4.12 are reported the computational costs related to the core number and 
mesh size. 
 

 
Mesh 1 Mesh 2 

Execution 
Distributed memory 

parallel (MPP) 
Distributed memory 

parallel (MPP) 

Core number 4 4 

Precision Double Double 

Simulation time 14156 s = 3.9 h 25981 s = 7.2 h 

Mesh size ∼2x105 elements ∼1x106 elements 
 

 

Table 4.12 - Main characteristics of the simulation process. 

 

4.5.7 Results 
 
The figures of the main results are shown below. In Figure 4.17 and Figure 4.18 the 
images of the strain and stress waves effects on the bar at time 4.6E-07 seconds are 
represented and it can be easily seen how the wave front propagates along the bar.  
From Figure 4.19 it can be stated that there is agreement between numerical and 
analytical results from the point of view of the wave front speed, the value of the 
imposed pressure at inlet, and the lowest frequency oscillations, but behind the front 
it can be seen that high frequencies are not exactly evaluated by the software. This 
probably because of the presence of the constraint, which in the exact solution is at 
infinite distance from the pressure application point and for modeling reasons in the 
numerical model is obviously not, or because of a software highest frequencies 
automatic cutoff. 
Finally it can be stated that mesh 2, which is finer than mesh 1, can better catch the 
evolution of the high frequencies stress oscillations than mesh 1. 
 
 

 
 

Figure 4.17 - Longitudinal strain. 
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Figure 4.18 - Longitudinal stress. 

 
 

 
 

Figure 4.19 - Normalized longitudinal stress at the beam axis (z = 50D): comparison between analytic 
solution, LS-DYNA simulation and ANSYS simulation. 

 
 

4.5.8 ANSYS Mechanical simulation description 
 
The same problem has been analyzed with ANSYS Explicit Dynamics. The simulation 
settings are close to LS-DYNA ones, in order to obtain comparable results. So, the 
geometry of the domain, the material properties, the load and the boundary 
conditions are identical. Some differences arise in the characteristics of the mesh and 
in the simulation process. For more details, refer to Figure 4.20, Table 4.13, Table 
4.14 and Table 4.15. 
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Figure 4.20 - View of XY-plane. 

 
 
 
 

Nr. of nodes 185590 

Nr. of elements 882065 

Max characteristic length 1.65 μm 

Element type Tetrahedrons 

Nr. of elements on diameter 18 

Nr. of elements on axial length 3465 

 

Table 4.13 - Features of the mesh simulated in ANSYS. 

 

End time 1.1E-06 s 

Time step 1E-10 s 

Integration method (time) 
Central difference 2nd order accurate 

scheme 

Element formulation 
Average Nodal Pressure Tetrahedral 

Element 

 

Table 4.14 - Main settings of ANSYS simulation. 

 

Execution Serial 

Core number 8 

Precision Double 

Simulation time 5,6 h 

Mesh size ∼9x105 elements 

 

Table 4.15 - Main characteristics of ANSYS simulation process. 



   
                                                                                                Chapter   4 

57 
 

4.5.9 Comparison between LS-DYNA, ANSYS Mechanical and exact analytical 
solution 

 
Both software seem to accurately calculate the wave front speed and the imposed 
pressure at z=0, as we can see from . Therefore also ANSYS Explicit Dynamics 
presents the same problems than LS-DYNA, in fact the back of the perturbation 
seems to be correctly caught only in the low frequencies. This because of automatic 
software high frequencies cutoff or the impossibility of representing the model of an 
infinite solid bar. 
However, for what concerns the main purposes and aims of our study, these results 
seem to be quite reliable for both the software, which have also comparable 
calculation times for the same problem. 
 
 

 
 

Figure 4.21 - Normalized longitudinal stress at the beam axis (z = 50D): comparison between analytical 
solution, LS-DYNA simulation and ANSYS simulation. 

 
In Figure 4.22 the wave forms are plotted with respect to time for two gauge points, 
fifty and eighty diameters of distance from the inlet section. It is clear that both LS-

DYNA and ANSYS catch the right wave speed evaluated with expression   √  ⁄  

     m/s with a negligible error. 
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Figure 4.22 - Normalized longitudinal stress at the beam axis (z = 50D, z =80D): comparison between 
analytical solution, LS-DYNA simulation and ANSYS simulation. 
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4.6 Fluid – Structure Interaction solver evaluation 
 

4.6.1 Domain and mesh 
 
The problem consists in an infinitely long tube filled with fluid (Figure 4.23), which 
has a step pressure wave moving in the positive axial direction as initial condition. 
Initially the fluid velocity is null and the pressure is equal to the reference pressure. 
The inlet edge of the pipe is fixed. The domain axial length is assumed to be 100 
times the diameter of the tube to simulate the infinite length condition. Since the 
problem is axially symmetrical, the domain is reduced to one quarter and the 
appropriate symmetry conditions are imposed. 
To simulate a fluid-structure interaction, LS-DYNA needs an ALE mesh that contains 
the Lagrangian mesh. The ALE mesh, so, could be divided in two parts: the first one 
describes the water that is constrained by the Lagrangian structure (that is 
“immersed” in the fluid mesh) and the second one includes the surrounding 
elements, characterized by a very low density material. The two meshes do not share 
nodes. Figure 4.24, Figure 4.25 and Figure 4.26 show the three different simulated 
meshes. In particular, it can be identified the internal fluid (red), the external fluid 
(blue) and the thin pipe (the white marks indicate the nodes of the Lagrangian 
mesh). 
 

 
 

Figure 4.23 - Model domain. 

 

 
 

Figure 4.24 - View of XY-plane, mesh 1. 

   

 
 

Figure 4.25 - View of XY-plane, mesh 2. 
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Figure 4.26 - View of XY-plane, mesh 3. 

 
 

4.6.2 Geometry and materials properties 
 
The geometry of the problem and the properties of fluid and solid materials are 
listed in Table 4.16. 
The internal fluid (water) is compressible and inviscid, the solid structure is 
composed of a linear elastic material and the external fluid is a low density, 
incompressible fluid. 
 
 

Quantity Symbol Internal fluid Solid structure External fluid Unit 

Length L 60 60 60 m 

Radius R 0.3048 - - m 

Diameter D 0.6096 - - m 

Thickness h - 0.004857 0.0452 m 

Density ρ 999.8 59156 0.0012 kg/m3 

Dynamic viscosity μ 0 - 0 kg/(m∙s) 

Equation of state EOS Gruneisen1 - - - 

Reference pressure Pref 1.00E+05 - 1.00E+05 Pa 

Young’s modulus E - 2.07E+14 - Pa 

Poisson’s ratio ν - 0.3 - - 

 

Table 4.16 - Geometry of the simulated domains and materials properties. 

 
 
  

                                                             
1 The parameters used in the Gruneisen EOS for internal fluid are the same of the fluid 
simulations in Table 4.1 - Geometry of the simulated domain and material properties. 
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4.6.3 Mesh 
 
For each simulation, Table 4.17 describes the main features of the three types of 
discretization of the domain. 
 
 

  
Mesh 1 Mesh 2 Mesh 3 

Total 
domain 

Nr. of total nodes 363169 936301 2166517 

Nr. of total elements 318000 842000 2000000 

Internal 
fluid 

Nr. of nodes 220110 654218 1476369 

Nr. of elements 182000 570000 1328000 

Element type 
Brick 

(Hexahedron) 
Brick 

(Hexahedron) 
Brick 

(Hexahedron) 

Max characteristic length 0.03 m 0.02 m 0.015 m 

Nr. of elem. on diameter 10 15 20 

Nr. of elem. on axial length 2000 3000 4000 

Solid 
structure 

Nr. of nodes 75025 132033 294049 

Nr. of elements 72000 128000 288000 

Element type 
Shell 

(Quadrilateral) 
Shell 

(Quadrilateral) 
Shell 

(Quadrilateral) 

Max characteristic length 0.02 m 0.015 m 0.01 m 

Nr. of elem. on thickness 1 1 1 

Nr. of elem. on axial length 3000 4000 6000 

External 
fluid 

Nr. of nodes 102051 225075 528132 

Nr. of elements 64000 144000 384000 

Element type 
Brick 

(Hexahedron) 
Brick 

(Hexahedron) 
Brick 

(Hexahedron) 

Max characteristic length 0.03 m 0.02 m 0.015 m 

Nr. of elem. on thickness 2 2 3 

Nr. of elem. on axial length 2000 3000 4000 

 

Table 4.17 - Features of the three simulated meshes. 
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4.6.4 Loads and boundary conditions 
 
Table 4.18 describes the pressure load due to the shock wave and the boundary 
conditions applied both to fluid domain and solid structure. 
 
 

Location Boundary condition Features 

Inlet of internal fluid 
Shock wave of magnitude 

1E+05 Pa 
See Figure 4.10 

Outlet of internal fluid 
Non-reflecting boundary 

condition 
Acts on dilatational and shear waves 

Inlet of solid structure Fixed nodes 
3 translational constraint 3 rotational 

constraint 

XZ plane Symmetry 
1 translational constraint (y-direction) 3 

rotational constraint 

YZ plane Symmetry 
1 translational constraint (x-direction) 3 

rotational constraint 

Symmetry axis Symmetry 
2 translational constraint (x and y dir.) 3 

rotational constraint 

 

Table 4.18 - Applied loads and boundary conditions. 

 

4.6.5 Simulation settings 
 
In Table 4.19 are listed the numerical methods used for fluid and structure and the 
time discretization. 
 
 

End time 0.065 s 

Time step Mesh 1: 8.67E-06 s Mesh 2: 6.18E-06 s Mesh 3: 4.44E-06 s  

Integration method 
(time) 

Central difference 2nd order accurate scheme 

Advection method 
(space) 

Van Leer, 2nd order accurate method 

Fluid element 
formulation 

ALE multi-material element 

Solid element 
formulation 

Fully integrated S/R solid 

FSI coupling method Penalty coupling 

 

Table 4.19 - Main settings of the simulations. 
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4.6.6 Computational aspects 
 
In Table 4.20 are reported the computational costs related to the core number and 
mesh size used. 
 
 

 
Mesh 1 Mesh 2 Mesh 3 

Execution MPP MPP MPP 

Core number 16 16 16 

Precision Double Double Double 

Simulation time 2874 s = 0.8 h  8790 s = 2.44 h 31455 s = 8.74 h 

Mesh size ∼3x105 elements ∼8x105 elements ∼2x106 elements 

 

Table 4.20 - Main characteristics of the simulation process. 

 

4.6.7 Results 
 
In Figure 4.27 and in Figure 4.28 it is shown the instantaneous pressure distribution 
along the solid tube after 0.02 seconds of simulation generated respectively by the 
water hammer wave on the contact surface and the precursor wave in the pipe. The 
latter is the consequence of the propagation of a stress wave in the solid with higher 
speed than in the fluid domain. For this reason the two images are not referred to the 
same space interval of the tube, because the precursor wave was, at the same instant 
of time, much father from the inlet than the water hammer wave. 
As might be expected from the results of Skalak, the precursor wave has smaller 
amplitude than the water hammer wave, but it has still to be considered in tube 
design because it creates a condition of pre-stress in the fluid-structure system.  
The water hammer wave generates a compression wave on the surface of the tube 
which tends to expand giving the values shown in Figure 4.27.  
 
 

 
 

Figure 4.27 - Tube pressure due to water hammer wave. 
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Figure 4.28 - Tube pressure due to precursor wave. 

 

In the next charts it can be seen the comparison between the exact analytical solution 
of Skalak and Tijsseling and the results obtained with the LS-DYNA software. 
Figure 4.29 shows the varying of the pressure values in a specified gauge point 
situated twenty diameters after the inlet section. Here are presented the results 
obtained with the previously presented three meshes, from the coarser to the finer. It 
can be clearly seen that the finer is the mesh the better is the according with the 
exact solution values of pressure. 
The instants before the arriving of the wave front are characterized by high 
frequency oscillations near the zero value. That’s because many software, and also 
LS-DYNA, encounter difficulties in simulating shock waves propagation, especially in 
the portion of time and space jest before the wave front. LS-DYNA uses numerical 
damping systems to minimize this problem and reduce these spurious oscillations, 
but we decided, in order to correctly analyze how the solver works, to keep the 
solution free from this type of damping. 
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Figure 4.29 - Normalized fluid pressure at the beam axis (z = 20D): comparison between analytic solution 
and LS-DYNA simulations with different meshes. 

 
In Figure 4.30 are plotted the results given by LD-DYNA in two specified gauge 
points, twenty and forty diameters from the inlet section, in the passing of time, both 
compared with the analytical solution adopted. During the propagation of the shock 
wave in the domain it can be seen from this chart that the wave speed evaluated 
numerically is a little smaller than the one evaluated with the exact theory. In fact the 
wave speed value obtained with the classic expression is 972,38 m/s, while the one 
evaluated through the numerical result is 955,89 m/s, but the difference is in the 
order of 2%, and in our analysis is an acceptable value. 
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Figure 4.30 - Normalized fluid pressure at the beam axis (z = 20D and z=40D): comparison between 
analytic solution and LS-DYNA simulation with the finest mesh. 

 

4.6.8 ANSYS FSI Solution 
 
As a final comparison it has been decided to numerically simulate the same FSI 
problem modeled with LS-DYNA. Posing the same physical domain and mesh, the 
same boundary conditions and the same duration and time interval properties, it has 
been observed that the ANSYS barely catch the correct wave form, with negative 
pressures excursions which are obviously incorrect for this kind of simulated case. 
But the main problem was the large simulation times expected by the ANSYS solver, 
which could have strongly compromised the expected times of the study. That’s why 
it has been decided not to include those results into this work. 
 
 

4.6.9 ANSYS and LSDYNA FSI comparison 
 
Considering the previous observations it has been decided to adopt LSDYNA as 
solver for the present research study. Since for the solid part both the tested solvers 
had quite similar results with the exact analytical solution assumed, this conclusion 
is mainly based on the better precision emerged in the fluid simulations, and on the 
smaller simulation times obtained with LSDYNA compared to those resulted with the 
ANSYS FSI solver. 
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5 Fluid analysis 
 
 

5.1 Overview of the problem 
 
Since the phenomena objects of this study incorporate many different complex 
issues, such as the fluid structure interactions, the continuous change in shape and 
section of the fluid channels, or the incertitude in the evaluation of the parameters 
composing the problem, it has been chosen to analyze some of the single elements 
composing the whole complexity of the real domain. 
With the aim of correctly understanding the consequences of the application of a 
compression wave on a section of a porous ground portion, it has been decided to 
isolate the case of the single fluid pore treated as fluid channel. In fact a portion of 
porous soil is composed by a solid structure and many channels filled by a mix of 
liquid and gaseous phases. For a preliminary analysis, as we can see from Figure 5.1, 
only the liquid phase has been taken into account, acting like observing a sample of 
the ground and extracting from this one the single fluid phase permeating the pores.  
 
 

 
 

Figure 5.1 - From macro to micro-scale, identifying simple structures from soil whole complexity. 
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The pores that compose the fluid matrix may evolve into many forms, with different 
sections and directions, but how a single change of one of these parameters 
influences the acoustic impedance of a section of porous ground? To answer this 
question some singularities of the fluid domain are taken into consideration 
separately from the others. 
Observing a single flow channel it can be seen that, for example, it may vary his 
section area with an enlargement, simulating the entering of the fluid in a bigger 
pore, or with a constriction reducing the space available to the fluid to flow. On the 
other hand the area may remain the same, but the channel longitudinal direction 
may vary for example with a curve or an elbow. 
Since the context of this study is a portion of porous rock at high depth and high 
pressures, filled by oil with fixed properties, to simplify this problem only an 
atmospheric pressure has been assumed outside the elementary domains as 
reference pressure, but for further analysis the real pressure imposed by the 
overlying solid layers can be obtained simply varying this reference pressure 
parameter. 
The considered oil, called in this work “standard oil”, has fixed features resumed in 
the following table (Table 5.1). 
 
 
 

 
Symbol Value [#] 

Density ρ 850 kg/m3 

Dynamic Viscosity μ 0.05 Pa*s 

Perturbation Speed c 1172 m/s 

Bulk Modulus K 1.17  GPa 

 

Table 5.1 - "Standard oil" parameters. 
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5.2 Fluid geometries 
 
As mentioned before, some basic singularities in the fluid channels can be identified: 
enlargements of the sections, constrictions of the sections, and curves, represented 
by elbows, which changes the flow direction. So, those are the fluid geometries 
considered in this chapter.  Furthermore a cylindrical straight domain has been 
considered to provide also a comparison between a fluid channel without 
singularities. Those geometries have been recreated and meshed with the meshing 
software Gambit developed by ANSYS Inc, which have provided better meshes than 
the software LS-Prepost, used only to set up the numerical simulations solved by LS-
DYNA. 
 

5.2.1 Straight tube geometry 
 
A long straight cylindrical tube with z-axis as longitudinal direction has been 
considered (Figure 5.2), with a circular cross section and diameter D equal to 10μm, 
which is the estimated average diameter of a pore in a representative micro-porous 
medium taken as sample for those simulations. The chosen length L is 50D, to permit 
the solution not to be influenced in a commeasured region by the boundary 
conditions at the extremity of the tube. 
 
 

 
 

Figure 5.2 - Straight tube geometry. 

 

5.2.2 Elbow geometry 
 
With the aim of evaluating the acoustic impedance variations after a direction 
change, an elbow geometry has been modeled (Figure 5.3). The considered tube has 
a circular cross section with diameter D and elbow situated after 10D from the inflow 
surface, permitting the flow to develop completely. After the elbow, which is 5D long, 
a straight part of 30D length has been created to analyze the flow after its passing in 
this singularity. 
 
 



 
5.2  Fluid geometries 
 

70 
 

 
 

Figure 5.3 - Elbow geometry. 

5.2.3 Enlargement geometries 
 
To represent the developing of the flow and the consequent effects on the acoustic 
impedance after the passing in a larger pore, a cylindrical channel having circular 
cross section, but with an enlargement after 10D from the inflow surface, has been 
modeled.  
Since many type of enlargements can be identified in pores nature, in this work it’s 
been analyzed two prototypal cases: a sharper one and a smoother one. 
As for the elbow geometry, both those enlargements have a length of 5D diameters, 
for a better results comparison. 
 

5.2.3.1 Enlargement type 1 
 
The sharpness of the first one (Figure 5.4) is meant in the fact that the passing from 
the channel diameter to the pore diameter occurs more rapidly than in the smoother, 
where diameter variation is slower. Precisely in this kind of geometry the pore 
diameter of 2D is reached after a distance of D/2 from the starting of the section 
change. 
 
 

 
 

Figure 5.4 - Enlargement type 1 geometry. 

 

5.2.3.2 Enlargement type 2 
 
The smoother model (Figure 5.5) is smooth in the fact that it takes a 2D length to 
pass from the channel diameter to the pore diameter of 2D, and so the section change 
is softer. 
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Figure 5.5 - Enlargement type 2 geometry. 

 
 
 

5.2.4 Constriction geometry 
 
The fluid flow in porous media may encounter obviously some kinds of section 
constrictions, that’s why a constriction model has been developed (Figure 5.6). The 
channel diameter is D while the pore diameter is D/2 and the pore length is, as fixed 
for the previous singularities, 5D diameters. The form of the section change 
considered is the same used in the second type of enlargement, to provide results for 
a better comparison between the two opposite cases. 
 
 

 
 

Figure 5.6 - Constriction geometry. 
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5.3 Boundary conditions 
 

5.3.1 Constraints 
 
To correctly represent the situation of a rigid tube with an interior fluid flux, a rigid 
wall has been modeled fixing the three translational and the three rotational degrees 
of freedom of the exterior nodes of every examined geometry. 
 

5.3.2 Inflow and outflow conditions 
 
In the inflow circular surface of each geometry a pressure condition has been set. As 
we can see from the results with a single compressional wave shown in paragraph 0, 
some small numerical errors are presents in the final part of the signal wave, that’s 
why to prevent those type of errors it’s been decided to introduce a multiple wavelet 
set as pressure condition in the inlet surface. The pressure signal is decided to be 
only compressional and characterized by an height of 140 Bar.  
 Since one of the aims of the present work is to analyze the variability of the acoustic 
impedance with a change in the input signal frequency, three frequencies have been 
simulated: 1e+06 Hz (Figure 5.7), 1e+07 Hz (Figure 5.8) and 1+08 Hz (Figure 5.9). 
 
 

 
 

Figure 5.7 - 106 Hz input signal. 
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Figure 5.8 - 107 Hz input signal. 

 

 
 

Figure 5.9 - 108 Hz input signal. 

 
To simulate what happens in a portion of an infinite tube, or a tube with anechoical 
terminations, a non-reflective boundary condition has been posed to the outlet 
surface of the fluid channel, preventing reflection waves to influence the observed 
solution. 
 
 

5.3.3 Initial conditions 
 
At the time instant t=0 the system has been modeled completely at rest. 
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5.4 Mesh implementation 
 
As said before, the discretization of the fluid domain geometries modeled has been 
implemented with the meshing software Gambit, typically used for CFD models.  
With the purpose to correctly model the flow into those channels a volume mesh 
with hexahedral elements has been generated (Figure 5.10). 
 
 

 
 

Figure 5.10 - Meshed tube section. 

 
In the following table (Table 5.2) are resumed the main features of the mesh volumes 
used for this chapter calculations. Besides, every geometry has been meshed so as to 
obtain a number of nodes and elements on the radius of the circular surface to allow 
a fine simulation of the fluid velocity profile. 
 
 
 

 
Straight 

Tube 
Elbow Large 1 Large 2 Thin 2 

Elements 743750 688415 782952 787194 807798 

Nodes 795636 736488 836571 841100 863098 

 

Table 5.2 - Meshes main characteristics. 
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5.5 Simulation times 
 
In this paragraph are resumed the main time features of the simulations performed. 
The table below (Table 5.3) shows the integration time-step, the results saving time-
step, the end time adopted for every frequency simulation, and the mean simulation 
length.  
 
 

 
1.00E+06 1.00E+07 1.00E+08 

dt of integration 1.00E-11 1.00E-11 1.00E-12 

dt of saving 1.00E-09 1.00E-09 1.00E-10 

Sim. time 4.50E+06 6.00E-07 6.00E-07 

Average sim. duration  10h 2h  4h  
 

Table 5.3 - Simulation times. 

 

5.6 Mesh validation 
 
From the past studies on fluid simulations, the adopted volumes discretization is 
enough dense to ensure a correct solution of the examined problems. To prove this 
fact, a very thick discretization has been created increasing by the 50% the number 
of elements of a chosen domain, the elbow, with the aim of analyzing the differences 
between the used mesh and a high elements number mesh. 
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5.7 Results 
 
After performed those numerical simulations, results of pressure and particle 
velocity signals have been detected in order to evaluate the acoustic impedance for 
many sections of interest. 
The analysis has been developed observing the time variation of these values in 
those sections of interest, fixed for example in particular positions: before, within 
and after the singularity (Figure 5.11, Figure 5.12 and Figure 5.13) for every 
simulated geometry. 
 
 
 

 
 

Figure 5.11 - Sections of observation in straight tube domain. 

 
 

 
 

Figure 5.12 - Sections of observation in elbow geometry domain. 
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Figure 5.13 - Sections of observation in enlargements and constriction geometries domains. 

 

5.7.1 Straight tube geometry 
 
First of all pressure and velocity signals have been extracted for the straight tube 
geometry, to provide a comparison case for the solutions with the other tested 
geometries.  
In the following figures (Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17, Figure 
5.18, and Figure 5.19) are shown those results for every simulated frequency as a 
preliminary view of how the system reacts to a wave train chosen as input condition. 
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Figure 5.14 - Pressure signal for 106 Hz input frequency for straight tube geometry. 

 
 

 
 

Figure 5.15 - Velocity signal for 106 Hz input frequency for straight tube geometry. 
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Figure 5.16 - Pressure signal for 107 Hz input frequency for straight tube geometry. 

 
 

 
 

Figure 5.17 - Velocity signal for 107 Hz input frequency for straight tube geometry. 
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Figure 5.18 - Pressure signal for 108 Hz input frequency for straight tube geometry. 

 
 

 
 

Figure 5.19 - Pressure signal for 108 Hz input frequency for straight tube geometry. 

 
 
Pressure and velocity results can be also observed in the spatial domain, examining 
their variation along the tube at a fixed time instant (Figure 5.20 and Figure 5.21). 
Pressure seems to correctly be constant on surfaces perpendicular to the flow and its 
magnitude, represented by the colors resumed in the palette on the right, correctly 
oscillates decreasing the peak value by the increasing of the z-coordinate. 
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Figure 5.20 - Pressure evolution in the straight tube domain at t=5·10-7 s. 

 
The same representation can be adopted for the velocity results where we can see 
the no slip condition on the walls is respected. Furthermore, as we can see from the 
velocity plots before, there are some regions where the velocity passes from positive 
to negative, change due to the sign of the pressure spatial variation which is negative 
in those parts of the domain. 
 
 

 
 

Figure 5.21 – Velocity evolution in the straight tube domain at t=5·10-7 s. 

 
Looking at the velocity results and the fluid properties, the Reynolds numbers of 
these studied phenomena can be easily evaluated. These values remain in the unity 
range, proving that the fluid motion is developed in laminar regime, as expected for 
those pore-flow problems [27]. The velocity profile, in the peak of the oscillation, 
assumes the form presented in the figure below (Figure 5.22).  
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Figure 5.22 - Z-component of fluid velocity profile represented in blue with mean z-velocity indicated with 
the green plane. Profile obtained at a fixed time t/T0=0.5132 with T0 simulation time. 

 
Pressure and velocity signals show that only after an initial transient evolution the 
mean oscillating term starts to set on an almost stationary value, and that’s the part 
of the signal chosen for the acoustic impedance calculation. As seen before, 
impedance is defined as the ratio of complex pressure and complex velocity, that’s 
why a Fourier transformation is required to express those signals into a sum of 
harmonic terms passing from time to frequency domain. 
Performing this mathematical calculation, pressure and velocity signals have been 
expressed with their modulus and phase in the frequency domain as follows 
respectively in Figure 5.23, where the transformed signals for a frequency input of 
1e07 are represented (the mean value of the series has been subtracted before the 
transform operation). 
 

       
 

Figure 5.23 – Modulus and phase of pressure and velocity FFT. 
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Then, with those complex signals, the calculation of the acoustic impedance has been 
performed with the relations illustrated in chapter 3. Results of impedance can be 
resumed in the frequency domain plotting its modulus and phase (Figure 5.24), and 
also its real and imaginary parts (Figure 5.25), which can lead to very interesting 
considerations as well as to a better understanding of the phenomena in progress. 
 
 

 
 

Figure 5.24 - Impedance modulus and phase in frequency domain for straight tube geometry and 107 Hz 
input signal. 

 
 

 
 

Figure 5.25 - Impedance real and imaginary in frequency domain for straight tube geometry and 107 Hz 
input signal. 

 
 
 



 
5.7  Results 
 

84 
 

Those figures show that, as expected from the results of the straight cylinder 
geometry, the impedance modulus, phase, real and imaginary part, in the nearby of 
the input frequency, remains almost constant. 
Finally impedance results have been also represented in the spatial domain, 
displaying the values of the acoustic impedance for the input frequency only, in order 
to analyze the way each geometry influences this complex coefficient and provide 
relations between impedance and geometry variations  (Figure 5.26, Figure 5.27). 
 
 

 
 

Figure 5.26 - Impedance modulus and phase in spatial non-dimensional domain for straight tube geometry 
and 107 Hz input signal. 

 

 
 

Figure 5.27 - Impedance real and imaginary part in spatial non-dimensional domain for straight tube 
geometry and 107 Hz input signal. 

 
From a quick look of those graphs, it can be clearly seen what stated before for the 
impedance on frequency figures, but further observations can be performed. For 
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example, it was expected to find for the real part an almost constant value and close 
to the reference one obtained with ρc, which is slightly lower than 106 Pa·m-1·s, and 
not to observe variation on the phase, which indicates a low or null effect of the 
acoustic dispersion on this phenomenon. Those expectations were properly 
respected in those results, and so they can be used as a good start for the analysis of 
other more complex domains. In the next two figures (Figure 5.28, and Figure 5.29) 
are resumed the results for the straight cylinder geometry for the three simulated 
input frequencies. As cited before, the three curves develop with an almost constant 
trend around the value of ρc for both modulus and phase and both real and 
imaginary part. 
 
 

 
 

Figure 5.28 - Impedance modulus and phase in spatial non-dimensional domain for straight tube geometry 
and  every simulated input frequency. 

 

 
 

Figure 5.29 - Impedance real and imaginary part in spatial non-dimensional domain for straight tube 
geometry and every simulated input frequency. 
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5.7.2 Elbow geometry 
 
The same procedure has been adopted for the other geometries. In this paragraph 
the results for the elbow geometry are shown.  
 
 

 
 

Figure 5.30 - Pressure signal for 107 Hz input frequency for elbow geometry. 

 
 

 
 

Figure 5.31 - Velocity signal for 107 Hz input frequency for elbow geometry. 

 
Pressure and velocity signals, for each input frequency studied, are similar in shape 
to the ones obtained with the straight tube geometry (Figure 5.30 and Figure 5.31) 
and their effect on the impedance evolution along the channel are also analogue in 
terms of evolution through the domain and values, with the exception of the results 
obtained for the frequency 108 Hz (Figure 5.32 and Figure 5.33). 
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Figure 5.32 - Impedance modulus and phase in spatial non-dimensional domain for elbow geometry and 
every simulated input frequency. 

 
 

 
 

Figure 5.33 - Impedance real and imaginary part in spatial non-dimensional domain for elbow geometry 
and every simulated input frequency. 

 
This phenomenon occurs because of the wavelength of the 108 Hz, which is in the 
order of 10-5 m, becoming comparable with the geometry representative length, the 
channel diameter, which equals to 10-5 m. 
That’s why, spreading the point of view from one dimensional to two dimensional, 
other (higher-order) modes of propagation are formed by interference between 
plane waves propagating in non-axial directions, as it can be seen in (Figure 5.34). 
The interference field is of course the result of multiple reflections of sound from the 
parallel walls. 
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Figure 5.34 - Reflections on rigid walls of a waveguide (Frank J. Fahy, Foundations of Engineering 
Acoustics, 2001). 

 
In summary, in duct of given width, a particular angle of plane pulse propagation is 
uniquely associated with a harmonic series of frequencies for a given speed of sound 
in the fluid. The corollary of this statement is that any temporally harmonic sound 
field within a waveguide may be decomposed into a set of harmonic plane waves 
travelling in a number of discrete directions, and this number is increasing with 
frequency. A qualitative physical explanation of this behavior is provided by (Figure 
5.35). The spatial phase gradient of the pressure field produced by interference 
between the incident plane wave and that reflected from the bend wall increases 
with frequency. The interference field therefore becomes increasingly less well 
matched to a plane wave field in the downstream leg, which has uniform phase over 
the cross-section. The mismatch reaches a maximum when the waveguide width 
equals a half wavelength, that is a situation similar to the studied one. 
 
 

 
 

Figure 5.35 - Effects of wavelength on the signal propagation after the elbow (Frank J. Fahy, Foundations 
of Engineering Acoustics, 2001). 

 
In conclusion, the elbow geometry acts like a uniform straight tube geometry as long 
as the wavelength of the input signal remains significantly larger than the duct 
diameter. If this wasn’t so, the imaginary part grows and becomes inertive, due to the 
accelerations created in this case. 
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5.7.3 Enlargement geometries 
 
In this paragraph the results for the enlargement geometries are shown. 
 

5.7.3.1 Enlargement type 1 
 
First of all pressure and velocity signals has been analyzed. In the following figures 
are resumed signals for the frequency 107 Hz. 
 
 

 
 

Figure 5.36 - Pressure signal for 107 Hz input frequency for enlargement type 1 geometry. 

 
 
 

 
 

Figure 5.37 - Velocity signal for 107 Hz input frequency for enlargement type 1 geometry. 
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From Figure 5.37 it can be clearly seen that the mass conservation is correctly 
respected because of the decreasing, in comparison with the expected value, of the 
velocity in the middle of the singularity. 
Transforming those signals and evaluating the acoustic impedance at various 
sections, the charts below can be obtained (Figure 5.38 and Figure 5.39). 
 
 

 
 

Figure 5.38 - Impedance modulus and phase in spatial non-dimensional domain for enlargement type 1 
geometry and every simulated input frequency. 

 

 
 

Figure 5.39 - Impedance real and imaginary part in spatial non-dimensional domain for enlargement type 
1 geometry and every simulated input frequency. 

 
To correctly evaluate those results, it is useful to analyze what physically happens to 
a wavelet encountering a singularity as an abrupt change of section. If this area 
changes abruptly at some point, the associated change of impedance will cause 
incident waves to be reflected. The acoustic flow field in immediate vicinity of the 
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area discontinuity cannot be one-dimensional and plane. Non-plane sound fields are 
generated but, at low frequencies, they are confined to the immediate vicinity of the 
discontinuity, and only plane waves can propagate and transport energy. The effect 
of the discontinuity is to introduce an additional inertial impedance associated with 
the local kinetic energy of the non-planar particle motion. And that’s what it can be 
seen at the non-dimensional distance of 10 z/D.  
To explain the low peaks in the negative field of the impedance imaginary part 
values, that represent an increasing of the stiffness reactance of the system, a 
classical example may become useful. This is the archetypal Helmholtz resonator, 
consisting of a neck and cavity, shown in Figure 5.40. At the fundamental resonance 
frequency, the dimensions of both components are much less than an acoustic 
wavelength and can thus be treated as lumped elements coupled at a geometric 
discontinuity. The coupling condition is that the oscillatory volume flow in the neck 
is equal to that imposed on the fluid in the cavity. A volume of fluid in an acoustically 
small enclosure that acts like an elastic spring. The acoustic impedance of the cavity 
of volume V0 is given by Z = -jγP0/ω V0.  The acoustic impedance of the fluid in the 
neck is inertial in nature and given by Z=jωρ0l/S where l and S are the length and 
cross-sectional area of the neck, respectively. Because the fluid in the neck behaves 
like an incompressible mass, the impedances of the neck and cavity add to give the 
internal reactance Xint given to pressure imposed on the external opening of the neck. 
 
 

 
 

Figure 5.40 - Archetypal Helmholtz resonator (Frank J. Fahy, Foundations of Engineering Acoustics, 
2001). 

 
If kl << 1, the fluid in the neck is so stiff that it moves virtually as an incompressible 
volume, its acceleration being controlled by its inertia. Hence, the smaller of the two 
components of neck impedance controls the motional response. 
For these reasons it is observable in Figure 5.39 that the imaginary part is more 
negative in the middle of the enlargement than in other sections. The real part seems 
to increase for frequencies not comparable with the diameter of the duct because in 
section 12.5 z/D the cross section is bigger and friction has less influence on the 
motion. For the frequency of 108 Hz real part is smaller because of the effects due to 
the small wavelength of the signal that causes local accelerations and dissipations. 
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5.7.3.2 Enlargement type 2 
 
For this type of geometry pressure and velocity signals don’t differ much in shape 
from those obtained with the enlargement type 1 (Figure 5.41), except from the 
boundary layers created by the different cross section transitions, and consequently 
impedance results remains qualitatively similar (Figure 5.42 and Figure 5.43) and 
the observations that can be brought out are mainly the same.. For a quantitative 
evaluation, better observations will be done in paragraph 5.7.5 where all geometry 
results are compared.  
 
 

 
 

Figure 5.41 - Enlargement type 2 and type 1 velocity distributions at time t=3.5e-07 s. Velocities in 
micron/s. 

 
 

 
 

Figure 5.42 - Impedance modulus and phase in spatial non-dimensional domain for enlargement type 2 
geometry and every simulated input frequency. 
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Figure 5.43 - Impedance real and imaginary part in spatial non-dimensional domain for enlargement type 
2 geometry and every simulated input frequency. 

 
 

5.7.4 Constriction geometry 
 
Results for pressure and velocity signal are presented in Figure 5.44 and Figure 5.45. 
 
 

 
 

Figure 5.44 - Pressure signal for 107 Hz input frequency for constriction geometry. 
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Figure 5.45 - Velocity signal for 107 Hz input frequency for constriction geometry. 

 
From Figure 5.45 it can be easily seen the effect of the constriction, which increases 
fluid velocity in section 12.5 z/D, as the conservation of mass predicts. This geometry 
can also be seen as the specular case, from the point of view of the section variations, 
of the enlargements, and this aspect is reflected on velocity field (Figure 5.46) and 
impedance results (Figure 5.47 and Figure 5.48). 
 
 

 
 

Figure 5.46 - Enlargement type 2 and constriction velocity distributions at time t=3.5e-07 s. Velocities in 
micron/s. 
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Figure 5.47 - Impedance modulus and phase in spatial non-dimensional domain for constriction geometry 
and every simulated input frequency. 

 
 
 

 
 

Figure 5.48 - Impedance real and imaginary part in spatial non-dimensional domain for constriction 
geometry and every simulated input frequency. 

 
In facts, remembering the Helmholtz resonator example, in the constriction zone the 
imaginary part of the impedance grows tending to positive values, as a prove that the 
inertive reactance is increasing, while in the larger section zones imaginary part is 
strongly stiffness regulated (z/D=10). 
Looking at the real part, frequency 108 Hz is very dissipative and this is translated in 
the small real part values assumed. That’s because strong resistive phenomena 
occurs during the interference and interaction of the signal and the structure. 
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5.7.5 Results comparison 
 
For a better understanding of the geometry change influence on the acoustic 
impedance, results have been plotted for every simulated geometry with a fixed 
value of input frequency. 
 
 

 
 

Figure 5.49 - Impedance modulus and phase the in spatial non-dimensional domain for every simulated 
fluid geometry for an input frequency of 106 Hz. 

 

 
 

Figure 5.50 - Impedance real and imaginary part in the spatial non-dimensional domain for every 
simulated fluid geometry for an input frequency of 106 Hz. 
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Figure 5.51 - Impedance modulus and phase in the spatial non-dimensional domain for every simulated 
fluid geometry for an input frequency of 107 Hz. 

 

 
 

Figure 5.52 - Impedance real and imaginary part in the spatial non-dimensional domain for every 
simulated fluid geometry for an input frequency of 107 Hz. 

 
With regard to the two frequencies with a wavelength non comparable with the 
diameter of the channel, that is to say 106 and 107 Hz, the results seems to obey to 
the physics of the considered phenomena just looking at real and imaginary parts 
and considering the analysis carried out in the previous paragraph. Enlargements 
and the constriction have specular behaviors, while the elbow and the straight tube 
act almost the same way. 
A particular consideration has to be done looking at what happens in the space non-
dimensional domain after the various singularities. At both the considered 
frequencies the impedance values at 15 and 17.5 z/D tend to the ones achieved by 
the straight tube, that can considered as non-perturbed. That’s because the 
transmitted wave regulates its pressure and velocity with respect to the impedance 
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of the sections that encounters during its proceeding, which is almost constant 
considering the uniformity of the geometry and the fluid parameters after the 
singularities. On the other hand, the same thing can’t be said for the sections that 
precede the singularity, even though the domain here is still uniform without abrupt 
changes of direction or cross section. As a matter of fact the incident wave that hits 
the singularity creates, in addition to the transmitted wave, a reflected wave that 
travels in the opposite direction, and that can be positive or negative depending on 
the boundary encountered by the incident wave (see the velocity distribution 
changes before the singularity in Figure 5.46 caused by the different reflected 
waves). Moreover, this reflected wave hits the input signal section and again reflects 
itself. Those mechanisms represent what would really happen in the proximity of the 
input section, that’s why the analysis in this zone should only be qualitative. 
 

 
 

Figure 5.53 - Impedance modulus and phase in the spatial non-dimensional domain for every simulated 
fluid geometry for an input frequency of 108 Hz. 

 
 

Figure 5.54 - Impedance real and imaginary part in the spatial non-dimensional domain for every 
simulated fluid geometry for an input frequency of 108 Hz. 
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Analyzing the input frequency with a wavelength comparable with the duct 
diameter, i.e. 108 Hz, one of the first thing we noticed is the disturbance of the elbow 
results that detach from the straight tube trend, unlike what happens for the lower 
frequencies, as said in the previous paragraphs. Another important difference is the 
loss of agreement between the results of the two types of enlargements. This 
happens because in the enlargement type two, and also in the constriction geometry, 
another dimensional aspect turns to be comparable with the input signal 
wavelength: the transition length of the section variations, which is two times the 
diameter while in the enlargement type 1 is half the diameter. In fact, in cases where 
the transition is less abrupt, such as a short conical adaptor for example, if the 
transition length is not much less than a wavelength, an acoustic horn model is 
required, which includes reflections created not approximately in a single section, 
but in a greater length, but this problem is not further treated in this study. 
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6 Fluid-Structure Interaction analysis 
 
 
 

6.1 Overview of the problem 
 
Fluid geometries explored so far were considered as isolated from the rock portion 
of the soil sample, leading to an analysis of the single fluid phase surrounded by a 
solid material non-reactive to the fluid stresses on fluid-solid interfaces. This equals 
to say that the rock taken in consideration was a rigid material, with an infinite 
Young modulus. Let’s now add complexity to those models considering the solid part 
of the system as reacting with the fluid, with fixed features resumed in Table 6.1, 
inching closer to model the real physics of the problem. 
 
 

 
Symbol Value [#] 

Density ρ  2300 kg/m3 

Elastic modulus E  10.5 GPa 

Poisson coefficient ν  0.3 - 

Sound velocity c  2137 m/s 

 

Table 6.1 - Rock portion main features. 

 
With the aim to correctly simulating this condition, a Fluid-Structure Interaction 
analysis has to be performed, using the solver LS-DYNA previously chosen in Chapter 
4.  
The pressure wave imposed by the membrane on the inlet face of the model acts on 
both fluid and solid portions, so it would be useful, for a clearer understanding of the 
physics at stake, to divide the effect of the wave travelling in the single fluid phase on 
the solid part from the stress wave travelling in the single solid part. This condition is 
achievable keeping at rest the solid phase in the initial conditions, and so only the 
interaction forces on the fluid-solid interface would act on the rock portion through, 
for example, Poisson effect. 
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6.2 FSI geometries 
 
To correctly evaluate the effect of the elasticity of the solid phase on the oil field, the 
same geometries of the previous chapter have been modeled, adding an external 
solid layer to the fluid domains considered, having the features of the rock stated 
above. Since the solid is elastic and reacting to the fluid pressure, its thickness 
becomes an important variable of the problem. It’s been decided to maintain the 
pore average distance of the order of magnitude of the diameter of the pores, to 
represent the situation that can be found, for instance, in a sandstone sample. 
 
 

6.2.1 Straight tube 
 
As for the fluid geometries analysis, the straight tube conditions have been 
considered first, establishing a basic situation used as comparison for other complex 
geometries. 
 

 
 

Figure 6.1 - Straight tube FSI domain. Fluid part is represented in light blue and solid part in red. 

 
A representative block of porous soil has been considered, with a square cross 
section (with constant dimensions for every simulation performed) and a channel, 
representing the fluid, digged from the solid block, which results excavated in the 
interior. The fluid-solid interface can be seen as the negative of the fluid external 
surface. 
With the aim of reducing the simulation times, for each geometry modeled it’s been 
decided to consider a quarter of the entire domain section, as it can be seen in Figure 
6.1, imposing symmetric boundary conditions on the correct surfaces to simulate the 
full section conditions. 
The fluid channel has been modeled with the same diameter D adopted for the fluid 
geometries, that is to say D =10 μm. Accordingly to what stated before, rock 
minimum  thickness has been chosen to be also 10 μm (Figure 6.2). Those quantities 
are the same for the other FSI geometries for the sections far from the singularities, 
where the diameter and the solid thickness will obviously vary case by case. Fluid 
and solid domains lengths are the same for every simulated geometry, and they are 
equal to 20 times the diameter to appreciate what happens in the proximity of the 
singularity. 
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Figure 6.2 - Straight tube geometry section. 

 

6.2.2 Enlargement geometry 
 
An FSI geometry has been modeled also to simulate an enlargement, traced on the 
second type of enlargement considered in the fluid geometries chapter. The fluid 
section starts to vary after 10 diameters in the longitudinal direction from the inlet 
surface, as in the homologue fluid domain (Figure 6.3).  
 
 
 

 
 

Figure 6.3 - Enlargement FSI domain. Fluid part is represented in light blue and solid part in red. 

 
Enlarged section is twice the channel diameter and the transition length, from the 
channel section to the enlarged section, is again 2D with a solid thickness in the 
singularity of half the diameter (Figure 6.4). The rock minimum thickness is half the 
diameter. 
 
 



 
6.2  FSI geometries 
 

104 
 

 
 

Figure 6.4 – Enlargement FSI geometry section. 

 

6.2.3 Constriction geometry 
 
Based on the constriction fluid geometry described in paragraph 5.2.4, a FSI domain 
has been modeled to represent a reduction of the cross section of a fluid channel 
surrounded by solid material (Figure 6.5). 
 
 

 
 

Figure 6.5 - Constriction FSI domain. Fluid part is represented in light blue and solid part in red. 

 
The restricted section, achieved after a transition length of 2D, has a diameter of half 
the diameter of the fluid channel, and of course a radius of D/4. The solid section is 
the remaining part, that is to say with a minimum thickness of 5/4D (Figure 6.6). 
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Figure 6.6 – Constriction FSI geometry section. 

6.3 Boundary conditions 
 

6.3.1 Constraints 
 
Since a quarter of the entire domain has been simulated, symmetry boundary 
conditions have been imposed on the sectioned surfaces A and B in the fluid domain, 
C and D in the solid domain (Figure 6.7), that can been as motional and stress 
constraints on those surfaces.  
Furthermore, this representative block is meant to be part of bigger domain 
composed with many of these blocks one beside the other in an infinite replication. 
To simulate this situation, two other symmetry conditions have been imposed on the 
surfaces E and F. 
The inlet solid surface G has been fixed in the longitudinal direction constraining the 
translation along the z-axis. This condition neglects the charges imposed on this solid 
surface. 
 

 
 

Figure 6.7 - Surfaces with imposed boundary conditions. 

 
 

6.3.2 Inflow and outflow conditions 
 
The inlet surface of the fluid has been charged with the same wavelet trains used for 
the fluid simulations plotted in Figure 5.7 and Figure 5.8. On solid surface at z=0 no 
stress has been superimposed. On outlet surfaces of both fluid and solid domains 
non-reflective boundary conditions have been imposed, to create an anechoic 
termination which models the conditions that would happens in an infinite domain 
in z direction. 
 
 

6.3.3 Initial conditions 
 
At the time instant t=0 both fluid and solid systems have been modeled completely at 
rest. 
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6.4 Mesh implementation 
 
The domains discretization has been performed with the software Gambit, which has 
provided a good hexahedral mesh both for fluid and solid parts of the system. Figure 
6.8 shows the discretization adopted for a section of the model.  
 
 

 
 

Figure 6.8 - Discretization for fluid and solid domains. 

 
 
In the following table (Table 6.2) are resumed the main features of the mesh volumes 
used for this chapter calculations. Every geometry has been meshed so as to obtain a 
number of nodes and elements to achieve the right solution both for fluid and solid 
domains, and to make every fluid element of the fluid-solid boundary interface with 
at least two solid elements, this to perform a good FSI calculation. 
 
 

 
Straight Tube Enlargement Constriction 

Solid Elements 386295 390540 387144 

Solid Nodes 414504 419049 415413 

Fluid Elements 17528 17584 18840 

Fluid Nodes 22294 22365 23625 
 

Table 6.2 – FSI meshes main characteristics. 
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6.5 Simulation times 
 
In this paragraph are resumed the main time features of the simulations performed. 
The table below (Table 6.3) shows the integration time-step, the results saving time-
step, the end time adopted for every frequency simulation, and the mean simulation 
length.  
 
 

 
1.00E+06 1.00E+07 1.00E+08 

dt of integration 1.00E-11 1.00E-11 1.00E-11 

dt of saving 1.00E-09 1.00E-09 1.00E-10 

Sim. time 4.50E+06 6.00E-07 6.00E-07 

Average sim. duration  15h 2h  2h  
 

Table 6.3 – FSI simulation times. 
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6.6 Results 
 
Pressure and velocity results have been extracted for some sections of interest 
placed every 2.5 times the diameter of the fluid channel starting from the z=0 inlet 
section. This procedure has been adopted to provide a better point view of the 
influence of the geometry on the acoustic impedance values, posing sections before, 
within and after each singularity, as shown in Figure 6.9. Pressure and velocity are 
extracted for the fluid part, in order to analyze, in conclusion, the differences 
between fluid domain surrounded by a rigid body or an elastic body with the 
properties of the considered rock. The analysis of the stress in the solid matrix will 
be carried out in the next chapter.  
 
 
 

 
 

Figure 6.9 - Monitored sections for every FSI domain simulation. 

 
 
After obtained those results, the same procedure executed for the fluid geometry 
analysis has been performed, transforming those pressure and velocity signals with 
FFTs and calculating the impedance value for each section monitored. 
 
 
 

6.6.1 Straight tube geometry 
 
Pressure and velocity signals are shown in Figure 6.10 and Figure 6.11 to understand 
how a wave train travels in the fluid part of a so structured FSI domain.  
An important phenomenon, characteristic of those FSI problems, can be immediately 
recognized: the presence of a wave with smaller amplitude preceding the fluid 
pressure wave. In paragraph 4.2.1, thanks to the analysis of water hammer waves 
performed by Tijsseling, it has been introduced the presence of the so called 
“precursor wave”, generated by the fluid stressing the solid part, travelling in the 
solid matrix, and obviously reacting on the fluid. This is visible before the incoming 
of the fluid pressure inlet perturbation because of the difference of phase velocity 
between fluid and solid media. 
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Figure 6.10 – Fluid pressure signals for the straight tube FSI geometry for an input pressure of 107 Hz. 

 
 

 
 

Figure 6.11 – Fluid velocity signals for the straight tube FSI geometry for an input pressure of 107 Hz. 

 
 
In Figure 6.12 is shown the consequence of this difference in phase velocity, and the 
precursor wave is clearly visible. In this case its amplitude is still smaller with 
respect to the fluid pressure wave, but in the next chapter, while analyzing the effects 
of different constraints configurations, its magnitude will increase and play an 
important role on the pressure distributions both in the fluid and the solid phase. 
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Figure 6.12 - Pressure distributions in both fluid and solid parts at time t=6e-08 for input pressure of 107 
Hz. The precursor wave is clearly visible. 

 
For a complete analysis the pressure signal results for the other input frequencies 
have been plotted (Figure 6.13, Figure 6.14). In the 106 Hz signal the precursor wave 
is no more observable, while in the 108 Hz signal, because of the high frequency and 
its comparability with the channel diameter, different fluctuation can be seen, and 
this is the same for the velocity signals. The effect of this frequency is similar to those 
detected in Figure 4.30 for the FSI analysis of the test case in chapter 4, but with 
constant pressure applied in the inlet surface. 
 
 

 
 

Figure 6.13 – Fluid pressure signals for the straight tube FSI geometry for an input pressure of 107 Hz. 
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Figure 6.14 – Fluid pressure signals for the straight tube FSI geometry for an input pressure of 107 Hz. 

 
On the other hand, the solid part is also reacting deforming its interface with the fluid 
channel, in Figure 6.15, are shown the solid part z-stress component with the 
interface displacements, those magnified 1000 times because their value is very 
small with respect to the domain dimensions. The first two waves of the train 
entered the domain and the third is entering in the inlet sections, where the stresses 
are stronger also because of the presence of the constraint reactions. 
 
 

 
 

Figure 6.15 - Pressure distributions in the solid part at time t=2.4e-07 for input pressure of 107 Hz. The 
displacements are magnified 1000 times. 
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Impedance results reflect the same considerations done for the fluid geometries, that 
is to say when the wavelength of the signal become comparable with the dimensions, 
for example the diameter of the channel, it could be possible to see variations on the 
acoustic impedance values detected. Figure 6.16 and Figure 6.17 depict this 
consideration, with the greater differences in the real part chart, while the phase and 
the imaginary parts don’t denote the same excursions. This because of the regularity 
of the domain. 
 
 

 
 

Figure 6.16 - Impedance Z modulus and phase for the straight tube FSI domain for every simulated 
frequency. 

 
 

 
 

Figure 6.17 - Impedance Z real and imaginary parts for the straight tube FSI domain for every simulated 
frequency. 
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6.6.2 Enlargement geometry 
 
Figure 6.18 and Figure 6.19 show the pressure and velocity results for the 
enlargement FSI geometry. Compared with the analogue pressure signal for the fluid 
geometry analysis in previous chapter (Figure 5.36) the trend is similar, except from 
what occurs in section z/D equal to 15. In fact, in the FSI analysis, pressure results 
smaller than the previous case, this might be because of the presence of the elastic 
boundary represented by the solid who takes part of the incoming pressure through 
transmitted waves. In the fluid case this was not possible because of the rigid body 
condition assumed around the fluid geometry. 
 
 

 
 

Figure 6.18 – Fluid pressure signals for the enlargement FSI geometry for an input pressure of 107 Hz. 

 
In the velocity signal (Figure 6.19) is easily visible the effect of the conservation of 
mass: where the section area gets larger, the fluid velocity tends to decrease. 
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Figure 6.19 – Fluid velocity signals for the enlargement FSI geometry for an input pressure of 107 Hz. 

 
Observing the impedance results, plotted for every monitored section and resumed 
in Figure 6.20 and Figure 6.21, an increasing of the stiffness reactance is easy to 
notice in section 12.5 z/D, in the middle of the singularity as already seen in the fluid 
analysis of the previous chapter. In this section frictions are smaller and so the real 
part tends to increase too, as expected. 
 

 

 
 

Figure 6.20 - Impedance Z modulus and phase for the enlargement FSI geometry for every simulated 
frequency. 
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Figure 6.21 - Impedance Z real and imaginary parts for the enlargement FSI geometry for every simulated 
frequency. 

 
 

6.6.3 Constriction geometry 
 
Pressure and velocity signals (Figure 6.22, Figure 6.23) depict a significant reduction 
of the amplitudes after the singularity. Again, from the velocity signal, the results 
obtained in the middle of the singularity respect the conservation of mass, where the 
increment od velocity is due to the constriction od the cross section of the channel. 
 
 

 
 

Figure 6.22 – Fluid pressure signals for the constriction FSI geometry for an input pressure of 107 Hz. 

 



 
6.6  Results 
 

116 
 

 

 
 

Figure 6.23 – Fluid velocity signals for the constriction FSI geometry for an input pressure of 107 Hz. 

 
 
As seen in the fluid geometries analysis, the constriction example mirrors what 
happens in the respective enlargement domain studied in the previous paragraph 
(Figure 6.24, Figure 6.25).  
Remembering the example of the Helmholtz resonator of paragraph 5.7.3.1, it can be 
seen the increment of the inertive part of the reactance denoted by the results of the 
imaginary part in section 12.5 z/D in the middle of the singularity. Conversely 
reactance is more stiffness dominated in section 10 z/D where the section is larger. 
 
 
 

 
 

Figure 6.24 - Impedance Z modulus and phase for the constriction geometry for every simulated frequency. 
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Figure 6.25 - Impedance Z real and imaginary part for the constriction geometry for every simulated 
frequency. 
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6.6.4 Results comparison 
 
In this paragraph are resumed the results obtained for every simulated geometry 
grouped by input pressure frequency. 
As seen in the fluid geometry analysis, here is still the diameter length the value who 
discriminates which wavelength is influenced by the considered domains in 
particular ways. In frequencies as 106 and 107 Hz (Figure 6.26, Figure 6.27, Figure 
6.28, Figure 6.29), impedance results seem to follow the considerations carried out 
in the fluid geometry analysis, but a finer comparison between fluid and FSI 
simulations will be done in the next paragraph. 
Correctly, the straight tube geometry does not present significant variations in phase, 
real and imaginary parts. Conversely the great variations are visible in the other two 
geometries, and their results mostly follows opposite trends, because of their 
singularities. 
 
 

 
 

Figure 6.26 - Impedance modulus and phase in the spatial non-dimensional domain for every simulated FSI 
geometry for an input frequency of 106 Hz. 
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Figure 6.27 - Impedance real and imaginary parts in the spatial non-dimensional domain for every 
simulated FSI geometry for an input frequency of 106 Hz. 

 

 
 

Figure 6.28 - Impedance modulus and phase in the spatial non-dimensional domain for every simulated FSI 
geometry for an input frequency of 107 Hz. 
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Figure 6.29 - Impedance real and imaginary parts in the spatial non-dimensional domain for every 
simulated FSI geometry for an input frequency of 107 Hz. 

 
The explication of this phenomenon lies in the pressure and velocity fields along the 
domain for those two FSI geometries (Figure 6.30, Figure 6.31). For example, the 
pressure field immediately before the constriction presents higher values than the 
enlargement, but the velocity field acts in the opposite way. that’s why for example 
real part is higher in 7.5 and 10 z/D in the constriction geometry than in the 
enlargement (more pressure with less velocity means better signal energy 
conservation and then higher real part). 
From Figure 6.30 and Figure 6.31 it is easy to appreciate the meaning of the 
development of engineering technologies as borehole acoustic imaging systems. This 
figures are an example of how a signal is reflected from the singularity encountered, 
and resent backward to a point where, with special sensors, the geology nearby the 
system can be reconstructed through the time of incoming and the amplitude of this 
reflected wave. 
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Figure 6.30 - Pressure spatial distributions in enlargement and constriction FSI domains at time t=4.8e-07s 
for an input frequency of 107 Hz. 

 
 

 
 

Figure 6.31 - Velocity spatial distributions in enlargement and constriction FSI domains at time t=4.8e-07s 
for an input frequency of 107 Hz. 

 
Results for an input frequency of 108 Hz are more difficult to interpret, but some 
considerations can still be performed. For example trends of the modulus and real 
part of the impedance are similar for every considered geometry, this is probably 
because the short wavelength is too short to notice the singularities imposed. 
Differences in phase and imaginary part by the way can be observed in sections 
before the singularities. Reflections from the enlargement causes reflected waves 
with opposite phase with respect to the other geometries. 
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Figure 6.32 - Impedance modulus and phase in the spatial non-dimensional domain for every simulated FSI 
geometry for an input frequency of 108 Hz. 

 
 
 

 
 

Figure 6.33 - Impedance real and imaginary parts in the spatial non-dimensional domain for every 
simulated FSI geometry for an input frequency of 108 Hz. 
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6.6.5 Fluid analysis and FSI analysis results comparison 
 
As a conclusion of the fluid-structure interaction analysis, another important 
comparison has been performed: for each geometry simulated (straight tube, 
enlargement and constriction) results of the fluid analysis, with a rigid constraint 
around the fluid domain, and results of the FSI analysis, with an elastic body 
surrounding the fluid channel, are gathered in a chart for a better understanding of 
the effect of the interaction between fluid phase and solid matrix. 
The first thing noticed from every geometry results is that the main trends seem to 
follow what was expected, a decrease of the values of impedance for the FSI 
simulations which have a compliant solid boundary. In fact, in a fluid surrounded by 
a rigid body, the pressure wave reflects on the boundaries maintaining into the 
domain the energy introduced, and pressure losses are only due to viscosity effects. 
In a domain with an elastic interaction between solid an fluid those waves incident to 
the external fluid boundaries are only partially reflected in the fluid domain, and the 
difference in transmitted to the solid domain which spreads it as stress waves 
travelling, in our case, at twice the phase velocity of the fluid. The elastic nature of 
the solid simulated do not imply that the solid is dissipative, but in this analysis is 
only a mean to subtract energy from the fluid and transport it in other parts of the 
domain. The way in which waves travels in the solid matrix, and the factors they are 
influenced by, are explained in the next chapter. 
 
 

 
 

Figure 6.34 - Real and imaginary parts of the impedance Z for the straight tube fluid (rigid boundary) and 
FSI (elastic boundary) domains, for an input pressure wave frequency of 107 Hz. 

 
Reduction in real part, the factor which resumed the amount of energy transported, 
as shown in the relation (3.8), is an average of 15%. This value spreads far from the 
sections nearby the singularities, and reduces in correspondence with them, as it can 
be seen in figures Figure 6.35 and Figure 6.36 reporting the results for the 
enlargement and the constriction geometries. Results presents similar behaviors also 
with input frequency 106 Hz, while those trends are not respected for the 108 Hz 
input frequency. 
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Figure 6.35 - Real and imaginary parts of the impedance Z for the enlargement fluid (rigid boundary) and 
FSI (elastic boundary) domains, for an input pressure wave frequency of 107 Hz. 

 
 

 
 

Figure 6.36 - Real and imaginary parts of the impedance Z for the constriction fluid (rigid boundary) and 
FSI (elastic boundary) domains, for an input pressure wave frequency of 107 Hz. 
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7 A further evaluation: boundary conditions for 
the solid structure 

 
 

7.1 Overview of the problem 
 
From the point of view of adding complexities to the simple starting standalone fluid 
problem, to perform a correct fluid-structure interaction both solid and fluid phase 
have to be stressed with the same pressure inlet wave. In order to simulate only a 
very small representative part of the real extended porous soil, the rock domain has 
to be constrained in a way that the results have to be comparable to those obtainable 
with the real physics in nature. 
With the aim to achieve the better constraint conditions some combinations of 
boundary conditions have been performed.  
The choice of the constraints had to take into account multiple factors that could be 
influenced by the different boundary conditions superimposed. Since symmetry 
conditions have been adopted for all the xz and yz plane boundary surfaces, the solid 
domain could move only in the z direction of the longitudinal axis of the system. 
Constraining this translational degree of freedom would cause, however, reaction 
forces not correlated with the real nature phenomenon or generate stresses due to 
reflections on the constraints of the perturbations travelling in the considered 
domains. 
That’s why an analysis has to be done on this important aspect. 
 
 

 
 

Figure 7.1 - What is the better constraint condition? 
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7.2  FSI geometry 
 
With the aim of analyzing the single effect of the z-translational constraint on the 
input solid interface, a simple domain has been created modeling a square sectioned 
solid perforated by a circular cross section cylindrical channel fully filled with fluid. 
In order to decrease the simulation times, a quarter of this domain has been 
simulated, with applying symmetry conditions on the appropriate surfaces. This 
model has the same fluid channel diameter D of the previous domains used for FSI 
simulations, equal to 10 μm, and their same length, that is to say 20 times the 
diameter D. The minimum solid thickness has been reduced to 3 μm, remaining in 
the same magnitude order of the diameter. 
 
 
 

7.3 Analyzed constraints for solid surfaces 
 
For every surface lying on plane parallel to the xz or yz plane, symmetry conditions 
have been imposed. 
Furthermore, considering the shape of the cross section of the chosen domain, three 
main constraint conditions for the z-axis longitudinal translation might be possible 
to apply to the solid input surface to evaluate individually their effects on the 
solution: fixing all the surface nodes (Figure 7.2), fixing the nodes of the two external 
edges of this surface (Figure 7.3) and fixing only the external corner this surface 
(Figure 7.4). 
 
 

 
 

Figure 7.2 – All solid surface nodes constrained in the z-axis translational degree of freedom. 
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Figure 7.3 – External solid edges nodes constrained in the z-axis translational degree of freedom. 

 
 
 

 
 

Figure 7.4 – External solid corner node constrained in the z-axis translational degree of freedom. 
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7.4 Mesh implementation 
 
To concentrate on the fluid-structure interaction and the effects that the boundary 
conditions have on the solution, a finer mesh than the previous FSI simulations has 
been created. Elements and nodes increased in number (Table 7.1), but to decrease 
the simulation duration and sure to obtain a good interaction, the solid minimum 
thickness has been reduced to 3 μm. 
 

 
Straight Tube 

Solid Elements 365700 

Solid Nodes 402853 

Fluid Elements 36400 

Fluid Nodes 44110 
 

Table 7.1 – FSI meshes for constraints test main characteristics. 

 

7.5 Simulation times 
 
Integration and saving timesteps remained the same than the previous chapter FSI 
simulations, and also the simulated time didn’t change (Table 7.2). 
 
 

 
1.00E+07 

dt of integration 1.00E-11 

dt of saving 1.00E-09 

Sim. time 6.00E+07 

Average sim. duration  2h 

 

Table 7.2 – FSI constraints test simulation times. 
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7.6 Results 
 
Results for those simulations have been grouped for typology of z-translational 
constraint and then compared as a final analysis. For each calculation data has been 
collected for solid and fluid phases for sections every 2.5 diameters in the z 
longitudinal direction starting from the inlet section. 
Since a fluid-structure interaction occurs in this models, the consequences of the 
imposition of a specific constraint have to be found in both fluid and solid results. 
That’s the reason why the further analysis has been conducted having a look 
primarily to the pressure and velocity signals in the fluid phase, and then to the z-
component of the resultant stress on each inspected section. After that some 
considerations have been made on the FFT of the fluid signals, to analyze the 
different effects on the acoustic impedance of the different examined boundary 
conditions. 
 
 

7.6.1 Inlet solid surface constrained 
 
Locking the all inlet surface nodes, the same solution analyzed in paragraph 6.6.1 is 
obtained, proving that the different meshes do not affect significantly the results. 
It’s easily visible in the first part of both pressure (Figure 7.5) and velocity (Figure 
7.6) signals, plotted for sections after 5, 10 and 15 z/D non-dimensional distance 
from the inlet sections for a clearer view, the effect of the so called precursor wave 
travelling in the solid domain but acting on the fluid phase. 
 
 

 
 

Figure 7.5 – Fluid pressure signal for inlet solid surface constrained model. 
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Figure 7.6 – Fluid velocity signal for inlet solid surface constrained model. 

 
For what concerns the solid part, the z-component of the resultant stress on a section 
with the z-axis as normal has been extracted. This component travels, as already 
seen from the FSI simulations of the previous chapter, with almost twice the phase 
velocity of the waves travelling in the fluid part, causing the appearance of a 
precursor wave acting from the solid to the fluid domain. In Figure 7.7 is represented 
the variation with time of this stress component for every monitored section. This 
representation has been chosen to underline a phenomenon important for the 
comprehension of the effect of the constraint on the entire structure. In fact, looking 
at the peaks of every oscillation, it is easily observable that their value for every 
section seems to be ruled by another harmonic oscillation, causing, for example, the 
amplitude of the signal at 7,5 z/D to be higher than the other ones after a single input 
pressure oscillation. This effect is explicable taking into consideration the reflected 
waves from the inlet surface, in particular from the constraints of this surface. The 
amplitude of this reaction waves, which travel in the solid matrix too, has to be 
summed to wavelets already travelling in the solid medium, varying peaks amplitude 
and generating this phenomenon. A better understanding of this event will surely 
come after a comparison of those force signals between different constraints 
conditions carried out in paragraph 7.6.4. 
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Figure 7.7 - Z-component of the resultant stress in every monitored section for the case of inlet solid surface 
completely constrained. 

 
 

7.6.2 External edges constrained 
 
Referring to Figure 7.5 and Figure 7.6, fixing the analysis on the precursor wave, it 
occurs that with this type of constraint its amplitude is bigger (Figure 7.8, Figure 
7.9). This happens because the edge constraint, with respect to the total inlet surface 
one, makes the solid wave travel also into the solid part with the input wave 
amplitude. Resuming, this precursor wave is the sum of the inlet solid wave 
contribution and the wave generated by the expansion of the fluid channel (which 
was the only contribution in the solid phase constraining the all inlet solid surface). 
 
 

 
 

Figure 7.8 – Fluid pressure signal for the model with external edges of the inlet solid surface constrained. 
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Figure 7.9 – Fluid velocity signal for the model with external edges of the inlet solid surface constrained. 

 
Following the analysis made in the previous paragraph for the model with the entire 
inlet solid surface constrained, it can be stated, observing Figure 7.10, that for this 
combination of boundary conditions the maximum of the peaks is displayed after 5 
z/D from the inlet solid surface, while in the previous configuration it was reached 
after 7,5 z/D. This is probably due to the increasing of the z-stress component 
amplitude caused by the different constraint and to its reaction stresses. 
 
 

 
 

Figure 7.10 - Z-component of the resultant stress in every monitored section for the case of external edges 
of the inlet solid surface constrained. 
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7.6.3 External corner constrained 
 
Reducing again the number of constrained nodes of the inlet section the solid input 
pressure is better transmitted to the structure, that’s why the amplitude of the 
precursor wave increases compared with the other constraint conditions. This can be 
seen both from pressure and velocity signals for the fluid phase (Figure 7.11, Figure 
7.12). 
 
 
 

 
 

Figure 7.11 – Fluid pressure signal for the model with external corner of the inlet solid surface constrained. 

 

 
 

Figure 7.12 – Fluid velocity signal for the model with external corner of the inlet solid surface constrained. 

 
Observing Figure 7.13, it is remarkable the strong increasing of the z-stress 
amplitudes, which are almost twice those emerged with the previous constraint 
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condition. The peak by the way is still present for each oscillation after 5 z/D from 
the inlet solid surface. 

 
 

 
 

Figure 7.13 - Z-component of the resultant stress in every monitored section for the case of external corner 
of the inlet solid surface constrained. 

 
 

7.6.4 Different constraints comparison 
 
Analyzing the z-stress signals, for each examined section, the oscillations tend to 
stabilize around a mean value only after a transitional phase. This is due to the 
dissipative, viscous, nature of the fluid with which the solid interacts and acts as a 
dumper who stabilize its effect in time. 
Furthermore, in the previous paragraphs, a variation of the pressure and velocity 
signals due to the different precursor waves affecting the fluid motion by the 
interaction with the fluid has been detected. A much stronger variation has been 
observed also in the z-stress signals, where not only the amplitudes have been 
influenced but even the shapes of the oscillations, detecting the effect of the reflected 
waves on the inlet constraints. 
This would lead to the conclusion that those three constraints conditions  conduce to 
three different structural reaction, and so the best way is to look for the boundary 
conditions that best fit the real solution. 
Conversely, examining Figure 7.14 and Figure 7.15, those macroscopic differences 
can’t be found in the charts of the real and imaginary parts of the acoustic 
impedance. 
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Figure 7.14 - Real and imaginary parts of the acoustic impedance Z for the fluid domain varying in space 
along the inspected model sections for every constraints condition examined for input frequency of 107 Hz. 

 

 
 

Figure 7.15 - Real and imaginary parts of the acoustic impedance Z for the solid domain varying in space 
along the inspected model sections for every constraints condition examined for input frequency of 107 Hz. 

 
 
This because, accordingly to the meaning of acoustic impedance, there are no 
remarkable variations of sections or material properties, and the detected values are 
the following. For what concerns the real part in both fluid and solid domains the 
results trend gets near to those expected with the classic relation ρc. On the other 
hand, the values obtained for the imaginary part are one order of magnitude inferior 
to those of the real part, confirming the results already proved in the other chapters 
of this work for a straight tube geometry. 
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8 Conclusions 
 
 
 
 
When this thesis work started, the studies conducted on this argument by the 
research team I joined were in a preliminary phase, testing some computational 
software able to model, catch and solve the main features and problems of the fluid-
structure interaction between a solid matrix and the fluid phase permeating its 
pores. 
With this purpose, exact analytical solutions, i.e. the Tijsseling and Skalak theories on 
water hammer waves for fluid filled pipes, have been found and adopted to compare 
the capacities of two software: the ANSYS CFD and Mechanical products, and 
LSDYNA. The latter resulted the most performing, becoming the decided numerical 
code for the solutions of the problems that this investigation would lead to. 
The principal object of the research was to understand the influence of a porous 
soil’s conformation on a pressure wave signal launched by a membrane through this 
fluid-solid structure, with particular interest on studying the impedance that the 
fluid filled ground exercised on this explorer wave. Many complex factors were 
composing this problem, affecting one another in different ways and not a priori 
estimable. A method for the evaluation of this parameter for these kind of domains, 
where the internal structure is not a priori predictable, had to be produced. 
Conscious of the strong non-linearity of the problem that did not permit to 
superimpose the single effects, it has been decided to start from the basic elements 
forming the soil matrix and to analyze the effect that each one had on the quantity of 
interest: the acoustic impedance. 
The study began with the analysis of the effect of simple geometry singularities, such 
as pores, constrictions or elbows in a single fluid channel ideally surrounded by a 
rigid body not reacting to the stresses exercised by the fluid on the interface. Since 
acoustic impedance is a function of frequency, input pressure waves were created 
each one with a different frequency to solicit the system with the aim of catching 
variations of its behavior. 
Acoustic theory for sound in waveguides and channels has been adopted to prove the 
goodness of the results in terms of variations of the real and the imaginary parts of 
the acoustic impedance, according with other similar physic processes. 
From this analysis a different behavior, with larger sound losses, is emerged for the 
frequency whose wavelength  is comparable with the fluid domain dimensions.  
In fact, as the wavelength of the signal tended to values similar to the channel 
diameter, the real part of the acoustic impedance became smaller, transforming a 
great part of the energy carried by the initial wave into dissipations, represented by 
the strong increasing of the imaginary impedance part. That’s why, for those types of 
inspections, input signal wavelengths adopted need to be significantly different from 
the characteristic dimensions of the considered domains, in order to inspect with a 
single wave a larger portion of the desired material. 
These results have been used as a measure of comparison for those obtained in the 
following part of this work, where the interaction between the fluid phase and the 
solid part has been added. 
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The elementary geometries modeled for the fluid analysis so far were now 
surrounded by an elastic solid matrix, in order to represent a single basic part of the 
porous soil. 
Charging both the solid part and the fluid channel, two wave trains would 
superimpose creating resultant wave fields difficult to interpret. Therefore, a 
preliminary analysis of this case have been performed stressing the input surface of 
the fluid phase only.  
This allowed to clearly understand the effect of the fluid perturbation on the solid 
matrix, and to obtain a solution comparable with the one detected in the previous 
fluid analysis.  
Waves reflected by the singularities acted in most of the cases as those obtained from 
the fluid analysis but with different values, generating different acoustic impedance 
results.  
Comparing the two solutions, one with a rigid body surrounding the fluid channels 
and the other with a reacting elastic solid interfacing with the same fluid geometries, 
it emerged that the pressure signal has higher losses in the FSI analysis for the real 
impedance part, which is the one transporting energy, in the order of 15%. This 
value, by the way, tended to decrease for the sections nearby the inspected 
singularities almost avoiding the differences between fluid and FSI approaches. 
Conversely divergences of even 20% are observable for sections where the domain is 
regular and no changes of cross-section properties are present. 
Poisson effect, noticed in the FSI approach, produced precursor waves which 
summed to the fluid perturbations modifying the amplitudes observed. 
Impedance phase variations also resulted of smaller entity, compared to the single 
fluid analysis, where the interaction between the solid and the fluid were imposed. 
This because of the different reaction to the incident waves between the rigid and the 
elastic boundaries: in the first case in fact more reflections which influenced the fluid 
pressure phase are generated. 
Finally, as a further study, also the solid structure has been observed in addition to 
what done for the fluid phase.  
The influence of different constraints and boundary conditions on the stress 
distributions in the solid matrix has been analyzed. In fact, constraining in a different 
way the inlet solid surface, different phenomena have been detected, as the initial 
transition phase in the solid domain due to the viscous fluid effect and the influence 
of the reflected waves on those imposed constraints on the solid and fluid stress 
distributions.  
With regard to the precursor waves generated by the Poisson effect, the 
configuration with the input surface constrained only in the external corner node 
presented precursor waves with bigger amplitudes than the other tested constraints.  
Those considerations are only part of a complete FSI analysis, which will be 
continued after this work, despite that it helped to better understand the interaction 
between fluid and solid parts subject to desired excitations. 
This entire study has been conducted for fixed input frequency pressure waves and 
fixed domain dimensions. However, in order to simulate the system behavior under 
lower frequencies, these analysis can be useful also for domains with the same 
dimensional relation between, for example, the channel diameter and the wavelength 
of the input signal, and this could be the one of the further developments of this 
entire work.  
The same considerations on the acoustic impedance can also be adopted for other 
similar fluid-solid structures, using this approach for other engineering purposes. 
This because the porous soil considered is only a sample of domain where a solid 
matrix and a fluid phase interact through an interface.  



   
                                                                                                Chapter   8 

139 
 

In conclusion, this is only a step into a long and difficult study to determine the 
acoustic impedance of a sample of porous soil. As we all know, to achieve the top of 
the stair, which is the final target, single steps have to be faced and completed, and 
this thesis aims to represent one of these steps, with the hope of being helpful to the 
team of my thesis relator.  
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