
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

TOWARDS A REALISTIC

COMPUTATIONAL MODEL OF

PAIN HANDLING IN THE HUMAN

BRAIN

Relatore: Prof. Andrea Bonarini

Correlatore: Prof. Hiroshi Ishiguro

Tesi di Laurea di:

Luca Piccolo, matricola 799283

Anno Accademico 2013-2014

Abstract

In this thesis, that is the first research effort in a long term research project,

we develop a computational model to reproduce as faithfully as possible the

mechanisms that in human brain are involved in pain handling: pain predic-

tion and learning of meaningful actions for pain avoidance, with particular

attention to their integration and interaction modes.

We propose a design for the three main behavioral modules identified

in humans from psychologists and neuroscientists and we verify their good

performance, then we design their integration mode and we show how it

allows to reproduce interaction phenomena that we would expect from na-

ture, then finally we provide some preliminary results that show how our

model seems suitable to explain a psychological pathology related to pain

handling. We showed all of this in a test scenario in which there is an arena

with some obstacles and inside it a robot predator that chases a robot prey:

the prey feels pain when the predator is close, so we could control the prey

using our model and test our theories.

The novelty of our work resides in several aspects: we propose a clear and

generalizable design for the three behavioral modules (strongly improving

the generality of solutions presented in the literature), it is the first example

of a computational version of the three modules working all together and

we show the first results of a pathology explained through our model. Also,

something that is very important is that the scenario that we adopted to

test our model is significantly more complicated than typical scenarios used

in previous works.

We show results that support the plausibility of the proposed archi-

tecture and we draw some conclusion about what of our model could be

improved and in which direction the research project could be directed from

now on.

i

ii

Sommario

In questa tesi, che è il primo sforzo di ricerca all’interno di un progetto di

ricerca a lungo termine, sviluppiamo un modello computazionale per ripro-

durre il più fedelmente possibile i meccanismi che nel cervello umano sono

coinvolti nella gestione del dolore: la predizione del dolore e l’apprendimento

di azioni che siano significative per evitarlo, con particolare attenzione alla

loro integrazione e modalità di interazione.

Proponiamo un design per i tre principali moduli comportamentali iden-

tificati negli uomini da psicologi e neuroscienziati e verifichiamo che ab-

biano buone performance, poi definiamo la loro modalità di integrazione e

mostriamo come permetta di riprodurre quei fenomeni di interazione che

ci aspetteremmo dalla natura, infine forniamo dei risultati preliminari che

mostrano come il nostro modello sembri adatto per mostrare una patologia

psicologica collegata alla gestione del dolore. Abbiamo mostrato tutto ciò

in uno scenario di test nel quale c’è un’arena contenente alcuni ostacoli e al

suo interno un predatore robot che insegue una preda robot: la preda prova

dolore quando il predatore è vicino, quindi possiamo controllare la preda

usando il nostro modello e testare le nostre teorie.

La novità del nostro lavoro risiede in diversi aspetti: proponiamo un de-

sign chiaro e generalizzabile per i tre moduli comportamentali (migliorando

significativamente la generalità delle soluzioni presentate in letteratura), è il

primo esempio di una versione computazionale dei tre moduli che lavorano

tutti insieme ed inoltre mostriamo i primi risultati di una patologia spiegata

attraverso il nostro modello. Inoltre, una cosa molto importante è che lo sce-

nario che abbiamo adottato per testare il nostro modello è significativamente

più complesso dei tipici scenari usati nei lavori precedenti.

Mostriamo dei risultati che supportano la plausibilità dell’architettura

proposta e traiamo alcune conclusioni su come il nostro modello possa essere

migliorato e in quale direzione il progetto di ricerca possa essere condotto

da qui in avanti.

iii

iv

Acknowledgments

First of all, I would like to thank the two people that followed me during

this months of work: Dr. Fabio Dalla Libera and Prof. Andrea Bonarini.

Fabio, post-doc at Intelligent Robotics Laboratory, proved to be an ex-

ceptional supervisor, allowing me to test my ideas and theories, but being

there for me when I got stuck or I was not sure about the best path to fol-

low, taking the time to reason with me about issues and to explain me why

one path would be better than another, not just imposing me his solutions;

apart from this, he also helped me to bond with other members of the lab,

one thing that you really appreciate when you just arrived by yourself on

the other side of the world.

Professor Bonarini, my advisor for this thesis, proved to be an excellent

advisor, giving me precious ideas to continue with my work and at the same

time allowing me to pursue my own ideas in my first experience in research;

also, he was the one to make all of this possible, believing in me from the

beginning and giving me the contacts to come to this lab. Finally, even if

he was not obliged to do so he helped me a lot with precious advice about

issues that were not strictly related to this thesis, and growing up you really

appreciate people giving to you their time.

Then I would like to thank Professor Hiroshi Ishiguro and Professor

Yuichiro Yoshikawa for believing in me and accepting me in Intelligent

Robotics Laboratory, and also for their precious ideas and indications, that

allowed me to always keep a broader view on the whole research project even

when I was concentrated on low level details. I also would like to thank Dr.

Ben Seymour for the countless precious insights about the biological aspects

of our work and for the precious ideas about how to shape the research. I

want to thank all the people of the lab’s staff, that helped me to organize

all of this and helped me with the burden of bureaucracy.

I would like to say a big thank you to all the people of the lab, that

welcomed me and allowed me to have a great time there, especially those

with whom I spent most of my time. A special mention goes to James, my

v

vi

travel partner and my official disturber while I was working (but I really

appreciated that), and to Eduardo, for the countless technical stops (we

will have the next one in Europe I guess) and the countless discussion that

taught me a lot.

I would like to thank all the people from Campus Martinitt in Milano

for the awesome time I spent there, especially those of the whatsapp group.

I really enjoyed my time in Milano and it was thanks to you guys, I hope to

meet you again somewhere, to share memories and create new ones.

Thanks to all my friends, we shared lots of memories and some of the

best stories I have to tell involve you, and I think this is very important.

Most of all, a huge thank you to my very few closest friends: you have been

an irreplaceable support throughout these years, being there for me when

I needed it and being ready for a beer whenever I wanted to chill out; if I

arrived where I am and did what I did it depended a lot on you.

Finally, last but not the least, a big thank you to my whole family for

the tireless support and for allowing me to study without thinking about

money.

Contents

1 Introduction 1

2 Context and state of the art 5

2.1 General foundations . 5

2.1.1 A metaphor to understand the different types of control 5

2.1.2 The three modules . 7

2.1.3 Interactions between modules 9

2.2 Related pathologies . 10

2.3 Neuroscientific correspondences 11

2.4 Computational models . 11

2.5 Motivation for our work . 14

3 Logical design 17

3.1 Our framework . 17

3.1.1 The prey-predator setting 18

3.1.2 A note on the control system for the prey 19

3.2 Model-free module . 23

3.2.1 Theoretical basics . 24

3.2.2 The actor-critic technique 26

3.2.3 The state coding . 29

3.2.4 The rewards . 30

3.2.5 Why actor-critic? . 31

3.3 Model-based module . 32

3.3.1 The model . 32

3.3.2 How to choose an action using the model 34

3.3.3 How to evaluate an action using the model 35

3.3.4 An example of a σ-greedy exploration 38

3.3.5 The tree structure of σ-greedy explorations 40

3.3.6 States, rewards and updates in model-based module . 40

3.3.7 Why not other techniques? 42

vii

viii CONTENTS

3.4 Pavlovian module . 43

3.4.1 Basics of Artificial Neural Networks (ANNs) 44

3.4.2 Basics of genetic algorithms 46

3.4.3 How to encode an ANN? 50

3.4.4 The input and output of the ANN and the locality of

the Pavlovian module 51

3.4.5 How to evolve a good ANN? 53

3.4.6 A note on the number of hidden layers 55

3.5 Integrating model-based and model-free 55

3.6 Three modules integration . 59

3.7 A note on the processes of learning 60

4 Results 63

4.1 The maps used for tests . 64

4.2 Model-based and model-free 65

4.3 Training of Pavlovian module 71

4.4 Convergence of the aggregation of modules 72

4.5 Comparison of integration of modules 78

4.6 An analysis with inverted rewards 87

4.7 OCD . 89

4.8 Limitations of our work . 96

5 Conclusions 101

Chapter 1

Introduction

The work presented in this thesis has been developed during my stay in

Intelligent Robotics Laboratory of Osaka University in Toyonaka (Osaka

prefecture, Japan) and represents the very first research effort in the con-

text of a long term research project. Dr. Hiroshi Ishiguro (the director

of the Intelligent Robotics Laboratory) and Dr. Ben Seymour, well known

names in their fields (respectively robotics and neuroscience), started this

joint research effort trying create a computational model of the brain parts

involved with pain processing that could mimic the way these parts work

and interact as closely as possible and use it for the development of realistic

life-like robots.

The project lies in the crossroad of these researchers’ needs and fields

of expertise, so that the problem can be tackled from different perspectives.

Hiroshi Ishiguro started a long time ago to study through robotics the hu-

man nature and the essence of what makes us humans, taking inspiration

and relating closely to the biological world; trying to model and reproduce

humans and human behaviors as closely as possible, then simplifying and

reducing to the very essence these models, he tries to identify the boundary

between what one deems life-like and inanimate. Ben Seymour throughout

his career invested a considerable effort in studying and understanding the

way humans process pain, trying to tackle problems such as as chronic pain;

in recent years he also started to study and analyze the possibility of de-

signing a computational model that could reproduce what he observed in

nature, because “what I cannot create, I do not understand”.1

We can consider pain as a very important component for living creatures,

that influences several aspects of their everyday life, like for instance the way

1The quote, originally from Richard Feynman (Nobel prize in physics in 1965), appears

in the opening slide of a presentation that Ben Seymour gave at Osaka University.

1

2 CHAPTER 1. INTRODUCTION

they behave and interact with each other. Ishiguro’s main purpose in this

context is to study and reproduce as closely as possible the way human pain

works, trying to understand which pain related mechanisms can actually lead

to the realization of more life-like robots, while Seymour’s main purpose is to

model and test state of the art theories about how pain related mechanisms

work in the human brain, trying with this process to understand more about

how the human brain itself works.

As a first effort in this long lasting research project, the main target

of this work was understanding and reproducing some basic pain related

mechanisms, leaving a refinement of our work and an extension to more

complex mechanisms as future work. Three main behavioral modules related

to pain have been identified by psychologists and neuroscientists. The first

one, Pavlovian control, comes from evolution and represents powerful but

inflexible actions. Then we have instrumental learning, that is divided into

goal-directed control and habitual control; in this case, the modules have

learning capabilities and can shape the actions they generate to give the

maximum possible benefit to the individual. goal-directed control consists

in a model of the environment that is explored through computationally

expensive tree searches, while habitual control stores synthetic information

that allows the individual to generate actions at a lower computational cost.

Our very first goal was creating a computational equivalent that would

reproduce what we know from the scientific literature: if for one of the

modules (habitual control, or model-free) this had already been reached, we

deem that the design we proposed for a second module (goal-directed control,

or model-based) is closer with respect to previously proposed techniques to

what science knows about the biological counterpart, while for the third

module (Pavlovian) we could not find at all a clear computational definition.

If from a neuroscientifical perspective it is sufficient to test these modules

in the simplest possible environment, as several works in the literature show,

it was very important for Ishiguro to create a testing framework that could

be applicable to a robotics context, so another important goal was to define

such framework and to show that our modules can actually work and interact

in this more complex environment. This made everything significantly more

complex, but is a fundamental step towards the application of these theories

to realistic environments.

Following this first goal, a second important issue to tackle was starting

to study and define how these modules interact, to create what to the best

of our knowledge is the first working example of the three modules working

together. Also, we wanted to study the characteristics of these modules’

interactions during the learning processes, trying to understand if it was

3

possible to design a procedure for their integration that allowed to have

a biologically sound interaction that reproduced the mechanisms that we

would expect from previous psychological studies. In particular, we wanted

to find an integration mechanism that could show at least partially how the

modules interacted with each other so that the strong points of each of them

emerged, defining the evolutionary soundness of what we did.

Finally, we also wanted to start studying what happens when this equi-

librium between modules breaks down, that is what happens in humans

when they are affected by psychological pathologies. This also probably

constitutes the most interesting part of this work and gives an idea of what

kind of issues and longer term goals could be pursued within this research

project, creating contents that could be interesting for both the robotics and

neuroscientific worlds.

If we take a look at the research project with a broader perspective, there

are several interesting issues that could be explored starting from here. For

instance, recently some researchers used a robot that had writing problems

to teach to children how to write: what if we asked to Obsessive-Compulsive

Disorder patients to interact with robots presenting OCD symptoms? What

if we used robots showing the symptoms of some pathology for the first part

of training for professionals that have to deal with that pathology? What

if we studied how pain relates to social activities and how behaviors such

as altruism generate, so that we would have robots accepting to endure

some unnecessary pain just to help other robots? This work is the very first

milestone of a research project that we are confident in the future will allow

us to tackle more and more interesting problems and scenarios.

In Chapter 2 we present and analyze the related scientific literature and

we explain how all these mechanisms work in a human brain, as well as

analyzing previous efforts from a computational perspective; in Chapter 3

we define our proposed solution to create a computational model of these

mechanisms, defining and explaining how we designed the single modules

and their interactions; in Chapter 4 we show and comment the main results

obtained, we discuss some limits of our model and give some ideas about

how one could continue from now on; finally, in Chapter 5 we perform a

general wrap-up of our work and of the main achievements and limitations.

We made the choice to introduce concepts only when they were necessary

and to reduce information duplication as much as possible, so we warmly

recommend to read the thesis cover to cover in the order it has been written

for a much easier comprehension.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Context and state of the art

In this chapter we outline the main theoretical foundations that are neces-

sary to understand our work and we explore the related scientific literature.

In Section 2.1, we explain the biological and psychological basics underlying

our work, in Section 2.3 outline how the processes outlined in the previous

section have a neuroscientific correspondence, in Section 2.4 we explore the

main related works from the perspective of engineering and computational

models and finally in Section 2.5 we explain the main motivations for our

work and why we deemed it was an important contribution to the field.

2.1 General foundations

This section gives an overall view of the biological and psychological pro-

cesses that constitute the foundations of our work. Care must be taken

since not all the references specifically refer to pain signals: we assume that

the reader will be able to adapt the contents to such context. Also, some

of the cited works refer to animals and not to humans, but the underlying

mechanisms to which we refer behave in a very similar way.

2.1.1 A metaphor to understand the different types of con-

trol

We decided to postpone to the next section the exploration of the literature

in order to try to guide the reader’s comprehension through a metaphor:

it is probably not the most rigorous way to explain the concepts, but it

supposedly is a very good way to present these concepts to one that does

not have them in one’s background, so that one will be able to bring back

these concepts to one’s everyday experience.

5

6 CHAPTER 2. CONTEXT AND STATE OF THE ART

Imagine that you are driving a car for the first time. Probably, you

will think a lot about what to do, through mental processes similar to this:

“In order to change gear I need to lift my right foot from the gas pedal,

press the clutch pedal with my left foot and hold it to the floor, then move

the gear shift knob to the neutral position and to the desired gear, then

finally lift my left foot from the clutch pedal and put a slight pressure

with the right foot on the gas pedal”. As you know, this process is quite

complicated and requires you to perform a consistent mental effort, so we

have been endowed with a different procedure to generate our actions. As

time goes by, habits will start to settle and a lot of these action chains will

become automatic, so that you will not have to think about all these issues.

Eventually, you will probably end up having a perfectly automatized set of

actions regulated by habits, so that you can drive a car without thinking

too much about it; is it even likely that in that moment you will get a better

and smoother driving since, as it is said, “practice makes perfect”. What if

during your driving lessons, especially the first ones, you risk to bump into

another car or to go off the road? If you are lucky, your instincts will save

you, allowing you to press the brake pedal or to steer: probably these will

not be optimal actions, in the sense that they will probably be sudden and

abrupt, but they will serve the purpose. The explanation we just gave sets

the basics for what we will talk about in the following sections: the habits

that the driver develops correspond to the habitual control, the activity of

hard and thorough thinking corresponds to the goal-directed control and the

instincts correspond to the Pavlovian control. The explanation should have

also helped the reader to understand the relation that holds between the

different modules and how they interact in order to give to the individual

the possibility to perform meaningful actions.

Now, imagine that, once you have got used to a manual car you sit into

a semi-automatic car. Of course, part of the knowledge you have acquired

driving a manual car will still be applicable and useful, so you will not start

from zero, but you will have to get used to all the different aspects of your

new car. Especially at the beginning, you may still need your instincts to

save you, for instance when you forget that such cars do not have a clutch

pedal and you press heavily the break pedal with your left foot; also, you

will need to rethink some of your actions during the first times you drive

the car, for instance trying to adapt and get used to the different way of

changing gears. However, if you stick with that car and drive it a lot of

times, you will eventually get used to it. As you can observe, in the face

of the first learning as well as in the face of change the different modules

will cover different roles: Pavlovian control will provide instincts to save

2.1. GENERAL FOUNDATIONS 7

the agent from a strongly negative outcome, even if through sub-optimal

actions; goal-directed control will then allow the user to plan his actions in

a new situation that does not allow him to exploit his habits, even if this

planning will require a substantial mental effort; finally, habitual control

will come into play and provide optimal actions that require a limited effort

from the individual.

Now that the reader supposedly has a clear background about these

issues, in the next section we discuss some publications that explore them.

2.1.2 The three modules

A good and thorough description of the modular structure of pain handling

in humans can be found in Seymour and Dayan (2009) and Seymour et al.

(2007), that contain the description of the three most important modules

involved in evaluating outcomes and choosing actions.

Goal-directed control (model-based values) is a way for an individual

to make predictions about future rewards or punishments. It basically

consists of a model of the world that encircles states, actions, action

outcomes and expected utilities. “This sort of outcome-sensitive con-

trol is a close relative of human notions of ‘cognitive’ control, in which

individuals explicitly consider the outcome of actions, and of subse-

quent actions, and use some form of tree-search to inform current

actions”1. The advantage of this kind of models is that they can eas-

ily adapt to changes in the environment. However, using them to find

the best possible action is typically computationally expensive and re-

quires consistent amounts of memory, so that it can be used to find

accurate values only in small environments.

Habitual control (model-free values) gives a way round the complex-

ity by storing information that synthesize what would be the result

of a tree search. We call this kind of control “model-free” because we

can use the information in a way that is independent from the action

outcomes. A way to do this is through temporal-difference learning,

explained for example in Sutton and Barto (1998), with value esti-

mates: since estimates are bootstrapped from adjacent states, there

is no need to represent action outcomes. These values are a direct

representation of the desirability of an action in a particular state, so

that there is no need to perform expensive tree computations. How-

1Quote from Seymour and Dayan (2009).

8 CHAPTER 2. CONTEXT AND STATE OF THE ART

ever, the drawback of these models is a lower flexibility in the face of

changes.

Pavlovian control represents “powerful, pre-specified, but inflexible alter-

natives”2. The state-outcome pairing is used to produce anticipatory

responses whenever the predictive state is encountered again. This

kind of control, that in nature comes from evolution, has a lower flex-

ibility with respect to the other two kinds of control, but removes the

need of an expensive learning process. Apart from innate responses

to stimuli, we also experience Pavlovian conditioning, that “is a pro-

cess of behavior modification in which an innate response to a potent

biological stimulus becomes expressed in response to a previously neu-

tral stimulus”3. Pavlovian conditioning can in turn be of two different

kinds: consummatory, when the form of the conditioned response is in

the same form of the perceptual properties of the stimulus (e.g., when

a conditioned stimulus is associated to the administration of food and

as such increases salivation), and preparatory, when the responses are

not specific to the stimulus but rather they are characteristic to the

motivational class to which the stimulus belongs (e.g., anatomic re-

sponses, like increased heart rate, and behavioral responses, such as

attempted escape). We basically only consider escaping actions, but

it would be interesting to extend our work with other alternatives (see

e.g., Fanselow (1994)).

An overall view can be found in Figure 2.1. The image is taken from Sey-

mour et al. (2007), but we modified it removing the “learning following

observation” process, since we do not consider it in our work.

The main difference between Pavlovian learning and instrumental learn-

ing (i.e., habitual and goal-directed learning) is that in the latter one the

individual learns to associate an action with its outcome (even though, as

it was said beforehand, in habitual learning the outcome is not explicitly

represented), so that one learns about the causal consequences of one’s be-

haviour and can control them depending on one’s needs. In Seymour and

Dayan (2009) it is also outlined how the lack of a pain signal (i.e., the lack

of a negative signal) can serve as a positive signal, so that the pain alone is

sufficient for a learning process to take place.

2Quote from Seymour and Dayan (2009).
3Quote from wikipedia.org.

2.1. GENERAL FOUNDATIONS 9

2.1.3 Interactions between modules

How does the brain decide which one of the three mechanisms should be used

to produce behavior? The modules are in competition and proper experi-

ments can be designed to show their interactions. It may be especially tricky

to understand the exact interactions between habitual and goal-directed con-

trol.

A discussion about their relation can be found in Gillan et al. (2015),

where it is shown how in healthy individuals there is a tendency towards

habit formation and how model-based learning gives a higher sensitivity

when facing outcome devaluation4. Nevertheless, it is also shown that typi-

cal behavior comes from a mixture of goal-directed and habitual behaviors.

As a way to measure the relationship between goal-directed and habitual

control, outcome devaluation consists in reducing the value of a given out-

come, then measuring in extinction the responses of the individual to the

stimulus associated with the outcome. In this context, “in extinction” means

that the individual is informed about the change in outcome values, but does

not have, e.g., a visual input during the experiment about the values: the

4Theoretically, “outcome devaluation” should refer only to an outcome whose value has

been reduced, but in the literature it is used more generally to refer to outcomes whose

values have changed.

Figure 2.1: Different mechanisms of learning and

action. a| Pavlovian responses: repeated pairing of a

state or a cue with a certain outcome causes an innate

response when the state is encountered again. b| Habitual

learning: if an action is executed in a certain state and it

brings a reward, the likelihood of performing that action

in that state in the future will be increased. c| Goal-

directed learning: if an action in a certain state brings a

reward, then an explicit representation of the sequence is

remembered for future action generation.

10 CHAPTER 2. CONTEXT AND STATE OF THE ART

individual knows about the devaluation, so goal-directed control comes into

play, but he receives no feedback about the values during the experiment,

so that habitual control learning is slowed down. It is also interesting to

notice (Gillan and Robbins (2014)) that the definitions of goal-directed and

habitual control are somehow linked, since there is no current definition of

the latter that does not rely on the absence of the former.

In Balleine and Dickinson (1998) it is discussed why a simple stimulus-

response model is not sufficient to explain all the shades of behavior: ba-

sically, a simple stimulus-response mechanism cannot represent and encode

the relationship between an action and a reward, so that stimulus-response

models are only sensitive to the contingency of actions and reinforcements

and not to the causal relationship between them.

In Dayan et al. (2006) some of these conflicts are outlined and it is

discussed how in animals the Pavlovian control can sometimes even produce

a behavior that is not consistent with the instrumental control.

2.2 Related pathologies

With respect to pain, the Obsessive-Compulsive Disorder (OCD) consists

in a failure or anyway a slowdown in the extinction of avoidance actions

(see Gillan et al. (2014)). Even if the instrumental learning of pain avoid-

ance actions in unaffected, meaning that healthy subjects and OCD patients

learn at the same speed how to avoid pain, among the latter the ability to

to extinguish those actions is reduced: this means that, even if some learned

actions will lose their meaning because they will cease to be associated to

pain signals, OCD patients will keep performing those actions. It is out-

side the scope of this thesis to explain the psychological reason of why this

happens, also because not all researchers agree on the same explanation.

It has been observed (Gillan et al. (2011) and Gillan and Robbins (2014))

how Obsessive–Compulsive Disorder (OCD) modifies the balance between

goal-directed and habitual control. Even if healthy subjects and OCD pa-

tients show comparable ability in using external feedback for instrumental

learning, the latter show a much more restricted sensitivity to outcome de-

valuation and a weaker knowledge of the associations between actions and

outcome. Even if the original hypothesis was slightly different, the latest

findings suggest that rather than an impairment in goal-directed control,

OCD may be caused by an exaggerated mechanism of habit formation. To

make it simple, we could say that while OCD patients and healthy individu-

als tend to perform instrumental learning in a similar way, when the former

have acquired some habits they tend to stick with them. Gillan et al. (2014)

2.3. NEUROSCIENTIFIC CORRESPONDENCES 11

shows these mechanisms in an avoidance context, where healthy subjects and

OCD patients need to learn to avoid shocks, but the latter tend to stick with

avoidance actions even when the machine that performs the shocks has been

unplugged and all subjects have been informed of this change.

2.3 Neuroscientific correspondences

As we have said, for our work the similarity with the biological world is very

important. In the previous sections we described a three modules system,

but we only justified it from a psychological perspective, that is somehow

a behavioral perspective. It is very important in our opinion to show some

examples of neuroscientific works that studied these same mechanisms and

show how the considerations in previous chapters are grounded also from a

neural perspective. There is evidence for the involvement of several brain

areas in the activation of these mechanisms, even if most of the material

refers to rewards and not to punishments.

For model-based control, there is evidence of the involvement of the

dorsolateral prefrontal cortex, the ventromedial prefrontal cortex, the left

parahippocampal gyrus and the middle frontal gyrus (see Balleine and Dick-

inson (1998), Carter et al. (2006) and Koechlin et al. (2003)).

Regarding the habit-based system, for the reward prediction error there

is evidence of the involvement of the striatum (mainly the bilateral ventral

striatum and the left posterior putamen), the right anterior insula and the

dopamine neurons of the ventral tegmental area and of the substantia nigra

(see Pessiglione et al. (2006) and Schultz et al. (1997)).

Pavlovian control seems to be under the control of the periaqueductal

grey (PAG) (and amygdala for the correlated emotional aspects), while au-

tonomic5 changes involve connections between the amygdala and the dorsal

medullary nuclei (see Fanselow (1994) and Fendt and Fanselow (1999)).

2.4 Computational models

To the best of our knowledge, there is still no work showing the complete

pain model working, with all of the three modules interacting and working

together, so our work is intrinsically novel and unique. Anyway, we present

and analyze here some publications that are somehow related, typically be-

cause they propose a computational alternative to a part of our model.

5The autonomic nervous system is the involuntary nervous system and regulates

(mostly unconsciously) things like heart rate, digestion, respiratory rate and so on.

12 CHAPTER 2. CONTEXT AND STATE OF THE ART

In literature, one can find articles (e.g., Bonarini (1997)) that show

models that are able to shape behaviors suitable for complex environments

with multiple agents interacting, also in a prey-predator setting. A lot of

care must be taken when reading these articles and comparing them to the

content of this thesis, since they are conceptually different from our work

and for this reason they are not a suitable comparison. The main point

on which the reader should focus on is that these models are probably the

most efficient and optimized engineering solution to solve the prey-predator

problem (i.e., to control the predator or the prey), since their purpose is

exactly that of having a prey that escapes in an effective way or a predator

that can learn meaningful movements to catch a prey, while our model’s

main purpose is that of trying to reproduce and mimic with the highest

possible accuracy the largest possible number of mechanisms and phenomena

that have been identified in the human brain with respect to pain signal

processing. In this sense, it is really important to keep in mind this point

while reading our work: for us the prey-predator setting is just a framework

to test our model, so our purpose is not to design a controller that shows an

optimal chase or escape behavior, but a controller that can faithfully mimic

the internal and external behavior of the human brain as it is understood

from current state of the art works.

Dayan et al. (2006) shows a computational model able to show the neg-

ative automaintenance phenomenon6, but the approach adopted does not

seem generalizable to our purposes; in fact, within a single mechanism of

action choosing an action is selected as Pavolvian and favoured artificially,

but it is not clear how such an approach could be extensible to an autom-

atized learning setting. Also, since as mentioned beforehand most of the

literature agrees on the fact that the three modules are biologically located

in different areas of the brain, it seems more logical to keep them separate.

Still, the underlying phenomenon outlined in the article is interesting and

important, and we will come on this again later on.

In Gillan et al. (2015) (in the supplemental material) a different model

is proposed for model-based and model-free control. Since in our model (see

Chapter 3) we discount rewards during ε-greedy exploration and each row

6Negative automaintenance “uses an omission schedule to pit classical and instrumental

conditioning against each other. [. . .] the pigeons are denied food on any trial in which

they peck the lit key. In this case, the birds still peck the key (albeit to a reduced

degree), thereby getting less food than they might. This persistence in pecking despite

the instrumental contingency between withholding pecking and food shows that Pavlovian

responding is formally independent from instrumental responding, since the Pavlovian

peck is never reinforced”. (quote from Dayan et al. (2006))

2.4. COMPUTATIONAL MODELS 13

of the table constitutes an approximate model of the transition probabili-

ties, we deem that our model-based control is extremely similar to the one

used in this work. However, the action generation policies are not directly

comparable, since they are very different conceptually; while we first decide

which module should act and then that module alone generates an action,

in their work they generate actions mixing the action evaluations coming

from the different modules. Also, they only use model-based and model-free

control, so their model is not directly comparable to ours.

Schultz et al. (1997) proposed a model to reproduce temporal difference

learning only, that would correspond to our habitual control. Since it is only

one module and it tackles some more specific issues it does not make sense to

make a comparison, since our work and their work have different purposes.

However, the aspects that they claim their model is able to explain (e.g.,

blocking7 and secondary conditioning8) could be investigated in future work:

it would be interesting to understand if our model is able to explain those

mechanisms, and in case it is not their work could be a starting point for an

improvement.

Lee et al. (2014) introduces interesting ideas for the model-based mod-

ule, but we decided to discard it for several reasons. First of all, because

of the way they formulate the function T (s, a, s′) and keep it updated, their

techniques does not seem to scale well to complex environments. Another

issue is related to the future rewards: in their case due to the simplified en-

vironment they can assume that rewards are known from the first moment,

but it does not apply for a complex environment where rewards need to be

discovered through experience. Finally, given the shape of their equations

we had doubts about the reactivity of such a technique after an extensive

training session. Anyway, their main contribution from a computational

point of view is in a quite articulated technique for model-based and model-

free arbitration based on their relative uncertainties: we did not adopt it

for simplicity and we left it as an interesting idea to test in future works,

but there are several issues that one should solve before adopting it. First

of all it adopts a computationally inefficient technique to combine the ac-

tions of different modules and this should be solved, but we do not know

if changing that technique would still give good performance. Apart from

this, their Bayesian approach could cause a loss in reactivity after exten-

sive training sessions. Finally, this kind of integration does not consider

7If there is already a cue that predicts pain (e.g., a light turning on), a second cue

(e.g., a buzzer) will fail to acquire an aversive conditioned response.
8First a subject learns to associate e.g., a light with food, then it learns to associate

e.g., a buzzer with the light.

14 CHAPTER 2. CONTEXT AND STATE OF THE ART

the Pavlovian module, but it would not be straightforward to extend this

integration technique to consider it.

Following similar considerations, we claim that the models adopted in

other literature works are not comparable with our work (e.g., see Pessiglione

et al. (2006)). In general, the following reasoning holds: if we upgraded

the other models to make them comparable to our model, for instance by

extending them to three modules systems, with generalized reinforcement

learning equations and so on, one could claim that depending on the way we

chose to extend the models we would obtain different results; because of this,

the only sound way to make a comparison would be that of downgrading our

model to the same number of modules and the same simplified environment,

but for the moment our main goal was that of obtaining a first version of

the three modules model that could explain and show as many biological

phenomena as possible. Still a comparison with proposed techniques for

single modules design or single integration modes remains an important

part for future work, trying to get the best possible overall system design.

2.5 Motivation for our work

There is more than one reason to say that our work is a relevant and im-

portant contribution to the field, namely:

• to the best of our knowledge, there is still no working example of the

three modules working together, even if the three models have been

identified and somehow separated in the psychological literature: we

provide examples of the three modules working together and we deem

that this already is an interesting point;

• we did not find a clear, meaningful and generalizable definition of a

model for Pavlovian control: we provide a design and a way to use

a Pavlovian control that is automatically learned and adapted to the

context;

• all the examples that we have found that specifically design and test

two of the pain modules together use an over simplistic environment,

typically just a decision tree with a very limited number of possible

states (i.e., between 3 and 7) and with rewards assigned only in the

final states: we provide examples of the model working in a realistic

environment (i.e., an arena with obstacles where a prey escapes from

a predator) and with rewards distributed over time;

2.5. MOTIVATION FOR OUR WORK 15

• an interesting detail linked to the previous point that is important to

notice is that some models in the literature use over simplistic equa-

tions that for example ignore discount factors (i.e., are typical RL

equations but with discount factor set equal to zero): we show a work-

ing example of a model that uses equations and a design suitable for

a more general and generalizable approach, so that, for example, our

model can take into account the fact that rewards may be distributed

over long chains of temporal events;

• we could not find any example of a computational model of pain able

to explain and show pain related pathologies: we achieved this and

we deem this could be very interesting for scientists studying such

pathologies, but it could also open new interesting scenarios (e.g., if

we are studying human-robot interaction, how different it would be

for a human to interact with a robot that shows OCD symptoms?).

16 CHAPTER 2. CONTEXT AND STATE OF THE ART

Chapter 3

Logical design

In this chapter, we explain our proposed design for the pain system and

the framework used to test it. In Section 3.1 we describe the framework

that we used to test the model (i.e., the test scenario), in Sections 3.2, 3.3

and 3.4 we describe the design respectively of the model-free, model-based

and Pavlovian modules, in Section 3.5 we explain how we integrated the

model-based and model-free modules to obtain a meaningful behavior from

their aggregation, in Section 3.6 we also integrate the Pavlovian module so

that finally we have the design with the three modules working together, then

finally in Section 3.7 we give some final notes about the different learning

procedures that we adopted for instrumental learning (i.e., habitual and

goal-directed learning) and Pavlovian learning.

3.1 Our framework

We needed a framework in which we could apply our model and check

whether it complied or not with expectations coming from the literature

analysed in Chapter 2, but we also wanted something that could be easily

applicable to the world of robotics. Finally, it needs to be said that, even if

in the future the model will probably be applied to complex and articulated

robots (e.g., the Geminoid, see Nishio et al. (2007), or for a much simpler

design the Telenoid, see Sumioka et al. (2014)), at the current state of the

work it was of particular interest to professor Ishiguro to apply the pain

model to minimal design robots that are designed and produced in Intel-

ligent Robotics Laboratory (see Figure 3.1), so we needed something that

could be applied to such robots.

17

18 CHAPTER 3. LOGICAL DESIGN

Figure 3.1: The first robot that will be used to test

the model. It is an omni-drive robot. The external

design and the number and typology of sensors onboard

might change in the future.

3.1.1 The prey-predator setting

Given our needs, we decided to adopt a simple scenario in which a predator

chases a prey inside an arena and when the predator is close to the prey the

latter feels pain, a task that is similar to the one adopted in Mobbs et al.

(2009a) and Mobbs et al. (2009b). The arena we adopted is a squared arena

and can contain an arbitrary number of obstacles of various shapes; this is

important for the prey because, apart from escaping at a high distance, in

order to avoid pain it can also simply hide behind an obstacle. For the sake

of simplicity and since it would not have added any particularly interesting

points to our work, we decided to stop the chase when the prey gets at a high

distance from the predator or when it is hidden by an obstacle. The episode

starts with both robots in random position in the arena and ends when the

chase ends, as we have just explained. The predator is controlled by a very

simple model, since we only needed a minimal behavior sufficient to test our

model: basically, as soon as it sees the prey it turns in its direction and starts

to chase it. Since wanted to allow the prey to easily escape once it learns the

proper action policy and since it was not relevant for our purposes to push

the prey-predator task to its limits, we decided to move the predator half of

the time with respect to the prey (i.e. the predator is half as fast). The prey,

instead, is of course entirely controlled by the model discussed in this thesis.

As this was the starting point of this research, we decided to ignore for the

3.1. OUR FRAMEWORK 19

moment the dynamics of a robotics system and we adopted a discrete-space

environment, obtained through an hexagonal tessellation of it. Given the

hexagonal tile in which one of the robots currently is into, it will be able

to move to any of the six hexagonal tiles that surround it. We also did not

consider the concept of robot’s direction: given a position in which a robot

is into, that is everything that matters, we cannot say whether the robot is

facing a certain direction or another. We chose an hexagonal tiling so that

simulated robots could have higher freedom of movement while still having

a constant distance between centers of contiguous tiles (while, for example,

in a squared tiling we would have that distance between centers of tiles in

a diagonal direction would be higher than the distance between centers of

tiles in the vertical or horizontal direction). Since the robot that will be first

used to test our model is an omnidirectional omni-drive robot, the hexagonal

tiling is suitable, even though as we have said for now for simplicity we ignore

the robot’s direction. In order to test all our hypotheses and to see how our

model performed in a robotics simulation, we wrote a simulator using C++

and OpenGL; a screenshot from the simulator (Figure 3.2) should give to

the reader a clear idea about a typical setting.

It is of paramount importance to keep in mind that for us the prey-

predator setting is just one of many possible frameworks and its purpose is

just that of testing especially some particular theoretical properties of our

model. As we have already discussed in Section 2.4, the performance of

our model cannot be compared directly with that of standard approaches to

the prey-predator problem: in those cases the purpose will just be that of

escaping, while in our case we also care about other aspects (e.g., smooth

interactions between modules and biologically inspired behaviors and learn-

ing curves), but these issues will be better explained later on in our work

(especially in Chapter 4).

3.1.2 A note on the control system for the prey

Even though in this work the model has been designed and tested in a dis-

crete space (i.e., the hexagonal tiling), the final purpose of this research

effort will be that of showing all these results with real robots. A likely

intermediate point will be testing our model on a continuous space simula-

tion that also takes into account robots’ dynamics. For this reason, there

are some design choices that may be considered unnecessary in a discrete-

space setting, but we claim that such choices will make the transition to a

continuous-space setting much easier.

One of these choices is related to the control system for the prey and is

20 CHAPTER 3. LOGICAL DESIGN

Figure 3.2: First screenshot of the arena. The blue

tiles represent free terrain where robots can move, grey

tiles represent space occupied by obstacles, the prey is the

brown tile and the predator the black one.

3.1. OUR FRAMEWORK 21

Figure 3.3: The map with the grid drawn on it. The

grid has been drawn manually, but is very close to the

grid actually used by the algorithm. The 7x7=49 squares

generated by the black grid are the same squares that one

can see in Figure 3.4.

very important to notice, since it is used in the algorithms explained in the

following sections. Imagine that you are driving a car: you could say that

at a high level you are following GPS points, while at a lower level you are

trying to go from a GPS point to the next one without hitting other cars,

going out of the road and so on. We apply an idea that is very similar; we

divide the map in squared areas, drawing a grid on the map, and we take

the squared area’s centers as “GPS points”. For every area, if more than a

small percentage (in our case we considered 20%) is occupied by obstacles we

consider it occupied and its center cannot be used as “GPS point”, while if

this does not apply the cell is considered free and we can use its center. Just

to give the idea, the map shown in Figure 3.2 on page 20 is shown with the

squared grid drawn on it in Figure 3.3 and is discretized like in Figure 3.4.

From now on, we will refer with the term of “tiles” to the hexagons, while

with the term “cells” to the squares of the grid.

Let us say that at a certain point in time we need to decide the new

high level target: in order to do that, we first determine in which one of

the cells the prey currently is into; then, the potential targets will be the

center of the cell to which the prey currently belongs plus the centers of

the eight cells that surround the current prey’s cell. Once the next high

level target has been chosen, the low level control will decide which low level

22 CHAPTER 3. LOGICAL DESIGN

Figure 3.4: The squared grid discretization based

on Figure 3.2. The white squares represent cells consid-

ered free, while the grey squares represent cells considered

occupied by obstacles.

moves to perform (i.e., which hexagonal tiles to get into) in order to get

there. The learning algorithms will concentrate on picking the best possible

cell center given by the squared grid, while the low level control that chooses

movements on hexagonal tiles will be automatically controlled by a lower

level controller: in our case, the latter controller will just choose the tile

that with respect to the current high level target position has the smallest

angle from the current position. Substantially, since the interaction with the

hexagonal tessellation is handled by an independent and automatic low-level

controller, to the eyes of our algorithm all that matters is the discretization

shown in Figure 3.4.

What if the action generated by the algorithms tries to set the target in

the center of a cell that is considered occupied? In this case a null action

is generated: we consider the action non valid and we set the target to the

center of the cell in which the prey is currently into; this means that the prey

remains substantially still, since it is already in that cell. Since the predator

is always chasing the prey, if the algorithms start to generate a big number

of null actions they are penalized, because null actions slow down the prey

since they do not push it towards other cells. This forces our algorithms to

try to always generate valid actions.

It is important not to get confused by the two types of discretization

used in our work: one thing is the hexagonal tessellation that we applied in

order to have discrete-space, which regulates how robots can move at each

3.2. MODEL-FREE MODULE 23

time step, whereas a different thing is the squared grid we draw on top of

the hexagonal tessellation, which gives a series of high level set points that

the low level control can then pursue. Another important application of the

squared grid is the fact that it will be used to be part of the Reinforcement

Learning state used by the prey, but again we postpone this discussion to

Section 3.2.

Why then for the learning processes should we concentrate on a high

level control based on the centers of the cells of the squared grid and not

directly control in which hexagonal tile the prey wants to go? Probably

one of the most natural steps towards a final implementation would be that

of moving all our work towards a continuous-space simulation, that keeps

into account a more realistic continuous space and robots’ dynamics, and

in this sense it should be easier for the reader to understand the reason for

our choice: if the learning algorithms refer to the space defined in terms of

the squared grid and not to the hexagons, a transition to continuous space

should not pose any problems from this point of view. If one could argue

that in a discrete space setting we could have attached the learning modules

directly to the low level actions between hexagonal tiles, we deem that in

continuous space it would be unsustainable to do that, requiring an excessive

amount of time for learning, while this higher level layer allows for training

in a reasonable time. We could then say that this particular design choice

was not crucial in the current state of the work, but it will be as soon as the

model will be extended to continuous space.

From now on, unless differently specified we will ignore the hexagonal

tessellation that discretizes the map in tiles and the low level control, con-

sidering them transparent with respect to our learning algorithms and a

sort of low level layer that depends from the particular application and it

is modifiable in case we need to adapt our model to different application

scenarios. We will just consider the discrete squared grid drawn upon the

map that divides it in squared cells and the high level control that, given

the cell in which the prey is currently into, decides in which one of the eight

surrounding cells plus the current cell the prey should aim at. This higher

level control is in fact our model and the content of this thesis.

3.2 Model-free module

First of all, we introduce the model-free module, that needs to meet the

requirements specified in Section 2.1.2 on page 7. In order to obtain such

model, we decided to use a RL technique called actor-critic (see Witten

(1977) and Sutton and Barto (1998), or see Barto et al. (1983) for a version

24 CHAPTER 3. LOGICAL DESIGN

with also eligibility traces, where the actor is called “associative search ele-

ment” and the critic is called “adaptive critic element”). Actually only the

actor represents the model-free module, while the critic is Pavlovian, but we

will come on this again later on (this has also been observed in Barto et al.

(1983)). Let us start to understand how the actor-critic works, then we will

explain why we chose this technique.

3.2.1 Theoretical basics

Actor-critic is a technique that can be used to find an optimal action selec-

tion policy in a Markov Decision Process (MDP); we then need to understand

what an MDP is and what does it mean to find an optimal action selection

policy.

An MDP is a mathematical framework that is useful to study situations

in which there is an agent interacting with an environment and the outcomes

of his actions depend both on the agent’s choices and on the environment.

Formally, an MDP can be defined by the following tuple:

{S,A, Pa∈A(s ∈ S, s′ ∈ S), r(s ∈ S)}

Let us analyze the elements of the tuple:

• the set S represent the finite set of all possible states in which the

agent can be;

• the set A is the set of all the actions that the agent can perform;

• Pa∈A(s ∈ S, s′ ∈ S) represent the probability that, starting from state

s and performing action a, the agent will arrive in state s′;

• r(s ∈ S) represents the expected immediate reward that the agent gets

when he reaches state s.

An important property of MDPs is that its state transitions satisfy the

Markov property: this means that, given a state s and an action a, the

future state s′ depends only on s and a and not on previous states or actions.

Basically, this means that a state is representative of the past history and

this is coherent with the task that we are facing: given a certain configuration

of the two robots, we can pick the best action no matter how we arrived in

that situation.

Figure 3.5 should help the reader to understand the typical structure

of an MDP. Let us imagine that the agent is currently in state s0: he can

choose between action a1 (that will bring him to state s1 with probability

3.2. MODEL-FREE MODULE 25

Figure 3.5: An example of an MDP. States are rep-

resented by circles, while transitions between states are

represented by arcs. In every state, the reward associated

to the state is reported in the parenthesis. On the arcs,

apart from the name of the associated action, are reported

the probabilities of each transition.

0.9 and leave him in the state s0 with probability 0.1) and action a2 (that

will bring him to state s2 with probability 0.8 and leave him in the state

s0 with probability 0.2). Suppose the agent chooses a1 and arrives in state

s1: he will receive a reward of value 3 and he will only be able to choose

action a1, that will bring him to state s2 with probability 0.8 and leave him

in state s1 with probability 0.2. Repeating this process over and over, we

can understand how the agent explores the environment and in doing so he

collects rewards from the environment itself. One thing that it is important

to notice is that the process is not deterministic: when the agent is in state

s0 and performs action a1 he does not know for sure if he will transition to

state s1 or if he will stay in state s0. Figure 3.61 shows a conceptual view

of the process. As it can be seen, at each time step the agent perceives the

state st and receives a reward rt from the environment, then he chooses an

action at that will influence the environment, and so on. It is very important

to keep Figure 3.6 in mind because the concept of agent is very generic: in

this section the agent will be the actor-critic system, but later on the whole

model will play the part of the agent.

Now that we have found an answer to the first question, we should try

to find an answer to the second one. In a first approximation, we could say

1Figure from Sutton and Barto (1998)

26 CHAPTER 3. LOGICAL DESIGN

Figure 3.6: The agent-environment interface. It is

important to notice that the concept of agent is very

generic. Also, notice how the notation rt(st) has been

dropped for a simpler rt, since the associated state is im-

plicit and should be clear to the reader.

that the goal of learning is that of maximizing the sum of expected rewards

that the agent will get, defined by:

Rt = rt+1 + rt+2 + rt+3 + . . .+ rT .

However, it is easy to see that if the experience is not divided in episodes,

we may have T = ∞, so that we would have an infinite sum. Then we

introduce the concept of discounting, so that the formula becomes:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . . =
∞∑
k=0

γkrt+k+1, (3.1)

where 0 ≤ γ ≤ 1 is called the discount rate. Basically, the discount says

that rewards that are closer in the future are more important than the ones

that are further. Apart from the mathematical purpose, adding γ will have

another important effect: the prey will prefer to receive the same reward

sooner than later, so that it will try to perform the task that we assigned it

through the rewards as soon as possible.

Actually, given our setting and the purpose of our work saying that our

goal is only that of collecting high rewards is over simplistic, but for the

sake of simplicity for now we will just concentrate on this. Let us see how

the actor-critic technique solves the problem.

3.2.2 The actor-critic technique

First of all, actor-critic’s approach to solving the problem is that of dis-

cretizing perceptions into discrete states (showed as st in Figure 3.6), that

basically represent “situations” in which the agent can be and needs to de-

cide which action to perform. We will not enter now in the details of how

3.2. MODEL-FREE MODULE 27

we defined and discretized the states of the system, but we will do that in

Section 3.2.3; for now, let us just imagine that there is a set of numbered

states in which the system can be and that the agent is able to recognize

them.

The first constituting element is called critic, and basically holds a rep-

resentation of how desirable it can be for the agent to be in every possible

state. Formally, the critic contains a value function that is defined for every

s ∈ S as follows:

V π(s) = Eπ{Rt | st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1

st = s

}
(3.2)

where it is easy to see that we are using the definition of future discounted

reward given in equation 3.1. For now we will ignore the π symbol in the

notation, but we will come on this in a short while.

How does the agent know which values to assign to the function V (s)?

An interesting aspect of this technique (and in general of RL techniques)

is that the agent learns through experience of interaction with the environ-

ment. Let us say that the agent is in state st, performs an action and arrives

in state st+1 getting reward rt+1; then, it will compute the prediction error

like:

δt = rr+1 + γV (st+1)− V (st) (3.3)

Now the agent will be able to update the value of V (st) with:

V (st)← V (st) + α ∗ δt (3.4)

where α is a coefficient that regulates the speed of the learning process. In

essence, we could then say that the critic contains a representation of how

good is it to be in a certain state (equation 3.2), that is updated looking

at how reality meets expectations (equation 3.4) and that expectations are

generated bootstrapping from close states (equation 3.3).

However, up to now we ignored an element of equation 3.2, that is the

symbol π: it basically means “following the policy indicated by π”, but what

does this mean? Basically, in order to decide what action it would be better

to perform in each situation, we define a function π(st, at) that associates

to a pair of state st and action at a value that represents “how good” is

to perform action at in state st; given a certain situation (i.e., a certain

state st), the agent will typically want to pursue the action at that gives

the maximum value of the function π(st, at). It is intuitive that the rewards

that an agent collects during time depend strongly on the action policy that

28 CHAPTER 3. LOGICAL DESIGN

he follows (i.e., on the values of the function π(st, at)) and this is why we

added the symbol π in equation 3.2.

Actually, there is still something that needs to be punctuated, since say-

ing that our system always chooses the action that maximizes the function

π would not be completely correct. A well known issue in RL is that of the

exploration-exploitation trade-off: we would like to both exploit the best of

the knowledge we extracted until now (in terms of state values knowledge

and action policies) and to explore new alternatives, that we currently re-

gard as sub-optimal, but that could lead to new unexpected ways to explore

the environment and subsequently to better action policies. Basically, what

we are saying is that we would like to follow most of the times the action

policy that we currently deem as the best one, but we would like to try

different actions from time to time to see if we can find something better.

This is done through an ε-greedy action policy; given a value of ε where

0 < ε < 1 and tipically small, every time the actor needs to choose an action

it will extract a random number between 0 and 1: if the number is above ε

(i.e., most of the times) the actor will follow the action that maximizes the

π function (i.e., the action currently deemed as the best one), while if the

number is below ε the actor will choose a random action.

Again, we are facing the problem of how to set π values, but again we

will let the system learn automatically. The actor module will get the δt
signal from the critic and will update its internal function with:

π(st, at)← π(st, at) + β ∗ δt (3.5)

The meaning of equation 3.5 is: “if I performed a certain action in a certain

situation and it led me to results better than the results I expected to get,

then when I am in this situation I should try to perform this same action”.

This will bring to a competition between actions and the ones that will

be performed in the end (i.e., the ones with the highest values associated)

will be the ones that more often brought to particularly good outcomes.

Figure 3.7 will probably help the reader in understanding the structure of

what we have described until now.

The nature of actions has already been introduced in Section 3.1.2: given

the squared cell to which the prey currently belongs, an action will consist

in setting the high level goal on the centre of the same cell or on the centre

of one of the eight surrounding cells. It should also be clear to the reader

that it will be an automatic low level control to decide in which hexagonal

cells to move in order to reach the high level goal set by the RL algorithm.

It could be useful for the understanding to point out that in case the state

changes before the high level goal is reached the RL control will be asked to

3.2. MODEL-FREE MODULE 29

Figure 3.7: The actor-critic module. The notation

is the following: s is the state perceived, r is the reward

received from the environment, δ is the value computed by

equation 3.3 and a is the action performed by the agent.

produce a new action based on the new state; high level goals should then

be thought of as a sort of directional goal rather than a point to reach, even

though if the state does not change the prey will be able to reach such point.

There are still two aspects that we need to define, namely how we code

the states and how we define rewards, but before discussing them we would

like to point out an aspect of this solution. As it is also discussed in Barto

et al. (1983), the action selection process is only biased towards the action

that has the highest π value, but not completely defined by that action,

so we can claim that actions are not mere responses directly and invariably

connected to the input state, a form of action selection that would be appro-

priate for Pavlovian control and not for habitual control. Also, even more

relevant is the fact that the values of both the V (s) function and the π(s, a)

function can be learned and modified through an extensive learning process,

so we believe that our solution is actually appropriate for an habitual control

module.

3.2.3 The state coding

Our state coding is composed of three elements. The first one is the squared

cell to which the prey currently belongs, encoded in a single number. Start-

ing from Figure 3.3, imagine to number the cells by rows, from 0 to 48:

the number corresponding to the cell in which the prey is will be the first

component of the state. The number 7 is just an heuristic value and proved

to work well with the dimension of the maps and the number of hexagonal

tiles used in our work, so we did not investigate this parameter thoroughly.

30 CHAPTER 3. LOGICAL DESIGN

The two other components of the state basically regard the interaction

between prey and predator. One component is the angle of the predator

with respect to the prey; remember that there is no concept of direction in

these simple discrete world, meaning that we do not consider that given a

position the robot might be facing different directions, so an angle of zero

only means that in the map the predator is positioned at the same height

but more shifted to the right with respect to the prey. This measure has

been heuristically discretized in 8 different values, so that we will have a

number from 0 to 7 indicating from which discrete direction the predator is

approaching.

The other component is the distance between the predator and the prey,

that again has been heuristically discretized in 3 values (we could think

about them as “close” for a distance within 1/10 of the map size, “normal”

for a distance between 1/10 and 1/4 of the map size and “far” for higher

distances).

At this point, the three components are combined through a cross prod-

uct of their domains, meaning that an example of a state in natural language

could be: “the prey is in cell 15 and the predator is at a normal distance

above the prey”. It should be clear that basically the prey is learning how

to behave in the map regardless of its structure, meaning that the prey will

learn what to do e.g., in cell 15 and its choices may depend on the obstacles

that surround cell 15, but it has no explicit representation of such obstacles;

we could then say that the prey is learning the map. Someone could argue

that this is a high level ability, but since we are trying to reproduce a human

pain model we claim that humans possess such ability and so our model is

biologically sound. Also, the reader should remember that we regard the

prey-predator just as a framework to test our model: this means that we

did not concentrate on the task itself, but mostly on the structure of the

modules and on their interactions, trying to make sure that they were as

biologically accurate as possible, so the “learning the map” task is just one

of the possible tasks to test whether our model learns an MDP in a way

similar to the one you would expect from a human.

3.2.4 The rewards

The only reward given to the prey was negative: a pain signal based on

the position with respect to the predator. As already pointed out in Sec-

tion 2.1.2, since the absence of pain can serve as a prize, the prey basically

learns to avoid pain. How do we give pain to the prey? We chose a very

simple approach, since again we were just interested in testing our model.

3.2. MODEL-FREE MODULE 31

We assigned a negative reward to the prey based solely on the linear dis-

tance from the predator: when the predator was extremely close to the prey

we assigned the maximum possible negative reward to the prey, then, if the

distance from the predator increased, we linearly reduced the pain signal

until we came to zero, that means the total absence of pain (so, basically,

the best that our system can aim to). In order to simplify the problem and

the definition of episodes, we decided to set the distance where the prey gets

zero pain equal to the distance where the prey is considered too far from the

predator and the episode ends; remember that, apart from hiding behind an

obstacle, the other way the prey has to conclude an episode is to leave the

predator behind.

Besides this aspect, it needs to be said that we used discrete rewards, so

that there is a linear gradient of pain towards the predator but in discrete

steps. This was meant in order to reduce the effects of slightly different dis-

tances between different hexagonal tiles, but we deem that the only really

important matter to consider is the actual gradient, so that this discretiza-

tion will not affect our results.

How is this pain signal generated is still an open issue. In our case, as

we have just said, we simply assumed to have a certain amount of pain that

was perceived by the prey as decreasing with the distance from the predator

(i.e. a higher distance corresponds to a reduced amount of pain), but this

should be investigated more thoroughly in the future. When implemented

in a real robot, it could be interesting to pose more attention on the module

that translates sensors readings in a pain signal for the robot, exploring the

literature in search of a solution that more closely resembles what happens in

a human body. Now that we have explored all the elements of the model-free

module, it is interesting to understand why we actually chose the actor-critic

technique.

3.2.5 Why actor-critic?

A first reason why we decided to use the actor-critic technique is linked to

the ease of extension of such a technique for future work. The actor com-

ponent basically resembles the characteristics of habitual control discussed

in Section 2.1.2, but for this sole purpose we could have used some other

technique like Q-learning (see Watkins (1989) or Sutton and Barto (1998)).

However, apart from an action policy to reflect habitual control, actor-critic

gives us also a representation of the perceived desirability to be in certain

states, which can be found in the critic. A phenomenon like that of Pavlo-

32 CHAPTER 3. LOGICAL DESIGN

vian conditioning2, that we did not explore in our work, would be easier

to integrate when a critic is present. In this case, a possible design would

be that of setting some thresholds on state values (i.e., values of V (s)) and

associating to values over such thresholds the actions that represent con-

ditioned responses. Anyway, the exploration of this phenomenon and of a

possible implementation is outside the scope of this thesis, but we wanted

to point out how our choice makes an extension easier. To wrap it up, we

could say that the actor is the one actually linked to habitual control, while

the critic is Pavlovian, meaning that it puts the basics for an extension with

Pavlovian conditioning.

Another important point that guided our choice is the signal δ, that

can be seen in equation 3.3 and in Figure 3.7. That signal represents the

difference between what the individual expects and how reality is and this

can be a useful element for an action arbitrator between different modules.

Basically, δ represents the surprise element for the agent, so this solution

that allows us to generate it before an action is chosen is way better for

modules integration: in this way we can generate δ and use it to decide

which module should produce the final action, using such surprise element

as a factor in the choice. This issue will be further clarified in the following

sections, where it is explained how we integrated the modules.

3.3 Model-based module

The model-based module, that has to meet certain characteristics (see Sec-

tion 2.1.2 on page 7). We wanted to have a design that reflected both the

behavioral aspects and the internal processes of the analogous module in

humans (of course, for what concerns the second issue our reference was

what in the literature is believed to be the internal mental process). Since

we did not find in the literature any model that reflects all these criteria,

we designed a new model from scratch. Let us start by looking at how the

model is actually represented in our system.

3.3.1 The model

What we internally keep as a model can be easily thought as a table, indexed

by pairs of state and action. Every time we are in a certain state and we

2from wikipedia.org: “Pavlovian conditioning is a process of behavior modification in

which an innate response to a potent biological stimulus becomes expressed in response to

a previously neutral stimulus; this is achieved by repeated pairings of the neutral stimulus

and the potent biological stimulus that elicits the desired response.”

3.3. MODEL-BASED MODULE 33

perform a certain action, we update the model registering the outcome of

the action in terms of reward obtained and state reached at the following

time step. The table is initially empty, meaning that at the beginning we do

not know anything about the environment’s structure, then it is filled in as

soon as we proceed with the exploration. However, as it has been pointed

out in Section 2.1, we need the model-based module to be reactive in the

face of change: how do we reach such a goal? We set a maximum length

Lmax for every table row (i.e., a maximum number of pairs of future state

and reward registered given a state and action pair), and in case the number

is exceeded we only keep the most recent Lmax pairs. This means that for

every state and action pair the agent will only keep in memory the most

recent Lmax pairs of states and rewards that the action led to. The fact

that we only keep the most recent pairs gives to the model the property of

being reactive in the face of changes, so that if a change in the environment

means a change in the model, as soon as the rows of the table affected by the

change are updated the model (on which the model-based module is based)

will be in line with the new environment.

Figure 3.8: An example of the model. The leftmost

column holds a list of all the possible pairs of state s and

action a. For every pair, the right part of the table keeps

the most recent pairs of future state s′ and reward r where

the action a performed in state s led. If an action in a

certain state has not been performed enough times, table

rows may be empty or partially empty.

Figure 3.8 should foster the reader’s comprehension. Even if it is not

34 CHAPTER 3. LOGICAL DESIGN

exactly what we did in our work, for the sake of simplicity we decided

to present the model with only four actions (UP , LEFT , DOWN , and

RIGHT) and Lmax equal to 4. We actually used Lmax equal to 4 in our

work, but the difference is that we used 9 actions that are exactly the same

actions available to the model-free module and that we have explained in

previous sections; we believe anyway that the extension from the 4 actions

example presented here and the version with 9 actions that we used in our

work is straightforward.

Basically, the model can be thought of as a representation of the under-

lying MDP built through samples. Let us take another look at Figure 3.5

on page 25: the reader could say that, performing action a1 from state s0,

the agent would end up 9/10 times in state s1 and 1/10 times in s0. In

the same way, looking at Figure 3.8 we could say that, performing action

RIGHT from state 2, the agent would end up 2/3 times in state 3 and 1/3

times in state 1. Of course the table contains just an approximate version

of the underlying MDP since it is based on a limited number of samples for

every transition, but it is important to understand the deep meaning of the

model.

A final note that may be interesting for the reader is related to an im-

portant parameter of the model, that is the maximum number of elements

per row. Even if we expected the model to need higher values of the pa-

rameter to give good performance, we found that the required performance

(i.e., accurate action policy while keeping reactivity) was obtained for values

around 4.

3.3.2 How to choose an action using the model

How do we choose an action given the model? The process is quite simple

and basically is the following: first of all we evaluate every action that we can

perform from the current state (remember that actions in our case are always

9, one for every cell), then we choose in an ε-greedy manner, in the same

way that has been explained for the actor-critic technique in Section 3.2.2

on page 26. Notice that we are still using the letter ε for convenience and,

even if in our work the ε parameters in the model-free and model-based

modules had the same value, they could actually have two different values.

Also notice that we still did not define how we evaluate an action: we will

explain this in Section 3.3.3. The pseudocode of the algorithm is shown in

box Algorithm 1.

Apart from line 3, that will be better explained in Section 3.3.3, the

procedure here adopted should be clear to the reader (remember that 0 <

3.3. MODEL-BASED MODULE 35

Algorithm 1 Action chooser for model-based module

1: initialize actionEvaluations; //the size of this array equals the num-

ber of actions
2: for all possible actions ai ∈ A that can be performed in state sk do

3: actionEvaluations[i] ← evaluateAction(sk, ai);

4: end for

5: extract random number r ∈ [0; 1];

6: if r > ε then

7: choose action ai with maximum evaluation in actionEvaluations;

8: else

9: choose a random action ai;

10: end if

ε < 1 and that ε is typically a small number). So whenever the agent is

in a certain state s ∈ S and wants to use the model-based module to pick

an action, it will use the procedure that we just illustrated to do it. For

instance, referring to Figure 3.8, if the agent is in state 2 it will evaluate the

actions (UP , LEFT , DOWN , and RIGHT), and choose one in an ε-greedy

fashion. But how does it evaluate the value of every action?

3.3.3 How to evaluate an action using the model

Given a state sk, an action ai is evaluated averaging between a certain

number N of σ-greedy explorations: every single σ-greedy exploration will

give an estimate of the goodness of ai when performed in state sk, then we

average between the N values estimated by the N σ-greedy exploration. We

will soon enter into details, but for now it should be enough for the reader

to know that a σ-greedy exploration has a certain random component, so

we need the average to make sure that the final evaluation of action ai in

state sk is not biased by some random circumstance. In box algorithm 2 is

shown the pseudocode of this part (for now ignore the MAXD parameter,

it will be explained later on).

If we ignored the function getFutureEval and the quantity futureEval,

we could basically say that the code computes the average reward that we

could get performing action ai in state sk. As the careful reader could have

already guessed, in order to be more precise we would also like to add to our

estimate some component that takes into account some information about

the future reward and we do that through the getFutureEval function, that

basically implements the concept of the σ-greedy exploration.

What is a σ-greedy exploration? Basically, it is an exploration through

36 CHAPTER 3. LOGICAL DESIGN

Algorithm 2 The evaluateAction function

1: function evaluateAction(sk, ai)

2: average ← 0;

3: for j that goes from 1 to N do

4: randomElement← random element on the table row indexed

by sk and ai;

5: randomState ← randomElement{state};
6: randomReward ← randomElement{reward};
7: futureEval ← getFutureEval(randomState, MAXD − 1);

8: curEpisodeSum ← randomReward + futureEval;

9: average ← average + curEpisodeSum;

10: end for

11: average ← average/N ;

12: return average;

13: end function

the table up to a certain depth, trying to figure out what the agent should

expect from the future. The role of the σ parameter is somehow similar to

the role of the ε parameter explained beforehand, but let us do one step at

a time, using the box algorithm 3 as a reference.

First of all remember that we are starting from a state sk and we want

to understand something more about its future value. Given all the actions

aj that can be performed starting from sk, using the pair (sk; aj) we can

index one row of the model table, so we can start by computing the average

reward saved in the table for the row (sk; aj); this substantially represent a

rough estimate of the immediate goodness of performing action aj in state

sk. At this point, we choose the action achosen in a σ-greedy manner that is

similar to what we have done in model-free for ε-greedy choices: we extract a

random number, than if it is greater than σ we choose the action associated

to the maximum average reward, while if it is smaller we choose a random

action (remember that σ is typically small). Now we are in sk and we have

decided an action achosen, so that with the pair (sk; achosen) we can access a

row of the table that typically contains more than one pair: where should

we move? The answer is that we choose a random couple from the row of

reward randomReward and future state randomState. At this point, using

randomState with the role that sk had at the beginning of algorithm 3, we

can repeat this process over and over, going deeper with the exploration.

How deep should we go? It is quite complicated to answer to this ques-

tion, since the answer may depend on several factors such as the cells’ di-

3.3. MODEL-BASED MODULE 37

Algorithm 3 The getFutureEval function

1: function getFutureEval(sk, curDepth)

2: if curDepth = 0 then

3: return 0;

4: end if

5: initialize averageRewards; //the size of this array equals the

number of actions
6: for j that goes from 1 to numberOfActions do

7: if table row indexed by sk and aj is empty then

8: evaluation ← 0;

9: else

10: evaluation← average reward on the table row indexed by

sk and aj ;
11: end if

12: averageRewards[j] ← evaluation;

13: end for

14: extract random number r ∈ [0; 1];

15: if r > σ then

16: achosen ← action with maximum value in averageRewards;

17: else

18: achosen ← random action;

19: end if

20: if table row indexed by sk and achosen is empty then

21: return 0;

22: else

23: randomElement← random element on the table row indexed

by sk and achosen;

24: randomState ← randomElement{state};
25: randomReward ← randomElement{reward};
26: futureEval ← getFutureEval(randomState, curDepth− 1);

27: curEval ← randomReward + futureEval;

28: return γ ∗ curEval;
29: end if

30: end function

38 CHAPTER 3. LOGICAL DESIGN

mension and the map structure, but in our experiments we have found that

values in the range [2; 6] gave the best performance.

Another thing that the reader may be wondering is the meaning of the

γ at line 28 in algorithm 3 and why we are multiplying the rewards that we

collect during the exploration of the table for γ. At this point in time is

useful to take another look at equation 3.1 on page 26: we are basically trying

to reproduce a structurally similar equation up to a certain depth. Again,

for simplicity we are using the same letter γ that we used in equation 3.3

on page 27 because the parameter in our work assumed the same value used

for the actor-critic technique, but of course we could use for γ a different

value than the one used in equation 3.3. Notice that when we encounter

an empty table row during the exploration or when we reach the maximum

depth we return 0, that basically means truncating equation 3.1. This is the

meaning of the parameter MAXD in box algorithm 2: it is an indication of

the maximum depth that we want to reach with our exploration.

Notice the difference between the criterion used to pick actions during

the σ-greedy exploration and the rewards that we collect and use to compose

the action evaluation. When choosing between an action and the other, we

choose in a σ-greedy way comparing the average instantaneous reward that

the actions gave us in the recent past; however, once we have decided an

action, we pick a random element and it is that element that defines both

the reward that we collect during this σ-greedy exploration and the future

state that we will reach in this exploration.

We have introduced the parameter numberOfActions that keeps the

number of available actions (again, we remind the reader that in our case this

number is always equal to 9, one action for each cell). Since this algorithm

is not a standard one and we designed it, we want to make a numerical

example to make sure that the way it works is clear to the reader.

3.3.4 An example of a σ-greedy exploration

The starting point for our example is Figure 3.8 on page 33. let us imagine

we are currently in state 1 and we have to decide an action using the model-

based module; as algorithm 2 says, for every action we will have to perform

N σ-greedy explorations and average their values. let us do one single σ-

greedy exploration for action UP step by step: it should be then easy for

the reader to understand how all the rest of the algorithm works.

First of all, we need to pick a random element from the table row (1;UP):

let us say that we pick (2;−3). This means that we will need to move to

the next step to state 2 and that in the meantime we collect a reward of −3

3.3. MODEL-BASED MODULE 39

(we will explain later on in this section how we compose collected rewards).

Now, for state 2 we have four possible actions and we need to compute the

average reward for every action. For the action UP performed in state 2 we

will have:

averageRewards(2;UP) =
−3− 4− 3− 5

4
=
−15

4
= −3.75

In the same way, we would have −1.5 for action LEFT , −3 for action

DOWN , and −4 for action RIGHT .

Now we pick a random number, let us say 0.6, and we decide that our σ

value was 0.1: this means that we have to go for the greedy action, that is

the action LEFT , that with −1.5 had the highest average reward. At this

point we choose a random element from the row indexed by (2;LEFT), let

us say (3;−2) (there are two pairs, but since they are identical one is worth

the other); this means that we will need to move to state 3 and collect a

reward of −2.

Now, again, we need to compute the average reward of every action

performed in state 3. For the action UP we have:

averageRewards(3;UP) =
−1− 1

2
=
−2

2
= −1

while for the other actions we have: −2 for LEFT , −5 for DOWN , and

−3.33 for RIGHT . The winning action would be UP , with an average

reward of −1, but let us say we extract a random number of 0.05 and we

pick DOWN as random action. At this point there is only one element in

the row, so we will get the pair (2;−5), that means going to state 2 and

collecting reward −5. let us imagine for simplicity that when we arrive to

state 2 this time we have a curDepth of 0 and we need to stop.

Now we have done a σ-greedy exploration for the action UP performed

in state 1 and we need to assign a “score” to it, that will be averaged with

the scores of the other (N − 1) σ-greedy explorations starting from action

UP in state 1, so that the average will be the final score that we assign to

action UP performed in state 1. we have collected three rewards, namely

−3, −2 and −5, but as you remember we need to discount them (it is done

automatically in the line 28 of algorithm 3). If we suppose to have γ = 0.99,

we will have:

curEpisodeSum = −3+(−2)∗0.99+(−5)∗0.992 = −3−1.98−4.9 = −9.88

This is the value that the current exploration gave to action UP performed

in state 1: we do it N times, we average the results and we get the final

40 CHAPTER 3. LOGICAL DESIGN

value for action UP in state 1. Remember that this time when we started

from row (1;UP) we picked the pair (2;−3), but since each of the N runs

starts with a random choice then each run could start with a different choice

of this initial pair, and so on.

After we have done this for all the actions we will have an evaluation for

any action, that takes the same conceptual meaning of the evaluation that

the actor keeps in function π(s; a), as shown in equation 3.5 on page 28.

In the same way explained for the actor-critic technique in Section 3.2.2 on

page 26, we will choose here a move in an ε-greedy manner and this will be

the move chosen by the model-based module.

3.3.5 The tree structure of σ-greedy explorations

As discussed in Section 2.1.2, it is thought that model-based inferences use

some sort of tree-based search, so we deemed important to underline how our

model-based module reproduces this process. let us take again the example

used in Section 3.3.4 and let us analyze it side by side with Figure 3.9. Of

course in the figure it is shown only a portion of the tree, the one involved

in the example, also because Figure 3.8 contains only the information nec-

essary for the example, but with a complete model-example one should be

able to build the full tree and to understand how the model-based module

explores it. It should also be clear that the fact that we are doing σ-greedy

explorations and not simply greedy explorations gives to the process a de-

gree of uncertainty, so that each exploration should go through the tree in

a different way, at least probabilistically; this resembles the mind process of

evaluating different alternatives.

3.3.6 States, rewards and updates in model-based module

In order to be as clear as possible, we would like to specify something about

state coding and rewards in this module. The state coding used in the model-

based module is the same used for model-free and explained in Section 3.2.3

on page 29, so that at a given time step the model-based and model-free

modules always perceive the same state. Also, the same applies for the

rewards, so that both modules always receive in input the same reward

given a certain situation. This could be obvious after Figure 3.6 on page

26, since the perceived state and the reward depend on the environment,

but since for the Pavlovian module we will have to do something slightly

different we thought that it was a good idea to clarify this.

Also, it may be better to anticipate something about model-based and

model-free modules working together. The reader may be wondering what

3.3. MODEL-BASED MODULE 41

F
ig

u
re

3
.9

:
T

h
e

tr
e
e

st
ru

c
tu

re
o
f

m
o
d

e
l-

b
a
se

d
re

a
so

n
in

g
.

W
e

h
ig

h
li

gh
te

d
in

b
lu

e
th

e
ch

os
en

ac
ti

on
s,

in
gr

ee
n

th
e

ac
ti

on
th

a
t

w
a
s

th
e

b
es

t
ac

ti
on

b
u

t
w

as
n

ot
p

ic
ke

d
b

ec
au

se
of

th
e
σ

-g
re

ed
y

p
ro

ce
ss

an
d

in
re

d

th
e

ch
oi

ce
s

w
it

h
in

ea
ch

ta
b

le
ro

w
w

it
h

re
sp

ec
t

to
th

e
ex

am
p

le
of

S
ec

ti
on

3.
3.

4.

42 CHAPTER 3. LOGICAL DESIGN

happens to one of the two modules when the executed action has been chosen

using the other module and vice versa, in a situation in which we are using

both modules. The answer is simply that, independently on the module

that picks the action, both of the modules are updated. This means that

every time a transition happens, we add the state and reward pair to the

proper table row and we update the model-free module (using equations 3.4

on page 27 and 3.5 on page 28); afterwards, we will choose the action using

the proper module, but every time there is a state transition both modules

will be updated.

3.3.7 Why not other techniques?

Until now we have just said that we were not satisfied with previously de-

signed techniques to use for the model-based module so we designed a new

technique, but we actually never explained why other techniques were not

suitable for our purposes. In this section we make some examples of tech-

niques that we took in consideration and we discarded and we explain why.

Since one of the main requirements for the model-based module is that

it should be more reactive in the face of change with respect to the model-

free module, the very first technique one could come up with is called Q(λ)

(see Watkins (1989)). One could claim that, due to the eligibility traces

adopted in that technique, changes in the underlying MDP are propagated

faster in the data structures of the algorithm. Anyway, even if the sheer

output of the technique could be reasonable, the biological faithfulness of

it is not acceptable. One of the main reasons is that with this technique

the computational load is distributed among all time steps because of traces

updates and the final action generation comes at the price of a table lookup,

while we would like the computational cost to be only in the action genera-

tion process. Also, there is no trace of a model and of a tree search in this

algorithm, so we decided that it was too far from what the literature says.

Other algorithms of the so called Dyna architecture were introduced in

Sutton (1990) and Sutton (1991), namely Dyna-PI and Dyna-Q. For the

former of the two, the reason why we discarded it is very simple: the author

itself noted how it lacks reactivity in the face of changes in the environment

(he calls the problems “blocking problem” and “shortcut problem”) and

this property was fundamental for our needs. For the latter of the two

techniques, one issue is that the author assumes a deterministic model for

the environment, but this is not suitable for complex tasks such as the ones

to which we aim to apply our model, both in this thesis and in future work.

Another issue with Dyna architectures is again the distributed workload: as

3.4. PAVLOVIAN MODULE 43

the author says, “execution is fully reactive in the sense that no planning

intervenes between perception and action”3, but we have already explained

why this solution is not suitable for our purposes.

Another example of an algorithm that one could use for the model-based

module has been introduced in Lee et al. (2014) (in the supplemental meth-

ods) and in Glascher et al. (2010), but even if in their simple environment it

works perfectly fine there are several issues related to the generalization to

our more complicated setting. One first reason is that the function T (s, a, s′)

does not seem to scale well because the dimensionality is |states|2x|actions|,
so one should try to understand if it is possible to use a sparse represen-

tation to reach good performance; also, since it represents probabilities it

should be kept normalized and this is likely to add a non negligible compu-

tational overhead. Another issue is related to the equation that computes

values for QMB(s, a): in their case they give future rewards r(s′) as given

because of the simple task, but we would need to save them from previous

experience and it is not completely straightforward how many of them to

save and how to use them (just saving one reward for every state looks over

simplistic and not able to capture the nondeterministic nature of the under-

lying process). One last issue is related to the shape of the equations that

update the function T (s, a, s′): since the equations are somehow similar to

temporal difference equations, it may be that after extensive training their

model partially lacks reactivity; for this last issue one would just need to

implement the algorithm and perform a comparative study, but given the

previously illustrated limits we decided that it was not worth it.

3.4 Pavlovian module

For the Pavlovian module, in the same way of the previous modules, there

are some biological and psychological characteristic to follow (see Section 2.1.2

on page 7). Even in this case, we could not find a solid and generalizable

model for Pavlovian behavior in the literature, so we designed one. Since the

whole process is not completely straightforward, we will proceed one step

at a time. First of all, we decided to use an artificial neural network (ANN)

to get Pavlovian responses under the form of actions, so in the following

section we give the necessary basics for ANNs.

3Quote from the abstract of Sutton (1991).

44 CHAPTER 3. LOGICAL DESIGN

3.4.1 Basics of Artificial Neural Networks (ANNs)

For our purposes, we can think about ANNs simply as mathematical instru-

ments that, given a set of input values, gives a set of output values; we will

use Figure 3.104 as a support for the explanation.

Figure 3.10: An Artificial Neural Network (ANN).

In order to get an output from the ANN, the first thing that needs to

be done is setting the input: imagine that to each one of the red nodes is

associated a real value. After this, imagine that from every input node the

input is sent through all the arcs going out from its node, towards the proper

blue hidden nodes. To every arc we associate a weight and when the input

goes from an input node to a hidden node through that arc it is multiplied

by the weight associated to the arc; the weights are the crucial part of the

process, but for now we will just assume that somebody has set them in

the proper way. When all the inputs arrive to the hidden each hidden node

(i.e., all the inputs coming from input nodes connected to the hidden node

with arcs), the inputs are summed and pass through a sigmoid function. In

mathematical terms, we would have that the output of the hidden node j is

given by:

yj = sigm(
I∑
i=1

xi ∗ wij), (3.6)

where I is the total number of input neurons, J is the total number of hidden

neurons, xi is the input associated to input neuron i, wij is the weight of the

arc that goes from input node i to hidden node j and sigm is the sigmoid

4Figure from wikimedia.org

3.4. PAVLOVIAN MODULE 45

function defined by:

sigm(x) =
1

1 + e−x
. (3.7)

After this, the same process is repeated from the hidden nodes layer to

the output nodes layer; written with a formula, we would have:

yk = sigm(
J∑
j=1

yj ∗ wjk), (3.8)

where yj is the output of hidden neurons given by equation 3.6, sigm is the

sigmoid function defined by equation 3.7, K is the number of output neurons

and wjk represents the weight of the arc that goes from hidden node j to

output node k. If we put everything together, the relation that binds inputs

xi to every output yk is:

yk = sigm

(
J∑
j=1

sigm
(I∑
i=1

xi ∗ wij
)
∗ wjk

)

At this point, it is better to clarify some issues, in order to make this

explanation consistent with what can be found in the literature. The nodes

in Figure 3.10 are actually artificial simplified models of biological neurons

(the justification of this is outside the scope of this thesis), so typically

the term “artificial neuron” or “neuron” is used to call such nodes. Also,

as has already been introduced in the previous paragraphs, typically the

term “layer” is used to describe a homogeneous set of neurons with the

same conceptual role: in Figure 3.10 every layer has been highlighted with

a different color. Finally, it needs to be said that the ANN represented in

the figure is called “feed forward”, referring to the fact that inputs move

from left to right without any sort of loops and without ever returning to

a previous layer. Thus, the ANN represented in the figure is actually an

artificial feed forward network with one hidden layer. A last thing that can

be useful to notice is that the sigmoid is a non-linear function, so that this

ANN actually introduces a non-linear mapping between input values and

output values.

As we have already said and as can be guessed from equations 3.6 and 3.8,

the crucial part of the input-output mapping is the set of weights wij and

wjk, that defines how inputs are mapped to outputs, but how can we set

these weights? The answer is postponed to Section 3.4.3 on page 50, because

in order to answer the question we need to introduce the basics of genetic

algorithms.

46 CHAPTER 3. LOGICAL DESIGN

3.4.2 Basics of genetic algorithms

Now we need to talk about Genetic Algorithms; a lot could be said also

about this technique, but we will keep the explanation to the very minimum

required to understand what we did in our work (also in this case, the

biological foundations of GAs are outside the scope of this work). let us

proceed one step at a time in their understanding.

The first element of GAs is the individual: in our case an individual is

simply represented by an array of floating point numbers (we will explain

later on the meaning of this kind of individual); we can refer to the array

also with the term chromosome, since somehow the array contains the char-

acteristics of the individual. The next concept we need is the population,

that is basically just a set of N individuals with N reasonably big (in our

case, N=500). Of course, in a population all the individuals can and should

be different from each other, or in other words if we take two arrays and

compare them they will not probably contain the same numbers; this is an

important aspect of the algorithm because it regulates the variety in the

population, but it will be more clear later on.

At this point, starting from the first population, we want to generate

a second population that is somehow related to the first one; we are now

going to explain how it is related, while in order to understand the reason

for this the reader needs to arrive until the end of this section. In order to

generate the second population, we repeat several times the following oper-

ation: we select two individuals (for now we assume completely at random)

from the first population (let us call them indA and indB), we somehow

combine their content to get two new individuals (let us call them indC
and indD) and finally we add the new individuals indC and indD to the

second population. Obviously, if we repeat this operation several times we

can obtain a second population that has the same number of individuals as

the first one (for N=500, we need to repeat the operation 250 times). Of

course, the second population is related to the first one, since its individuals

are obtained through a recombination of individuals of the first population.

Once we have obtained the second population, we can actually trash the

first one; we can repeat this process over and over, obtaining every time a

population the depends on the previous one. The reason why we should do

this and how this happens will be clear later on.

Now let us analyze in more detail the operation of selection and recom-

bination of two individuals. The very first thing that needs to be done is

selecting two individuals from the first population and for now we will just

assumed that they are picked randomly: let us call them indA and indB.

3.4. PAVLOVIAN MODULE 47

Now we want to combine somehow indA and indB to generate other two

individuals indC and indD, in a way that is inspired to what happens in a

normal biological reproduction.

The operation that we need to perform now is called crossover, and it

happens with a probability CROSSOV ER PROB for each pair of selected

individuals; in case it does not happen, for now we just copy the chromosome

of indA into indC and the chromosome of indB into indD. In case we need

to perform crossover, we select a random point P along the chromosome:

we fill in indC with the first half (i.e., from the beginning to point P) of

indA and with the second half (i.e., from point P to the end) of indB, then

we do the opposite for indD (first the first half of indB, then the second

half of indA). Basically, we are doing the same that happens in absence of

crossover until point P , but then we switch individuals and from point P

on we start copying indB into indC and indA into indD. Figure 3.11 should

be useful for the comprehension of crossover.

Figure 3.11: Crossover in GAs. The dark line represents

the point P chosen for crossover.

At this point we need to perform another operation called mutation; it is

applied to both individuals indC and indD in the same way, so we will just

explain it as applied to a general chromosome, that is in our case an array

of real numbers. In order to mutate a chromosome, we go through all its

loci (where with the word locus we indicate in this case a single cell of the

array); for each locus, with probability MUTATION PROB we mutate

the single locus, meaning that we add a small real offset to the value of the

locus. It is important to notice that we are talking about an offset that can

be also negative, so that if a locus is mutated its value could increase but

also decrease. Figure 3.12 shows an example of mutation operator applied

48 CHAPTER 3. LOGICAL DESIGN

to an individual.

Figure 3.12: Mutation in GAs. The red loci indicate

the ones that have been selected for mutation.

Now indC and indD are ready to be put into the second population: we

have selected two individuals from the first population, we have combined

them through crossover, we have mutated both of them and we have inserted

the results in the second population, calling the new individuals indC and

indD. Repeating this operation over and over, we can generate the second

population; we can see in Figure 3.13 a flowchart that summarizes the whole

process. But why should we do this?

In order to understand the meaning of this, we are still missing a crucial

element of GAs: the fitness function. To every individual we associate

a fitness value, that basically states “how good” that individual is (the

explanation of how this value is determined is postponed to Section 3.4.3).

Once we have defined this, we would like to propagate through the various

generations characteristics coming from individuals with higher fitness: a

way to obtain this is to bias the selection process, picking with a higher

probability individuals with higher fit value. This intuitively leads the whole

process of generations to populations constituted by individuals with higher

fitness values, in the same way that the survival of the fittest led biological

creature to more evolved forms.

In order to obtain this result we used a process called roulette wheel

selection, that selects each individual i with probability:

pi =
fi∑N
j=1 fj

,

where fi is the fitness value of individual i and the j index iterates through

all individuals. The explanation of how this is algorithmically obtained is

outside the scope of this work.

There is one very last aspect of the algorithm we adopted that may be

useful to point out, that is the elitism technique. Trying to push even more

towards the preservation of the fittest individuals, at the very beginning

of every new generation process (i.e., the process that from one population

generates a new population through selection, crossover and mutation of the

3.4. PAVLOVIAN MODULE 49

Figure 3.13: The flowchart of one GA generation.

50 CHAPTER 3. LOGICAL DESIGN

individuals) we copy a certain small number of the fittest individuals directly

in the second population. This means that we take the M individuals (with

M small, for instance for us M = 4) from the first population that have the

highest fitness values and copy them as they are in the second population.

It is true that the fittest individuals have a higher probability of being

selected by the aforementioned process, but they are likely to be modified by

crossover and mutation before arriving to the new population; this process

tries to preserve as they are the most promising individuals.

Up to now, we substantially defined a process that allows to start with

a set of arrays of real numbers and, through a series of generations based on

some fitness values we still did not explore in depth, arrives to a final set of

arrays of real numbers that is likely to have higher fitness values. But how

are these fitness values determined? And why do we need this process?

3.4.3 How to encode an ANN?

One issue that was left open in Section 3.4.1 on page 44 is how to set the

weights for the ANN in order to get a good input-output performance and

now we are ready to explain that. The set of weights of an ANN is actually

a set of real numbers, so that if we code it into an array we could say that,

once the mapping from the ANN to the array has been fixed, there is a

biunivocal association between an individual (i.e., an array of real numbers)

and an ANN. Since in an instance of our model we fix the architecture and

the number of neurons for each layer of the ANN, there are no dimensional

problems since all the individuals will have the same length, defined by:

array length = ni ∗ nh + nh ∗ no,

where ni is the number of neurons in the input layer (red in Figure 3.10 on

page 44), nh the number of neurons in the hidden layer (blue in the figure)

and no the number of neurons in the output layer (green in the figure).

A side note should be made regarding the coding of an ANN in an array,

even though it may not be straightforward to understand for a reader not

experienced with ANNs. If we have a promising individual, we would like to

preserve as much as possible the feature that its ANN recognizes, at most

splitting one through crossover (plus slight modifications of all features due

to mutation, of course). For this reason, we basically code the ANN so that

we encode one feature at a time, followed by its output activation pattern.

This means that in the array we first place all the weights of the arcs going

into the first hidden neuron, then all the weights of the arcs going out

from that same neurons, then arcs going in the second hidden neuron, then

3.4. PAVLOVIAN MODULE 51

arcs going outside that same second hidden neuron and so on and so forth.

Anyway, we understand that this note could be not so straightforward to

understand and is probably not crucial for the success of the algorithm, so

we will not insist too much on this.

Now we know about ANNs, we know how to code the network’s weights

in an array and so how to evolve a good ANN that has a high fitness value.

As we may expect from what we have said until now, the whole purpose of

this process is to generate a “good” set of weights that provides realistic and

useful reflexes. But how do we define what is good in this context? And

what is the input and the output of the ANN?

3.4.4 The input and output of the ANN and the locality of

the Pavlovian module

In Section 3.1.2 on page 19 and in Section 3.2.3 on page 29 we introduced the

idea of a grid laid on the map that generates a certain number of squared cells

(in our case 49) in which the map is divided (again, the reader should pay

attention to the fact that we are not talking about the hexagonal tessellation

of the map). In the case of model-based and model-free modules, as has been

said in Sections 3.2.3 on page 29 and 3.3.6 on page 40, the prey considers

the absolute position in the map to compose the state, since it composes the

state with also a number in [0; 48] that indicates in which discrete squared

cell the prey is. In the case of the Pavlovian module it seems more compliant

with what is required by the underlying biological phenomenon to have a

more local view of the map, without any sort of global view or higher level

planning functionality. For this reason, we decided to use something similar

to a local view of the map, but with a slight modification.

Let us imagine that at a certain point in time we need to use the Pavlo-

vian module to generate an action. First of all, we determine the squared

cell in which the prey currently is: let us call it C. For the Pavlovian,

we will only consider this cell and the other 8 cells around C (it is ap-

proximately like drawing a square around the current prey’s position and

dividing it in 3x3 squared cells). The 9 cells at this point in time will be

of three kinds: EMPTY , OCCUPIED, and PREDATOR. For EMPTY

and OCCUPIED we apply what has been said in Section 3.1.2 on page 19;

additionally, we say that the squared cell that contains the predator is in

state PREDATOR. Finally, if the prey is close to the borders of the arena,

in order to get the 9 cells we assume that the squared grid extends even

outside the arena and that all the squares that cover areas outside the arena

are in state OCCUPIED. An example should foster the comprehension: if

52 CHAPTER 3. LOGICAL DESIGN

in the map represented in Figure 3.2 on page 20 and in Figure 3.4 on page

22 the prey is in the upper and leftmost corner of the arena and the predator

is at its right (precisely in the squared cell just at the right of the prey’s

squared cell), the resulting minimap would be the one shown in Figure 3.14.

Figure 3.14: Example of Pavlovian map. White cells

represent the EMPTY state, grey cells the OCCUPIED

state and the red cell is in PREDATOR state. The prey

is of course in the central cell.

Now we would like to use the minimap represented in the figure as input

for the ANN and get the chosen action as output. One simple coding is the

following one: for each one of the 9 cells we define 3 input neurons (so that

we will have 3∗9 = 27 input neurons), where each one of the 3 input neurons

associated to a cell represents one of the states of the cell, then we set to 1

the input corresponding to the state in which the cell actually is and to 0 the

other two. If the states are coded in input neurons in alphabetical order, for

Figure 3.14 we would have: 0−1−0−0−1−0−0−1−0−0−1−0 for the first

four cells (read by lines) to indicate that they are occupied, then 1−0−0 for

the empty cell, 0−0−1 for the predator and 0−1−0−1−0−0−0−1−0

for the last line. So, the final 27 inputs that translate the figure would be:

0− 1− 0− 0− 1− 0− 0− 1− 0− 0− 1− 0− 1− 0− 0− 0− 0− 1− 0− 1−
0− 1− 0− 0− 0− 1− 0. Additionally, there will be the bias input neuron

always set to 1, so that the actual input neurons will be 28, but this is not

very relevant for the understanding of our technique.

For the output, as it has been explained in Section 3.1.2 on page 19 we

need 9 actions: one will mean “try to get to the center of your current cell”,

while the other actions will push the prey towards the center of one of the

surrounding cells. In order to obtain this from the ANN we define 9 output

neurons, each one associated to one action, and we apply a winner-take-all

approach. Given the inputs (all 0s and 1s) and the real weights, each one

of the output neurons will assume a real value: at this point, the one with

3.4. PAVLOVIAN MODULE 53

the biggest value indicates which action will be executed, namely the action

associated to that particular output neuron.

As it can be seen, the Pavlovian module takes as input very simple

information: only a local part of the map and discretized and simplified

in squared cells. An interesting property associated to this abstraction is

that, while the other two modules somehow learn the map, the Pavlovian

module has generalization properties across maps that share some sort of

patterns in the structure. However, a drawback of this (that still makes

sense biologically) is that this module has sub-optimal performance with

respect to the other two modules: the reason is that given a certain pattern

of inputs like the one shown in Figure 3.14 we can associate to such pattern

only one action, even if it could appear in very different parts of the map

that would require different actions to get optimal performance. Also, as

it is expected from a Pavlovian system, the local view gives to the module

the property of being short-sighted, so that a purely Pavlovian control will

easily get stuck in corners and impasses.

At this point we know ANNs, we know how encode them in arrays and

how to evolve them through GAs and we know how to use ANNs to generate

actions for the prey. But how can we evaluate a set of reflexes so that the

GA will actually evolve a meaningful and useful set of reflexes to use in our

individuals?

3.4.5 How to evolve a good ANN?

In order to get a very good set of reflexes we do the following: we generate a

population of ANNs, where each one represents a set of reflexes (of course,

they are encoded in an array), then we perform a very big (for us 10.000)

number of population generations to improve the overall quality of the pop-

ulation in terms of fitness values, then finally we take the fittest element

of the final population and that individual will constitute the agent’s set of

reflexes. However, we still have not defined the procedure that we use to

evaluate a certain set of reflexes.

Currently, to evaluate a set of reflexes R coded in an array we do the

following. First of all, we take a single map, let us call it M , and we

manually define some fixed initialization points both for the prey and the

predator. This makes us lose flexibility, since we need to manually define

the points, but allows us to consistently reduce inequalities in the procedure

that follows, since all individuals will be evaluated starting from the same

initialization points. It would be of course an interesting future work to

investigate whether this manual procedure is necessary or if it could be

54 CHAPTER 3. LOGICAL DESIGN

automatized with random initializations, maybe raising consistently their

number to balance random effects (even if this would cause a not negligible

overhead in terms of computational expense).

After this, we take R and we create an ANN with the weights contained

in R: let us call it N . Now we initialize prey and predator in all the ini-

tialization cases that we have manually set and we run a not too short

episode (we used 50 state changes) to simulate what happens starting from

that point and using only the Pavlovian module to generate actions. As we

have said the Pavlovian control is not optimal, so we do not expect to get

good performance especially during the first generations, so we needed to

stop episodes. Even if the prey and predator lose contact, because the prey

leaves behind the predator or is hidden by an obstacle, we stop the episode.

When we are done, we sum all the rewards collected in all the episodes and

we divide by the total number of rewards collected, obtaining in this way

the evaluation of individual R (i.e., the individual represented by the set of

reflexes R).

Basically the evaluation of an individual, i.e., its fitness value, is the

average reward that the individual gets for these episodes starting from all

of the initialization points in turn. A more interesting approach would be

that of repeating the process for a certain number of maps, each one with its

manually set initialization cases, and averaging the results over the various

maps, but at this point in time we still did not try this road. Also, it may

be that the same patterns in different maps would require different actions,

so it is not even guaranteed that this alternative method would give better

results.

Before closing this explanation, it is better to point out a tricky aspect

of this training. At the beginning, we used much shorter episodes (10 state

changes), but we always got a solution we wanted to avoid. Basically, with

short episodes the solution that we always obtained from the GA consisted

in a set of reflexes that always pointed in a direction: for instance, a full

run of GA generations could provide a solution that always pointed towards

the upper leftmost corner of the arena and remained stuck there. We then

realized that this was probably due to the procedure we used to evaluate a

set of reflexes: an ANN that always points in one direction will result after

some time in an escape from most of the initialization points, so that a lot

of good performances will hide the episodes in which the prey gets stuck

because of the over simplistic action policy. Using long episodes solved the

problem, because this evaluation technique penalizes strongly action policies

that generate lots of null actions or block the prey in some corner (because

while the prey is stuck it will probably receive lots of strongly negative

3.5. INTEGRATING MODEL-BASED AND MODEL-FREE 55

rewards).

3.4.6 A note on the number of hidden layers

Even if we did not investigate thoroughly the optimal number of hidden neu-

rons in the ANN, we found out experimentally that a number of around 30

hidden neurons was sufficient to capture the complexity of the problem and

to generate good performance, thing that we assessed heuristically observing

the behavior of the prey when controlled only by the Pavlovian module.

Even if we do not report detailed results in the present thesis, we also

investigated the effect of removing the hidden layer and the effect of having

two hidden layers one after the other; in both cases it should be intuitive to

understand how to modify the presented ANN to obtain these new two con-

figurations, but in case it is not we deem that there are a lot of works in the

literature that present the concept (we will not present these modifications

here not to burden the discussion with something we did not use in the end).

Removing the hidden layer did not allow us to obtain a satisfactory perfor-

mance, because we always obtained action policies with lots of null actions

and typically strongly biased towards one direction as happened with the

training technique with short episodes; we believe that the hidden layer is

necessary to represent the complexity of the problem. Conversely, adding a

second hidden layer did not bring to an improvement in performance, prob-

ably because the performance with one hidden layer is already quite good;

because of this, we decided to keep the model as simple as possible and we

removed the second hidden layer.

3.5 Integrating model-based and model-free mod-

ules

A this point we have a complete design for the three modules, but we would

like them to work together as they actually to in a human brain. For the

integration of the modules, we decided to choose which one of the modules

had to generate the action and then that module alone would pick an action

to perform. An alternative would be that of always asking to all the three

modules to evaluate all the actions for each time step, then somehow blend

their evaluations to get a sort of overall evaluation for each action, then

finally apply again a winner-take-all procedure. One relevant drawback of

this second technique though, that is an important reason why we discarded

it, is that the model-based module should generate an evaluation for all

56 CHAPTER 3. LOGICAL DESIGN

actions at each time step even in advanced parts of the learning and this is

known to be too expensive from a computational point of view.

We begin with the integration of the model-based and model-free mod-

ules. There are some works in the literature that claim that the relative un-

certainty of model-based and model-free modules might be involved in their

arbitration (see for instance Glascher et al. (2010) and Lee et al. (2014)).

Glascher et al. (2010) actually computes the uncertainty of the model-based

module (that they call SPE), but they do not use it for the arbitration, that

is left to over simplistic and non realistic techniques (i.e. an automatic ex-

ponential decay, that would need an external reset signal if the environment

changed). In Lee et al. (2014) there is the only really promising computa-

tional technique for arbitration based on relative uncertainty: for now we

did not consider it for a matter of simplicity, but it would be of course really

interesting to study it in the future to try to solve the integrations system’s

problems that we just outlined. However, even for this technique there are

several problems to solve. First of all, they still adopt the approach that

evaluates actions with all modules and then weights them based on their un-

certainties, but we have already explained that this is not reasonable from

a computational point of view. Then, their Bayesian approach to compute

distributions of uncertainty might generate sharply peaked distributions af-

ter an extensive training and this might cause the system to lose reactivity

after long periods of training. Finally, they do not consider the Pavlovian

module, but in our case we should find a way to take also this module in

consideration for the arbitration.

As it has been explained in Section 2.1.2 on page 7, we would like to

use the model-based module whenever there is some novelty for the prey,

so for the integration we decided to use the δ signal, that is defined by

equation 3.3 on page 27 and shown in Figure 3.7 on page 29. As we said

before, such signal represents somehow the surprise of the prey with respect

to expectations, so it looks reasonable to use it to arbitrate between model-

free and model-based modules. let us proceed one step at a time.

First of all, we separate positive and negative δ values and we pass them

through two exponentially decaying moving average filters, defined by:

if δ ≥ 0 :

{
δ̄pos ← (1− ρ) ∗ δ̄pos + ρ ∗ δ
δ̄neg ← (1− ρ) ∗ δ̄neg

if δ < 0 :

{
δ̄pos ← (1− ρ) ∗ δ̄pos
δ̄neg ← (1− ρ) ∗ δ̄neg + ρ ∗ δ

(3.9)

The equation might look rather confusing, but it is actually quite simple. ρ

is is a parameter (typically small) that regulates how fast the filter changes

3.5. INTEGRATING MODEL-BASED AND MODEL-FREE 57

its value, δ̄pos filters the positive deltas and δ̄neg filters the negative ones.

Whenever a new δ comes, it is filtered in the proper filter (either δ̄pos or

δ̄neg), while the other filter just decays exponentially. This is coherent with

what happens biologically: if something happens that is not coherent with

our expectations, we will slowly forget about it.

Basically, δ̄pos represents the amount of positive expectation in a certain

moment (i.e., how much reality was better than we expected), while δ̄neg
represent negative expectations (i.e., how much reality was worse than ex-

pected); now we just need to pass both of them through a threshold. In

the case of negative deltas, if δ̄neg is less than a certain amount we will use

the model-based module to generate the action, because the prey is very

surprised, while if it is closer to zero we will used the model-free module.

The same applies for δ̄pos, but of course in the other way, so that we use

model-based if δ̄pos is above another threshold. Actually, it is enough that

one of the two filters surpasses the threshold to use model-based, so that if

we want to formalize this we will have:

if (δ̄neg < model threshneg OR δ̄pos > model threshpos)

use model based

else

use model free

All of this should look fairly simple and logic based on what we have

done until now and based on Figure 3.15, that shows a typical pattern of

deltas that the prey receives during a training, in this case on the map shown

in Figure 3.2 on page 20. Figure 3.16 enriches Figure 3.7 on page 29 with

the added module. But the reader could have one doubt: why should we use

a filter before applying the threshold? Why cannot we apply the threshold

directly on the values of δ? The answer lies in the fact that we are actually

arbitrating between modules that generate actions independently one from

each other. Since δ values change rapidly, if we did not pass them through a

filter we would continuously jump from one module to the other to generate

actions and we would obtain an inconsistent set of actions along time.

Let us make a very simple example to explain this. Let us imagine that

in a certain situation both “escape to the right” and “escape to the left”

are reasonable actions; let us also imagine that, for whatever reason, the

model-based module would like to apply one of the two and the model-free

module would like to perform the other one. Now, if the control quickly

alternated between the two modules we would get contradictory actions

that would result in the prey staying still or anyway moving in a strongly

suboptimal way. If instead we filter deltas, it is likely that one of the two

58 CHAPTER 3. LOGICAL DESIGN

Figure 3.15: Example of delta values during a train-

ing. Notice that, in order to be analyzable, the values have

been filtered with a moving average filter of size 1000. The

delta values have been registered during a training of the

model-free module alone on the map shown in Figure 3.2.

Figure 3.16: Two modules integration. The figure

shows how to add to Figure 3.7 the model-based mod-

ule. The “Action chooser” block behaves as described in

Section 3.5.

3.6. THREE MODULES INTEGRATION 59

modules (which one depends on the situation) will take the control, allowing

the prey to effectively escape in one of the two directions.

3.6 Adding the Pavlovian module: three modules

integration

In order to integrate the Pavlovian module with the other two modules

we apply similar principles to those explained in the previous section. In

particular, we still consider δ̄neg (so we are still filtering δ values for the same

reasons explained in the previous section), but this time we filter through

a threshold that is negative and bigger in module than the one used for

model-based. Up to now, then, we are basically applying ideas very similar

to those aforementioned.

However, for the Pavlovian module we also had to apply another type of

filtering, in fact it makes sense to apply reflexes only if there is a consistent

level of pain (i.e., the pain signal is strongly negative). We noticed that

sometimes deltas were big in module because of long chains of updates,

but they were not always associated to highly negative reward signals: this

means that, even if in that precise moment the experienced pain was limited,

we were activating reflexes because of the function values of the surrounding

environment, that were reflected in δ values. For this reason, we also applied

a filter based on pain, in conjunction with the filter explained beforehand.

Formalizing this and putting it together with what we have said in the

previous section we get:

if (δ̄neg < pavl threshneg AND last reward < reward thresh)

use Pavlovian

else if (δ̄neg < model threshneg OR δ̄pos > model threshpos)

use model based

else

use model free

where of course pavl threshneg < model threshneg.

The reader should notice that, while model-based is activated for both a

positive and a negative surprise, Pavlovian is only activated for a negative

surprise: in fact, the reflexive behavior as it is meant in our work is intended

only as a protective layer from strongly negative rewards. Also, one could

refer to one’s everyday life to understand this: we all have the instinct of

retracting our hand from a boiling pan, but if we touch a pan that we

expected to be hot and it is actually cold we do not have the reflex of

touching it. Figure 3.17 enriches Figure 3.16 with this last modification.

60 CHAPTER 3. LOGICAL DESIGN

Figure 3.17: Three modules integration. The figure

shows how to add to Figure 3.16 the Pavlovian module.

The “Action chooser” block behaves as described in Sec-

tion 3.6.

A final thing that might be interesting to notice is that if the prey is

exploring an unknown environment the Pavlovian module is somehow the

one with the highest priority because it has the biggest threshold in module,

followed by the model-based module and finally by the model-free module.

3.7 A note on the processes of learning

At this point, the reader could have some doubts about the relation between

the evolutionary process realized through GAs and explained in Section 3.4.5

on page 53 and the training of the other two modules (model-based and

model-free). The approach that we adopted is the following: first of all, we

evolve a good set of weights in the way that has been explained beforehand

especially in Section 3.4.5 (using of course only the Pavlovian module for

the control during the fitness evaluations), then we fix the agent’s weights

to the weights of the best individual resulting from the GA and we start the

learning for the other modules.

The process can be biologically thought of in this way: we assume that

an individual is born with hard-coded reflexes that evolution gave him to

protect him and then modifies his behavior through higher forms of learning,

here represented by model-based and model-free modules. It needs to be said

3.7. A NOTE ON THE PROCESSES OF LEARNING 61

that, in order to have complete adherence with the biological process, the

fitness evaluation in the GA should be performed on a way longer period

of time using all the three modules for the control and not only on few

initialization cases and only using Pavlovian control. Anyway, given the

typical population size and number of generations required for a complete

training process this is currently computationally prohibitive; it would be

interesting, though, during the future developments of the current research

to investigate some way to adopt this different training process, maybe at

least through a hybrid approach.

62 CHAPTER 3. LOGICAL DESIGN

Chapter 4

Results

In this chapter we present the results obtained applying our model to the

framework that we described in Section 3.1. We will try to keep results

and parameter studies to a minimum, not trying to show all the results we

obtained, but rather focusing on the ones that can give more interesting

insights into our model. We would also like to point out something about

the results, especially the convergence graphs: since when we needed to

compare two learning curves we plotted them on the same figure and since

in many cases it was necessary to point out certain details of the graphs, we

often decided to allow Matlab to automatically resize the axes; we deem that

rather than affecting the understandability of the material this will enhance

it because of the aforementioned reasons, but in case for some reason the

reader wants to compare results reported in different figures some extra

attention should be paid.

In Section 4.1 we talk about the maps used for tests, in Section 4.2 we

empirically prove the convergence of the techniques we adopted for goal-

directed and habitual control (even though model-free module uses a well

known technique, we report it for completeness), in Section 4.3 we show the

typical results of a GA training to produce a set of reflexes, in Section 4.4

we show how all combinations of modules can actually reach convergence,

in Section 4.5 we analyze in more detail the learning process trying to find

out how many properties that are expected from the biological background

are actually shown by our model, then in Section 4.6 we propose a new

experimental procedure useful for some final analyses on data and we show

some more experimental results, in Section 4.7 we show results related to

the OCD pathology, then finally in Section 4.8 we explain some current

limitations to our work and at the same time we give some ideas that may

solve the issues.

63

64 CHAPTER 4. RESULTS

4.1 The maps used for tests

One map that we used for our tests is the one shown in Figure 3.2 on page

20 and the associated squared grid discretization is shown in Figure 3.4

on page 22. Another map used for tests is shown in Figure 4.1 and its

Figure 4.1: A second map used for tests.

associated squared grid discretization is shown in Figure 4.2. Where it is

not differently specified, the results refer to the first of these two maps; also,

in all the results reported in this chapter we used a set of reflexes trained in

the first map.

It is better to spend some extra words here about the two maps. They

look quite similar, because a certain number of patterns repeat, but one

should not get confused by this. From the eyes of the Pavlovian module,

that somehow sees the world as is shown in Figures 3.4 and 4.2, it is true

that some patterns are common, but not all of them (e.g., look at the sides

and the four corners). For the instrumental learning this should be even

more evident: since model-free and model-based modules basically “learn

the map” and do not learn relative patterns, the two maps look very different

from these modules’ perspective. They will need to learn that grey squared

cells in Figure 3.4 can be crossed if the reference map is the one of Figure 4.2

4.2. MODEL-BASED AND MODEL-FREE 65

Figure 4.2: The squared grid discretization based

on Figure 4.1. The white squares represent cells consid-

ered free, while the grey squares represent cells considered

occupied by obstacles.

and vice versa for cells that were considered empty in the first map and are

occupied in the second one.

In this sense, this is one of the aspects of our work where the fact that

our focus was on the biological similitude of the model and not on the prey-

predator problem made a big difference in our design choices. If we had tried

to solve the prey-predator problem probably we would have chosen some

solution that could give also to the instrumental control better generalization

properties, but since our focus was on the model this difference was actually

useful to us: we just needed to change the number and position of the

obstacles in order to generate a significant change in the underlying MDP,

thus allowing us to study with a minimum redesign effort how our model

reacted to different situations.

4.2 Convergence of model-based and model-free

modules alone

First of all, we show the convergence of model-free (see Figure 4.3) alone

through a sample run. It may be useful to spend some words describing how

we obtained these graph, since the procedure is somehow common for most

of the results shown in this chapter. First of all, we ran a learning process

consisting in several episodes and we registered the average rewards (i.e.,

punishments) that the prey received during the chasing part of each episode;

after this, what we plot is that list of average rewards, but passing it through

a moving average filter of size 1000 (this last part is necessary because

66 CHAPTER 4. RESULTS

F
ig

u
re

4.3:
C

o
n
v
e
rg

e
n

c
e

o
f

th
e

m
o
d

e
l-fre

e
m

o
d

u
le

a
lo

n
e

o
n

th
e

m
a
p

o
f

F
ig

u
re

3
.2

.

4.2. MODEL-BASED AND MODEL-FREE 67

the rewards oscillate too much to be directly analyzable graphically). For

completeness, it also needs to be said that we exclude from the graphs

the rewards of the first 1000 episodes because of the moving average filter

(wherever this possibly had an impact on the results’ meaning we analyzed

the data to make sure that what we represent is conceptually sound even

without the first episodes).

For further completeness, we also decided to show an example of a certain

situation seen from the eyes of the model-free module (see Figure 4.4). In

the case of the model-free module this is quite interesting because we can

show side by side the evaluation of states given by the critic and the action

policies that were subsequently defined from the actor. From the cell analysis

we can see how of course the worst area is the one strictly around the

predator and it becomes increasingly better as we go far from it. In the

policy analysis, the actions that are interesting to observe are the ones that

are in the few cells around the predator (for us the action policy adopted

when prey and predator are not in sight1 are not important, because there

is no pain involved). We can see how, depending on the distance, the chosen

actions well represent high level actions such as “try to leave the predator

behind” or “hide behind an obstacle” (remember that the predator is slower

than the prey, so leaving it behind becomes a viable option).

At this point, it may also be useful to review Figure 3.15 on page 58.

As it can be seen, δ values proceed on average from strongly negative values

towards values closer to zero as the module moves towards convergence.

This is one of the main reasons why the integration with a threshold on

filtered values of δ that was explained in Sections 3.5 and 3.6 works and

makes sense. A second reason is the deep meaning of δ values that was

explained in this thesis).

Another reason why the integration technique works can be seen taking a

closer look at the δ values that bring to convergence performing a histogram

analysis, shown in Figure 4.5. The results in the figure show that at the

beginning of the training δ values are unimodal; we performed the same

analysis for the following intervals of episodes and we obtained the same

result, with the mode of the distribution that was moving towards zero and

with a more peaked distribution (we do not report them here for a matter of

space). Another detailed analysis of these values is reported in Section 4.8.

Finally, we report also a sample run of the model-based module up to

convergence (see Figure 4.6) . It is left as future work the task of designing

1We remind the reader that this means that the prey is hidden behind an obstacle or

prey and predator are too far from each other, where the limit distance is roughly half of

the dimension of one side of the arena.

68 CHAPTER 4. RESULTS

F
igu

re
4.4:

C
e
ll

a
n

d
p

o
lic

y
a
n

a
ly

sis
fo

r
th

e
m

o
d

e
l-fre

e
m

o
d

u
le

.
T

h
e

p
osition

of
th

e
p

red
ator

is
fi

x
ed

at
th

e
to

p
of

th
e

m
a
p

(d
a
rkest

cell
in

th
e

cell
an

aly
sis,

b
lu

e
d

iam
on

d
in

th
e

p
olicy

an
aly

sis),
th

en
w

e
m

ove

arou
n

d
th

e
p

rey
an

d
o
b

serve
h
ow

th
e

actor
an

d
th

e
critic

b
eh

av
e.

In
th

e
left

p
art

(cell
an

aly
sis)

w
e

sh
ow

th
e

avera
g
e

sta
te

valu
e

fo
r

ea
ch

sq
u

ared
d

iscretized
cell

w
h

en
th

e
p

red
ator

is
in

th
e

aforem
en

tion
ed

p
osition

an
d

th
e

p
rey

is
m

ov
in

g
arou

n
d

.
T

h
e

tw
o

d
ark

b
lu

e
cells

rem
ain

ed
w

ith
th

e
sam

e
valu

e
th

at
th

ey
h

ad
at

th
e

very
b

eg
in

n
in

g
b

ecau
se

th
ey

co
in

cid
e

w
ith

ob
stacles,

so
sin

ce
th

e
p

rey
can

n
ever

go
th

ere
th

eir
valu

es
w

ill

n
o
t

b
e

u
p

d
a
ted

.
In

th
e

rig
h
t

p
a
rt

(p
olicy

an
aly

sis)
w

e
fi

x
th

e
p

red
ator

as
w

e
h

ave
said

b
efore,

w
e

p
lace

th
e

p
rey

in
all

p
o
ssib

le
h

ex
ag

o
n

a
l

tiles,
w

e
ch

eck
w

h
ich

action
th

e
actor

w
ou

ld
p

ick
an

d
w

e
rep

resen
t

it
w

ith

an
a
rrow

.
T

h
e

red
sq

u
ares

rep
resen

t
th

e
ob

stacles,
or

m
ore

p
recisely

th
e

ex
act

ob
stacles

th
at

w
e

d
efi

n
ed

even
b

efore
th

e
h
ex

ag
o
n

a
l

tessella
tion

w
as

p
erform

ed
(of

cou
rse,

d
u

e
to

th
e

tessellation
th

e
fi

n
al

sh
ap

e
of

th
e

o
b

stacles
w

ill
b

e
slig

h
tly

d
iff

eren
t).

4.2. MODEL-BASED AND MODEL-FREE 69

Figure 4.5: Histogram analysis of δ values. We took

δ values of the first 10000 episodes, we divided the whole

range of deltas obtained during the training in 50 bins and

we counted how many δ values we had in each bin for the

first 10000 episodes.

70 CHAPTER 4. RESULTS

F
igu

re
4
.6

:
C

o
n
v
e
rg

e
n

c
e

o
f

th
e

m
o
d

e
l-b

a
se

d
m

o
d

u
le

a
lo

n
e

o
n

th
e

m
a
p

o
f

F
ig

u
re

3
.2

.

4.3. TRAINING OF PAVLOVIAN MODULE 71

new procedures to better visualize and analyze what is happening during this

module’s convergence, but for our current purposes the convergence graph

was sufficient. It is anyway an important result because the technique that

we are using for goal-driven control is novel, so the fact itself of empirically

proving its convergence is an important achievement.

4.3 Training of Pavlovian module

As we have said in Section 3.7, before integrating the modules we need to

train a set of reflexes using GAs. We show in Figure 4.7 the GA run that

Figure 4.7: Evolution of reflexes through a GA. The

dark blue line represents the average fitness during each

episode, the light blue shade around it represents the stan-

dard deviation of individuals’ fitness values and the red

line is the fitness value of the best individual in each gen-

eration.

generated the reflexes that we use in this chapter. Since we already explained

72 CHAPTER 4. RESULTS

how we obtained the fitness values in Section 3.4.5, we will not spend other

words about it; the only thing that we would like to remind the reader

is that, even if fitness values are rewards, they are not comparable to the

effective rewards of the other convergence graphs (the averaging of rewards

and the initialization of episodes to produce fitness values are different).

We want to point out to the reader that, given the nature of reflexes, we

cannot make a convergence study similar to those shown for the other mod-

ules. There are several reasons behind this, but the main one is that Pavlo-

vian control only works at a reduced distance between prey and predator

(i.e., for substantial amounts of pain), so a purely Pavlovian control would

probably seldom lead to infinite time episodes, because it would push the

prey to escape from the predator, but often not enough to leave it behind or

to hide behind an obstacle (of course, this also depends on the map, on the

predator’s speed and so on). We heuristically validated the final outcome

of the GA: we set up a prey with a purely Pavlovian control with the best

reflexes produced by the GA, we observed the resulting behavior and we

verified that it was as expected. Again, since even in this case we were not

sure about the performance of this technique, the fact that we could use it

to obtain a good output behavior is in itself an important achievement.

4.4 Convergence of the aggregation of modules

Now we show the convergence of the various aggregations of modules that, as

aforementioned, it is by itself a very important result because it shows that

all combinations can learn and reach convergence. We report in Figure 4.8

the convergence of the aggregation of model-free and Pavlovian modules, in

Figure 4.9 the convergence of the aggregation of model-based and model-free

modules, then in Figure 4.10 the aggregation of the three modules.

Even if the pair of model-based and Pavlovian modules is not very rel-

evant from a biological point of view, we report anyway for completeness a

study of its convergence in Figure 4.11. Anyway, because of this reason we

will not explore it further.

One thing that needs to be said is that, depending on the tuning of the

parameters, the aggregation of different modules gives a different output

performance and in the graphs that we presented in this section we did not

use any particular combination of parameters. This means that these graphs

were only meant to show the convergence of the various combinations and

are not suitable for a comparison: we postpone this activity to the following

sections.

4.4. CONVERGENCE OF THE AGGREGATION OF MODULES 73

F
ig

u
re

4
.8

:
C

o
n
v
e
rg

e
n

c
e

o
f

th
e

in
te

g
ra

ti
o
n

o
f

m
o
d

e
l-

fr
e
e

a
n

d
P

a
v
lo

v
ia

n
m

o
d

u
le

s.

74 CHAPTER 4. RESULTS

F
ig

u
re

4.9:
C

o
n
v
e
rg

e
n

c
e

o
f

th
e

in
te

g
ra

tio
n

o
f

m
o
d

e
l-b

a
se

d
a
n

d
m

o
d

e
l-fre

e
m

o
d

u
le

s.

4.4. CONVERGENCE OF THE AGGREGATION OF MODULES 75

F
ig

u
re

4
.1

0:
C

o
n
v
e
rg

e
n

c
e

o
f

th
e

in
te

g
ra

ti
o
n

o
f

th
e

th
re

e
m

o
d

u
le

s
(m

o
d

e
l-

b
a
se

d
,

m
o
d

e
l-

fr
e
e

a
n

d

P
a
v
lo

v
ia

n
).

76 CHAPTER 4. RESULTS

F
ig

u
re

4.11:
C

o
n
v
e
rg

e
n

c
e

o
f

th
e

in
te

g
ra

tio
n

o
f

m
o
d

e
l-b

a
se

d
a
n

d
P

a
v
lo

v
ia

n
m

o
d

u
le

s.

4.4. CONVERGENCE OF THE AGGREGATION OF MODULES 77

Even if we are not going to show this analysis for every single pair be-

cause we believe that there is no important information added, for the three

modules integration we report also an analysis of the activation frequencies

of the three modules in Figure 4.12. As it was expected, if at the beginning

Figure 4.12: Frequencies analysis of the three mod-

ules integration. From the left to the right we have the

percentages of activation during a sample run of the three

modules model-based, model-free and Pavlovian. The per-

centages were obtained passing through a moving average

filter of size 5000 the three vectors containing the integer

1 when each module was activated and 0 when it was not,

then multiplying the results for 100.

the most active modules are model-based and Pavlovian, that are better at

handling novelty, as time goes by model-free slowly takes control of most of

the situations. Also, as it is reasonable to imagine, we do not use (apart

from the very beginning) an extensive amounts of reflexes, since they are

typically sub-optimal actions and are mainly useful at the beginning of an

exploration.

Up to now, we could say that everything behaves as we expected, showing

78 CHAPTER 4. RESULTS

that it is possible to mix these modules’ actions to produce meaningful

behaviors. Actually, one could notice some small flaws in the integration

technique, but we will discuss them in Section 4.8.

4.5 Comparison of integration of modules

After showing the convergence of all possible combinations of modules, we

started to explore in more detail the convergence process, trying to under-

stand if it was possible to handle the arbitration process between modules

in such a way that would allow to get the best of all of them. As we have

already shown in Figure 4.12, when convergence is reached the model-free

modules picks the great majority of actions, meaning that we can have good

performance at a very low computational cost (actually, there’s something

more that needs to be said and we will do it later on in this section).

Following this, we concentrated on the beginning of the convergence

process, that is of high interest since most of the interesting environment

for future applications are likely to be dynamic. The first thing we did was

showing how through some parameter tuning model-based and Pavlovian

modules could bring benefits to the sole model-free module.

First of all, we compared the model-free module alone with the integra-

tion of model-free and Pavlovian modules on the map shown in Figure 3.2

and we report the results in Figure 4.13, with a detail on the first episodes

shown in Figure 4.14. For time reasons we decided to cut the length of the

training, because anyway the results reported in the previous section guar-

antee us convergence and because our main focus here was on the first part

of the training. However, to have more reliable results we decided to launch

10 runs for both combinations and average the results.

Since in the graphs we cut out the first 1000 episodes, we decided in this

case to perform one further analysis to make sure that even for those episodes

the performance is as we expect. What we did was first of all taking the two

vectors of rewards averaged over 10 runs (basically the vectors that we show

in Figure 4.13 after filtering them with the moving average filter of size 1000)

and then comparing them during the first 1000 episodes. In particular, if we

call avgModRew the vector that has the reward performance of the model-

free module averaged over 10 runs and avgLowRew the same vector for

the integration of model-free and Pavlovian modules, we used the following

formula for the comparison:

comp(x) = mean(avgModRew(1 : x)− avgLowRew(1 : x)). (4.1)

The interpretation of the equation is the following: let us say that we want to

4.5. COMPARISON OF INTEGRATION OF MODULES 79

F
ig

u
re

4
.1

3:
C

o
m

p
a
ri

so
n

o
f

m
o
d

e
l-

fr
e
e

a
lo

n
e

a
n

d
in

te
g
ra

ti
o
n

o
f

m
o
d

e
l-

fr
e
e

a
n

d
P

a
v
lo

v
ia

n
.

T
h

e

m
o
d

el
-f

re
e

m
o
d

u
le

’s
p

er
fo

rm
an

ce
is

sh
ow

n
in

b
lu

e,
w

h
il

e
th

e
in

te
gr

at
io

n
’s

p
er

fo
rm

an
ce

is
sh

ow
n

in
re

d
.

B
ot

h

o
f

th
em

a
ct

u
a
ll

y
re

p
re

se
n
t

th
e

av
er

ag
e

p
er

fo
rm

an
ce

ov
er

10
ru

n
s,

in
or

d
er

fo
r

th
em

to
b

e
m

or
e

re
li

ab
le

.
In

F
ig
u
re

4
.1
3

w
e

ca
n

se
e

a
d

et
a
il

o
f

th
e

fi
rs

t
ep

is
o
d

es
.

80 CHAPTER 4. RESULTS

F
ig

u
re

4.14:
D

e
ta

il
o
f

F
ig

u
re

4
.1

3
.

H
ere

w
e

sh
ow

ep
iso

d
es

b
etw

een
th

e
1000th

an
d

th
e

2000th
.

4.5. COMPARISON OF INTEGRATION OF MODULES 81

compare the first x episodes, then we will take the first x cells of both vectors

(as the notation “1 : x” suggests), compute the element-wise difference2

obtaining as a result a single vector of size x, then eventually compute the

average of that vector’s values. If one thinks carefully about it, a negative

value means that the model-free module alone has worse performance than

the integration and vice versa. Results for these vectors are reported in

Table 4.1.

x comp(x)

100 -0.2422

200 -0.2370

300 -0.2483

500 -0.2280

750 -0.1928

1000 -0.1420

Table 4.1: Comparison for the first 1000 episodes,

not represented in Figure 4.14.

Basically, what we can see here is that we actually can get an improve-

ment in the registered performance at the beginning of the learning process

with respect to model-free module alone, even if there is a tradeoff in the

long term convergence process. The reader needs to be careful anyway: due

to the high derivative in the first part of the learning process, it might be

easy to underestimate the gain in the first episodes. Basically, we could say

that mixing these two modules one can obtain an improvement in perfor-

mance at the beginning of the convergence process, giving up some of the

long term precision (we will come again on this in Section 4.8). Precise sta-

tistical analyses of this tradeoff remain an important part for future work.

For the moment, what we believe is that this tradeoff is biologically sound:

for an individual it may not be a big deal a difference in pain levels if we

are talking about small amounts, while it may make a serious problem if the

involved amounts of pain are considerable.

We then tried to use the same set of reflexes (that, as we want to remind

to the reader, has been trained on the map of Figure 3.2 on page 20), to

obtain the same result on the map represented in Figure 3.4 and a detail of

2An example of element-wise difference with vectors of size 2 is the following:[
3

5

]
−

[
2

−3

]
=

[
3 − 2

5 − (−3)

]
=

[
1

8

]

82 CHAPTER 4. RESULTS

the results is reported in Figure 4.15 (the long term convergence is longer

but similar, so we will not show it here).We also repeated the analysis with

Equation 4.1 and the results are reported in Table 4.2. The first thing that

x comp(x)

100 -0.1326

200 -0.0410

300 -0.0586

500 -0.0618

750 -0.0767

1000 -0.0598

Table 4.2: Comparison for the first 1000 episodes,

not represented in Figure 4.15.

we need to say is that, even if we used the same set of reflexes that we

used on the other map, we needed to use a different threshold when we

changed the map; anyway, we will spend more time on this in Section 4.8.

The positive aspect of this result is that the Pavlovian actually showed the

generalization properties that we wanted to see. It remains as future work to

check how different the map can be to still get generalization and to improve

the generalization aspects of the Pavlovian module.

After this, we passed to the integration between model-based and model-

free modules, again through some parameter tuning. The overall results are

shown in Figure 4.16, but again due to the time scale and to the high deriva-

tive at the beginning of the learning curve it is not easy to see the first part

of the graph, so we provide the more detailed Figure 4.17. Again, we realized

an analysis with an equation similar to Equation 4.1, where negative values

meant that the integration of modules was better than model-free alone, and

the results are reported in Table 4.3. Basically, the same reasoning that we

applied for the former comparison applies here, so we will not repeat it.

At this point in time the last thing to try was starting with three modules

and then deactivating one at a time and show that the same advantages

that we have shown until now could be transferred to the three modules

system. However, this was not the case as it can be observed in Figure 4.18.

Basically, what we observed was that we did not lose the advantage that

was given by the model-based or the Pavlovian modules to the model-free

module, but that having them together did not give any additional benefits.

Even in this case, however, there is a tradeoff that makes the performance

worse on the long run. Our explanation, that should be further explored

4.5. COMPARISON OF INTEGRATION OF MODULES 83

F
ig

u
re

4.
15

:
D

e
ta

il
o
f

a
se

c
o
n

d
c
o
m

p
a
ri

so
n

.
In

th
is

ca
se

w
e

u
se

re
fl

ex
es

tr
ai

n
ed

on
th

e
m

ap
of

F
ig
u
re

3
.2

a
n

d
w

e
ra

n
10

ru
n

s
fo

r
b

o
th

co
m

b
in

at
io

n
s

on
th

e
m

ap
of

F
ig
u
re

3
.4

.
A

ga
in

w
e

sh
ow

th
e

ep
is

o
d

es
b

et
w

ee
n

th
e

10
0
0t

h
an

d
th

e
2
0
00

th
.

84 CHAPTER 4. RESULTS

F
igu

re
4.16

:
C

o
m

p
a
riso

n
o
f

th
e

m
o
d

e
l-fre

e
m

o
d

u
le

a
lo

n
e

a
n

d
o
f

th
e

in
te

g
ra

tio
n

o
f

m
o
d

e
l-b

a
se

d

a
n

d
m

o
d

e
l-fre

e
m

o
d

u
le

s.
T

h
e

m
o
d

el-free
m

o
d

u
le’s

p
erform

an
ce

is
sh

ow
n

in
b

lu
e,

w
h

ile
th

e
in

tegration
’s

p
erform

a
n

ce
is

sh
ow

n
in

red
.

B
oth

of
th

em
actu

ally
rep

resen
t

th
e

av
erage

p
erform

an
ce

over
10

ru
n

s,
in

o
rd

er
for

th
em

to
b

e
m

o
re

relia
b

le.
In

F
igu

re
4
.1
7

w
e

can
see

a
d

etail
of

th
e

fi
rst

ep
iso

d
es.

4.5. COMPARISON OF INTEGRATION OF MODULES 85

F
ig

u
re

4
.1

7
:

D
e
ta

il
o
f

F
ig

u
re

4
.1

6
.

H
er

e
w

e
sh

ow
ep

is
o
d

es
b

et
w

ee
n

th
e

10
00

th
an

d
th

e
30

00
th

.

86 CHAPTER 4. RESULTS

F
ig

u
re

4
.1

8
:

A
re

w
a
rd

c
o
m

p
a
riso

n
b

e
tw

e
e
n

th
e

sy
ste

m
c
o
m

p
le

te
o
f

th
e

th
re

e
m

o
d

u
le

s
a
n

d
th

e

sa
m

e
sy

ste
m

w
ith

th
e

m
o
d

e
l-b

a
se

d
m

o
d

u
le

d
isa

b
le

d
.

T
h

e
sy

stem
w

ith
th

ree
m

o
d

u
les

activated
is

rep
resen

ted
b
y

th
e

b
lu

e
lin

e,
w

h
ile

th
e

on
e

in
w

h
ich

w
e

sh
u

t
d

ow
n

th
e

m
o
d

el-b
ased

m
o
d

u
le

is
rep

resen
ted

b
y

th
e

red
lin

e.

4.6. AN ANALYSIS WITH INVERTED REWARDS 87

x comp(x)

100 -0.1375

200 -0.1723

300 -0.1891

500 -0.1772

750 -0.1565

1000 -0.1283

Table 4.3: Comparison for the first 1000 episodes,

not represented in Figure 4.16.

in the future, is that basically when it comes to learning avoidance actions

the model-based and the Pavlovian module give to the model-free module a

conceptually somehow similar kind of benefit, so that once one of them has

covered the gap adding also the other does not bring additional benefits.

To wrap up what we have seen until now, first of all we showed the

good performance of the three single modules (especially the two that were

newly designed), then we showed that mixing the Pavlovian or the model-

based modules with the model-free module makes it faster without losing

its quality of being computationally cheap on the long run, then finally we

showed that we could not obtain an advantage in terms of rewards when

mixing three modules together (and we gave our hypothesis about why we

could not do this). However, what we analysed until now is the avoidance

learning, that is the learning of how to choose actions to avoid pain, but

there is another concept that is very important: action extinction. How

does our model behave when something that was a pain source stops being

that?

4.6 An analysis with inverted rewards

Another kind of learning that is important to analyse is that of action ex-

tinction, that as has been explained in the previous chapters is a common

test mode in psychology (see e.g. Gillan et al. (2014)). It is actually tricky

to design a procedure that can be considered equivalent to the psycholog-

ical counterpart, because it is not clear to define what would be an exact

equivalent of an action extinction test in our context.

Assigning a constant zero reward when prey and predator can see each

other is not feasible: since a reward equal to zero is also what the prey gets

when the predator is not in sight, this solution would basically always assign

88 CHAPTER 4. RESULTS

to the prey rewards equal to zero and this would create a flat surface in the

space of policy evaluations, so that every policy would be optimal and we

cannot predict the resultant behavior.

Given this first considerations, we evaluated a simple procedure that is

the following: we assign to the prey a reward of zero when it cannot see the

predator and a constant positive reward of value C when prey and predator

are in contact. The problem in this case is that, since in our analyses we

only consider the rewards that the prey gets when it is in contact with the

predator, what we would see from the analysis would just be a constant C

value for the rewards, independent on the progress of the learning process.

The final procedure that we designed and that we use in this section

consists basically into inverting the sign of the reward procedure used in

previous sections. Of course, again if prey and predator are not in contact

(i.e. they are distant or separated by an obstacle) the assigned reward is

zero. However, now if they are very close (i.e. enough to assign the maxi-

mum negative reward with the standard procedure) we assign the maximum

positive reward, that is equal in module and opposite in sign to the previ-

ously used maximum negative reward; then, as the distance increases, we

keep decreasing the assigned rewards, again using values that are equal in

module but opposite in sign with rewards that were assigned in the normal

procedure. This creates a gradient in rewards opposite to the one we had

with the other experiments, pushing the prey to stay as close as possible

to the predator. One can find e.g. in Dickinson and Balleine (2002) a

biological justification of this procedure.

It needs to be said that, since we did not change the predator’s policy

(it does not affect the meaning of the experiment), the likely outcome was

having “contact situations” (i.e. situations in which prey and predator can

see each other) of duration increasing during time, because the prey would

learn episode after episode to stay close to the predator. For this reason and

in order to keep the task as episodic, we decided to manually interrupt the

episodes when during an episode we reached a certain number of consecutive

state changes in which the prey was in constant contact with the predator

(in our case, we used 80 state changes). For the standard procedure an

episode was interrupted when, after getting into contact, prey and predator

did not see each other anymore (because of distance or obstacles); to this,

we add the state changes limit.

The final test procedure that we adopted is the following: first of all,

we launched a full convergence of the three modules together with negative

rewards (previously shown in Figure 4.10), then we used the final point of

the convergence as a starting point, we inverted the reward assignment pro-

4.7. OCD 89

cedure (i.e. started to assign positive rewards) as we have just explained

and we launched several different runs. In particular, we launched 10 runs

with again the three modules altogether and positive rewards and also we

launched 10 runs with positive rewards and with only model-free and Pavlo-

vian modules (i.e. shutting down the model-based module). The purpose of

this study was to determine whether the model-based module could bring

any benefit in the action extinction context or not. We point out to the

reader the fact that in the inverted rewards context we are using positive re-

wards and in the current model configuration the Pavlovian can be activated

only if rewards are below a certain negative threshold, so in the positive re-

ward context there will be no reflexive responses (as we would expect from

a biological point of view).

The experiment is shown in Figure 4.19. The single run with all the

three modules working and with negative rewards is shown at the beginning

of the graph in black; notice that we cut out several episodes because they

were not interesting in this analysis. From there, we started with positive

rewards 10 runs of the three modules again (the average reward is shown in

red) and 10 runs of only model-free and Pavlovian (average reward in blue).

We do not show the detail of the transition, but we verified that the red

curve is always above the blue one.

As it is possible to see from the figure, having three modules gives a

considerable benefit in an action extinction context and this is consistent

with what we know from the literature; in fact, it is possible in action

extinction to isolate the effects of model-based and model-free in humans

(see also the reported material about OCD), so that we knew that the result

shown here was fundamental since it has been shown clearly also in humans.

4.7 OCD

For the OCD pathology, the reference work was Gillan et al. (2014): we will

try to summarize its core here. Test subjects have both hands connected

to electrodes that can give them a painful electrical shock. In front of the

subjects there are two lights, one red and one blue; finally, on the floor there

are two pedals. If the test subject does not perform any action, after some

time one of the lights is turned on a shock is administered: if the light is the

blue one, the shock will be on the right hand, while if it is the red light the

shock will be on the left hand. However, subjects are given a way to avoid

the shock: if just after a light is turned on they press the associated pedal,

they can avoid the shock (i.e. they need to press the right pedal just after

the blue light and vice versa to avoid the shock). This setting is shown in

90 CHAPTER 4. RESULTS

F
ig

u
re

4
.1

9
:

A
n

e
x
p

e
rim

e
n
t

w
ith

in
v
e
rte

d
re

w
a
rd

s.
A

t
th

e
b

egin
n

in
g,

th
e

b
lack

lin
e

rep
resen

ts
th

e

con
verg

en
ce

w
ith

n
egative

rew
ard

s;
w

e
cu

t
several

ep
iso

d
es

to
h

ave
a

grap
h

th
at

cou
ld

b
e

m
ore

clear,
sin

ce

w
e

alread
y

sh
ow

ed
th

e
n

o
rm

al
con

vergen
ce.

A
fter

th
at

p
oin

t
w

e
in

v
ert

th
e

rew
ard

s
an

d
w

e
ob

serv
e

th
e

b
eh

av
ior

w
ith

th
ree

m
o
d

u
les

w
ork

in
g

(in
red

)
an

d
w

ith
on

ly
m

o
d

el-free
an

d
P

av
lov

ian
(in

b
lu

e).
W

e
d

o
n

ot

sh
ow

a
d

eta
il

of
th

e
tran

sitio
n

,
b

u
t

it
can

b
e

ob
served

th
at

th
e

red
cu

rv
e

is
alw

ay
s

ab
ove

th
e

b
lu

e
on

e.

4.7. OCD 91

Figure 4.203.

Figure 4.20: The experimental setting for OCD test-

ing. If just after the blue light is turned on the subject

presses the right pedal, he can avoid the shock; the same

applies for the red light and the left pedal. If the wrong

pedal is pressed, or no pedal is pressed or both of them

are, the subject receives the shock.

The first part of the experiment consists in a training session in the con-

text that we have just described; the subjects will then learn to associate

a visual cue (i.e. the light) to an action (i.e. pressing the pedal). After

this, we disconnect the electrode from one of the two hands, we tell the

subject about this so that he knows that he cannot receive any more pain

on that hand and we continue the experiment. The hand with the discon-

nected electrode is now devalued, meaning that it cannot receive pain and

the subject knows about that, so we intuitively expect him to slowly stop

pressing the associated pedal. This experiment actually outlines and brings

out the difference between the model-based and model-free control systems:

if the former reacts to the change and suggests to stop pressing the pedal

associated with the disconnected hand, the latter tends to stick with the

same actions because habits are more difficult to change.

Since model-based and model-free have these different characteristics

and OCD disrupts their balance, this experiment allows us to study this

pathology. However, there is one tricky aspect of the researchers’ results:

during the first part of the training (i.e. when both hands are connected)

healthy subjects and OCD patients basically learn at the same speed, while

in the second part (i.e. when one hand is disconnected) OCD patients tend

to rely more on model-free actions and tend to press more the pedal that is

3Figure from Gillan et al. (2014).

92 CHAPTER 4. RESULTS

now useless. Their results are summarized in Figure 4.214.

Figure 4.21: The histogram for the results of the

shock experiment. What this graph basically shows is

that, even if when the hand is attached to the electrode

both healthy individuals and OCD patients learn at the

same rate to press the pedal, when the hand is discon-

nected the latter tend to stick more with habits and press

more the pedal even if it is useless at that point.

The testing scenario that we adopted is substantially the same that we

used in the previous section with the analysis for inverted rewards: we

trained the individual with negative rewards (i.e. with pain), then we in-

verted the rewards and we observed what happened. We anticipate here

the core of this results: all the shades between a healthy subject and an

OCD patient can be covered modifying the value of the positive threshold

that activates the model-based module (that we called model threshpos in

Section 3.6), while the negative threshold remains the same for both of them.

The reason why this happens is basically the fact that when after a

normal training we invert the rewards also δ values are inverted (even if with

slightly different values), so that the part of training with positive rewards

is basically regulated only by model threshpos. This is also linked to an

important finding: even if there are some oscillations, the two thresholds

model threshneg and model threshpos showed to be able to regulate the

two parts of the training quite independently (the former regulates the part

with negative rewards and the latter the part with positive ones). From

these observations we could derive this conclusion: having the same value for

4Figure from Gillan et al. (2014).

4.7. OCD 93

model threshneg gives to both healthy subjects and OCD patients the same

capabilities during the training with negative rewards, while giving them

two different values for model threshpos allows us to create the difference in

performance that we expect between the two categories.

Unfortunately, for a matter of time in this case we can only show some

preliminary results, that are still quite promising. We could not do the av-

eraging between 10 runs, that would give to our results some more strength,

but we deem that the regularity of our results should give the reader an

intuitive proof of reliability.

One last premise that we need to do before showing the results is the

evaluation technique that we used. Since in this case we are dealing with

a psychological pathology, it looks more reasonable to observe the same

quantities that one would observe in a psychological experiment; for this

reason, instead of looking at the rewards we observed the time necessary to

escape (i.e. leave the predator behind or hide behind an obstacle), measured

in terms of number of state changes for every episode.

First of all, given the independence of the effects of the two thresholds,

we just studied the second part of the training (i.e. the one with positive

rewards) trying to show how moving the positive threshold could actually

show the various shades of learning speed and we show the results in Fig-

ure 4.22. It can be seen how for increasing values of the positive threshold

the individual tends to stick more and more with the previously acquired

habits, since the model-based module tends to be activated less and this

makes the prey less reactive. Basically, if one could observe this from the

outside (as psychologists do) would see the prey still trying to escape from

the predator even after it cannot receive pain, because the number of state

changes remains much lower than it could be if the prey used the model-

based module more frequently.

After this, we decided to repeat the experiment for one healthy subject

and one OCD patient, but this time with separate convergences also in

the part with negative rewards, just to show that the two threshold values

control in a substantially independent way the two parts of the learning;

results are shown in Figure 4.23. If one compares these results with the

histogram from Gillan et al. (2014) (shown in Figure 4.21) one should be

able to see a common pattern. These are just preliminary results and more

work should be done in this sense in order to verify more clearly whether

these results are reliable or not (even if we do believe so). Also, one should

conduct more precise study in order to figure out the correct amount of

impairment that a typical OCD patient has.

94 CHAPTER 4. RESULTS

F
ig

u
re

4
.2

2
:

A
p

a
ra

m
e
te

r
stu

d
y

fo
r

O
C

D
.
O

n
e

can
ob

serve
h
ow

for
sm

all
valu

es
of

th
e

p
ositive

th
resh

old

th
e

m
o
d

el-b
a
sed

m
o
d

u
le

is
a
ctivated

often
,

so
th

at
it

b
rin

gs
b

en
efi

ts
to

th
e

learn
in

g
p

ro
cess

an
d

an
ex

tern
al

ob
server

w
o
u

ld
see

a
p

rey
th

a
t

im
m

ed
iately

starts
to

stay
closer

an
d

closer
to

th
e

p
rey.

In
stead

,
for

b
ig

va
lu

es
o
f

th
e

th
resh

old
th

e
m

o
d

el-b
ased

m
o
d

u
le

is
often

activated
an

d
th

e
ob

server
w

ou
ld

see
a

p
rey

th
at,

even
if

it
is

n
o
t

receiv
in

g
p

a
in

an
y
m

ore,
keep

s
escap

in
g

from
th

e
p
red

ator
(th

e
n
u

m
b

er
of

state
ch

an
ges

to

escap
e

rem
a
in

s
low

even
a
fter

w
e

in
vert

th
e

rew
ard

s).

4.7. OCD 95

F
ig

u
re

4
.2

3:
C

o
m

p
a
ri

so
n

b
e
tw

e
e
n

h
e
a
lt

h
y

su
b

je
c
t

a
n

d
O

C
D

p
a
ti

e
n
t.

P
er

fo
rm

an
ce

s
ar

e
m

ea
su

re
d

in

ti
m

e,
in

te
rm

s
of

th
e

n
u

m
b

er
o
f

st
at

e
ch

an
ge

s
n

ec
es

sa
ry

fo
r

th
e

p
re

y
to

es
ca

p
e

fr
om

th
e

p
re

d
at

or
(w

e
st

ar
t

to
co

u
n
t

in
th

e
m

om
en

t
th

ey
ca

n
se

e
ea

ch
ot

h
er

).
O

n
e

sh
ou

ld
co

m
p

ar
e

th
es

e
re

su
lt

s
w

it
h

th
e

h
is

to
gr

am
in

F
ig

u
re

4
.2

1.

96 CHAPTER 4. RESULTS

4.8 Limitations of our work

In this section we try to point out some limitations that our work has and

that we still did not mention in the previous sections. We try to analyze

our work with a slightly broader perspective and, when we identify some

(even potential) flaws in our model or in our test procedure, we propose

some ideas about how to solve these issues.

First of all, as we started to discuss in the previous sections, one issue

of the model is that the Pavlovian module does not have complete gener-

alization capabilities. This means that, even if most of its benefits can be

generalized across maps that are quite similar, like the ones used in this

chapter, if reflexes are trained on a substantially different map (e.g., a map

with a big, cross-shaped obstacle in the middle of the arena), they do not

perform well on these maps.

One way to try to obtain cross map generalization capabilities would be

that of repeating the training process explained in Section 3.4.5 for different

maps, each one with its initialization points, and then computing a fitness

value that takes into account the overall performance on different maps.

Anyway, it may also be the case that this procedure produces some average

reflexes that are decent on all maps but not good enough to give the expected

benefits on any of the maps. It is left for future work to assess in the detail

the generalization capabilities of the reflexes and to design a procedure to

improve their performance.

One hypothesis that we have about the somehow limited generalization

capabilities of the Pavlovian module trained on one single map, but that

we do not have tested at all, is that the main issue in generalization is

related to null actions. As we have explained in the previous chapters, if

the generated action would set the virtual target in a squared cell that is

considered occupied (where this could also mean that it is just outside the

arena), the target is automatically set to the center of the cell in which the

prey currently is. Of course, if there is a considerable amount of such actions

the prey is somehow impaired in its capacity to escape and it will get higher

pain levels. What we think is that, more than the quality of the valid actions

proposed, when reflexes are trained on a map and brought on another one

the main issue is that a lot of null actions are generated. Anyway, this is just

an hypothesis and in the future some tests should be conducted to disprove

it or to substantiate it.

Another more important limit to our current model is that each map

requires different values for the thresholds for the integration, explained

in Section 3.6, and this limits heavily the generalization properties of the

4.8. LIMITATIONS OF OUR WORK 97

results. This does not mean that using the same parameters on two different

maps gives divergence, because the system showed on average good stability

properties, but in order to obtain the benefits discussed in previous sections

one needs to tune the parameters on the specific map that one wants to use

with our model.

It is still unclear how to obtain an equivalent performance in different

maps using the same threshold values, or equivalently how to have adaptive

threshold values. This is of course one of the biggest and most important

challenges for future work, because in order to apply our model to real world

cases it needs to be able to automatically generalize in front of a change in

the environment. We believe anyway that this will require a consistent effort,

because one will need to test different solutions with several simulations ran

on different maps to make sure that the model’s properties are actually

extended to different maps.

Another future work that needs to be done is an accurate statistical

analysis of the gain that the module integration brings at the beginning of

the learning and of the loss in the following part. Our current claim is that,

since most of the environments in which we expect to use the model are

dynamic, the short term gain in front of novelty is much more valuable than

a comparable loss in the long term, but a statistical analysis is needed to

analyze this difference quantitatively.

One last issue that we found out is about the integration technique and

is easier to see taking into consideration Figure 4.24 and Figure 4.25 (that is

the same analysis, but with a different size for the groups of values used for

box-plots). As it can be observed from the box-plot analysis of the registered

δ values, at the beginning of the learning process there is an expansion of

the values (see especially Figure 4.24) before the later compression starts

to happen (see Figure 4.25) as δ get closer to zero. This does not fit very

well with the threshold integration mode, because at the very beginning

of the learning we would like to use especially the Pavlovian and model-

based modules, but this requires going over the threshold from the very first

episodes and this aspect of δ values is not optimal in this sense.

We did not have problems using reduced values for the thresholds (i.e.,

values within the maximum pain values), but when we tried to set for the

thresholds some values that were bigger in module we found strange warps

at the beginning of the activation frequencies graphs, due to this issue. An

important part of future work will be the investigation of this aspect, to

understand whether it can be ignored because it does not affect significantly

the performance or if it needs to be eliminated somehow. Anyway, we believe

that this aspect and the fact that threshold values depend on the map should

98 CHAPTER 4. RESULTS

F
ig

u
re

4.24
:

A
b

o
x
-p

lo
t

a
n

a
ly

sis
o
f
δ

v
a
lu

e
s.

T
h

e
fi

rst
30.000

valu
es

of
δ

h
ave

b
een

grou
p

ed
in

10
grou

p
s

o
f

3.000
va

lu
es

ea
ch

(o
f

cou
rse

in
ch

ron
ological

ord
er),

th
en

w
e

d
rew

a
b

ox
-p

lot
for

each
grou

p
of

valu
es.

4.8. LIMITATIONS OF OUR WORK 99

F
ig

u
re

4
.2

5
:

A
b

o
x
-p

lo
t

a
n

a
ly

si
s

o
f
δ

v
a
lu

e
s.

T
h

e
fi

rs
t

10
0.

00
0

va
lu

es
of
δ

h
av

e
b

ee
n

gr
ou

p
ed

in
10

gr
ou

p
s

of
10

.0
0
0

va
lu

es
ea

ch
(o

f
co

u
rs

e
in

ch
ro

n
ol

og
ic

al
or

d
er

),
th

en
w

e
d

re
w

a
b

ox
-p

lo
t

fo
r

ea
ch

gr
ou

p
of

va
lu

es
.

100 CHAPTER 4. RESULTS

be investigated at the same time, because we expect many common patterns

and problems.

Chapter 5

Conclusions

What we have presented in this thesis is the first research effort in a long term

project just started at Intelligent Robotics Laboratory of Osaka University.

The high level target of the project is to reproduce in a realistic and life-like

way the interaction modes of living creatures, in particular humans, with

pain. The goal of our work was to study the main building blocks of pain

handling mechanisms in humans and to design and test a computational

model that replicated them and mimicked their interaction modes as closely

as possible.

First of all, we chose and defined the details of the prey and predator

task, so that we could use it to test our work and so that in the future

we will be able to transition our work towards robotics. The chosen task is

significantly more complicated than the typical task chosen in computational

neuroscience works, so we believe that results obtained in this context are

very interesting for researchers working in this field.

After this, we chose the most suitable algorithm for the model-free mod-

ule and we proposed two newly designed algorithms for the model-based

and Pavlovian modules, so that the three algorithms all faithfully reproduce

what has been observed in nature. We showed how all of them could reach

good performance, so that we had three modules defined and working.

Subsequently, we defined an integration procedure that could replicate

what has been observed in nature and that could show as many natural phe-

nomena as possible. This allowed us to show how all possible combinations

of these modules can reach good performance and even the integration of

the three modules and this is by itself an unprecedented result in this field.

Then we performed some comparative analyses and we showed how the

three modular system can give benefits in the first episodes and in an action

extinction context, even if this comes at the price of worse performance on

101

102 CHAPTER 5. CONCLUSIONS

the long run. This is still an open issue and one of the major goals for

future work should be that of trying to keep the best possible performance

even during long term convergence. This kind of analysis had already been

performed in the past, but of course not on a three modular system since

our work is the first proposal of such a model.

Finally, we showed some preliminary but promising results that outline

how our model is able to easily explain a pathology such as OCD. Again, to

the best of our knowledge this has never been done before in a computational

way, so we believe this to be an important result that opens new application

scenarios.

Probably, the part of our project that requires more attention in the

future is the integration system: as we have explained in previous sections,

at the very beginning of the training and during the phases of long term

convergence it does not allow to have the best possible blend of the models

and this limits the performance that we can obtain. Also, another very im-

portant limitation of our model is that threshold values depend on the map,

because this at the current state limits the generalization properties and

the applicability of our work. We believe that from now on a considerable

effort should be invested in trying to investigate new ways to integrate the

modules, that could keep and improve the benefits of the three modular sys-

tem that we have shown previously and allow our model to be generalizable

across different maps.

Another issue that we did not consider at all is the overall speed of our

system, since at this stage our main concern was the design, the behavior

and the interaction between modules. Anyway, given the particular purpose

of this research project and the involved researchers’ aims, the best solution

is not the one that favors performance regardless of natural limits: following

efforts should try to define a speed that is reasonable for living creatures and

try to mimic that as faithfully as possible. This because we believe that the

main purpose of this research project is to be the compliant with biological

phenomena and not the sheer performance of the system.

An obvious prosecution of our work would be of course removing the

hexagonal tiling and simulating the same processes with continuous space,

then finally realizing all of this with real robots. One thing that will probably

be fundamental in this transition is adding the robot dynamics to the state,

since with real robots choices may depend also on the relative speeds and

rotations of prey and predator.

After this, there are several things that may be pursued: the integration

and testing of more sophisticated mechanisms, testing in different scenarios,

new real world applications, pairing these computational experiments with

103

psychological experiments and so on. If we look at the big picture there are

several things that can be done within this research project, but we believe

the first steps we moved brought important contributions to the field and a

considerable improvement with respect to previous works.

104 CHAPTER 5. CONCLUSIONS

Bibliography

Balleine, B. W., Dickinson, A., April 1998. Goal-directed instrumental ac-

tion: contingency and incentive learning and their cortical substrates.

Neuropharmacology 37 (4-5), 407–419.

Barto, A. G., Sutton, R. S., Anderson, C. W., September/October 1983.

Neuronlike adaptive elements that can solve difficult learning control prob-

lems. IEEE transactions on systems, man, and cybernetics 13 (5), 835–

846.

Bonarini, A., Winter/Spring 1997. Anytime learning and adaptation of

structured fuzzy behaviors. Adaptive Behavior Journal - Special issue on

environment structure and behavior 5 (3-4), 281–315.

Carter, R. M., O’Doherty, J. P., Seymour, B., Koch, C., Dolan, R. J., Febru-

ary 2006. Contingency awareness in human aversive conditioning involves

the middle frontal gyrus. NeuroImage 29 (3), 1007–1012.

Dayan, P., Niv, Y., Seymour, B., Daw, N. D., October 2006. The misbe-

havior of value and the discipline of the will. Neural Networks 19 (8),

1153–1160.

Dickinson, A., Balleine, B. W., July 2002. Stevens’ handbook of experi-

mental psychology (chapter title: The role of learning in the operation of

motivational ssystem). John Wiley & Sons, Inc., Ch. 12, pp. 497–533.

Fanselow, M. S., December 1994. Neural organization of the defensive be-

havior system responsible for fear. Psychonomic Bulletin & Review 1 (4),

429–438.

Fendt, M., Fanselow, M. S., May 1999. The neuroanatomical and neuro-

chemical basis of conditioned fear. Neuroscience and Biobehavioral Re-

views 23 (5), 743–760.

105

106 BIBLIOGRAPHY

Gillan, C. M., Morein-Zamir, S., Urcelay, G. P., Sule, A., Voon, V., Apergis-

Schoute, A. M., Fineberg, N. A., Sahakian, B. J., Robbins, T. W., April

2014. Enhanced avoidance habits in obsessive–compulsive disorder. Bio-

logical Psychiatry 75 (8), 631–638.

Gillan, C. M., Otto, A. R., Phelps, E. A., Daw, N. D., March 2015. Model-

based learning protects against forming habits. (Submitted to: Cognitive,

Affective, & Behavioral Neuroscience).

Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg,

N. A., Robbins, T. W., de Wit, S., July 2011. Disruption in the balance

between goal-directed behavior and habit learning in obsessive–compulsive

disorder. The American Journal of Psychiatry 168 (7), 718–726.

Gillan, C. M., Robbins, T. W., November 2014. Goal-directed learning and

obsessive–compulsive disorder. Philosophical Transactions of the Royal

Society of London B: Biological Sciences 369 (1655).

Glascher, J., Daw, N. D., Dayan, P., O’Doherty, J. P., May 2010. States ver-

sus rewards: dissociable neural prediction error signals underlying model-

based and model-free reinforcement learning. Neuron 66 (4), 585–595.

Koechlin, E., Ody, C., Kouneiher, F., November 2003. The architecture

of cognitive control in the human prefrontal cortex. Science 302 (5648),

1181–1185.

Lee, S. W., Shimojo, S., O’Doherty, J. P., February 2014. Neural computa-

tions underlying arbitration between model-based and model-free learn-

ing. Neuron 81 (3), 687–699.

Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan,

R. J., Frith, C. D., August 2009a. Choking on the money: reward-based

performance decrements are associated with midbrain activity. Psycho-

logical Science 20 (8), 955–962.

Mobbs, D., Marchant, J. L., Hassabis, D., Seymour, B., Tan, G., Gray, M.,

Petrovic, P., Dolan, R. J., Frith, C. D., September 2009b. From threat

to fear: the neural organization of defensive fear systems in humans. The

journal of neuroscience: the official journal of the Society for Neuroscience

29 (39), 12236–12243.

Nishio, S., Ishiguro, H., Hagita, N., June 2007. Humanoid robots, new de-

velopments (chapter title: Geminoid: teleoperated android of an existing

person). I-Tech Education and Publishing, Ch. 20, pp. 343–352.

BIBLIOGRAPHY 107

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., Frith, C. D., August

2006. Dopamine-dependent prediction errors underpin reward-seeking be-

haviour in humans. Nature 442 (7106), 1042–1045.

Schultz, W., Dayan, P., Montague, P. R., March 1997. A neural substrate

of prediction and reward. Science 275 (5306), 1593–1599.

Seymour, B., Dayan, P., 2009. Neuroeconomics: Decision-making and the

brain (chapter title: Values and actions in aversion). New York, NY:

Academic Press, Ch. 12, pp. 175–192.

Seymour, B., Singer, T., Dolan, R., April 2007. The neurobiology of pun-

ishment. Nature Reviews Neuroscience 8 (4), 300–311.

Sumioka, H., Nishio, S., Minato, T., Yamazaki, R., Ishiguro, H., December

2014. Minimal human design approach for sonzai-kan media: investigation

of a feeling of human presence. Cognitive computation 6 (4), 760–774.

Sutton, R. S., 1990. Integrated architectures for learning, planning, and re-

acting based on approximating dynamic programming. In: Proceedings of

the seventh international conference (1990) on machine learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 216–224.

Sutton, R. S., July 1991. Dyna, an integrated architecture for learning,

planning, and reacting. ACM SIGART Bulletin 2 (4), 160–163.

Sutton, R. S., Barto, A. G., March 1998. Reinforcement learning: an intro-

duction. Adaptive Computation and Machine Learning series. A Bradford

Book.

Watkins, C. J. C. H., 1989. Learning from delayed rewards. Ph.D. thesis,

King’s College.

Witten, I. H., August 1977. An adaptive optimal controller for discrete-time

markov environments. Information and Control 34 (4), 286–295.

108 BIBLIOGRAPHY

List of Figures

2.1 Different mechanisms of learning and action 9

3.1 The first robot that will be used to test the model. . 18

3.2 First screenshot of the arena 20

3.3 The map with the grid drawn on it. 21

3.4 The squared grid discretization based on figure 3.2 . . 22

3.5 An example of an MDP 25

3.6 The agent-environment interface 26

3.7 The actor-critic module 29

3.8 An example of the model 33

3.9 The tree structure of model-based reasoning. 41

3.10 An Artificial Neural Network (ANN). 44

3.11 Crossover in GAs. 47

3.12 Mutation in GAs. 48

3.13 The flowchart of one GA generation. 49

3.14 Example of Pavlovian map 52

3.15 Example of delta values during a training 58

3.16 Two modules integration. 58

3.17 Three modules integration. 60

4.1 A second map used for tests. 64

4.2 The squared grid discretization based on Figure 4.1. . 65

4.3 Convergence of the model-free module alone on the

map of Figure 3.2. 66

4.4 Cell and policy analysis for the model-free module. . 68

4.5 Histogram analysis of δ values. 69

4.6 Convergence of the model-based module alone on the

map of Figure 3.2. 70

4.7 Evolution of reflexes through a GA. 71

109

110 LIST OF FIGURES

4.8 Convergence of the integration of model-free and Pavlo-

vian modules. 73

4.9 Convergence of the integration of model-based and

model-free modules. 74

4.10 Convergence of the integration of the three modules

(model-based, model-free and Pavlovian). 75

4.11 Convergence of the integration of model-based and

Pavlovian modules. 76

4.12 Frequencies analysis of the three modules integration. 77

4.13 Comparison of model-free alone and integration of

model-free and Pavlovian. 79

4.14 Detail of Figure 4.13. 80

4.15 Detail of a second comparison. 83

4.16 Comparison of the model-free module alone and of

the integration of model-based and model-free modules. 84

4.17 Detail of Figure 4.16. 85

4.18 A reward comparison between the system complete

of the three modules and the same system with the

model-based module disabled. 86

4.19 An experiment with inverted rewards. 90

4.20 The experimental setting for OCD testing. 91

4.21 The histogram for the results of the shock experiment. 92

4.22 A parameter study for OCD. 94

4.23 Comparison between healthy subject and OCD patient. 95

4.24 A box-plot analysis of δ values. 98

4.25 A box-plot analysis of δ values. 99

List of Tables

4.1 Comparison for the first 1000 episodes, not repre-

sented in Figure 4.14. 81

4.2 Comparison for the first 1000 episodes, not repre-

sented in Figure 4.15. 82

4.3 Comparison for the first 1000 episodes, not repre-

sented in Figure 4.16. 87

111

