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“Learn from yesterday, live for today, hope for tomorrow. The important thing is not to

stop questioning..”

Albert Einstein



Abstract

In this thesis, the problem in designing the robust multivariable controllers for the

reduction of the vibration response in a helicopter was addressed. The mathematical

model is identified from data collected on an A109 Agusta helicopter, in which a set of

piezoelectric actuators and accelerometers are mounted on its fuselage. The interactions

in plant model are then handled through two pre-compensators which are relied on the

Relative Gain Array. The active harmonic control approach is proposed to guarantee

performance in the closed-loop system.

In detail, the model was analyzed firstly to select the input-output pairings though two

approaches such as Singular Value Decomposition and Relative Gain Array. These re-

sults showed that an output of MIMO system is influenced significantly by two actuators

as compared with the rest. However, to further simplify the tuning of the controllers, a

compensator design approach for the decoupling of the plant model, based on Relative

Gain Array was proposed.

Afterwards, the LQR and H∞ control synthesis techniques were implemented, based

on the compensated model. While the former is able to deal with only the nominal

identified model, the latter takes model uncertainties into account, which are supposed

to be output uncertainties. To compare the performance levels achieved by two design

approaches, the MonteCarlo simulation has been carried out, by randomly perturbing

500 times of T -matrix based on its uncertainty representation.

Keywords: control structure design, relative gain array, non square model, LQR, H∞.
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Chapter 1

Introduction

1.1 Introduction

The helicopter has become an important mode of aerial transportation primarily due

to its unique ability not only in taking-off and landing vertically but also in hovering.

These properties of helicopters enable many unique tasks such as rescue operation in

civilian, firefighting operation in mountains and military application. In general, the use

of helicopters has increased in the last few decades, especially in civilian applications,

and is expected to continue in the future. However, high vibration levels have effected

poorly to the passengers and crew (also because of the acoustic noise they generate), be-

sides causing various undesirable effects, such as degradation of the structural integrity,

increase in the fatigue of the mechanical components, and reduction of the effectiveness

of the on-board computer systems. In the satisfaction of pilots point of view, undesired

vibrations transmitted to fuselage have been known to cause fatigue and discomfort to

the aircrew and passengers in the short-term as well as the back pain injuries due to the

long term. For example, the sound pressure level of noise measured in the helicopter

cabin is on average from 20 to 30 dB higher than those of fixed wing aircraft [2]. In par-

ticular, the acoustic components’ frequencies are typically varied from 500Hz to 4500Hz

to which the human ear is the most sensitive. Moreover, in the case of unmanned vehi-

cles, which are frequently employed to carry out data and image acquisition tasks using

sensitive equipment, vibrations can lead to a non negligible degradation of the mission

characteristics [3], so that studies aimed at improving UAV performance in this respect

are ongoing, both in the rotary wing and in the fixed wing literature [4].

On the other hand, on helicopters, vibrations originate from the main rotor, the tail

rotor, the engines and other machinery [5]. In particular, the main gearbox, which

powers the main and tail rotors, is rigidly mounted on the roof structure of the helicopter

1



Chapter 1. Introduction 2

via connecting elements called struts through which vibrations are transmitted to the

cabin roof. While the frequencies of the disturbance created by the main rotor are

integer multiples of the rotor angular frequency, vibrations induced by the gearbox have

a much wider spectrum which is related to the angular rates of the individual reduction

stages.

1.2 Problem Statement

Active vibration reduction techniques which are illustrated schematically in Figure 1.1

have been introduced to overcome the limitations imposed by passive control techniques

and to increase the attenuation of both noise and vibrations [6]. An active control

system consists of four main components: a set of sensors, a set of actuators, a power

supply unit and a controller. The acoustic noise signals or vibrations are measured by

sensors mounted on the fuselage. The signals are then processed by the controller and

used to generate a signal to drive the actuators. The actuators are controlled to produce

a vibration field that compensates as closely as possible the unwanted vibrations.

Figure 1.1: An overview of active vibration reduction techniques.

The HHC and IBC methods aim at reducing the noise before it propagate to the fuselage

by means of actuators placed on the rotor while the ACSR attenuates only the noise in

the fuselage. However, the ACSR depicted in Figure 1.2 is currently one of the most

popular helicopter vibration attenuation methods. A set of sensors are mounted at key

positions in the fuselage, where the minimum noise is desired (for example at passenger

seat). An ACSR controller uses the sensors’ signals to manipulate the behaviors of

actuators in order to reduce the vibrations. This technology has been applied in modern

helicopters such as the Augusta/Westland AW101.
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Figure 1.2: Scheme of ACSR vibration attenuation system.

The problem of designing control laws for this application can be formulated either in a

model-based or in a model-free way. Regardless of this choice, however, the availability

of a representative mathematical model of the response of the system to excitation

applied to the actuators is a prerequisite for the possibility of developing control laws in

simulation and assessing their performance prior to actual implementation on the real

system. Furthermore, in view of the strongly multi-variable nature of the problem the

ability to exploit a reliable model to structure the control system is an extremely valuable

asset. Unfortunately working out a qualitatively accurate model of structural response

from first principles is not feasible, so an experimental approach must be envisaged.

Figure 1.3: An overview of HHC for active vibration reduction techniques.
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In the view of above discussion, the MIMO models have been sought in order to address

with the problem of modeling the structural response and then the Harmonic Control

(HC) which is depicted in the Figure 1.3 has been applied for the design and implemen-

tation of control laws [7].

1.3 Literature review

From the identification point of view, the experimental results presented in this thesis

have been obtained on the facility available at the Department of Aerospace Science

and Technology of the Politecnico di Milano, described in detail in the following section,

which was set up in the framework of the Friendcopter project [8]. The model identifi-

cation problem is particularly involved in view of the large size of the system (40 inputs

and 18 outputs), which makes it difficult to achieve adequate accuracy on all channels.

An expected outcome of the identification analysis is an indication on how to simplify

the multivariable structure of the system in view of the control design. The identification

was carried out with different techniques to obtain satisfactory results. Since the control

objective is the attenuation at specific frequencies the use of suitable data prefiltering

has been investigated to achieve more accuracy at the selected frequencies.

In the control design point of view, Harmonic Control (HC) has been considered for

many years as a valid approach for the design and implementation of control laws aimed

at vibration attenuation in helicopters. Its basic idea is to attenuate the vibratory com-

ponents in the fuselage accelerations by adding suitably phased harmonic components

to the controls. Several studies have been carried out to determine the feasibility of

HC both from the theoretical and the experimental viewpoint [9] [10, 11] where the

used actuation technologies, the considered performance criteria (e.g., noise, vibrations,

power, loads etc.) and the achieved performance are reviewed. As for the control im-

plementation, a discrete-time adaptive algorithm known in the rotorcraft literature as

the T − matrix algorithm [12]( where this approach was originally proposed) is typi-

cally used by defining the problem in the frequency domain and tuning the controller

using an LQ-like cost function. In this thesis the robust design approach for HC control

laws proposed in [13] [14] is applied to the problem of structural vibration attenuation.

The approach provides nominal stability of the closed-loop system, robustness to model

uncertainty and guaranteed performance for the closed-loop system, i.e., a guaranteed

level of vibration attenuation. The H∞ formulation of the HC problem provides an

additional benefit when dealing with the tuning problem. Indeed, vibrations are typi-

cally measured on the fuselage in a large number of locations, so the control problem
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is strongly multivariables, with different performance requirements associated to the vi-

bration attenuation on the individual outputs. Requirement specifications in terms of

steady state attenuation levels and desired transient performance can be immediately

“encoded” in an H∞ problem statement and the properties of the optimal solution can

provide information about the actual distance between the desired and the achievable

performance level. To further simplify the tuning of the controller, a novel approach

to the decoupling of the plant model, based on the Relative Gain Array (RGA) [1] is

proposed in order to compare with the result obatined for non-square chemical plant

[15].

1.4 Contribution of the thesis

The main contributions of this thesis are:

- Selection the suitable pairings among the set of inputs and outputs by singular

value decomposition and relative gain array.

- Develop compensator based on relative gain array properties for non-square model.

- Design of LQR and robust controllers for each sub-compensated-plant.

1.5 Thesis outline

This section provides a brief overview of the organization of this work.

• Chapter 1 summarizes the most important aspects about active vibration attenu-

ation in helicopter.

• Chapter 2, on the other hand, illustrates the experimental set-up for test bench in

Friendcopter project and gives the short instruction how to select the test signal

for this identification.

• Chapter 3 presents the motivation for this research and a brief background on

need for helicopter vibration attenuation control. It included the significance of

the thesis, objectives and the main contributions which are given in the present

chapter.

• Chapter 4 presents the basic background and theoretical properties. Specifically,

it describes the characteristic of relative gain array, whose are using in finding

suitable compensator in case of non-square model.
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• In chapter 5, the LQR and H∞ synthesis methods are described. The design

of both controllers has been based on the compensated model which has been

obtained.

• Chapter 6 presents the simulation results and discusses in detail about the advan-

tages and drawbacks of the procedure.

• Finally, chapter 7 concludes by summarizing the results of this research effort and

recommends the development for future work.



Chapter 2

The experimental set-up

In this chapter, the description of the experimental facility used in the framework of the

Friendcopter project will be proposed. The model identification problem is particularly

involved in view of the large dimensions of the input and output vectors of the system

(40 inputs and 18 outputs ), which makes it difficult to achieve adequate accuracy on

all channels. An expected outcome of the identification analysis is an indication on how

to simply the multivariable structure of the system in control design point of view.

Hence, the chapter is structured as follows:

• Description of experimental set-up: The experiment model is introduced for

identifying the frequency response between actuators and accelerometers.

• Decision of type and position of actuators and accelerometers: The

choices of actuators, accelerometers and their locations in the Agusta A109 MKII

helicopter are proposed.

• Disturbance frequencies: The choice of disturbance frequencies in the experi-

ment is made.

• Acquisition system: This section describes the hardware and software use in

experiment in order to acquire the signals.

• Problem statement: The objective of the work which will be solved in the next

chapters is introduced.

• Conclusion: This subsection concludes the chapter.

7
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2.1 Description of the experimental set-up

The employed set-up, illustrated in Figure 2.1, is an actual fuselage of an Agusta A109

MKII helicopter, without blades, tail rotor, pumps, internal equipment, but equipped

with the main components of the rotor and structural links. To simulate in-flight con-

ditions an aerodynamic brake (shown in Figure 2.2) was mounted; the main gearbox is

powered by two electric motors which drive it in place of the helicopter turbines. Even

Figure 2.1: Helicopter fuselage mock-up employed in the Friendcopter project.

Figure 2.2: Aerodynamic brake.

though the set-up lacks some of the noise-generating devices (such as, pumps and tail

rotor), the current configuration allows to reproduce the disturbance tones generated by

the main rotor gearbox [8]. Indeed, the gearbox is connected to the fuselage with a set

of rigid struts and an aluminum anti-torque plate mounted above the cabin roof. In this
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way, all the loads generated by the rotor are transmitted to the anti-torque plate instead

of the struts. A typical shape of the anti-torque plate is shown in Figure 2.3. The gen-

erated vibrations are transmitted to the fuselage mainly through the anti-torque plate

and the rear struts, so in view of developing an active system for vibration reduction,

actuators have been mounted on these components..

Figure 2.3: Anti-torque plate.

2.2 Decision of type and position of actuators and ac-

celerometers

Piezoelectric patches are suitable actuators for this application, considering that they

are not bulky and do not significantly affect the mechanical structure. Sixteen patches

were placed on the two rear struts (8 on the left one and 8 on the right one) and 24

on the anti-torque plate (12 on the left side and 12 on the right side) for a total of 40

actuators. No actuator was placed on the front struts because no significant vibration

field was detected in the part of the roof corresponding to their structural attachments

to the cabin. The actuators location is shown in Figure 2.4.

As far as sensors are concerned, accelerometers have been used. More specifically, 18

accelerometers have been placed on the cabin roof (9 per side), in correspondence to the

points of structural attachment of the anti-torque plate and the rear struts, as well as

in other locations characterized by high vibration levels (see Figure 2.5).
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Figure 2.4: Anti-torque plate.

Figure 2.5: Location of the accelerometers.

2.3 Disturbance frequencies

In order to achieve high fidelity models, the most crucial step in system identification is

collecting appropriate informative data. The informative data is usually obtained by ei-

ther applying mining algorithms to historical data or performing a system identification
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experiment. For the vibratory test bench, it was decided to perform an identification

experiment. The choice of input test signals is generally the most important considera-

tion in system identification. Hence, in order to assess the ability of the test bench to

replicate the vibratory phenomena typical of in-flight conditions, a comparison between

vibration spectra collected on the test facility and corresponding spectra measured in

flight was carried out. The result of the comparison is shown in Figure 2.6, from which

it is apparent that the qualitative agreement is satisfactory, even though, as already

mentioned, the test bench is not entirely representative from the quantitative point of

view, as a number of significant sources of excitation is missing.

Figure 2.6: Noise spectrum inside the cabin.

The spectra reported in Figure 2.6 also provide some insight in the disturbances which

the control system is called to counteract. Indeed, besides the large low frequency com-

ponents (< 200 Hz), there are several significant peaks in the speech frequency range,

that are especially annoying from an acoustic point of view (in the case of manned vehi-

cles), namely at frequencies 1599 Hz, 1785 Hz, 2400 Hz, and 4250 Hz. The attenuation

of these high frequency tones is the main objective of the ongoing study.

2.4 Acquisition system

The acquisition system employed in the project consists of two PCI’s (PCI-6251, PCI-

MIO-16E-1) that are used to acquire the accelerometric signals and to generate the

excitation signals for the actuators. The generated signals are low-pass filtered (cut-

off at 5 kHz) and amplified by a factor of 20. The accelerometers are connected to
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the 478A16 signal conditioners that provide the voltage supply needed by the sensors.

The software used to set the devices and to perform the experiments is NI LabVIEW

SignalExpress. The sampling frequency was set to 10 kHz and the cut-off frequency of

the anti-aliasing and reconstruction filters was set to 5 kHz. KEMO 8 BenchMaster 21M

filters have been employed. All subsequent data processing has been carried out using

MATLAB.

2.5 Problem statement

The goal of this work is to attenuate the acoustic noise and vibrations at least in a

specific frequency and reduced volume of the helicopter fuselage. In particular, it is

desirable to reduce the noise in the volume where the passengers are supposed to sit.

This is typically achieved with active techniques as the ones which will be described in

the next chapters. On the other hand, the reliable model of the system is a combination

of the large number of inputs and outputs that makes the controller design process more

difficult. Hence, new techniques are developed based on the RGA and SVD to obtain

the decentralized system in which a control algorithm for active vibration reduction in

helicopters has been synthesized and simulated in order to understand if such a control

can be applied to the system.

2.6 Conclusion

In conclusion, the helicopter test bench has been installed for noise and vibration control.

The identified model is described in detail in [7]. In next chapter, this model will be

used to design the controller based on LQ-like and H∞ techniques.



Chapter 3

T−Matrix model

In this chapter, the basic notions about single frequency response, T matrix and MIMO

non-square model will be introduced. Then the uncertainty representation is discussed.

All of the analysis is based on the characteristic of the model. Hence, the chapter is

structured as follows:

• Single frequency G(s) → G(jω): This section presents the equivalent repre-

sentation of transfer function G(s) in Laplace domain and G(jω) in frequency

domain.

• T-matrix algorithm: The algorithm used to separate the sin and cosin elements

of the signals in frequency domain are formulated.

• MIMO non-square plant: The non-square MIMO model and its properties are

presented.

• Uncertainty representation: The uncertainty presentation is introduced in or-

der to describe in detail about the output uncertainty model.

• Conclusion: This section concludes the chapter.

3.1 Single frequency G(s)→ G(jω)

In Laplace domain, the transfer function G(s) denotes the relation from inputs to the

outputs, which therefore represents the dynamics of the system. Nevertheless, if the

Laplace variable s is fixed as equal as s0, then the transfer function G(s0) is basically an

m × p complex matrix (with p inputs and m outputs),which can be analyzed by using

standard matrix algebra tools. More precisely, the choice s0 = jω is of interest because

13
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G(jω) represents the frequency response of the system in frequency ω.

Let consider a rational transfer function with input u(s) and output y(s):

y(s)

u(s)
= G(s) = k

(s+ z1)(s+ z2) . . .

(s+ p1)(s+ p2) . . .
(3.1)

Figure 3.1: System G(s) with input d and output y. Figure obtained from [1].

which is illustrated in the Figure 3.1. By replacing s with jω the above transfer function

will become the so-called frequency response model with:

• gij is the sinusoidal response from input uj to output yi.

In detail, a sinusoidal input signal of frequency ω has been applied to the system:

uj = u0j sin (ωt+ αj) (3.2)

The output of linear system will be another sinusoidal signal with the same frequency

as compared as this persistent input signal when t tends to ∞.

yi(t) = yi0 sin (ωt+ βi) (3.3)

in which, the amplitude and phase of output and input signal are related by the magni-

tude and phase of the complex number gij as:

yi0
uj0

= |gij(jω)|, βi − αj = ∠gij(jω) (3.4)

As a consequence, the sinusoidal time response described in (3.2)−(3.4) can be repre-

sented compactly as follows:

yi(ω) = gij(ω)uj(ω) (3.5)

where:

uj(ω) = uj0e
jαj , yi(ω) = yi0e

jβi (3.6)

Using the super-position principle in linear systems, the overall response to simultaneous

input signals with the same frequency in several input channels can be obtained as the
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sum of each response from (3.4):

yi(ω) = gi1(jω)u1(ω) + gi2(jω)u2(ω) + . . . =
∑
j

gijuj(ω) (3.7)

or in matrix from:

y(ω) = G(jω)u(ω) (3.8)

with

u(ω)


u1(ω)

u2(ω)
...

um(ω)

 and y(ω) =


y1(ω)

y2(ω)
...

yp(ω)

 (3.9)

the vectors of sinusoidal input and output signals.

3.2 T-matrix algorithm

In the literature, the problem of plant representation in helicopter is traditionally in the

frequency domain, using a discrete adaptive algorithm known as T −Matrix algorithm,

which is originally proposed by (Shaw and Albion, 1981).

First of all, the definition of T-matrix has implied the relation between the steady state

response of aircraft and a proper steady state harmonic input. This means that in order

to define the T-matrix for the helicopter, the response of the helicopter model has to be

studied with the fixed frequency.

Let define u ∈ Rm be a vector of control inputs and y ∈ Rp be a vector of harmonic of

measured outputs with frequency ω; also assume u to be a piece-wise periodic function

of period T = 2π/ω, where omega is the disturbance frequency, ψ = ωt, and define

y
(i)
Nc =

2

T

∫ T

0
y(i)(ψ) cos (Nψ)dt (3.10)

y
(i)
Ns =

2

T

∫ T

0
y(i)(ψ) sin (Nψ)dt (3.11)

y =



y
(1)
Nc

y
(1)
Ns
...

y
(p)
Nc

y
(p)
Ns


(3.12)
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and similar for uN . Assume now that under steady sate conditions the above defined

frequency harmonics of uN and yN are related by the linear equation

yN = TN,NuN + ξ (3.13)

in which:

+ TN,N is a 2p× 2m constant coefficient matrix.

+ ξ represent the vibrations effecting to the system in frequency ω.

+ uN is control input vector which can be similarly defined as:

uN =

[
θNc

θNs

]
(3.14)

with θNc and θNs are the cosine and sine components of the control input in

frequency ω respectively.

In this problem, it has to be noticed that the relationship between the input and the

outputs can be considered time invariant due to the following reason:

+ The dynamic of rotor is reasonably assumed to be steady, which is not affected by

the environment.

+ The actuators and sensors of the higher harmonic systems is located in the fixed

positions in the aircraft.

As a consequence, the frequency response matrix G(jω) is defined as:

G(jω) =


G(1,1)(jω) . . . G(1,m)(jω)

...
. . .

...

G(p,1)(jω) . . . G(p,m)(jω)

 (3.15)

With TN,N is corresponded with G(jω), as

TN,N =

[
Real(G(i,j)(jω)) Imag(G(i,j)(jω))

−Imag(G(i,j)(jω)) Real(G(i,j)(jω))

]
(3.16)

TN,N therefore is defined as

TN,N =


T

(1,1)
N,N . . . T

(1,m)
N,N

...
...

T
(p,1)
N,N . . . T

(p,m)
N,N

 (3.17)
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3.3 MIMO non-square plant

Processes with only one output being controlled by a single manipulated variable are

classified as single-input single-output (SISO) systems. However, many processes do

not comfort to such simple control configuration according to the complex structures

and requirements. In the helicopter industries, the common schemes which are used to

describe the physical law in the system are Multi inputs multi outputs.

In MIMO, one or more manipulated variables can affect the output variables in a par-

ticular loop or all other control loops. A MIMO control structure is crucial in systems

that have multiple dependencies and multiple interactions between different variables.

In particular, for the model of the aircraft identified as the non-square model with the

number of inputs be higher than outputs. The frequency response matrix is:

G(jω) =


G(1,1)(jω) . . . G(1,m)(jω)

...
. . .

...

G(p,1)(jω) . . . G(p,m)(jω)

 (3.18)

in which, u ∈ Rm and y ∈ Rp are corresponding to which the size of the model is p×m

3.4 Uncertainty representation

The identified model is always imperfect due to the existence of uncertainties. Some of

the most original sources of uncertainty are:

- Erroneous in measurement devices.

- Some of the parameters of linear model differ from real parameter due to the

estimation, which may even vary with time.

- Although the precise model is available, the designer want to keep it as simple as

possible, considering the neglected dynamics as “uncertainty’.’

- The model used for control purpose is linearized around operating point, which

would lead to uncertainty in case of deviation of operating point.

- Sometimes the non-modeled dynamics are unknown, and they can be considered

as “hidden dynamics”.

Representing uncertainty:

To take into account the model uncertainty, the following notations should be adopted
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as:

Π− a set of possible perturbed plant models.

G(s) ∈ Π− nominal plant model, no uncertainty includes.

Gp(s) ∈ Π− particular perturbed plant model.

The nominal plant G(s) is the actual model of plant, what we assume that the plant

is. Besides, Gp(s) is used to denote a particular possible plant due to uncertainty, and

then Π represents the set of all possible plants. In detail, in Figure 3.2, the different

Figure 3.2: Uncertainty regions illustrated in the Nyquist plot at given frequency.
Figure obtained from [1].

uncertainty sets corresponding to different frequencies ω are represented in Nyquist plot.

These uncertainty regions generally have complicated shapes and complex mathematical

descriptions, which results to obstacles in dealing with in the context of control system

design.

There are different ways of representing uncertainties. However, this thesis will take into

account only the multiplicative output uncertainty because of following reasons:

• First of all, the target of this thesis is to design the pre-compensator in order

to deal with the interactions between inputs and outputs, which can be used in

decentralized control synthesis.

• Secondly, output uncertainty is frequently less restrictive than input uncertainty

in term of control performance.
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Figure 3.3: Disc-shaped uncertainty regions genereated by complex additive uncer-
tainty. Figure obtained from [1].

For each frequency ωi, there exists a different uncertainty set Π(ωi) with the multiplica-

tive output uncertainty presentation for SISO plant as:

Π : Gp(s) = (1 + wO(s)∆O(s))G(s); |∆O(jω)| ≤ 1, ∀ω (3.19)

where wO(s) is the scaling factor, it is a rational transfer function or can be seen as a

weight which is introduced to normalize the perturbation to be less than 1 in magnitude

∀ω; ∆O(s) represents any stable transfer function with the magnitude less or equal than

1 ∀ω. Then at each ω, ∆O(jω) generates a disc-shaped region centered at (0, 0) with

the radius 1, so (1 +wO(s)∆O(s))G(s) represents a disc-shaped area centered at G(jω)

with radius |G(jω)wO(jω)| as shown in Figure 3.3.

In general, wO(jω) should be selected so that the uncertainty region Π(ω) has to be

included in this region at each ω. For simplicity, due to the dependence of wO(jω) to

the nominal plant G(jω), it is usually good to choose a simple nominal plan G(jω) in

order to achieve simple wO(jω), even if the uncertainty regions represented by Gp(s)

become larger than the need to include Π, or even if complicated dynamics are neglected.

Let start with the nominal MIMO plant with m inputs and p outputs represented as
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follows:

G(s) =


G(1,1)(s) G(1,2)(s) . . . G(1,m)(s)

G(2,1)(s) G(2,2)(s) . . . G(2,m)(s)
...

...
. . .

...

G(p,1)(s) G(p,2)(s) . . . G(p,m)(s)

 (3.20)

and the element by element multiplicative uncertainty of the form:

Gp(s) = (I +WO(s))×G(s) (3.21)

where × is Schur multiplier, which presents element by element multiplication, and

WO(s) is defined as:

WO(s) =


w

(1,1)
O (s)∆(1,1)(s) . . . w

(1,m)
O (s)∆(1,m)(s)

w
(2,1)
O (s)∆(2,1)(s) . . . w

(2,m)
O (s)∆(2,m)(s)

...
. . .

...

w
(p,1)
O (s)∆(p,1)(s) . . . w

(p,m)
O (s)∆(p,m)(s)

 (3.22)

|∆(i,j)
O | ≤ 1, ∀ω, i = 1, . . . , p j = 1, . . . ,m

Thus, the uncertainty set Π represented by Gp(s) is:

G(i,j)
p = (1 + w

(i.j)
O ∆

(i,j)
O )G(i,j), |∆(i,j)

O | ≤ 1, ∀ω (3.23)

However, it is not feasible to present uncertainty in mentioned way due to the difficulty

Figure 3.4: Multiplicative output uncertainty representation. Figure obtained from
[1].

to quantify the magnitude of w
(i,j)
O . If all the elements w

(i,j)
O 6= 0, ∀i, j, then the uncer-

tainty description is full-block (“unstructured”). It is obviously a poor assumption for

multivariable plants. Therefore, only the diagonal output uncertainty, where WO(s) is

diagonal matrix is considered. This uncertainty is frequently caused by uncertainty in

particular output channels.
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Now the uncertainty matrix WO(s) can be defined as:

WO(s) = wO(s)∆O(s) (3.24)

where the ∆O(s) represents a specific source of uncertainty with ||∆O||∞ ≤ 1:

∆O = diag[∆i] =


∆1

. . .

∆i

. . .

 (3.25)

For the non-square plant with m inputs and p outputs, the size of ∆O is p×p. Similarly,

wO is p× p matrix with the zero off-diagonal elements.

wO = diag[wOi] =


wO1

. . .

wOi
. . .

 (3.26)

Actually, the diagonal uncertainty usually arises from a consideration of uncertainty or

neglected dynamic in the particular output channels (sensors). If ∆O is full matrix, then

this will introduce non-physical couplings at the outputs of plant, resulting in a larger

set of plant and robustness analysis which may be conservative (meaning the conclusion

that the system may not meet its specification is wrong ). Eventually, the diagonal

output uncertainty, as given in (3.25) and (3.26), has always to be considered due to the

below reasons:

• It is always present and a system which is sensitive to this uncertainty will not

work in practice.

• It often restricts achievable performance with multivariable control.

3.5 Conclusion

In this chapter, the basic notions about frequency response has been introduced. Besides,

the T matrix algorithm is implemented to describe the frequency response of MIMO

vibration system, which has been presented in adjacent section. Fortunately, T-matrix

algorithm can be applied for square MIMO models as well as non-square MIMO plants.

However, due to the complex in modelling and identification of frequency response, the

uncertainty was introduced as multiplicative output uncertainty. This would lead to
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some advantages as compared with the other representations of uncertainty. First of

all, it is obviously benefit in designing the pre-compensator, which is able to counteract

the interaction in MIMO plant. Moreover, the multiplicative output uncertainty is less

restrictive than multiplicative input uncertainty in control performance point of view.

After that, the lumped uncertainty was used in order to transform the completed additive

uncertainty to the diagonal matrices. In the next chapter, the detailed information about

pairing chosen and pre-compensator design will be discussed.



Chapter 4

Decoupling techniques

In this chapter, some pairing selection techniques would be proposed. They have been

found very effective in MIMO decoupling control design. Hence, the chapter is structured

as follows:

• Singular Value Decomposition: The formula and properties of SVD are pre-

sented, which is able to select the pairing between inputs and outputs of system.

• Relative Gain Array: An introduction of RGA and its properties are given. Its

result in decentralizing the MIMO model hence is used to compares with the SVD.

• Compensator Design: Two compensators are designed based on the properties

of RGA, which are able to transform the non-square MIMO model into square and

diagonal dominant one.

• Conclusion: This section concludes the chapter.

4.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is one of the most important mathematical

decompositions used in control design. It is a matrix decomposition used to determine

if a system can be decoupled.

First of all, let consider the fixed frequency ω when G(jω) is a constant p×m complex

matrix, and denote that G(jω) is G for simplicity. Any complex matrix G is generally

decomposed into its singular value decomposition, as equation:

G = UΣV H (4.1)

23
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Where U is an p× p orthogonal matrix whose columns are the eigenvectors of GGT , Σ

is an p ×m diagonal matrix with non-negative real numbers on the diagonal, denotes

as σi, which are the positive square roots of the eigenvalues of GHG with GH be the

complex conjugate transpose of G,

σi =
√
λi(GHG) (4.2)

and the m×m unitary matrix V denotes the input singular vectors vi.

4.1.1 Input and output directions

The input direction is represented by the column vectors V , denoted vi, which are

orthogonal and of unit length (orthogonal), as

||vi||2 =
√
|vi1|2 + |vi2|2 + · · ·+ |vik|2 = 1 (4.3)

vHi vi = 1, vHi vj = 0, i 6= j (4.4)

Similarly, the orthogonal and of unit length column vectors of U , denoted as ui, rep-

resents the output directions. These input and output directions are derived from the

singular values as

Gvi = σiui (4.5)

in which, vi and ui are vectors and σi is a scalar. The above equation has been obtained

from the equivalent description of equation (4.1) such as GV = UΣ due to the definition

V is unitary, V HV = I.

Therefore, the input can be considered in the direction vi as well as the output in the

direction ui. Consequently, the gain of matrix G is given directly from the i′th singular

value σi as follows:

σi(G) = ||Gvi||2 =
||Gvi||2
||vi||2

(4.6)

Hence, the SVD can gives some advantages as compared with another screening tools

in term of eigenvalue decomposition for gain analysis and directionality of multivariable

plants as

+ The singular values give better information about the gains of the plants.

+ The singular values give the orthogonal directions of plants.

+ The SVD is able to analyze also non-square plants.
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4.1.2 Maximum and minimum singular values

It is obviously shown that the largest gain for any input directions is equal to the

maximum singular value as

σ̄(G)
∆
= σ1(G) = max

d6=0

||Gd||2
||d||2

=
||Gv1||2
||v1||2

(4.7)

Similarly, the smallest gain for any input direction is obtained as

σ(G) = σk(G) = min
d 6=0

=
||Gd||2
||d||2

=
||Gvk||2
||vk||2

(4.8)

where k = min(l,m). Hence, for any vector d which is not in the null space of G, the

below condition is satisfied:

σ(G) ≤ ||Gd||2
||d||2

≤ σ̄(G) (4.9)

From the equation (4.5), and denote vector v̄ as the largest amplitude input direction,

ū as output direction corresponding with the most effective inputs, we obtain

Gv̄ = σ̄ū, Gv = σu (4.10)

4.1.3 Condition number

The condition number γ of matrix G is defined as the ratio between the largest and

smallest singular values as

γ(G)
∆
=
σ̄(G)

σ(G)
(4.11)

A matrix with a large condition number is called ill-conditioned (typically γ > 10),

which means that some combinations of the inputs have a strong effect on the outputs

while other combinations have much less effect. Therefore, the condition number can be

used as a controllability measure:

• If γ is small then the effects of uncertainty are not likely to be serious.

• If γ is large, then there may be sensitivity to uncertainty.

On the other hand, the greater the γ value, the harder it is for the system in question

to be decoupled. As a rule of thumb, a system with a condition number γ of more than

50 is difficult or impossible to decouple.

For example, in the worst case scenario for a two-input two-output MIMO system,

using the exact same control variable twice would give a condition number γ of ∞, be-

cause both manipulated variables would have the same effect on the controlled variables.
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Hence, an ideal system would have a condition number γ to equal to one, where each

manipulated variable controls a single distinct output variable.

4.2 Relative Gain Array

4.2.1 Definition of RGA

The Relative Gain technique proposed firstly by Bristol in 1966 has not only become

a valuable tool for screening selection of manipulative-controlled variables pairings, it

has also been used to predict the behavior of controlled responses [16]. The analysis

concerns around how to construct a Relative Gain Array (RGA). If G is a non-singular

square complex matrix G, then RGA is defined as:

RGA(G) = Λ(G)
∆
= G× (G−1)T (4.12)

in which × denotes element-by-element multiplication (the Hadamard or Schur product).

Now, consider the square MIMO plant with transfer function matrix G(s) with element

gij(s) being particular transfer function from the input uj to output yi. For simplicity,

the Laplace variable s would be omitted for G(s) and gij(s). The idea is to consider two

extreme cases:

+ All other loops open: uk = 0,∀k 6= j

+ All other loops closed with perfect control: yk = 0, ∀k 6= i

The open loop gain between input uj and output yi, gij can be evaluated when all the

inputs except uj are assumed to be equal to zero:

Other loops open :

(
∂yi
∂uj

)
uk=0,∀k 6=j

∆
= gij (4.13)

In contrast, the closed loop gain ĝij is computed as follows if holding all outputs except

yk constant and closing all other loops:

Other loops closed :

(
∂yi
∂uj

)
yk=0,∀k 6=i

∆
= ĝij (4.14)

Basically, if no interaction between the loops are presented, the gain between input uj

and output yi should remain the same when the other loops are closed, so that the

relative gain gij/ĝij = 1. On the other hand, gij differs as compared with ĝij if there is
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interaction in the system. Then the ratio

λij
∆
= gij/ĝij (4.15)

could be used as an interaction measurement, and a relative gain array RGA with

elements given by λij can be formed.

As can be seen from the definition of transfer function matrix, the relation y = Gu leads

to gij = [G]ij with uk = 0, k 6= j, and similarly, u = G−1y gives(
∂yi
∂uj

)
yk=0,∀k 6=i

= [G−1]ji (4.16)

Hence, the whole RGA matrix can be found directly from (4.12).

4.2.2 Algebraic Properties

The RGA matrix possesses several useful algebraic properties. Some of the most impor-

tant are introduced as follows:

Property 1: If rows and columns are permuted in the transfer function matrix, G,

then rows and columns in the RGA matrix are permuted in the same way.

Property 2: The division in (4.12) ensures the RGA matrix to be scaling independent,

i.e.,

Λ(G) = Λ(S1GS2) (4.17)

with S1 and S2, diagonal scaling matrices with the same dimension as compared with

G.

Property 3: The sum of elements in each row (and in each column) of the RGA is

1. This means, for n× n non-singular matrix G:

n∑
i=1

λij =

n∑
j=1

λij = 1 (4.18)

Property 4: If the transfer function matrix, G, is diagonal or triangular, and if the

rows in the transfer function matrix are permuted to get nonzero elements along the

diagonal in the case of a triangular G, then the RGA equals to the identity matrix.

Hence, the RGA does not differ between diagonal and certain triangular models. It is

clearly a drawback.
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Property 5: For a 2 × 2 plant G, with nonzero elements only, the following holds:

(a) If the number of positive elements in steady state condition is odd then λij ∈ (0, 1);

(b) If the number of positive elements in steady state condition is even then λij ∈
(−∞, 0) ∪ (1,∞).

The properties 1,2 and 4 are easily obtained by using the definition of the RGA matrix

in equation (4.12). The rest, in the other hand is proven in [1].

4.2.3 Pairing recommendation

For example, let consider the RGA for the 2 × 2 transfer matrix:

G =

[
g11 g12

g21 g22

]
(4.19)

which can be generally computed as:

Λ(G) =

[
λ11 λ12

λ21 λ22

]
∆
=

[
λ11 1− λ11

1− λ11 λ11

]
(4.20)

where

λ11 =
“open-loop gain (with u2 = 0)”

“closed-loop gain(with y2 = 0)”
=

1

1− g12g21
g11g22

Depending on the value of λ11, the following cases can be happened:

1. If λ11 = 0, indicates no interaction between input u1 and output y1. Hence, pairing

should be chosen along the ani-diagonal, i.e. u1 − y2, u2 − y1.

2. If λ11 = 1, similar to above case, the pairing is chosen along the diagonal.

3. If 0 < λ11 < 1, this case is not desirable since the gain increases (i.e. gij increases)

when the loops are closed. Hence, there are interactions in the system. Moreover,

the worst case happens when λ11 = 0.5.

4. If λ11 > 1, now the gain degrades when the loops are closed. The interactions get

worse the larger λ11 is.

5. If λ11 < 0, now even the sign changes when the loops are closed and this is

extremely undesirable. The more negative λ, the worse the interactions are.

Eventually, even for higher-dimension plants, the rule used to choose pairings is that

corresponding RGA element is close to one. Definitively, negative pairings should be

avoided.
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4.2.4 The RGA-number

To characterize the chosen pairings with a simple measurement, the RGA-number can

be used:

RGA number = ||Λ(S)− I||sum (4.21)

where the sum matrix norm is defined as ||A||sum =
∑

i,j |aij | if the n× n matrix A has

elements aij , i, j = 1, . . . n. Clearly, the RGA-number measures how dominant the

diagonal in the RGA is. A proper pairing choice should thus have a RGA-number close

to zero.

4.2.5 Iterative RGA

Keep in mind that the disadvantage with the RGA number, at least for larger system,

is that it needs to be recomputed for each alternative pairing. On the other hand, the

RGA elements need to be computed only once. Hence, the iterative evaluation of the

RGA has been proposed in order to select promising pairing for large system. Woff

(1994) [17] found numerically that

Λ∞ , lim
k→∞

Λk(G) (4.22)

It has been proven that Λ∞ always converges to the identity matrix if G is a generalized

diagonally dominant matrix. This property will be usefully in the following chapter.

4.2.6 A dynamic extension of the RGA

Bristol only used the plant at steady state condition, G(0) when computing the RGA

[16]. The reason for this, was probably that in the process industry this steady-state

measurement is often far more easy to attain than the corresponding dynamic measure-

ment, G(jω). Fortunately, a dynamic extension of the RGA was proposed:

Λ(G(jω)) = G(jω)× (G(jω)−1)T (4.23)

The definition is clearly same as compared with the original RGA, except that fact that

the plant gain G, now ca be measured at any frequency ω. Not surprisingly, the dynamic

version of RGA have the same properties as the steady-state one. Hence, both of these

RGA versions will be denoted as Λ.

When analyzing a system it is advisory to use this dynamic RGA and hence study

the behavior of Λ(G) in the interesting frequency range. As pointed out by Skogestad
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and Postlethwaite, see[1], to avoid instability it is often sufficient to require Λ(G) to be

near the identity matrix at the crossover-frequency. However, a pairing that results to

negative RGA-elements should not be tolerated for any frequency of interest.

4.2.7 Generalization for Non-square plants

The RGA can be adopted to use for p×m non-square plants, Gall as follows:

Λ = Gall × (G†all)
T (4.24)

where † denotes the pseudo-inverse (Moore-Penrose inverse). Essentially, for the case of

many candidate manipulations (inputs) one may consider not using those manipulations

corresponding to columns in the RGA where the sum of the elements is much smaller

than 1 (see [15]). Similarly for the case of many candidate measured outputs (or con-

trolled outputs) one may consider not using those outputs corresponding to rows in the

RGA where the sum of the elements is much smaller than 1.

Let ej = [0 · · · 0 1 0 · · · 0]T be a unit column vector of length m, with value

1 at position j and zeros in every other positions. Hence, the j′th input is uj = eTj u.

Similarly, define ei and achieve the i′th output yi = eTi y. Then the following equations,

if the plant either has full column rank or full row rank can be achieved for both two

cases respectively [1]:
m∑
j=1

λij = ||eTi Ur||2 (4.25)

p∑
i=1

λij = ||eTj Vr||2 (4.26)

where Ur and Vr are matrices containing the first r output and r input singular vectors

of Gall respectively 1 Thus, eTi Ur yields the projection of an unit output yi onto the

effective output space of Gall, in the same way, eTj Vr can be seen as the projection of an

unit input on the effective input space of Gall spanned by the columns of Vr.

Frequently, the selections of inputs and outputs for possible control scheme can grow

rapidly with respect to a large group of candidates. Fortunately, the above results are

obviously an efficient tool in the paring selection of inputs and outputs. If the desire is to

eliminate some input candidate, the RGA for “full” transfer function matrix containing

1Input and output singular vectors can be obtained by performing the singular value decomposition
of Gall as follows:

Gall = UΣV H = UrΣrV
H
r (4.27)

where Σr consists only of the r=rank(G) nonzero singular values, Ur consists of the r first column of
U , and Vr consists of the r first columns of V . As the conclusion in [1], the columns in Vr represent
the input directions that can effect the outputs, and similarly, the columns in Ur represent the output
directions which can be effected by the inputs.
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every input and output candidates should be computed firstly, and then compute the

column sums of the RGA. According to (4.26), those columns with sums lower than one

is corresponding to inputs with a low impact of the system, which can be dismissed.

Similarly, the selection of output candidates can be implemented based on the row sums

of RGA and then, as a consequence of (4.25), outputs corresponding to low row sums

can be removed.

However, it should be noticed that scaling independency is lost for a non-square model:

For the case with more inputs than outputs, the RGA bases on input scaling, and in

contrast, RGA will depend on output scaling (for detail, see [1]).

4.3 Compensator Design

In the multivariable control design framework, the simplest approach is to use diagonal

controllers K(s). This is often related to the assumption that the interaction between

non-chosen pairing inputs and outputs of the plant can be neglected as compared with

the pairing one. However, if the undiagnosed elements in G(s) are large, it would lead to

a bad performance of the closed-loop. Therefore, the alternative approach to deal with

this problem is to use a compensator, which can reduce the interactions in the plant

before designing controller. Fortunately, this technique is basically sufficient to use in

the square-plant as well as the non-square plant.

Let start the simple feedback system in the Figure 4.1. A conceptual way is to use

Figure 4.1: Pre-compensator for MIMO controller design.

pre-compensator, W (s), which counteracts the interactions in the square plant G(s) and

results in the “compensated” plant as:

Gs(s) = G(s)W (s) (4.28)
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which is easier to control than the original square plant G(s). After achieving the shaped

plant Gs(s), the diagonal controller is designed as follows:

Ks(s) = W (s)K(s) (4.29)

Basically, the following assumptions are made according to the compensated plant Gs(s):

• First of all, the dynamic decoupling system is attained when the overall plant is

made to be diagonal at every frequency ω. This can be done by using a pre-

compensator of the form W (s) = G−1(s)Gdiagonal(s), in which the diagonal ele-

ments in the shaped plant remain unchanged.

• If the overall plant is diagonal only in steady state ( ω = 0), the decoupling is

known as static. This may be obtained by selecting a constant pre-compensator

matrix which is computed as W = G−1(0). Moreover, if the system is needed to be

almost diagonal at a required frequency ω0, G(0) in the aforementioned equation

can be replaced by G(jω0). The bandwidth frequency is a good selection for ω0 as

the effect of performance of reducing interaction is maximum in this frequency.

However, the decoupling control approach proposed above still has some limitations

which can be found in detail in [1]. Some of the common strategies utilised in decou-

pling control are the internal control scheme (IMC) and partial decoupling of upper or

lower triangular transfer function matrix.

On the other hand, even though the non-square plant can be decoupled by using com-

pensator achieved from pseudo-inverse of G(0), it still has some limitation based on not

only the complicated selection of pairings but also in dealing with uncertainty of plants.

More precisely, this thesis aims at solving the difficulties in pairing selection of a 4 × 8

non-square plant with following assumptions:

• The non-square plant has physical actuators (rear struts and anti-torque plate)

which are located in the left and right side of the system. Actually, one output

is affected by two actuators from left and right side with the similar significant

transfer function in fixed frequency as compared with every other actuator. This

mean that it is very difficult to tune the complex controller due to the strong

multivarible property of the system. Moreover, actuators mounted in fuselage is

expected to operate in combination to maximise their effect to the vibration atten-

uation. Hence,a compensator need to be developed, which is capable to transform

the original plant to be square plant with diagonal dominant elements. The new

inputs are called virtual inputs, whose quantities are equal the number of real

outputs. Hence, the pair is only one virtual input and one output.



Chapter 4. Decoupling techniques 33

• On the other hand, the target of this thesis is to attenuate the vibratory com-

ponents at the high frequency in the fuselage. As a consequence, the identified

model is effected by the big uncertainty parts in term of the relative frequency or

magnitude.

Let’s start with the p×m non-square plant as:

G(s) =


G(1,1)(s) . . . G(1,m)(s)

...
. . .

...

G(p,1)(s) . . . G(p,m)(s)

 (4.30)

The compensator W (s) is designed in such way that the following cost is minimized:

min
W (s)

J(s) = ||RGA(Gs(s))− I||∞ (4.31)

in which, I is identity matrix and Gs(s) = G(s)W (s).

It is obviously realized that the size of W (s) should be m × p and the Gs(s) should

be lower or upper triangular transfer function matrix, which can see in the algebraic

properties 4th of RGA. However, the obtained model Gs(s) is a non-diagonal matrix

which is undesirable from decentralized control design framework. This limitation can

be overcome if a second compensator Ws(s) is designed based on the compensated plant

Gs(s) in such a way:

Ws(s) = Gs(s)
−1Gdiags (s) (4.32)

with Gdiags is a diagonal matrix taken from the shaped transfer function matrix Gs(s).

Eventually, we are able to organize an Algorithm 1 of compensator design as follows:

Step 1: Initialize the first compensator W (s).

Step 2: Compute RGA matrix based on shaped plant and compare with identity

matrix. Then the weighting function W (s) should be modified in order to avoid

the local minimization of the cost function.

Step 3: Update the new W (s) and uses it as the new initialization compensator

for next iterative.

Afterwards, go back to Step 2.

After that, the second compensator is achieved by using equation (4.32) and then the

overall compensator is:

Woverall(s) = W (s)Ws(s) (4.33)
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However, even the idea of decoupling control is appealing, some comments carries out

as follows:

• The compensator is designed by minimizing the cost function, it is impossible to

ensure that the obtained minimization of cost function is global.

• The algorithm to find minimization of cost function is optimal approach, which

can deal with only the fixed frequency ω as well as G(jω). Then, there is no way

to attain W (jω) as the function of varying frequency, W is achieved as constant

matrix for each frequency ω.

4.4 Conclusion

In conclusion, all necessary ingredients for decoupling control problem are presented.

The two screening tools as SVD and RGA are introduced, which will be using to solving

the pairing chosen in MIMO plants. However, due to some difficulties in the vibration

model of helicopter system, the compensator design has been modified in order to achieve

exactly diagonal shaped plants. It basic idea is to minimize the cost function between

RGA of shaped plant and the identity matrix. In the next chapter, controller synthesis

will be discussed.



Chapter 5

Controller design

The vibration model obtained in the identification step is MIMO, which can be decoupled

by using the two compensators designed in Chapter 3. Our main goal of this chapter is to

use control algorithms which are based on the LQR and H∞ approaches. Before starting

developing the whole algorithms, theoretical background and technical considerations are

presented. Hence, the chapter is structured as follows:

• LQ-like cost controller: LQR controller synthesis approach is introduced and

will be applied to our compensated model.

• H∞ active rotor control design: The robust controller is designed for the

MIMO model which has been described in the previous chapter.

• Conclusion: This section concludes the chapter.

5.1 LQ-like cost controller

Consider the compensated model obtained from previous step which is represented as

linear model under the steady state conditions

yN = TN,NuN + w (5.1)

where u ∈ Rp is the vector of virtual manipulated variables, y ∈ Rp is the vector of

controlled variables and w represents the component of the vibration in frequency ω

affecting in the system.

It has to be noted that the dynamics relating u to y can be assumed to be linear

time-invariant ( which is a reasonable assumption if one considers a fixed steady flight

35



Chapter 5. Control design 36

condition and a configuration for the vibration control system with actuators and sensors

located in the fuselage) which is compensated by two compensators to be a diagonally

dominant matrix, then the compensated frequency response matrix Gs(jω) is described

as

Gs(jω) =


G

(1,1)
s (jω 0

. . .

0 G
(p,p)
s (jω)

 (5.2)

where Gs(jω) = G(jω)W (jω)Ws(jω), W (jω) and Ws(jω) are found from Chapter 3.

Therefore, the T −matrix representation of the model will be

TN,N =


T

(1,1)
N,N 0

. . .

0 T
(p,p)
N,N

 (5.3)

in which T
(i,j)
N,N is obviously related to G(jω)(i,j) as

T
(i,j)
N,N =

[
Real(G

(i,j)
s (jω) Imag(G

(i,j)
s (jω))

-Imag(G
(i,j)
s (jω)) Real(G

(i,j)
s (jω))

]
(5.4)

The advantage of this approach using compensator is clearly that the non-square MIMO

plant which is difficult to decouple has transformed to the diagonal dominance and

square model. It results to the possibility of applying the decentralized controller for

each SISO loop. Moreover, the uncertainties in off-diagonal elements of compensated

model are degraded, which will effect slightly to the performance of LQ-like controller

as well as H∞ controller.

Hence, from the definition of T -matrix algorithm, the discrete time relation for the

reduction of the effect of w on yN is given by

uN (k + 1) = uN (k)− T−1
N,NyN (k) (5.5)

with k be the control cycle index.

On the other hand, the LQ-like cost function is defined for each discrete-time k as

J(k) = yTN (k)QyN (k) + 2yTN (k)SuN (k) + uTN (k)RuN (k) (5.6)

where Q = QT ≥ 0, S + ST > 0 and R + RT > 0. Replace k by k + 1 in (5.1) and

subtracting the resulting equation (5.1) itself, yields the disturbance-free update model

yN (k + 1) = yN (k) + TN,N (uN (k + 1)− uN (k)) (5.7)
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Substituting now yN (k) from (5.1) into (5.6) obtains a new cost function as

J(k) = uTN (k)DuN (k) + 2uTN (k)T TN,NQw(k) + wT (k)Qw(k) (5.8)

where D = T TN,NQTN,N + R. The optimal control law is found by differentiating (5.8)

with respect to uN (k)

∂J(k)

∂uN (k)
= 2DuN (k) + 2T TN,NQw(k) (5.9)

leading to the open-loop control algorithm

uN (k + 1) = −D−1(T TN,NQ)w(k) (5.10)

which can be equivalently written a closed-loop form as

uN (k + 1) = −TN,NKN,NuN (k) +KN,NyN (k) (5.11)

with

KN,N = −D−1(T TN,NQ). (5.12)

From a practical point of view, the implementation of above discrete control algorithm

has to include the following procedures:

(1) The determination on the component of y in frequency ω.

(2) The update of the component using equation (5.11) in frequency ω.

(3) The determination of the time domain value of the control input u via a modulation

of the sine and cosine components in frequency ω.

Note that if in the cost function (5.6) the weighting function matrices Q and R are chosen

as the identity and zero matrices respectively, then the control law (5.11) reduces to (5.5).

The control law (5.11) can be rewritten as

uN (k + 1) = KMuN (k) +KNyN (k) (5.13)

with KM = −TN,NKN,N , KN = KN,N , KN,N given by (5.12).

In this respect it is interesting to point out that the structure of matrix TN,N (see (5.4))

implies a similar structure of matrices KM and KN . In detail, it is obviously that the
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structure of every sub-matrix T
(i,j)
N,N which is formulated as the form

T
(i,j)
N,N =


[
a(i,i) b(i,i)

−b(i,i) a(i,i)

]
if i = j, i, j = 1 · · · p

[0] if i 6= j, i, j = 1 · · · p
(5.14)

is extended to matrix KN ( its sub-matrices) by means of equation (5.10) and con-

sequently KM also inherits the same type of structure. This means in the face of

2p.(2p+ 2p) entries in the matrices defining the control law, only 2p free parameters are

exploited in the LQ control law.

The main drawback of the control law in equation (5.10) is that exact knowledge of T -

matrix is assumed to be available. However, the erroneous model of it can not degrade

only the performance of controller but make also the closed loop system to be unstable..

To address with model uncertainty, a posteriori analysis can be carried out to prove

the robustness qualities. An interesting derivation from [18] provides upper bounds on

the maximum singular value of the additive uncertainty for which robust stability is

guaranteed by using the above described LQ-like control law. While such an analysis is

of course informative, its main limitation lies in the difficulty in relating back bounds

on the uncertainty on matrix TN,N to the actual model uncertainty in the dynamics

of the helicopter. Based on these considerations, a robust framework could be used to

design control law by incorporating all the uncertainties during the synthesis process.

Conventional HHC control deals with performance degradation in presence of model

uncertainty by introducing adaption, which takes into account the variation of the matrix

TN,N between different flight conditions. Many different algorithms have been developed

in this sense in the last few years, mainly based on the estimation of TN,N at specific

time steps during the flight operations. In this respect, the interest in investigating

a robust control design approach is motivated by the possibility to relax the need for

continuous update of the T -matrix.

5.2 H∞ active control design

In this section an H∞ robust approach to the design of the HHC control law is presented.
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5.2.1 Uncertainty model:

From the analysis carried out in Chapter 3 about the uncertainty representation, the

multiplicative output uncertainty has been chosen

Gs(jω) = (Ip +WO∆O)Ḡ(jω)W (jω)Ws(jω) (5.15)

where two compensators W (jω) and Ws(jω) are designed based on the nominal plant

Ḡ(jω), Ip is the identity matrix of dimension p, ∆O is a normalized representation of

the uncertainty and WO represents the matrix of the uncertainty ellipsoids affecting the

frequency response Ḡ(i,j)(jω). It is clearly from the equation (5.15), no matter how

the uncertainty representation is chosen, it will not affect to the way how to design

compensators and the T -matrix algorithm. Eventually, the T -matrix representation of

the plant illustrated in the Figure 5.1 will become

TN,N = (I2p +Wm∆)T̄N,N , ||∆||∞ ≤ 1 (5.16)

in which, I2p is 2p × 2p identity matrix, Wm is defined as the T -matrix representation

of WO and T̄N,N is found in the equation (5.4). Therefore, Wm is a diagonal matrix as

Wm = blkdiag(W (1)
m ,W (2)

m , . . . ,W (p)
m ) (5.17)

with

W (
mi) = r(i)

[
α(i) β(i)

−β(i) α(i)

]
, i = 1, . . . , p (5.18)

with r(i) is a scalar scale factor and α, β are the parameter relating to the considered

uncertainty of the specific output.

Figure 5.1: Block diagram of multiplicative output uncertainty.

On the other hand, the ∆ is defined as

∆ = blkdiag(I2δ
(1), I2δ

(2), . . . , I2δ
(p)) (5.19)
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Then the block diagram of the uncertainty feedback system corresponding to the model

(5.1), its uncertainty (5.16) and the controller (5.11) are depicted in the Figure 5.2.

Figure 5.2: Block diagram of the closed loop of H∞ controller.

In Figure 5.2, variables w∆ and y∆ are defined as follows

y∆(k) = WmT̄N,NuN (k)

w∆(k) = ∆y∆(k)
(5.20)

It results to the uncertain closed-loop system

uN (k + 1) = KMuN (k) +KNyN (k)

yN (k) = T̄N,NuN (k) + w(k) + w∆(k)

y∆(k) = WmT̄N,NuN (k)

w∆ = ∆y∆

(5.21)

Letting Y = [yN y∆]T and Y0 = [w w∆]T , the uncertainty model in (5.21) can be

represented in the transfer function as

Y = GY Y0(z)Y0 (5.22)

where GY Y0 can be defined as[
y

y∆

]
=

[
T̄N,N (zI − (KM +KN T̄N,N ))−1 + I2p T̄N,N (zI − (KM +KN T̄N,N ))−1KN + I2p

WmT̄N,N (zI − (KM +KN T̄N,N ))−1KN WmT̄N,N (zI − (KM +KN T̄N,N ))−1KN

][
w

w∆

]
(5.23)
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5.2.2 H∞ control synthesis

Now, the next step of a H∞ controller synthesis problem is to define the weighting

function W
(i)
y , i = 1, · · · , p and W

(j)
u , j = 1, · · · , p , respectively on the output yN and

the virtual input variables uN , which is depicted in the Figure 5.3. More precisely, the

weighting function Wy will be selected with assumption that the control design target

is focused on the vibration attenuation at steady-state. Hence, the robust synthesis

Figure 5.3: Augmented plant model

problem can be formulated as

Find KM ,KN

s.t.∥∥∥∥∥ GY Y0Wy

Guy0Wu

∥∥∥∥∥
∞

≤ γ,
(5.24)

where Guy0 is the control sensitivity function, obtained by re-opening the closed-loop

from the disturbance w to the control variable uN in the nominal case:

Guy0 = (zI − (KM +KN T̄N,N ))−1KN (5.25)

The advantage of H∞ therefore as compared with LQ-like cost function approach is

not only the possibility of dealing with the model uncertainty but also the additional

benefit in control turning problem. Indeed, the vibration control problem is basically

multivariable one, which the different locations in fuselage request different vibration

reduction levels. From this viewpoint, the LQ-like, possibly adaptive, approach can turn

out to be extremely time consumption. On the other hand, requirement specifications

in terms of steady state vibration attenuation levels and desired transient performance

can be immediately modified though the weighting function (see, e.g, Figure 5.4, which

illustrates the suitable frequency response of continuous template weighting function
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Figure 5.4: Frequency response of possible Wy(s) weighting filter.

Wy), while the properties of the optimal solution can provide information about the

actual distance between the desired and achievable performance. Moreover, the model

used in this analysis is compensated to be transformed from non-square to square and

diagonal dominance plant, which means that the decentralized controller with same

weighting function for all SISO subsystem loops or higher penalties to specific outputs

associated to more critical characteristics in terms of vibration (e.g., pilot and co-pilot

seats) can be considered.

5.2.3 Controller tuning

Problem (5.24) is a structured H∞ problem, which is known as both non-convex and

non-smooth. This means that the convergence of the algorithm may depend on the

initial controller and global optimality of the computed solution cannot guaranteed (for

example, gradient-based descent algorithms could fail). In this viewpoint, a randomized

method is capable to solve the optimization problem: the key point is that a optimal

control law is achieved if the better control law cannot be found in its neighborhood (or,

equivalently, can be found with null probability, [19]).

Hence, let’s start with the assumption that the initial stabilizing controller based on

the classical LQ and T−matrix is available. To compute the new controller K(i+1), the

basic idea is to test randomly sample controllers in a neighborhood of K(i) and select

the best one in terms of minimization of the cost function (5.24). If it is not longer
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possible to find better controllers, the algorithm stops and the (local) optimal controller

is obtained.

The stopping criterion is set on the parameter 0 < pmax < 1, defined, in order to check

the convergence, as the impossibility of finding better controller in the current iteration.

The number Nc of Monte Carlo samples and the initial step size λ are also defined.

Given a stabilizing initial controller K(i), the optimal controller is achieved by means of

Algorithm 2 (see [19]) for detail). Note that the term ∆K(i)/‖∆K(i)‖ can be regarded

as an approximation of the steepest descent direction, and the candidate controller Kj

is randomly generated regarding to the knowledge of the estimated steepest direction.

Actually the controller is a random matrix, hence to check convergence the procedure

is iterated as many times as the standard deviation in the cost function becomes below

±1%, which guarantees the minimality of the cost with a very small tolerance.

Here is the detailed procedure of the Algorithm 2 Tuning algorithm:

• Step 1: Generate Nc controllers by means of a Monte Carlo generation: for

j = 1, · · · , Nc

K(j) ← K(i) + λ‖K(i)‖

(
ηj +

∆K(i)

‖∆K(i)‖

)

• Step 2: Compute the H∞ norm cj ← J(K(i))

• Step 3: Select the candidate controller , ĵ ← mini J(K(i))

• Step 4: Compute the an approximation of the rejection ratio p(i+1)

• Step 5: if ρ(GY Y0) < 1 B%check nominal and robust stability% setK(i+1) ←
K ĵ and i← i+ 1

else decrease step λ and goto 1.

• Step 6: if p(i+1) > p(i)

decrease step λ

else increase step λ

• Step 7: if p(i+1) > pmax

return K

else goto 1.

5.3 Conclusion

In this chapter, the problem of robust design of HHC control law has been considered.

H∞ controller synthesis has been proposed and compared to the classical LQ solution.
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Moreover, both controller have been developed based on the compensated plant achieved

from previous Chapter. In the next chapter, simulations will be deployed and some

comments will be made in term of performance of both approaches.



Chapter 6

Simulation result

In this chapter, a numerical example is used to illustrate the main properties of the

proposed techniques. The T− matrix considered in this example is based on the identi-

fied model from the paper [7]. More precisely, transfer function matrix is a 4x8 with 4

accelerometers and 8 actuators.

Hence, the chapter is structured as follows:

• Singular Value Decomposition: The result of paring selection based on SVD

is proposed. Hence, the main drawback of this technique has been analyzed to

show up the difficult of pairing selection.

• Relative Gain Array: This section presents the obtained results when RGA in

pre-screening the inputs and then further controllability analysis is performed to

non-square identified model.

• Compensator Design: Two compensators designed to transform the non-square

model to the square and diagonal plant are proposed, which is main target of this

thesis.

• Controllers’ performance comparison: The simulation performances of both

controllers are illustrated. In which, we have capability to evaluate the benefits of

overall procedure.

• Conclusion: This section concludes the chapter.

6.1 Singular Value Decomposition

In this section, the numerical analysis based on SVD is proposed, which has been applied

for the non-square model with the structure of sensors and actuators as above. For each

45
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type of physical element (rear struts and anti-torque plate) two pairs of actuators have

been chosen: one set up in the left side and one for the right side. So, AS07 and AS08

actuators are the left rear struts as compared with the right struts AD07 and AD08.

On the other hand, for the left part of the anti-torque plate the actuators are TS05 and

TS06 while for the right side they are TS03 and TD04. Hence, the actuators of each

pair are in the same position but on opposite side: in this way, the way they are excited

determines the type of deformation the structure is subject to.

The choice was taken in such way that each accelerometer is affected significantly by

a pair of actuators. For example, accelerometer 2 is chosen as corresponding with the

actuators TS05 and TS06 while the actuators AS07 and AS08 for accelerometer 9 and

so on. In this way, accelerometer 2 works well with corresponding left actuators but not

as well with others, which lead to the smaller inter-coupling effect.

As the result, the frequency response model was calculated at 1800 Hz, which is 4x8

complex value gain matrix. When the SVD is performed based on the following equation:

y = Gu = UΣV Hu (6.1)

Three obtained matrices are:

U =


−0.9863− 0.0000i −0.1249− 0.0000i 0.0866− 0.0000i −0.0642− 0.0000i

−0.0596− 0.0637i −0.0804− 0.0987i −0.6389− 0.4437i 0.2096 + 0.5721i

0.0103 + 0.1342i −0.5550− 0.9794i 0.0747 + 0.1060i 0.0499− 0.0134i

−0.0263 + 0.0284i 0.0027− 0.0761i −0.5124− 0.3289i −0.2931− 0.7322i


(6.2a)

Σ =
[
diag{1.4108, 0.5347, 0.1549, 0.0985}|0

]
(6.2b)

V =



−0.0130− 0.0060i −0.0070 + 0.0150i 0.2020 + 0.5360i 0.0330− 0.1430i

0.0240 + 0.0090i −0.0050 + 0.0410i 0.1430 + 0.6860i 0.1170− 0.2220i

0.2700 + 0.5890i 0.2280− 0.1380i 0.0320 + 0.1990i −0.0130 + 0.0120i

−0.1850− 0.6860i −0.0950− 0.1130i −0.0240 + 0.1890i 0.0530 + 0.0230i

−0.0330 + 0.0080i 0.1300− 0.2200i −0.0900− 0.1310i 0.2550− 0.5140i

0.0120− 0.0040i 0.1410− 0.1530i −0.0283− 0.1890i 0.3560− 0.5540i

−0.1010 + 0.1030i −0.0670− 0.6480i 0.0270 + 0.1550i 0.0670 + 0.3800i

−0.2140 + 0.0750i −0.1510− 0.5900i 0.0500− 0.1240i 0.0260 + 0.0040i


(6.2c)

The first thing needed to be considered is the condition number:

CN =
σmax
σmin

= 14.32 (6.3)
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which means that the largest singular value is more than 10 times larger than the smallest

one. If a control variable has the main component that is going to be multiplied by the

smallest singular value, than it is clear that this control variable has a much smaller

effect than the others.

The SVD gives information about the possible pairings among the channels: suppose

we want to pair the measured variables with the control variables, this is done in the

following way: the measurement variable corresponding to the largest element of the first

column of matrix U is taken and it is paired with the control variable corresponding to

the largest element of the first vector of matrix V. The same is done for the other

columns.

In our case the V and U matrices are complex value so we take the absolute values:

abs(U) =


0.9863 0.1247 0.0866 0.0642

0.0872 0.1273 0.7778 0.6092

0.1346 0.9810 0.1297 0.0517

0.0387 0.0761 0.6088 0.7887

 (6.4a)

abs(V ) =



0.0143 0.0166 0.5728 0.1468 0.0671 0.1305 0.6915 0.3874

0.0256 0.0413 0.7007 0.2509 0.2472 0.2643 0.4313 0.3555

0.6479 0.2665 0.2016 0.0177 0.4195 0.4673 0.0632 0.2627

0.7105 0.1476 0.1905 0.0578 0.4239 0.4392 0.0642 0.2381

0.0340 0.2555 0.1589 0.5738 0.5750 0.4666 0.0738 0.1570

0.0126 0.2081 0.1911 0.6585 0.4505 0.4923 0.1690 0.1114

0.1443 0.6515 0.1573 0.3859 0.0889 0.1177 0.3335 0.4972

0.2268 0.6090 0.1337 0.0263 0.1933 0.1657 0.4258 0.5583


(6.4b)

Now, the largest element of the first column of abs(U) is the first, corresponding to the

first accelerometer chosen (which is accelerometer 2 ); we expect that this accelerometer

couples well to the left actuators of the anti-torque plate. Inspecting the second matrix,

the largest element is the fourth (corresponding to actuator TS06). However the third

element which has a value of 0.65 is really close to the previous one: this element

correspond to the actuator TS05. The other elements of the first column of abs(V ) have

a value that can be neglected when compared to these. Consider now the second column

of matrix abs(U): the element with the largest value is the third (0.98) corresponding

to accelerometer 10. Looking at the second column of matrix abs(V ), the element with

the largest value is the seventh (0.65), which correspond to the actuator TD03 but again

its paired actuator TD04 has a value (0.6) that is close to it, meaning that these two

actuators are significant for this accelerometer.
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Accelerometer Actuators

2 TS05, TS06

9 AS07, AS08

10 TD03, TD04

18 AD07, AD08

Table 6.1: Paring selection between the actuators and accelerometers based on SVD
technique.

Going on, for the third column of abs(U) the largest value 0.7778 corresponding to

accelerometer 9: inspecting the third column of the other matrix the largest value is

0.7 which correspond to the actuator AS08, but also the first element (actuator AS07)

has a significant value: the other values are much smaller than these hence they are not

significant.

Finally the last column of abs(U) has as largest value 0.7887 which corresponds to

accelerometer 18. Analyzing the fourth column of matrix abs(V ) the element with the

largest element is the sixth (0.658) but again also the seventh element has an important

value (0.57) significantly bigger than the others: these correspond to the actuators AD07

and AD08.

Note that there are 2 values in the U matrix that are not the maximal of their corre-

sponding columns but can be compared to them: these are the (4,3) and (2,4) elements:

these might tell us tell us that accelerometer 9 is also significant for the actuators AD07

and AD08 and that accelerometer 18 is significant for the actuators AS07 and AS08.

Finally, the Table 6.1 shows the optimal pairings selected from SVD approach.

Another thing to point out is that from this analysis it seems the inter-channel coupling

effect of a chosen subsystem is not so important. Actually this is in general not true

and it depends strictly on the choice of accelerometers: accelerometers chosen in this

case, for their positions in the cabin, are significant almost for only a group of actuators

(accelerometer 9 for the actuators of the left rear strut, the 18 for the actuators of the

right rear strut and so on).

6.2 Relative Gain Array

In this section, a method to combine inputs-outputs structure is adopted. This method

uses the RGA to pre-screen the inputs and further controllability analysis is performed

to select the best control structure. In 1995, Cao [15] considered the selection of manip-

ulations in a chemical process for the hydrodealkylation of toluene (HDA process). The

plant has 5 controlled outputs and 13 candidate manipulators. His aim was to select
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the combination of 5 inputs and 5 outputs in such a way that the RGA matrix of this

structure is closed to identity matrix as much as possible.

Similarly, in this thesis, the manipulated variables need to be chosen from 8 candidate

inputs, u1, u2, · · · , u8. Clearly, there exist
(

8
4

)
= 70 combinations with 4 inputs and 4

outputs. At steady state 1800 Hz, the numerical transfer function matrix is:

GTall =



0.0211 + 0.0154i −0.0631− 0.0457i 0.0044− 0.0035i −0.0344− 0.0253i

−0.0319− 0.0047i −0.0762− 0.0699i −0.0041− 0.0145i −0.0359− 0.0338i

−0.3904− 0.8078i −0.0946− 0.0238i 0.1236 + 0.1196i 0.0064− 0.0390i

0.2631 + 0.9645i 0.0790 + 0.0180i −0.0421 + 0.0116i −0.0271 + 0.0158i

0.0344 + 0.0051i 0.0023− 0.0055i 0.0764 + 0.1375i 0.0542 + 0.0450i

−0.0287 + 0.0168i −0.0067 + 0.0007i 0.0367 + 0.1129i 0.0474 + 0.0604i

0.1450− 0.1004i 0.0458− 0.0028i 0.3799 + 0.1811i −0.0052− 0.0205i

0.3084− 0.0666i 0.0532 + 0.0062i 0.3635 + 0.1354i 0.0360 + 0.0129i


(6.5)

and the corresponding RGA-matrix is

ΛT =



0.0076− 0.0068i 0.2956 + 0.0102i 0.0008− 0.0022i 0.0459− 0.0012i

−0.0011 + 0.0159i 0.5259− 0.0180i −0.0061− 0.0045i 0.0374 + 0.0066i

0.3391 + 0.0611i 0.0841− 0.0385i 0.0853− 0.0493i 0.0237 + 0.0267i

0.5937− 0.0698i −0.0301 + 0.0826i −0.0091 + 0.0067i 0.0122− 0.0195i

−0.0070− 0.0114i 0.0084 + 0.0145i 0.0544 + 0.0324i 0.3650− 0.0354i

0.0137 + 0.0030i 0.0104− 0.0180i 0.0249 + 0.0308i 0.4645− 0.0159i

0.0120 + 0.0179i 0.0849− 0.0031i 0.4829− 0.0783i 0.0394 + 0.0635i

0.0420− 0.0100i 0.0207− 0.0298i 0.3668 + 0.0645i 0.0119− 0.0247i


(6.6)

As matrix ΛT is complex valued matrix, the absolute value is studied:

abs(ΛT ) =



0.0101 0.2958 0.0023 0.0460

0.0159 0.5261 0.0075 0.0380

0.3447 0.0926 0.0985 0.0355

0.5977 0.0880 0.0112 0.0229

0.0133 0.0167 0.0634 0.3666

0.0140 0.0207 0.0396 0.4652

0.0217 0.0851 0.4892 0.0747

0.0432 0.0362 0.3725 0.0273


(6.7)

Obviously, the RGA can give information about the possibility in choosing the pairing of

the system. It follows the rule in such way that the element in RGA matrix corresponding
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with the input should be chosen as non negative and close to 1. On the other hand, the

properties of RGA matrix used in choosing the pairing of inputs-outputs are 3rd and 5rd

in 4.2.

From the above matrix, one could say that the largest element in the first column of

abs(ΛT ) is the fourth, which is corresponding with actuator TS06. The chosen ac-

celerometer to be controller by TS 06 is 2. However, it is clear that the third element of

abs(ΛT ) is also very closed to the largest one, corresponding to actuator TS05. Hence,

accelerometer 2 can be controlled by both chosen actuator which have significantly im-

pact as compared with the rest in the first column.

When moving to the second column of matrix abs(ΛT ), it shows that the actuator AS08

corresponding to the second element influences strongly to accelerometer 9 but again

the first element also is big, which would lead to the fact that actuator AS07 and AS08

can be considered as the controller’s inputs to the output accelerometer 9. The others

are neglected in comparing the previous actuators.

Thirdly, the largest element in the 3rd column of matrix abs(λT ) is 0.4892, corresponding

to the actuator TD03, while the next significant element is the last one ( actuator TD04).

Moreover, the rest are neglected because of the tiny impact to accelerometer 10.

Finally, the last accelerometer 18 is controlled by the actuator AD08 and AD 07 which

correspond to the sixth and fifth elements of 4th column of matrix abs(ΛT ), respectively.

However, the RGA has another benefit as compared with the SVD approach in selecting

the input-output pairing of the model. As the above analysis, the RGA and SVD give the

same results in which one accelerometer is effected strongly by two actuators. Moreover,

the obtained result can be confirmed again to understand more clearly by iterative

evaluation of the RGA which was introduced in chapter 4. Applying this approach, the

RGA matrix will be computed repeatedly and then finally provided the most significant

interaction between inputs and one output. Let’s compute (ΛT )8 to obtain:

(ΛT )8 =



0.0000− 0.0000i 0.0000− 0.0000i 0.0000− 0.0000i 0.0000 + 0.0000i

0.0000− 0.0000i 1.0000 + 0.0000i −0.0000− 0.0000i −0.0000− 0.0000i

0.0000− 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

1.0000− 0.0000i −0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000− 0.0000i

0.0000− 0.0000i −0.0000 + 0.0000i −0.0000 + 0.0000i 0.0000− 0.0000i

0.0000− 0.0000i −0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000− 0.0000i

0.0000− 0.0000i −0.0000− 0.0000i 1.0000− 0.0000i 0.0000− 0.0000i

0.0000− 0.0000i −0.0000− 0.0000i 0.0000− 0.0000i 0.0000 + 0.0000i


(6.8)
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Accelerometer Actuators

2 TS05, TS06

9 AS07, AS08

10 TD03, TD04

18 AD07, AD08

Table 6.2: Paring selection between actuators and accelerometers based on RGA
technique.

We find from each column of the steady-state RGA matrix given in (ΛT )8 that there

are 4 elements which have the absolute value is 1 while the rest have 0 absolute values.

their positions are 4th in 1st column, 2nd in second column, 7th in the third column

and 6th in the last one. Eventually, it is obviously that we have same result in pairing

selection in both techniques RGA and SVD, is illustrated in Table 6.2. For each output,

the control structure can select two manipulated actuators with significant impact as

compared with the others even though the RGA technique has the capability to select

the best pairing for each output by using iterative evaluation.

In this experiment, actuators are mounted in the helicopter in such a way that they

can be effectively operated simultaneously to maximise their effect to reduce the noise.

However, this combination would lead to a fact that the controllers are very complex

and difficult to tune. Hence, both approaches SVD and RGA are not able to use for this

kind of model. We will propose the automatic design approach to reduce the number of

actual control inputs by using pre-compensators.

6.3 Compensator design

The main drawbacks of two above approaches is the difficulty in selecting the pairings

between inputs-outputs. It is obvious that one output can be effected strongly by two

inputs. In the other hand, the classical way to make the simplification from MIMO model

to multi SISO case is adapted to find the new set of independent inputs and outputs.

The goal of this step is to eliminate the interactions so that a change in one system

variable will not cause corresponding changes in the other system variables. Moreover,

this classical approach is used only in the square system with the full information about

input-output pairings. As a consequence, it is not suitable for applying in non-square

system with non selection in pre-screening.

Hence, in this thesis, the new technique will be proposed in order to obtain the optimal

solution for decentralized controller in multivariable design. The MIMO model of the

vibration in helicopter is derived in previous section with 8 inputs and 4 outputs. The
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idea is to design a compensator which is able to transform the model into a diagonally

dominant system.

Applying Algorithm 1 proposed in the previous chapter, the first compensator is at-

tained as follows:

CRGA =



0.0000 3.2820 −0.5276 −12.7469

0.7749 −5.2440 −1.6056 4.2976

−0.6464 1.6168 −1.7409 −3.0630

0.0111 1.2459 −1.9486 −5.5845

1.6501 −1.1188 0.1784 44.8798

−1.2287 −0.4669 −5.1674 −9.0508

−0.0164 −0.9064 −8.4363 −19.7484

0.0245 0.7250 2.0410 8.5225


(6.9)

In this algorithm, we used a nonlinear optimization solver fminsearch in MATLAB

optimization toolbox for implementing Algorithm 1. The default option interior point

method is chosen. In order to avoid local minima, the optimal compensator of the

previous iteration step is set as initial value of next iteration step.

Figure 6.1: The iteration convergence of the fourth column of the first compensator
elements.

The convergence of elements in fourth column of compensator matrix have been shown

in Figure 6.1. The dash dot red line corresponds to the value of the 1st element in

4rd column of matrix CRGA, while the solid black line present the second element and

similarly with the dash dot blue line for the third element and the solid pink line for 4rd
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one. As illustrated in Figure 6.1, they converges to the optimal solution after at least

140 iterations with 10 seconds for each iteration in average. This mean the approach

is time consumption in term of convergence rate. And hence this technique can not be

used to design the optimal compensator for fast dynamic system.

As we can see from the 6.10, the achieved compensated model is basically lower tri-

angular, which can be used in designing the second compensator to obtain diagonally

dominant system based on the property 3st of RGA’s algebraic properties in Chapter

4.//

GRGA =


0.3278− 0.5170i 0.0002 + 0.0000i −0.2323− 0.1515i 0.8889 + 1.6365i

0.0156 + 0.0483i 0.1356− 0.2134i −0.0764− 0.1744i 0.0382− 0.1095i

0.0001− 0.0001i −0.0001 + 0.0002i −2.7679 + 2.0160i −1.5250− 2.2778i

−0.0001 + 0.0001i −0.0000− 0.0002i −0.0005 + 0.0001i 2.8289− 2.1962i


(6.10)

In 6.10, it is obvious that the 2nd element of the first column is not exactly zero, equal

to 0.0156 + 0.0483i. But it is acceptable if we compare the module of this element to

the diagonal elements. And in the next result, it will be shown that this element does

not effect to the performance of the whole system.

On the other hand, the below matrix represents the RGA number matrix of GRGA in

which we can easily recognize that RGA matrix is closed to identity matrix. As a result,

the input-output couple selections are optimal with diagonal pairings.

RGANumber =


1.0000− 0.0001i 0.0001 + 0.0000i −0.0000− 0.0000i −0.0001 + 0.0001i

0.0000 + 0.0000i 0.9999− 0.0001i 0.0000 + 0.0000i −0.0000 + 0.0000i

−0.0000− 0.0000i −0.0000 + 0.0000i 1.0000− 0.0001i −0.0000 + 0.0001i

−0.0001 + 0.0001i −0.0000 + 0.0000i −0.0001 + 0.0001i 1.0001− 0.0002i


(6.11)

The next step is to design the second compensator which helps us to split the achieved

system into four independent SISO control loops working in parallel. It is clear that

this compensator is obtained from the equation CDIG = G−1
RGAdiag(GRGA), in which

diag(GRGA) is a matrix with only the diagonal elements of GRGA

CDIG =


1.0000 0 −0.0058 + 0.4519i 1.8430− 2.6446i

0.1282− 0.1545i 1.0000 −0.3514 + 0.6836i −0.1274− 0.1640i

0 0 1.0000 0.0314− 0.7996i

0 0 0 1.0000

 (6.12)
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The second compensator can always be attained because the GRGA is always invertible.

Hence the total compensator will be

CTotal =



0.4208− 0.5071i 3.2820 −1.6809 + 2.2436i −13.1816− 0.1164i

0.1026 + 0.8102i −5.2440 0.2326− 3.2346i 6.3434 + 0.0946i

−0.4391− 0.2498i 1.6168 −2.3053 + 0.8131i −4.5150 + 2.8363i

0.1708− 0.1925i 1.2459 −2.3865 + 0.8567i −5.7840 + 1.3244i

1.5067 + 0.1729i −1.1188 0.5620− 0.0191i 48.0691− 4.3230i

−1.2886 + 0.0721i −0.4669 −4.9962− 0.8744i −11.4181 + 7.4578i

−0.1326 + 0.1400i −0.9064 −8.1177− 0.6270i −19.9280 + 6.9377i

0.1174− 0.1120i 0.725 1.7861 + 0.5067i 8.5394− 1.8157i


(6.13)

which comes from the equation CTotal = CRGACDIG. Then the diagonal system is

obtained as follows

GFinal =


0.3278− 0.5170i 0.0002 + 0.0000i −0.0007− 0.0002i −0.0028− 0.0022i

−0.0000 + 0.0000i 0.1356− 0.2134i −0.0001 + 0.0000i 0.0006− 0.0010i

0.0001− 0.0001i −0.0001 + 0.0002i −2.7680 + 2.0160i 0.0001− 0.0018i

−0.0001 + 0.0001i −0.0000− 0.0002i −0.0004 + 0.0001i 2.8291− 2.1953i


(6.14)

Theoretically, nothing can be said about the natural convergence of the first compen-

sator due to the optimization solver used in this thesis. All the elements of the first

compensator are expected to converge simultaneously, then the number of variables of

nonlinear function are 32 (4x8). In addition, Skogestad and Postlethwaite [1] have no-

ticed that the RGA of a triangular plant is always the identity matrix ( Λ = I) or

equivalently the RGA number is zero. The reverse is also true; that is, an identity RGA

matrix (Λ(G) = I) implies that G is triangular, which holds only for 3x3 systems or

smaller. For a 4x4 or higher order, the condition is not always true. Hence, the Λ = I

would be preferred but the plant might not be triangular. It has shown in GRGA with

non-zero element in position (2,1).

6.4 Controller

We want to demonstrate the capabilities of the proposed robust HHC scheme for the

compensated plant. Each controller element ki of LQ-like cost and robust controller is

designed based on the corresponding diagonal element of GFinal in the previous section,

such that each individual loop is stable. The control input of each loop now is a virtual

input, which will change the behavior of all actuators via two proposed compensators

as aforementioned. In addition, it is expected that the robust HHC controller will
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outperform the classical LQ-like cost controller. In this section, simulation results show

the vibration attenuation performance as well as the settling time Ts.

The system now contains four feedback loops with the transfer function as

y = GFinalu (6.15)

where u = [u1 u2 u3 u4] is defined as the virtual inputs of the new system, and y

are four accelerometers 2, 9, 10, 18. Let start with the first feedback control loop for

the 1st diagonal element of GFinal as follow:

G11 = 0.3278− 0.5170i (6.16)

The transfer function considered here is the linear time-invariant system, which is the

relationship between virtual input u1 to accelerometer 2. Hence the T−matrix repre-

sentation will be:

T̄ =

[
0.3278 0.5170

−0.5170 0.3278

]
(6.17)

to which the relative uncertainty associated with the SISO system is

rW =

[
0.0275 −0.0722

0.0722 0.0275

]
(6.18)

On the basis of above uncertainty model, a control scenario is considered in order to

achieve 90% attenuation of the (unit norm) disturbance requested as nominal perfor-

mance. As mentioned in Chapter 4, the tuning procedure in the nominal case is the

following; that is, LQ controller is easier to be tuned by changing the values of the weight

Q and R than H∞ controller. However, both controllers have been tuned to achieve the

same performance level of closed-loop of vibration reduction which is explicitly shown

by the weighting function in robust case as

Wy(z) =
0.9z − 0.899

z − 0.9944
(6.19)

for which continuous-time equivalent frequency response is depicted in Figure 6.2. In

the other hand, no weighting function Wu(s) on the control action has been included in

the scheme.

Moreover, the LQ controller does not take model uncertainty into account, which is

designed based on the identified model of the system. As contrast, the model uncertainty

derived from the identification limitation has been dealt with in design robust HHC

controller. Then the design procedure will be conducted with the first transfer function,
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Figure 6.2: Frequency response of possible Wy(s) weighting functions.

then repeating for the next three relation between three virtual inputs u2, u3, u4 to

accelerometer 9, 10, 18, respectively.

It is obviously recognized that the vibration attenuation level can be easily changed due

to the independence of each control loop design. Then two scenarios are considered. The

first one aims at keeping the weighting function and both matrices Q and R unchanged

for all feedback loops while the second one separates the required performance for each

closed-loop steady state attenuation of the vibration. In this thesis, both scenarios are

taken into account in order to select the best one.

Hence, to compare the resulting performance of the overall feedback system, a Monte

Carlo study was carried out by 500 values chosen randomly for the normalized uncer-

tainty ∆. In the following, the results of this Monte Carlo procedure in terms of steady

state attenuation of disturbance are depicted. Figure 6.3 and Figure 6.4 show the control

efforts and vibration attenuation performance for overall feedback control loops.

In Figure 6.3, the robust controller inputs are very similar to the LQ controller, which

means that the robust controller not only is able to deal with the uncertainty model

but also to require less energy to achieve the better performance as compared with LQ

controller.

More clearly, in the Figure 6.4, the LQ controller fails to find the correct tradeoff to attain

the same level of attenuation for each of measured outputs achieved by the robust HHC

controller in this thesis. Moreover, the proposed robust HHC synthesis has another

substantial benefit over a classical LQ one; that is, defining weighting functions Wy is
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Figure 6.3: Control effort of 4 control loops with the same weighting function.

intuitive way which seem to be much more convenient than repeating different Q and R

matrices until control required performances have been satisfied. However, it is apparent

that the cost of robustness is tradeoff with the settling time. While the robust controller

need at least 4 seconds to finish the transient period and reach to the steady state one,

a average settling time is shorter in LQ case, which is around 2 seconds.

Figure 6.4: Closed loop performance comparison between LQ and H∞ approaches
with the same weighting function.

Table 6.3 confirms these advantages and disadvantages of both control synthesis scheme.

In all four feedback loop performances, the vibration attenuations of H∞ approach
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Figure 6.5: Control performance of 4 control loops with different weighting functions.

Figure 6.6: Closed loop performance comparison between LQ and H∞ approaches
with different weighting function.

are smaller than LQ one. In the first loop, LQ is able to reduce 95% while only 3%

vibration’s amplitude is measured in accelerometer 2. Moreover, the noise in second LQ

feedback loop has been attenuated up to 90%, which is smaller than 8% in the H∞ case.

Finally, both last performances are smaller than 1% for robust controller. Of course,

LQ controller always show worse level of noise reduction than robust one.

Moreover, as mentioned, in the synthesis procedure, we have capability in choosing the

same noise attenuation performance for all closed-loops or design different weighting

functions in term of different transfer function from virtual input to accelerometer. The
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y1(LQ) y1(H∞) Max y1(LQ) Max y1(H∞)

0.042694 0.026780 0.043809 0.043750

y2(LQ) y2(H∞) Max y2(LQ) Max y2(H∞)

0.100615 0.097548 0.101667 0.101402

y3(LQ) y3(H∞)) Max y3(LQ) Max y3(H∞)

0.010327 0.007682 0.012689 0.012625

y4(LQ) y4(H∞)) Max y4(LQ) Max y4(H∞)

0.010343 0.007703 0.018209 0.018203

u1(LQ) u1(H∞) u2(LQ) u2(H∞)

1.563378 1.625183 3.557116 3.605914

u3(LQ) u3(H∞) u4(LQ) u4(H∞)

0.286947 0.290741 0.320387 0.331819

Σ(LQ) Σ(H∞) Ts(LQ) Ts(H∞)

0.000655 0.012666 2.238000 4.414000

Table 6.3: Monte Carlo Study: Performance of the controllers based on the LQ and
the H∞ control synthesis with the same noise reduction level.

Figure 6.5 and Figure 6.6 have shown the similar noise reduction level in four measured

outputs, which is caused from the fact that it is flexible but time consumption. In detail,

the second scenario required four times longer than the first one in sense in adapting

the weighting functions.

Based on the above results, the H∞ approach could be beneficial in term of the reducing

the need for adaption in the operation of the HHC system, which would not make only

to the easier implementation in the real experimental and true helicopter system but

also allow to attain both performance and stability of closed loop behavior.

6.5 Conclusion

Although the SVD and RGA are capable to be considered as natural approaches in

selection pairing of MIMO system, no application can be applied for this non-square

complex transfer function of the vibration system in helicopter. It is very interesting

to invent the new idea based on the algebraic properties of RGA in order to design

the pre-compensator to transfer previous system to be square-diagonal one. Hence, the

two controller LQ and robust HHC are developed based on the compensated model,

whose simulation performance are very promising and therefore motivate us to deploy

the proposed technique to the real experimental test system as well as helicopter.
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Conclusion

In this work, the non-square model of vibration control system in helicopter is intro-

duced, which has been analyzed by Singular Value Decomposition and Relative Gain

Array. Two techniques are used not only to find the pairs between inputs and outputs

but also to compute the compensator which has transformed the original system to be

square-diagonal system. Moreover, we have theoretically shown that the general form of

system includes the uncertainty part as well as the nominal part. LQ controller there-

fore has been designed based on nominal model of the system without considering the

uncertainty. In the case of taken the uncertainty into account, the H∞ controller has

shown the better performance in term of the noise attenuation and robustness.

In conclusion, several novelties are presented in this thesis. Firstly, the non-square

system has been transformed into the square-diagonal based on the algebraic properties

of RGA, which is able to design 4 SISO loop for MIMO system with taking into account

the canonical form of uncertainty in original model. Secondly, the LQ andH∞ controllers

are found to gain the vibration attenuation levels and the robustness. Consequently, the

weighting functions presented for performance levels have been chosen for each SISO

loop or the same for all loops, which would lead to the reduction of tuning effort and is

very convenient in service engineers. This property is extremely valuable in industry.

Future work will be developed as following tasks: (i) deploy the algorithm to real heli-

copter, (ii) develop the algorithm for different non-square model or even the square model

with difficulty in choosing the pairs of inputs and outputs, (iii) analysis the theoretical

convergence of the algorithm.

(i) The controllers have been found based on the identification model, which can in-

clude the big uncertainty due to the complexity of MIMO system. However, the

60
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simulation has illustrated the good performance of both controller in vibration at-

tenuation level and robustness regarding the uncertainty of the process. Therefore,

we have capability in deploying the algorithm in the experimental devices or real

helicopters.

(ii) The procedure starts from the fact that the transfer function from active actuators

to the head phone are changing due to a lot of conditions. This means that in

one helicopter, it is able to find several positions of actuator to influence to the

noise attenuation in fuselage. The process commonly results to the non-square

model, which can be occurred the difficulty in choosing good pairs or impossible.

Therefore, the algorithm is expected to work well in several different processes.

(iii) The algorithm is developed based on the function fminsearch in MATLAB, whose

idea is to find the minimum of the cost with random small deviation of the initial

condition. Consequently, the convergence of the algorithm is questionable.
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