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Abstract

Cardiovascular diseases are the major cause of death in adults and the elderly in the

majority of the developed countries and in many developing countries. A great part

of these deaths occur suddenly, shortly after the onset of the first symptoms, and are

related to malignant ventricular arrhytmias that lead to a heart attack. This kind of

outcome is known as sudden cardiac death (SCD) [40].

Implantable cardioverter defibrillators (ICD) are the most effective way of preventing

SCD [5]. However, the implantation of an ICD is an invasive procedure with associated

risks and a high cost. Therefore, it is necessary to determine non-invasive risk markers

that identify patients at a higher risk of suffering malignant arrhytmias, so that invasive

diagnostic test and treatments can be selectively applied only to those patients who will

benefit the most, saving risk for the patients and also health-care costs.

Various non-invasive indices have been proposed to predict the risk of arrhytmias. Most

of them are based either on the analysis of echocardiographic images [8] or on the analysis

of electrocardiographic signals (QRS duration, QT dispersion, heart rate variability,

etc.) [32]. The main limitation of existing indices is their low specificity and predictive

value. One of the most promising non-invasive indices is T-wave alternans (TWA)

[39]. Its prognostic value is being intensively studied and significant evidence of the

relation between TWA and the susceptibility to ventricular fibrillation has been found

in recent years [28]. This Master’s Thesis work presents and assets a new method for

evaluating the presence of TWA in ambulatory records (Amplitude of Dominant T-Wave

Alternans).
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Sommario

Le malattie cardiovascolari sono la causa principale di morte in adulti e anziani nella

maggior parte dei Paesi sviluppati ed in molti dei Paesi in via di sviluppo. Una gran

parte di queste morti avviene repentinamente, poco dopo la comparsa dei primi sintomi

e risulta correlata ad aritmie ventricolari maligne che portano ad un attacco di cuore.

Questo tipo di conseguenza viene chiamata morte cardiaca improvvisa (Sudden Cardiac

Death, SCD) [40]. Il modo più efficace di prevenire la SCD è quello di usare defibrilla-

tori cardioverter impiantabili (ICD) [5]. Tuttavia l’impianto di un ICD è una procedura

invasiva, costosa e rischiosa. Per questo è necessario determinare indicatori non invasivi

di rischio che siano in grado di identificare pazienti a più alto rischio di soffrire aritmie

maligne, in modo che test invasivi diagnostici e trattamenti possano essere applicati

selettivamente solo ai pazienti che ne trarrebbero i benefici maggiori, evitando rischi e

spese sanitarie inutili.

Sono stati proposti diversi indici non invasivi in grado di predire il rischio di aritmie.

La maggior parte di questi sono basati o sull’analisi di immagini ecocardiografiche [8]

o sull’analisi di segnali elettrocardiografici (durata del QRS, dispersione del QT, vari-

abilità del ritmo cardiaco ecc.) [32]. Il loro limite principale è la bassa specificità e

valore predittivo. Uno dei più promettenti indici non invasivi è la alternanza dell’onda

T (T-wave alternans, TWA) [39]. Negli ultimi anni c’è stato un intenso studio del suo

valore prognostico e recentemente si è dimostrata una correlazione significativa tra TWA

e suscettibilità a fibrillazione ventricolare [28].

La TWA è un’alterazione nella morfologia e nell’ampiezza dell’onda T che ha ordine

di grandezza di qualche microvolt, per cui è invisibile all’occhio nudo e sono necessari

metodi specifici di analisi del segnale ECG. Risulta inoltre fondamentale un’adeguata

fase di pre-processing in quanto l’ampiezza del rumore elettrocardiografico dev’essere

inferiore a quella della TWA.

Esistono due grosse categorie di metodi, i monoderivazionali ed i multiderivazionali.

Della prima fanno parte tutti quelli che analizzano la TWA singolarmente per ogni

derivazione. Il problema di questo tipo di analisi è che non tiene conto di certe carat-

teristiche di ridondanza spaziale e temporale tipiche della TWA. Tale problema è risolto

dai metodi multiderivazionali che invece danno una informazione spaziale completa,

basandosi su di algoritmi che ricavano l’informazione sull’alternanza da più derivazioni

contemporaneamente.
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16 CONTENTS

Classicamente i metodi usati per misurare la TWA sono lo Spectral Method (SM) [14] ed

il Modified Moving Average Method (MMAM) [27]. Si tratta di metodi monoderivazion-

ali, la cui efficacia clinica è stata comprovata ed utilizzati in sistemi commerciali.

In ogni caso, in genere la TWA veniva misurata in particolari procedure cliniche come

test da sforzo per frequenze cardiache comprese tra 100 e 125 bpm [33].

Nel 2010 è stato proposto un metodo [25], multiderivazionale, in grado di riconoscere la

TWA in base alle sue caratteristiche di periodicità. L’obiettivo degli autori era arrivare

a dimostrare che tale indice potesse misurare efficacemente la TWA in registrazioni

elettrocardiografiche ed avesse un buon valore predittivo per la SCD. Per verificarlo,

nel 2012 effetturono un secondo studio [24] in cui la TWA veniva misurata, con il loro

metodo, su un database di registrazioni ECG Holter - quindi di durata vicina alle 24h,

delle quali considerarono soltanto 650 provenienti da pazienti con ritmo sinusale. Quel

che dimostrarono nel detto studio è che una TWA sostenuta durante tutte le ore di

registrazione aveva effettivamente un buon valore prognostico per la morte cardiaca im-

provvisa.

Questo lavoro di tesi presenta un nuovo metodo per valutare la presenza di TWA in

registrazioni cliniche (ADTWA, Amplitude of Dominant T-Wave Alternans), introdotto

nel 2010 da Mainardi e Sassi [15]. Anche questo metodo è multiderivazionale e sfrutta

il paradigma della onda T dominante (DTW), a sua volta basato su di un modello fisio-

logico di genesi dell’onda T ideato da van Oosterom nel 2001 [38]. La costruzione della

DTW si basa su una Singular Value Decomposition (SVD), mentre l’ECG di superfi-

cie è approssimato da una combinazione lineare di più ripetizioni della stessa funzione,

che ha la forma di un potenziale di transmembrana (TMP) di un miocita. L’efficacia

metodologica dell’indice è stata già comprovata [36]. Rimaneva da valutare l’efficacia

clinica, ossia il suo valore prognostico nel predire malattie cardiovascolari. Questo è

l’obiettivo del presente lavoro di tesi.

Il lavoro è stato svolto dall’Aprile 2014 al Settembre 2014 presso la città di Zaragoza,

all’interno del gruppo di ricercatori I3A, lo stesso in cui attualmente lavorano gli autori

dello studio del 2012, sotto la supervisione del prof. Juan Pablo Mart́ınez.

Utilizzando la stessa procedura dello studio precedente per quanto riguarda la parte di

pre - processing e di selezione dei battiti, sono state ripetute le analisi sul database MU-

SIC [34] - utilizzando il nuovo indice - in modo tale da poter avere un confronto diretto

ed immediato tra i risultati ottenuti nei due casi.

Alla fine dello studio, l’efficacia clinica del nuovo indice nel predire la SCD è stata com-

provata. Le analisi statistiche hanno infatti prodotto un esito molto simile a quello dello

studio precedente a dimostrazione del fatto che l’indice ADTWA può essere considerato

un buon candidato per il riconoscimento e la misura della TWA in registrazioni elettro-

cardiografiche.
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Introduction

Cardiovascular diseases are the major cause of death in adults and the elderly in the

majority of the developed countries and in many developing countries. A great part

of these deaths occur suddenly, shortly after the onset of the first symptoms, and are

related to malignant ventricular arrhytmias that lead to a heart attack. This kind of

outcome is known as sudden cardiac death (SCD).

Implantable cardioverter defibrillators (ICD) are the most effective way of preventing

SCD [5]. However, the implantation of an ICD is an invasive procedure with associated

risks and a high cost. Therefore, it is necessary to determine non-invasive risk markers

that identify patients at a higher risk of suffering malignant arrhytmias, so that invasive

diagnostic test and treatments can be selectively applied only to those patients who will

benefit the most, saving risk for the patients and also health-care costs.

Various non-invasive indices have been proposed to predict the risk of arrhytmias. Most

of them are based either on the analysis of echocardiographic images [8] or on the analy-

sis of electrocardiographic signals (QRS duration, QT dispersion, heart rate variability,

etc.) [32]. The main limitation of existing indices is their low specificity and predictive

value. One of the most promising non-invasive indices is T-wave alternans (TWA)

[39]. Its prognostic value is being intensively studied and significant evidence of the

relation between TWA and the susceptibility to ventricular fibrillation has been found

in recent years [28].

TWA is an alteration in morphology and amplitude of T-wave which has got order of

magnitude of some microvolts. It is invisible at a naked eye and may be difficult to

discern by a computerized method due to intrinsic noise of electrocardiograms. That’s

why some specific methods of ECG signal processing are necessary, including an ad hoc

preprocessing and sophisticated decision rules.

Different methods have been proposed in the past capable of measuring TWA. The first

and still most used ones in clinical practice are Spectral Method (SM) [14] and Modified

Moving Average Method (MMAM) [27]. They are single - lead methods, with proven

clinical efficacy and commonly used in commercial systems.

They are classically used to measure TWA in some specific clinical procedures such as

17
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stress tests and, in any case, analysis is restricted on heart rates comprised between 100

and 125 bpm [33].

In 2010 a new multilead index was developed [25] which detected TWA by maximizing

the ECG signal at the TWA frequency that is 0.5 cycles per beat (cpb). In a second

study [24] that method was used to measure TWA on a database of Holter ECG records

(MUSIC : MUerte Súbita en Insuficiencia Cardiaca [34]) of which 650 with sinus rhythm

were considered. A sustained TWA during all the hours of record was found to have a

prognostic value for sudden cardiac death.

This Master’s Thesis work presents and assets a new method to evaluate presence of

TWA in ambulatory records (ADTWA, Amplitude of Dominant T-Wave Alternans),

introduced in 2010 by Mainardi and Sassi [15]. This method is multilead and based on

the paradigm of the Dominant T-Wave (DTW), which in turn is derived on a physio-

logical model of T-wave genesis made by Van Oosterom in 2001 [38]. The construction

of DTW is based on a Singular Value Decomposition (SVD), while the surface ECG is

approximated by a linear combination of more repetitions of the same function, shaped

as a trasmembrane potential (TMP) of a myocyte. The methodological efficacy of the

index had already been proved [36]. Still, it was to verify its clinical efficacy, that is its

prognostic value in predicting cardiovascular diseases.

This is the purpose of the present study.

Amplitude of Dominant T-Wave Alternans

A single measure of alternans can the be obtained across leads, l, by calculating the

following index:

I = ADTWA = max
l
|λeue − λouo|max

t
|tD| (1)

Where:

• ue and uo are the first column of the matrix U obtained by singular value decom-

position (SVD) of Ψe and Ψo which are the median templates for T-waves in even

and odd beats respectively;

• λe and λo are the corrisponding eigenvalues;

• tD is the Dominant T-Wave, which is estimated as the first column of the matrix

V obtained by SVD of the vector Ψ = (Ψe + Ψo)/2.

Index (3.1) is labeled Amplitude of Dominant T-wave Alternans (ADTWA) to

underline its relationship with the DTW paradigm. Given an Ecg recording, the steps

needed for the computation of the parameters are the following:
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• Detect the boundaries of a certain number of consecutive T waves. Then build

the potential Ψe averaging all the T waves of an even number. The same should

be done with odd T waves for Ψo. The averaging procedure improves the signal-

to-noise ratio.

• Compute vT1 = tD through SVD of matrix Ψ = (Ψe + Ψo)/2. Even and odd T

waves are merged at this level of the analysis, as the physiological hypothesis is

that the repolarization phase of the TMP does not vary in first approximation

across following beats.

• Given tD, estimate λe and ue. The same should be done for Ψo, leading to λo and

uo.

Methods

650 patients with sinus rhythm were taken into account for analysis. Each record was

pre - processed in order to eliminate baseline wander and high frequency noise with a

pass band Butterworth filter of the third order, with cut off frequencies 0.5 Hz - 50 Hz.

ECGs were analyzed in segments of 128 consecutive beats with 50% overlap between

adjacent segments. Each segment was considered suitable for analysis if at least 80% of

the beats composing it fulfilled the following conditions:

1. It is labeled as normal sinus beat;

2. Absolute value of each RR interval and the previous one is lower than 150 ms;

3. The difference between the baseline voltage measured at the PQ segment in that

beat and the one measured in the previous one is lower than 300 µV .

After beat selection, each beat composing one single segment was aligned with respect

to the QRS complex or with respect to the T-wave. Best results were achieved by using

the first strategy probably for a precise physiological reason. Alternans, in fact, may

disappear by doing the alignment on T-waves as it can be localized everywhere in the

ST-T segment.

Indexes of alternans were calculated using three different methods.

• AM Method : Equation (3.1) is calculated on each segment kept for analysis

and eventually the average is done for the values recorded during the 24 hours.

• MM Method : On each segment, a waveform of alternans is calculated, which

is: |λeue − λouo| ∗ |tD| - vector of lead factors multiplied for dominant T-Wave.

Maximum of the averaged waveform is taken as an index of alternans.
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• VM Method : After calculating a mean waveform, values recorded from the leads

X,Y,Z are separated and magnitude of vectorcardiogram is calculated as following:

V CG =
√
X2 + Y 2 + Z2. This way a waveform is obtained whose maximum is

taken as an index of TWA.

Results

Indexes of alternans have been evaluated for all the segments composing the record

and separating them into heart rate bins (60-70 bpm, 70-80 bpm, 80-90 bpm, 90-100

bpm, 100-110 bpm). Boxplots of those parameters have been plotted, in order to get a

first graphical glimpse of the TWA dependence on heart rate. ROC curves have been

calculated in order to get the best value which could discriminate subjects positive to

our TWA test. Kaplan Meier survival curves were plotted after separating the whole

population into two groups, ADTWA - positives and ADTWA - negatives. A subject

was ADTWA - positive if his mean TWA activity was superior to a cut-off value, found

by graphically inspecting ROC curves. Wilcoxon Log Rank test was performed in order

to check the prognostic value of each index. Results got statistical significance for all the

three methods (p < 0.05). The best ones were achieved by VM Method (p = 0.003),

which was expected as it uses a measure that takes into account values from all the three

orthogonal leads.

Global 60-70 70-80 80-90 90-100 100-

110

AM

Method

7.19

[5.87 ÷
8.82]

6.19

[4.62 ÷
8.55]

7.86

[5.88 ÷
10.45]

9.81 [

7.25 ÷
12.91 ]

11.66 [

8.60 ÷
15.70 ]

12.47 [

9.12 ÷
17.66 ]

MM

Method

4.16 [

3.23 ÷
5.47 ]

3.75

[2.72 ÷
5.43]

4.85 [

3.57 ÷
6.57 ]

6.01 [

4.36 ÷
8.19 ]

7.63 [

5.22 ÷
10.83 ]

8.12 [

6.08 ÷
13.12 ]

VM

Method

4.85 [

3.89 ÷
6.17]

4.40 [

3.21 ÷
6.22 ]

5.82

[4.14 ÷
7.62]

7.08 [

5.18 ÷
9.95 ]

8.80 [

6.18 ÷
13.05 ]

9.97

[7.01 ÷
15.20 ]

Table 1: Median of ADTWA values and ranges (25th percentile ÷ 75th percentile).
All values are expressed in microvolts. Heart rate bins are expressed in beats per minute

(bpm).
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Chi - square df Sig

AM Method 4.955 1 0.027

MM Method 4.818 1 0.025

VM Method 8.487 1 0.003

Table 2: Global comparisons - Log Rank (Mantel Cox)

Figure 1: Kaplan Meier Survival Function for VM Method (ADTWA threshold =
4.7575µV )

Discussion

Prognostic value of the new index for SCD was confirmed. Three indexes (ADTWA

measured with AM Method, MM Method and VM Method) turned out to be good pre-

dictors of SCD in patients with CHF.

Thus ADTWA’s methodological and clinical efficacy has been tested and these prelimi-

nary results suggest it can be used in clinical practice as a predictor of SCD.





Chapter 1

Introduction

1.1 Background

1.1.1 Electrocardiogram

Figure 1.1: A human heart.

An Electrocardiogram (ECG) is a non-invasive electrical signal, acquired in the body

surface, which describes the electrical activity of the heart [3] (fig 1.1).

The human heart is composed by two sides (left and right). Each one is made up of an

atrium and a ventricle and the direction of blood flow is controlled by the presence of

valves (the two atrioventricular and the two semilunar) which separate the atria from

the ventricles or the ventricles from a blood vessel.

The heart is comprised of muscle (myocardium) that contracts rhythmically and drives

the circulation of blood throughout the body. The whole cardiac activity is driven by

the electro-mechanical coupling, that is, an electrical current spreads through the heart

in a coordinated pattern which precedes the coordinated contraction of the myocardium

23
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(systole). In practice, as a wave of electrical current spreads towars a myocardial fiber,

a mechanical contraction is initiated. This phenomenon is called excitation - contrac-

tion coupling.

The fundamental electric property of human heart is automaticity: some cells exist

which can spontaneously generate an electric pulse. The heart rhythm, in a healthy

subject, is imposed by the sinoatrial node (SA node), which is composed of a group of

cells located at the intersection of the superior vena cava and the right atrium. Those

kind of cells are known as pacemaker cells. They generate a normal sinus rhythm

which is influenced by two systems, the sympathetic and the parasympathetic. Heart

rate is fastened by the former, is slowed by the latter.

Thus a wave of depolarization is generated which spreads throughout the whole heart

in a coordinated pattern. In fact, every cardiac cell has a negative potential across its

membrane and the influx of positive ions (Ca2+ and Na+) during the depolarization

phase causes a rise of potential which, in turn, originates the mechanical contraction of

the cardiac tissue. The first cells to depolarize are those of the SA node, thus generating

a wave of depolarization which is transmitted to the atria and the ventricles through

the AV node, located near the AV valve, which delays the passage of the impulse to the

ventricles. This delay is functional, as atria have to pump all the blood to the ventricles

before they start to contract. The current is then transmitted , through the AV bundle,

to the bundle of His, which is divided into two branches - left and right - which conduct

the impulse to the apex of the heart. Eventually the current is transmitted to the Purk-

inje fibers which lead the impulse upwards towards the ventricular myocardium. The

return to rest potential is due to a net outflow of positive charge outside the membrane

of the cardiac cells.

In summary, we distinguish four phases in one cardiac cycle (see fig 1.2):

Figure 1.2: Heart. Conduction system 1-SA node. 2-AV node. 3. Bundle of His. 8.
Septum
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• The electrical stimulus originates from the SA node;

• The wave propagates through the atrium and reaches the AV node through the

internodal pathways;

• The wave reaches the bundle of His;

• The wave reaches the ventricles through the bundle branches (left and right) and

then through the Purkinje fibres.

Rest state (repolarization) is recovered through the outflow of net positive charge outside

the cells membrane. This corresponds to a mechanical relaxation of the cardiac tissue

(diastole).

The wave of electrical current which passes through the entire heart, triggering myocar-

dial contraction, results in a measurable potential difference at the surface of the subject.

This potential difference is recorded and amplified, originating the electrocardiographic

signal (ECG).

1.1.2 Cellular Basis for ECG

Figure 1.3: An action potential from a single ventricular myocyte.

Normally a difference in potential between interior and exterior of cardiac muscular cells

(myocytes) is recorded, that is voltage inside the cell is more negative than outside. This

is because of the distribution of the intra-cellular and extra-cellular electrolytes:

• Na+

• K+
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• Ca++

• Cl−

At rest, that is during that diastole, this difference in voltage, called resting potential

is comprised between -50 and -60 mV for sinus node cells and between -80 and -90 mV

for ventricular muscle cells and is maintained by the Na+/K+ pump, which extrudes 3

Na+ ions for every 2 K+ ions pumped in. Cardiac cells endowed with automaticity have

the capability of firing (depolarizing) spontaneously when a critical threshold potential

is reached. Potential which is approximately -40 mV for the cells of sinus node.

Rise and fall in potential are due to movements of electrolytes across the cell membrane

through a number of channels, namely Sodium channels (INa), Potassium channels (IK )

and Calcium channels (ICa). They permit or prevent the movement of ions depending

upon transmembrane potential (TMP), modifying their conductance to a particular ion.

Fig 1.3 represents a single monophasic action potential of a ventricular muscle cell, which

describes changes in TMP plotted versus time. Sodium is the main electrolyte responsi-

ble for depolarization, whereas calcium is responsible for pacemaker cell depolarization.

Three different phases can be distinguished:

• Phase 1 - Depolarization, which begins when a critical threshold is reached

and sodium channels open. It manifests itself a positive spike in potential.

• Phase 2 - Plateau, the most distinctive feature of the cardiac action potential.

During the plateau there is an approximate balance between inward-going calcium

current and outward-going potassium current and the membrane conductance is

relatively low. As a result, the transmembrane potential is kept constant.

• Phase 3 - Repolarization, the return to rest potential due to net outflow of

K+.

The duration of an action potential of a cardiac cell is called Action Potential Duration

(ADP). Cells in different sites within the heart have different ADPs (see fig 1.4). In

general, pacemaker cells have a slow response. They are characterized by a slower initial

depolarization phase, a lower amplitude overshoot, a shorter and less stable plateau

phase and repolarization to an unstable resting potential. Sinoatrial and atrioventricular

nodal cells’ action potentials are similarly shaped. Non - pacemaker atrial cells have

action potentials shaped somewhere in the middle between the slow response nodal cells

and the fast response cells (such as ventricular myocytes).

Eventually, this electrical conduction at a cellular scale results in a voltage difference

recorded at the body surface (the ECG). The ECG is made up of different waves, each

of which has a clear physiological meaning (fig 1.5):
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Figure 1.4: Representation of cardiac conduction system. To the right typical action
potential waveforms recorded from myocytes in specific locations of the myocardium

are displayed.

Figure 1.5: The ECG complex. P wave, PR interval, QRS complex, QT interval, ST
segment, T wave

• When the depolarization stimulus propagates through the atria, a deflection can

be seen on the ECG signal (P-wave). Atrial contraction (or systole) starts about

100 ms after the P-wave begins;

• The delay in the conduction when the stimulus passes through the A/V node is

reflected as an isoelectric phase (PR segment);

• The spread of the electrical activity through the ventricular myocardium produces

the QRS complex. Q wave corresponds to the depolarization of the interventric-

ular septum, R wave is produced by the depolarization of the main mass of the

ventricles and the S wave corresponds to the last phase of depolarization of the

base of the ventricles.
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• The ST segment represents the plateau in myocardial action potential, corre-

sponding to the phase in which the ventricles contract and start to pump blood.

• Finally, the T-wave corresponds to the ventricular repolarization phase, which

immediately precedes the ventricular relaxation.

One may wonder why atrial depolarization isn’t represented in the ECG. The reason is

it occurs at the same time of ventricular depolarization thus it’s obscured by the much

larger QRS complex.

1.1.3 Lead systems

Figure 1.6: Projection of differently oriented cardiac vectors on the same lead

The voltage at the body surface is recorded through electrodes placed at the surface

of the skin. The ensemble of the electrodes is referred to as the ”lead system”. Each

lead represents a different view or projection of the electrical activity of the heart. A

lead can be unipolar or bipolar. A unipolar lead is an electrode and the difference in

potential is recorded between that electrode and a reference. A bipolar lead is made up

of two electrodes and the voltage difference is recorded between those two electrodes.

The placement of the electrodes defines the particular lead.

The lead system provides spatial information: in fact, it is the projection of the

vector representing the cardiac activity on various angles (fig 1.6). The angle of the

lead defines the particular angle of projection being used. Multiple lead systems could

be used, varying from one simple couple of electrodes to the standard 12-leads system.

Using one or another depends on what kind of clinical information are we looking for

and on practical considerations.

The most widely used system is the 12-leads standard system, which is composed of:

• 3 frontal leads
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Figure 1.7: Einthoven limb leads and Einthoven triangle.

• 3 augmented leads

• 6 precordial leads

As far as the frontal leads is concerned (I, II, III), they are bipolar leads as they are

made up of electrodes placed on the limbs - namely, two on each arm and one on the

left - and the voltage difference is measured between these points (fig 1.7). The three

points form the shape of a triangle named ”Einthoven’s triangle” with the heart at his

center, which produces potential zero when the voltages are summed.

The three augmented leads are unipolar leads, in the sense that what is being measured

is the voltage difference between one of the electrodes and a negative electrode which is

the combination of the others, that is :

avR = RA− 1/2 ∗ (LA+ LL)

avL = LA− 1/2 ∗ (RA+ LL)

avF = LL− 1/2 ∗ (RA+ LA)

Finally, the precordial leads are placed directly on the chest : V1,V2,V3,V4,

V5,V6. They are considered to be unipolar leads as the voltage difference is taken

between the positive electrode and a negative electrode that is Wilson’s central terminal.

Wilson’s central terminal Vw is produced connecting the electrodes RA, LA and LL

together, via a simple resistive network, to give an average potential across the body:

V w = 1/3 ∗ (RA+ LA+ LL)
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Another often used lead system is the orthogonal lead system, which provides a kind of

spatial information. In fact, the three leads X, Y, Z, represent the activity of the human

heart in three orthogonal directions: they are the projection of the cardiac vector on the

sagittal plane, the frontal plane, the transverse plane (1.8).

1.1.4 Vectorcardiography: description

The orthogonal lead system allows measurement and display of the electrical heart ac-

tivity through the means of the vectorcardiogram (VCG). In fact, it has been proved

that, by enabling a better morphological interpretation of the electrical phenomena of

the heart, vectorcardiography can help the diagnosis of different heart diseases [31].

Figure 1.8: The principle of vectorcardiogram construction. The red curve depicts
the loop made by the tip of the moving vector of the electric dipole of depolarization,

in the cardiac muscle.

The principle the vectorcardiogram is based on is the fact that ventricular depolariza-

tion forms an instantaneous electric dipole. During the whole time of depolarization,

many electric dipoles are formed which are represented as vectors. By mathematically

summing all individual dipoles a global dipole of cardiac electrical activity is generated,

which is represented by a cardiac vector. An example is shown in fig 1.9, which rep-

resents the cardiac vector during ventricular depolarization.

So, spatial vectorcardiography can be seen as a form of electrocardiography that tries to

describe the electromotive force developed by the heart each instant as a single vector.

Size and direction of the cardiac vector determine magnitude and direction of the electric

field and the tip points towards the positive side. Therefore, vectocardiographic loops
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Figure 1.9: Cardiac vector during ventricular depolarization.

represent the position of all the instantaneous vectors, at each moment, during cardiac

repolarization. Different loops can be obtained for the P, QRS, T and U waves (see fig.

1.10).

In vectorcardiography, due to the use of orthogonal leads, three spatial planes are de-

termined : vertical or frontal plane, horizontal plane and sagittal plane (see fig 1.8).

1.1.5 Vectorcardiography: clinical advantages

VCG has a number of advantages for which it is preferable to a classic ECG record.

Among them: [31]

• It provides three-dimensional information of the electric activity of the

atria and the ventricles [37], showing in a clearer way than the ECG, the spatial

orientation and the magnitude of the vectors at every moment.

• Has a greater sensitivity than the ECG in detecting atrial enlargements and

greater sensitivity and specificity than the ECG in the diagnosis of left ventric-

ular enlargement (LVE);

• Presents a greater correlation with the echocardiogram, when compared with the

ECG, in determining the left ventricular mass;

• Presents a greater diagnostic sensitivity in comparison to the ECG in acute my-

ocardial infarction (AMI);

• The evaluation of T-wave loop may be used as a 3D technique to assess repo-

larization inhomogeneity [9]. In fact changes in the morphology of the spatial

T-wave loop were found to be associated to an enhanced scalar QT dispersion.
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Figure 1.10: Examples of electrocardiographic loops.

In order to get the maximum information, a 15-lead approach should be used (12

standard + 3 orthogonal implemented in a 3D dimension).

With the use of computerized VCG, it is possible to determine where each loop begins

and ends, establishing in a precise way, the ratio of length and width of T waves, and

the estimation of the areas of the loops. In comparison with the traditional recording

method, computerized VCG has a greater accuracy in measurement, besides a great

processing velocity [11, 12].

In spite of the studies that show that the VCG and the ECG have a very similar diagnos-

tic capacity [30], the VCG is still evolving and represents a low-cost method with great

diagnostic value in different situations where electrocardiographic recording is doubt-

ful.[6, 10]

1.1.6 ECG monitoring

ECG is a widely used tool in clinical practice. TWA is mainly being measured in three

kinds of setups:

• Standard short ECG recording

• Stress test

A stress test [7] is a kind of setup where the cardiovascular function of the patient
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is being compared in two different conditions: at rest and during maximal, or sub-

maximal, physical exertion. It usually involves walking on a treadmill or pedaling

a stationary bike at increasing levels of difficulty, while electrocardiogram, heart

rate and blood pressure are being monitored. The test ends when a maximal effort

is reached or when abnormal heart rhythms are identified.

• MTWA test

MTWA tests [13] may be administered in a physician’s office, hospital or outpatient

clinic setting, in much the same way as a stress test. Electrodes are applied to

the patient’s torso and connected to wires that lead back to the MTWA system.

Patients are then asked to walk on a treadmill for 5-10 minutes in order to gradually

elevate the heart rate.

Unlike stress testing, the heart rate is increased gradually and patients are not

required to exercise until exhaustion. MTWA testing can also be conducted using

pharmacologic agents or pacing to elevate the heart rate.

• Holter ECG

A Holter monitor [19] is a small, wearable device for continuously monitoring the

electrical activity of the heart during a long period of time, of at least 24 hours.

That’s why Holter monitoring is much more likely to detect an abnormal heart

rhythm when compared to the traditional ECG which lasts less than one minute.

In this kind of the setup, the most widely used lead configuration is the 3-leads

one due to patient’s comfort reasons.

1.1.7 Ventricular fibrillation

When the electrical conduction system functions properly, the ECG presents a sinus

rhythm, with a resting HR comprised between 50 and 100 bpm. An arrhytmia is any

of a group of conditions in which the electrical activity of the heart is irregular or is

faster or slower than normal [17]. In the worst case, a ventricular fibrillation [21] can

be generated.

Ventricular fibrillation is the most serious cardiac disturbance. When it happens, the

ventricles ”fibrillate”, that it they start to contract in a completely unsynchronized

pattern. So heart’s electrical activity becomes disordered and the ventricles start to

quiver instead of effectively pumping blood. As an immediate consequence the person

collapse within seconds. Fig 1.11 shows an example of ECG record when ventricular

fibrillation occurs.

VF is treated by delivering a quick electric shock through the chest. It is done using a

device called an external defibrillator. The electric shock can immediately restore the
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Figure 1.11: Example of ECG recording when ventricular fibrillation occurs.

heartbeat to a normal rhythm and should be done as quickly as possible.

Medicines may be given to control the heartbeat and heart function.

An implantable cardioverter defibrillator (ICD) [20] is a device that can be im-

planted in the chest wall of people who are at risk for this serious rhythm disorder. The

ICD detects the dangerous heart rhythm and quickly sends a shock to correct it.

An ICD has wires with electrodes on the ends that connect to the patient’s heart cham-

bers. The ICD continuously monitors the heart rhythm and, when detects an abnormal

or non-sinus rhythm, sends a low-energy electric pulse to restore the normal status.

If return to normal status isn’t accomplished, a ventricular fibrillation may be occurring

so the device sends an higher energy pulse. The high-energy pulses last for some mil-

liseconds but can be painful.

A pacemaker [18] is another kind of device used to treat arrhythmias. It can send only

low energy pulses so can treat less dangerous heart rhythm abnormalities, such as those

occurring in the atria. Most recent ICDs can act both as pacemaker and defibrillators.

Fig 1.12 explicates the difference between a pacemaker and a defibrillator.

1.1.8 Sudden Cardiac Death

Ventricular fibrillation is the most common cause of Sudden Cardiac Death (SCD)

[40].

SCD is a different concept from myocardial infarction but it can occur during an

heart attack. In fact myocardial infarction happens because a blockage in some arteries

prevents the oxygen-rich blood to reach the heart. If heart cells don’t receive enough

oxygen they gradually suffer from mechanical damage, thus heart can’t pump enough

blood anymore.



Chapter 1 Introduction 35

Figure 1.12: The image compares an ICD with a pacemaker. Figure A shows the
location and general size of an ICD in the upper chest. The wires with electrodes on the
ends are inserted into the heart through a vein in the upper chest. Figure B shows the
location and general size of a pacemaker in the upper chest. The wires with electrodes

on the ends are inserted into the heart through a vein in the upper chest.

SCD may be originated by a mechanical problem but the main cause is an electric prob-

lem of cardiac muscle cells. When a group of cells start to contract in a uncoordinated

way, such as in ventricular fibrillation, ventricles may start to quiver. The consequence

is that not enough blood will reach the brain.

Patients suffering SCD don’t present the typical symptoms associated with heart attack,

like chest pain and shortness of breath. Some people may experience some symptoms

such as a racing heartbeat or feeling dizzy, alerting them that a potentially dangerous

heart rhythm problem has started. In over half of the cases, however, sudden cardiac

arrest occurs without prior symptoms: patients may be going with their typical daily

business and suddenly collapse.

A number of causes are know to be associated with SCD, among them coronary artery

disease and heart failure.

• Coronary artery disease

When a stenosis of coronary arteries, namely the ones that take the blood flow to

the heart muscles, occurs the consequence is a prolonged period of ischemia (lack

of oxygen to the myocardium) which leads to a ventricular arrhytmia which, in

turn, progresses into ventricular fibrillation, leading to the death of the subject.

• Heart failure

Heart failure is a chronic, progressive condition in which the heart muscle is unable

to pump enough blood through the heart to meet the body’s needs for blood and

oxygen. This is due to a weakness of the heart muscle, which thins the ventricle

wall and, as a result, blood can’t be effectively pumped out of the ventricle. A

number of different causes can lead to heart failure. Examples include coronary
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artery diseases, heart attack, chronic high blood pressure, thyroid disease, kidney

disease, diabetes, heart defects present at birth.

1.1.9 T-wave genesis : ventricular repolarization

As previously said, T-wave genesis is linked to the ventricular repolarization phase.

For a T wave to occur in a body surface ECG, there need to be some electromotive

forces generated within the heart during the phase of ventricular repolarization. This is

linked to the dispersion of ventricular repolarization along the myocardium. Two kind

of dispersions actually exist:

• Spatial variability, as repolarization begins and ends in different times within the

various portions of the ventricular tissue.

• Temporal variability, as duration of the phase 3 of the myocytes’ transmembrane

potential vary among different myocardial sites. It may also be defined as a dif-

ference in ADP (Action Potential Duration) between one beat and the next one.

In order to distinguish between the two, the former may also be defined ”voltage

dispersion” of action potentials while the latter may also be called ”beat-to-beat

dispersion”. Excessive beat-to-beat dispersion is the phenomenon which leads to

TWA (see following chapter).

Both types of gradient coexist: they may actually be additive, subtractive or neutral.

1.1.10 T-Wave Alternans

Figure 1.13: Normal ECG and ECG with T-wave Alternans
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T-Wave Alternans is a repolarization abnormality manifesting itself as a periodic alter-

ation of the T-wave morphology on the electrocardiogram with the period of two beats

(see fig 1.13).

1.1.11 Physiological basis of TWA

As previously said, myocytes in the human heart do not repolarize at the same time,

in fact a spatial dispersion of the repolarization times can be observed. Also, while de-

polarization happens on a faster time scale with a front moving along the myocardium,

the current density during repolarization is dispersed across the ventricle. However, an

increased repolarization heterogeneity paves the road to the development of fatal ven-

tricular rhythm abnormalities. Above a critical heart rate threshold, repolarization of

action potentials from adjacent regions of the ventricle alternate with opposite phase

(discordant alternans), creating large spatial gradients in repolarization. Under these

conditions, depolarizing wavefronts can become fractionated, allowing the development

of unidirectional block, re-entry, and ventricular fibrillation.

T-wave alternans on the surface ECG is the epiphany of alternans in the repolarization

patterns at the level of myocytes. In many cases the size of such alteration is small

(about tens of microvolts) and buried into noise. Signal processing techniques are re-

quired in order to reveal microvolt TWA presence. Two models have been set forth to

explain the presence of microvolt TWA [2, 22]. Basically both support the theory that

changes in the dispersion of the repolarization times of the myocytes in turn modify the

shape of the surface T-wave.

Fig 1.14 displays an example of ECG with TWA. Two beats are superimposed, then an

alternans waveform is obtained as the difference between two median T-wave templates,

one for odd beats and the other for even beats.

1.1.12 Objective and outline of the thesis

A new method has been proposed to measure T-wave alternans (Amplitude of Dominant

T-Wave Alternans, ADTWA). Classically TWA was measured on a single-lead basis, that

is information was taken analyzing each lead separately. However, TWA’s characteristics

of spatial and temporal redundancy only can be exploited if a joint measure from all

the leads is done. Methods which work in this way are defined as multilead. Different

multilead methods have been proposed in the past [25]. ADTWA is multilead and based

on a physiological model which takes into account both repolarization heterogeneity
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Figure 1.14: (a) Raw ECG signal. (b) Two consecutive beats are superimposed. (c)
Alternans waverform (difference between odd and even beats).

across the myocardium as well as random beat-to-beat variations in cells’ activity [38].

The reliability of ADTWA and its robustness against broadband noise have already

been proved [36]. The objective of this Master’s Thesis work is to apply the index to a

real Holter ECG DB, in which the values of alternans had already been estimated with

another multilead method [24], in order to check the clinical relevance of the new index

in predicting SCD.

The following chapters of the thesis are organized in this way:

• Chapter 2 : T-wave alternans assessment methods State of art of TWA

mesurement methods is presented. Spectral Method, Complex Demodulation

Method and Modified Moving Average Method, which are the most widely used

single-lead methods are described. A multilead method for analyzing TWA in

ambulatory records, which was used in 2012 to detect alternans in the MUSIC

database [24] is introduced. The last paragraph is dedicated to ADTWA: the

physiological model it’s based on, its mathematical algorithm and the method-

ological validation.

• Chapter 3 : Methods Methods used in ECG analysis are presented. The first

paragraph is dedicated to the pre-processing steps - filtering, baseline wander re-

moval and resampling. A self written algorithm to detect Q-onset points is de-

scribed. The selection of beats is the same as the work of Monasterio et al., while

beats alignment was done by checking the cross correlation with respect to the

QRS complex or to the T-wave. Lastly, indexes of alternans are computed using

three different methods - AM Method, MM Method, VM Method - and analyzed
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for the whole population through boxplots, Roc curves and Kaplan Meier survival

functions.

• Chapter 4 : Materials This chapter presents the Holter ECG database (MUSIC)

used in the present study, describing the population under study and the study

protocol.

• Chapter 5 : Results Results of the present study are shown. Boxplots of TWA

indexes are represented in order to get a first graphical glimpse of the dependence

of alternans on heart rate. ROC Curves and Kaplan Meier survival functions are

plotted.

• Chapter 6 : Discussion A discussion on the results is done, focusing on their

clinical relevance.





Chapter 2

T-wave alternans assestment

methods

As we previously said, T-wave alternans is a beat-to-beat change which has the order

of magnitude of microvolts, so it is very hard to see it at a naked eye and some meth-

ods of signal processing are required. In the last two decades, a variety of methods

for automatic TWA analysis have been proposed. In 2005, Martinez and Olmos real-

ized a complete summary and comparison between them [16]. In this chapter the most

commonly used techniques are presented, focusing on the innovation introduced by the

multi-lead methods in comparison with the single-lead ones.

2.1 Spectral method

Spectral Method was proposed in 1988 by Smith et al. [14]. A series of 128 consecu-

tive heart beats is analyzed (fig 2.1, top). This number can change, but considering 128

beats represents a good compromise between reducing noise and tracking slow variation

of alternans over time. The algorithm follows different steps:

• Time synchronized points from consecutive T-waves are extracted;

• Cross correlation of each beat with a template is done;

• A time series is built by measuring the voltage at the same points in time for all

the 128 beats (fig 2.1, bottom left);

41
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Figure 2.1: Spectral method explained

• Process is repeated multiple times, obtaining different spectra (fig 2.1, bottom

center). The spectra are then averaged to form a composite TWA spectrum, whose

frequencies are in the units of cycle per beat (cpb) (fig 2.1, bottom right);

• The value of the peak at 0.5cpb represents the TWA content in that time series.

An example of spectral analysis using Spectral Method is shown in fig 2.2. Spectral

Method is included in some commercial equipment such as CH2000 R© and Heartwave R©.

It is the most widely used method to analyze exercise-induced TWA in stress tests [1].

Figure 2.2: Example of spectral analysis of ECG, obtained from aligning 128 consec-
utive beats.
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2.2 Complex demodulation method

In the complex demodulation method [4], the T-wave alternans is modeled as sinus

wave whose frequency is f0=0.5 cpb, with variable amplitude and phase. Time series

are obtained in the same way as in the spectral method and are then demodulated by

multiplying them for the modeled TWA, so that the frequency components around f0

are shifted to low frequencies:

y[k, l] = x[k, l] ∗ 2 ∗ exp(j ∗ 2 ∗ pi ∗ f0 ∗ k)

Where x[k,l] is the l-th sample of the T-wave of the k-th beat. The low frequency al-

ternans components are then extracted by using a low-pass filter. As the output of the

filter, we have the beat-to-beat series of the alternans voltages for all the T-wave sample

points.

2.3 Modified moving average method (MMAM)

Figure 2.3: Modified moving average method explained

The Modified Moving Average Method [27] was set up to measure alternans in

settings with artifacts, noise and nonstationary data. A recursive running average of
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odd (A) and even (B) beats is continously computed. The alternans estimate for any

ECG segment is then determined as the maximum difference between A and B within

the ST segment and T-wave region. A flowchart of the algorithm can be seen in fig 2.3.

2.4 Laplacian Likelihood Ratio Method (LLR)

In 2005, a new robust method for estimating T-wave alternans was proposed by Juan

Pablo Mart́ınez and Salvador Olmos [16]. In their work, they showed that SM and CD

methods can be understood as a Generalized Likelihood Ratio Test (GLRT) for

TWA episodes in Gaussian noise. However the Gaussian noise model, usually assumed

because of its mathematical simplicity and justified by the central limit theorem, does

not characterize well some types of noise. In fact, in ECG recordings the presence of ar-

tifacts, baseline wandering, or ectopic beats, usually makes the noise in the beat-to-beat

series to be more ”spiky” than Gaussian noise. This method assumes a Laplacian dis-

tribution, which can model the noise in TWA series while keeping some mathematical

tractability. Given a signal model including alternans and noise terms, the maximum

likelihood estimator (MLE) and the generalized likelihood ratio test (GLRT)

can be derived for TWA estimation and detection, respectively. So, the LLR computes

the MLE and the GLRT for a Laplacian noise model to perform both estimation and

detection of TWA.

2.5 A first multilead approach combining LLR and a linear

transformation

All the methods previously described operate on a single-lead basis, that is they ana-

lyze each lead independently from the others. A first multilead approach (fig 2.4) was

proposed by Monasterio and Martinez in 2008 [23].

The key idea of multilead analysis is to combine the information of the ECG leads to

increase the Alternans-Signal-to-Noise ratio (ASNR) in the signal, that is, to improve

the visibility of TWA over noise. A higher ASNR improves the detectability and esti-

mation of TWA.

The preprocessing part is the same followed by all the single-lead methods and involves

the basic steps of filtering, baseline wander removal, QRS detection and so on. Then a

simple detrending filter is applied in order to eliminate the background ST-T complex.
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Figure 2.4: Block diagram of the multilead approach

So, the resulting matrix X’ will be a mixture of TWA and noise, without the background

ECG. A trasformation matrix Ψ is then applied. As the scheme is general, the matrix Ψ

could be any transformation matrix able to enhance the TWA component (or separate

it from the other components) in the transformed leads. In the case of Figure 2.4, PCA

is applied to obtain the matrix Y, whose leads (rows of the matrix) will be denoted as

transformed leads. The main idea is to project the alternans information of X in a subset

of components, while most of the noise is projected into a different set of components.

In this way, the TWA and the noise will appear separated and the TWA analysis will

be easier.

TWA detection is then done exactly as the single lead method, in this case the LLRM

and SM operate on the single leads. dl is the result of the TWA detection on the single

lead: if TWA is detected in lead l, then dl=1, otherwise dl=0. TWA detection is positive

if dl=1 for at least one lead (OR block).

The next step is that of the signal reconstruction, in order to be able to quantify the

TWA amplitude in the original leads. Two new truncated matrices ΨT and Y T are

obtained keeping only the leads l of the original matrix for which dl=1. A new signal is

then reconstructed with the original matrices,

Xs = ΨTY T

where Xs is equivalent to a spatially filtered signal, where the filtering is aimed to

preserve the alternans content. When no detection is obtained, Xs=0.

Finally, laplacian MLE is applied to the reconstructed data matrix in order to estimate

the alternans waveform and amplitude. An example of alternans detection with this

method is shown in fig. 2.5.

Two years later [25] this technique has been improved by using the method of the

Periodic Component Analysis (πCA), descripted in the following paragraph.
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Figure 2.5: An example of multilead analysis.

2.5.1 Periodic Component Analysis (πCA)

Periodic Component Analysis (πCA) is an eigenvalue technique for analyzing periodic

structure in multichannel signals. In this particular case, the aim is to find the trans-

formation that maximizes the periodic structure of the signal at the TWA frequency,

which is 0.5 cycles per beat (cpb), or equivalently at period m = 2 beats.

In practice, the projection ỹ′ = wTX ′ has to be found in order to maximize the signal

at TWA frequency, with w = [w1w2...wL]T is a column vector with L real weights.

In order to do so, a cost function has to be computed:

ε(w, n) =
||ỹ′(m) − ỹ

′||2

||ỹ′||2
(2.1)

Where ỹ′(m) = wTX ′(m) with m = 2 beats the period of TWA.

Expanding the right hand term of equation 2.1 in term of the weights w gives:

ε(w, n) =
||wTX′(m) −wTX′||2

||wTX′||2
=

||wT (X′(m) −X′||2)
||wTX′||2

=
wT (X′m −X′)(X(m) −X′)Tw

wTX′X′TwT
=

wT ÂX′(m)w

wT R̂′
Xw

In the resulting expression, both numerator and denominator are quadratic forms in the

weights w. This ratio is known as the Rayleigh quotient. By the Rayleigh-Ritz theorem

of linear algebra, the weights w that minimize the previous expression are given by the

generalized eigenvector corresponding to the smallest generalized eigenvalue of the ma-

trix pair (ÂX′(m), R̂X′).

Therefore, the transformation matrix Ψ is chosen as the generalized eigenvector matrix
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of (ÂX′(m), R̂X′), with the eigenvectors (columns of Ψ) sorted according to the corre-

sponding eigenvalues in ascending order of magnitude. In this way, the transformation

Y = ΨTX

projects the most periodic component into the first row of, that is, TWA — if present

— is projected onto the first transformed lead and therefore the first column of Ψ can

be interpreted as the spatial direction from which the periodic content of the signal is

better observed.

2.6 Amplitude of Dominant T-Wave Alternans

Amplitude of Dominant T-Wave Alternans (ADTWA) [15] is a recently intro-

duced index which offers a new perspective in the detection of T-wave alternans. As

already pointed out, T-wave is the manifestation of the spatial dispersion of the ventricu-

lar repolarization, which is a natural property of the human heart. However, an amplified

spatial repolarization could pave the road to the development of the mechanism of reen-

try, leading to ventricular arrhytmias and fibrillation. How to mathematically model

well this mechanism, is still an open challenge (Malik, 2009). Neverthless, it is a fact

that an increased T-wave alternans mirrors an increased dispersion in ventricular repo-

larization. The challenge is to find an index based on some physiological model which

describes the repolarization phase through the means of some mathematical paradigm.

In that sense, a metric of ECG repolarization heterogeneity has been presented by Sassi

and Mainardi in 2011 (V -index ) [35]. This metric was derived from the analysis of a

biophysical model of the ECG [38], where repolarization is described by the Dominant

T-Wave (DTW) paradigm. The model explains the shape of T-waves in each lead as

a projection of a main waveform (the DTW) and its derivatives weighted by scalars,

the lead factors. Through the means of a singular value decomposition (SVD) of the

measured T-waves and using the definition of alternans a mathematical relation is then

derived, in which each term has a clear physiological meaning.

Before describing the algorithm used, a presentation of the biophysical model on which

the index is based is given in the next paragraphs.

2.6.1 A biophysical model of repolarization

Following the typical approach used in forward and inverse electrocardiography, my-

ocytes are grouped together in ”nodes”, covering the entire myocardium. For each

node, D(t) is a common transmembrane potential (TMP). While the steep upslope at
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Figure 2.6: Sketch of cardiac action potentials for even (thin line) and odd (thick line)
beats during alternans. Dots mark the repolarization times as the points of maximum

downslope of the TMP.

depolarization is localized in time, the instant ρm in which the cells depolarize is not so

clearly defined (see fig 2.6). Here, as in Van Oosterom’s work [38], the point of maximum

downslope of the TMP was selected. Doing so the average repolarization time across

all the nodes in the ventricles ρ(k) =
∑M

m=1ρm(k)/M , for the beat k, is related to the

position of the peak of the T-wave. Then the repolarization time of the mth ”node” is

taken to be

ρm(k) = ρ(k) + ∆ρm(k) (2.2)

where ∆ρm(k) = ρ(k)+∆ρm(k)� ρ(k) is the dispersion (”heterogeneity”) with respect

to ρ(k) and by definition,
∑M

m=1 ∆ρm(k) = 0.

2.6.2 A first order approximation for the T-wave: the dominant T-

wave paradigm

Consequently a mathematical relationship between the repolarization phase of TMP,

their dispersions, and observable T-waves morphologies has been formalized. The po-

tentials recorded at the skin during ventricular repolarization are represented by ψ, an

[ L x N ] matrix containing the N ECG samples recorded from L leads. Assuming

linearity of the conductive medium [29], these potentials can be related to the repolar-

ization phase of transmembrane action potential (TMP), D(t), by the following equation:

Ψ = A ·


D(t−ρ1)
D(t−ρ2)

...

D(t−ρM )

 (2.3)
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where A is an [L x N] transfer matrix that accounts for both the volume conductor

properties (geometry and conductivity) and the solid angle under which the single source

contributes to the potential ψ in each lead.

In eq. 2.3 D(t) is supposed to be identical across cells, but shifted by a factor ρi, which

identifies the specific repolarization time of each cell. Writing ρi in terms of its distance

from the mean repolarization time ρi (ie, ρi= ρ + ∆ρi) and assuming ∆ρi � ρ, the

function D(t) can be expanded in series around ρ leading to the following model:

Ψ = −A ·


∆ρ1

∆ρ2

...

∆ρM

 · dD(τ)

dτ

∣∣∣∣
τ=t−ρ

+ o(∆2ρm) (2.4)

In most cases, the linear term in eq. 2.4 dominates and when this happens, we have

Ψ = −A∆̇ρ · dD(τ)

dτ

∣∣∣∣
τ=t−ρ

= wTD, (2.5)

Where ∆ρ is composed of the different delays ∆ρi. The first derivative of the repolariza-

tion curve TD = dD(τ)
dτ becomes the dominant contribute to T waves and was therefore

named dominant T-wave (DTW). It is worth noticing that when the approximation 2.5

holds, the T waves measured on the thorax are only a rescaled version of TD, being

w = A∆ρ a vector of lead factors determining amplitude and signs of the T waves.

Interestingly, this form shows that measured T wave on the skin depends on both the

repolarization curve of TMP and the dispersion of repolarization times, two entities that

are affected by alternans at cellular levels.

2.6.3 Physiological model

Studies performed at cellular level demonstrated the existence of alternans in TMP of

myocites. Interestingly, looking at the downslope during phase 3 of the TMP, it appears

that the steepness of the recovery phase does not change between even and odd beats,

especially for moderate or moderately high heart rate (see fig. 2.6). This means that, in

first approximation, the DTW is not affected during alternans, and thus, we will keep

it as a constant in our analysis.

Ψe and Ψo are the surface T waves for even and odd beats, respectively. Under the

previous assumption, their first order (rank 1) approximations are given by Ψe ≈ we ·TD
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and Ψo ≈ wo · TD where the DTW TD is, as stated before, taken to be constant across

beats. Following its definition, TWA can be quantified by considering the maximum

absolute differences in the T waves of even and odd beats

TWA = max
t
|Ψe −Ψo| ≈ |Ψe −Ψo|max

t
|TD| = |A(∆ρe −∆ρo)|max

t
|TD| (2.6)

The remarkable aspect of Eq. 2.6 is that information on TWA is summarized into 2

factors:

• The maxt |TD| term, which is related to the repolarization phase of the TMPs,

• The difference |A(∆ρe−∆ρo)|, which accounts for differences in the repolarization

times among even and odd beats

Figure 2.7: Dominant T-Wave estimation. To the left some examples of DTWs are
shown. To the right, one single DTW is represented which has been rescaled to unit

norm.

Thus, relation 2.6 provides a direct link between TWA and factors that are supposed to

have originated it. To compute it, we need a first method to estimate TD and a second

one to obtain the weights we and wo once given TD.

An estimated of the DTW can be obtained through the minimization of the Frobenius

norm of the error

ε = ‖Ψ− wTD‖F (2.7)

between the measured T waves, Ψ, and their approximations by the first-order term of

Eq. 2.5. In Eq. 2.7 TD is unknown and estimated as vT1 which is the first column of
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the matrix V derived from a SVD of Ψ, rescaled to unit norm. An example of DTWs

estimated with this method can be seen in fig. 2.7.

An index of TWA

Eq. 2.6 expresses the amount of TWA on each lead separately. A single index of alter-

nans can the be obtained across leads, l, as

I = max
l
|A(∆ρe −∆ρo)|max

t
|TD| (2.8)

where the first maximum is taken across the rows of the vector |A(∆ρe − ∆ρo)|. The

index can be rewritten as:

I = ADTWA = max
l
|λeue − λouo|max

t
|tD| (2.9)

and will be labeled Amplitude of Dominant T-wave Alternans (ADTWA) to

underline its relationship with the DTW paradigm. Given an Ecg recording, the steps

needed for its computation are the following:

• Detect the boundaries of a certain number of consecutive T waves. Then build

the potential Ψe averaging all the T waves of an even number. The same should

be done with odd T waves for Ψo. The averaging procedure improves the signal-

to-noise ratio, but as an alternative, a beat-to-beat analysis could be performed

considering a single even and odd beat at a time.

• Compute vT1 = tD through SVD of matrix Ψ = (Ψe + Ψo)/2. Even and odd T

waves are merged at this level of the analysis, as our physiological hypothesis is

that the repolarization phase of the TMP does not vary in first approximation

across following beats.

• Given tD, estimate λe and ue. The same should be done for Ψo, leading to λo and

uo.

• Evaluate the ADTWA by eq. 2.9.

2.6.4 ADTWA validation

Two kinds of validation have to be done in order to prove an index’s efficacy: method-

ological evaluation and clinical evaluation.

Methodological evaluation consists in quantification of the method’s detection power

and estimation accuracy. Clinical evaluation assets the utility of TWA measurements



52 Chapter 2 T-wave alternans assestment methods

as cardiac risk markers. It is preferable to do a methodological evaluation before going

on with the clinical analysis.

Figure 2.8: Comparison of estimated vs true TWA amplitudes.

A first methodological evaluation of the method was done by Mainardi and Sassi [15],

who analyzed data coming from the Physionet/Computers in Cardiology (CinC) Chal-

lenge 2008, which contains 100 multichannel ECG records (2,3 or 12 leads) sampled

at 500 Hz, with 16 bit resolution over a ±32mV range. Thirty-two of these records

were synthetic and created using 5 different models in which the TWA was added at

different extents (range, 2 − 60µV ). The artificial TWA was created by modulating

the T-wave loop of a synthetic vectorcardiogram, then projecting the vectorcardiogram

onto 12 scalar ECG leads using 5 individual Dower transform matrices [26]. Six levels

of TWA were added to each ECG model, for a total of 30 simulated ECG.

Results of validation are showed in fig 2.8, which displays the comparison between the

estimated TWA amplitude, using the newly introduced index ADTWA and the ones

used to build the synthetic records (”real”). Only the 32 synthetic records were used for

validation. A good linear relationship has been found between estimated and expected

TWA values (R2 = 0.9898± 0.0100) (mean± SD).

It is interesting that regression lines have different slopes for different ECG models. This

is well expected from the way the synthetic ECG were generated. In fact, they were

obtained by applying different Dower matrices, which implies different transfer matrices

A for each ECG model and, thus, a different sensitivity of the index.

2.6.5 Why ADTWA?

A number of strengths makes ADTWA promising:
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• The DTW directly derives from a physiological model and reflects the repolariza-

tion stage of the myocytes transmembrane potential ;

• ADTWA uses Singular Value Decomposition (SVD) to compute the DTW

thus it benefits from SVD’s resilience towards uncorrelated noises;

• In considering multiple leads it implicitly overcomes one of TWA measurement’s

typical problems, that TWA magnitude may be lead-dependent.

Given the high coefficient of correlation between prediction and true values of TWA,

for each model considered, performance obtained were encouraging on simulated ECGs,

slightly better than those achieved by Spetral Method (SM)[15].

So we believed ADTWA could be a good candidate for the development of a new TWA

detection algorithm. But first, we needed to test the performance of the method on real,

ambulatory records in order to clinically validate the method.

This is the objective of the present study.
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Methods

Figure 3.1: Flowchart of the methods used.

A flowchart of the methods we used is shown in figure 3.1. Every ECG is filtered in

order to remove baseline wander and high frequency noise, then resampled - from 200

Hz to 1000 Hz, and finally Q-onset points are detected. Beat segmentation is done, i.e.,

the ECG recording is divided into segments and for each valid one, indexes of TWA
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are calculated. Eventually, when the last segment is processed, statistical analysis is

performed. Every step will be described in details in the following paragraphs.

3.1 Pre-processing
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Figure 3.2: An excerpt of ECG before and after baseline wander removal is shown.
Signal coming from the three leads X,Y,Z is represented in both cases.

Generally speaking, the aim of pre-processing steps is to improve the signal to noise ratio

of the ECG for more accurate analysis and measurement. Accurate TWA measurement

in ambulatory recordings is technically challenging due to the confounding effects of time-

varying periodic and non periodic noise such as movement, myopotentials or respiration
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and data nonstationarity from changing heart rate, TWA magnitude, or ectopic beats.

Here the main categories of noise are summarized :
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Figure 3.3: Example of noisy ECG with baseline wander.

• Low frequency baseline wander (BW). It’s a low frequency noise (0.5 - 1 Hz)

which interferes with the standard ECG activity, in such a way that an isoelectric

line can’t be correctly defined (see fig 3.3). It may manifests as an high amplitude

noise when analyzing the beat-to-beat series, masking subtle TWA or generating

false detections. Therefore, it has to be corrected before proceeding with further

analysis.

• High frequency random noises caused by power line interference (50 or 60Hz).

We used a Butterworth band pass filter (3rd order, cut off frequencies 0.5 Hz - 50 Hz).

Zero-phase filter has been applied in order not to introduce phase distortion. As a

result, baseline wander as well as high frequency noise are removed while keeping the

information on TWA.

Figg. 3.2 shows an excerpt of ECG before and after band pass filtering.

3.1.1 Resampling

Every ECG has been resampled from 200 Hz to 1000 Hz in order to keep the duration

of one sample equal to one millisecond.

3.2 Fiducial point detection

The QRS complexes were already detected by a detector (Aristotle), so the positions

of the R-peaks for every beat were available. Positions of R peaks have been used to
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calculate the RR intervals and thus the heart rate for each beat. A simple algorithm

was written in order to calculate the Q-onset of every beat:

• First derivative of the signal is calculated (Butterworth high pass filter, third

order);

• A threshold is set ( 15 µV , found by graphically inspecting the first derivative of

the ECG);

• If the derivative is below threshold in one point and (at least) in the following

three ones, that point is the Q onset.

Detection of Q onset was necessary as PQ interval was chosen as isolectric line after

baseline wander removal. An example of detection is shown in fig 3.4.
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Figure 3.4: Example of Q onset detection. In blue signal coming from Lead Y is
represented. Red dots are Q-onset points as recognized by the algorithm.

3.3 Beat selection

Not every beat could be taken into account for analysis. We excluded ectopic beats

from the analysis, as they mirror non-physiological dynamics. ECGs were analyzed in

segments of 128 beats with a 50% overlap between adjacent segments. Each segment

was included in automatic TWA analysis if:

• (1) the difference between the maximum and the minimum instantaneous heart

rate (HR) during the segment was inferior to 20 beats/min

• (2) at least 80% of the beats fulfilled the following conditions:

– (a) it was labeled as normal sinus beat
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– (b) the difference between each RR interval and the previous one was lower

than 150 ms,

– (c) the difference between the baseline voltage measured at the PQ segment

in that beat and the one measured in the preceding beat was inferior to 300

microvolts.

The rules are the same followed by Monasterio et al. [24]. While in their work the seg-

ments were always 128-beats long, we decided to exclude from analysis beats that didn’t

respect the conditions previously described. That’s why our segments were generally

shorter than 128 beats.

3.4 Beat alignment

Figure 3.5: Example of beat alignment.

Next step was aligning all the beats with respect to a common point (see fig 3.5). This

was necessary in order to get a common frame of reference in time. Two different strate-

gies were followed. First one was to align on QRS complexes, second one to align on

T-waves.

3.4.1 Alignment on QRS complex

The first strategy was to align on QRS complex. Positions of R peaks were available.

Alignment was done by calculating a mean QRS complex template, computing the cross

correlation matrix of each beat with the template and eventually calculating the delay

between each QRS complex and the mean QRS complex. This way alternans is kept

intact, as T-waves are not touched during the procedure.

3.4.2 Alignment on T wave

Alignment was done by isolating a window around the T-waves, calculating a mean T-

wave template and checking the cross correlation between each T-wave and the mean
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Figure 3.6: Aligned T-waves in one segment, 101 beats long. Values are recorded
from Lead Y.

template.

The problem of this kind of procedure is that alternans may be touched as it is localized

everywhere inside the wave.

Eventually, after the alignment operation, a series of aligned T-waves is obtained (see

fig 3.6).

3.4.3 Median T-wave template extraction

Next step was to calculate a median T-wave template for odd beats and one for even

beats, which was a necessary step in order to compute ADTWA index. This was done

by isolating a window 100 ms after the QRS peak, 350 ms long and calculating two

median templates, one for odd beats and one for even beats. Median operator was used

as it is less sensitive to noise than the mean. Fig 3.7 shows, superimposed, two median

T waves for even and odd beats, calculated in one segment. Fig 3.8 shows the median

T wave in the same segment for all the beats.

3.5 Index computation

Next step was calculating the dominant T-Wave ( tD ) and the vector of lead factors

(|λeue − λouo|) for every analyzed segment, as described in 2.6.3. Then the following

indexes have been calculated:



Chapter 3 Methods 61

0 50 100 150 200 250 300 350 400
−100

−50

0

50

100

150

200

250

300

350

400

Time (ms)

V
ol

ta
ge

 (
uV

)

 

 
Even beats
Odd beats

Figure 3.7: Median T-waves for even beats (blue waveform) and for odd beats (green
waveform). Same segment of fig 3.6 was considered.

• ADTWAI : Amplitude of Dominant T-Wave Alternans Index

Mean TWA activity evaluated during the whole ECG recording.

• ADTWAI evaluated for specific HR bins:

– ADTWAI70 : Represents the mean TWA activity evaluated only in seg-

ments whose mean HR is comprised between 60 and 70 bpm.

– ADTWAI80 : Represents the mean TWA activity evaluated only in seg-

ments whose mean HR is comprised between 70 and 80 bpm.

– ADTWAI90 : Represents the mean TWA activity evaluated only in seg-

ments whose mean HR is comprised between 80 and 90 bpm.

– ADTWAI100 : Represents the mean TWA activity evaluated only in seg-

ments whose mean HR is comprised between 90 and 100 bpm.

– ADTWAI110 : Represents the mean TWA activity evaluated only in seg-

ments whose mean HR is comprised between 100 and 110 bpm.

The same analysis as Monasterio et al. [24] were repeated, plotting the boxplots of

the alternans indexes (ADTWAI, ADTWAI70, ADTWAI80, ADTWAI90, ADTWAI100,

ADTWAI110).

Each of the indexes has been evaluated with three different methods, which will be

described in the following paragraphs.
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Figure 3.8: Median of all the T-waves represented in fig 3.6.

3.5.1 AM Method

In AM Method (Average of Maximum) the following steps are followed:

I One segment is kept good for analysis;

II On that segment, beats are aligned - with respect to the T wave or to the QRS

complex -, then two median templates are calculated - one for odd beats, the other

for even beats;

III Steps described in paragraph 2.6.3 are followed and the index I of ADTWA is

calculated in this way : maxl |λeue − λouo|maxt |tD| (see eq. 2.9) ;

IV Procedure is repeated for the next segment valid for analysis;

V Eventually a global average of the calculated indexes is done.

Clearly this kind of method produces values more influenced by noise: in fact it resulted

in the least significant result we were able to get. Nevertheless it had been useful to get

a first graphical glimpse of alternans during the whole recording. As a matter of fact,

the trend of TWA to grow at higher HR is evident and confirmed from the first order

regression analysis for almost all the subjects.
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Figure 3.9: T Wave Alternans waveform for a single segment. Values recorded from
Lead X are shown in blue, values from Lead Y are shown in red and values from Lead

Z are shown in green.

3.5.2 MM Method

In MM Method (Maximum of Mean) a T-wave alternans waveform is computed which

is the vector of lead factors multiplied for the dominant T-wave in that segment :

(λeue − λouo) ∗ tD (3.1)

An example is shown in fig 3.9. The algorithm puts together values recorded from the

three orthogonal leads in the same vector, thus waveforms from Lead X, Lead Y and

Lead Z are shown together in the same graph. Procedure is repeated and a waveform of

alternans is kept for every valid segments. The result is a matrix X, whose dimensions

are [3MXN ], where M = 350 is the length of the T-wave window and N is the number

of segments kept for analysis. Fig 3.10 shows the plot of the alternans waveforms during

the whole recording.

Waveforms presenting a negative correlation with the cross correlation matrix X*X’ are

multiplied for -1. Otherwise, waveforms out of phase would collapse when the mean is

done, producing falsely low values of alternans.

Finally, the absolute value of the mean of all the waveforms is calculated and its maxi-

mum is taken as an index of alternans.
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Figure 3.10: Alternans waveforms during the 24 hours. The alternans waveforms on
each lead are shown together.

In fig 3.11 an example of mean ADTWA waveform for one subject is shown. The red

dot represents the ADTWAI2 value for that subject.
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Figure 3.11: ADTWAI2 calculation. The thick blue line represents the absolute value
of the mean waveform for one subject during the 24 hours. The red dot is the ADTWAI2

value, which is the maximum value of the absolute value of the mean waveform.

3.5.3 VM Method

In VM method (Vectorcardiogram Maximum), as in MM Method, waveforms of al-

ternans are calculated and averaged during all the 24 hours or only for specific heart

rhythms for each lead X,Y,Z (see fig. 3.12).
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Figure 3.12: Alternans waveforms on leads X,Y,Z.

Then, the vectorcardiogram (VCG) magnitude is calculated in this way (see fig: 3.13).

V CG =
√
X2 + Y 2 + Z2 (3.2)
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Figure 3.13: VCG magnitude and value of ADTWA recorded with VM Method (red
dot).
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Finally, the maximum is taken in this waveform as an index of alternans.

The measurement of alternans through this method has a clear physiological meaning.

In fact, as already discussed in paragraph 1.1.4, the vectorcardiogram is the spatial

projection of the electrical activity of the heart in three different directions. The resulting

information is global, as it takes into account values recorded in all the three leads.

3.6 Statistical analysis

3.6.1 Boxplots

Figure 3.14: An example of boxplot. 25th percentile, median, mean, 75h percentile,
whiskers and one outlier are shown for a sample distribution.

Boxplots are non parametric graphs displaying variations in samples of a statistical

population. They generically represent the 25th percentile (first edge of the box), the

median (center of the box), the 75th percentile (second edge of the box) and the most

extreme datapoints which are not considered to be outliers (whiskers of the box). Outliers

are plotted individually.

An example is shown in fig. 3.14.
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3.6.2 Roc curves

Figure 3.15: An example of Roc Curve. Three binary classifiers are shown and the
straight line sensitivity = (1− specificity) is represented as well. The optimal model

is the one which presents the larger area under the ROC Curve (AUC).

The ROC curve is a fundamental tool for diagnostic test evaluation. It is a graphical

plot which illustrates the performance of a binary classifier system as its discrimination

threshold is varied. In a ROC curve the true positive rate (Sensitivity) is plotted as

a function of the false positive rate (1 - Specificity) for different cut - off points of

a parameter. Each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular decision threshold.

Plotting Roc curves presents two fundamental advantages:

• The area under the ROC curve (AUC) is a measure of how well a parameter can

distinguish between two diagnostic groups (diseased/normal).

• An optimal cut - off value to distinguish positives and negatives to a clinical test

may be found by visually inspecting the shape of the curves.

An example of Roc Curve is plotted in fig 3.15.
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3.6.3 Kaplan Meier survival analysis

Figure 3.16: An example of Kaplan Meier survival analysis. The cumulative survival
of two populations with different gene signatures (Gene A and Gene B) is compared.

Kaplan Meier estimator, also known as the product limit estimator, is used to es-

timate the survival function of data related to life duration. In medical research, it is

often used to estimate the fraction of patients who live for a certain amount of time

after the treatment.

A graph of the Kaplan Meier estimate of the survival function is a series of horizontal

steps with decreasing amplitude which, if the used sample is sufficiently big, approxi-

mate the true survival function for that population.

An important advantage of Kaplan-Meier curve is that the method can take into ac-

count some types of censored data, in particular right censoring, which happens when

a patients withdraws from the study, that is if he retires from the sample before final

outcome can be observed.

When a right censoring happens, this is indicated in the diagram with a vertical tick.

When no censoring or truncation occurs, the Kaplan Meier curve is the complement of

the empirical distribution function.

In medical statistics, a typical application implies grouping patients in categories, such

as patients with two different profiles. In fig 3.16 an example is shown, which compares

the survival percentage of two groups of patients with different gene signatures.

3.6.4 Student’s t-test

A t-test is a statistical hypothesis test which can be applied to data following a Student’s

t distribution. It is mostly applied to determine if two populations are significantly
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different from each other. In fact, when a t-test is done, the null hypothesis is that the

means of the two groups are equal. These tests are often referred to as ”unpaired” or

”independent samples” t-tests, as they are typically applied when the statistical units

underlying the two samples being compared are non-overlapping.

We used Student’s t-test in order to compare the distribution of ADTWA in the group

of people who survived during the follow - up phase with the group of people who died

from SCD.

3.6.5 Log - Rank Test

Log - Rank Test is an hypothesis test used to verify the survival functions of two popu-

lations. It is a non parametric test which can only be used if data are asymmetrical and

right - censored. It is widely used in clinical tests in order to asset a new treatment’s

efficacy when compared to a control treatment when time preceding an event (such as

time between initial treatment and heart attack) is known. Sometimes it is called Mantel

- Cox test.

We used Log - Rank Test in order to compare the survival functions of the group of

subjects who presented a mean TWA activity below a certain threshold during all hours

of record (ADTWA - negatives) with the group of subjects whose mean TWA activity

was above threshold (ADTWA - positives).

3.6.6 Software used

ECG analysis was performed using self written Matlab R© functions.

The processing of one single ECG required an approximate time of two hours, thus

processing in series all the database would have required an excessive amount of time.

Process was greatly sped up by using the HERMES supercomputing center, used by I3A

researchers, equipped with more than 1500 computing cores, which allowed to process

the whole database in slightly more than 45 minutes.

Statistical analysis has been done using IBM R© SPSS R© Statistics 20.
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Materials

4.1 Study population (MUSIC)

In this study MUSIC (MUerte Súbita en Insuficiencia Cardiaca) database [34] has

been used. MUSIC study is a prospective work realized in patients enrolled in 9 centers

in Spain between April 2003 and December 2004 who suffered from symptomatic heart

failure (CHF, II-III NYHA functional classes). The study was designed to assess risk

predictors for cardiovascular mortality in ambulatory patients with CHF.

Specific enrollment criteria for the MUSIC Study included CHF symptoms more than 3

months after last hospitalization due to heart failure decompensation and at least one

of the following echocardiographic sign of systolic and / or diastolic disfunction:

• Left ventricle ejection fraction < 40%;

• Diastolic diameter over 60mm;

• Left ventricular hypertrophy (sept or posterior wall thickness over 14mm);

• Abnormal relaxation patterns characteristic for diastolic dysfunction.

The exclusion criteria were as follows:

• Heart failure secondary to an acute reversible cause in patients with no prior

history of heart failure (e.g. hyperthyroidism);

• Heart failure secondary to valvular heart disease amenable to surgical repair;

• Right ventricular heart failure associated with chronic col pulmonale or concomi-

tant terminal disease.

71
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4.1.1 Patients characteristics

992 ambulatory patients with CHF were included in the MUSIC study (718 men and

274 women), aged 18-89 years (mean 65 ± 12). Most patients (78.4%) were in NYHA

class II. A detailed resume of the characteristics of the population studied can be found

in Table 4.1.

4.2 Study protocol

The study protocol was approved by institutional Investigation Committees and all pa-

tients signed informed consent.

First assessments were performed in 1054 patients; 58 were not included due to poor

acoustic windows and 4 additional patients refused to give their consent for the study.

MUSIC population was made by the remaining patients (992) and for our analysis we

only considered a subset of 650 cases which presented sinus rhythm.

12-lead ECGs with a sampling rate of 200 Hz were recorded using SpiderView recorders

(ELA Medical, Sorin Group, Paris, France). All patients had echocardiography, chest

X-Ray, 24 hours Holter monitoring and blood laboratory parameters performed at en-

rollment.

As far as the follow-up phase is concerned, visits were conducted on an outpatient basis

every 6 months, for a median of 44 months. By asking patients’ physicians and relatives

or investigating medical records, the attempt was made to determine the cause of death.

The total number of recorded deaths was 267 (26.9%), the most part of which had a

cardiovascular origin (213). Among these ones, 123 (12.4%) were due to pump failure

(PF) and 90 (9.1%) due to sudden cardiac death (SCD).

Death was defined as ’sudden’ in any of these three cases:

• A witnessed death occurring within one hour from the onset of new symptoms,

unless a non cardiac cause was evident;

• An unwitnessed death (24h) in the absence of pre-existing progressive circulatory

failure or other causes of death;

• A death during attempted resuscitation.

Some patients were lost to follow-up (n = 11) and censored in survival analysis. Those

who underwent cardiac transplantation (n = 20) were defined as PFD at the time of

surgery.
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Demographic and clinical variables

Age, years 65±12
Gender, male 718 (72.4%)
Diabetes mellitus 356 (35.9%)
History of hypertension 565 (57.0%)
History of dyslipemia 494 (49.8%)
Current smoker 104 (10.5%)
Ischaemic aetiology 453 (45.7%)
Prior AVE 478 (48.2%)
Prior CABG or PTCA 256 (25.8%)
Prior pacemaker 135 (13.6%)
Body mass index, kg/m2 28.5±4.5
NYHA class II 778 (78.4%)
NYHA class III 214 (21.6%)
Systolic blood pressure, mmHg 127±22

Radiographic variables

Cardiothoracic ratio 0.55±0.07
Signs of pulmonary venous hypertension 169 (17.0%)

Laboratory variables

Haemoglobin, g/L 137.2±15.9
GGT > 50IU/L 251 (25.3%)
Total cholesterol, mmoL/L 4.83 ± 1.07
Creatinine, µmol/L 109.1 ± 34.7
eGFR < 60mL/min/1.73m2 458 (46.2 %)
Hyponatremia ≤ 138mEq/L 374 (37.7 %)
NT-proBNP > 1000ng/L 452 (45.6 %)
Troponin - positive 158 (15.9 %)

Echocardiographic variables

La size > 26mm/m2 323 (32.6 %)
LV end-diastolic diameter, mm/m2 32.8 ± 6.1
LV mass, g/m2 162.4 ± 52.2
LVEF, % 37.0 ± 14.1
LVEF < 45% 748 (75.4%)
LVEF ≤ 35% 534 (53.8 %)
Restrictive filling pattern 78 (7.9 %)

12-Lead ECG and 24-h Holter monitoring variables

Sinus rhythm 703 (70.9%)
Atrial fibrillation 191 (19.3%)
Pacemaker rhythm 98 (9.9%)
Heart rate, b.p.m. 70.1 ± 10.1
QRS duration, ms 125.5 ± 35.1
LBBB or IVCD 485 (48.9%)
Non-sustained VT 352 (35.5%)
Frequent VPBs (> 240 VPBs in 24h) 480 (48.4%)
Non-sustained VT and frequent VPBs 284 (28.6%)

Table 4.1: Baseline characteristics in 992 heart failure patients in the MUSIC study
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Results

Results of this Master’s Thesis work are presented in this chapter.

At first indexes of alternans have been calculated separately for each patient. Then a

statistical analysis has been done on the whole population under study to check the

prognostic value of ADTWA1, ADTWA2 and ADTWA3 for sudden cardiac death.

First boxplots of alternans indexes have been plotted. The aim was to verify if a trend

of alternans to grow at higher heart rates was visible at a naked eye for the population

under study. Through the analysis of ROC Curves the best cut-off value for the index

to predict SCD was checked. Finally patients have been separated into positives and

negatives to our TWA test (ADTWA > cut off value). Kaplan Meier survival functions

have been calculated and plotted, using cut-off values seen in ROC Curves, in order to

check if there was a significant difference between the percentage of survivals in the two

groups.

This chapter is organized as follows: boxplots, ROC curves and survival functions will

be presented for each method, when alignment on QRS complex is done. Then, the

same results will be shown when alignment on T-waves is done.

Last paragraph shows an analysis of the prognostic value of ADTWA when analysis is

restricted to slow heart rates. Two indexes have been found to be predictive for SCD :

ADTWAI70 and ADTWAI90.

5.1 QRS alignment

5.1.1 Analysis of alternans

Table 5.1 represents the median and the interpercentile range (25th percentile - 75th

percentile) for the 650 cases analyzed, globally and for specific heart rate bins.

Boxplots for the three methods are shown in figures 5.1, 5.2 and 5.3.
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Global 60-70 70-80 80-90 90-100 100-
110

AM
Method

7.19
[5.87 ÷
8.82]

6.19
[4.62 ÷
8.55]

7.86
[5.88 ÷
10.45]

9.81 [
7.25 ÷
12.91 ]

11.66 [
8.60 ÷
15.70 ]

12.47 [
9.12 ÷
17.66 ]

MM
Method

4.16 [
3.23 ÷
5.47 ]

3.75
[2.72 ÷
5.43]

4.85 [
3.57 ÷
6.57 ]

6.01 [
4.36 ÷
8.19 ]

7.63 [
5.22 ÷
10.83 ]

8.12 [
6.08 ÷
13.12 ]

VM
Method

4.85 [
3.89 ÷
6.17]

4.40 [
3.21 ÷
6.22 ]

5.82
[4.14 ÷
7.62]

7.08 [
5.18 ÷
9.95 ]

8.80 [
6.18 ÷
13.05 ]

9.97
[7.01 ÷
15.20 ]

Table 5.1: Median of ADTWA values and ranges [ 25th percentile ÷ 75th percentile
]. All values are expressed in microvolts.
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Figure 5.1: Boxplot of alternans indexes calculated with AM Method by aligning on
QRS complex.
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Figure 5.2: Boxplot of alternans indexes calculated with MM Method by aligning on
QRS complex.
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Figure 5.3: Boxplot of alternans indexes calculated with VM Method by aligning on
QRS complex.

As expected, the distribution tends to be more spread out at higher heart rates. The

trend was the same in all the three cases, but some differences can be highlighted:
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• AM Method produced the highest values - as doing the average of the values on

each segment results more sensitive to noise and motion artifacts thus producing

higher values of alternans.

• MM Method produced the lowest values as keeping the waveforms and eventually

doing a global average results in a lower sensitivity to noise.

• VM Method produced values which are slightly higher than those obtained from

the second method, as computing the module of VCG consists in summing squared

values from the three leads.

5.1.2 Survivors and SCD

Figure 5.4 shows the boxplot which compares the distribution of ADTWA in the two

populations:

• People who survived (Survivors);

• People who died from Sudden Cardiac Death (SCD).

using VM Method, as example.
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Figure 5.4: Boxplots comparing distribution of TWA in patients who survived during
the follow-up phase (Survivors) and patients who died from SCD (SCD). ADTWA

was calculated using VM Method and aligning beats on the QRS complex.



Chapter 5 Results 79

Tables 5.2 and 5.3 show, respectively, the group statistics for the two groups of subjects

and the results of the t - test. A 2 - tailed significance of 0.01 was achieved under the

assumptions of equal variances of the two groups, of 0.07 without that assumption.

Mean N Standard deviation Std. error mean

Survivors 4.59 504 1.71 0.08

SCD 5.43 52 2.08 0.29

Table 5.2: Statistic for the two populations of survivors and dead from SCD, as
obtained when values are calculated with VM Method by aligning on QRS complex.

t df Sig (2-tailed) Mean diff. Std. Err. Diff.

Equal variance assumed -3.29 554 0.01 -0.84 0.25

Equal variance not assumed -2.811 58.34 0.07 -0.84 0.3

Table 5.3: Indipendent Samples Test, as obtained when values are calculated with
VM Method by aligning on QRS complex.

Figures 5.5,5.6 and 5.7 show the ROC curves for the three methods. The ROC curves

were used to choose the best cut-off value for ADTWA, which is:

• 6.774µV for AM Method;

• 3.9328µV for MM Method;

• 4.7578µV for VM Method.
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Figure 5.5: ROC Curve for AM Method with alignment on QRS complexes.
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Figure 5.6: ROC Curve for MM Method with alignment on QRS complexes.
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Figure 5.7: ROC Curve for VM Method with alignment on QRS complexes.

The cutoff values determined analyzing the ROC curves were used in the Kaplan Meier

analysis. A mean TWA activity above a fixed threshold was used to discriminate the

two populations (survivors vs SCD).

In figures 5.8, 5.9 and 5.10, cumulative survival is plotted as a function of time (days).

Analysis has been restricted to 1440 days, i.e. almost 4 years.

The Log Rank test was used in order to check the statistical significance of the results.

A significant difference was found using all three methods (p-values are reported in the

figures caption).
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Figure 5.8: Kaplan Meier Survival Function for AM Method (ADTWA threshold =
6.774µV )

Figure 5.9: Kaplan Meier Survival Function for MM Method (ADTWA threshold =
3.9328µV )
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Figure 5.10: Kaplan Meier Survival Function for VM Method (ADTWA threshold =
4.7575µV )

5.2 T-wave alignment

The same analysis have been repeated when alignment on T-waves is done. This was a

”risky” approach as alternans may be localized everywhere in the ST-T segment and this

kind of procedure may result in altered values of TWA. Nevertheless, values were found

to be quite similar to the ones found with the previously described method and box-

plots kept displaying a linear dependence of TWA on HR. Also in this case Roc Curves

permitted to find optimal cut - off values to discriminate positives and negatives to our

TWA test. Kaplan Meier survival functions produced graphs similar to the previous

approach, even if we found slightly lower values of statistical significance.

5.2.1 Analysis of alternans

Table 5.4 represents the median and the interpercentile range (25th percentile - 75th

percentile) for the 650 cases analyzed, globally and for specific heart rate bins.
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Global 60-70 70-80 80-90 90-100 100-

110

AM

Method

6.78

[5.81 ÷
7.98]

5.98

[4.81 ÷
7.65]

7.18

[5.69 ÷
8.58]

9.81 [

6.99 ÷
10.64 ]

9.88 [

7.48 ÷
12.54 ]

10.75 [

7.32 ÷
13.45 ]

MM

Method

3.87 [

3.14 ÷
4.96 ]

3.72

[2.87 ÷
4.97]

4.42 [

3.26 ÷
5.60 ]

5.59 [

4.28 ÷
7.08 ]

6.29 [

4.72 ÷
9.04 ]

7.08 [

4.55 ÷
12.05 ]

VM

Method

4.59 [

3.70 ÷
5.59]

4.32 [

3.31 ÷
5.64 ]

5.82

[3.80 ÷
6.40]

6.33 [

4.96 ÷
8.28 ]

7.02 [

5.34 ÷
10.79 ]

8.05

[5.67 ÷
13.92 ]

Table 5.4: Median of ADTWA values and ranges [ 25th percentile ÷ 75th percentile
].

Boxplots for the three methods are shown in figures 5.11, 5.12 and 5.13.
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Figure 5.11: Boxplot of alternans indexes calculated with AM Method by aligning
on T wave.
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Figure 5.12: Boxplot of alternans indexes calculated with MM Method by aligning
on T wave.
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Figure 5.13: Boxplot of alternans indexes calculated with VM Method by aligning
on T wave.

5.2.2 Survivors and SCD

Figure 5.14 shows the boxplot which compares the distribution of ADTWA in the two

populations:

• People who survived (Survivors);

• People who died from Sudden Cardiac Death (SCD).

using VM Method, as example.
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Figure 5.14: Boxplots comparing distribution of TWA in patients who survived during
the follow-up phase (Survivors) and patients who died from SCD (SCD). ADTWA

was calculated using VM Method and aligning beats on the T wave.

Tables 5.5 and 5.6 show, respectively, the group statistics for the two groups of subjects

and the results of the t - test. In this case, difference between the two groups did not

reach statistical significance (p >, 0.05).

Mean N Standard deviation Std. error mean

Survivors 4.67 503 2.08 0.92

SCD 5.06 53 1.93 0.26

Table 5.5: Statistic for the two populations of survivors and dead from SCD, as
obtained when values are calculated with VM Method by aligning on T wave.

t df Sig (2-tailed) Mean diff. Std. Err. Diff.

Equal variance assumed -1.43 557 0.152 -0.43 0.30

Equal variance not assumed -1.53 65.33 0.132 -0.43 0.28

Table 5.6: Indipendent Samples Test, as obtained when values are calculated with
VM Method by aligning on T wave.

Figures 5.15,5.16 and 5.17 show the ROC curves for the three methods. The ROC curves

were used to choose the best cut-off value for ADTWA, which is:
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• 6.81µV for AM Method;

• 3.8024µV for MM Method;

• 4.4751µV for VM Method.

Figure 5.15: ROC Curve for AM Method when alignment on T-wave is done.
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Figure 5.16: ROC Curve for MM Method when alignment on T-wave is done.
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Figure 5.17: ROC Curve for VM Method when alignment on T-wave is done.

The cut - off values determined analyzing the ROC curves were used in the Kaplan Meier

analysis. A mean TWA activity above a fixed threshold was used to discriminate the

two populations (survivors vs SCD). In figures 5.18, 5.19 and 5.20, cumulative survival

is plotted as a function of time (days).

Analysis has been restricted to 1440 days, i.e. almost 4 years.

The Log Rank test was used in order to check the statistical significance of the results.

A significant difference was found using all three methods (p-values are reported in the

figures caption).
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Figure 5.18: Kaplan Meier Survival Function for AM Method when alignment on
T-wave is done (ADTWA threshold = 6.81µV )

Figure 5.19: Kaplan Meier Survival Function for MM Method when alignment on
T-wave is done (ADTWA threshold = 3.8024µV )
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Figure 5.20: Kaplan Meier Survival Function for VM Method when alignment on
T-wave is done (ADTWA threshold = 4.4751µV )

5.2.3 ADTWA70 and ADTWA90

TWA values are naturally higher for faster heart rates, as evident from the boxplots

represented before. So we checked analysis of TWA activity restricted only to certain

bins of heart rate. The number of subjects for this analysis was lower as not every patient

had a range of heart rates spanning from 60 bpm to 110 bpm. Results showed that only

ADTWAI70 and ADTWAI90 were predictive for SCD whereas other bins of heart rate

did not reach statistical significance. Results of the Log Rank test are reported in tables

5.7 and 5.8. Kaplan Meier survival curves are shown in fig. 5.21 and 5.22. Thresholds -

derived from ROC Curves - and stastical p - values of Log Rank tests are reported.

Threshold Chi - square df Sig

AM Method 7.7516 µV 5.835 1 0.016

MM Method 3.5508 µV 5.319 1 0.021

VM Method 4.6746 µV 6.417 1 0.011

Table 5.7: Global comparisons - Log Rank (Mantel Cox) for ADTWAI70. In bold
statistically significant results (p < 0.05).
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Threshold Chi - square df Sig

AM Method 13.3859 µV 3.027 1 0.082

MM Method 9.8887 µV 7.613 1 0.06

VM Method 10.8411 µV 4.223 1 0.04

Table 5.8: Global comparisons - Log Rank (Mantel Cox) for ADTWAI90. In bold
statistically significant results (p < 0.05).
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Figure 5.21: Kaplan Meier Survival Functions for ADTWAI70. From top to bottom
: AM Method (ADTWA threshold = 7.7516µV ); MM Method (ADTWA threshold =
3.5508µV ); VM Method (ADTWA threshold = 4.6746µV ). T - wave alignment has

been used in each of the three cases.
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Figure 5.22: Kaplan Meier Survival Functions for ADTWAI90. From top to bottom
: AM Method (ADTWA threshold = 13.3859µV ); MM Method (ADTWA threshold =
9.8887µV ); VM Method (ADTWA threshold = 10.8411µV ). T - wave alignment has

been used in each of the three cases.
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Discussion

The aim of the present work was to verify if a new index, simple, multi-lead and based

on a physiological model, could be an efficient predictor for Sudden Cardiac Death.

TWA is an alteration in the T-wave morphology which has got the order of magnitude

of microvolts, thus it can’t be seen at a naked eye and some specific methods of signal

processing are required. The first and most widely used are Spectral Method (SM)[14]

and Modified Moving Average Method (MMAM)[27].

Both methods analyze TWA on a single-lead basis. In 2010 a new, multi-lead index was

presented [25], based on periodic component analysis (πCA), a technique which tries

to detect alternans enhancing its periodic characteristics. In 2012 [24] the index was

applied to a database of 650 Holter electrocardiograms from patients with heart failure

during sinus rhythm to evaluate whether the long-term average TWA activity on Holter

monitoring provides prognostic information in patients with chronic heart failure. The

average TWA activity measured automatically from Holter ECGs predicted SCD in pa-

tients with mild-to-moderate chronic heart failure.

In the meanwhile, another multilead method was developed (ADTWA) [15]. The in-

dex was based on a physiological model describing the genesis of T-wave [38]. After

methodological validation[36] clinical validation, testing the index on predicting SCD

was performed in the present study.

Every ECG was divided into segments in order to discharge those which were unsuitable

for analysis. Then, predictive value was checked using three different methods. First

attempt was to calculate the index on each segment kept for analysis and to do a global

average on the 24 hours. Then a waveform for alternans was kept on each segment and

eventually the maximum of the mean waveform - on the 24 hours - was taken as an

index of TWA. The third index was obtained as the maximum of the module of the

VCG (vectorcardiogram).

Prognostic value of the new index for SCD was confirmed, with a statistical significance

similar to the one obtained in the previous work. Three indexes (ADTWA measured

with AM Method, MM Method and VM Method) turned out to be good predictors of

97
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SCD in patients with CHF. A restricted analysis only for ECG segments which had a

mean heart rate comprised between 60 and 70 bpm turned out to be prognostic for SCD

as well. This was not unexpected, as alternans is naturally higher at faster frequencies

while high values for low heart rates may be indicators of anomalies in ventricular repo-

larization.

Thus ADTWA’s methodological and clinical efficacy has been tested and these prelimi-

nary results suggest it can be used in clinical practice as a predictor of SCD.
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