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Abstract

The increasing sizes of optical elements in space born telescopes as long as
the always higher shape precision requirements have increased the interest
in Earth based adaptive optics technologies to be transferred to space field.
Active optics for space born telescopes mainly consist of the application of
deformable mirror technologies to actively compensate mirrors imperfections
and lack of damping, while keeping limited system mass and relaxing surface
quality requirements. In the present work a contactless voice-coil actuation
technology is adapted and applied to an hypothetical space telescope sec-
ondary mirror. Due to the negligible structural damping encountered at
cryogenic temperatures, the usual coils current drive has been substituted
with voltage one, to provide damping augmentation by means of eddy cur-
rents. The control law applied to the surface positioning system is based on a
partially centralized Hybrid feedforward term, supported with a decentralized
suboptimal feedback. Implementable hardware solutions have been designed
and their ability to meet scientific goals has been proved under relevant space
environment, overcoming damping and precise positioning problems.

Keywords: voice-coils, voltage drive, damping augmentation, space tele-
scope, suboptimal control, vibration control.





Sommario

Negli ultimi anni le sempre maggiori dimensioni e i sempre più stringenti
requisiti di precisione di forma richiesti agli elementi ottici montati su tele-
scopi spaziali hanno fatto aumentare l’interesse verso le tecnologie dell’ottica
adattiva, ampiamente utilizzata negli osservatori terrestri, per essere trasfe-
rite all’ambito spaziale. L’utilizzo di ottiche "attive" su telescopi orbitanti
consiste principalmente nell’utilizzo di specchi a deformazione controllabile
per compensare attivamente imperfezioni di forma e sopperire alla quasi as-
senza di smorzamento strutturale, allo stesso tempo limitando la massa degli
specchi stessi e rilassandone i requisiti di finitura superficiale. Nel qui pre-
sente lavoro, una tecnologia basata su attuatori elettromagnetici contactless
è stata adattata ed applicata ad un ipotetico specchio secondario per telesco-
pio spaziale. A causa della quasi totale assenza di smorzamento strutturale
riscontrabile a temperature criogeniche, il consueto controllo in corrente delle
bobine degli attuatori è stato sostituito da quello in tensione per sfruttare la
dissipazione generata dalle correnti parassite indotte attraverso il moto dello
specchio. La legge di controllo utilizzata nel sistema di posizionamento è co-
stituita dal un termine "Ibrido" in anello aperto, parzialmente centralizzato,
affiancato da una retroazione sub-ottimale diretta delle misure, totalmente
decentralizzata. Sono infine riportati progetti e simulazioni di tre possibi-
li implementazioni elettroniche del sistema di controllo con prestazioni tali
da soddisfare i requisiti scientifici posti, sotto condizioni a contorno rappre-
sentative dell’ambiente spaziale, in grado di raggiungere un buon livello di
smorzamento indotto ed ottenere un preciso posizionamento della superficie
riflettente.

Parole Chiave: attuazione elettromagnetica, controllo in tensione, telesco-
pio spaziale, controllo sub-ottimale, controllo delle vibrazioni.
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Chapter 1

Introduction

This chapter contains a general overview of so-called Active Optics and why
it is now considered a key technology for in-space observatories. Then, it
follows a bit more detailed explanation of the practical realization of active
optics devices, the different available solutions and their operating principle.
Finally, the specific problem under investigation in this thesis is presented
along with an overview of the adopted design.

1.1 Active optics for space applications
The needs of space observation have pushed towards telescopes with larger
apertures. Indeed, this would lead to an increased collecting power and to
a wider angular resolution [1], allowing finer observations capable to help
scientists answering the more and more numerous questions about the Uni-
verse. Two main approaches followed until now in building observatories rely
on Earth-based and space-born telescopes [2]. They are briefly described in
the following.

The first approach enables the construction of huge optical structures,
without tight weight, size or power constraints. Nonetheless, Earth-based
telescopes have intrinsic limitations in their observing capabilities due to the
presence of the atmosphere that filters all kind of radiation coming from
outside and produces electromagnetic waves distortion due to its turbulent
nature. Actively deformed optics has been largely studied in this context
with two aims:

• correcting static and low frequency deformations caused by extended
reflective surfaces subjected to gravity force and wind action;

• rapidly compensating errors in the light wavefront propagating through

1



Chapter 1

Figure 1.1: Existing and future telescopes size comparison

a turbulent atmosphere.

The control technique is conceptually rather simple. It is based on using
a wave front sensor which identifies the level of image distortion. Then an
algorithm computes the optimal shape to counteract the phase shifts in the
light front. Finally, the corrective shape is applied to the optical surface
through an inner control loop governing a set of actuators attached on the
rear side of the deformable mirror.

It is clear that the second approach based on space telescopes does not
suffer from the above problems since the observatory is outside the atmo-
sphere. On the other hand, this solution presents all typical limitations of
space systems. The limited mass that could be launched and inserted in
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Introduction

orbit, as well as the maximum dimensions of spacecrafts allowed by the fair-
ing size of available launchers [3], require advanced technological solutions
in order to reach large aperture telescopes. Even if many features of ground
based adaptive optics can be exploited in space observatories, it is not always
straight forward to adapt them both to the most extreme space operational
conditions and to the related more stringent and tight system requirements
in terms of reliability, maintainability, radiation tolerance, mass and power
consumption. It should be also highlighted that the active control of space
telescopes is not only considered as a way of achieving higher demanding
performances, but also as an effective solution for relaxing the passive design
requirements in terms of polishing of the surfaces and rigidity and thickness
of the mirror or for reducing the outage period of missions caused, e.g., by
Sun baffle intrusions or eclipses altering the thermal conditions within the
instrument. Also this work of thesis can be considered part of the on go-
ing development process, presenting the application and adaptation to space
environment of Earth based optics control techniques.

Trying to increase the size of the optics, while keeping compactness and
low system mass, produces lightweight flexible structures that nevertheless
have to maintain their nominal shape, within some prescribed tolerances, in
order to guarantee the desired image quality which meets the scientific goals
of the mission [1, 4, 5]. In addition, as far as the radiation bandwidth of sci-
entific interest moves towards short wavelengths, the surface tolerances get
more and more stringent, reaching nanometric levels. Space environment as
well as manufacturing processes and in-space release act against this target
by distorting the reflective shell. Furthermore, internal vibrations generated
by spacecraft components, thermo-elastic effects arising from changes in the
radiation environment, low frequency and static deformations induced by
maneuvers or by the passage from a 1g to a micro-gravity condition are all
factors that have to be compensated to guarantee the theoretical image qual-
ity that an optical system of a certain dimension should ideally achieve [4, 5].
It is anyway necessary to underline that all the above mentioned aberration
sources present quite different frequency contents with respect to Earth typi-
cal atmospheric turbulence. Indeed, the frequency bandwidth of interest can
be reduced from tens of kilo hertz to few hertz. Even the most famous large
space observatory, the Hubble Space Telescope, despite it has been designed
and developed many years ago, is equipped with a set of 24 force actuators
arranged in two concentric circles to make small corrections to the image
figure [6].

The limited size of the launcher fairings brought also to the development
of deployable and segmented mirrors, which are folded during ascent to orbit
and then opened once in space. This is the case of the James Webb Tele-

3
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Figure 1.2: Hubble Space Telescope and James Webb Space Telescope

scope, planned to be launched in 2018, which is composed of 18 beryllium
segments [7]. Unfortunately, the segmented or deployable solution adds error
sources to the correct positioning and shaping of the optical surfaces [3]. All
these factors strongly limit the effectiveness of a full passive design and lead
to a mixed passive-active approach to shrink the system and obtain at the
same time the desired optics stability. A good choice of materials is useful to
reduce the mass and limit the thermal deformations, while actuators behind
the optical surface keep its shape under control [4].

In the general field of active optics, two main solutions has been found
to deal with the image aberrations deriving from non ideal optical surfaces.
The first approach involves an active deformation of the primary mirror with
a high number of actuators, producing a definitely finer control of the re-
flected wave front. The second approach, which corresponds to a simpler
solution, consists of inserting a secondary pupil actively deformed to com-
pensate the errors generated on the primary surface [4]. The smaller size
of the secondary optic system, despite the advantage of requiring a lower
number of actuators, introduces challenging volume constraints on the posi-
tioning of the mechanisms to actuate the mirror, demanding for smarter and
more compact technological solutions.

1.2 Deformable mirrors technology
After providing a general idea of active optics in the previous section, a quick
overview of some of the existing hardware technologies that can be and has
been used is here presented.
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A first classification of continuous facesheet flexible mirrors divides them
into monolithic, discrete arrays and bimorph. This classification is strongly
linked to the type of actuation used to control the shape, which could be clas-
sified into piezoelectric/electrostrictive, electrostatic and electromagnetic [8].

The structure of a monolithic mirror is composed by a thin reflecting
surface bonded to the upper side of a single piezoelectric disk. The actua-
tors are defined by an electrode network introduced inside the piezoelectric
monolithic disk [9]. The advantages of this solutions are the compactness and
the good optical flatness. The main drawback is the low stroke which limits
the application of this mirror only to small telescopes. Lead zirconate ti-
tanate (PZT) and lead magnesium niobate (PMN) are respectively the most
commonly used piezoelectric and electrostrictive materials. Both types of
materials present disadvantages; the former shows high hysteresis while the
latter nonlinear response and high temperature sensitivity. Both are also
used as stack actuators made of individual plates or disks of ferroelectrics
material. Further readings on piezoelectric/electrostrictive principle and ap-
plications to actuation technologies are suggested to interested readers [10,
11].

In a discrete array deformable mirror the reflective optical plate is assem-
bled on an array of stacked actuators lying on a rigid base plate. This solution
is the most widely used. There is a large variety of this kind of mirrors, de-
veloped using different actuation technologies. The main characteristics are
the number of actuators, the spacing between them, the actuators stroke and
voltage and the mirror thickness. The drawbacks of this technology are the
large bundles of cables in case of a large number of actuators, the creep in-
herent to the ferroelectric material, a long lead time and the cost. However,
their high reliability, large stroke, excellent accuracy and flexibility in actu-
ators geometry are making this technology the most attractive [12]. The use
of discrete and concentrated actuation posed sometimes problems related to
local deformations induced on the reflective surface. A solution has been al-
ready proposed to avoid those effects by collocating actuators couples on the
mirror edges and exploiting torques generated [1, 4]. Within all discrete actu-
ation solutions, electromagnetic actuators are worth to be mentioned. They
employ an electric current to generate a magnetic field that reacts against a
permanent magnet producing a force. Generally speaking, electromagnetic
actuators are built in both linear (voice-coil) and rotational (stepper mo-
tor) configurations. Voice-coil deformable mirrors are based on the use of
a thin optical shell “floating” on a magnetic field created by a dense array
of voice-coil actuators. This is made possible by gluing permanent magnets
on the rear face of the thin shell. The actuators are attached on a metallic
plate, passing through a thick and very stable glass plate (reference body)
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and are facing the magnets attached to the thin shell. To control the shell
in position, there is a local contactless capacitive sensor associated with each
actuator that measures locally the distance between the rear face of the thin
shell and the front face of the reference body. An interesting property of
this actuator technology is that, in case of failure of a single actuator, the
surrounding ones take over the control of the shell without introducing any
print-through effect in the pupil. Intrinsic advantages of this voice-coil ac-
tuation concept are: mechanical de-coupling and relaxed tolerances between
correcting mirror and reference structure, large stroke, and hysteresis-free
behavior. Weak points have been found in the overall complexity, the power
consumption, the manufacturing risks, a very long lead time and the cost [12].
However, constant research and development have offered the possibility to
largely tackle these problems bringing to energetically efficient solutions and
to a robust design [13]. Indeed, in the last decades, voice-coil actuation has
been adopted in several AO systems for present and future telescopes (MMT,
LBT, VLT, GMT, E-ELT), proving the effectiveness and the advantages of
the technology and gaining the high quality standards necessary to deal with
the system complexity. Results reached with voice-coil actuation make this
technology a promising perspective also for space applications.

Finally, bimorph mirrors are combinations of two materials, the relative
sizes of which can be varied through temperature or voltage. They mainly
consists of two piezoelectric ceramic wafers, which are bonded together and
opposite polarized, parallel to their axis. An array of electrodes is deposited
between the two wafers and the application of a voltage changes the area of
the electrodes, resulting in a spherical bending of faceplate. The deformation
is produced within the plate itself, which needs only to be simply supported
to avoid introducing constraints and degrading its deformation capabilities.
Bimorph mirrors are sensitive to dimensional changes, including temperature
variations and aging. Moreover their structure can not assume a generic
shape without changing the boundary conditions [8, 12].

1.3 Voice-coil actuated deformable mirrors for
space active optics

The present thesis is focused on the design of a control scheme for the shaping
of a voice-coil actuated deformable mirror to be used in a space environment.
The aim of the controller is to achieve desired closed-loop performance in
terms of surface positioning and response time.

Previous research works [2], part of the ANTASME project, represented
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Figure 1.3: An example of adaptive optic control scheme

a solid base for the approach and development of the present project. Indeed
the use of adaptive optics has already been integrated in advanced telescopes
concepts, despite with different actuation technology. It this sense the present
work could be seen as a continuation of these researches.

It is noted that the active image control of mirrors is a wider and more
complex system than the present one, since it includes a wave front sensor
and a mirror shape generator to drive the control action applied to the shell,
as shown in figure 1.3. Should be also said that the development of space
telescopes is typically carried out in an integrated and multidisciplinary soft-
ware environment, because of the strong coupling between all the satellite
subsystems and the tight constraints imposed by the extreme scientific goals.
The image quality is reached by tuning all the elements of the telescope and
exploiting the benefits of different control system and passive design solu-
tions.

According to what mentioned above, this work should be placed at a
subsystem level. The aim is to design the inner control loop that forces the
mirror to follow the correct shape determined by the mirror shape generator,
while ensuring overall system stability and while damping spacecraft internal
disturbances, that might not be perceived by the wave front sensor.
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To identify plausible system performances and to set realistic goals, the
European Space Agency (ESA) announcement for Active Optics development
has been taken as reference. It is indeed possible to infer design constraints
and objectives from the pertaining documentation [14]. According to ESA,
an active optics control system should be capable of correcting typical wave-
front errors and reducing the residual error to less than 10 nm rms over the
light front. An effective representation of the wavefront and its related er-
rors is through the Zernike modes, widely used in optics, that are simply
a sequence of polynomials, orthogonal over the unit circle, expressed in the
circular coordinate system. Data from past missions reported typical opti-
cal aberrations the system should be able to act against. These data will
be further detailed in the following chapter. The European Space Agency
also asked for a system capable of applying the correction sequence once a
month, but also which is able to generate a continuous correction, with a
frequency of 10 Hz, during observation time for L2 missions. The overall sys-
tem should also guarantee correct operation at cryogenic temperatures. The
extrapolated information not only constitutes a benchmark for the system
development process, but also assures a concrete perspective for a possible
class of applications.

The design of an accurate shape control system for a large deformable
structure requires many and distributed control points. As a result, the
corresponding control solution is not a trivial task. Since a typical secondary
mirror is characterized by a high modal density, the problem becomes even
more complex. Contactless force actuators represent also a loss of rigidity
on the system. The nature of the problem would suggest the adoption of a
centralized control solution. Unfortunately, such physical solution is hard to
be achieved in practice when the number of actuator points is large. Indeed,
the time required to acquire, process and send back such a high number of
channels limits the applicability of a similar scheme, especially if we consider
the additional constraints imposed by the space environment on the on-board
electronics with respect to both computing capacity of space ready hardware
and to power consumption required to perform many computations at a
prescribed control frequency.

A simple but effective idea is to properly combine a relatively low-frequency
fully or partially centralized feedforward control system with a high-frequency
decentralized feedback control law. The feedforward term assures position-
ing capacity and short time response. The feedback control improves the
system stability as well as maintaining a simple and compact realization.
Improvements of this control logic has already been proposed by adding dy-
namic cancellation to the feedforward term to enhance transient behavior
during the commanded steps and introducing a hybrid feedforward-feedback
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formulation to sharpen the static positioning of the the mirror at the end
of the command [15, 16, 17]. The implementation of such scheme should
be promising, but its suitability to a space born telescope mirror has to be
verified.

The most critical point of such a technological transfer is the always
negligible intrinsic structural damping, which is practically nihil at, or closed
to, cryogenic temperatures. The absence of an atmosphere makes it miss the
possibility to exploit the dissipation effect arising from the air film within
the thin free space existing between the mirror and the backshell. It is
therefore necessary to find alternatives to introduce damping. The basic
idea of this research is to damp out excited modes changing commonly used
current-driven voice-coils into voltage-driven ones. The advantage lies in
the exploitation of eddy currents induced by the magnets moving with the
mirror and not constrained by the current regulator. This solution transforms
the voice-coil circuit into a low pass filter, introducing limits on actuation
band. Earth based telescopes coils, relying on the air induced damping,
opt for current drive [13] in order to obtain the high frequency response
required by the turbulence effect, but the space environment lower frequency
requirements make this necessity falling. It is thus possible to adopt voltage-
drive in space-born telescopes, provided an actuators bandwidth including
the interested dynamics.
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Chapter 2

Modeling Aspects

This chapter presents the assumptions adopted to derive an adequately re-
liable mathematical model of the problem under investigation. The first
section reports the dynamic model of the mirror structure, coupled with ac-
tuators and sensors. The second section deals with the generation of the
commands representing the output of an optical correction loop fed back to
the shape controller. Finally, a shaping procedure limiting structural dynam-
ics excitation is discussed.

2.1 Dynamic model
One of the first steps has been the development of a suitable numerical model1
for the simulation of the dynamic behavior of the controlled-uncontrolled
mirror response. Since the control design follows a model-based approach,
the validity of the shown results is strongly related to the correctness and
accuracy of the models used to represent the actual dynamics of the real
system and to the real hardware and software implementation. However, it
is clear that inevitable approximations have been introduced with respect to
the real-life situation. Thus, some modeling solutions have been taken so to
allow the identification of borderline and critical cases through an intensive
simulation activity. In fact, if the designed control system could meet the
given specifications for those critical cases, the actual controller will likely
provide further improved results in nominal or less demanding conditions,
thus showing acceptable robustness against the more significant modeling
uncertainties.

1system modeled in MATLAB environment
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Figure 2.1: P45 prototype [13, 18]

2.1.1 The P45 secondary mirror

The mirror considered in this work is the P45. It is a prototype designed by
Microgate and ADS in 2003 during the development phase of LBT672 adap-
tive secondaries for the LBT telescope. The P45 is a reduced size secondary
mirror used to test new technologies, yet it is well representative of the dy-
namics of a real deformable optic. The mirror is indeed part of an extensive
research on voice-coil actuation applied to deformable secondary mirrors for
Earth based telescopes and thus of the related development phase. Due to
the solution complexity, these applications required the development of so-
phisticated simulation codes [8, 15, 16, 17, 18]. The possibility to transfer
this technology to space telescopes imposes to further extend these simula-
tions in order to properly tackle space characteristic problems. Engineering
modeling techniques adopted in these researches constitute a basis for the
present work, which aims at adapting them to simulate the mirror behavior

12



Modeling Aspects

Material : Zerodur
Actuators : 45
Rcurvature : 2 m
Dout : 24 cm
Din : 5, 67 cm
tnominal : 1, 61 mm
Mmirror : 174, 57 g
Mmagnets : 45 x 2, 725 g

Table 2.1: P45 physical properties

when actuated by voltage-driven voice-coils and without the possibility to
exploit the aerodynamic damping effect. In this perspective this thesis could
be considered as an extension of the aforementioned works.

The mirror is a thin Zerodur [19] shell with a hole in its center. Zerodur
has been widely used for telescope applications due to its low coefficient of
thermal expansion, as well as its good structural and optical properties. The
shell is actuated by 45 contactless voice-coil motors distributed in 3 concentric
circles as shown in figure 2.1. The inner ring has a radius of 4, 4 cm and it
is composed of 9 actuators. The middle one counts 15 units and it is placed
at 7, 58 cm from the center. Finally, the remaining 21 voice-coils lie on a
10, 57 cm circumference. The nominal design thickness is 1, 61 mm, but
manufacturing errors made it growing radially moving towards the outer
side. Thus, the mirror has a measured thickness that goes from its nominal
value, registered on the innermost part, up to 1, 618 mm on the outer border.
The prototype is supported by a membrane connecting it to the backplate
at the inner edge. The outer edge is instead free. General properties and
characteristics of P45 are summarized in table 2.1.

FEM Model

A detailed Finite Element Model of P45 (fig.2.2) has been already developed
in previous studies [8]. The Zerodur shell is modeled in NASTRAN with 8530
triangular plate elements (CTRIA3) defined by 4425 nodes. The different
thickness of the mirror has been taken into account by applying different
shell properties (PSHELL) to concentric rings of elements. In addition, 45
concentrated masses have been inserted at actuators’ positions to represent
the glued magnets load effect. The model has been radially constrained at
the inner edge to avoid in-plane singularity problems and to well describe the
first piston mode frequency of the structure [8]. Vertical elastic elements have
been added on the inner edge nodes to represent the stiffness of the central
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Figure 2.2: FEM model of P45

membrane for a total value of 3660 N/m. The FEM model has been useful
to obtain mass and stiffness data to be imported in MATLAB to simulate
the structural dynamic behavior of the mirror.

Dynamic model

After denoting as n the number of grid points and ng the number of degrees
of freedom, corresponding to 6× n, a representation of the mirror dynamics
in physical coordinates is expressed using matrix notation as follows

Ms̈ + Cṡ + Ks = Ba(f ac + fd) (2.1)

where M is the (ng × ng) mass matrix, C is the (ng × ng) damping matrix,
K is the (ng × ng) stiffness matrix, f ac is the (na × 1) control force vector
containing the forces exerted by each actuator at the na actuation points
and fd is the (na × 1) vector containing the disturbance forces condensed
at the actuation points. Finally, Ba is the (ng × na) force influence matrix
projecting the force vectors onto the physical set of degrees of freedom. It
should be noted that mass and stiffness matrices could be easily imported
from NASTRAN, whereas C matrix has to be defined properly. In general,
the modeling of C is not a simple problem, but we are lucky enough because
it will be almost neglected.

An accurate FE model implies a considerable number of degrees of free-
dom. Thus, a procedure is necessary to reduce the size of the problem to a
computationally acceptable one, especially in view of a control system de-
sign. The reduced model should preserve the dynamic content in a prescribed
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frequency range such that the system can be simulated in its operational con-
ditions and the presence or absence of spillover effects can be checked. There
is a wide variety of condensation techniques available [20, 21], each one hav-
ing its own advantages and drawbacks.

For the problem at hand, a modal condensation scheme is followed. Pro-
vided that some assumptions are verified (see later), this technique allows also
a simplified acceptable modeling of the structural damping. Accordingly, the
dynamic equations expressed in (2.1) can be written as follows

q̈i + 2ξiωiq̇i + ω2
i qi = f mi

c + f mi
d i = 1 : ng (2.2)

where qi is the ith generalized modal coordinate, ωi is the ith natural fre-
quency, ξi is the damping coefficient associated to the ith mode, while f mi

c

and f mi
d are respectively the projections of the control and disturbance forces

onto the ith mode. Eq. (2.2) is a set of uncoupled equations where unit modal
mass has been assumed. If the whole set of modal equations is considered the
size of the problem remains unchanged, while the truncation of their num-
ber instead leads to a reduced model that can represent, with an adequate
accuracy, the system dynamics in a limited frequency range. Considering
only nm modes in the modal transformation, the physical displacement is
approximated as

s ' Φgq (2.3)

where q is the (nm × 1) set of nm selected generalized modal coordinates
and Φg is the (ng × nm) modal shape matrix of the undamped system. The
(nm × 1) modal control and disturbance force vectors, fmc and fmd , are given,
respectively, by

fmc = ΦT
gBaf ac = ΦT f ac (2.4)

fmd = Φg
TBaf d = ΦT f d (2.5)

where Φ is the condensed mode shape matrix. It should be noted that
the (i, j) component of this matrix is the displacement of the ith actuator
associated to the jth normal mode. It is thus straightforward to write the
displacement at the actuation points as

u ' Φq (2.6)

According to what just explained, a modal analysis in NASTRAN was
carried out to extract the natural frequencies and mode shapes at the ac-
tuation points. The first 100 modes of the system were thus determined,
covering a bandwidth from DC up to 8540 Hz, which is considered to be
large enough to verify possible spillovers. The results of this analysis are
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reported in table 2.2. The entire set of modes has been used only to simulate
both the controlled and the uncontrolled system behavior, whereas a reduced
set has been considered for the control design.

Relying on these modal data and after a proper choice of the damping
ratio of each mode, the following state space representation of the system in
generalized coordinates can be obtained:{

q̇
q̈

}
=

[
0 I

−[rω2
i r] −[r2ξiωi r]

]{
q
q̇

}
+

[
0

ΦT

]
f ac +

[
0

ΦT

]
f d (2.7)

Note that this form is ready for implementation, simulation and control
design.

Damping coefficient

One of the most critical issues in structural dynamics is the modeling of
damping, i.e., the formulation of damping matrix C in Eq. (2.1) or the eval-
uation of the modal damping coefficients ξi in Eq. (2.2). There exists an
extensive literature about structural damping [22], but only the adopted so-
lution is here reported.

The modeling approach consists of directly imposing a lightly damped
structure so that the modal damping matrix becomes a diagonal matrix of
this form

Cq = [r2ξiωi r] (2.8)

where the damping coefficient ξi is associated with the ith mode. This method
has the advantage of introducing a dissipation effect directly on the modal
representation. Furthermore, the set of damping parameters ξ can be esti-
mated experimentally through a modal testing procedure.

The code implemented in this work allows a modal damping representa-
tion, by setting a unique damping coefficient ξ for all modes.

Regarding the P45 model, it is a rather difficult task to find a reliable
value for the damping coefficients, as no experimental data are available.
Furthermore, even if an estimation of damping was available from ground
modal testing data, the corresponding damping values would result useless
since the absence of atmosphere in space environment drastically changes the
dissipation effects in the problem under investigation.

The adopted solution was to directly introduce modal damping by esti-
mating its value with Zener damping theory. According to the literature, it
is known that the Zener theory can produce good estimates of damping lev-
els only at room temperature. The estimation is more and more inaccurate
as the temperature decreases [23, 24, 25]. Very little information is today
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Mode Freq. [Hz] Mode Freq. [Hz] Mode Freq. [Hz]
1 5.75 35 2474.92 69 5447.50
2 5.75 36 2699.34 70 5450.45
3 17.61 37 2699.79 71 5973.51
4 130.08 38 2768.21 72 5974.79
5 130.09 39 2840.73 73 6237.61
6 313.67 40 2841.38 74 6241.41
7 313.71 41 3022.05 75 6325.64
8 479.10 42 3022.88 76 6326.87
9 551.80 43 3467.33 77 6340.13
10 551.89 44 3468.03 78 6340.70
11 623.27 45 3477.55 79 6413.08
12 623.39 46 3491.72 80 6414.43
13 845.38 47 3492.33 81 7020.22
14 845.59 48 3710.65 82 7021.06
15 942.26 49 3711.20 83 7138.37
16 942.38 50 4146.36 84 7139.44
17 1193.02 51 4148.57 85 7265.18
18 1193.15 52 4428.86 86 7268.18
19 1237.49 53 4430.10 87 7455.27
20 1352.48 54 4542.73 88 7457.08
21 1352.55 55 4545.16 89 7930.99
22 1488.95 56 4775.26 90 7932.77
23 1489.05 57 4776.56 91 7961.73
24 1590.37 58 4868.22 92 7964.06
25 1590.47 59 4869.85 93 7993.23
26 1853.53 60 5124.74 94 7998.73
27 1853.81 61 5136.11 95 8018.92
28 2027.68 62 5136.36 96 8021.11
29 2028.05 63 5259.05 97 8089.83
30 2028.49 64 5260.22 98 8202.86
31 2028.84 65 5412.90 99 8204.88
32 2411.91 66 5413.57 100 8538.90
33 2412.56 67 5429.99
34 2474.24 68 5431.62

Table 2.2: First 100 modes of P45 fem model
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available on cryogenic effects on damping in materials, yet the interest is
rapidly growing since new generation telescopes are going to work at such
temperatures. What is commonly known is that the material damping could
be several order of magnitude lower at few Kelvin than at room tempera-
ture [26], thus could be assumed practically null. To enhance the knowledge
in this field, the Jet Propulsion Laboratory (JPL) built a Cryogenic Mate-
rial Damping Testbed, whose aim is to find materials exhibiting a relevant
damping level at low temperatures, rather than to characterize directly the
damping values. Indeed, the damping level of a structure is not only asso-
ciated to the material, but is related to the shape of the components, their
assembly and joints. It would thus be unrealistic trying to find a damping
value without having a representative model or prototype to be tested in re-
alistic environment [23, 24, 25]. The results, apart from confirming the bad
Zener theory accuracy at low temperatures, evidenced that, even the highest
values found remained a negligible fraction of a useful structural damping
level. Indeed these studies, e.g., reported values of ξ between 2 × 10−5 and
8 × 10−5 for beryllium, between 0.74 × 10−5 and 1.8 × 10−5 for Alloys and
between 1.9× 10−5 and 6.7× 10−5 for Silicon/Silicon Carbide foams [23, 25].

Zener theory relates damping coefficient ξ to temperature, material prop-
erties, thickness of the sample, and vibration frequency as follows

ξ =
α2ET

2Cpρ

[
ωτ

1 + (ωτ)2

]
(2.9)

with

τ =
Cph

2ρ

kπ2

were α is the coefficient of thermal expansion [1/K], h is specimen thickness
[m], E is the elastic modulus [N/m2], T is temperature [K], Cp is specific heat
[J/kg/K], k is thermal conductivity [W/m/K], ρ is density [kg/m3], ω = 2πf
is the vibration frequency [rad/s] and τ is the relaxation time [s/rad].

Since the above formulation is a fast way of recovering a plausible value
of ξ and the structural damping is for sure lower than a desired value and
several order of magnitude lower than the electric damping introduced by the
voltage-driven voice-coil actuators (see later), the result of Zener theory has
been considered only as a representative estimate of a negligible damping.
Taking all needed information from Zerodur datasheet [19] and recovering
data from FE mirror model it has been possible to set structural damping
to ξ = 1.5835× 10−8, that is even a conservative value. It is anyway evident
the necessity to exploit alternative ways to damp vibrations.
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Figure 2.3: Typical voice-coil section

2.1.2 Voice-coil linear actuators

Voice-coils are very simple and smart linear force actuators, based on elec-
tromagnetic principles. The basic idea is to create a force by submitting a
current-carrying conductor to a magnetic field. In its simplest form, a voice-
coil is nothing more than a tubular winding of wire situated within a radially
oriented magnetic field [27]. The force generated will be proportional to the
number and length of turns of the wire, as well as to the current flowing and
to the magnetic filed strength.

Another important effect is that a conductor moving in a magnetic field
will be also subjected to a voltage difference across its length. This actually
happens also in voice-coils. The coil motion, either it is induced by Lorentz
force or by an outside mechanical action, produces what is commonly known
as counter-electromotive force (emf). Despite the name, it is a voltage per
unit speed.

The current flow in the coil causes also heat generation by joule effect,
that has to be dissipated. The ratio of the force exerted by the actuator
and the power lost gives an estimate of the motor efficiency. The parameter
expressing this ratio is called motor constant.

In the actuation field, the voice-coil technology shows many advantages
compared to other solutions such as zero hysteresis behavior, direct drive
and thus absence of backlash, low moving mass, very good force linearity
and high precision positioning. The main drawbacks are limited stroke, need
for cooling of the circuit, the need to keep a current flowing [28].

A design solution commonly adopted in voice-coil motors involves a per-
manent magnet generating a magnetic field which is driven by a ferromag-
netic path to orient radially in the free gap where the coil is included, as
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Figure 2.4: Adopted actuator
scheme

L 2 mH

R 40 Ω

ωcut 20000 rad/s

F ± 0.1 N

Km 0.4 N/
√

W

Kt 2.53 N/A

Table 2.3: Actuator data

shown in figure 2.3. The coil is mounted on a cylindrical support. Forcing
a current flowing in the winding produces a force exchange between the coil
support the magnet mounting.

The configuration here proposed, used in massively actuated mirrors,
exhibits instead a compact design. The magnet is directly glued on the
rear face of the mirror and the winding are mounted on a tapered stick fixed
to the reference body (fig 2.4). The magnetic field distribution has been
studied to cross the coil with correct orientation around a nominal position,
despite this solution clearly limits the linear behavior to small displacements.
The backplate acts also as heat sink for power dissipation.

To describe the actuation performances and the electrical and physical
characteristics of such a class of devices, the following parameters must be
introduced:

• S the stroke [m]

• F the maximum force [N]
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Figure 2.5: Efficiency vs Gap

• Kt the force constant [N/A]

• Ke the back emf constant [Vs/m]

• R the terminal resistance [Ω]

• L the terminal inductance [H]

• Pl the power losses [W]

• Km = F/
√
Pl = Kt/

√
R = η the motor constant (or efficiency) [N/

√
W]

Most of these characteristics are usually expressed at the mid stroke, but
their value changes with position, so modifying the actuator performance
along its stroke. The efficiency trend, e.g., is reported in figure 2.5.

The circuit representing the electric dynamics of the device is reported
in figure 2.6 and its mathematical model is described in the following scalar
equations:

L
di

dt
+Ri+Keu̇ = V (2.10)

F = Kti (2.11)

The actuator data are reported in Table 2.3. When the voice-coil actuator
is current-driven, the electrical dynamics of the actuator is by-passed. As a
result, the amplitude of the forcing current directly controls the intensity of
the actuator force, due to the proportionality relation expressed in Eq. (2.11).

In this thesis, a voltage-driven solution is proposed. The electric circuit
acts as a low pass filter with a cutoff frequency equal to

fcut =
R

2πL
(2.12)
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Figure 2.6: Voice-coil circuit

that anyway does not constitute a limitation due to the low command band-
width in space telescopes. Furthermore, the back emf introduces a sort of
feedback voltage, that dynamically represents an additional damping term
on the mirror structure. The Laplace transform of Eq. (2.10) brings to

i =
1

Ls+R
[−Keu̇+ V ] (2.13)

Neglecting for a while the command voltage V it can be noticed how from
the presence of RL filter in front of the velocity term, back emf action results
dominated by damping at low frequencies, but constitutes a stiffness term at
the higher ones.

Approximating the transfer function with a quasi-static representation it
is possible to write the expansion

1

Ls+R
≈ 1

R
− L

R2
s+

L2

R3
s2 + ... (2.14)

that could be truncated at the desired order.
It has thus been possible verifying, by means of a residualization pro-

cedure, the electric dynamics dominant term. Eq. (2.14) allows thus the
approximation of the current flowing to

i ≈ −Kt

R
u̇+

KtL

R2
ü+

1

Ls+R
V (2.15)

where the control voltage has been kept in its exact form, in order to avoid
complicated pseudo-derivatives of the incoming signal, whereas the back emf
approximation has been arrested to the first order to avoid a third order dif-
ferential equation. It is immediate observing that the introduced damping is
definitely greater than the structural damping available. System response to
smooth voltage step sequences have been simulated for two different approx-
imation orders of the current expression terms and compared to the response
of a system containing the exact electrical dynamics. The results, reported
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Figure 2.7: Approximate and exact system responses

in figures 2.7 and 2.8, clearly evidence how the the velocity feedback could
be mainly represented with its static expression, being the relative error less
than 0.1nm, that is sufficiently below the resolution level investigated in
this thesis. In addition, a first order expansion seems not presenting greater
accuracy. This proves that the interested structural dynamic lays largely
below the circuit cutoff frequency. It is thus admissible approximating the
equivalent force action as

femf ≈ −
K2
t

R
u̇ = −η2u̇

This expression can be used in Eq. (2.1), that can be then divided by the
concentrated mass mi, equivalent to the relative fraction of mirror mass aug-
mented by the mass of a magnet.

mi =
Mmirr

nact
+mmgn =

174, 57g

45
+ 2, 73g = 6, 61g

Exploiting then a mass normalized modal transformation, under the assump-
tion of lightly damped structure, it is possible to arrive to the approximate
system

q̈ + [r2ξiωir] q̇ +
[r η2/mir

]
q̇ + [rω2

i r]q = ΦT f (2.16)

where also the induced modal damping matrix has been assumed diagonal
and proportional to the ratio η2/mi. Considering only the dominant contri-

23



Chapter 2

Figure 2.8: Solution error for different approximation orders

bution of the induced damping matrix, from structural damping expression
it derives

ξemf =
η2

2ωimi

=
η2

4πfimi

(2.17)

that shows a linear trend decreasing with frequency. It is thus possible to
quantitatively find an estimated value for the damping produced by the eddy
currents. Conservatively taking the lower value of η (figure 2.5), it can be
found

ξemf =
(0, 35)2

4π 0, 00661

1

fi
=

1, 47

fi

This trend shows a damping level of about ξ = 0.147 at a frequency of 10Hz,
that linearly decrease to ξ = 0.0147 at 100Hz and to ξ = 1, 47×10−3 at 1kHz.
These values, even if found using rough approximations, put in evidence the
relevant increase in the damping value, at least in the low interested frequency
range, that could be obtained by exploiting voltage-driven voice-coils. The
behavior of ξemf imposes to verify the absence of spillover in high frequency
modes that take less advantage from the eddy currents effect. These passages
constitute thus a relevant basis for starting a control design process.

Finally in the state space representation of the overall system, the follow-
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ing equations were added

di/dt = −[rR
Lr] i − Ke

L
Φ q̇ + [r 1

Lr]V

f ac = [rKt r] i
(2.18)

where the vectors i and V contains respectively the currents flowing and the
voltages applied at each actuator.

2.1.3 Sensors and signal processing

One of the key aspects of using force actuators to control in closed loop the
correct shape of the mirror is the intrinsic need for a position measure. The
sensors chosen for this application are capacitive sensors.

This technology fits well with voice-coil actuators as it is contactless too.
Each actuator has a co-located coupled sensor. Due to space limitation, the
measure cannot be physically taken in the same exact location of the actua-
tion point. The solution adopted in practice involves a capacitive element in
the form of a circular corona placed around the actuation point. This real-
ization induces errors due to the non precise co-location of the measure and
the actuation and also to the distributed nature of the capacitive elements,
that suffers from spatial sampling errors when wavy spatial deformations are
commanded. As these aspects can be considered just as small errors in the
measurement process with respect to an ideal co-located point measure, for
the sake of simplicity both co-location and point wise measurements have
been assumed in the model, which was then subjected to measurement noise
representing the above mentioned discrepancies with respect to the ideal case.

The sensor dynamics has been approximated as a first order filter, that
in Laplace domain is given by

um =
b

b+ s
u (2.19)

where um is the measured position at the actuation point and b is the pole
of the transfer function, which can be a design parameter. Actually, the
distributed nature of the annular capacitive sensor acts as a filter on the
ideal position measures [8]. The cutoff frequency has to be selected high
enough to follow the system response, but not too high in order to help
avoiding spillover effects on high frequency structural modes. In the time
domain, the state space representation of the array of capacitive sensors is

u̇m = −[rbr]um + [rbr]u

yu = I um + I n
(2.20)
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where ym is the vector of sensors outputs and n is the measurements noise
vector.

Once a measure of position is available, it is possible to compute also its
derivative and integral, thus implementing a PID controller. Broadly speak-
ing, it is thus possible to feedback both the position variable to increment
the structural stiffness of the system, and the corresponding velocity variable
to introduce a damping effect. The integral term could help in reducing the
steady state error.

The derivative action has been introduced via a pseudo differentiator of
this form

yv =
a s

a+ s
= yu (2.21)

where a is the differentiator pole. Also in this case, the parameter a represents
a design variable that affects the control system performance. To switch to
a state space representation, it is necessary to introduce an additional state
variable z such that

yv
yu

=
yv
z

z

yu
= s

a

a+ s

This yields
ż = −az + ayu
yv = ż

(2.22)

Then, grouping all the signals,

ż = −[rar] z + [rar]yu

yv = −[rar] z + [rar]yu
(2.23)

Following the same procedure as for the differentiator, the integral of
position is first expressed as

J =

∫
yu dt

Deriving this equation yields
J̇ = yu (2.24)

which is written in the Laplace domain as

J =
1

s
yu (2.25)

The corresponding state space representation of the grouped signals is given
by

J̇ = I yu

yi = I J
(2.26)
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2.1.4 State space representation

The overall state space model results from collecting all the elements intro-
duced in the previous sections. Using Eqs. (2.7), (2.6), (2.18), (2.20), (2.23)
and (2.26), the state space representation reads
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In a more compact matrix notation, it can be expressed as follows

ẋ = Ax + BV + Bdf d + Bnn
y = Cx + Dnn

(2.28)

The matrices A, B, Bd, Bn, C, and Dn are required both to simulate the
open-loop and closed-loop time response of the space mirror and to design
the control system.

2.2 Mirror shape generator
The last block of the model of the system involves a generator of random
shapes to be imposed to the mirror shell. Actually, the optical control loop
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Mode Max. Amplitude (rms) [nm]
Coma3 300
Astigmatism3 200
Spherical3 75
Trefoil5 50
Astigmatism5 50
Tetrafoil7 50
Trefoil7 50
Pentafoil9 50
Tetrafoil9 50

Table 2.4: Typical optical aberrations registered

is not entirely modeled in this work and representative reference input cor-
responding to reference shapes of the mirror have to be somehow introduced
to test the effectiveness of the proposed control architecture.

A MATLAB script capable of producing a desired command history to
each actuator has been coded. Inside the code, it is possible to set the
command frequency, which should be 10Hz as required by ESA. However, the
command rate can be increased or decreased to test the limiting capabilities
of the control system.

Another important option which can be selected is the space and time
correlation between the different reference inputs, that is the characteristic
of the sequence of imposed shapes. Also in this case, the program offers var-
ious alternatives spacing from purely random shapes to single mode shape
excitation. A completely random distribution of positions would be for sure
the worst excitation case as it would involve all the modal shapes. Another
possibility is to generate a monotonically growing sequence of random steps.
This would emphasize steady state errors proportional to the amplitude of
the input. Alternatively, a command sequence oscillating between two posi-
tions is an input that tries to force the system to oscillate. It is also possible
to feed the mirror with a single step to verify the step response. Other-
wise, as previously mentioned, a single modal shape can be forced by taking
its characteristics from modal analysis. Finally, the most realistic input is
constituted by a random linear combination of Zernike polynomials with
amplitudes tuned to typical distributions of optical aberrations [14]. These
latter data, recorded by previous missions, are summarized in table 2.4. As
Zernike modes resemble the structural modes of a circular shell, the latter
has been used by looking for the equivalence between the two set of spatial
forms (fig. 2.9).
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(a) Modes11, 12 (623Hz) ' Coma3 (b) Modes 4, 5 (130Hz) ' Astigm.3

(c) Mode 19 (1237Hz) ' Spherical3 (d) Modes 6, 7 (313Hz) ' Trefoil5

(e) Modes 15, 16 (942Hz) ' Astigm.5 (f) Modes 9, 10 (551Hz) ' Tetrafoil7

(g) Modes 20, 21 (1352Hz) ' Trefoli7 (h) Modes 13, 15 (845Hz) ' Pentafoil9

Figure 2.9: Zernike vs Structural Modes
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Another setting available in the code is the incremental or "static" se-
quence of commands. Actually the step amplitude at a certain instant can
be summed to the previous one or just taken as absolute value with respect
to the reference null position. This choice offers the possibility to keep the
commands bounded around the rest position. This latter condition is a real-
istic situation, since optical aberrations are absolute values and do not sum
up. An incremental sequence of commands could exceed actuators saturation
limits, which must be always checked.

Finally, also the step amplitude can be tuned to investigate its effects on
the control effectiveness.

2.3 Command shaping filter
As discussed in the previous section, the output of the mirror shape generator
is a series of step commands. Considering the low damping level of the mirror
and the goal of this control system of limiting the structural oscillations, it
would be surely detrimental using sharp and fast commands with a rich
frequency content. As a matter of fact, a smoothing procedure of the input
would help not exciting the reflective surface high frequency modes. A filter,
used also in previous projects [2, 8], has thus been implemented to gently
blend two consecutive steps. The transition occurs within the first half of
the command timespan, whereas the remaining part of the interval is left
to reach a steady state. This filter is realized with the following 5th order
polynomial, continuous up to the second derivative:

fsh(t) = 6f 5t5 − 15f 4t4 + 10f 3t3 (2.29)

where f is twice the command frequency fcmd to limit the climb to half the
step length. The amplitude difference between two consecutive commands
just multiply the shaping function, modulating its profile.
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(a) Shaping filter, 10Hz unity signal (b) Shaping filter first derivative

(c) Shaping filter second derivative

Figure 2.10: Shaping filter
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Oxymoronic Feedforward Control

Feedforward architectures have been widely used in control schemes to sup-
port feedback actions by improving the closed loop system promptness and
producing dynamics compensation. Indeed, in pure feedback control laws,
the error has to grow before the controller generates a considerable reaction,
whereas, in a feedforward control solution, the reference amplitude influences
directly the control intensity, avoiding the introduction of a time delay.

From an implementation point of view, the absence of measurements,
along with the related wiring, leads to centralized control architectures which
could have a practical realization even if a large number of actuators are
used. Furthermore, as previously mentioned, the structure of a feedforward
control scheme could also include some terms that, resembling the process
dynamics, try to compensate its inertial and dissipation response and improve
the tracking of static commanded positions.

However, in high precision control problems, the strong dependence of
feedforward response accuracy on the accurate knowledge of the process dy-
namics, brought this schemes to be generally adopted as a complementary
action to classical feedback approaches. This combined feedback-feedforward
architecture has been applied to many engineering fields, ranging from robotics
to Adaptive Optics applications, yielding satisfactory results.

In this chapter, along with the standard form, an advanced feedforward
control law is presented. The strategy [15, 16, 17, 18] is an evolution of a
classic feedforward control scheme with dynamics compensation. The result
is a hybrid control scheme, that apparently has the aspect of a feedforward
controller, but actually implicitly contains a feedback integral term. Indeed,
measures are taken and integrated to statically correct and tune the direct
action.

The preliminary use of a feedforward controller only (i.e., not combined
with a complementary feedback action) allows to isolate and test the benefi-
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cial damping effect of voltage-driven voice-coils, to the point that the design
specs can be nearly satisfied without any feedback. This is shown and dis-
cussed in this chapter. The roadmap of this thesis is first to apply only
this hybrid control system to drive the mirror and then to refine the perfor-
mance by adding a true feedback control law. Actually, the electric dynamics
should guarantee the required structural stability, while the feedback term
hidden in the present feedforward scheme should at least limit the steady
state positioning error on the final part of command steps.

3.1 Control scheme
In this section, two feedforward control schemes are presented. First, a classi-
cal feedforward controller is designed and implemented with the aim of being
a reference solution to evaluate the suitability and effectiveness of a second
approach based on a more advanced control scheme as mentioned above.

3.1.1 Classical feedforward controller

According to a classical feedforward scheme, the control force is assumed to
be proportional to the reference position as follows

f c ff = K∗ ur (3.1)

where the matrix K∗ is an estimate of the mirror stiffness matrix. The
previous relation represents the force required to statically deform the shell
to a desired shape. Since the system is voltage-driven, a similar relation
holds for voltage and reference position as follows

Vc ff = K∗v u
r (3.2)

As already outlined in section 2.3, the command sequence is passed through
a shaping filter that limits the dynamics excitation of the mirror. It is thus
possible to write the reference position command at step k + 1 as

ur(t) = urk + (urk+1 − urk)fsh(t) for t ∈ [tk+1, tk] (3.3)

where k is the command step index. Inserting this expression in Eq. (3.2)
yields

Vc ff (t) = Vc ff ,k + K∗v (urk+1 − urk) fsh(t) (3.4)
that is a recursive form of a classic feedforward control scheme, adapted to the
problem at hand. It should be noted that the matrix K∗v has to be identified
on the field to have a good estimate. This would bypass all modelisation
uncertainties and include also manufacturing, assembly or integration errors
that could affect the correct static positioning of the surface.
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3.1.2 Dynamic compensation

Even if the presence of a command shaping filter smooths the input, the
incoming signal still represents a great source of dynamics excitation. A
further improvement to the static expression of the feedforward control law
described above is the addition of dynamic terms, proportional to mass-like
and damping-like matrices M∗ and C∗. This somewhat standard refinement
has been recovered and suggested for contactless, voice-coil actuated adaptive
optics control systems in [8] and eventually applied to VLT (Very Large Tele-
scope). The classical feedforward controller thus evolves into the following
more advanced control scheme

f c ff = K∗ ur + C∗ u̇r + M∗ ür (3.5)

The additional terms become more and more effective as long as M∗ and
C∗ better resemble the real mass and damping matrices, respectively. Thus,
like K∗, they could be identified by properly testing the system on the field.

An alternative approach relies on finding good approximations as de-
scribed below, that would avoid time and computer resources for the identi-
fication of the mass and damping matrices. The experimental determination
is thus left only to the stiffness part, since it presents the most stringent
precision requirements, as the correct positioning is very sensitive to errors
in the K∗ matrix elements.

The mass term could be simply expressed as a diagonal matrix as follows

M∗ = m∗ I

where m∗ is nothing more than the total mass of the mirror divided by the
number of the actuators and augmented by the mass of the single magnet

m∗ =
Mmir

nact
+mmgn

The physical justification of this rough approximation can be found in a
nearly uniform distribution of control points, that translates into a nearly
equal inertial loading of each actuator. The mathematical validity check of
the above assumption can be obtained by looking whether the product XTX
is nearly diagonal.

The damping matrix is somewhat more complex, as its structure is indef-
initely full. There exist some effective methods to reconstruct the structural
Cmatrix from truncated modal shapes, natural frequencies and damping fac-
tors [29]. However, it should be highlighted that, for the problem at hand,
the dominant damping effect is related to the eddy current term. Looking
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at Eq. (2.16), it is clear that this dominant term is diagonal. Therefore, a
diagonal approximation could be taken also in the case as follows

C∗ = c∗ I

where the coefficient c∗ can be set equal to the square of the voice-coil effi-
ciency η2.

Finally, as with the stiffness matrix, also these terms have to be adapted
to voltage control. Assuming the electric part considerably faster than the
structural dynamics, the static approximation, already presented in section
2.1.2, can be exploited to properly scale the terms. Thus, knowing that
f = Kt i and neglecting the back emf term yields

Vc ff =
R

KT

f c ff (3.6)

The dynamic part of the feedforward controller becomes

V d
c ff

= C∗v u̇
r + M∗

v ü
r (3.7)

Using Eq. (3.3), the feedforward command voltage along step k+ 1 becomes

Vc ff (t) = Vc ff ,k + [K∗v fsh(t) + C∗v ḟsh(t) + M∗
v f̈sh(t) ] (urk+1 − urk) (3.8)

where Vc ff ,k is the static part of the command voltage applied at the end
of the previous step. The incremental form of the control is explicit and the
benefit of an up to second order continuous shaping function, in terms of
signal smoothness, becomes clear looking at its derivatives presence.

3.1.3 Hybrid feedforward controller

The basic structure of the hybrid feedforward is still made up of a static and
a dynamic term

Vc ff = V s
c ff

+ V d
cff

(3.9)

The latter term proposes again a dynamic compensation in the form shown
in Eq. (3.8)

V d
c ff

(t) = [C∗v ḟsh(t) + M∗
v f̈sh(t) ] (urk+1 − urk) (3.10)

The main difference with respect to previous schemes lies instead in the static
term, that modifies Eq. (3.4) as follows

V s
c ff

(t) = Vc,k + K∗v (urk+1 − yru,k) fsh(t) (3.11)
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Here, Vc,k and yru,k indicate, respectively, the time averages of the control
voltage and the measured position, computed over the final half part of step
k. The underlying assumption is that the response is essentially steady and
that every actuator has achieved a stable average position u, by applying an
average control voltage V c. This leads to an "oxymoronic"1 control, providing
feedback through a feedforward design [8]. The hidden action is a sort of
integral term. Actually, neglecting for a while the shaping function, after
expanding the recursive term, it could be written

V s
c ff

(t) = K∗v
k∑
i=1

(uri+1 − yru,i) (3.12)

It should be also noted that the average position can be expressed as the
summation of the reference position and an averaged error of the measured
position as follows

yru,i = uri + ei (3.13)
Combining Eqs. (3.12) and (3.13) yields

V s
c ff

(t) = K∗v
k∑
i=1

(uri+1 − uri − ei) = K∗v u
r
k+1 −K∗v

k∑
i=1

(ei) (3.14)

The first term is the classic static feedforward contribution, whereas the
second one is a sort of feedback integral action, applied at the slow optical
loop frequency, with a centralized gain structure represented by the matrix
K∗v. The possibility of computing meaningful values for the two averaged
quantities relies on a quiet and stable steady state condition for the final
part of each command step [8]. In a feedforward scheme, this is guaranteed
only by a proper level of damping. It thus becomes evident that the use
of a feedback term would not only add a corrective action, but would also
improve the feedforward precision by increasing the quality of the averaged
quantities. Another advantage of this hybrid approach is that the integral
recovers also the static errors arising from discrepancies between estimated
and true stiffness matrix. Demonstration of this can be found in related
papers [8]. As a result, it is possible to relax the precision requirements on
the matrix identification, even if a good estimation would for sure guarantee
immediate accurate positioning.

Oxymoronic control stabilization

Like every feedback integral action, the oxymoronic feedforward control pre-
viously described can produce instabilities. Since the actual gain of the

1since, basically, a feedforward term is used, unchanged, as feedback
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integral is somehow embedded in the stiffness matrix, a method has been
devised to limit the application of the destabilizing term without touching
K∗v. A mixed form, containing both the classic feedforward term and its oxy-
moronic evolution, is implemented by weighting the two variants in the same
expression. Calling α the stabilizing relative weight, the following modified
version of Eq. (3.11) is introduced

V s
cff

= [rαr]Vc,k + (I− [rαr])Vc ff ,k+

+K∗v {urk+1 − ( [rαr]yu,k + ( I− [rαr] )urk ) }fsh(t)
(3.15)

The limit values of α are 0 and 1, corresponding respectively to the pure
classical feedforward and to the pure oxymoronic form. It is possible to vary
this weight in the range [0,1] making the control pending towards one of the
two formulations. The main idea is to decrease the value of α as long as
instabilities appears. It is clear that a lower value would reduce the integral
effect, requiring more time to fully eliminate static errors.

Jump-free implementation

The insertion of temporal averages alters the continuity properties of the
control recursive formulation. Thus, small arrangements have been taken
to adapt the shaping effect to the actual static voltage jump, without sub-
stantially varying the control properties. A jump-free formulation is thus
reformulated as follows

V s
c ff

= Vc ff ,k + { [rαr]Vc,k + (I− [rαr])Vc ff ,k −Vc ff ,k +

+K∗v u
r
k+1 − ( [rαr]yu,k + ( I− [rαr] )urk ) } fsh(t)

(3.16)

It is a slight modification of Eq. (3.15), where the shaping function modula-
tion starts at the end voltage value of the previous command step.

3.1.4 Estimation of the stiffness matrix

The correct positioning of the mirror is for sure helped by the integral action
introduced above, but it still strongly relies on the correctness of the esti-
mation of the stiffness matrix. As previously mentioned, an identification
procedure of this matrix is carried out on the field. The FE model could be
sufficient for providing K∗, but would suffer from poor knowledge of some
system parameters and from manufacturing and integration errors.

The identification procedure is a pre-operational phase during which a
series of known commands are sent to the mirror and its response is measured.
Before measuring the position, the system is allowed to stabilize. After this
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stabilization, the measures are taken for a sufficiently long time. In such a
way, a considerable number of samples are taken and the averages quality
increases, according to the square root of the number of measures [8].

The steady state response of the mirror can be described with the equa-
tion

Ku = f c + f d (3.17)

Voltage scaling yields

Kv u = V c +
R

Kt

f d (3.18)

It is thus possible to write

V
T

c = yTu K ∗v
T − R

Kt

f
∗
d

T
=
[
yTu − R

Kt

] [K∗vT
f
∗
d

T

]
(3.19)

Here, we have two unknowns: the stiffness matrix and the average distur-
bance force. The identification also of any possible static disturbance it is
thus accounted for. Unfortunately, this equation is not sufficient to find K∗v,
since the system is undetermined. To solve the problem at least na + 1 equa-
tions are necessary. Furthermore, it is advisable to write an overdetermined
system to limit the noise effect. This procedure takes less time as the op-
erational frequency increases. Generally speaking, even with thousands of
samples and hundreds of tests, the time required by the identification would
be in the order of minutes. Collecting all the equations of type 3.19, it is
thus possible to write

yTu,1 − R
Kt

yTu,2 − R
Kt

...
...

yTu,n − R
Kt


[
K∗v

T

f
∗T
d

]
=


V

T

c,1

V
T

c,2
...

V
T

c,n

 (3.20)

To solve this system various ideas have been proposed. It is possible for
example to use an LDL factorization and to implement an iterative update
of the matrix, which can be also kept active during the operations of the
telescope [8].

Since the identification procedure is not a topic investigated in this thesis
and the whole process simulation would be computationally onerous and time
demanding, an equivalent representation of the process itself and its effect
has been inserted in the code. At the beginning, a direct introduction of
random errors into the exact stiffness matrix was considered. However, this
solution leads to a loss of its positiveness, with resulting unrealistic errors.
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Figure 3.1: Voltage vs Current Drive - actuator response

Therefore, a simple reproduction of the identification procedure was taken
from previous studies [8]. In particular, at each step, a random but known
voltage is sent to the actuators and only the static response of the mirror is
analytically computed by matrix product. Then, noise is artificially inserted
into voltage and position vectors, before averaging operations

ynu =

∑nsmp

j=1 (yu,j +Gauss(σy))

nsmp
(3.21)

V
n

c =

∑nsmp

j=1 (Vc,j +Gauss(σV ))

nsmp
(3.22)

In such a way it is possible to simulate the errors in the process. Finally, the
system in Eq. (3.20) is simply solved with the pseudoinverse computation.
Since the number of equations are well in excess, the result is a least square
estimation. The script offers the possibility of setting both the number of
test steps and the samples taken at each step. Clearly, both parameters affect
the quality of the results.

3.2 Voltage-driven versus current-driven actu-
ation

As already mentioned in the introduction of this chapter, it is interesting
to test the effective damping action introduced by voltage-driven voice-coils
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Figure 3.2: Voltage vs Current Drive - actuator response (zoom)

actuating the P45 mirror. To this end, a comparison model with current-
driven actuators has been built. In this model, the electric part is omitted
and a direct control on the current, and so on the force exerted, is assumed.

The analysis is carried out as follows. A series of random step positions
at a frequency of 10Hz has been created using the mirror shape generator,
and the system responses have been simulated and collected. During these
tests, the exact stiffness matrix has been used in the control law, without
any noise in the measurements and actuators. Accordingly, the only sources
of dynamical excitation were the commands themselves.

Despite this fact, the result is a significant difference between the two
configurations. As could be seen in figures 3.1 and 3.2, current-driven ac-
tuators exhibit highly oscillatory response. This comes to little surprise as
the system can only rely on a practically nihil intrinsic structural damping
(sec. 2.1.1) and on limiting the input frequency content with smooth signals.
This is clearly the weak point of current-driven actuators in a space applica-
tion, since the lack of damping results in strong limitations in enlarging the
feedback control bandwidth and achieving high closed-loop performance. It
should be highlighted that current-driven actuators are a better choice, but
they require a suitable passive damping, i.e. the squeezed air film available
on Earth. For example, an advanced design of the mirror central membrane
could help in dissipating the vibrational energy accumulated by the shell.
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Figure 3.3: Voltage vs Current Drive - position error

There are also some viscoelastic materials that, applied as thin layers on the
structure surface, could increase significantly the structural damping of the
mirror. Yet, they result hardly applicable to a delicate and quality demand-
ing optical surface.

On the contrary, the adoption of voltage-driven actuators offers a sim-
pler solution to the lack of passive damping, by release of eddy currents.
Looking at figures 3.1 and 3.2 again, it can be noticed how this second ap-
proach produces a more stable response. The absence of oscillations and
sawtoothed response profiles, which instead are present in the current-driven
case, demonstrates a significant increase in the damping level, both at low
and high frequencies. The position error with respect to the reference appears
to grow in time for current-driven actuators, whereas it remains bounded in
the voltage-driven case. This clearly comes out in figure 3.3, where ±20nm
bounds are also highlighted. It is noted that this is not yet the desired per-
formance level, but it can be already considered a rather satisfactory result,
achieved just with a mere feedforward controller.

Another comparison between the two different voice-coil drives has been
carried out by computing the minimum structural damping level which is re-
quired to obtain, in the current-driven case, the same performance as in the
voltage-driven case. The rms error over the actuators points has been taken
as comparison quantity. Simulations have been run at different ξ values. The
results, reported in figure 3.4, show that, to obtain similar performances, the
structure should present a damping level in the order of tenths. Even with
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Figure 3.4: Voltage vs Current Drive - spatial error rms as function of damp-
ing

an advanced passive design, it seems unrealistic to achieve such conditions,
though it is possible to obtain good results with passive elements supported
by a feedback control. It is thus reasonable to give up the direct force control,
moving to voltage driving the actuators circuits. Since the electrical dynam-
ics is typically faster than the command rate, the presence of the electric filter
constituted by the circuit should not be source of problems. It could pro-
duce troubles in digital implementation, where high control frequencies are
presumably required. In this case, its effect would be to filter the commands,
so degrading the performance.

In conclusion, the previous analysis has shown that voltage-driven voice-
coils turn out to be a robust, attractive and promising approach for an active
control of a secondary mirror shape controller, based on a contactless tech-
nology already successful on Earth.

3.3 Validation of the feedforward controller
In this final section, the hybrid feedforward control scheme presented be-
fore is tested under critical conditions to verify its actual capabilities and to
remove any doubt, related to fortuitous operational conditions, on the volt-
age control effectiveness. System parameters has been varied and brought
to their operational critical values, looking for possible weak points in the
proposed architecture and providing a first overview of the system sensitivity
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to modeling uncertainties.
The first simulation has been run to evidence the oxymoronic capability

to limit steady state errors. A relatively well identified K∗ matrix has been
generated, assuming the exploitation of about 4500 command steps of 10000
samples each. Nominal motor efficiency η = 0.4 N/

√
W has been assumed for

the actuators. Small random errors has been added to the nominal damping
and mass matrices in order to simulate a model with uncertainties. Finally,
both measurements and actuation noise has been introduced to simulate
operative conditions. As could be seen in figures 3.5 and 3.6, the classical
feedforward scheme presents a response which is gradually drifting from the
reference. This is mainly due to imprecision in the estimated stiffness matrix,
that, combined with commanded positions of increasing amplitude, brings
the system to accumulate static discrepancies. On the contrary, under the
same conditions, the oxymoronic control scheme limits this drifting effect as
shown in figure 3.7 and 3.8.

A second analysis was carried out by reducing the actuators’ efficiency.
Indeed, it is known that its value varies with the amplitude of the gap between
the mirror and the reference plate, and so with the commanded position.
Since the level of the electrically induced damping is directly linked to η, it
is worth checking the system stability at its lower value. According to the
actuators characteristics, it could be stated that a conservative lower bound
for η is 0.3 N/

√
W. As the damping decreases, the feedback integral term

approaches the limit of instability. As already mentioned in section 3.1.3, in
such cases it is required to reduce the value of α in order to have a partial
oxymoronic action. In the selected conditions, α should be reduced down to
0.6 to guarantee that the responses could be univocally considered stable.
This value corresponds to a very low oxymoronic contribution, since the
control action is almost half determined by the classical feedforward scheme.
However, it is expected that α could be increased, once a feedback controller
would flank the feedforward control. The stiffness matrix has been considered
to be nicely estimated, but contains suitable estimation errors, while M∗ and
C∗ matrices have been spoiled with up to 10% errors. The system response
is reported in figures 3.9 and 3.10. It exhibits an evident worsening of the
average error level, that is more ore less 1.5 times the nominal case, but a
stable behavior is preserved. The oxymoronic term still shows its beneficial
effect, despite it requires more steps to fully compensate the greatest steady
state errors due to its limited contribution. Actually, with respect to figure
3.8, the error trends in figure 3.10 present bumps, that are slowly eroded by
the integral action.

The final test related to the feedforward control action was a series of step
responses at a frequency of 20 Hz. A higher command frequency would indeed
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(a)

(b)

Figure 3.5: Classic Feedforward - actuator response
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(a) maximum between actuators

(b) spatial rms, only steady state part

Figure 3.6: Classic Feedforward - error
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(a)

(b)

Figure 3.7: Oxymoronic Feedforward - actuator response
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(a) maximum between actuators

(b) spatial rms, only steady state part

Figure 3.8: Oxymoronic Feedforward - error
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(a)

(b)

Figure 3.9: Test for η = 0.3 N/
√

W - actuator response
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(a) maximum between actuators

(b) spatial rms, only steady state part

Figure 3.10: Test for η = 0.3N/
√

W - error
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increase the structural excitation level. The system parameters have been
kept equal to the previous test. The only difference has been the amplitude
of the steps. Indeed, a certain command could be split into two substeps
of half the amplitude, executed at twice the frequency. This simulation test
can be considered not only a conjecture on limit performances of the mirror,
but also a feasible alternative to perform the same tasks. The weak point of
this approach is that, despite a lower amplitude that could induce reduced
error, the computational resources needed to calculate the low frequency
control law would be doubled. Looking at figures 3.11 and 3.12, the response
shows no major differences with respect to η = 0.3 N/

√
W simulation. The

average error is lower thanks to the reduced amplitude of the commands and,
dynamically, the system appears to behave well also at 20 Hz frequency.

All simulations and results proposed in this section strengthen and sup-
port the conclusions that have been drawn at the end of section 3.2.
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(a)

(b)

Figure 3.11: Test for 20 Hz commands - actuator response
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(a) maximum between actuators

(b) spatial rms, only steady state part

Figure 3.12: Test for 20 Hz commands - error
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Static Output Optimal Feedback
Control

As mentioned many times in the previous chapter, the final control scheme
developed in this thesis involves a combined feedforward-feedback architec-
ture. The feedforward part is represented by the oxymoronic scheme just
presented. The closed loop controller is an optimized static output feedback,
also known as suboptimal control. The reason is twofold. First, contrary to a
full state optimal control, which requires the knowledge of the whole system
state, the suboptimal scheme is based on feeding back an output quantity
that can be easily measured with proper sensors. As such, no reconstruc-
tion of the state is required. Furthermore, the suboptimal controller offers a
greater flexibility than the optimal solution since it allows to impose the con-
troller structure, i.e., the control scheme can range from a fully decentralized
controller with a diagonal gain matrix up to a fully centralized architecture
where each control voltage is related to all elements of the measurement
vector.

Broadly speaking, it could be stated that the static output optimal feed-
back control relies on a very simple scheme where the vector of control volt-
ages is assumed to be proportional to the output vector through a control
gain matrix G. Therefore, the design of the feedback control law reduces
to a procedure aimed at determining the matrix G such that some desired
closed-loop performances are achieved. However, it is noted that the above
representation is only a conceptual description of the feedback logic. The
real implementation of the control system is more complicated and should
be carefully considered in the design process.

The optimal static output feedback control is part of the so called Optimal
Control Theory. This theory, based on the state space representation, deals
with finding a control law which satisfies a prescribed optimality criterion.
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Accordingly, the problem is formulated through a quadratic cost function,
which is minimized in the presence of certain constraints.

A particular case of the optimal control problem is the so-called linear
quadratic (LQ) optimal control problem, where the cost function takes the
form of a quadratic expression of both state and control variables. It can
be shown that the LQ optimal solution for linear time-invariant systems
leads to the well-known feedback form u(t) = −G(t)x(t), where u and x
are the control and state vector, respectively, and G is the gain matrix. In
the infinite-horizon case, the G matrix is constant and can be expressed in
terms of a matrix which is computed by solving an algebraic Riccati equa-
tion. Therefore, as already outlined, the LQ optimal control requires the
knowledge of the state vector, which can be obtained through a, possibly
optimal, observer. An observer is a dynamical system, resembling the actual
physical system, whose aim is to give an accurate estimation of the full state
vector. It involves a set of differential equations that should be integrated
at each time step. In a digital implementation, the presence of an observer
significantly increases the computational time and resources associated with
the application of the control action. Furthermore, the observer must be
carefully designed to be stable and to have desired dynamic properties in
terms of bandwidth and noise rejection. The resulting design process may
be not trivial. The adoption of a direct output feedback control of the form
u(t) = −Gy(t), where y is the output vector, completely eliminates the need
of a state reconstruction system and so is exempt from the issues associated
with it. However, since the output vector can be viewed as a subset of the full
state vector, the corresponding feedback law yields a sub-optimal solution of
the control problem, since the global LQ minimum of the cost function is
not actually achieved and so the closed-loop performance are not optimal in
such a sense.

In this chapter the theory underlying the design of the suboptimal control
is resumed. Both continuous-time and discrete-time solutions are reported,
with and without time delay consideration. A brief outline on optimization
algorithms is also provided with the aim of introducing the reader to the
numerical methods used in this thesis. Finally, a simple dynamical system is
used to validate the software.

4.1 Continuous-time suboptimal control
The continuous-time design of control systems is the most straightforward
approach and it is not necessarily limited to an analog implementation. In-
deed, the resulting design can be also realized through a digital (discrete-
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time) implementation by selecting a sampling frequency high enough to have
a discrete-time controller emulating its continuous counterpart.

4.1.1 Problem formulation

The procedure followed in this chapter is related to the mirror assembly
model presented in Chapter 2. However, since the mirror model is expressed
as a generic linear time-invariant state space system, it can be easily extended
to other physical processes.

Rearranging Eq. (2.28), the open loop system dynamics can be written
as 

ẋ = Ax + Bv +
[
Bd Bn

]{f d
n

}
y = Cx + Dnn

z = Czx

(4.1)

where z is the (nz×1) performance vector, containing a combination of state
space variables that will fall in the cost function formulation. A separation
between force disturbances f d and measure noise disturbances n is retained,
in order to underline their different nature and to put in evidence their dif-
ferent influence in the system dynamics.

The direct output optimal feedback control law takes the following form

v = −Gy (4.2)

which, using the output equation, can be also written as

v = −GCx−GDn n (4.3)

At this stage, no specific constraint on the structure of the gain matrix G
is imposed. The related discussion is postponed to section 4.1.4. According
to the assumed control law, the closed-loop system dynamics is governed by
the following set of equations

ẋ = (A−BGC)x +
[
Bd (Bn −BGDn)

]{f d
n

}
z = Czx

v = −(GC)x− (GDn)n

(4.4)

In a more compact notation, it can be written as
ẋ = Ac x +

[
Bd Bn,c

]{f d
n

}
z = Czx

v = −(GC)x− (GDn)n

(4.5)
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where
Ac = (A−BGC)

Bn,c = (Bn −BGDn)

4.1.2 Deterministic design

The cost function to be minimized by the controller is expressed as a quadratic
form

J =
1

2

∫ ∞
0

[
zT Wzz z + vT Wvv v

]
dt (4.6)

where both Wzz and Wvv are symmetric weighting matrices. Wvv must be
a positive definite matrix, whereas Wzz can be positive semi-definite. Their
values represent the relative weight between performance and control effort.
Usually, the weighting matrices are selected as diagonal matrices, in order
to express the cost function as a weighted linear combination of the squares
values of the performance and control variables. The presence of the control
term in the cost function is used to limit the control action. Indeed, the
control problem can be stated as follows: find a stabilizing constant gain
matrix G corresponding to a controller which minimizes the desired perfor-
mance with the constraint of using a limited amount of control energy. This
penalty method is justified by the presence of saturation limits on actuators
or, simply, by the need for limiting the energy consumption.

One of the options that can be adopted in the present optimal control
design is to consider the closed-loop free system response subjected only
to non null initial conditions [30]. In this way, the design is focused on
optimizing the transient response, and thus the promptness of the system.
Looking at the free response means considering just a state initial condition
x(0) = x0 as source of system excitation, without any other disturbance or
noise. Thus the related simplified closed loop system dynamics becomes

ẋ = Ac x

z = Czx

v = −(GC)x

(4.7)

Free response to initial conditions is given by

x(t) = eAct x0 (4.8)

The cost function can be expressed in terms of the state vector only by using
the performance equation and the feedback law. Accordingly, J takes the
following form

J =
1

2

∫ ∞
0

[
xT CT

z WzzCz x + xT CT GT WvvGCx
]
dt (4.9)
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If Eq. (4.8) is substituted into the previous expression of J , the cost function
becomes a quadratic form of the initial conditions only as follows

J =
1

2
xT0

[∫ ∞
0

eA
T
c tW(G) eAct dt

]
x0 (4.10)

where
W(G) = CT

z WzzCz + CT GT WvvGC (4.11)

Let us denote the integral in Eq. (4.10) as the symmetric matrix P. After
introducing the trace operator and using the properties of the trace, the cost
function thus rearranges as

J =
1

2
xT0 Px0

=
1

2
Tr
[
xT0 Px0

]
=

1

2
Tr
[
Px0xT0

]
=

1

2
Tr
[
PX0

]
(4.12)

where X0 = x0xT0 . The symmetric matrix P is constrained to satisfy the
following Lyapunov equation

AT
c P + PAc + W(G) = 0 (4.13)

Therefore, the minimization of J has to be done under the constraint ex-
pressed by Eq. (4.13). The cost function is then reformulated as follows

J =
1

2
Tr
[
PX0 + Λ

(
AT
c P + PAc + W(G)

)]
(4.14)

where Λ is the symmetric matrix of Lagrange multipliers.
Since the cost function now contains three unknown matrices, the solution

of the minimization problem requires the matrix equations
∂J
∂Λ

= 0
∂J
∂G = 0
∂J
∂P = 0

(4.15)

These three conditions yields the following set of matrix equations
AT
c P + PAc + W(G) = 0

AcΛ + ΛAT
c + X0 = 0

−2BTPΛCT + 2WvvGCΛCT = 0

(4.16)
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which has to be solved to determine the gain matrix G. It is noted that
the system to be solved is a nonlinear fully coupled system. Many numerical
methods are available in the literature to find the solution.

An alternative approach is a gradient-based direct numerical optimization
of the cost function. In this case, J is expressed as

J =
1

2
Tr
[
PX0

]
(4.17)

where the P matrix comes from the solution of Eq. (4.13). The gradient
instead takes a little bit more of calculations. Knowing that

grad J =
∂J

∂G
=

 ∂J
∂gij

 (4.18)

the core of the problem lies in finding ∂J
∂gij

, which can be expressed as

∂J

∂gij
=

1

2
Tr

[
∂P
∂gij

X0

]
(4.19)

The derivatives of P can be obtained by differentiating Eq. (4.13). It follows
that

AT
c

∂P
∂gij

+
∂P
∂gij

Ac +
∂AT

c

∂gij
P + P

∂Ac

∂gij
+
∂W(G)

∂gij
= 0 (4.20)

This is again a Lyapunov equation which has to be solved for each element
of the gain matrix. In order to avoid solving as many Lyapunov equations
as the number of control gains, a different formulation of the gradient can
be used. Considering the second equation of system 4.16 and exploiting the
properties of the trace operator, each element of the gradient can be written
as

∂J

∂gij
=

1

2
Tr

[
∂P
∂gij

X0

]
= −1

2
Tr

[
∂P
∂gij

(
AcΛ + ΛAT

c

)]
= −1

2
Tr

[
Λ
∂P
∂gij

Ac + ΛAT
c

∂P
∂gij

]
= −1

2
Tr

[
Λ

(
∂P
∂gij

Ac + AT
c

∂P
∂gij

)]
=

1

2
Tr

[
Λ

(
∂AT

c

∂gij
P + P

∂Ac

∂gij
+
∂W(G)

∂gij

)]
(4.21)
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Since the only matrix that actually changes for each (i, j) element is ∂G
∂gij

, the
gradient expression could be further elaborated till reaching

∂J

∂gij
=

1

2
Tr

[
M1

∂G
∂gij

]
(4.22)

where
M1 = 2

(
CΛCTGTWvv − CΛPB

)
(4.23)

The matrixM1 can be computed only once. Therefore, a numerically efficient
code is obtained since only one matrix product is needed in each gradient
element.

4.1.3 Stochastic design

The previous design is based on the deterministic response of the system to
initial conditions. A different approach can be used which leads to a so-called
stochastic design of the suboptimal control.

Instead of exciting the system with non-null initial conditions, corre-
sponding to impulse-like perturbations at t = 0, and then optimizing the
transient response, one can assume the system subjected to random inputs
having prescribed statistical properties and then optimize the steady state
stochastic response. In particular, the random disturbances are assumed as
ergodic white noises with zero mean values. The corresponding cost function
can be expressed as

J =
1

2
E
[
zT Wzz z + vT Wvv v

]
(4.24)

where E is the expected value operator. Starting from this cost function,
a procedure similar to the deterministic case can be followed. The design
model is now the model described in Eqs. (4.5), where f d and n are white
noise ergodic processes.

Substituting the closed loop dynamics and the control law expression, it
is possible to rewrite Eq. (4.24) as

J =
1

2
E
[
xT W(G)x

]
(4.25)

where again
W(G) = CT

z WzzCz + CT GT WvvGC
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Introducing the trace operator and exploiting its properties yields

J =
1

2
Tr
{
E
[
xT W(G)x

]}
=

1

2
E
{

Tr
[
xT W(G)x

]}
=

1

2
E
{

Tr
[
W(G)xxT

]}
=

1

2
Tr
{
E
[
W(G)xxT

]}
=

1

2
Tr
{
W(G)E

[
xxT

]}
=

1

2
Tr
{
W(G)σ2

xx

}

(4.26)

Here, σ2
xx denotes the state variance matrix. For an ergodic random process,

the state variance satisfies the following Lyapunov equation

Acσ
2
xx + σ2

xxA
T
c + W2(G) = 0 (4.27)

where

W2(G) = BdWddBT
d +

(
Bn −BGDn

)
Wnn

(
Bn −BGDn

)T (4.28)

and Wdd and Wnn are, respectively, the intensity of the disturbance force
and measure noise. It is noted that the intensity of the noise can be consid-
ered as a tunable weighting quantity to be used as a design variable for the
optimization of the controller.

Since J is expressed through the state variance matrix, which satisfies a
Lyapunov equation, the minimization procedure applies to the following cost
function

J =
1

2
Tr
[
W(G)σ2

xx + Λ
(
Acσ

2
xx + σ2

xxA
T
c + W2(G)

)]
(4.29)

where Λ is the symmetric matrix of Lagrange multipliers. The minimum of
J is obtained when 

∂J
∂Λ

= 0
∂J
∂G = 0
∂J
∂σ2

xx
= 0

(4.30)

As in the previous deterministic design, a direct numerical optimization
is again proposed. The cost function to be minimized is

J =
1

2
Tr
[
W(G)σ2

xx

]
(4.31)
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The steps to compute the gradient of J are very similar to the deterministic
design previously discussed. It follows that

∂J

∂gij
=

1

2
Tr

[
∂W(G)

∂gij
σ2
xx +

∂σ2
xx

∂gij
W(G)

]
(4.32)

The derivative of the variance matrix can be expressed by considering the
third equation of the system 4.30

AT
c Λ + ΛAc + W(G) = 0 (4.33)

Differentiation of the previous equation yields

Ac
∂σ2

xx

∂gij
+
∂σ2

xx

∂gij
AT
c +

∂Ac

∂gij
σ2
xx + σ2

xx

∂AT
c

∂gij
+
∂W2(G)

∂gij
= 0 (4.34)

Accordingly, the gradient is given by

∂J

∂gij
=

1

2
Tr

[
∂W(G)

∂gij
σ2
xx −

∂σ2
xx

∂gij

(
AT
c Λ + ΛAc

)]
=

1

2
Tr

[
∂W(G)

∂gij
σ2
xx − Λ

(
∂σ2

xx

∂gij
AT
c + Ac

∂σ2
xx

∂gij

)]
=

1

2
Tr

[
∂W(G)

∂gij
σ2
xx + Λ

(
∂Ac

∂gij
σ2
xx + σ2

xx

∂AT
c

∂gij
+
∂W2(G)

∂gij

)]
(4.35)

It can be again rearranged as

∂J

∂gij
=

1

2
Tr

[
M1

∂G
∂gij

]
(4.36)

where

M1 = 2
[(
WvvGCσ2

xxC
T
)T − Cσ2

xxΛB − DnWnn

(
Bn −BGDn

)T
ΛB

]
(4.37)

4.1.4 Numerical solution of the optimal control problem

As already outlined in the previous section, the control problem expressed
by searching for the minimum value of the cost functions in Eq. (4.17) and
Eq. (4.31) has been solved through a numerical optimization procedure. In
particular, the numerical solution has been implemented using MATLAB
embedded optimization algorithms.

The solution of the deterministic design is carried out by performing the
following five steps:
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1. solve the Lyapunov equation Eq. (4.13) to find P

2. compute the cost function J using Eq. (4.17)

3. solve the Lyapunov equation in the matrix Λ (second equation of the
set (4.16))

4. compute the matrix M1 as given by Eq. (4.23)

5. compute the gradient of J according to Eq. (4.22)

It should be noted that, since the above procedure involves quantities
that are functions of the elements of the gain matrix, it is possible to im-
pose a prescribed structure to the gain matrix and obtain the corresponding
suboptimal solution. In particular, one can assume that some elements of
the gain matrix are null. In this way, the designer can force that a control
input is coupled to some measurements and is not coupled with others. This
partial centralization of the control architecture can also become a fully de-
centralized co-located scheme if a control channel is coupled only with the
mated co-located sensor, i.e., the only non-null gains are the diagonal ele-
ments ofG. The possibilities offered by this approach are nearly infinite. For
example, one can also impose that a fully decentralized architecture is real-
ized with a single gain being used for all the co-located sensor-actuator pairs
or with gains organized by clusters defined according to their geometrical
distribution over the mirror.

This freedom was exploited by writing a MATLAB function which re-
ceives as input only the non-null gains of the G matrix and the information
on their positions inside G. This function then calls an additional external
script that, from the above informations, builds the actual gain matrix to be
used in the computation of J and grad J .

It should be highlighted that such a manipulation of the G matrix is
allowed only when the control problem is solved by a direct numerical opti-
mization procedure.

The computational steps to be performed in the stochastic design are
similar to the deterministic case and are reported here for the sake of com-
pleteness:

1. solve the Lyapunov equation (4.27) to compute the variance matrix
σ2
xx

2. compute J using Eq. (4.31)

3. solve the Lyapunov equation in Λ from the set (4.33)
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4. compute M1 from Eq. (4.37)

5. compute the gradient of J according to Eq. (4.36)

The same considerations on imposing particular rules to matrix G can be
also done for the stochastic problem.

4.2 Optimization Algorithms
Two main optimization algorithms available in the MATLAB Optimization
Toolbox have been specifically adopted in this thesis. This section summa-
rizes the theory behind the two tools and some guidelines on their usage and
performance are provided.

Both methods are embedded in the MATLAB function fminunc. The
first method is a Quasi-Newton Method exploiting the BFGS formula for the
Hessian approximation update. The second method is the so-called Trust
Region Method based on the preconditioned conjugate gradient. As the
name of the MATLAB function implies, an unconstrained optimization is
carried out. A good choice for the initial guess g0 is required to obtain
reliable results. Starting from this guess, the algorithms perform a series of
iterations until the difference of values of J between two iterations is within
a prescribed tolerance. The main differences between the two methods are
the rules followed to move from one iterate to the next one.

In parallel with these algorithms a second order method, already applied
to a suboptimal control design [31], has been tested on the problem at hand.
Results showed the extreme efficiency of the implemented code, that anyway
has not been fully integrated in the developed software.

4.2.1 The BFGS method

The BFGS method [32, 33] is one of the most popular Quasi-Newton methods
for optimization. Named after its inventors, Broyden, Fletcher, Goldfarb, and
Shanno, it is part of a wider category of methods called line search methods.
The logic behind the method is based on the choice of the iterate search
direction pk, along which a minimum of the objective function f is identified

min f(xk + αpk) (4.38)

The peculiarity of Quasi-Newton methods is the choice of the search direc-
tion. It is done, like every Newton method, using a second-order Taylor
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series representation of f(xk + pk), but with a second order term containing
an approximation Bk of the Hessian ∇2fk, rather than true Hessian itself

f(xk + pk) ≈ f(xk) + ∇f(xk)Tpk +
1

2
pTkBkpk , m(pk) (4.39)

The optimal solution of the model m(pk) can be found simply by setting to
zero its first derivative. Thus

pk = −B−1
k ∇f(xk) (4.40)

and then, according to Eq. (4.38), the following iterate is computed with

xk+1 = xk + αpk (4.41)

In the BFGS method, the Hessian approximation is updated at each iteration
according to the following recursive formula

Bk+1 = Bk −
BksksTkBk

sTkBksk
+
ykyTk
yTk sk

(4.42)

with
sk = xk+1 − xk yk = ∇fk+1 −∇fk

that is an efficient procedure for updating curvature information of the model.
This method requires only the gradient to be supplied. Furthermore, the ab-
sence of the Hessian request makes this method producing low computational
cost algorithms.

4.2.2 The Trust Region Method

In Trust Region methods [32], the main idea is creating an approximate
model of the objective function around the current point. Then, the optimal
solution of this simplified expression is found. Iterating these steps, the
algorithm arrives sufficiently near to the optimum values of the objective
function. In addition, the peculiarity of this method is the presence of a trust
region, that is a bounded space around the current iterate, where the solution
is sought. The size of this region is not static, in order not to excessively
limit the convergence rate and, on the opposite side, to avoid proceeding
with too hasty steps, that could lead far from the optimum. The radius of
the region is tuned at each step according to a simple logic: if the decrease
in the objective function is large enough, the size can be increased, whereas,
if the iterate is not satisfactory, it should be concluded that the trust region
is too large and, consequently, the boundary is restricted. The shape of this
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region can not only assume spherical boundaries, but also elliptical ones, in
order to better follow the different trends given to the function by all the
variables.

According to all what just mentioned, the model resembling the objective
function around the iterate xk can be written as

m(pk) = fk + pTk gk +
1

2
pTk Bk pk (4.43)

where gk is the gradient of the function and Bk the Hessian or its finite-
difference approximation. Consequently, the minimization problem within
the trust region is

min
{
ψ(pk) = pTk gk + 1

2
pTk Bk pk : ‖ Dkpk ‖≤∆k

}
(4.44)

Differences among methods falling within this category lie in how this
minimization problem is solved and in the choice of the approximation model.
The MATLAB fminunc provides a trust region algorithm [33] based on a
two-dimensional subspace solution of problem (4.44). Once the subspace
S is computed, the eigensystem problem required to solve the sub-problem
becomes trivial, presenting only two dimensions. The most complex aspect
of this procedure is identifying the subspace S. The solver at hand defines S
as the linear space spanned by s1 and s2, where s1 is in the direction of the
gradient g, and s2 is an approximate Newton direction, i.e., a solution to

Hs2 = −g (4.45)

or, alternatively, the direction of negative curvature

sT2 Hs2 < 0 (4.46)

The philosophy behind this choice of S is to force global convergence via
steepest descent direction or negative curvature direction and, at the same
time, achieve fast local convergence via Newton step, when it exists. Note
also that the problem (4.45) is solved using the method of Preconditioned
Conjugate Gradients (PCG).

Finally, after the solution of the sub-problem (4.44), the effective decrease
in the cost function is computed and, accordingly, the trust region is updated.
Defining

ρfk =
f(xk+1)− f(xk)

ψ(sk)
(4.47)

the rules for modifying the size ∆k+1 of the region are:
let 0 < γ1 < 1 < γ2
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1. if ρfk ≤ µ then set ∆k+1 ∈ (0, γ1∆k]

2. if ρfk ∈ (µ, η) then set ∆k+1 ∈ [γ1∆k,∆k]

3. if ρfk ≥ η then set ∆k+1 ∈ [∆k, γ2∆k]

Computationally this method results more onerous, because of the use of the
Hessian that, if not directly furnished by the user, is numerically approxi-
mated by means of finite differences. With respect to the BFGS method, it
is mandatory to provide the gradient expression.

4.3 Discrete-time suboptimal control
The suboptimal control can be also designed using a discrete-time formula-
tion. The related equations are presented in this section.

The discrete-time formulation considers piecewise step inputs and out-
puts, as it happens in practical digital implementations. When high sam-
pling frequencies are adopted, a feedback controller designed according to a
continuous-time formulation behaves very similarly to a discrete-time control
system. In this case, the digitalization of the input and output variables can
be viewed as a noise source. However, as the frequency at which the control
is paced decreases, the difference between continuous-time and discrete-time
control designs becomes large. Thus the continuous-time optimal gains are
not only far from the optimal gains of the discrete case, but a closed-loop
instability can even occur.

For a time-discrete design, the dynamic system described in section 4.1.1
must be reformulated. This has to be done both for the deterministic and
the stochastic design approach. The first step is to rewrite the dynamics
of the system in terms of finite-difference equations [30, 34]. Therefore, the
exact discrete-time representation of the model is the following{

xk+1 = Ad xk + B d uk + B d
dn dk

yk = Cxk
(4.48)

in which, for a zero-order hold, the discrete matrices are given by

Ad = eA∆t , Bd =

∫ ∆t

0

eAηB dη , Bd
dn =

∫ ∆t

0

eAηBdn dη

with the synthetic representation of

Bdn =
[
Bd Bn

]
d =

{
fd
n

}
(4.49)
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Here ∆t is the constant sampling period and η = (k+ 1)∆t− τ . Whereas, k
and k + 1 identify the related variable at two successive time instants k∆t
and (k + 1) ∆t.

It should be stressed that the above representation correctly describes the
piecewise constant control action, but nevertheless it approximates the also
disturbances d in the same way. Even if this approximation is not realistic,
it is commonly accepted.

In the discrete-time formulation, the control law takes the form

vk = −Gyk = −GCxk (4.50)

and, as a result, the closed loop dynamics become
xk+1 = Ad

c xk + Bd
dndk

zk = Czxk
v = −(GC)xk

(4.51)

with
Ad
c = (Ad −B dGC)

4.3.1 Deterministic design

In addition to the system dynamics, also the cost function has to be refor-
mulated [30, 34, 35]. The result is that the time integral transforms into a
summation

J =
1

2

∞∑
k=0

[
zTk Wzz zk + vTk Wvv vk

]
(4.52)

After using the control law and the performance equation, the cost function
can be written in terms of the state vector only as follows

J =
1

2

∞∑
k=0

[
xTk (CT

zWzzCz + CTGTWvvGC)xk
]

(4.53)

The discrete-time response of the closed-loop system in Eq. (4.51) to generic
initial conditions x0 is given by

xk = (Ad
c)
kx0 (4.54)

Substituting the above into the cost function yields

J =
1

2
x0

∞∑
k=0

{[
(Ad

c)
k
]T

W(G)(Ad
c)
k
}
x0 (4.55)
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It is now possible to apply the trace operator to the J expression and write

J =
1

2
Tr
[
xT0 Hx0

]
=

1

2
Tr
[
HX0

]
(4.56)

where

H =
∞∑
k=0

[
((Ad

c)
k)TW(G)(Ad

c)
k
]
, X0 = x0xT0

The matrix H included in the cost function J satisfies the following rela-
tion [34]

(Ad
c)
THAd

c −H = lim
k→∞

{[
(Ad

c)
k
]T

H(Ad
c)
k

}
−W(G) (4.57)

Now, if the closed-loop system is asymptotically stable, the matrix Ac has
spectral radius lower than one. Therefore, the limit in the above relation
goes to zero. It follows that the matrix H is a solution of

(Ad
c)
THAd

c −H + W(G) = 0 (4.58)

This is a discrete Lyapunov equation and can be considered the discrete-time
version of the continuos-time Lyapunov equation (4.13).

It is clear that the cost function to be minimized takes the form

J =
1

2
Tr
[
HX0 + Λ

(
(Ad

c)
THAd

c −H + W(G)
)]

(4.59)

where the equation governing the H matrix has been included in the free
minimization problem as a constraint through the symmetric matrix of La-
grange multipliers Λ. The solution of the above problem follows the same
steps as the continuous-time case, and thus presents the same limitations.
Here, only the approach based on the direct numerical optimization of J as
expressed in Eq. (4.56) is described.

The matrix H is determined by solving the discrete Lyapunov equa-
tion (4.58). From Eq. (4.59), the derivative ∂J

∂H gives

Ad
cΛ(Ad

c)
T −Λ + X0 = 0 (4.60)

Then, with a little bit of algebra, the gradient of J is computed as

∂J

∂gij
=

1

2
Tr

[
∂H
∂gij

X0

]
=

1

2
Tr

[
∂H
∂gij

(
Λ−Ad

cΛ(Ad
c)
T
)]

=
1

2
Tr

[
Λ

(
∂H
∂gij
− (Ad

c)
T ∂H
∂gij

Ad
c

)] (4.61)
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By differentiation of Eq. (4.58), we have

(Ad
c)
T ∂H
∂gij

Ad
c −

∂H
∂gij

+ (
∂Ad

c

∂gij
)THAd

c + (Ad
c)
TH

∂Ad
c

∂gij
+ W(G) = 0 (4.62)

The partial derivative of the cost function can thus be rewritten as

∂J

∂gij
=

1

2
Tr

[
Λ

(
(
∂Ad

c

∂gij
)THAd

c + (Ad
c)
TH

∂Ad
c

∂gij
+ W(G)

)]
(4.63)

Rearranging
∂J

∂gij
=

1

2
Tr

[
M1

∂G
∂gij

]
(4.64)

with
M1 = 2

[
CΛ

(
CTGTWvv − (Ad

c)
THBd

)]
(4.65)

It should be noted that the discrete-time design resembles the same procedure
and solution of the continuous-time version. The great difference lies in the
discrete form of Lyapunov equations involved in the computation of the cost
function and its derivatives, replacing their continuous counterparts.

4.3.2 Stochastic design

The discrete version of the stochastic design discussed in section 4.1.3 is
here presented. As for the deterministic design outlined before, a procedure
completely similar to the continuous-time formulation is expected, with now
discrete Lyapunov equations instead of the continuous counterparts.

The first step to properly formulate the problem is to define a cost func-
tion expressed through stochastic discrete variables [30, 36]. A suitable form
is

J =
1

2
lim
N→∞

{
1

N
E

[
N∑
k=0

(
zTk Wzz zk + vTk Wvv vk

)]}
(4.66)

Using as before the control law and performance equation, it is possible to
write the quadratic form in terms only of the state vector at instant k. Taking
the trace operator and exploiting its properties, J can be written as

J =
1

2
lim
N→∞

{
Tr
[
W(G)σ2

xx,k

]}
(4.67)

Since we are dealing with ergodic white noise processes, the limit value of
the variance matrix assumes a constant value. So, the cost function is given
by

J =
1

2
Tr
[
W(G)σ 2

xx

]
(4.68)
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The value of σ 2
xx is determined from the closed-loop dynamics. It can be

shown [30, 37] that the steady state variance matrix satisfies the following
equation

Ad
cσ

2
xx(A

d
c)
T − σ 2

xx + W3(G) = 0 (4.69)

where

W3(G) = Bd
dWdd (Bd

d)
T +

(
Bd
n −BdGDd

n

)
Wnn

(
Bd
n −BdGDd

n

)T (4.70)

Accordingly, after introducing the matrix of Lagrange multipliers Λ, the free
minimization problem is rewritten as

J =
1

2
Tr
[
W(G)σ 2

xx + Λ
(
(Ad

c)
Tσ 2

xxA
d
c − σ 2

xx + W3(G)
)]

(4.71)

Setting to zero the derivative of J with respect to the state variance matrix
yields the discrete Lyapunov equation to compute Λ

(Ad
c)
TΛAd

c −Λ + W(G) = 0 (4.72)

The gradient of J as expressed by Eq. (4.68) is given by

∂J

∂gij
=

1

2
Tr

[
∂W(G)

∂gij
σ 2
xx + W(G)

∂σ 2
xx

∂gij

]
=

1

2
Tr

[
∂W(G)

∂gij
σ 2
xx +

∂σ 2
xx

∂gij
(Λ− (Ad

c)
TΛAd

c)

]
=

1

2
Tr

[
∂W(G)

∂gij
σ 2
xx + Λ (

∂σ 2
xx

∂gij
−Ad

c

∂σ 2
xx

∂gij
(Ad

c)
T )

] (4.73)

After differentiating the Lyapunov equation in σ 2
xx

Ad
c

∂σ 2
xx

∂gij
(Ad

c)
T − ∂σ 2

xx

∂gij
+
∂Ad

c

∂gij
σ 2
xx(A

d
c)
T + Ad

cσ
2
xx

(
∂Ad

c

∂gij

)T
+
∂W3(G)

∂gij
= 0

(4.74)
the following expression is obtained

∂J

∂gij
=

1

2
Tr

[
∂W(G)

∂gij
σ 2
xx + Λ

(
∂Ad

c

∂gij
σ 2
xx(A

d
c)
T + ...

...+ Ad
cσ

2
xx

(
∂Ad

c

∂gij

)T
+
∂W3(G)

∂gij

)] (4.75)

A compact form of the gradient can be expressed as follows

∂J

∂gij
=

1

2
Tr

[
M1

∂G
∂gij

]
(4.76)
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where

M1 = 2
[
Cσ 2

xx

(
CTGTWvv − (Ad

c)
TΛB

)
−DnWnn(Bn −BGDn)TΛB

]
(4.77)

4.3.3 Design with time delay

The discrete-time design presented in the previous section can be improved
by including a time delay information representing the elapsed time between
the instant at which the sensor signal is measured and the instant at which
the control voltage is applied. This delay naturally occurs in all digital
implementations. Indeed, it is due to the acquisition time of the analog-to-
digital converter, the time needed to perform all the computations related
to the control law and the time of the digital-to-analog conversion. The
presence of a delay may introduce closed-loop instability if it is large and not
properly considered in the design process.

In the technical solution of the problem at hand a delay of 100µs has
been estimated. If the maximum working frequency is 2kHz, the minimum
sampling period results 500µs, so in our case. A modified model should thus
be able to represent a delay shorter than or equal to the sampling period, at
most.

From literature [38], it is possible to extract the procedure to reformulate
the system dynamics including a time delay

ẋ(t) = Ax(t) + Bv(t− td) + Bdnd(t) (4.78)

Here td is the time delay and could be expressed as a fraction of the sampling
period ∆t as follows

td = (1−m)∆t , 0 6 m 6 1 (4.79)

By calling η = (k + 1)∆t− τ , for m 6= 1, the discrete solution between two
consecutive intervals can be found with

xk+1 = Adxk + Bd2uk + Bd1uk−1 + Bd
dndk (4.80)

where
Ad = eA∆t

Bd1 =

∫ ∆t

m∆t

eAηB dη

Bd2 =

∫ m∆t

0

eAηB dη

Bd
dn =

∫ ∆t

0

eAηdηBdn
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The integrals of Bd1 and Bd2 can be computed and expressed in terms of
known matrices

Bd1 = A−1
[
Ad −Adm

]
B

Bd2 = A−1
[
Adm − I

]
B

(4.81)

with
Adm = eAm∆t

At this point the only critical aspect is dealing with discrete time dynamic
equations that are no more first order. To insert the result in the developed
discrete-time design, it is necessary to reduce the equations to first order.
This is possible by augmenting the state as follows{

xk+1

ũk+1

}
=

[
Ad Bd1

0 0

]{
xk
ũk

}
+

[
Bd2

I

]{
uk
}

+

[
Bd
d Bd

n

0 0

]{
dk
nk

}
(4.82)

It should be adapted to the augmented system also the output and perfor-
mance equations

yk =
[
C 0

]{xk
ũk

}
+ Dd

n nk (4.83)

zk =
[
Cz 0

]{xk
ũk

}
(4.84)

The limit cases of this system are the absence of delay, m = 1, that cor-
responds to Bd1 = 0 and Bd2 = Bd, and the td = ∆t case, that presents
Bd1 = Bd and Bd2 = 0

It should be highlighted that the introduction of a time delay does not
modify the steps to be carried out for the design of the discrete-time con-
troller, but it changes the system conversion procedure from continuous to
discrete. The great difference, apart from the weighting matrices definitions
adapted to the augmented state, lie in the increased size of the state that
augments by a number of variables equal to the control points.

4.4 Preliminary assessment
With the aim of having a preliminary assessment of the above design pro-
cedures on a simple problem, a mechanical model made of a chain of nm
masses connected by linear springs and viscous dampers was built. Despite
its simplicity, the model resembles the main dynamic properties of a vibrating
structural system like the mirror shell under investigation.
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Figure 4.1: Preliminary Assessment: mass-spring-damper system

nm 6
m 10 kg
k 30 N/m
c 0.2 Ns/m

Table 4.1: System parameters

4.4.1 Problem and design settings

The system data are reported in table 4.1. Masses, springs and dampers
are all equal and spatially disposed as shown in figure 4.1. The equation
describing the system dynamics assumes the simple form

Ms̈ + C ṡ + Ks = f (4.85)

The corresponding state space formulation is{
ṡ
s̈

}
=

[
0 I

−M−1K −M−1C

]{
s
ṡ

}
+

[
0

M−1

]
f = Ax + Bf (4.86)

The output vector includes both position and velocity of the masses, in
order to simulate both position measure and its derivative. In this trivial
problem, filters on the sensor channels have not been included. Thus, the
output equation takes the simple form{

ys
yṡ

}
=

[
I 0
0 I

]{
s
ṡ

}
+

[
0
0

]
f = Cx + Df (4.87)

The performance accounts for both s and ṡ. In this way, it is possible to
design a control law aimed at both correct positioning and active damping.
Accordingly, the performance equation is expressed as

z =

[
I 0
0 I

]{
s
ṡ

}
= Czx (4.88)

75



Chapter 4

The weighting matrices are set as follows

Wzz =

[
ρsI 0
0 ρṡI

]
(4.89)

Wff = ρfI (4.90)

thus involving three weights, ρs, ρṡ and ρf . The control design, and so the
closed-loop response of the system, can be largely affected by the values of
these weights, and in particular by their relative magnitude. Since in this
preliminary assessment we are not interested in the achievable performance
of the controller but the aim is only to validate the procedure, the three
weights were arbitrarily set as follows

ρs = 1 , ρṡ = 100ρs , ρf = 0.006ρs (4.91)

4.4.2 Optimal and suboptimal control

A first check was carried out to study the convergence of the suboptimal
control solution to the solution obtained using a full state feedback optimal
control. It can be actually verified that, if the output matrix C is an identity
matrix having the same dimensions as the state matrix, the whole state enters
the feedback line, making the control law assuming the same form of the full
state feedback:

f = −Gy = −GCx = −GIx = −Gx (4.92)

The results obtained with the numerical optimization of the suboptimal cost
function have thus been compared with the results of a Linear Quadratic
Regulator (LQR).

The starting point for the suboptimal optimization problem was a dis-
turbed version of the optimal solution. The gain matrices resulting from
the two design procedures are reported as histograms in figures 4.2 and 4.3.
Each element is represented by a column with height proportional to its
value, positioned in the xy plane in correspondence of its location inside the
matrix.

The matrices could be both split into two square blocks. The first block,
corresponding to the first six columns, contains the proportionality factors
of the position measures, while the second block contains the gains corre-
sponding to the feedback of the velocity variables. At first sight, the closed
similarity between the two results is evident. This similarity is also shown
by plotting the relative error matrix, as reported in figure 4.4. It should be
specified that errors related to gain elements lower than 5 have been omit-
ted. This is due to the fact that most of those gains were really closed to 0
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Figure 4.2: Preliminary Assessment: optimal gain matrix

Figure 4.3: Preliminary Assessment: suboptimal gain matrix
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Figure 4.4: Preliminary Assessment: relative error matrix

and thus even a small discrepancy yields huge relative errors, without sub-
stantial meaning. It could be also noted that the greatest errors belong to
the smallest gains. Another interesting aspect to be noticed is the strong
diagonal dominance of the gain matrix. This characteristic suggests that a
fully decentralized approach could produce in this case similar performances
as the centralized controller.

4.4.3 Constraints on the structure of the gain matrix

To test the capability of the design procedure to introduce some constraints
on the structure of the gain matrix, a decentralized suboptimal PD control
has been imposed first. Then, the same controller has been designed with
the additional constraint of using the same proportional and derivative gain
for all the actuators.

It can be seen in figure 4.5 that the centralized optimal solution and the
PD decentralized solution give nearly identical closed-loop responses. Also
the minimum values of the cost function are very similar. The optimal value
is Jopt = 4064, 69, whereas the suboptimal solution yields JPD = 4067, 60.

When the same P and D gains are imposed for all control channels, the
difference between the two responses slightly increases, although it is still
difficult to note a substantial loss of performance with respect to the previous
cases. As expected, the minimum value of the cost function rises up to JePD =
4123, 61, due to the additional constraint on the optimization procedure.
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Figure 4.5: Constrained Solutions - system response

Figure 4.6: Free PD gain matrix
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Figure 4.7: Equal PD gain matrix

4.4.4 Continuous and discrete-time controllers

A final check has been done to validate the discrete-time formulation. As
the sampling frequency increases, the gains from the discrete-time design are
expected to converge to the gains of the continuous-time design. To observe
this phenomenon, different optimization processes have been run, for a fixed
PD controller, with increasing control frequency. Results are reported in
figure 4.8. Moving towards lower frequencies, reduction in the gains values
clearly emerges to avoid unstable behaviors. Figure 4.9 also shows a com-
parison between a continuous and a 5Hz discrete implementation of the PD
control, respectively adopting as control gains couples [ 94, 24 ; 44, 75 ] and
[ 45, 97 ; 35, 18 ].
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Figure 4.8: Discrete Time Project - PD gains trend with frequency

Figure 4.9: Continuous vs Discrete Time Project Response
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Control Synthesis and
Implementation

In this chapter, the combined feedforward-feedback control system previ-
ously described is applied to the P45 secondary mirror model. First, an
ideal continuous-time design is carried out. The related closed-loop sim-
ulations can provide a reference benchmark achievable performance of the
proposed approach. Then, three possible different implementations of the
above reference design are discussed, along with their advantages and lim-
itations. Finally, through extensive simulations, an off-design performance
analysis limited to key modeling parameters is presented, in order to study
the sensitivity of the nominal design to realization or integration errors and
to simulate off-design operational conditions.

5.1 Simulations Settings
The synthesized control laws and the related hardware architectures de-
scribed in this chapter have been tested with simulations under space repre-
sentative conditions.

The dynamic model that simulate the mirror structural response (see Eq.
2.27 ) includes 100 modes, that is the entire set of available modes, in order to
observe any possible excitation of the highest frequencies modal components.

External and internal disturbances have been added, to test the control
system rejection capability. The force disturbance vector f d is composed of
a quasi-static component representing relevant environmental disturbances,
since typical telescopes operational conditions produce constant or very low
frequency effects. Large and flexible structures may be subjected to thermal
loads, gravity gradient or inertial loads. These aspects have been investigated

83



Chapter 5

arriving to the conclusion that thermal loads constitute the most relevant
source of errors. The gravitational gradient, even for very large optics, and
the inertial loads of slow attitude maneuvers produce indeed effects several
order of magnitude lower than temperature gradients. Thus, missing a real
satellite integrated model, plausible temperatures profiles have been used
to deduce equivalent force loads to be counteracted by the mirror shape
control system when compensating the thermo-elastic structural response of
the shell. Data have been retrieved from JWST thermal simulations [39] and
the maximum temperature variations have been used to modulate linear and
harmonically varying temperature profiles.

The measure noise n has been instead tuned according to previous expe-
riences with similar hardware [8]. Thus Gaussian noise has been assumed,
with standard deviation σn = 3× 10−9m.

The system comprises a suitable on-board processor unit, which is equipped
with proper analog-to-digital and digital-to-analog converters as physical in-
terfaces to the capacitive sensors and the voltage-driven voice-coil actuators.
Both AD and DA converters are assumed to have 16 bits. The AD reading
process must cover a range of 1mm, which is the maximum distance between
the mirror and the backplate. The DA operation covers a range of ±2, 5V,
which is the maximum voltage applied to the voice-coils. With a 16 bit AD
converter, the 1mm range corresponds to a resolution of about 15nm. This
clearly represents a severe limitation if the position error of the mirror must
lie within 10nm with respect to the reference.

In addition, voltage noise has been added on the actuator’s circuit, ac-
cording to the characteristics of the adopted hardware. In particular, being
the voltage noise intensity at most equal to the quantum amplitude, this dis-
turbance has been introduced in the full digital implementation case simply
by neglecting one bit availability, while in the other cases by setting the 3σv
value equal to the bit amplitude.

The maximum sampling frequency simulated has been 2kHz, which is
a reasonable value according to the limited capabilities of space on-board
hardware and to the related need for low power consumption.

5.2 Design settings
In what follows, the feedback gain matrix has been designed using the stochas-
tic approach. This methodology showed more sensibility and flexibility with
respect to the deterministic version. This is probably due to a better capa-
bility of the white-noise disturbances to excite the system.

Concerning the definition of the performance, as previously proposed in
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the preliminary assessment, both position and velocity have been included to
obtain a minimization of the positioning error while adding active damping.
Thus, to insert those quantities in the performance vector z, evaluated at the
actuators positions, it is possible to recall Eq. (2.6) and write

z =

{
u
u̇

}
=

[
Φ 0 0 0 0 0
0 Φ 0 0 0 0

]


q
q̇
i
um
z
J


= Czx (5.1)

The weighting matrices related to performance and control effort have
been defined with embedded tunable parameters to have a direct control
of the relative weight of the different elements. As it is hard to anticipate
the importance of an actuation point with respect to any other point or to
introduce specific limitations for some actuators, only three weights have
been used, one for each group of velocities, positions and control voltages.
The result is a performance weighting matrix defined as

Wzz =

[
ρu I 0
0 ρu̇ I

]
(5.2)

and a control effort weighting defined as

Wvv =
[
ρv I
]

(5.3)

After a detailed preliminary analysis, the values of the three free parameters
have been set to

ρu = 2.5× 109 ρu̇ = 1.0 ρv = 1.0

Another crucial design setting is the value of the weighted intensity of
the white noise process representing the measurement noise n and the dis-
turbance fd. They have been tuned separately, according to their different
nature. Referring to Eq. (4.28), noise intensities have been defined as

Wdd = wd I
Wnn = wn I

(5.4)

with
wd = 1.0 wn = 2.0× 10−14
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The above five parameters (ρu, ρu̇, ρv, wd, wn) can be used to finely tune
the design and, as a result, to obtain the desired closed-loop response. Their
final value is the outcome of an iterative process which is aimed at achieving a
satisfactory tradeoff among closed-loop performance and practical feasibility.

Beyond these settings, that directly influence the cost function and so the
gain matrix, other specifications have to be set in order to obtain relevant
results from the design process.

A first setting is related to the number of structural modes considered
in the control design model of the mirror. A large number of modes would
definitely increase the reliability of the model, reducing also the vulnerability
to spillover effects. However, a large model would rise significantly the com-
putational cost of the optimization procedure. This issue is rather limited
for the P45 prototype, since it presents few natural frequencies falling in the
low-frequency range, but it would require more attention for larger flexible
mirrors with lower natural frequencies. In addition, larger order design mod-
els are computationally demanding when the optimization procedure has to
be iterated many times or the searching for the minimum value of the cost
function requires many steps to achieve the prescribed tolerance threshold.
In such cases, the overall numerical optimization could even take many min-
utes, if not hours. In the present design, a total number of 17 modes has been
considered. This choice guarantees a reduced size of the state-space matrices
along with a model which is well representative of the dynamics of the system
in the frequency range of interest. Indeed, the 17th structural mode of the
mirror has an undamped natural frequency of about 1100Hz. The reduced-
order modal model can thus be considered reliable and the corresponding
control design is believed to provide reliable results. Later, design solutions
involving more modal shapes1 has been verified. These anyway presented the
same gains as results, proving the reliability of the chosen modal set.

The bandwidth of the filters on the sensor measurement is another design
parameter. As already mentioned in section 2.1.3, the cutoff frequency of
the filters can be set to properly limit the frequency content of the feedback
signal and thus prevent high-frequency instabilities. However, a sufficiently
large bandwidth has to be enforced to avoid an excessive limitation of the
control capability. The selection of filters bandwidth involves the setting of
the values a and b. In this work, they have been set to 400Hz, also to prevent
aliasing effects at 1kHz control frequency.

Finally, a fully decentralized feedback PD control architecture was se-
lected for the realization simplicity of such solution, as already discussed in

1Design solutions with 50 modes and with the entire available modal set has been
investigated.
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the previous chapters. According to the organization of the control design
software, the user can easily select different and more complex architectures
to be investigated, which could lead to more advanced closed-loop perfor-
mance due to the distributed fully coupled dynamic nature of the problem.

Numerical Issues

Compared to the simple problem introduced in the previous chapter for
the preliminary assessment of the feedback suboptimal control, the voltage-
driven voice-coil actuated deformable mirror presents some differences. First
of all, the two systems are characterized by natural damping factors which
differ of several orders of magnitude. This fact, beyond generating very dif-
ferent decays of the dynamic response, raises severe numerical issues in the
optimization algorithms, in particular it largely affects the convergence rate.
Strictly speaking, this issue is related to the choice of the initial guess ma-
trix G, which must be a stabilizing gain matrix. The stability region of
the space spanned by the elements of G considerably shrinks when damping
significantly decreases. Consequently, in case of very small damping factors,
it is extremely hard to find a stabilizing initial guess for the control gains
and force the optimization method to move within the closed-loop stability
region. Thus, it has been necessary to perform a series of continued optimiza-
tion runs, starting from a virtually highly damped system and decreasing step
by step the structural damping each time until reaching its estimated small
value. Since in highly damped systems the structural poles lie sufficiently far
from the imaginary axis, the method easily prevents the iterative solution
from moving towards unstable regions. At each new run, the set of gains
resulting from the previous run associated with an higher level of damping is
taken as the initial guess for a system with decreased damping. In so doing,
a satisfactory convergence of the optimization method to an initial stable
guess is obtained.

5.3 Continuous-time design and simulations
Before dealing with practical implementations of the control law, a prelimi-
nary continuous-time simulation of the controlled dynamics of the P45 mirror
has been carried out. As already mentioned, this analysis provides a theoret-
ical reference of the achievable closed-loop performance. According to this
framework, the system dynamics includes neither quantized variables nor
discrete-time signals.

Based on the weighting matrices selected as discussed in the previous
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KP 5528, 6
KD 9, 1

Table 5.1: Continuous Time control Project

section, the design of the PD static output optimal feedback controller using
a continuous-time stochastic procedure resulted in the relatively high control
gains reported in table 5.1. As widely described throughout all this thesis,
the combined feedback-feedforward controller has the following form

Vc(t) = Vc ff (t) + Vc fb(t) (5.5)

where Vc ff (t) is the hybrid feedforward formulation of section 3.1.3

Vc ff (t) = Vc ff ,k + { [rαr]Vc,k + (I− [rαr])Vc ff ,k −Vc ff ,k + ...

...+ K∗v u
r
k+1 − ( [rαr]yu,k + ( I− [rαr] )urk ) } fsh(t) + ...

...+ [C∗v ḟsh(t) + M∗
v f̈sh(t) ] (urk+1 − urk)

(5.6)

and Vc fb(t) is instead the feedback law in the form

Vc fb(t) = −G(y− yr) = −G
{
yu
yv

}
+ G

{
urk + (urk+1 − urk)fsh(t)

0

}
(5.7)

The closed-loop response of the system is governed by the following dynamics

ẋ(t) = (A−BGC)x(t) + B (Vc ff (t) + Gyr(t) ) + ...

...+ [Bd (Bn −BGDn) ]

{
f d(t)
n(t)

}
(5.8)

A sample response is reported in figures 5.1, 5.2 and 5.3, where both
the real and the measured position are plotted. One can clearly observe
the net improvement of the closed-loop response with respect to the already
good pure Oxymoronic feedforward response (fig.3.7). The response is fully
bounded within the 10nm limits.

A general idea of the global closed-loop performance over the whole mir-
ror surface can be gathered by analyzing the position error. The maximum
error is reported in figure 5.5 at each time step. It clearly shows the strong ca-
pability of the control system to stabilize the shell, with an accurate tracking
of the reference positioning even during the transients between two consec-
utive step variations. A quantitative measure of the positioning quality over
the whole surface is given by the time history of the RMS error, which is
showed in figure 5.6. Another quantity which measures the performance of
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Figure 5.1: Ideal System - response

Figure 5.2: Ideal System - response detail
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Figure 5.3: Ideal System - response detail

Figure 5.4: Ideal System - error
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Figure 5.5: Ideal System - maximum error over the surface

the present control system is the RMS error computed in the time interval
corresponding to the steady state part of the commands. This quantity, re-
ported in figure 5.7, results to be around 1nm, that is far below the required
level.

Finally, an analysis on the voltages required by the control system was
performed to check possible saturation. This is shown in figure 5.8, where it
can be seen that the saturation value of ±2, 5V is never exceeded.

5.4 Three different control implementations
In this section, three different practical implementations of the combined
feedback-feedforward controller of the P45 mirror are studied. The first ap-
proach realizes the control system almost entirely with analog components to
reproduce the ideal case behavior in the most accurate way. The other two
solutions, noticing the impossibility to avoid a digital interface with the rest
of the corrective control chain, partially or fully discard the analog compo-
nents, assigning their tasks to the on-board computer, in search for a tradeoff
between system complexity and performances.
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Figure 5.6: Ideal System - error rms over the surface

Figure 5.7: Ideal System - error rms only on steady state step part
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Figure 5.8: Ideal System - control voltage

5.4.1 Almost fully analog implementation

The first approach for a practical implementation of the proposed control
scheme is an analog implementation. This should indeed produce the closest
response to the theoretical continuous-time case. Obviously the interface
with the mirror shape generator, that process data coming from the wave
front sensor, necessarily implies a digital part of control hardware, that has
to be used also to compute the oxymoronic term of the feedforward. This DA
conversion avoids the complete analog transcription of the control project,
but its worsening effect is limited only to the static part of the commands,
that results affected by voltage quantization. As the digital part of the system
is not used for the feedforward shaping, an analog way of implementing the
smoothing task was devised. The basic idea was introducing an analog filter
to produce a shaping effect similar to the analytic function and then to adopt
an electrical circuit for obtaining the PD feedback action.

This solution allows the system to work directly at the lower command
frequency. Indeed, the electronics has just to provide the 10Hz command
voltage steps, that, once passed through the filter, are properly smoothed
before entering the actuator. The result is a significant power saving in the
electronic part, that can avoid higher working frequencies, but, on the other
hand, the increased number of analog components to realize the circuits has
to be properly evaluated. Obviously, the outputs of the analogue shaping
do not have the same dynamical characteristics of the ideal analytic version,
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but for sure their frequency content is band-limited.
To simulate the presence of the additional analog shaping filter, its dy-

namics has been added to the existing state space representation. A second-
order filter was assumed. Accordingly, its transfer function in the Laplace
domain can be written as

Vs =
ω2
f

s 2 + 2 ξf ωfs+ ω2
f

V (5.9)

To be introduced in the state matrix, a time-domain version is needed. We
can write

V̈s + 2 ξf ωf V̇s + ω2
f Vs = ω2

f V (5.10)

which yields {
V̇s
V̈s

}
=

[
0 1
−ω2

f −2 ξf ωf

]{
Vs
V̇s

}
+

[
0
ω2
f

]
V (5.11)

where Vs is the static shaped voltage to be fed into the actuators.
Since all the shaping filters are considered to be equal, it is possible to

modify the overall mirror dynamics expressed in Eq. (2.27) by augmenting
the state as follows 

q
q̇
i
um
z
Vs

V̇s


As a result, the state matrix becomes

A =



0 I 0 0 0 0 0
−[rω2

i r] −[r2ξiωi r] KtΦ
T 0 0 0 0

0 −Ke

L
Φ −[rR

Lr] 0 0 [r 1
Lr] 0

bΦ 0 0 −[rbr] 0 0 0
0 0 0 [rar] −[rar] 0 0
0 0 0 0 0 0 I
0 0 0 0 0 −[rω2

f r] −[r2ξfωf r]
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and the input and output matrices are given respectively, by

Bff =



0
0
0
0
0
0

[rω2
f r]



C =

[
0 0 0 I 0 0 0
0 0 0 [rar] −[rar] 0 0

]
The previous input matrix, now called Bfb, is maintained separately, as the
feedback action is directly sent to the actuators.

The control gains derived from the continuous-time design are used (see
table 5.1). The system simulated is represented by

ẋ(t) = (A−BfbGC)x(t) + Bff (Vc ff ,k + Gyrk ) + ...

...+ [Bd (Bn −BGDn) ]

{
f d(t)
n(t)

}
(5.12)

where Vc ff ,k includes only the static part of the feedforward, without the
shaping function. The response reported in figures 5.9, 5.10, 5.11 shows the
peculiar fast climbs of the analog filter, that induce quickly damped oscil-
lations. The result is relevant errors in the transient part of the commands
(figures 5.12, 5.13, 5.14), but a steady state mean error (figure 5.15) well
below the 10nm boundary. This latter performance is indeed dictated only
by the static quantization voltage error.

It should be noticed the absence of the mass and damping feedforward
terms. These has been discarded in this implementation due to the excessive
complexity involved in the analog realization of a circuit capable also of
extracting the shaping derivatives and scaling them to the correct value.
The amount of power consuming components involved would indeed produce
an unbearable request of energy. It could be also added that the mirror could
be classified as a stiffness dominated system, thus the dominant feedforward
part is the K∗v proportional one and the loss of the other two terms only
marginally affected the results.
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Figure 5.9: Full Analog System - response

Figure 5.10: Full Analog System - response detail
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Figure 5.11: Full Analog System - response detail

Figure 5.12: Full Analog System - error
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Figure 5.13: Full Analog System - maximum error over the surface

Figure 5.14: Full Analog System - error rms over the surface
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Figure 5.15: Full Analog System - error rms on steady state step part

Figure 5.16: Full Analog System - control voltage detail
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Figure 5.17: Analog shaping filter tuning

Analog Shaping Filter

To implement an effective shaping filter having the transfer function repre-
sented by Eq. (5.9), the characteristic parameters ωf and ξf must be tuned to
obtain a dynamic behavior which is similar to the analytic shaping in terms
of shape and rising time. The damping coefficient of the two poles has been
set ξf = 1.0, corresponding to the critical value, so that the correct smooth
shape of the response without overshooting is obtained. The frequency of
the poles was tuned to regulate the response promptness. It has been set
ωf = 140rad/s to obtain a settling time to 1% of the reference within half
the command length. A comparison between the analytic and the analog
versions of the filter is reported in figure 5.17.

The physical implementation of the filter can be obtained using an electric
circuit with passive and reactive elements of the kind in figure 5.18, where
the only active component is an OpAmp. The resistance and capacitance
values can be set according to the relation ωf = 1/RC. This kind of filter
has to be applied on each actuation line, thus it has to be proportionally
taken into account in the power consuming components budget.

PD Electric Circuit

The analog implementation involves also an electric circuit to realize the PD
controller. It is thus necessary to design also a control circuit able to both
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Figure 5.18: Analog shaping filter circuit [40]

amplify and derive the sensor outputs. From classical PID theory, it has been
taken a general PD scheme as reported in figure 5.19. The relation governing
the described system is

Vo = −R2

R1

(
Vi +R1C

dVi
dt

)
(5.13)

The proportional gain can be imposed by properly exploiting

KP =
R2

R1

(5.14)

and accordingly the derivative gain

KD =

(
R2

R1

)
R1C (5.15)

5.4.2 Analog implementation of the feedback part

The second approach which can be adopted for the practical implementa-
tion of the combined feedback-feedforward control under investigation relies
on realizing only the feedback action through an analog electric circuit and
to digitally implement the smoothing action, avoiding thus the use of the
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Figure 5.19: PD electrical circuit [41]

amount of operational amplifiers, required by the shaping filters. It is indeed
to notice the impossibility to fully discard the digital components, that can
be thus exploited also for realizing the correct analytic shaping. It is obvious
that this choice, if on one side reduces the number of analog components, on
the other side forces the calculator to send signals at a higher frequency.

The same architecture presented in the previous section is used to pro-
vide the desired PD control gains. As a result, the feedback control part is
completely analog and is only affected by the circuit noise. Accordingly, the
feedback controller can still be effectively designed following the continuous-
time formulation presented in the previous section, i.e., the control gains
reported in table 5.1 can be used. On the other side, the feedforward part of
the control system and the reference signal are digitally realized. Therefore,
the quantization effects introduce a limited resolution in the reference posi-
tion, which marginally affect the accurate positioning of the mirror and the
transient smoothness of the commanded signals.

The control law thus implemented presents a mixed continuous-piecewise
form

Vc , j = Vc ff , j + Vc fb , j(t) (5.16)

where Vc ff , j is still given by Eq. (5.23), whereas the feedback term becomes

Vc fb , j(t) = −G(y(t)− yrj)

= −G
{
yu(t)
yv(t)

}
+ G

{
urk + (urk+1 − urk)fsh(tj)

0

}
(5.17)

The system response is then computed using a continuous time simulation
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Figure 5.20: Analog Feedback - response

along each control interval. The system simulated can be described as follows

ẋ(t) = (A−BGC)x(t) + B (Vc ff , j + Gyrj ) + ...

...+ [Bd (Bn −BGDn) ]

{
f d(t)
n(t)

}
(5.18)

The results in terms of mirror positioning immediately show a similar
performance compared to the almost full analog case. An actuator response
is reported in figures 5.20, 5.21 and 5.22. The error analysis shown in fig-
ures 5.23, 5.24, 5.25, 5.26 highlights dynamical characteristics not yet at full
continuous time level, but still considerable good. The maximum and rms
values of the position error over the mirror surface exhibit oscillatory tran-
sients with marginal peaks crossing the tolerance boundaries. Nevertheless,
the steady state error fully satisfies the closed-loop requirements, reaching
maximum values of about 6nm.

A specific comment about the control frequency should be given. In-
deed, within the present hybrid analog-digital architecture, the only terms
subjected to a digital implementation and thus affected by the values of
the control frequency are the feedforward voltage and the reference position
voltage. Modifying the frequency would affect only the smoothness of those
signals, without having any effect on the effectiveness of the feedback action.
It is thus possible to tune the control frequency with the aim of finding a
tradeoff between power consumption and smoothness quality of the input sig-
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Figure 5.21: Analog Feedback - response detail

Figure 5.22: Analog Feedback - response detail
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Figure 5.23: Analog Feedback - error

Figure 5.24: Analog Feedback - maximum error over the surface
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Figure 5.25: Analog Feedback - error rms over the surface

Figure 5.26: Analog Feedback - error rms only on steady state step part
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Figure 5.27: Analog Feedback (400Hz sampled inputs) - control voltage

nals. It is noted that a reduced control frequency increases the amplitude of
the small steps used to approximate the smooth shaping filter expression (see
figure 5.27), increasing the energetic content of the signal at high frequencies.
The minimum frequency reachable without deeply affecting the performance
is 400Hz. It is evident in figures 5.28, 5.29 and 5.30 how the rough piecewise
voltage commands excite the low damped high frequency structural modes.
The steady state response shown in figure 5.32 still falls within the required
boundaries, even if there are evident oscillations that substantially raise its
average value.

5.4.3 Discrete-time design and fully digital implemen-
tation

The final approach is based on a fully digital implementation of the combined
feedback-feedforward control at a sampling frequency of 2kHz.

In a fully digital implementation, sensor measurements are first acquired
and then the corresponding information can be numerically elaborated as
required. Therefore, the velocity variables involved in the derivative action
of the feedback controller can be obtained by numerical differentiation of the
sensor positions. According to the pseudo differentiator equation (2.21), it
is possible to derive a finite-difference representation of the derivative oper-
ation, ready to be coded in the processor unit. The time-domain representa-
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Figure 5.28: Analog Feedback (400Hz sampled inputs) - response

Figure 5.29: Analog Feedback (400Hz sampled inputs) - response detail
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Figure 5.30: Analog Feedback (400Hz sampled inputs) - response detail

Figure 5.31: Analog Feedback (400Hz sampled inputs) - error
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Figure 5.32: Analog Feedback (400Hz sampled inputs) - error rms on steady
state step part

tion of the differentiation filter is

ẏv + a yv = a ẏu (5.19)

Then, using the Euler method for approximation of the derivatives, the fol-
lowing finite-difference equation is obtained

yv,k − yv,k−1

∆t
+ a yv,k = a

yu,k − yu,k−1

∆t
(5.20)

which yields

yv,k =
yv,k−1 + a (yu,k − yu,k−1)

1 + a∆t
(5.21)

Due to the relatively low sampling frequency assumed in this approach,
the continuous-time controller was unable to give satisfactory results. Hence,
the discrete-time formulation has been exploited to have a design which prop-
erly accounts for the digital implementation of the control system. Using the
same settings reported in section 5.2, with only small differences to adapt
the system to the absence of derivative and integral filters, a discrete-time
suboptimal feedback control has been designed. The time delay has been set
to one complete sampling period, which represents an overestimated upper-
bound margin of the actual time required to perform the computations asso-
ciated with the control action. The resulting gains are reported in table 5.2.
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KP 1672, 1
KD 3, 1

Table 5.2: Discrete Time control Project with delay

A significant reduction of both values is worth noting with respect to the
continuous-time design. This limitation results from the need of avoiding
closed-loop instability.

The discrete-time version of the control law expressed in Eq. (5.5) can be
written as follows

Vc , j = Vc ff , j + Vc fb , j (5.22)

where j is the 2kHz control step index, not to be confused with the 10Hz
command step. Being the control voltage a piecewise step function, for the
jth control step that goes from tj to tj+1, it could be specified the term

Vc ff , j = Vc ff ,k + { [rαr]Vc,k + (I− [rαr])Vc ff ,k −Vc ff ,k + ...

...+ K∗v u
r
k+1 − ( [rαr]yu,k + ( I− [rαr] )urk ) } fsh(tj) + ...

...+ [C∗v ḟsh(tj) + M∗
v f̈sh(tj) ] (urk+1 − urk)

(5.23)

and the delayed feedback term

Vc fb , j = −G(yj−1 − yrj−1)

= −G
{
yu , j−1

yv , j−1

}
+ G

{
urk + (urk+1 − urk)fsh(tj−1)

0

}
(5.24)

The discrete time system assumes thus the form

ẋj+1 = Axj + B (Vc ff , j −Gyj−1 + Gyrj−1 ) + ...

...+ [Bd −BGDn ]

{
f d
n

}
(5.25)

With the feedback gain matrix resulting from the above discrete-time de-
sign, the closed-loop response of the system was simulated. Figures 5.33, 5.34
and 5.35 show that the closed-loop dynamics is largely affected by discrete-
level inputs and the adoption of control gains of limited magnitude. The
position history presents a more stable behavior than the open loop version.
However, even if it remains close to the reference, the actual position has
difficulty in converging to the correct value. The error (see figures 5.36,5.36)
clearly exceeds 10nm boundaries and the steady state performance (see fig-
ure 5.38) does not meet the prescribed requirements. This is due both to the
selected low value of control frequency and to quantization effects related to
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Figure 5.33: Full Digital System (2kHz) - response

Figure 5.34: Full Digital System (2kHz) - response detail
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Figure 5.35: Full Digital System (2kHz) - response detail

the finite resolution of AD and DA converters, that, on the contrary of the
previous analog cases, deeply affect also the feedback control.

It should be finally highlighted that this third solution, despite completely
discarding the analog circuits of the previous cases, force the on-board com-
puter to work at a higher frequency and to perform more tasks due to the
necessity to numerically compute also the feedback voltage.

Quantization effects

If the control hardware is correctly designed, the presence of discrete-level
sensor and control signals would not significantly affect the control effective-
ness. This implies that the design of the controller and the choice of the
hardware for its digital implementation should be carried out in a collabora-
tive procedure for best performance. This approach should typically involve
the selection of the most suitable devices that can guarantee the successful
implementation of the control law.

The present control problem exhibits a peculiar situation. The feedfor-
ward control term requires to generate a quasi-static part whose order of
magnitude is in the unit voltage range, whereas the feedback action results
in a contribution which is several orders of magnitude lower, mainly due to
the small control gains allowed by the prevention of structural instability.
This fact, along with the limited number of bits of the DA converter, implies
that the resolution of the feedback voltage is very low. In particular, the
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Figure 5.36: Full Digital System (2kHz) - error

Figure 5.37: Full Digital System (2kHz) - maximum error over the surface
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Figure 5.38: Full Digital System (2kHz) - error rms on steady state step part

amplitude of the feedback voltage is smaller than the quantization level. As
a result, the feedback control action becomes a bang-bang control, as shown
in figure 5.39, and the beneficial effect provided by the feedback contribution
is completely lost.

Another quantization effect, presents also in the previous analog solutions,
is related to the error introduced in the static positioning by the quantized
reference. Indeed, half a quantum error in the voltage value commanding the
static positioning of the mirror corresponds to an error of several nanometers.
To show this effect, a specific simulation has been carried out, where the
system has been driven by a high fidelity feedforward scheme with a control
voltage offset of half a quantum. Results are summarized in figures 5.40 and
5.41. It is worth mentioning that, since the offset in the voltage signal is
equal and with the same sign over the whole surface, there is a cumulative
effect on the static positioning that amplifies the error. Nevertheless, it is
clear that the requirements on the accurate positioning and the effects due
to the quantization of the voltage are of the same order. Such a behavior
calls this fully digital implementation into question for obtaining the required
precision on the shape of the mirror.

This solution clearly is not acceptable without tolerating a steady state
error which does not satisfy the closed-loop requirements. A potential alter-
native could be the adoption of AD and DA converters having more bits, in
order to increase the resolution of the quantized output and input signals.
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Figure 5.39: Full Digital System (2kHz) - FB control voltage

Figure 5.40: Half Quantum Voltage Offset - response
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Figure 5.41: Half Quantum Voltage Offset - error rms over the surface

An analysis has been carried by simulating input/output devices having 17
bits. All the other parameters are kept fixed. The response shown in figure
5.42 still suffers from a slow convergence to the reference position. Instead,
it can be observed from the steady state error depicted in figure 5.43 that
one bit more is enough in achieving the required accuracy. However, it must
be stressed that AD and DA converters with a large number of bits would be
more energy-consuming and so their adoption should be critically evaluated.

5.4.4 Solutions Comparison

In this final section the three implementable solutions are briefly compared.
The main criterion used is a preliminary components budget, summarizing
their number and characteristics.

This also constitutes a qualitative indication of the power consumption of
the embarked hardware, that on a spacecraft usually is an important param-
eter due to the limited available resources. Thus only the active elements,
that differentiate the various configurations, are reported.

It should be underlined that, in the analog cases, each actuation channel
has its own filter and PD controller, whose components thus should be ac-
counted many times as the actuation channels are. This summary is reported
in table 5.3.

A detailed study should be done for identifying the less consuming so-
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Figure 5.42: 17 Bits Digital Implementation - response

Figure 5.43: 17 Bits Digital Implementation - error rms on steady state step
part
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Solution Processor DA conv. Sh.Filters PD Circuits

Almost Fully
10Hz 16 bits 45 OpAmps 45 OpAmpsAnalog

Analog
400Hz ≤ 16 bits – 45 OpAmpsFeedback

Fully
2000Hz 17 bits ≤ – –Digital

Table 5.3: Comparative Components Budget

lution, considering the on-board processor frequency and its computational
loads, the DA converters differences and the operational amplifiers number.

5.5 Off-Design Key Parameters Analysis
The final part of this work is related to simulations of the control system
performance with off-design modeling parameters. Since the controller is de-
signed upon a nominal dynamic model, it is worth studying the closed-loop
response to variations of some parameters, in order to test the robustness
of the solution. The goal of the present analysis is to check the effect of
unavoidable uncertainties in the realization and implementation of the sys-
tem and to get a measure of the closed-loop performance under off-design
operational conditions.

The first analyzed parameter is the voice-coil efficiency η. This quantity is
an overall property of the actuator summing up all the device parameters and
represents a crucial characteristic to quantify the capability of the controlled
system to damp out vibrations. As already mentioned its value changes with
the amplitude of the gap between mirror and backplate, thus it is important
to check the control effectiveness when moving from the nominal position.

An uncertainty is instead related to the value of structural damping of
the mirror. Even though an exact measure of damping is difficult, we have
shown that the modal damping ratios will have practically null values in
the operating conditions of the telescope and thus should not significantly
participate to the mirror stabilization. It is however safe verifying the absence
of spillover effects in the high frequency range even with modified ξ values.

On the opposite side, it is also interesting to study the system response
when both the natural and voice-coil induced damping have higher values
compared to those used in the nominal model. This analysis could be useful
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Figure 5.44: Test for η = 0.35 - error accumulation

in checking excessive dissipation effects, that could impede the system to
promptly follow the reference position.

Finally, the whole design has been conducted on a FEM model of the
mirror, that could be considered similar to the result of an identification
process, thus presenting errors in modes and frequency. It is thus necessary
to test the control design with modified dynamical characteristics, both in
terms of Φi and ωi.

5.5.1 Voice-coil induced damping

The nominal value for the motor efficiency is set to η = 0.4, corresponding to
the middle elongation position of the actuator. This value changes with the
actuator stroke, so that upper and lower bounds can be identified. To span
the whole set of possible working conditions, even when small changes in
the actuators design occur, overestimated limit values have been considered.
In particular, the upper and lower bounds have been set to η = 0.5 and
η = 0.35, respectively.

The upper limit values present no great differences compared to the nom-
inal value. The error levels are nearly identical and the closed-loop per-
formance is still dominated by the quantization effect when a fully digital
implementation is considered. Problems arise instead with a lower damping
level. Indeed, control gains are the results of a design procedure based on
an assumed damping assurance. The application of such gains to a system
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Figure 5.45: Test for η = 0.35 Test - rms error

KP 4737, 6
KD 8, 9

Table 5.4: Continuous Time Revised Gains

having a lower value of damping induces vibrations that are barely absorbed
(see figures 5.44 and 5.45). This is due to the large and broad excitation
of the mirror dynamics resulting from the adoption of a rather aggressive
feedback control. When η assumes low values, the exciting dynamics is not
sufficiently damped by the voltage-driven voice-coils.

In such a case, the solution could be to increase the weight related to the
control effort in the definition of the cost function. A larger weighting of the
control effort leads to a reduction of the control gains. If properly tuned,
this reduction can be limited so that the closed-loop performance is still
satisfactory, but the resulting design is more robust with respect to variations
of the voice-coils efficiency. For example, a re-designed PD controller with
the gains reported in table 5.4 shows a stable behavior in case of η reduction
(figures 5.46 and 5.47) and still acceptable results in the nominal case (figure
5.48).
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Figure 5.46: Revised Gains - rms error for η = 0.35 case

Figure 5.47: Revised Gains - steady state error rms for η = 0.35 case
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Figure 5.48: Revised Gains - steady state error rms for η = 0.4 case

5.5.2 Structural damping

The second parameter analyzed has been the structural damping ξ. It was
assumed to study the effect of large variations, ranging from ξ = 1.5835×10−5

as best case to ξ = 1.5835× 10−11 as worst case.
Both cases did not show substantial changes with respect to the nominal

case. This could be due to the practically nihil damping that does not affect
the system response. Indeed, the positioning performance and damping is
guaranteed only by eddy currents associated to the voice-coil.

5.5.3 Modal Model

A robustness analysis was finally carried out by evaluating errors in the
modal parameters of the mirror. To simulate such discrepancies, both modal
shapes and frequencies have been corrupted for obtaining a slightly different
dynamical model. This has been possible thanks to the direct availability of
the mirror modal model.

A random deviation has been added to the natural frequencies. The
intensity of such error has been regulated to obtain discrepancies between
the design and simulation model in the order of 2% for the lower frequencies
and up to 4% for the higher ones, as reported in figure 5.49. Such amount of
inaccuracy in the knowledge of natural frequencies appears to be reasonable
according to an usual modal testing procedure.
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Figure 5.49: Error on natural frequencies

Instead, the introduction of a reasonable deviation for the modal shapes
is less trivial. The following procedure has been devised. Random errors have
been added to the eigenvector components. To quantify the effect of those
errors and their plausibility, the Modal Assurance Criterion (MAC) has been
adopted. The standard deviation of the error has been tuned until diagonal
elements in the MAC matrix achieved values in the order of 0, 90. The matrix
has been computed using the exact given modes and the corrupted ones and
is reported in figure 5.50. This criterion is a geometrical similarity index and
thus presents extra diagonal elements different from zero not only because
of inserted errors, but also because modes are orthogonal only through the
mass and stiffness matrix.

All the implementable solutions turned out to have a robust behavior,
maintaining good performances along with the modified modal model. The
only difference observed is the impossibility to reduce the frequency in the
feedback analog solution down to 400Hz (figure 5.51). The limit frequency
reachable is actually 900Hz.
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Figure 5.50: Modal Assurance Criterion

Figure 5.51: FB Analog Solution (400Hz sampled inputs) with corrupted
modal model
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Final Remarks

This thesis work addresses the problem to transferring voice-coil actuation
technology, developed for Earth based Active Optics, to space telescopes.
This kind of actuation indeed exhibited good performance operating inside
the atmosphere and this research proved its suitability also to an hypothetical
secondary mirror for a space telescope.

For this purpose, the mirror modal model required a high number of
modes to certify the absence of spillover in the high frequency range, but
a reduced order model has been sufficient for the feedback control design,
demonstrating the control capability to produce commands with limited fre-
quency content.

Literature review revealed the practically nihil damping level existing
in materials at cryogenic temperatures, that is the application condition of
future space telescopes. Due to the impossibility to exploit aerodynamic
damping arising from the squeezed air film between mirror and backshell, as
it is done on Earth, it emerged the necessity to find an alternative to damp
out vibrations.

Voice-coil voltage drive has been proposed and tested as solution. Simula-
tions confirmed the net advantage in substituting current drive, required for
high frequency responses, with the aforementioned alternative that revealed
significant performances even with open loop control schemes. This proved
possibility to exploit eddy currents to damp out vibrations.

Voltage drive and the consequent limited actuation bandwidth did not
showed any interference with the control system promptness and confirmed
also the validity of statically approximating the electric dynamics.

Along with these aspects, it has been also confirmed the effectiveness
of the Hybrid feedforward control scheme developed during previous re-
searches [8, 16, 17, 18]. Indeed, it has been possible limiting the vibration
excitation of the optical surface using dynamic compensation terms and, at
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the same time, eroding the static positioning errors, arising from uncertain-
ties in the feedforward stiffness matrix, thanks to the hidden integral action.

Precise correction of typical optical aberrations has been obtained by sup-
porting the Hybrid feedforward with a suboptimal decentralized static output
feedback. ESA requests in terms of high demanding positioning precision and
command frequency thus have been fulfilled.

Three implementable solutions have been proposed. From these latter it
can be inferred the necessity to use analog components to express even the
fine feedback voltage or, alternatively, to rely on DA converters with a higher
number of bits.

The actuation technology and the control system designed showed good
performances even under modeling uncertainties and off-design operational
conditions, highlighting thus the solution robustness.

Further developments could include advancements of the digital control
hardware to enhance its capability of expressing even the finer feedback ac-
tion.

Dealing with the control project, it could be instead interesting including
in the optimization process also other system parameters, like filters band-
width, to obtain a globally optimal performance. In addition, more complex
and daring structures could be adopted for the gain matrix, looking for a
trade off between control performances and practical realization.

Finally, another investigation aspect could be the synthesis and test of
voltage-driven voice-coil technology, along with the proposed control scheme,
also for other mirrors with different sizes, materials and number of actuators.
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