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Abstract

The advent of Chip-MultiProcessor (CMP) architectures in
computing platforms allows the co-location of applications, which
run simultaneously on the same chip. These architectures are
at the base of distributed computing platforms, and in particu-
lar of today’s cloud environments. These environments manage a
diverse and hardly predictable workload, which causes computa-
tional resources to experience increasing phenomena of contention,
as applications running on the different cores may interfere with
each other in using several hardware resources. Therefore, isola-
tion of applications becomes a key aspect to ensure performance
and Quality of Service (QoS) in such environments. Among var-
ious components, the Last Level Cache (LLC) is one of the re-
sources where contention is experienced most, and is fundamental
to ensure applications’ performance. Although contention is a well
known phenomenon in the research, even the most recent commod-
ity CMPs do not provide effective mechanisms to alleviate it, and
no widely accepted solution yet exists.

Page coloring is a technique well known in the literature that
allows partitioning the LLC of commodity processors. This tech-
nique exploits the position of data in main memory to control
how they are mapped into the LLC. The evolution of CMP archi-
tectures has increased the number of cache levels and introduced
important modifications, while how page coloring works on these
cache hierarchies has not been studied in detail. This work aims
to investigate the possible advantages, limitations and trade-offs
that derive from the usage of page coloring on such architectures.
In particular, recent CMPs by Intel, namely those of the Sandy
Bridge family, adopt a hash-based LLC addressing scheme. This
addressing scheme changes how data are mapped to the LLC and,
consequently, the effectiveness of page coloring. Considering such
changes, this work aims to adapt page coloring to the latest Intel’s
architecture, which power cloud platforms.

In our vision, cloud workloads can benefit from page coloring,
leveraging isolation of applications in LLC to fulfill QoS require-
ments. To prove our vision, we realized Rainbow , an implementa-
tion of page coloring in the Linux kernel that partitions modern
LLCs for user-defined sets of applications. We evaluated Rainbow
with a set of computational-intensive benchmarks to show its ef-
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fectiveness, and finally discussed the achievements of this work,
its limitations and possible future research.

This work is organized as follows:

• chapter 1 provides a high-level view of cloud platforms and
of the main issues they face to fulfill users’ requirements,
while, at the same time, optimizing the utilization of their
computational resources

• chapter 2 provides the necessary background, explaining the
architecture of modern LLCs; it also shows how control-
ling physical memory allows controlling the LLC and, con-
sequently, how the software layer manages physical memory

• chapter 3 shows the techniques to obtain isolation in the
LLC, offering a general view of the state of the art and of
actual unsolved issues

• chapter 4 discusses the design of Rainbow in the context
of the modern cache hierarchies, focusing on the the recent
Intel’s architectures

• chapter 5 investigates Intel’s Sandy Bridge architecture by
reconstructing the hash function of these CMPs

• chapter 6 explains how Rainbow is implemented within the
Linux kernel, based on the design in chapter 4 and on the
findings of chapter 5

• chapter 7 reports the results obtained running Rainbow with
a set of benchmarks, showing how it can improve isolation
and provide strict guarantees on applications’ performance

• chapter 8 discusses the results, the limits and possible work
deriving from the proposed solution, in the context of cloud
platforms.
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Sommario

L’avvento delle architetture Chip-MultiProcessor (CMP) nelle
piattaforme di computazione permette la co-locazione di applica-
zioni, che eseguono contemporaneamente sullo stesso chip. Queste
architetture sono alla base delle piattaforme di calcolo distribui-
to, in particolare dei recenti ambienti di cloud-computing. Questi
ambienti gestiscono un insieme di applicazioni variegato e diffi-
cilmente predicibile, che causa crescenti fenomeni di contesa sulle
risorse condivise, dal momento che le applicazioni che eseguono su
cores differenti possono interferire fra di loro nell’utilizzo di diver-
se risorse hardware. Perciò, l’isolamento delle applicazioni diventa
un aspetto fondamentale per assicurare le prestazioni e la qualità
del servizio, o Quality of Service (QoS), in tali ambienti. Fra vari
componenti, la cache di ultimo livello, o Last Level Cache (LLC),
è una delle risorse più contese, ed è fondamentale per assicurarne
le prestazioni delle applicazioni. Nonostante tale fenomeno sia ben
noto nella ricerca, anche i più recenti CMP comunemente reperibi-
li sul mercato server non offrono meccanismi efficaci per alleviarla,
e nessuna soluzione con largo consenso esiste ancora.

Page coloring è una tecnica ben nota nella letteratura che per-
mette di partizionare ls LLC dei comuni processori server. Questa
tecnica sfrutta il posizionamento dei dati nella memoria centra-
le per controllare la loro posizione nella LLC. L’evoluzione delle
architetture CMP ha accresciuto il numero di livelli di cache e in-
trodotto importanti modifiche, mentre il funzionamento del page
coloring su tali gerarchie di cache non è stato studiato dettagliata-
mente. Questo lavoro si prefigge di investigare i possibili vantaggi,
limitazioni e compromessi che derivano dall’utilizzo del page colo-
ring su queste architetture. In particolare, i recenti CMPs di Intel,
ossia quelli della famiglia Sandy Bridge, adottano un indirizzamen-
to della LLC basato su hash. Questo schema di indirizzamento
cambia come i dati vengono mappati nella LLC e, di conseguenza,
l’efficacia del page coloring. Considerando tali cambiamenti, que-
sto lavoro si prefigge di adattare il page coloring alle più recenti
architetture Intel, che equipaggiano le piattaforme cloud.

Secondo la nostra visione, le applicazioni cloud possono trarre
beneficio dal page coloring, sfruttando l’isolamento delle applica-
zione nella LLC per soddisfare requisiti di QoS. Per dimostrare la
nostra intuizione, abbiamo realizzato Rainbow , un’implementazio-
ne del page coloring per il kernel Linux che partiziona le moderne
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LLCs per insiemi di applicazioni definiti dall’utente. Abbiamo
valutato Rainbow con un insieme di applicazioni di riferimento
computazionalmente intensive per mostrare la sua efficacia, per
discutere infine i risultati di questo lavoro, i limiti e possibilità di
ricerca futura.

Questo lavoro è organizzato come segue:

• il capitolo 1 dà una visuale di alto livello delle piattafor-
me cloud e dei maggiori problemi che queste devono af-
frontare per soddisfare le richieste degli utenti, ottimizzando
contemporaneamente l’utilizzo delle risorse computazionali

• il capitolo 2 fornisce le conoscenze necessarie, spiegando l’ar-
chitettura delle moderne LLCs; inoltre, mostra come con-
trollare la memoria fisica permette di controllare la LLC e
di conseguenza, come lo strato software gestisce la memoria
fisica

• il capitolo 3 mostra le tecniche per ottenere isolamento nella
LLC, offrendo una visione generale dello stato dell’arte e
delle attuali problematiche irrisolte

• il capitolo 4 discute le scelte progettuali alla base di Rainbow
nel contesto delle moderne gerarchie di cache, con particolare
riferimento alle recenti architetture Intel

• il capitolo 5 approfondisce l’architettura Intel Sandy Bridge
ricostruendo la funzione di hash di tali CMPs

• il capitolo 6 spiega come Rainbow viene implementato nel
kernel Linux, basandosi sulle linee guida progettuali esposte
in nel capitolo 4 e sui risultati del capitolo 5

• il capitolo 7 riporta i risultati ottenuti eseguendo Rainbow
con un insieme di applicazioni di riferimento, mostrando co-
me esso può migliorare l’isolamento e fornire rigorose garan-
zie sulle prestazioni delle applicazioni

• infine, il capitolo 8 discute i risultati, i limiti e possibili lavori
futuri che derivano dalla soluzione proposta, nel contesto
delle piattaforme cloud
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Introduction and motivations 1

S’io credesse che mia risposta fosse
a persona che mai tornasse al mondo,
questa fiamma staria senza piu scosse.
Ma perciocché giammai di questo fondo
non tornò vivo alcun, s’i’odo il vero,
senza tema d’infamia ti rispondo.

Dante Alighieri, Divina Commedia, Inferno XXVI

This chapter explains the context of this research and presents the
objective of our work. In particular, section 1.1 outlines the problem
in the current scenario of Information Technology (IT), where the cloud
computing paradigm is actually causing a shift towards different com-
putational and economical models than those adopted so far. Then,
section 1.2 focuses on cloud platforms and gives an overview of the goals
that drive the management of computational resources and of the chal-
lenges the providers face, highlighting the issues that are still unsolved
with in the context of Chip-MultiProcessor (CMP) architectures. Fol-
lowing on, section 1.3 focuses on the occurrence of contention in the Last
Level Cache (LLC) even with the latest commodity CMPs and its impor-
tant consequences for providers and users. Finally, section 1.4 outlines
the solution we propose, its main guidelines and its evaluation.

1.1 The context of cloud platforms

The current scenario of computing services is becoming increasingly het-
erogeneous and complex. The main trend visible in the current years is
the shift of the computing paradigms towards a so-called cloud scenario
[92, 65, 58], where external providers offer IT services to final users, who
have access to computing resources only via a network. On the software
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1. Introduction and motivations

side, cloud platforms offer a wide variety of services, from direct access
to a physical machine to high-level Application Programming Interfaces
(APIs) [23, 10]. In cloud scenarios, the hardware and software deploy-
ments are heterogeneous, as well as the various services these platforms
offer to multiple categories of users, from single individuals to big com-
panies [70]. Therefore, these platforms are inherently complex, and must
fulfill multiple goals such as security, scalability, cost-effectiveness, etc.
With the differentiation of cloud applications, the market of computing
services introduced Service Level Agreements (SLAs) between providers
and users [10, 66], which formalize requirements and guarantees about a
certain cloud service into a contract between the parties. SLAs describe
the technical parameters the service will provide in terms of Quality of
Service (QoS) requirements: for example, a service can guarantee an
upper bound on the Mean Time Between Failures (MTBF) or on the
Turn-Around Time (TAT), an average throughput or other high-level
metrics [31]. On the provider’s side, the management of cloud platforms
pursues different goals, such as platform utilization and low energy con-
sumption [4]. Thus, providers’ and users’ goals are often in conflict, and
resource provisioning for cloud services is an open field of research [12].

The major computational resources in typical cloud environments are
Central Processing Units (CPUs), in particular CMPs, which became
the standard computational resources for servers and workstations over
the past years. These architectures rely mainly on Thread Level Paral-
lelism (TLP) to increase the performance, in accordance with Moore’s
law [60], and are the actual and future trend [35]. These architectures
allow co-location of different tasks on the same chip, achieving a higher
computational density than previous single-threaded CPUs. Therefore,
cloud environments largely employ CMPs in order to keep the utilization
of the infrastructure high.

Yet, in actual commodity CMP architectures some resources can be
explicitly managed from software (like cores), while others cannot, their
control being exclusively up to the hardware. Thus, some of these re-
sources are implicitly shared by running applications, with potentially
detrimental effects. Contention on shared computational resources, such
as the memory controller, the on-chip interconnection and the caches,
limits the performance applications can exploit [49]. Contention phe-
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1.2. Cloud platforms: applications and QoS

nomena exacerbate as the diversity of services increases, because how
the variable workload of a cloud infrastructure uses the shared resources
is hardly predictable [85]. Hence, isolation of shared resources has be-
come a fundamental aspect for efficient computing infrastructures.

This thesis focuses on the LLC, a shared resource that is funda-
mental for the performance of compute-intensive applications. Many
research works have investigated contention on the LLC and proposed
solutions requiring either hardware or software modifications, so that a
wide literature is currently available. But these solutions remained con-
fined in the research environment and have not been adopted by CMP
designers nor by production-ready software environments. On one side,
hardware solutions require big investments and actually do not provide
a definitive, effective solution to contention. On the other side, software
solutions are often ineffective or limited to specific scenarios, and can
require deep modifications in the software infrastructure.

1.2 Cloud platforms: applications and QoS

This section presents the aspects of cloud platforms that are of inter-
est for this work. Section 1.2.1 shows the main parameters to evaluate
the services cloud environments provide and shows a simple classifica-
tion of cloud applications with respect to their requirements. Then,
section 1.2.2 introduces the main issues due to resource sharing.

1.2.1 QoS for cloud applications

SLAs define the service parameters to be guaranteed and are a part
of the contract between the final user and the service provider that
ensures the quality of the services provided and their cost [2, 89, 88];
these agreements specify QoS parameters that measure the quality of
the service. These parameters often are of interest for both technical
and non-technical users, and can also reach a high level of detail. SLAs
also prescribe the interval these parameters must be within and the
penalties in case of violation. Typical examples of QoS parameters are
MTBF, throughput and response time. Some parameters are related to
the availability of the service, while others are related to its performance.

3



1. Introduction and motivations

In particular, performance requirements are experiencing an increasing
demand [96, 81] and bring novel challenges to light. For example, latency
is becoming a key requisite for user-facing applications, and providers
often employ this metric to characterize the QoS of their service.

With respect to performance-related QoS, applications can be clas-
sified in two broad categories: batch applications and latency-sensitive
applications. Batch applications do not have a continuous interaction
with users and do not have strict requirements in terms of latency; their
typical QoS requirement is the completion time. A notorious example
of batch application is MapReduce [24], but more and more applications
with batch characteristics are being implemented for cloud platforms,
also from the scientific world [27, 63, 89].

Instead, latency-sensitive applications have different QoS parameters
to be satisfied. For example, Spark, a framework for machine learning
[99], can be assigned latency constraints because it must respond to in-
teractive queries. Typically, cloud platforms measure the time needed
to service a request, from the instant it reaches the datacenter to the
instant it exits. To measure and control the service QoS, previous work
[3, 42] has shown that the 95-th (or 99-th) percentile of the latency dis-
tribution is a good proxy for its QoS, while the mean can be misleading.
Using the percentile ensures high confidence in evaluating the QoS of a
service, imposing strict requirements to the provider. Instead, the mean
does not take in account the statistical distribution of the latency, which
can have long “tails”. Latency requirements are currently spreading also
on common services like web search, e-mail and online gaming[56]. Pre-
vious research showed that, in general, a platform can guarantee very
low latency if the usage is low [91].

1.2.2 The provider’s view: resource provisioning

Unlike users, a cloud provider attempt to optimize different parame-
ters, with goals that conflict with the user’s objectives. In particular,
parameters like energy consumption and utilization are at the base of
the management of cloud infrastructures and drive the design choices of
providers [6, 44, 79]. Nonetheless, keeping utilization high while meeting
sufficient performance levels is still a big challenge, and the research is
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1.3. Contention on the Last Level Cache of modern architectures

very live on this topic. For example, Barroso and Hölzle [4] show that
the utilization of data centers computing resources seldom goes above
20%.

A first solution to maintain a sufficient level of performance is over-
provisioning of resources, a solution that has, yet, a very high infrastruc-
tural cost (server purchase, energy, etc.). On the contrary, decreasing the
provisioning diminishes infrastructural cost, but implies the consolida-
tion of more tasks onto a limited number of machines, sharing hardware
resources. This sharing, in turn, leads to contention on those hardware
resources that are not partitionable. Among all the shared resources (like
disk bandwidth, network bandwidth, etc.), computational resources are
the key of many applications. At the heart of them, CMPs architectures
are a critical component where contention occurs, despite the continu-
ous progresses in manufacturing technology and design. Indeed, while
the computational power can be partitioned by core assignment and by
time sharing (a long-living, well-known mechanism), other resources like
the memory bandwidth and the LLC are not partitionable by design.
Therefore, co-location of more tasks on a single CMP can cause con-
siderable slowdowns [79], which can be intolerable for applications with
strict requirements. This forces cloud providers to limit or even to avoid
co-location at all [56].

1.3 Contention on the Last Level Cache of
modern architectures

The employment of CMPs in cloud platforms, although it allows the
consolidation of more applications and thus a potentially higher utiliza-
tion, forces the sharing of several resources, posing novel challenges the
research is tackling. In particular, the LLC has a central role in ensur-
ing applications’ performance, but is transparent in today’s commodity
CMPs and is subject to unpredictable contention.

A wide literature already discusses the occurrence of contention on
the LLC [28, 56], also within multi-tenants cloud environments [34, 61,
85, 33]. The occurrence of contention is particularly detrimental in these
environments since it affects two aspects that are of fundamental impor-
tance. The first aspect is the accounting policy: cloud platforms pro-
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1. Introduction and motivations

vide pay-per-use services, where users typically pay for the amount of
resources they rent over time (CMP cores, memory, bandwidth, etc.),
expecting a certain, proportional performance. Nevertheless, “transpar-
ent” resources such al the LLC have an important role with respect to
final performance, and contention may cause the final performance to be
different from the expected one, leading to unfair pricing policies. This
contention, which depends on how the provider consolidates the work-
loads, requires novel prediction models [33] and accounting policies.
The second aspect pertains QoS requirements, and has already been
introduced in section 1.1. In presence of contention, a provider cannot
guarantee a priori a certain QoS without resorting upon over-provisioning
[56], thus with additional costs.

Despite the vast literature upon contention on the LLC, researchers
and manufacturers did not found a definitive way to solve it, nor an
effective and widely acknowledged way to alleviate it. This reflects to
CMP architectures, which still allow the occurrence of noticeable con-
tention phenomena. Moreover, economical and legacy reasons prevent
deep changes in CMPs, so that these issue are likely to remain unsolved
for the upcoming years.
In particular, the latest commodity CMPs by Intel, namely the Nehalem
and Sandy Bridge families, which power most of the cloud infrastruc-
tures, do not offer any feature to tackle this issue. Therefore, the research
has been actively working on a software technique called page coloring,
which exploits the Phisically Indexed, Physically Tagged (PIPT) data
mapping of modern LLCs [8] to partition the LLC and ensure isolation,
as section 3.3 explains. Nonetheless, Intel’s Sandy Bridge family in-
troduces a hash-based addressing scheme [52], which changes the PIPT
mapping of data to the cache and makes “classical” page coloring infea-
sible.

1.4 Proposed solution

Addressing this lack, this work proposes to make page coloring viable
also on the Sandy Bridge architecture and onto a modern hardware/-
software stack, so that modern cloud infrastructures can leverage the
benefits of isolation.
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Recent CMPs have deep memory hierarchies to hide the main mem-
ory latency and offer new functionalities that conflict with page coloring.
Therefore, this work deeply studies the consequences of these features
with respect to page coloring and which restrictions derive from modern
architectures, and provides the enabling technology to obtain LLC par-
titioning also on recent architectures.
Since we aim to design a software LLC-partitioning capability, we will in-
tegrate it within the physical memory management mechanism of recent
Linux kernels. These kernels are the base of cloud platforms deploy-
ments, and manage physical memory via the buddy algorithm. Taking
in account the main goals of this algorithm and its implementation de-
tails, we will show how our extension, called Rainbow , enhances it with
page coloring capabilities in an efficient and non-disruptive way. This
implementation will require the knowledge of the Sandy Bridge hash
function, whose form will affect our design. Nonetheless, we will dis-
cuss how to generalize our findings. Since also older architectures, with
a “classical” PIPT-based LLC addressing, are still used, we will design
Rainbow so that its basic mechanisms and its implementation can fit
both Sandy Bridge and Nehalem architectures. This choice generalizes
page coloring to a wide variety of recent and legacy architectures, the
formers represented by Sandy Bridge and the latters by Nehalem. More-
over, Nehalem’s addressing scheme is similar to that of many different
architectures like SPARC or ARM, potentially extending Rainbow ’s vi-
ability also on these platforms, which are nowadays appearing to the
market of cloud platforms.

To provide an easy interface to isolate applications in LLC, we will
also add a suitable interface, following the recent guidelines of Linux de-
sign and the best use practices of large computing environments. Based
on these guidelines, we will implement a cgroup interface [15] to expose
Rainbow ’s capabilities to userspace, allowing the platform manager to
handle the co-location of applications to different LLC partitions.

Finally, we will thoroughly evaluate Rainbow with reference bench-
marking applications from the Standard Performance Evaluation Cor-
poration (SPEC) suite [78], showing how Rainbow allows the platform
manager to give an application a suitable LLC partition based on high-
level policy and on QoS requirements. With Rainbow ’s technology, users

7
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will be able to alleviate contention on the LLC for any set of applications
of their choice, enhancing performance isolation and predictability.

To explain the relevant work in the field and our own work, this
thesis is organized as follows.

• chapter 2 explains the necessary background knowledge to under-
stand the architecture of modern CMPs, focusing on the LLC,
and the functioning of the buddy algorithm, where Rainbow will
integrate

• chapter 3 provides an overview of the state of the art, showing
diverse solutions and highlighting unsolved issues with respect to
LLC contention

• chapter 4 explains the design of Rainbow , showing how it specifi-
cally take in account modern cache hierarchies, in particular those
of recent Intel’s architectures Nehalem and Sandy Bridge, and how
its capabilities are exposed

• chapter 5 shows a repeatable methodology to reconstruct the hash
function of a Sandy Bridge CMP, providing insights on its physical
layout

• chapter 6 explains the main implementation details of Rainbow ,
following the concepts of chapter 4 and the findings of chapter 5

• chapter 7 evaluates Rainbow ’s effectiveness and highlights its achieve-
ments and limitations in practice

• chapter 8 provides a more general view over the results of this
work and over its limitation, highlighting possible future work and
application scenarios.
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Background 2

In this chapter, we introduce the hardware and software components this
thesis is based upon, in order to give the reader the needed background.
Therefore, after a review of the motivations and of the structure of caches
section 2.1, section 2.2 explains contention phenomena by discussing
their sources and their consequences. Then, section 2.3 shows the details
of the Nehalem [17][18, section 2.4] and Sandy Bridge [18, section 2.2]
CPU architectures by Intel, which well represent the CMPs available
in today’s server platforms and are thus the reference platforms for the
purposes of this thesis.
Given the importance of physical memory allocation as in section 2.1,
section 2.4 presents the goals and the functioning of the physical memory
allocator of the Linux kernel, which will be at the heart of the proposed
solution. Finally, section 2.5 explains a recent hardware capability that
allows CMPs to easily manage large portions of physical memory, which
is affecting the design of modern Operating Systems (OSs) and is to be
considered in the context of this thesis.

2.1 Motivations and structure of modern caches

This section gives an overview of the structure of a modern CPU cache,
starting from the basic reasons that led to the introduction of this com-
ponent (section 2.1.1), explaining its structure, functioning and types
(sections 2.1.2 to 2.1.5) and finally showing how multiple caches are
organized into hierarchies within modern CMPs (section 2.1.6).
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2.1.1 Motivations of caching

From the 80’s, the architectural and technological evolutions of CPUs
and Random Access Memorys (RAMs) caused a diverging growth of the
speed of these two components [36]. In particular, also the difference be-
tween these two speeds grew up exponentially, in favor of the CPU. This
ever-increasing difference created over the years the so-called processor-
memory gap [13], forcing the CPU to wait for the completion of load and
store memory operations and causing long idle intervals that limit the
overall Instructions Per Second count (IPC) and decrease performance.
Hence, the need of overcoming this bottleneck emerged, and designers
chose to introduce an intermediate layer of fast memory that is invisible
to both the CPU and the RAM memory, called cache1.

The design of this layer is based on the patterns of memory accesses
found in real-world applications, which exhibit, each one to a certain
degree, a characteristic called access locality. This behavior is the key
principle caches are built upon, and is further distinguished in spatial
locality and temporal locality. Without the need of a precise mathemat-
ical definition (as given by Bunt and Murphy [9]), we can easily define
spatial and temporal locality as follows.

Definition 2.1. (Spatial locality) if a (virtual) memory address a is
referenced, it is likely that the addresses nearby will be referenced in the
near future.

Definition 2.2. (Temporal locality) if a memory address is referenced
at cycle c, it is likely that it will be referenced again at cycle in the near
future.

Combining these two principles, we ca state that, if a block of words
is referenced by the CPU, it is likely to be referenced again and multiple
times in the near future. Caches are indeed designed to recognize these
“local” patterns and keep data close to the CPU, and thus have a very
different implementation than RAM memories.
In fact, caches are typically implemented with Static Random Access

1as of the Oxford Dictionary, a cache is defined as “A hidden or inaccessible
storage place for valuables, provisions, or ammunition”, from the French verb cacher,
“to hide”
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Memory (SRAM) technology. This technology has a greater cost in
terms of area and energy with respect to the cost of main memory (typ-
ically implemented with Dynamic Random Access Memory (DRAM)
technology), but permits to build memories whose access time is much
smaller. For these reasons, the size of cache memories is a careful trade-
off that takes into account many parameters.

2.1.2 Structure of a cache

The basic granularity for data management inside the cache is the line
(also called block). A cache loads (or discards) the data in units of
lines from main memory, where a cache line has a size that is bigger
than a word and always a power of 2. For example, the line size in
the x86 architecture is 64 B (with word of 32 or 64 bits), while in the
Power architecture it is 128 B. A line stores contiguous words from main
memory. Using cache lines bigger than the CPU word allows to leverage
spatial locality, because the cache stores also the words that are adjacent
to the requested one. To leverage temporal locality, a more complex
mechanism has been designed and is explained in the following section.

2.1.3 Cache functioning models

Based on the trade-off between latency and performance, several cache
designs exist, each one with a certain ability to leverage temporal local-
ity. The most general model is the n-way set-associative cache, where
n is usually an even number. This model divides the cache into 2s sets,
each set containing n lines. Using both line size and set number in pow-
ers of two makes it possible to use subsets of the data address bits to
look for a certain byte inside the cache. In particular, looking at fig. 2.1,
the less significant l bits determine the offset of the referenced byte in-
side the line, and are hence called line offset bits. Similarly, the higher
s bits are the set number bits and determine the cache set. In this way,
the lookup of the requested datum is easily performed starting from its
address.
A third parameter, the associativity a, plays a fundamental role in the
design and performance of a cache. Each set, in fact, is able to store a

different lines having the same set number; to distinguish the lines inside

13



2. Background

1963 5 0

tag line offset

18 6

set number

Figure 2.1: Bit fields of a memory address to access a cache

The physical address is divided into three fields for cache access: line
offset, set number and tag

a single set, the cache uses the remaining bits of the address, called tag
bits, as a label associated to each line.

When a datum is requested to the cache, the cache controller reads
the three fields of the address, accesses the set and searches the line
having the requested tag. The tag value is searched in parallel over
(ideally) all the a set lines, thus explaining why this cache is called “set-
associative”. If the controller finds the line (this event being called cache
hit), it uses the line offset to fetch the requested data bytes. Otherwise,
in case of cache miss, the controller fetches the line from main memory
and must store it inside the set, in one of the a lines. To determine
the line to place incoming data to, the cache controller looks for a free
line by reading a specific bit that indicates whether the line is free; if it
finds one, it stores the incoming line to the free location. Otherwise, the
controller has to replace a line with the incoming one. To do so, the key
idea is to choose the line that is less likely to be reused again in the near
future, in order to keep in the cache the only data with highest temporal
locality. Caches typically determine the reuse probability though the
recent history of each line: in obedience to the principle of locality, the
more recently a line has been accessed the higher its reuse probability is.
Hence, to track the recent history, each line has an associated field called
Least Recently Used (LRU) priority, which is set to 0 every time the line
is accessed and incremented on every access to other lines. Based on
this value, the cache controller chooses the least recently accessed line
for replacement: it evicts this line, eventually writing it to main memory
if it was modified while it was inside the cache, and stores the incoming
line in place of the evicted one.

Moreover, modern caches also have additional units called prefetch-
ers, which attempt to predict future memory accesses and load the cor-
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responding cache lines from main memory in advance, in order to mask
the latency of cache misses. These units are widely present in today’s
processors, which perform aggressive predictions of memory accesses [11]
and may even anticipate accesses at various offsets [30].

In general, the parameters of the cache play a fundamental role in
determining its performance and it cost in terms of power and area,
introducing several conflicting goals. Therefore, the design of a cache
is always a trade-off between different objectives. For example, to ex-
ploit temporal locality at best the associativity should be maximal, to
the point that all the lines a cache can holds lie in the same unique set
(hence s = 0 and a is very big). In this cache model, called fully asso-
ciative cache, the tag and LRU priority lookups involve a big number of
lines, and need either a number of comparator circuits that is quadrat-
ically bigger (to perform all the comparisons in parallel) or a very long
lookup time, increasing the latency of every operation. Therefore, this
model is not feasible in practice.
On the other side, a cache with a = 1 and maximal number of sets
requires the least amount of area and power, and has minimal latency
since no lookup is to be performed, but only the tag comparison between
the requested address and the one of the line in the target set; yet, a = 1

implies that it is not possible to choose among several lines in case of re-
placement, thus preventing the cache from leveraging temporal locality.
Due to the low performance of this model, called direct-mapped cache, it
was used only for small, low-latency caches in the past years, where the
lithographic technology posed considerable lower bounds to the latency
of the transistors.
Nowadays, despite the great progress of silicon lithography, the associa-
tivity is still limited to a small set of values, usually ranging from 2 to
20. Conversely, the number of sets is quite high to hold big amounts of
data even with limited latency: indeed, modern caches may have more
than 2048 sets with a latency around 10 ns.

2.1.4 Cache addressing

As stated in the previous section, the cache uses the data address for
the internal lookup. Yet, modern CPUs provide two address spaces for
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data, the virtual address and the physical address. The physical address
is the one used by the CPU to load data from RAM, is unique and is
usually managed by the OS only. Instead, applications use virtual ad-
dresses to reference memory and cannot handle physical addresses. Each
application has a separate virtual address space, which is mapped to the
physical address by the OS in a way that is transparent to applications.
Therefore, the same virtual address in the context of two applications
can reference different physical locations in RAM. The translation from a
referenced virtual address to the corresponding physical one is performed
at runtime by the Translation Lookaside Buffer (TLB); this component
resides in the CPU and its performance is fundamental.

Both address spaces can be used for cache addressing. Furthermore,
as the cache needs to know both the set number and the tag, one address
space can be used for the set and the other for the tag. Based on which
address space a cache uses for which field, four model can be devised.

Instead, a Virtually Indexed, Virtually Tagged (VIVT) cache uses
the virtual address for both the set number and the tag. Therefore, the
TLB translation is noot needed to perform a complete lookup, minimiz-
ing the latency. Yet, caches of this type suffer from two main problems,
collectively called aliasing. Since each process has a dedicated virtual
memory space, it may happen that the same virtual addresse refers two
different physical location, depending on the running process: this is
called the homonyms problem, and forces either the cache to add extra
logic and internal state to disambiguate, or the OS to completly flush
the cache in case of context switch, with an evident performance penalty.
Conversely, different virtual addresses can refer to the same physical lo-
cations (as with shared data or IPC mechanisms), thus creating multiple
copies of the same data (synonyms problem). To solve this issue, a cache
must track which lines contain to the same physical address, adding ex-
tra logic that depends on the TLB lookup (even if not on the critical
path of cache hits). Generally, since the solutions to homonnymity and
synonymity problems have a high cost, VIVT caches are rare.

On the opposite side, in the PIPT model, the cache uses only the
physical address for both the set number and the tag. With such scheme,
all the addresses come from the same address space, ensuring their
uniqueness inside the whole cache. Nonetheless, PIPT caches require

16
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the TLB translation before accessing, and have thus a higher latency.
However, thanks to the progress of the lithography and to the speed of
TLBs most of the modern caches are implemented in this way.

Phisically Indexed, Virtually Tagged (PIVT) caches suffer from the
same problems of VIVT caches and in addition require the TLB trans-
lation to access the set, and are not used in practice.

Finally, Virtually Indexed, Physically Tagged (VIPT) caches can ac-
cess the set in parallel with the TLB translation and do not suffer from
the homonyms problem, but can still have synonyms. However, the
caches have small latency, and are still used in small, fast caches.

2.1.5 Other types of cache

Other types of cache exist. A first type is the victim cache, which holds
the lines evicted from the main cache; since this cache is accessed only
after looking up the data in other caches, it can have a higher penalty
and thus a higher associativity. This cache serves as an added layer
between the normal cache and the main memory, can have a huge size
(from 32 to 128 MB) and can be implemented with a technology having
a smaller cost in terms of area and energy, like embedded Dynamic
Random Access Memory (eDRAM).

Caches can be specialized to store only a certain type of data, for
example those along the critical path of fundamental operations. Trace
caches, for example, store small traces of instructions that are executed
often. Similarly, a micro-operation cache stores instructions that have
already been partially decoded: these caches are typical of the modern
x86 architectures, which pre-decode the variable-length x86 instructions
into fixed-length micro-instructions, which enter the CPU pipeline. To
speedup the slow decoding phase of variable-length instructions, the pre-
decoder stores groups of corresponding micro-instructions inside such
cache in order to retrieve them in future, to reduce the bottleneck and the
consumption of decoding. This technique, widely employed in the latest
architectures by Intel, is particularly suited to speedup the execution of
loops, whose body can be entirely kept inside the micro-operation cache
and be decoded only at the beginning.
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2.1.6 Cache hierarchy

As stated, the design of a cache for a given architecture requires numer-
ous trade-offs. With the increment of the CPU frequency that occurred
in the early 2000s and, later, with the advent of CMPs, the role of the
cache has become increasingly important. Therefore the cache had to
scale-up with the rest of the architecture, without causing bottleneck ef-
fects. Since the latency of a single cache is determined by the number of
sets and the associativity, even with the last technological enhancements
it is impossible to build a unique cache with high size, high associativity
and small latency. Thus, designers decided to organize different caches
into a hierarchy of layers, where each layer has size and latency greater
than the previous one. These layers increased in number during the
years, and today’s server processors typically have three cache layers.

The lowest Level 1 (L1) caches are the first ones to be accessed for
lookup and are very small, typically 32 or 64 KB, and are usually di-
vided into a data cache and an instruction cache to realize a so-called
Harvard architecture. The former cache contains only the applications
data, which often exhibit higher locality than instructions, that the latter
stores; to leverage this higher locality, data caches have higher associa-
tivity. In order to limit latency (around 2 cycles), the L1 caches have
small size and employ a VIPT addressing scheme. In CMP architec-
tures, L1 caches are per-core, in order to provide to the core datapath a
dedicated, fast memory and avoid contention with other cores.

In case of cache miss in the L1 layer, the subsequent Level 2 (L2)
cache is accessed, which has greater size (typically from 256 KB to 8 MB)
and has higher associativity (around 8), but also higher latency (typically
5 to 12 cycles). This layer of the hierarchy employs the PIPT scheme
as the TLB translation is performed in parallel with the L1 access, so
that no aliasing phenomenon is present. If this cache is the last layer in
the hierarchy, it is shared among cores, otherwise it is per-core. In fact,
in the latest years, the increasing amount of data CMPs must elaborate
led to the use of such caches as per-core caches, while an upper Level 3
(L3) layer serves as shared cache and coordinates data sharing among
cores. These L3 caches have even greater associativity (from 12 to 16),
size (from 6 to 40 MB) and latency (from 20 to 40 cycles), presenting a
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high hit ratio. This level is also called LLC, and is connected to the main
memory via a controller, with a latency that is often in the order of 100
cycles. Typically, it is shared among all the cores, even if few CMPs have
multiple independent caches shared between couples of cores. Because
of the increasing number of cores and of the increasing LLC size, this
last layer is often split into more slices (or tiles) that are interconnected
with the cores. How the intercommunication system is designed depends
highly on the model of the CPU, and the same vendor has developed,
over the years, multiple solutions with different cost, performance and
scalability. Therefore, the contention the cores may experience on the
intercommunication varies highly, and we cannot assume a reference
model for this system.

A key aspect of cache hierarchies is the coherency between multiple
caches: when data are shared among cores, the cache lines containing
those data are loaded into the lower layers of each core, and a coordina-
tion mechanism must control whether these lines are modified and even-
tually communicate the changes to the other cores (and CPUs in Non-
Uniform Memory Access (NUMA) systems) to ensure data coherency.
The state of the lines is tracked through the Modified, Exclusive, Shared,
Invalid (MESI) protocol [64], which CPU manufacturers adapted over
the years to their architectures producing variants like Modified, Exclu-
sive, Shared, Invalid and Forward (MESIF) for Intel [87] and Modified,
Owned, Exclusive, Shared and Invalid (MOESI) for ARM and AMD [54,
1].

Finally, CPUs can have specialized caches like a micro-instruction
cache or an upper victim cache, but, here too, the solutions vary greatly
based on the vendor and on the CPU family.

2.2 Contention on a Shared Cache

To understand the nature of this work and of those presented in the next
chapter, we review how contention arises on shared caches. Given the
structure of modern CMPs presented in the previous sections, we assume
that only the LLC, either an L2 of L3 cache, is shared among cores,
to focus on this level. This shared layer is where contention happens,
hindering running applications scheduled on the cores.
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Cache contention phenomena are divided in two main categories:
thrashing and pollution. Thrashing [25] indicates that lines with high
locality are evicted by other lines with high locality too, for the sim-
ple reason that both sets of lines are mapped to the same cache set.
This contentious pattern causes frequent transfers to and from the main
memory, which become the performance bottleneck. Thrashing is typ-
ical of co-scheduled, memory-intensive applications with good locality
and is hardly predictable as it depends on the physical location of data
in main memory, in turn depending on the OS, the workload, etc.
Instead, pollution indicates that lines with low future reuse are evicting
lines with higher future reuse. This phenomenon happens because of
the LRU policy and of the limited associativity of a set: because of the
limited space, the cache controller must evict a line to make room for the
incoming one, assuming that this line will be reused in the near future.
When this assumption is wrong, pollution happens and the evicted line,
having greater locality, will be fetched again. This phenomenon is due
to multiple sources, like non-local accesses to buffers [26] or the wrong
access predictions of cache prefetchers [80].

The advent of CMP architectures exacerbates contention on the LLC
by “mixing” the access patterns of various applications simultaneously
running on the cores. In fact, the LRU policy at the basis of caches
was conceived for single-core CPUs and is effective in capturing the ac-
cess pattern of a single application, while it is unable to distinguish the
different access patterns imposed by the cores, resulting in sub-optimal
performance. It is to be noted that, despite data sharing among appli-
cations happened also with single-core CPUs because of time sharing
mechanisms, the time granularity of this phenomenon is order of mag-
nitude greater than that of memory references, being the scheduling
quantum around 10 ms; this caused the LRU policy to be usually very
effective, with the exception of few, rare scenarios. Instead, in modern
CMPs the access patterns mix with a much higher frequency, as cores
can reference lines at intervals of few clock cycles, or even at the same
time.
Although contention is widely studied in the research, commodity CMP
architectures lack interfaces to control this phenomenon and prevent ac-
cess patterns from mixing inside the LLC.
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2.3. Intel’s Nehalem and Sandy Bridge architectures

2.3 Intel’s Nehalem and Sandy Bridge
architectures

Today’s server CMPs have a complex structure, with an ever-increasing
number of cores and a large LLC to hold the cores’ data. Intel’s architec-
tures have a dominant position in the market of server CPUs [39]; in par-
ticular, its most recent architectures, named Nehalem [nehalem_man,
17] and Sandy Bridge [sandy_man ], power the servers of recent com-
puting infrastructures. Therefore, facing the contention over the LLC of
these architectures is of primary importance to cloud computing infras-
tructures.
Hence, this section explains the fundamental details of Nehalem’s and
Sandy Bridge’s architectures, on which the proposed solution is con-
ceived.

2.3.1 Architecture of Nehalem

Introduced at the end of 2008, the Nehalem architecture is the evolution
of the previous Core architecture. It was designed to be modular, in
order to be adapted to the various market segments (mobile, desktop,
server) without re-designing large portions of the chip to comprise four
or more cores. Inside the single core, the Nehalem platform provides new
Single Instruction Multiple Data (SIMD) instructions, called Advanced
Vector Extension (AVX) [19, chapter 5.13], and increased Simultaneous
Multi-Threading (SMT) support, called Hyper Threading (HT) in Intel’s
terminology.

Leveraging the progresses of silicon lithography, Nehalem is designed
with a L3 cache as LLC, shared among all the cores, with a size from 4
to 24 MB. Lower caches are per-core, with a size of 64 KB for L1 data
and instruction caches and 256 KB for the L2 unified cache. The L3
cache is inclusive, meaning that it includes all the lines stored inside the
caches of all the cores: this property, typical of Intel’s LLCs, simplifies
data coherency since per-cores caches can send coherency requests (via
the MESI protocol of ita variants) directly to the LLC, without long
snoop requests that would go through all the other cores.

Previous architectures, which had at most four cores, were conceived
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with an L2 cache as LLC, and only later, high-end redesigns of the Pen-
ryn architecture (Nehalem’s predecessor) comprised a shared L3 cache,
exploiting the 45 nm lithography. In Nehalem, instead, the L3 cache
is a basic element of the architecture, introduced to increase the mem-
ory bandwidth needed by the higher number of physical and logical
SIMD-capable cores. This L3 cache, despite the physical multi-bank
design visible in fig. 2.2(a), is logically managed as a unique element.
Figure 2.2(b) and fig. 2.2(c) also show how the on-chip interconnection
sub-system, named GQ, connects the LLC to the cores, the integrated
memory controller and the other components that handle Input/Out-
put (I/O), inter-CPU cache coherency and power management. This
interconnection sub-system is realized through a cross-bar structure to
provide an efficient routing medium.

2.3.2 Architecture of Sandy Bridge

Pushing forward the evolution of the Nehalem architecture, Intel released
the first Sandy Bridge models in early 2011, based on 32 nm lithography.
The cores’ internal architecture has undergone several changes like the
addition of further AVX instructions and a better energy management;
an important change was the addition of an integrated, on-die graphic
processor, making this architecture particularly suitable for laptops.
Overall, the architectural model of the Sandy Bridge cache hierarchy also
applies to the latest families, namely Ivy Bridge (that was a little more
than a die-shrink of Sandy Bridge) and Haswell. Indeed, the new features
introduced in Sandy Bridge proved to scale well with the lithography and
the customers’ needs, and were maintained across the following families.
Throughout this thesis, as we focus exclusively on the cache hierarchy,
we will mention only the Sandy Bridge family for the sake of brevity,
implicitly meaning also the subsequent CPU families.

In the cache hierarchy, the lower L1 and L2 layers are unchanged,
while the L3 layer is notably different. Because of the new AVX instruc-
tion with operands of 256 bits and of the higher number of cores, the
Sandy Bridge architecture needs more bandwidth between the L3 cache
and the other elements, such as the graphic, the memory controllers, the
System Agent (Intel’s name for the CPU power controller), etc. Since
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(a) Die photo of a Sandy Bridge CPU with integrated
graphic, from http://images.bit-tech.net

(b) Ring interconnection of a Sandy Bridge-EP server CPU
with integrated graphic, from www.qdpma.com
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this architecture is designed to ship more cores than Nehalem, it also
require better scalability of the cache bandwidth. To meet these goals,
Intel split Nehalem’s unique cache into several parts called slices, one
per-core with equal size and characteristics. To guarantee to each ele-
ment access to a broad cache space, each element can access all the slices
through an interconnection sub-system. Figure 2.2(a) shows the on-die
elements on a Sandy Bridge CPU with integrated graphic: all these
elements communicate with each other, and in particular with the L3
slices, through a ring interconnection. Figure 2.2(b), instead, highlights
the ring interconnection, a major novelty of the Sandy Bridge design
[52]. The white boxes in fig. 2.2(b) are the interfaces that sense requests
from the elements and assert replies on the rings. These interfaces are
called cache boxes or ring stops. To let the bus bandwidth scale with
the number of elements, the ring is fully pipelined: during a clock cycle,
data flow from one cache box to the following one, according to the bus
direction. Furthermore, two rings are present, with data flowing in op-
posite directions based on the bus. Each slice has one cache box per ring,
and a cache box serves both the slice and the core it is coupled with.
Since, in total, two cache boxes are present per-slice, a slice can read
requests from other elements and send replies simultaneously, with a
routing protocol that chooses the best ring based on the bus occupation.
To guarantee high bandwidth, ring buses consist of four rings for data,
requests, acknowledge replies and snoops, respectively. In particular,
the data ring is 32 B wide, so that a cache line (64 B) is transferred in
two clock cycles. To avoid the performance bottlenecks of a centralized
control, the arbitration protocol is distributed on each element and the
coherency protocol running on the snoop ring is based on MESIF. The
protocol governing the rings is, overall, undocumented, but Intel claims
that, using separate buses for data, coherency and coordination, cache
boxes can assert data and control messages on every clock cycle.

With such organization, multiple requests can be served simultane-
ously, provided that they are directed to different slices. To ensure an
even distribution of requests among slices and avoid bottlenecks, Intel
computes the L3 slice a line must reside in by means of an undocumented
hash function: physical addresses are hashed at the source and the data
request asserted on the ring. This feature further ensures the scalabil-
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ity of the entire architecture and shows to the software a “fictitious”
associativity that is higher than the real one. Yet, a first drawback of
this addressing scheme is that the L3 access latency cores experience
is variable, depending on the hop distance of the cache slice from the
requesting core. Hence, this latency varies from around 21 cycles in case
of hit in the local slice to almost 40 in case of hit in a distant slice.
Finally, another drawback of this organization regards the power sav-
ing capabilities. If the frequencies of the cache and of the cores differ,
data requests suffer from a penalty that is proportional to the ratio be-
tween the two frequencies. Therefore, Intel’s designers chose to place all
the cores and the slices in the same voltage/frequency domain, avoid-
ing intolerable latencies and performance bottlenecks due to different
frequencies.

2.4 Buddy memory allocator

Since modern shared caches are PIPT, the cache set where data are
placed depends on their physical address, either directly or through a
hash function. Hence, for the purpose of this word, it is fundamental to
understand how data in LLC can be controlled by mean of their physical
address, which in turn depend on a component of the OS called physical
memory allocator. This component manages the physical memory of the
machine: when a subsystem of the kernel (such as the page fault han-
dler, the Direct Memory Access (DMA) drivers, etc.) needs a portion of
physical memory, it issues a request to the physical memory allocator,
which allocates a contiguous physical area of at least the requested size.
CPU architectures with virtual memory, such as those we consider through-
out this work, pose several constraints to these memory areas; one of
them is the minimum granularity of memory management, which is
called page. Therefore, in these architectures the physical memory is
allocated in multiples of the page. This size is always a power of 2: for
example, it is 4KB on x86 architectures. The other main constraint is
that memory pages have memory addresses that are always page-aligned.
This alignment simplifies the virtual-to-physical mapping, that is per-
formed by the TLB.

Because of the page alignment, a memory address can be split into
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two bit fields: the less significant bits are the page offset and indicate the
requested byte inside the page, while the most significant bits are the
page address. This is the value the TLB has to translate from the virtual
address space of a process to the physical address space of the machine.
After the translation, the TLB outputs the physical page address and
pads it with the offset bits to obtain the final physical memory address.
Modern CPUs support also bigger page sizes, as section 2.5 discusses,
but the basic granularity of memory management is usually small and
architectures maintain rigorous legacy retro-compatibility.

Because of this small size, modern machines may have millions of
pages: for example, an x86 system with 4GB of RAM memory has more
than one million pages, and modern 64 bit servers may ship 64GB or
more memory. The physical allocator is in charge of managing all these
pages, and, in a modern operating system like Linux, must fulfill requests
from many subsystems, with varying granularity and at a considerable
request pace. Moreover, its performance should not degrade with the
time and it should minimize memory fragmentation, which is a degra-
dation phenomenon of memory areas. Memory fragmentation is due to
internal and external fragmentation, and its limitation is a key design
goal for allocators. Internal fragmentation is the waste of memory due to
over-allocation, which happens because the allocator returns a memory
area bigger than the requested one. Internal fragmentation depends on
the page size: if the request is not an exact multiple of the page size, the
allocator returns a higher multiple of pages and space wastage happens.
Instead, external fragmentation indicates the interleaving between free
and used areas: if external fragmentation is high, the allocator cannot
allocate contiguous areas of big size because there are used pages “in the
middle”.

Due to all the requirements we highlighted, a physical memory allo-
cator is designed with several goals:

• efficiency : when a page is requested, it should be returned as fast
as possible

• scalability : since machines have very different amounts of memory
(from few MB to hundreds of GB), the allocator should handle
memory areas efficiently
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• keeping internal fragmentation low

• keeping external fragmentation low

Efficiency and scalability highly depend on the implementation of
the allocator, and thus vary. Instead, the main strategy to keep external
fragmentation low is to reserve an amount of memory that is the clos-
est possible to the one requested. However, the granularity of the page,
imposed by the hardware, inherently causes some internal fragmenta-
tion, which, for requests smaller than the page size, is handled by the
upper layers (like application libraries). External fragmentation plays
a more important role in modern computers, where a large amount of
memory is often available. This fragmentation prevents the allocation
of large memory areas to sub-systems that need it (like DMA drivers)
and may cause severe performance degradation of the allocator, which
could store many small memory fragments in its own data structures
and perform long lookups. Therefore, complex heuristics exist to keep
external fragmentation low and vary among OSs.

In Linux, the heart of the physical memory allocator is the Buddy
algorithm [48]. It is known in the literature from almost 40 years and
is widely used because of its capabilities. This algorithm is very effi-
cient and is effective in limiting external fragmentation. Moreover, it
has shown to scale well on a wide range of machines equipped with very
different memory amounts [50].
The following sections show the functioning of this algorithm, with a
focus on the implementation found in the Linux kernel. In particular,
section 2.4.2 explains the data structure the algorithm is based on, sec-
tion 2.4.2 explains how the algorithm leverages this data structure to
perform the operations typical of memory allocations and section 2.4.3
explains an additional heuristic that is key in Linux’ implementation.

2.4.1 Buddy data structure

Within the buddy algorithm, physical memory is divided in parts called
buddies. A buddy is a unique memory area with a size controlled through
a parameter called order, where a buddy of order i is composed of 2i

physically contiguous pages. The order, is hence, the key parameter of a
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Figure 2.2: Lists of free areas of the Buddy allocator

buddy, and has an upper bound M that depends on the implementation:
hence, an implementation manages areas of memory whose size ranges
from 1 pages to 2M pages. Buddies are order-aligned, meaning that
the first page of the buddy has a page address aligned to a 2i memory
boundary. Hence, the page address of the first page of the buddy has
the least significant bits set to 0, and is called buddy address. Thanks to
these constraints, a buddy with a given order can be identified uniquely
through its buddy address. The buddy algorithm is so called because
it manages memory through buddies, trying to group them together to
handle areas of size as big as possible. This grouping of areas reduces
the number of elements the allocator handles, allowing scalability and
efficiency.

In Linux, the main data structure of the Buddy algorithm is an array
of doubly-linked lists, depicted in fig. 2.2; each list links all the buddies
of the a certain order, so that there are as many lists as buddy orders.
Thanks to this structure, the allocator can satisfy memory requests of
a certain order in constant time, as any buddy inside the list fits the
request, the allocator simply extracts the head of the list. Conversely,
when a buddy is released to be freed, it is added to the head of the
list, thus still in constant time. For insertion and removal, the buddy
allocator performs additional operations described in the next section.
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2.4.2 Buddy algorithm

As from the previous section, the heart of the buddy algorithm is its
efficient data structure. However, the mere insertion of buddies does not
allow the grouping of them into bigger, less numerous memory areas, to
maintain efficiency and scalability. On the opposite side, a list can be
empty, so that a request of a given order cannot be satisfied. Solving
these issues is the key goal of the buddy algorithm.

The buddy allocator responds to memory requests by allocating bud-
dies of a certain order, which must be greater than or equal to the
requested memory amount. In Linux the physical allocator accepts re-
quests expressed only in buddy orders, and it is up to the higher kernel
(typycally the slab allocator [57]) levels to round up requested sizes to
the closest higher order. If this order is n, the allocator subsystem looks
in the list of order n for free buddies. If no buddy is present, it splits a
buddy at order n+ 1 in two buddies of order n; this operation is called
buddy splitting and allows the allocator to vary the granularity of bud-
dies in order to fit requested sizes. After splitting, the allocator stores
one of the two halves in the buddies list of order n, and returns the other.
Similarly, if also the list of order n+1 is empty, the allocator checks the
list of order n+2 to contain buddies; if the list does, the allocator splits
an (n+2)-buddy in two n+1 halves, stores one n+1-half int the proper
free list and further splits the other half as previously shown. Instead,
if also the (n + 2)-list is empty, the allocator checks higher order lists
and recursively splits buddies in the same fashion. Finally, if also the
M -order list is empty, the allocation cannot be satisfied.
With these splitting scheme, the time complexity of the allocation is
O(M): since M is typically small (the default value in Linux is 10) every
allocation has a strict time bound. Moreover, thanks to the logarithmic
relation between the buddy order and the buddy size, even big requests
can be fulfilled quickly. Starting the lookup from the smallest buddies
is key to keep external fragmentation low. For the same purpose, Linux
applies a small optimization: after a buddy split, the allocator always
returns the lower half, so that its counterpart is stored in the free list
and available for a subsequent allocation, without the need of splitting
another buddy. Always using the same half has been shown to be more
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Figure 2.3: Coalescing of two buddies

When a buddy of order 9 is freed, it is coalesced with the “twin” buddy
and the resulting 10-order buddy is placed in the proper list; the twin

buddies differ only in the least significant bit of their address

efficient and to decrease fragmentation, particularly with kernel drivers
of fast devices that typically need large contiguous buffers [29].

As opposed to the splitting process, for the insertion of a free buddy
of order n the allocator tries to re-group the incoming buddy with an-
other of the same order, to create an n+1-order buddy. This operation is
called buddy coalescing. Given an incoming buddy of address a, the coa-
lescing is possible only if a physically contiguous buddy of the same order
is also free. Furthermore, since all buddy addresses are order-aligned,
the new buddy must be aligned to a n + 1-order address. Hence, each
buddy can be coalesced with only another one, whose address is a

⊕
2n:

performing this XOR operation n-th bit of the buddy address gives an-
other buddy that is physically contiguous to the incoming one. Hence,
a buddy a of order n is strictly associated to the buddy a

⊕
2n of order

n 2. The XOR operation also guarantees that one of the two buddies
has the n-th lower bit set to 0, while the lower bits are already set to
0: this address will become the address of the new (n+ 1)-order buddy.
In such a way, Linux checks the buddy with address a

⊕
2n to be free,

2This strict coupling is the reason for the term “buddy”.
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and in this case it coalesces the two buddies in a bigger one, as fig. 2.3
shows. Linux can perform this check in constant time, as it describes the
physical memory as an array of pages: each page stores the information
of the buddy it represents (if the page is order-aligned), and kernel can
access each page in the array by using the page (or the buddy) address as
array offset. Like the splitting operation, also the coalescing operation
is recursive, so that buddies of increasing order can be grouped together
if both buddies are free.
With this mechanism, the buddy allocator maintains scalability and ef-
ficiency during time: if applications and drivers properly free memory
after use, large physical areas are quickly made available again.

2.4.3 Linux mobility heuristic

Despite the splitting and coalescing mechanism, long running applica-
tions may retain memory pages for a long time and cause external frag-
mentation the allocator cannot face. Moreover, kernel allocations are
likely to be needed for a long time, further increasing this issue. At the
end, after hours or days with volatile and non-volatile allocations inter-
leaving in memory, external fragmentation can be considerable because
of small “in the middle” fragments that cannot be coalesced because they
are in use.
To limit this phenomenon, Linux further subdivides buddies according
to their mobility, that is their probability of being freed in a short pe-
riod. The more a page is movable, the higher the probability of being
freed shortly after allocation. For example, buddies used for kernel data
structure have almost no mobility, while userspace allocations have max-
imum mobility. It is to be noted that mobility is not enforced by any
hardware constraint or mechanism, but is simply a consequence of the
expected behavior of software layer requesting the memory. Therefore,
the kernel is free to choose certain memory areas as a memory pool
to serve allocations of a given mobility. For example, Linux chooses a
pool for high-mobility allocations: this makes it possible to group in a
contiguous area all the high-mobility allocations, so that it is very likely
that, shortly after the requests, large areas are freed, allowing coalescing.
Likely, low-mobility allocations are clustered too, so that they cannot fall
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“in the middle” of higher mobility areas, preventing coalescing.
To implement this heuristic, Linux groups buddies in pools and as-

signs each page a so-called migratetype to indicate the pool it belongs to
[57, Section 3.5.2]. In addition, to enable fast lookup of buddies with spe-
cific mobility, the doubly-linked lists at the heart of the buddy allocator
(described in previous sections) are further subdivided per migratetype.
At boot time, these migratetype pools are populated according to pre-
defined quotas. During runtime, if the number of buddies in a pool falls
below a pre-defined watermark, the kernel moves buddies from another
pool, according to fallback lists: pools, in fact, should “borrow” buddies
from a pool with similar mobility, and “steal” buddies with very different
mobility only as a last chance. To change the pool a buddy belongs to,
it is sufficient to change the migratetype if its first page and to move
the buddy from the original list to the head of the new one. All these
operations are done in constant time.
This heuristic proves to be very effective in keeping external fragmenta-
tion low, and has become a key aspect of Linux’ implementation of the
buddy algorithm.

2.5 Hugepages

Despite the buddy allocator is can manage physical areas of different
sizes, the mapping between physical and virtual areas is still limited to
the granularity the hardware enforces via the TLB. In today’s, memory
rich systems, a large memory area, even if physically and virtually con-
tiguous, results in many mappings the TLB must handle. This increases
the probability of TLB miss, penalizing applications with a big memory
footprint. To overcome this limitation, modern TLBs can manage mem-
ory at a higher granularity. For example, the x86 architecture allows
page sizes of 2 MB, Advanced RISC Machines (ARM) allows pages of
2 MB and 16 MB and the IBM Power architecture allows pages of 64
KB, 16 MB and even 16 GB. As we will explain in the following, this
capability of modern architectures is not compatible with the solution
that is the objective of this work. Hence, this section aims at giving
a very basic overview of this capability, to later discuss the reasons of
incompatibility.
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Pages of “non-legacy” size are called hugepages in Linux terminol-
ogy and large pages in Windows terminology. Throughout this work,
we will refer to them as hugepages. To exploit hugepages, the kernel
must allocate a large contiguous physical area of the same size, which is
mapped into a corresponding virtual area. Like small, legacy pages, also
hugepages must be aligned to a memory boundary that is a multiple of
the hugepage size.
Hugepages support is actually limited both in Linux and Windows due
to several reasons: the difficulty of modifying the physical allocator and
the virtual memory system, the reduced interest on behalf of potential
users and the fragmented hardware support. In Linux, for example, the
system administrator should explicitly enable hugepages at boot time,
and applications can request them only via custom interfaces. Nonethe-
less, the research community is investigating the benefits and drawbacks
of this possibility, and some results have already been presented [55,
100].
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Urbem quam dicunt Romam, Meliboee, putavi
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Sic canibus catulos similes, sic matribus haedos
noram, sic parvis componere magna solebam.
Verum haec tantum alias inter caput extulit urbes,
quantum lenta solent inter viburna cupressi.

Virgil, Bucolics I

In this chapter, the state-of-the-art work that is of interest for this
thesis is presented, with an emphasis on cloud platforms. The main
objective behind these works is to enhance the usage of CMPs, in par-
ticular of the LLC.
The techniques to improve the usage of the LLC follow different guide-
lines and have a very diverse impact on the hardware/software layers of
modern platforms. Section 3.1, indeed, reviews how the task scheduling
policies can take in account the usage of the LLC, based on information
collected at runtime or given a priori. Then, the following sections focus
more specifically on the techniques that reduce the contention over the
LLC. These works span from new hardware models to changes to the
OS layer, exploring a wide variety of solutions.

For the sake of clarity, this chapter divides the presented techniques
into hardware and software techniques, partially following a taxonomy
the author of this work already presented [73]. Hence, section 3.2 gives
an overview of the main hardware techniques, emphasizing how the re-
search is alive around contention issues in current CMP architectures.
Then, section 3.3 reviews several software techniques starting from the
explanation of page coloring, the mechanism at the basis of the present
work.
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3.1 Performance-aware scheduling techniques

To tackle contention on the LLC without deep hardware or software
changes, the research proposed numerous scheduling techniques that
take in account how applications impact on shared caches. Overall, these
techniques attempt to minimize contention by “re-arranging” running
applications, moving those that cause intolerable contention to other
CMPs. To guide the re-scheduling policy, these techniques need a met-
ric of contention or of performance, which allow them to predict how
applications will behave when co-located.

The impact of co-scheduling different applications on the same CMP
has been studied in prior work [56, 84, 28]. The basic idea behind these
works is to characterize how applications behave when co-located: typi-
cally, batch applications have a big working set that stresses the LLC and
benefits from more cache space, with good locality. In contrast, latency-
sensitive applications have a smaller working set and run with very low
resource usage for most of the time. These applications have sudden
bursts in resource usage caused by the interaction with the users, and
typically suffer because of co-location with other applications. Batch ap-
plications, instead, tend to have a continuous usage of resources, leaving
limited room for the execution of co-located latency-sensitive applica-
tions. The bursts of these applications, in turn, need sudden availability
of CMP resources and in particular of LLC space, leading to slow warm-
up activities called cache inertia, which increase the latency percentile
and degrade QoS. Data centers typically solve this problem by limit-
ing co-location, in particular with and latency-sensitive applications,
thus potentially under-exploiting resources. To address this situation,
the research proposes different policies and techniques. In more detail,
cloud platforms present specific scenarios, like Virtual Machines (VMs)
or multi-thread workloads, whose peculiarities may improve the schedul-
ing policies.

Addressing multi-threaded workloads, Chen et al. [14] propose to
leverage data sharing to improve the usage of the CMP. They evaluate
two scheduling policies, showing that, in particular, Parallel Depth First
(PDF) [7] is best from this point of view. In more detail, PDF char-
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acterizes an application with a task graph, reaching a fine description
granularity of the application’s parallelism, and assuming fine-grained
tasks to share most of the data in LLC. Based on this description and
on profiling information, Chen et al. [14] finds the optimal scheduling
granularity to be used for the execution of the PDF scheduler.

Tang et al. [85] perform an in-depth study over the performance of
some cloud-typical applications, showing the importance of co-scheduling
based on resources usage. They characterize applications via specific
low-level parameters like LLC miss rate and propose heuristics to maxi-
mize the benefit from sharing and to minimize contention. In particular,
they stress the importance of thread-to-core mapping to improve the fi-
nal performance of the workload. Similarly, Kang et al. [45] exploit both
hardware counters and information from instrumented libraries, in par-
ticular about lock operations and synchronization patterns, to optimize
the co-location of tasks on the Tilera64 Network on Chip (NoC) [5] at
runtime.

Instead, Mars et al. [56] attempt to predict performance degradation
offline by adding a controllable pressure to the memory subsystem. In
this way, they measure the sensitivity of each application to the LLC
and to the sharing of memory resources. The collected measurements
are then used to devise a co-location scheme for latency-sensitive appli-
cations, whose QoS fulfillment increases. Pushing this approach further,
[97] continuously monitors running applications with a tunable memory-
stressing application, in order to capture applications’ phases and adapt
the workload. With this characterization approach, the utilization of
the infrastructure further increases as well as the percentage of QoS
fulfillment.

Since VMs are at the base of many cloud services, a broad litera-
ture is available that specifically addresses the co-location of virtualized
workloads. For example, Gong and Gu [32] perform a high level model-
ing of resource usage through PAC, a runtime VMs monitor that tracks
resource usage by finding certain patterns called signatures. Based on
signatures, the hypervisor periodically chooses a schedule of VMs that
distributes the workloads over the machines in order not to exceed a
threshold of resources usage. Instead, Govindan et al. [33] adopt an ap-
proach similar to [56], with a tunable LLC-stressing application used as a
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proxy for incoming workloads. Via this proxy, [33] profiles running VMs
and predicts the degradation due to contention. Finally, [61] devises a
runtime model of interference by measuring how co-location affects the
meeting of QoS goals the applications declare, and, based upon the in-
formation collected, employs a tracking approach to schedule resources
and fulfill the goals.

3.2 Hardware techniques

Several works address contention in the LLC proposing hardware changes
to the cache. In the context of this thesis, two main aspects are to be
stressed. On one side, the techniques are the mechanisms that allow
alleviating the contention in the LLC. The techniques presented in this
section are implemented in hardware, and are driven by a policy, im-
plemented either in hardware or in software. A policy measures the
applications behavior and chooses how to manage the LLC with respect
to pre-defined goals. This distinction is fundamental in our review, and
will be consistently adopted in our nomenclature in the following.

The benefit of implementing a technique in hardware lies primarily
in the reduction of the overhead and in the availability of fine-grained
information about running applications. Instead, policies can be im-
plemented either in hardware or in software, this choice being more
disputable: a hardware-only implementation has lower latency and is
transparent to the software layer, while a software implementation (usu-
ally inside the OS) can consider multiple high level goals like QoS re-
quirements and resource usage.

Overall, hardware techniques derive from very different concepts:
some change the actual implementation of the LRU algorithm, which
is an inherent cause of contention in CMP architectures (as from sec-
tion 2.2), while others have a more disruptive approach, re-designing the
cache structure.
A first, non-disruptive technique for LLC partitioning is called way par-
titioning : according to a user-given bitmask, each core can access a
subset of the lines inside each set. In case of eviction, the LRU pol-
icy works only on the cache lines assigned to the core, so that each set
is effectively partitioned among the cores. Some special-purpose archi-
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tectures like Octeon [62] or some prototype CMPs [16] adopt this LLC
partitioning mechanism, but commodity CMPs do not. However, way
partitioning has the drawback of decreasing the associativity available
to a core: in fact, since each core accesses only a subset of the lines, it
has a smaller set of candidates for eviction. As an extreme example, if a
core controls only one line, that core “sees” a direct-mapped cache. Since
associativity is a key feature to leverage temporal locality, decreasing it
can be a counter-productive decision, paying the benefits of isolation
with a much lower performance.
Based on way partitioning, Utility-based Cache Partitioning (UCP) [69]
computes how many lines each core needs in order to maximize the
global workload performance. Therefore, UCP computes the utility of
each configuration, that is to say how much an application benefits in
terms of LLC misses when the partition size changes. To collect this
measure, it introduces a novel component, called Utility MONitoring
(UMON), which monitors the utility of each application. Then, based
on the recent measurements, UCP minimizes the total number of misses
and assigns to each core a certain number of cache ways.

Unlikely, other techniques change the LRU implementation by record-
ing which core loaded each line . This allows the LLC controller to work
with specific subsets of lines, controlling the eviction candidates on the
basis of a certain policy. For example, Sharifi et al. [76] considers the
scenario of a multi-thread application, whose threads are assumed to
have similar characteristics: to balance the performance of the threads,
[76] penalizes the core with highest IPC (the victim core) in favor of the
others. Exploiting the modified LLC controller, the cache evicts some of
the lines of the victim core and assigns them to the slowest one in case
of line insertion.

Another fundamental parameter to control the functioning of a cache
is the LRU value of the lines. For example, as the evictions from the
a set are performed according to the LRU value, loading a line with a
higher value than usual potentially increases its persistence inside the
set, making the line more unlikely to be evicted in the future. Such
solution, combined with a policy that decides the proper LRU values
on the basis of given goals, allows to adapt the cache functioning to
the workload. Leveraging this technique, Seshadri et al. [74] explicitly
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address thrashing and pollution. They employ a First-In, First-Out
(FIFO) structure called Evicted Address Filter (EAF), which is added
to the cache to capture the frequency of recently evicted lines. The goal
of this structure is to predict whether evicted cache lines are likely to
be referenced again in the near future, thus overcoming the limitation of
the LRU policy with mixed access patterns. Indeed, the EAF stores the
addresses of the last evicted lines and, in case one of them is re-inserted,
its LRU priority is increased; this decreases pollution, because data with
good enough locality are likely to be “captured” by the EAF, and thus
to be kept in cache. Moreover, [74] implements the EAF by means of
a Bloom filter [59], a hash-based memory structure that limits the area
overhead while. This solution, at the same time, limits thrashing: since
a Bloom filter must be periodically flushed, thrashing lines, which the
EAF often captures, are often “lost” thanks to the flush operation, being
re-inserted with low-probability.

With a completely different vision that brings to deep changes, Van-
tage [72] is based on the z-cache model [71]. A z-cache maps the incoming
data to a line by means of a tunable hash function, whose parameters
can be changed to control the mapping. Leveraging this control, Vantage
is meant tp explicitly partition the LLC. Exploiting the utility curves
of UCP [69], Vantage selects at runtime a new partition size for each
core and resizes the existing partitions accordingly. A novel idea be-
hind Vantage is to use an unmanaged area of the cache (not assigned to
any core) to resize partitions, a very delicate operation. When a par-
tition is modified, the lines belonging to the old core are moved to the
unmanaged area by simply tagging the line as “unmanaged”, and the
core receiving the additional cache space is free to load its new data
into its managed area. Moreover, Vantage lets partitions outgrow into
the unmanaged area to avoid that, with many partitions, conflicts or
bottleneck effects arise in the unmanaged area. Thanks to its strong
statistical background and to the properties of the hash functions used
in z-caches, [72] provides strong guarantees in terms of performance and
adaptation. In fact, an advantage of this approach is that it is able to
react to applications changing phases faster than actual caches, yet at
the cost of a profound re-design of the cache.
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3.3 Page coloring and software techniques

Software techniques are of high interest for this work as they involve
only the OS layer and can thus be deployed on real machines without
changing the application layer or the hardware infrastructure.

The mechanism at the basis of software techniques is page coloring,
which depends on the way modern caches map data to cache lines. In-
deed, section 2.1.4 explained how modern architectures use the physical
memory address to map data into the LLC. Figure 3.1 shows the usage
of the physical address in main memory and in the LLC: the parameters
depicted in this figure are related to a real CPU, namely an Intel Xeon
W3540, where the LLC is the third layer of cache.
Figure 3.1(a) shows the two bit fields to manage memory pages: the
lowest p bits are the page offset, while the highest bits are the page
address. Similarly, fig. 3.1(b) shows how the physical address of data is
used to determine the cache location: the l less significant bits contain
the line offset, the upper s bits contain the number of set to look in and
the highest t bits contain the tag.
To control where data are stored inside the LLC, the key idea is to con-
trol the physical address: in fact, in fig. 3.1(c), some bits are in common
between the set number and the physical page number, which is under
the control of the OS. This bits are called color bits, and a configuration
of them is called page color. Controlling the page color allows the con-
trol of the LLC sets data are mapped to, thus enabling a fine-grained
placement of data into the LLC.

The number of color bits is, in general, l + s − max(l,p); since, yet,
cache lines are typically much smaller than memory pages due to the
finer granularity of data management in caches, we can assume without
loss of generality that l+s−max(l,p) = l+s−p = c. In the architecture
represented in fig. 3.1, c = 7. Hence, Xeon W3540 has 7 color bits and
128 page colors. It is important to note that a color may correspond to
multiple cache sets because of the minimum granularity of the page size.
For example, in the configuration of fig. 3.1(c), a color spans 2s−c = 2p−l

sets. This is the minimum amount of cache sets that can be allocated:
in the example of fig. 3.1(c), these sets correspond to 213−7×16×64B =

64KB, being 16 the associativity and 64 B the cache line size.

41



3. State of the Art

1263 11 0

physical page number page offset
(a) Usage of physical address for memory paging

1963 5 0

tag line offset

18 6

set number
(b) Usage of physical address for LLC addressing

1963 5 0

tag line offset

18 6

set number

1263 11 0

physical page number page offset

color bits
(c) Overlap of bit fields and page coloring

Figure 3.1: Bit fields of a physical memory address

Page coloring consists essentially in leveraging the c color bits of
the page address to control the LLC data mapping. Since the OS has
complete control over the applications’ data in physical memory, it can
consequently control their placement inside the LLC, possibly partition-
ing the cache.

This technique and its benefits are well-known in the literature [8,
46]. Yet, the advent of CMPs architectures exacerbated the cache con-
tention as section 2.2 explains, thus enforcing the need of applications
isolation. Given the lack of definitive hardware solutions, this need
makes page coloring a hot research topic, further justified by the recent
spreading of cloud services with QoS requirements.

The main drawback of page coloring is its static behavior, as the
partitions must be determined a priori. Re-partitioning, indeed, is very
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expensive, because it consists in changing the physical address of a page.
The only way to perform such operation is to copy the original page into
the new physical location (re-coloring). This operation, even with mod-
ern hardware, takes a time in the order of magnitude of a microsecond,
which is a very long interval compared to the CPU cycle time. During
this time interval, the new page is not accessible, and the application
that uses it could be locked waiting for the copy operation, which is
particularly detrimental, for example, in case of a write operation inside
the page.
However, some solutions exist that allow re-partitioning. These solu-
tions often exploit hardware performance counters available in modern
processors to measure the applications performance and devise a better
partitioning according to a certain metric, but need careful design to
limit the overhead, and in particular to minimize re-coloring.

The next sections review the relevant the work based on page color-
ing. In particular, section 3.3.1 shows the usage of page coloring to limit
the occurrence of cache pollution, while section 3.3.2 shows how page
coloring-based techniques can realize LLC partitioning via software.

3.3.1 Anti-pollution techniques

One main source of LLC contention are OS data buffers: these memory
areas contain data loaded from devices and exhibit a sequential access
with an inherently low locality. These memory areas can occupy a con-
siderable portion of the main memory (around 60% [26]) and can pollute
the cache space of applications. Limiting the colors assigned to buffer
pages is the key idea behind the techniques addressing this issue.

Kim et al. [47], for example, adopt a static policy using a fixed num-
ber of colors.

With a more flexible approach, Xiaoning at al. [26] propose the usage
of a Selected Region Mapping (SRM)-buffer. SRM-buffer maps buffer
pages which are likely to be accessed sequentially to a set of physical
pages of the same color (called sequence). To predict a sequential access
pattern, SRM-buffer employs two heuristics: one marks as sequential
the pages mapping the same file in memory, while the other tracks the
applications’ accesses. To keep pollution of buffers low even when they
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increase in size, on a page miss due to a buffer growth SRM-buffer detects
the color of the sequence which was being accessed and chooses pages of
the same color, so that new data are mapped only into the LLC sets of
previous data.

Instead, Run-time Operating system Cache-filtering Service (ROCS)
[77] addresses the problem of pollution focusing on single applications.
ROCS tracks the usage of pages and maps to a small area named pollute
buffer those which exhibit a bad cache behavior, i.e. those which are
more likely to compete for cache space without any benefit. Thus, the
address space of each application is “re-organized” to prevent its buffer
from polluting the cache. To identify the polluting pages, ROCS exploits
hardware monitoring interfaces to sample the miss rate of the application
when accessing each page; then, it uses this value to classify pages and
decide which one to re-map to the pollute buffer. Re-mapping is done
by re-coloring, but to avoid excessive data moving ROCS tracks the
application IPC and saves the best configuration found.

3.3.2 Partitioning techniques

In this section, we present an overview of the main policies to partition
the LLC through page coloring. These policies perform an effective
partitioning of the LLC, and may employ both static approaches and
dynamic ones.

Tam et al. [83] use a static approach to partition the LLC cache
of a dual-core processor in order to increase the global performance of
the workload. They identify the effects of contention and build appli-
cation cache profiles to guide the partitioning mechanism. To do this,
they exploit two curves, the Miss Rate Curve (MRC) and the Stall Rate
Curve (SRC). The MRC curve shows the miss rate with respect to the
cache size devoted to the application, and is a measure of how the ap-
plications exploits the LLC. The SRC curve shows the stall rate due to
the instructions retired to the L1 cache with respect to the cache size,
thus taking into account also the latency of memory operations. This
last curve in particular is proved to be more effective in guiding the par-
titioning because it takes into account also the memory latency, which
varies above all in presence of a victim cache (like in the CPU used for
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the work). Based on the measured curves, a partitioning is determined
that reduces the slowdown of co-located applications. Furthermore, the
work provides interesting hints on the behavior of applications, like the
different patterns of LLC usage.

Other approaches attempt instead to vary the number of colors as-
signed to applications. The key idea behind the work by Zhang, Dwarkadas,
and Shen [101] is to employ partitioning only on the “hottest” subset of
pages of each application in order to color only the areas which are most
used. Limiting the number of colored pages could theoretically make
it simpler to change the partitioning at runtime, because only a small
subset of pages would be re-colored. However, to implement such a tech-
nique it is necessary to measure the “hotness” of each page. In order to
do this with the hardware support modern CMP provide, the proposed
solution periodically traverses the list of memory pages to check whether
they have been accessed, with a huge overhead. In order to decrease this
overhead, the solution exploits spatial locality of applications to check
only the pages which are close to accessed pages, and hence the more
likely to be “hot”. Another hint employed is lazy recoloring of pages:
a pages to be recolored is not immediately copied to the new physical
location, but marked as inaccessible (by a bit in the virtual page table)
and copied only when really accessed, i.e. when an exception is raised
because accessing the page. However, despite the optimizations imple-
mented, the authors reach the conclusion that such an approach is not
viable in practice.

A work that summarizes different contributions on the field was done
by Jiang et al. [53]. They test several static and dynamic policies to
fulfill different requirements like performance, fairness and QoS. Several
metrics of performance and fairness are evaluated, and are used to guide
the dynamic partitioning policies. These policies outperform the static
ones in almost all cases. The improvement with respect to each objective
(performance, fairness, QoS) measured with dynamic policies is due to
the fact that such policies are able to react to the different phases an
application has during the execution.

Recently, Ye et al. [98] developed two novel re-coloring policies that
take in account also time sharing of cores and QoS requirements. The
first policy recolors a number of pages proportional to the memory foot-
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print, but proves to be sub-optimal since it often recolors cold pages.
Instead, the second policy tracks page hotness through the per-page
used bit (present in the x86 architecture), prevents the application from
accessing the hot pages and re-colors these pages when the application
accesses them; this mechanism is able to capture the application’s access
profile, and recolors only the most used pages. Moreover, [98] validates
the proposed solutions also on a low-end Sandy Bridge architecture,
showing a preliminary evaluation of page coloring on this recent archi-
tecture. This evaluation suggests that page coloring can be a beneficial
technique also on sliced caches and opens new research directions.

Finally, Jin et al. [43] apply page coloring to the Xen hypervisor to
show that also VMs benefit from LLC partitioning, thus reproducing the
basis of a cloud infrastructure. Proceeding in this direction, in [93] they
add a dynamic re-coloring mechanism, with the hint that the VM is not
stopped during the page copy; when the copying operation is done, the
hypervisor checks whether the original page has been modified, and in
such case it retries the copy for a limited number of times. Otherwise
it changes the entry in the VM page table pointing to the old page to
point to the new page, and finally releases the old physical page.
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This chapter shows the design of our proposal, which is a modification of
the Linux kernel to implement page coloring. Our solution aims to guar-
antee to applications isolation in the LLC and is designed considering
the architecture of modern CMPs. In this work we propose to study the
constraints these architectures pose to our page coloring and to explore
the possibilities cache isolation opens, along with the necessary trade-
offs. Throughout this chapter, section 4.1 explain the overalls vision
behind our work, while section 4.2 explains how the proposed solution
integrates with the Linux kernel. Section 4.3 discusses the assumptions
on the LLC at the base of our proposal and the limitations they impose
on our work, while section 4.4 shows how page coloring impacts on ap-
plications. Finally, section 4.5 explains the modifications to the buddy
data structure and to the allocation algorithm.

4.1 Vision

The final objective of this work is to allow distributed computing plat-
forms to provide better QoS via isolation of running applications. The
principal way to ensure QoS is partitioning the hardware resources shared
by co-running applications. Some techniques like time sharing mecha-
nisms already exist from a long time, but cannot avoid the detrimental
effects of contention, in particular those exposed in section 2.2. Modern
CMP architectures, as from chapter 3, exacerbate contention, but are
ubiquitous in today’s computing environments. On these architectures
resource partitioning, if available, is actually limited to a coarse granu-
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larity; instead, unpartitioned resources degrade performance and cause
unpredictability. Focusing on the LLC to mitigate contention on this
resource is the key point to enhance isolation, and hence performance
predictability and QoS guarantees. Since we also want the proposed so-
lution to be feasible - and possibly beneficial - in real systems, we cannot
propose hardware changes, but we concentrate instead on the possible
ways by which software can enforce performance isolation through LLC.
Looking at the actual state of the art in chapter 3, several techniques
face LLC contention phenomena proposing different solutions, but only
page coloring provides strong guarantees of isolation even in co-location
on a per-application basis. This aspect is fundamental in our choice:
fulfilling QoS requisites according to SLAs requires a precise, tunable
per-application control that is effective in “crowded” and “noisy” envi-
ronments. Therefore, to bring page coloring to a realistic distributed
computing environment, we propose a re-implementation of page color-
ing that is tailored to modern architectures, in particular to those shown
in section 2.3.

Considering the high variability of distributed computing environ-
ment, the broad customers audience and the legacy, we assume to have
no control over the single application, nor we can enforce specific pro-
gramming practices or frameworks. Ideally, we would achieve predictable
performance for mixes of applications sharing a single commodity CMP,
like those powering data centers, without any modification to either
runtimes (e.g., the Java virtual machine) or applications. Given these
assumptions, the implementation of page coloring within an OS makes
a good fit, since it requires updating only the OS and understand appli-
cations’ resource requirements.

Another key decision of our solution lies in how the LLC partition
size is chosen. Ideally, a production-ready mechanism should be capable
of deciding the size of the LLC partitions automatically, taking into ac-
count hardware constraints and QoS requirements, in an adaptive way.
However, in the context of this work we focus on providing recent com-
modity CMP architectures with an LLC partitioning mechanism, imple-
mented through page coloring. To demonstrate the importance of this
technique even in newer architectures, we implemented a solution rely-
ing on static partition sizes provided by the user. Thus, the solution we
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develop in this thesis may serve as a starting point for experimenting
dynamic policies (as those in chapter 3).

4.2 Approach

Implementing page coloring requires deep modifications to the physical
memory allocator, a core part of any operating system that is not con-
figurable nor “pluggable” at runtime. Our focus on cloud infrastructures
leads us to consider an OS that supports the diverse application and
hardware scenarios these environments offer. Among others, we wish an
OS that supports virtualization natively, as many cloud environments
are based on this capability. Linux, for example, is released under GNU
General Public License (version 2) (GNU GPLv2) license and supports
virtualization natively though [51] and hardware emulation through the
widespread QEMU [68]. Other open source OSs, such as FreeBSD, do
not have this native support, nor are as widespread as Linux is. Concern-
ing Xen, the open source hypervisor, we have to note that it is capable of
managing VMs only, and not normal applications; while Linux manages
VMs as normal processes. Since we desire to provide isolation capabili-
ties to any kind of process, either a native application or a VM, the most
natural choice is Linux.

The choice of the Linux kernel, thus, drives our design. The solu-
tion we designed, called Rainbow , introduces page coloring into Linux’
buddy allocator, accounting for the aforementioned objectives. As from
section 2.4, the physical allocator is a critical component: it is accessed
frequently and is involved in the page fault mechanism that allows Linux
to grow and shrink the physical memory of a task (i.e., process, thread or
VM). Therefore, any modification must be carefully designed, in order
to continue meeting the allocator’s goals exposed in section 2.4 while
affecting only the minimum possible amount of kernel code.

Although the core of Rainbow affects the internal memory allocator,
we need to provide an easy-to-use and flexible interface to applications.
Considering the possibilities Linux offers, we chose to develop a cgroup
[15], providing userspace applications with a filesystem-like interface to
request an LLC partition.

In the following we explore the main design decisions behind Rain-
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bow , starting from how modern CMP architectures of section 2.3 affect
page coloring.

4.3 Cache hierarchy model and page coloring

This section explains the major assumptions about the cache hierarchy
at the base of Rainbow . In particular, section 4.3.1 goes through these
assumptions in the context of a generic CMP architecture with multiple
layers of cache. Given these assumptions, section 4.3.2 and section 4.3.3
explain the consequences of page coloring adoption on the caches hier-
archies of Nehalem and Sandy Bridge architectures.

4.3.1 Assumptions on the cache hierarchy

Devising a model of our target cache hierarchy is an essential task to
go through the design of Rainbow . On one side, this model reflects the
cache hierarchies available in commodity CPUs, such as the layering of
caches and their interconnection with the cores. On the other side, it
should be general enough to be applied to a wide class of commodity
CMP architectures.

The first assumption is that the architecture features a unique LLC
shared among all the cores, with a set-associative indexing scheme. This
assumption is verified in most of today’s commodity CMPs, with the ex-
ception of few models that are however rare. Moreover, the most recent
architectures, like Sandy Bridge, are designed according to this model.
Instead, lower levels can also have a different architecture, for example
a Harvard architecture with separate caches for code and data, without
impacting our design. Instead, the line size is assumed to be constant
across the layers of the hierarchy, as verified in all CPU architectures.
Another fundamental assumption is that the LLC be a PIPT-addressed
cache. This allows the control of the data placement in the LLC on
behalf of the physical allocator, a key requirement in our vision.

Together, these assumptions allow the physical memory allocator to
control all the applications co-running on the CMP cores in a way that
is totally transparent to the user.
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Figure 4.1: Physical address bit fields for L2 cache access

These assumptions fit a wide variety of commodity architectures,
by Intel, ARM and IBM, in addition to those we target in this work.
Some architectures like IBM Power6 and Intel Crystalwell (a variant of
Haswell) also have an higher layer of cache used as a victim cache, which
is outside our model. Because of the different nature of these memories,
which act solely as a victim buffer for the lower levels of the hierarchy,
modeling them is not needed for the design we propose.

In addition to these assumed common features, modern CMPs use
PIPT-indexed caches also in lower levels, thanks to the small latency
of their TLBs. These caches are typically per-core L2 caches, while L1
caches are often VIPT-indexed, having strict latency requirements to
feed the core pipeline.
Overall, these features, being commonly met in recent commodity CMPs,
are taken as a reference model throughout our design, and possible varia-
tions do not have a strong impact, as discussed in the following sections.

4.3.2 Partitioning Nehalem’s hierarchy

Recalling section 3.3, page coloring is the only software technique able
to partition the LLC; it exploits the address bits in common between
the LLC set and the page address for partitioning, as fig. 3.1(c) de-
picts. Nehalem CMPs, having a classical LLC addressing scheme, follow
this model and can be partitioned in the same way as previous CPUs.
Therefore, the page coloring implementation used throughout the state-
of-the-art work of section 3.3 could theoretically be employed.
Yet, cache allocation is subject to another constraint. Assuming three
layers of caches, partitioning the LLC could impact also the use of the
L2 cache. fig. 4.1 shows the use of the physical address to access the
L2 cache of our target platform, which differs from fig. 2.1 as the set
number consists of 9 bits instead of 13.
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Figure 4.2: Overlap of color bits and L2 set bits in a Intel Xeon W3540

Among these bits, some overlap with the LLC color bits, as in fig. 4.2,
where the 3 most significant bits of the L2 set number are in common
with the LLC color bits.

This overlap causes also the L2 cache to be partitionable through the
subset of common bits we identified. Partitioning this level of cache can
penalize the running thread because it would restrict the the data it can
keep inside this layer; this, in turn, increases the accesses to the LLC and
hence the overall memory access latency. Even with SMT-enabled cores,
partitioning the L2 cache can be a detrimental operation, since it is very
hard to balance the partition sizes, and an unbalanced partitioning may
result in dangerous bottleneck effects. Therefore, in this work we choose
not to partition this layer, thus preventing the use of the common bits.
This decision is another key characteristic of Rainbow , that ensures the
full exploitation of the lower cache levels capacity in CMP architectures.
Thus, the remaining, highest color bits are those effectively usable for
LLC partitioning, and are 4 in the example of fig. 4.2. This limits the
number of partitions to 16, a granularity that, though not fine, is enough
for the purpose of this work.

Unlike the L2 cache, the lowest L1 cache (assumed to be doubled for
data and instructions) is usually virtually indexed, so that partitioning
the upper layers does not affect the data placement inside this layer.
However, even if this layer was physically indexed, its size is very limited,
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Figure 4.3: Utilization of address bits in Intel Core i7-2600

so that the set bits of both L1 caches are fewer than those of the LLC,
with no overlap.

Exploiting mathematical formalism, we can finally define the notion
of page color for the Intel Xeon W3540 of fig. 4.2 in order to identify
the single LLC partitions of minimal size. If we represent the i-th bit of
the address b in fig. 4.2 with the notation bi, thus b = b47b46...b0 with
positional notation 1, for the Nehalem architecture we can define the
color as a function c : {0 ... 248 − 1} → {0 ... 15} of the address in the
following way:

colorN (b) = b18b17b16b15

4.3.3 Partitioning Sandy Bridge’s hierarchy

With Sandy Bridge, Intel adopted a hash-based LLC addressing scheme,
as discussed in section 2.3.2. Based on the physical address, the hash
function computes the LLC slice the line resides in. The hash function
is undocumented, but past work has unveiled interesting details. In
particular, Hund, Willems, and Holz [38] reconstruct the hash function
of a specific Sandy Bridge model for security purposes, showing that the
hash employs all of the higher bits as input. In fig. 4.3, representing the
Intel Core i7-2600 CMP used in [38], bits 17 to 31 are used for the hash
computation, while bits 6 to 16 address the index inside a specific slice.
Wishing to use the same coloring mechanism devised for Nehalem, we
must take in account the parameters of the L2 cache, which is identical
to that of Nehalem CMPs. Hence, fig. 4.4 shows that bits 12 to 14 still
overlap with the L2 set index, so that only bits 15 and 16 are available for
partitioning, with 4 possible partitions inside each slice. Since the hash
function maps an address to a slice in an unpredictable but statistically
fair way, even controlling bits 15 and 16 any process requiring more than

1physical addresses are composed of at most 48 bits in today’s machines
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Figure 4.4: Color bits in Intel Core i7-2600

216 = 64KB of memory can receive any slice, because the bits higher
than 16 vary. Thus, any process with a realistic amount of memory, if
colored by means of bits 15 and 16, would receive the same partition on
all the slices (4 in the case of the Intel Core i7-2600). Therefore, the
final number of controllable partitions would be 4. This is, yet, a too
coarse granularity for an environment with multiple, different processes
such as the one we target.

To have a better control over the partitioning, we must assume the
knowledge of the hash function, which can be found in a similar way to
[38]. With this information, we can control both the cache sets inside
the slice and the slice itself, for a total of 16 partitions, an acceptable
granularity. To devise a more formal model, we can define the hash
function h as a function from the address space to the set of slices:
h : {0 ... 248 − 1} → {0 ... 3}. Using a positional notation, which is
more useful in our context, the hash function can also be represented as
h(b) = h2(b)h1(b), where h1 and h2 are the specific hash functions that
compute each bit, as in [38, page 198]. Thus, we can define the color also
for a Sandy Bridge platform by concatenating the hash function and the
per-slice color bits, in the following way:

colorSB(b) = h2(b)h2(b) b16b15

54



4.4. Consequences of page coloring on applications

In this way, with this notion of color in a Sandy Bridge CMP we uniquely
identify each partition inside a slice by means of bits 15 and 16 and each
slice by means of bits h1 and h2.

For the sake of generality, this notion could be extended in a similar
way to different CMPs than Intel Core i7-2600; for example, for an eight-
core CMP the hash function is defined as h(b) = h3(b)h2(b)h1(b), and
the color definition immediately follows. Studying the characteristics of
recent Intel’s CMPs, we find that many features such as the number of
per-slice sets (2048 in Intel Core i7-2600) and the number of L2 sets do
not vary, even if the number of cores does; thereof, bits 15 and 16 always
identify the per-slice partition. This makes the definitions in this section
general enough to model many CMPs without further effort.

Finally, the assumption of knowing the hash function is hardly satis-
fied in practice. Nonetheless, it is possible to reconstruct this information
as Hund, Willems, and Holz [38] did and chapter 5 explains a repeat-
able methodology to find this function. However, generally, it is not
possible to rely on single attempts of reconstruction in order to build a
CMP-abstraction framework embedded within the OS, as a production-
ready implementation would require. To this final aim, the cooperation
of CMP manufacturers is fundamental.

4.4 Consequences of page coloring on
applications

The strict dependence of the LLC mapping on the physical page ad-
dress due to the PIPT addressing scheme has several consequences. If
a task receives an LLC partition, becoming a colored task, it undergoes
some limitations, which this section discusses. In particular, section 4.4.1
shows how page coloring limits the physical memory available to the col-
ored task, while section 4.4.2 shows why hugepages become unavailable
with page coloring.

4.4.1 Cache-Memory constraint

Page coloring essentially consists in choosing certain memory pages to
control data mapping to the LLC. Therefore, if a task receives a set of
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colors the physical allocator can choose only the pages of those colors to
fulfill the task’s memory requests. Thus, the task is inherently associated
those pages, which are a subset of the entire memory of the machine.
This means that, if a task has already consumed all these pages and
requires further memory, its requests cannot be satisfied, unless using
pages from other colors. But this last possibility causes the tasks to use
LLC areas that are used by other tasks, which gives lieu to contention
over the shared LLC sets.
As Rainbow aims to enforce strict isolation within the LLC, a key de-
sign decision we made is to use only the user-reserved colors. Thus, since
Rainbow assumes the number of colors (and, implicitly, the correspond-
ing memory pages) as a user’s input, it is fundamental that this input
be properly chosen with respect to the memory footprint of the task, in
addition to the desired final performance.

If the user underestimates the number of colors, the allocator cannot
satisfy the requests and upper kernel layers may decide to swap memory
pages to a disk in order to perform the allocation. But this operation
has an overhead that is typically intolerable. Furthermore, if the pres-
sure on the kernel memory subsystem increases over a certain limit, the
allocation might fail and the process terminate erroneously.

Quantifying the memory percentage an LLC partition reserves to a
process is simple in the case of the Nehalem platform. If N is the number
of memory pages and C is the number of colors (always a power of 2 for
both Nehalem and Sandy Bridge, as from section 4.3.2 and section 4.3.3)
and N is a multiple of C, then each color is associated to exactly n = N

C

pages. Hence, a process that receives c colors can allocate over N
C × c

pages. Thereof, the percentage of memory a process can use is equal to
the percentage of LLC it receives from the user.
The assumption that N is a multiple of C is a good approximation of
reality: indeed, the RAM memory in modern machines is provided in
sticks of relatively big capacity (around 1, 2, 4 GB of more), this amount
being very close to a power of 2. Therefore, the single stick holds a
number of pages that is, approximately, a power-of-2 multiple of C, and
more sticks, even if of different sizes, sum up to a page amount that is a
multiple of C. A more precise quantification would require considering
the exact size of each memory stick, which depends on the vendor and
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the model. However, since colors repeat over the memory pages due to
the color bits being a subset of the page address, the differences among
colors are negligible in today’s machines with millions of pages.

In the case of a Sandy Bridge platform, it is not possible to compute
the number of pages per color in advance, because the hash function
controls the bits h1 and h2 in an unpredictable way. Nonetheless, we
can assume the output of the hash function to be evenly distributed,
as from its design goals (section 2.3.2). Since the configurations of bits
15 and 16 repeat over the memory pages as the colors in Nehalem, we
assume negligible differences in the number of pages with respect to
each bits configuration. Within these pages, the hash bits are evenly
distributed, overall causing the page colors cSB to be evenly distributed
as well. Therefore, also with Sandy Bridge we can well approximate the
percentage of memory to the percentage of LLC.

In general, this memory constraint can be a limitation for applica-
tions with a big memory working set and a small cache working set.
Yet, applications with such characteristics are rare in practice, as the
LLC footprint is roughly proportional to the memory occupation for
compute-intensive applications. For other applications, a huge working
set is often due to large I/O buffers, which usually have low cache affinity
and can be swapped out after use due to low reuse probability. To avoid
situations where kernel I/O buffers take most of the task’s memory, we
choose to allocate these buffers all over the RAM memory, without the
restrictions of coloring. This also allows ensures to the kernel high avail-
ability of memory for its functioning, which is fundamental to preserve
the machine responsiveness and stability. However, we believe that, in
general, an approximate knowledge of the task’s input on behalf of the
user is sufficient to limit the cache-to-memory constraint: for example,
some cloud infrastructures require end users to provide an a-priori esti-
mation of the memory they use.

4.4.2 Limits on physical page size

The second limitation is the impossibility of using hugepages (see sec-
tion 2.5), available in some modern architectures.

Figure 4.5 shows the very different granularities of hugepages and
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Figure 4.5: Bit fields for hugepages and LLC

No bits are in common between hugepage address and LLC set index

of the LLC management that cause the color bits to overlap entirely
with the page offset. Therefore, in Nehalem a single hugepage covers
all the possible colors of the platform and is mapped to all the cache
sets, denying isolation. Similarly, with Sandy Bridge the hugepage offset
overlaps with bits 15 and 16 and with part of the page offset, used for
the hash: the lack of control over these bits causes the data to be spread
evenly among all the LLC slices, and in any set of the slice.

Since a hugepage causes data to be mapped to any set, neither
isolated applications nor the others can leverage this feature. Unfor-
tunately, the PIPT addressing makes this limitation impossible to re-
lax. Page coloring and hugepages could coexist only with hardware
changes like a more diverse granularity, but any such modofications are
not planned in future CMPs.

4.5 Rainbow Buddy

Implementing page coloring requires noticeable modifications to the buddy
algorithm and data structure. The aim of these modifications is to per-
mit the allocation of a page of a specified color. These modifications
are based on the LLC parameters identified in section 4.3. In particular,
section 4.5.1 explains the modifications to the data structures and sec-
tion 4.5.2 shows those to the basic algorithms for insertion and removal
of buddies.
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Figure 4.6: Overlap of color bits and buddy bits in Nehalem

4.5.1 Mcolors and data structure modifications

To allow “colored” allocations, the data structure of the buddy system
must be modified to allow insertion and removal of pages of a specific
color. The color is specified in the request by choosing one of the colors
allocated to the application. We have to note that the notion of “color”
applies natively to pages, that is to say, in the context of the buddy
allocators, to buddies of order 0; and the color varies over consecutive
pages. When the buddy order increases, more and more lower bits of the
buddy address become 0 (see section 2.4.1). Above a certain order the
address bits being forced to 0 start overlapping with the color bits, as
fig. 4.6 shows, and the configurations available for the color bits are less
and less as the order increases. Thereof, after a certain order all the color
bits are forced to 0. For Nehalem, all the colors are available if the zeroed
bits are below bit 15, corresponding to orders 0 to 3 (included). Hence,
for the buddies of these order the notion of color applies as well. Always
considering Nehalem, buddies with order from 4 to 6 (included) have
more and more color bits forced to 0, progressively reducing the possible
color configurations from 8 to 2, and buddies with order higher than
6 have all the color bits being 0, thus one configuration. Considering,
for example, a 4-order buddy, it spans two 3-order buddies which have
two different colors, with the first 3 bits in common and the lowest bit
variable. Hence, it is natural to identify the color of a 4-order buddy
with the highest 3 bits only, as the fourth bit may vary. And, similarly,
a 5-order buddy contains two 4-order buddies, and has only two fixed
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color bits; and so on. This leads us to define the notion of multi-color
or mcolor in order to generalize the color of a buddy with respect to its
order. Therefore, if b is the address of the buddy and d its order, we can
mathematically define the mcolor for Nehalem as

mcolorN (b, d) =



b18b17b16b15 if 0 ≤ d ≤ 3

b18b17b16 if d = 4

b18b17 if d = 5

b18 if d = 6

0 otherwise

For Sandy Bridge, the presence of a hash function leads to troubles.
In case of orders from 0 to 5 the definition of mcolor we have given still
applies, simply replacing b18b17 with h1h2. Similarly, in case of order 7 or
greater, our definition applies equally. The case of order 6 is particular
because of the unpredictability of the hash function: in fact, a 6-order
buddy with hash h1h2 = 10 can, for example, be split in two 5-order
buddies with hash h1h2 = 10 and h1h2 = 01 respectively, because bit
17 might be XORed with both h1 and h2, flipping both hash bits when
it is 1 (as in the second buddy). As will be clear in the following, a
definition of mcolor also for Sandy Bridge is still possible, but depends
on the specific hash function. Therefore, we leave the details on this
topic to chapter 6.

Leveraging the notion of mcolor, it is natural to split each order list
into several sub-lists, one per mcolor, to keep the lookup operation fast
and maintain efficiency. Figure 4.7 depicts the new structure Rainbow
buddy allocator uses: an array of lists per mcolor, which can be accessed
in constant time by adding the mcolor to the base pointer.
Therefore, the final subdivision of buddy lists takes in account three
aspects: order, migratetype (recalling section 2.4.3) and mcolor. In the
following section, for the sake of simplicity we will ignore the presence of
the migratetype; in fact, this parameter is constant during an allocation
and does not vary often across allocations, since userspace requests (the
only colored allocations) are typically fulfilled with buddies of the highest
mobility.
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Figure 4.7: Rainbow Buddy data structure

The designed data structure with colored lists per-order; in the higher
levels multiple colors are aggregated

4.5.2 Algorithm modification

Leveraging the data structure we designed in the previous section, we
consequently have to modify the buddy algorithm, with the goal of main-
taining its efficiency.

Within the Rainbow buddy allocator, the coalescing procedure is,
overall, unchanged, since it depends on the physical contiguity of the two
buddies. The only change is the final insertion, in which the insertion
list now depends not only on the order and migratetype but also on
the mcolor of the buddy. The insertion algorithm is explained in the
following pseudo-code snippet. Here, MCOLOR is the function that returns
the buddy mcolor from section 4.5.1, either for Nehalem or for Sandy
Bridge, and the buddy migratetype, being constant during the coalescing
procedure, is not shown. The code snippet shows a recursive procedure
that summarizes the insertion functioning in Rainbow .

1 globaldata: list_head buddies[MAX_ORDER ][ MAX_COLORS
]

2
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3 procedure INSERT_BUDDY
4 input: buddy_address addr , buddy_order ord
5 output: none
6 behavior:
7 mcolor = MCOLOR(addr , ord)
8 // address of the physically contiguous buddy
9 twin_addr = addr + (1 XOR ord)
10
11 if (ord < MAX_ORDER - 1) AND (BUDDY_IS_FREE(

twin_addr))
12 new_buddy = COALESCE_BUDDIES(addr , twin_addr ,

ord)
13 INSERT_BUDDY(new_buddy , ord + 1)
14 return
15 else
16 INSERT_INTO_LIST_HEAD(buddies[ord][ mcolor],addr

)
17 end procedure

As from section 2.4, the “twin” physically contiguous buddy is com-
puted by means of a XOR operation on the order-th bit of the buddy ad-
dress. The procedures BUDDY_IS_FREE and COALESCE_BUDDIES act on the
array of physical pages (described in section 2.4.1) to store or retrieve in-
formation about the buddy (order, migratetype, allocation status, etc.),
run in constant time and their details are of little interest here; however,
the names explain their roles.

The splitting procedure, instead, is more complex. The key issue
is that, if a buddy of a desired color is not present, the allocator must
split a higher order buddy in which the requested color is present, to
guarantee the allocation time be constant and avoid searching. To do
this, we need a way to select the proper mcolor from the requested
color. For the Nehalem architecture, we note that, increasing buddy
order, the lower color bits are discarded in order to compute the mcolor.
In a similar way, we can discard the lower bits of the requested color
to have the mcolor of a certain order. For example, if a page of color
13 is requested and no buddy of order from 0 to 3 is present of color
13, the allocator has to split a buddy of higher order in which a page
of color 13 is present. Color 13, or 11012 in binary format, corresponds
to mcolor 1102 of order 4: if a buddy of such order is present, it is split
into two halves, differing in the lowest bit, thus being 11002 and 11012
respectively. After the split, the allocator continue the split with the
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second buddy to reach order 0 and store the former in the 3-order free
list. Similarly, if no 4-order buddy of color 1102 is present, the allocator
has to split a 5-order buddy of color 112, choose the first half and split it
further; and so on. This procedure, overall, is called color chasing and is
the key innovation of the splitting procedure. Leveraging mathematical
formalism, if the requested color is c = c3c2c1c0 and the requested buddy
order being checked is d, the mcolor to look for is:

mcolor_lookupN (c, d) =



c3c2c1c0 if 0 ≤ d ≤ 3

c3c2c1 if d = 4

c3c2 if d = 5

c3 if d = 6

0 otherwise

Again, in Sandy Bridge this function depends on the hash, and we post-
pone the discussion to chapter 6.

The following pseudo-code snippet summarizes the splitting proce-
dure, which starts from EXTRACT_PAGE: this procedure looks for a page
of the requested color. If it cannot find one, it invokes the procedure
SPLIT_BUDDY, which looks for a suitable higher-order buddy performing
color chasing by means of the functions mcolor and mcolorlookup de-
fined previously (in capital letters inside the code snippet).

1 globaldata: list_head buddies[MAX_ORDER ][ MAX_COLORS
]

2
3 procedure SPLIT_BUDDY
4 input: buddy_order ord , mcolor col
5 output: buddy_addr
6 behavior:
7 buddy_order local_ord
8 buddy_addr local_addr , twin_addr
9 mcolor local_mcol , addr_mcol
10
11 if ord == MAX_ORDER
12 // no buddy exists
13 return nil
14
15 local_mcol = MCOLOR_LOOKUP(col , ord)
16 if LIST_IS_EMPTY(buddies[ord][ local_mcol ])
17 // no buddy found in this order
18 local_addr = SPLIT_BUDDY(ord + 1, col)
19 if local_addr == nil
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20 return nil
21 else
22 // get buddy for splitting
23 local_addr = REMOVE_LIST_HEAD(buddies[ord][

local_mcol ])
24
25 twin_addr = local_addr + (1 XOR ord)
26
27 // color chasing
28 addr_mcol = MCOLOR(local_addr , ord - 1)
29
30 if first_mcol != local_mcol
31 // twin_addr is the buddy to return
32 SWAP_VARS(local_addr , twin_addr)
33 INSERT_INTO_LIST_HEAD(buddies[ord - 1][ addr_mcol

],twin_addr)
34
35 return local_addr
36 end procedure
37
38 procedure EXTRACT_PAGE
39 input: mcolor mcol
40 output: buddy_addr
41 behavior:
42 if LIST_IS_EMPTY(buddies [0][ mcol])
43 return SPLIT_BUDDY (0,mcol)
44 else
45 return REMOVE_LIST_HEAD(buddies [0][ mcol])
46 end procedure

The procedure SPLIT_BUDDY starts by checking if buddies of the re-
quested order may exist. Then, it looks for a suitable buddy to split,
recursively requesting one if none is present in the current order. After
finding the buddy to split, the procedure and computes the address of
the “twin” buddy of smaller order. Then, it performs color chasing by
checking which of the two buddies has the desired mcolor, either the
local (variable local_addr) or the twin (variable twin_addr). In case the
twin is the desired buddy, the procedure swaps the two variables so that,
finally, local_addr contains the needed buddy and twin_addr the other
one, to be stored in the free list.
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4.6 Rainbow interface

To exploit the LLC partitioning facilities introduced with Rainbow , an
application needs a suitable interface. In particular, an application
should be able to declare the size of its LLC partition to the kernel
via a userspace interface, so that the kernel, then, allocates its memory
properly. An additional system call is a technically viable solution to
realize such interface, but is not in line with Linux development guide-
lines 2. Moreover, since several parameters are of interest for the new
Rainbow capabilities, the system call interface can become complex and
unclear.

In the present years, Linux developers prefer filesystem-like interfaces
to expose non-core functionalities, like the generic sysfs interface [82]
and, in particular, the cgroups [15] facility. A cgroup is, essentially, a
hierarchical interface on a system resource (memory, I/O, CPUs, etc.)
exposed as a folder hierarchy. A user can partition a resource by creating
a subdirectory inside the main one. Each subdirectory contains several
files, which control the resource parameters (for example, the memory
amount, the I/O bandwidth, the set of allowed cores, etc.). To change
one of those parameters, it is sufficient to write the proper file, thus
changing the resource allocation. Similarly, to constrain a process to a
resource partition by associating the process to a cgroup, it is sufficient
to write the Process IDentifier (PID) to a specific file.

Therefore, we chose to introduce a new cgroup called cacheset, which
serves as an interface to Rainbow ’s capabilities. A user creates an LLC
partition by making a subdirectory inside the main cacheset directory
and chooses the number of colors of the partition by writing a file, and
the tasks using that LLC partition by writing another. This flow well
fits the way distributed computing platforms are managed: typically,
each server has a centralized manager that monitors running applications
and creates new ones on demand. This manager can exploit the cacheset
cgroup in the way described above, associating a task to a certain cgroup
based on the task’s memory footprint, the QoS requirements and any
high-level policy.

2Linux developers are unwilling to introduce new system calls, unless a wide
audience of users shows an evident and frequent need of it.
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On the kernel side, Linux automatically redirects the filesystem op-
erations to the LLC management functions, in a transparent way to
the user. Since recent Linux versions have a dedicated, independent
interface to add a cgroup, no change is needed to the filesystem man-
agement. Thereof, adding cacheset consists essentially in “hooking up”
into the Linux cgroup interface, as explained chapter 6.
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Tell me, o Muse, of the man of many devices, who
wandered full many ways after he had sacked the
sacred citadel of Troy. Many were the men whose
cities he saw and whose mind he learned, aye, and
many the woes he suffered in his heart upon the sea,
seeking to win his own life and the return of his
comrades.

Homer, Odyssey I
translated by A.T. Murray

Section 2.3.2 explains the novel architecture of Intel’s Sandy Bridge
family, which goes almost unchanged also through the following Ivy
Bridge and Haswell families. For our purposes, the key innovation is
the aforementioned introduction of a hash-based addressing scheme, that
computes the LLC slice a cache line maps to from the line address. Since
this hash is undocumented, the control over the LLC Rainbow needs, as
from section 4.3.3, is reduced to the extent that it is impossible to con-
trol the slice data are mapped to, resulting in only 4 partitions available.
Therefore, in the same section 4.3.3 we assumed the knowledge of such
hash function, as it is fundamental for Rainbow ’s goals.
This chapter, thus, presents the methodology we used to reconstruct
this information, also unveiling some inner details of the CMP model
we worked with. In particular, section 5.1 explains the assumptions we
leveraged and, consequently, the methodology we followed to reconstruct
the hash function. Then, section 5.2 explains how the experiments were
conducted, in particular how the hardware and software were config-
ured. Section 5.3 shows the first tests performed on our CMP, which are
interpreted in 5.4 to find 6 possible hash functions that fit with the mea-
surements. Section 5.5 shows another set of tests performed to finally
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Figure 5.1: Reconstructed hash function of Intel Core i7-2600

find the hash of our CMP. Based on the findings of this last section,
section 5.6 infers additional details about the architecture.

5.1 Assumptions and methodology

Reconstructing a hash function can be very complex task, in particular
with cryptographic hashes. Yet, these hashes, if implemented in hard-
ware, have an area cost and a latency that are not compatible with the
requirements of a component inside a CMP core: indeed, Intel’s hash
function must work at more than 3 GHz frequency and must provide the
result within less than 30 cycles, the average latency of an LLC hit in
Sandy Bridge. Therefore, this hash must be simple and have small area
and power overhead.
Hund, Willems, and Holz [38] unveiled the hash of a Intel Core i7-2600,
showing that it is basically a XOR operation on bits of the tag, as fig. 5.1
depicts. Since the hash function h must return a number from 0 to 3,
its output uses two bits, each one computed according to a different
XOR-based hash: in positional notation, h(b) = h2(b)h1(b). A poste-
riori, we could try to infer the rationale of this design choice. A first
reason is that the XOR operator has evenly distributed output values,
thus without biasing the hash and, thereof, the slice choice: all the 4
configurations have equal probability. Secondly, XOR ports have very
small latency, area and power overhead, in particular with Intel’s full
custom Application Specific Integrated Circuit (ASIC) lithography.

Thanks to these characteristics, we can expect this design choice to
hold across all the models of the Sandy Bridge family, and, with good
confidence, also across other families and models. The bits used within
each hash can change, but we assume the XOR operator to be the only
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one Intel uses. We have to stress this is a critical assumption: if it
was wrong, then much more complex techniques than those we use here
would be necessary. But our findings finally proved our assumption to
be correct.

Once the bit-combining operator is known, the remaining task is
to discover which bits h1 and h2 combine. Since our CMP model, a
Xeon E5-1410, is different from that in [38], we cannot assume the hash
function to be exactly the same. However, exploiting the few hints in
[38], we can learn from their reconstruction methodology to reach the
same result with our CMP.
Therefore, the main step consists in finding collisions among memory
addresses. Using Intel’s performance counters, we can detect whether
an address causes an LLC miss [21, chapter 18]. By reading proper
sequences of addresses (as detailed in the following), we can find whether
an address has evicted another one: in such case, the two addresses
collide, hence are mapped to the same LLC set and must have equal
hash. Following the procedure in [38], we will collect groups of memory
addresses that collide in the LLC. In particular, given a fixed memory
address called prober, we find several other addresses, called colliders,
that collide with the prober. Then the comparison of these addresses let
us infer the influence of each bit over h1 and h2.

5.2 Environment setup and preliminary
considerations

The machine Hund, Willems, and Holz [38] use ships 4 GB of RAM: this
limits the physical memory bits to 32, so that the hash function works
with bits from 0 to 31. Higher bits are 0 and, even if they are used in
the hash, they do not affect the XOR operator. Instead, the machine we
use for the measurements has 6 GB of RAM and uses thus also bit 32:
to learn the influence of this bit too, we have to extend the collection of
colliding addresses also to the upper 2 GB of memory, where this bit is
set.

The necessity of knowing physical memory addresses forced us to
make measurements with ring-0 privilege level, thus inside an OS. We
chose Linux, which allows users to insert executable modules at runtime
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and provides good documentation and interfaces for a deep control over
the OS and the hardware, even from external modules[57, chapter 7].
Another key functionality of Linux was the possibility of accessing the
whole memory space with ease, since the x86_64 version of Linux maps
the entire physical memory of the machine to the kernel address space,
thanks to the huge availability of virtual memory with 64 bit machines
[95].

Since our aim is to collect the exact memory addresses that col-
lide with each other, it is fundamental to have very precise measures.
Yet, in today’s architectures, many features can potentially disturb the
measurements, leading to noisy results that are useless for our goals.
Moreover, Intel’s performance counters are not conceived for measure-
ments of high precision, but to characterize long execution phases of
applications (in the order of milliseconds or more), when the hardware
monitors typically count millions of events: for this purpose, differences
between the counters and the “true” values of few hundreds of events are
negligible, while in our testbed they would totally invalidate our results.
Therefore, it is absolutely necessary to disable all sources of noise in the
testbed.

A first example of a disturbing feature is speculative prefetching,
which loads data according to forecasts based on the memory access pat-
tern. In particular, modern architectures have prefetching units in the
pipeline front-end, to prefetch instructions from the L1, and inside each
layer of cache, to prefetch lines from the upper memory layer. Prefetch-
ers can disturb measurements by pre-fetching unneeded lines that evict
other lines, thus increasing the miss counter. Since it is not possible
to know which address caused the miss, misses due to prefetchers could
be confused with those artificially caused by out tests, thus invalidat-
ing the measurements. In our machines, it is possible to disable cache
prefetchers from the configuration panel of the Basic Input-Output Sys-
tem (BIOS), while instruction prefetchers cannot be disabled. However,
since they prefetch from the L1, we expect them not to affect the mea-
sures.

Sandy Bridge CMPs aggressively adjust the frequency based on the
cores utilization through Dynamic Voltage-Frequency Scaling (DVFS),
with a hardware/software control. To stabilize the measurement envi-
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ronment and limit unpredictable behavior like event loss or delays, we set
in software the minimum frequency and disable any power-saving mech-
anism. Although the hardware may still decide to make small DVFS
regulations independently, we assume these actions to be limited and
not to pollute measurements sensibly.
Since our test kernel module runs on a single core, other cores are a ma-
jor source of noise: in fact, they simultaneously run other applications,
system services and interrupt handlers (like the clock interrupt handler,
that drives preemptive kernels). According to our experience, it is fun-
damental to disable the other cores to achieve much higher predictability
and precision; for the same reason, all interrupts on the working core
are disabled when the module is loaded.

Modern CMPs are designed to aggressively execute instructions out
of order, leveraging speculative mechanisms that proved to be very ef-
fective. These features often change the order of instruction execution
in order to hide pipeline and memory latencies. Since it is impossible to
know which memory address caused the miss event we eventually mea-
sure, we can rely only on the memory accesses we trigger by software
to understand which memory address caused the miss event. Hence, we
have to enforce the execution of memory accesses in exactly the same
order they appear in software. Since it is impossible to disable specula-
tive, out-of-order execution, we can only attempt to enforce an in-order
execution. Therefore, we disable all the compiler optimizations, which
reschedule instructions, we force each memory access by the C volatile
qualifier and we explicitly protect accesses with a hard memory barrier
(the x86 mfence instruction[20, section 3.2]), which forces both the com-
piler and the pipeline to maintain the order of memory accesses.
Finally, we learned from our experience that Intel’s performance coun-
ters might have delays in the updating the register values, in particular
with consecutive accesses. Still from our experience we learned that,
most of the times, the register is updated as expected after multiple
reads. Despite all these precautions, we experienced that some noise is
inevitable.

We made the tests taking into account all these details, writing the
modules’ code with care, barriers and pointer access modifiers, and also
checking the output assembly code. However, in describing the tests we
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made we will omit to show all these precautions, not to overwhelm the
reader with an amount of details that can hide the basic concepts.

5.3 Collecting colliding addresses

Finding two colliding addresses in the LLC requires considering all its
parameters. Looking at fig. 5.1, we notice that bits 6 to 16 are used
for the set index and bits 0 to 5 are used for the line. Therefore, two
addresses that have bits from 0 to 16 in common map to the same set
number and line offset. To compute these addresses, we use a parameter
called stride, which is equal to 217: two addresses are mapped to the same
set number if their distance is a multiple of the stride. Given a probe
address, we can find multiple colliders by repeatedly summing the stride
to the probe and checking whether the probe is evicted after every access.
Yet, adding the stride increments the tag, which is the input of the hash
function: therefore, two addresses differing of a stride are mapped to the
same set number, but might unpredictably be mapped to different slices,
without colliding. Hence, the number of memory locations we have to
traverse to find a collision is not a priori known. Since the associativity
of the Xeon E5-1410 is 20, in the best case 20 memory locations with
offset equal to the stride can map to the same set inside the same slice,
filling the set; in such case, if also the 21st memory location maps to the
same slice, it evicts the probe address, and we can detect this event by
reading the probe and checking whether a miss happens. However, this
scenario is impossible in practice, because a hash function like that of
fig. 5.1 changes frequently with the lower bits. Thereof, we expect the
data we access to be evenly distributed among the 4 slices: in this more
realistic case, 78 accesses are needed on average to fill a set, and about
80 to evict the probe and trigger a miss when the probe is subsequently
read. And, in our measurements, we found very close numbers.

We can summarize this test with the following code snippet, which
looks for a collider by checking whether the global probe has been
evicted.

1
2 globaldata: integer stride
3 address probe
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4 integer collider_offset
5
6 procedure FIND_COLLIDER
7 input: none
8 output: address
9 behavior:
10 integer i, miss_count , jumps
11 address first_collider
12
13 // compute address of first collider
14 first_collider = probe + collider_offset * stride
15
16 for jumps from 20 on
17 // bring probe into LLC
18 READ_ADDRESS(probe)
19
20 // bring colliders into LLC
21 for i in [0,jumps)
22 READ_ADDRESS(first_collider + i * stride)
23
24 miss_count = READM_MISS_COUNT ()
25 READ_ADDRESS(probe)
26
27 if (READM_MISS_COUNT () > miss_count)
28 // last collider hash evicted the probe
29 return first_collider + i * stride
30 end procedure

For the sake of simplicity, we wrapped the low-level details with the
functions READ_ADDRESS, which reads the memory address with the hard
barries, and READM_MISS_COUNT, which reads the miss counter register
using Intel’s dedicated performance counter [21, chapter 19.5].

By changing the variables probe and collider_offset, we can find
multiple couples probe -collider. In particular, by varying only collider_offset
we can find multiple colliders associated to the same probe, which are
useful for the following steps. Furthermore, by adding to each probe
and each collider an additional, constant offset lower than the stride, we
can map addresses to a given set number, not necessarily 0, collecting
conflicting addresses with the lower 17 bits being not all 0. This will let
us verify that bits lower than 17 are not used in the hash, as fig. 5.1
found. Overall, with these experiments we collected several probes
pa, pb, etc. and multiple colliders for each probe, represented as sets
{ca,1ca,2, ...}, {cb,1, cb,2, ...}, etc., accounting for more than 2’7000’000
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millions addresses.

5.4 Results interpretation

With these data, we can have a first insight on the hash bits and on the
measurement noise. To evaluate how noisy the measures are, we perform
a first test on our data. Considering a single probe p and its colliders
{c1, c2, ...}, we know that the hash of all these addresses are equal as
they conflict in the LLC. If we consider any two colliders ci and cj of the
same probe, their Hamming distance H(ci, cj) cannot be 1, that is to say
they cannot differ for a single bit: if this happened, the hash would be
different, because h1, h2 or both would change because of this only bit.
Thus, finding couples of colliders of the same probe that have Hamming
distance of 1 gives an idea of the noise affecting the measurements. In
our experiments, less than 0.03% of the measures fulfilled this condition;
once two such colliders are found, they are discarded.

Assuming that all the bits 17 to 32 are used within at least one of
the two hash functions, as in [38], the problem of reconstructing the
hash h = h2h1 may be reduced to a clustering problem. Specifically, we
expect only three clusters of bits:

1. the cluster of bits only in h1

2. the cluster of bits only in h2

3. the cluster of bits both in h1 and in h2

To find these clusters, we look for colliders of the same probe having
Hamming distance of 2. Since these colliders have the same hash, we
infer that the two changing bits do not change the overall hash. This is
due to the property of XOR: if two bits change at the same time, their
XOR does not change. This, in turn, implies that the two bits are in
exactly one of the following configurations:

1. both bits are used in h1

2. both bits are used in h2

3. both bits are used both in h1 and in h2
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For each couple of colliders at Hamming distance 2 we found the two
different bits i and j, and counted how many times i and j appeared
across the whole dataset. This count represents the likelihood li,j of bits
i and j to be in the same configuration.

In a similar way, we need an estimation of the unlikelihood ui,j of bits
i and j to be in the same configuration. The higher the unlikelihood,
the higher is the probability that i and j are not in the same configura-
tion. To find such couples, we can consider two probes pa and pb with
Hamming distance 1, thus guaranteed to have different hashes, and two
colliders ca,i of pa and cb,j of pb with Hamming distance 2. Since the
hashes of ca,i and cb,j must be different, the two different bits must have
a different configuration, otherwise they would “flip” the XOR twice and
cause the hash values to be equal. Counting the occurrences of such cou-
ples, we devised an estimation of the unlikelihood ui,j for each couple of
bits.

Finally, likelihood and unlikelihood allow us to cluster bits based on
their configuration. To this aim, we developed a simple clustering based
on an Integer Linear Programming (ILP) model. Introducing the binary
variable si,j that represents whether bits i and j are in the same cluster,
we can write the objective function as

minimize
32∑

i=17

32∑
j=i

[(1− si,j) + li,j − si,j × ui,j ]

To indicate whether a bit i is inside cluster c, we also introduce the
binary variables ti,c, and add the constraint

si,j ≥ ti,c + tj,c − 1 ∀c ∈ [1, n]

where n is the number of clusters. Finally, since a bit must stay in a
cluster only, we also add the constraint

si,j ≤ 1− ti,c + 1−
∑

kin[0,n]\{c}

tj,k ∀c ∈ [1, n]

Trying with different values of n, three clusters of bits emerged:

f1 = 18, 25, 27, 30, 32

f2 = 17, 20, 22, 24, 26, 28

f3 = 19, 21, 23, 29, 31
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5. Reconstructing Sandy Bridge hash function

Bits 6 to 16 have very similar likelihood and unlikelihood in every cou-
ple they appear, but the values are very low compared to those of other
couples, as representing occurrences of noise. This confirmed the inde-
pendence of the hash from bits lower than 17.

5.5 Finding the correct hash function

The three clusters found are in accordance with the configurations in
fig. 5.1; however, we still do not know which configuration each cluster
corresponds to. Indeed, any cluster may correspond to any configuration,
and the two hash functions h1 and h2 are the XOR-combination of a
common and a specific configuration. Therefore, there are 6 possibilities,
corresponding to 6 different hashes h. If we denote with xi the XOR of
all bits in fi and separate with the comma the two functions h2, h1 (to
keep the usual positional notation), the 6 hashes are:

ha = (x1 XOR x2), (x3 XOR x2)

hb = (x1 XOR x3), (x2 XOR x3)

hc = (x2 XOR x1), (x3 XOR x1)

hd = (x3 XOR x2), (x1 XOR x2)

he = (x2 XOR x3), (x1 XOR x3)

hf = (x3 XOR x1), (x2 XOR x1)

where the last three hashes are obtained by “swapping” the first three
ones. If we closely look at these functions, we notice that it is possible to
map each function to another one in a bijective way. This because, once
we know the result of a hash, we can uniquely derive the values of x1, x2
and x3, and from these values compute any other hash. This implies that
a bijection between any two hashes exists, further implying that these
functions have the same output distribution, thus being equal in terms
of “spreading” capability. Hence, Intel could use any of these functions
in its CMPs: for example, Hund, Willems, and Holz [38] showed that
Intel Core i7-2600 uses he.

To find which hash function our CMP uses, we decided to exploit
the variable latency of the ring interconnection: trying a specific hash
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function, we can compute in which slice an address is supposed to be
mapped. Then, we verify if this hypothesis is correct: for example, if the
test is done on core 0 1, accessing slice 0 must have minimum latency
with respect to the other slices. In this way, we can check whether a
specific hash is correct.

Therefore, we wrote another Linux module to measure the latency
when accessing a given memory address. This module has to access the
LLC and measure the access latency, without accessing the L2. To do
this, we have first to fill the LLC with the data we want to read and then
fill the L2 with other data from the LLC, so that the measured access
will hit in L3 and not in L2. The following code snippet summarizes this
procedure.

1
2 globaldata: address buffer
3 integer llc_size
4 integer l_size
5 integer offset
6
7 procedure MEASURE_LATENCY
8 inputs: none
9 outputs: integer
10 behavior:
11 integer i
12
13 for i in [0, llc_size)
14 READ_ADDRESS(buffer + i)
15
16 for i in [llc_size - l2_size , llc_size)
17 READ_ADDRESS(buffer + i)
18
19 READ_ADDRESS(buffer + offset)
20 return READ_LAST_ACCESS_LATENCY ()
21 end procedure

Here, buffer is a generic memory area used to read data, and offset
controls which data are read. By varying this parameter of the stride
value, it is possible to read data from a desired slice.

1Linux assigns several identifying numbers to cores, some directly coming from
the hardware and others based on SMT capabilities and boot order, in turn depend-
ing on the BIOS. Here we use the hardware ID of a core, which follows the same
numbering of the slices and is called ApicID in Linux.
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Figure 5.2: Reconstructed hash function of Xeon E5-1410

Table 5.1: Minimum LLC latencies measured in Xeon E5-1410 when
accessing a slice from a core

slice 0 slice 1 slice 2 slice 3
core 0 18 20 26 27
core 1 20 18 31 26
core 2 26 27 18 20
core 3 31 26 20 18

In our experience this measure was affected by a lot of noise: even
reading the same address multiple times, the measured latency varies in
a certain range that depends on the slice. For example, if accessing slice
0 from core 0, the latency typically varies from 18 to 23 cycles, while
the farthest slice from core 0 (slice 3) has a latency in the interval from
27 to 31 cycles. These variations are likely due to the complexity of the
architecture, in particular to the conflicts the core may experience on
the ring bus and when accessing a slice, which could already be busy
to service a prior request and enqueue the core’s access. Therefore, we
concentrate on the minimum values, which describe the access latency
in ideal conditions. Looking at these values, we found that couples of
cores have symmetrical latencies when accessing slices, and also have the
same minimum latency, 18, that we assume to be the latency towards
their local slice. However, the only hash that maps that maps each
core’s numbers to the same slice number is hash hd, shown in fig. 5.2.
This hash is different from that of [38], probably because of the different
model.

Table 5.1 summarizes the minimum latencies found when accessing
the slices from each core. We note, again, symmetry between couples of
cores, guessing that the routing protocol of Sandy Bridge routes cache
lines to the best direction, that is to say the one with the least hops.
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5.6 An educated guess: reconstructing the
topology

Analyzing the latencies, we can try to partially reconstruct the topology
of the Xeon E5-1410. In particular, table 5.1 shows which are the closest
slices to each core. For example, core 0 is close to slice 1, while slices 2
and 3 are more distant. Similarly, core 3 is close to slice 20 and distant
from slices 1 and 0. Still looking at core 0, the difference between the
latency of slice 0 and slice 1 is 2 cycles. This is likely due to the 1-hop
distance the request and the response have to travel. Therefore, we can
infer that there is a single hop distance between cores 0 and 1, and sim-
ilarly between cores 2 and 3. Instead, the latency between, for example,
core 0 and slice 2 is higher, suggesting that there are intermediate steps
like memory ports, I/O interfaces, PCIExpress interfaces, QuickPath
Interconnect (QPI) bridges for inter-processor coherency, etc. This also
appplies to the distance between core 1 and core 2, where the number of
hops is, probably, even higher. Moreover, we can note that, when two
cores differ for only the least significant bit, they are close, otherwise
they are more distant. This is a typical characteristic of routing proto-
cols for high-bandwidth, hypercube interconnections, whose key features
probably inspired Intel’s engineers.

Looking at the maximum values in table 5.1 (31), we can note that
it appears only in two cases, when the communication occurs from core
1 to core 2 and from core 3 to core 0, while in the opposite cases the
latency is 27. This is likely due to an asymmetry in the routing protocol,
for example because it sends the response along a path different from the
path of the request. This, in turn, might serve to balance the load of each
ring segment, to avoid bandwidth saturation and, consequently, long
latencies to access shared resources such as memory or I/O interfaces.
Considering all these insights, we attempt to reconstruct the topology
of Xeon E5-1410 in fig. 5.3, were the intermediate hops (with dashed
lines) are supposed to be between cores 1 and 3 and between cores 0 and
2. The red spots depict the cache boxes and two buses with opposite
directions are assumed, as in fig. 2.2(b).
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Figure 5.3: Reconstructed topology of Xeon E5-1410

The intermediate hops are dashed as their function is not known
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Implementation 6

This chapter discusses the details of the implementation of Rainbow
on the basis of the design choices of the previous chapter. section 6.1
shows the way Rainbow is implemented inside the Linux kernel, while
section 6.2 gives an overview of the various components added with
Rainbow .
Section 6.3 explains how Rainbow represents colors and manages them
through mcolors; in particular, we present how the knowledge of the
hash function for Sandy Bridge allows Rainbow to associate a color to a
buddy uniquely, and how the color chasing mechanism is implemented
thanks to the information in chapter 5. Section 6.5 shows how colors
are associated to applications via the cgroup interface and section 6.4
discusses how Rainbow ’s buddy allocator uses this information.

6.1 Implementation approach

The design proposed for Rainbow in chapter 4 is implemented on the
Linux kernel version 3.17.1.

This choice is due to two main reasons. The first is the need of mak-
ing modifications starting from a recent version of the memory allocator:
in fact, this subsystem has undergone important changes over the years,
and is now very different from earlier versions. To derive a modern im-
plementation for Rainbow , a modern allocator is the only choice. The
second reason lies in some of the changes the latest versions bring, re-
lated to cgroups. While older versions didn’t offer a clear interface to
add a cgroup, requiring developers to deal with low-level filesystem man-
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agement details, from version 3.16 Linux developers introduce a unique,
high-level API that prevents disruptive interventions and eases develop-
ment. In version 3.17.1 this interface has definitely been stabilized and
polished.

Because of the fundamental role of the physical memory allocator,
this subsystem cannot be plugged or unplugged at runtime, and must
be statically linked inside the Linux kernel binary. Hence, the only way
to implement Rainbow in Linux was to add the new source code to the
kernel working tree and to switch between the default allocator and
Rainbow at compile time.

Particular care is devoted to keeping higher levels of the Linux mem-
ory management system unchanged, in order to have the smallest pos-
sible impact on the existing codebase and functionalities. Therefore,
normal applications should not be isolated and should allocate across
all the available pages. Most importantly, it is fundamental to preserve
the functionality and performance of the kernel without restricting the
memory it can allocate from, also in presence of colored tasks.

6.2 Coloring the memory of a task

Before showing the details of the implementation, it is useful to provide
an overall view of how Rainbow works, and of how it integrates within
Linux in a non-disruptive way. Therefore, this section shows the main
steps required to run isolated applications and how the novel mechanisms
of Rainbow act within a running Linux kernel.

When a task starts first, no coloring information is attached to it;
if no colored applications are running, the task can allocate everywhere
in memory. Otherwise, a global data structure stores the colors not al-
located to any set of tasks (recalling that, via the cacheset cgroup, the
administrator can create groups of tasks sharing the same LLC parti-
tion), and the task allocates from this pool of pages.

If, at some point, the administrator colors the task by writing its
PID into a cacheset, it restricts the pages available for future allocations
to the cacheset pool. Therefore, the administrator can choose to isolate
a task from the very beginning or only from a certain point on, for
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example when its LLC usage grows over a threshold or when it starts
causing sensible pollution to other applications.

Once colored, any memory request from the task will be fulfilled us-
ing the cacheset pool. The only mechanism for userspace tasks to obtain
physical pages is by causing a page fault. After this event, the kernel
recognizes the faulting application and satisfies the memory request by
calling the physical memory allocator. This component searches a suit-
able page via the buddy algorithm and returns it to the fault handler,
which in turn updates the virtual-to-physical mapping of the task’s mem-
ory. In Rainbow , the memory allocator checks whether the requesting
task has an associated color set and eventually uses it to restrict the
allocation to the allotted colors. If Rainbow ’s allocator cannot find any
coloring information, it uses the default color pool.

6.3 Color management

6.3.1 Representation of color sets

During a colored allocation, the allocator should be able to select a
color from a set in an efficient way. Therefore, Rainbow needs a suitable
representation of a set of colors. Section 4.5.1 introduce the concept of
mcolors to generalize the notion of color to the whole buddy allocator,
where the size of managed memory areas varies with the order. Thus,
a LLC reservation enforced through page coloring could be represented
at any granularity by associating mcolors to a task rather than colors.
However, to allow the most possible fine-grained partitioning capability,
we choose to associate base colors to a task.

High level structures exist to represent sets of data, with or without
an order, like lists or trees, but they have complex management algo-
rithms and typically require several memory accesses, resulting cache-
unfriendly. To devise the right implementation for Rainbow , it is impor-
tant to note that the information about coloring, once set, is unlikely
to change: hence, the pooling facility the cacheset cgroup creates makes
it easier to create different hierarchical pools rather and moving appli-
cations between pools rather than chaning a single color pool. Further-
more, the number of colors an architecture provides is typically small.
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Therefore, it is natural to describe a set of colors with a bitmask, for
which Linux provides pre-built creation and management facilities.

Together with this information, it is important to store also the num-
ber of colors a mask contains, to evaluate the memory it can use, and
the last color the task allocated from, in order to distribute allocations
on colors in a round-robin manner. Rainbow organizes these data in a
structure, as listing 6.1 shows.

Listing 6.1: Colors set representation

1 struct color_info {
2 colormask_t cmask;
3 unsigned int last_color;
4 unsigned int count;
5 };

This information must be associated to the task once this is col-
ored. The most direct and efficient way is storing this structure inside
the one that contains all the information of a process in memory, that is
the task_struct structure at the base of Linux application management.
Therefore, Rainbow adds a field struct color_info *cinfo for this pur-
pose. During the task creation, this fiels is initialized to the value of
the task’s father, in order to maintain isolation in particular when a
task creates threads (Linux spawns threads via the fork system call and
represents them with dedicated task_structs, in a similar way to inde-
pendent processes). The default value for this field is NULL, meaning that
the task is not colored.

In a similar way to a task’s color information, Rainbow defines two
global variables to store global coloring information of type struct
color_info. The first one is cinfo_kernel, which stores all the colors the
machine has, is initialized at runtime and is not modified; this is the pool
the kernel allocates from. The second variable is cinfo_allowed, which
stores the colors no cacheset still uses: non-colored applications allocate
from this pool, which does not intersect with any cacheset pool, thus
guaranteeing isolation of colored applications from non-colored ones.
This variable is updated whenever a cacheset is created or destroyed.
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6.3.2 Implementation of mcolors

The definition of mcolors given in section 4.5.1 simplifies the manage-
ment of the buddy data structure when looking for a specific color,
avoiding lookups along lists of buddies. Similarly, in section 4.5.2 we in-
troduced the function mcolor_lookupN (c, d), which returns the d-order
mcolor from a color c. These notions are at the heart of Rainbow , and
their implementation must be efficient.
Linux identifies a buddy through its first page, where the information
about the buddy are stored. In turn, Linux identifies a physical page
with a so-called Page Frame Number (PFN), which is simply the page
physical address without the offset bits, after a right-shift of 12 bits on
x86 architectures. This is the starting point from which mcolors are read
for any buddy order.

In Nehalem, the implementation of the function mcolorN (b, d) of
section 4.5.1 follows closely from the mathematical definition: since the
number of bits considered for the mcolor increases with the order, a
right-sift can discard lower bits based on the order, as in listing 6.2.

Listing 6.2: Macro to retrieve the buddy mcolor in Nehalem
1 #define page_mcolor(page , order) \
2 ( ((( unsigned long)page_to_pfn ((page))) &

linear_color_bitmask) \
3 >> (cshifts[order]) )

linear_color_bitmask is a bitmask that keeps only the colors bits from
the PFN. The variable cshift is an array of shift indexed per order and
initialized at boot time: for orders 0 to 3, the shift is 3, for order 4 it
is 4 and so on, as from the definition of mcolorN (b, d). The function
page_to_pfn, insted, is provided by the kernel and translates a struct
page variable (that represents a page in Linux ’ pages array) to its PFN.
In a similar way, the function mcolor_lookupN (c, d) in Nehalem is im-
plemented in listing 6.3

Listing 6.3: Macros to compute the mcolor from a color in Nehalem
1 #define mcolor_from_color(color , order) (vcolor >>

(cshifts[order] - cshifts [0]))
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As anticipated in the design, the case for Sandy Bridge is, in general,
more complex. Following the definition of page color for Sandy Bridge in
section 4.3.3, the implementation can be derived, as visible in listing 6.4.

Listing 6.4: Function to retrieve the page color in Sandy Bridge
1 unsigned int page_color(struct page *p)
2 {
3 unsigned long _pfn = page_to_pfn(p);
4 unsigned int hash = sb_hash(_pfn);
5 return ((hash << (2)) | (( _pfn &

linear_color_bitmask) >> 3));
6 }

Here, sb_hash is the function that computes the hash starting from the
page address, as reconstructed in section 5.5, and linear_color_bitmask
keeps only the “linear part” of the color bits, that is to say those color
bits that are not used for the hash (in Intel Core i7-2600 and Xeon E5-
1410, bits 15 and 16). These bits are right-shifted of 3 positions since
bits 12 to 14 are not used as color bits (we recall that _pfn is already
right-shifted by 12, being a PFN) and finally concatenated on the left
with the hash.
The hardest, hash-dependent point with Sandy Bridge is implementing
the mcolorSB function; here, the presence of the hash creates issues: at
order 6, where Nehalem uses only bit 18 to indicate the mcolor, it is
not possible to choose bit h2 (the highest bit in the hash) for the same
purpose, since, even knowing h2, it is impossible to predict the future
configuration h2h1 on a general basis. Therefore, we have to rely on
the knowledge of the hash function for our implementation. The basic
insight is that bit 17 is used in both the hashes h2 and h1. If we consider
the hash computed after zeroing bit 17, we can find that if bit 17 is 1, the
final hash is the bit-flip of the previous one, otherwise is is the same; for
example, if the hash with bit 17 equal to 0 is 012 and bit 17 is 1, then the
final hash is 102. Then the hint consists in grouping together buddies
depending on their hash having equal bits or not. If, for example, the
allocator looks for a buddy with hash 102, hence with different bits, it
should pick a buddy whose hash without bit 17 has different bits. If,
still as an example, the hash without bit 17 is 102, the allocator should
split this buddy and select the first half, having bit 17 equal to 0, which
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does not change the hash. Conversely, if the hash without bit 17 is 012,
taking the second half of the buddy, with bit 17 equal to 1, “flips” the
hash and gives 102. With this rationale, at order 6 the buddies should
have mcolor 0 if they have hash, without bit 17, of equal bits (002 or
12), and mcolor 1 if the bits are different. Higher orders, instead, have
all color 0, while lower orders compute the color by concatenating the
hash with one or both color bits 16 and 15.

All this could be implemented in a function that, considering the or-
der passed in input, can select the proper case. However, we believe this
to be an inefficient implementation. Therefore, we decided to implement
this function as a lookup table indexed by page color and order, as in
the following code

Listing 6.5: Lookup table to retrieve the mcolor in Sandy Bridge
1 uint8_t color_jumps[NR_COLORS ][ MAX_ORDER ];

so that the mcolorSB function is implemented as

Listing 6.6: Function to retrieve the mcolor in Sandy Bridge
1 unsigned int page_mcolor(struct page *p, unsigned

int order)
2 {
3 unsigned int color = page_color(p);
4 return color_jumps[color ][order];
5 }

and the mcolor_lookupSB(c, d) as

Listing 6.7: Function to retrieve the mcolor in Sandy Bridge
1 #define mcolor_from_color(color , order) (

color_jumps[color][order ])

Either using a function or a lookup table keeps the implementation hash-
dependent, since their rationale is based on the particular role of bit 17
within the hash. An idea for a general enough implementation is using
a lookup table with values initialized at boot time: once the kernel
recognizes the CMP it runs on, knowing its hash function, it can provide
the logic to fill the lookup table properly. Again, this qould require the
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cooperation of CMP manufacturers to have exact information.

6.4 Rainbow Buddy

In this section we show the major modifications to the Buddy algorithm,
according to the design proposed in section 4.5. Section 6.4.1 shows how
the Buddy data structures have been modified, while section 6.4.2 shows
the changes of the algorithm.

6.4.1 The modified Buddy structure

In the Linux kernel, the physical memory of a machine is firstly divided
into nodes, to manage the memory of different NUMA nodes. Then,
each node is divided into zones. Zones are non overlapping memory
areas used for different types of allocation; they are defined at compile
time and depend on the architecture of the machine 1. Applications are
preferably given memory from a zone called “Normal”, but the allocator
falls back to the other areas if no memory is present.

Within Linux, a zone is described by many fields; among them, the
field struct free_area free_area[MAX_ORDER] is the main data structure
described in Figure 2.2, and the constant MAX_ORDER is the number of
buddy orders allowed for the current architecture (10 by default). In
particular, the struct free_area implements the structure of the buddy
allocator for a single order, comprising the various per-migratetype lists.
In fact, this data structure is natively defined as

Listing 6.8: The original buddy data structure
1 struct free_area {
2 struct list_head free_list[MIGRATE_TYPES ];
3 unsigned long nr_free;
4 };

1For example, in a x86-64 system three zone usually exist: the DMA zone consists
in the first 16 MB of memory and is meant for old DMA controllers, which use only
24 bits for addressing; the DMA32 zone extends from 16 MB to 4 GB and is used
for DMA controllers using 32 bits for the physical address; the Normal zone is used
to control the rest of the memory.

88



6.4. Rainbow Buddy

To split each list into per-color sublists according to section 4.5.1, the
definition changes into

Listing 6.9: The new buddy data structure
1 struct free_area {
2 struct list_head free_list[MIGRATE_TYPES ][

NR_COLORS ];
3 unsigned int last_color[MIGRATE_TYPES ];
4 unsigned int count_migtype[MIGRATE_TYPES ];
5 unsigned long nr_free;
6 };

In the original buddy data structure of listing 6.8, the allocator can
check if there are available buddies for a certain migratetype by simply
checking the list head. Instead, with the modifications of listing 6.9,
it would be necessary to check each list. To avoid such operation, we
added a counter storing the number of buddies for each migratetype.
The allocator can check this counter before going through the lists, but
it has to update the count in case of buddy removal or insertion.

In general, the allocations of a physical page happens frequently in
a running system, especially if with high load conditions. In Linux, the
structure of the buddy allocator has a centralized management, and is
protected with a spinlock. Since this mechanism does not scale with
CMPs, Linux employs per-core pools to fulfill page requests, while for
higher-order buddies the allocator goes through the buddy data struc-
ture. These pools are refilled at runtime in batch and are meant to fulfill
most of the memory requests, as applications are given only single pages
after a page fault. The per-zone data structure, called per_cpu_pageset,
that implements this pool is originally defined as

Listing 6.10: The per-cpu-pages original structure
1 struct per_cpu_pages {
2 int count; /* number of pages in the list */
3 int high; /* high watermark , emptying needed */
4 int batch; /* chunk size for buddy add/remove

*/
5 /* Lists of pages , one per migrate type stored on

the pcp -lists */
6 struct list_head lists[MIGRATE_PCPTYPES ];
7 };
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Like for the zone free_area, Rainbow splits the buddy list and adds
counters to store the actual availability of buddies per-migratetype.

Listing 6.11: The modified per-cpu-pages structure
1 struct per_cpu_pages {
2 int count; /* number of pages in the list */
3 int high; /* high watermark , emptying needed */
4 int batch; /* chunk size for buddy add/remove

*/
5 struct list_head lists[MIGRATE_PCPTYPES ][

NR_COLORS ];
6 unsigned int last_color[MIGRATE_PCPTYPES ];
7 unsigned int count_migtype[MIGRATE_PCPTYPES ];
8 };

The free_area is initialized at boot time by forcibly freeing all the
memory pages; in this way, the allocator triggers the coalescing proce-
dure that groups buddies into buddies of order higher and higher. Fi-
nally, the allocator initializes the per_cpu_pages with a batch of pages,
according to pre-defined quotas. Even with our modifications the ini-
tialization follows the same procedure, but for the fact that buddies are
stored in the proper list according to their mcolor.

6.4.2 The modified Buddy algorithm

In Linux, the process of allocating physical memory is very complex, as
it considers the multiple subdivisions of memory areas (nodes, zones,
etc.) and the per-cpu and migratetype pools, with heuristics to move
pages among pools and fallback lists to move to other zones or nodes in
case of memory exhaustion on the local node. Therefore, an allocation
can be performed in several, more and more complex, attempts. Overall,
the highest entry point for the physical memory allocator if the function
__alloc_pages_nodemask, which determines the migratetype based on
the caller kernel subsystem and iterates over the allowed machines nodes.
Then, get_page_from_freelist iterates over the zones, in turn calling
buffered_rmqueue, which function first looks for a page in the per-cpu
pagesets, and in case it cannot find one, it goes through the buddy
allocator. Hence, buffered_rmqueue is the initial point for the necessary
modifications.
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The first change to this function consist in retrieving the information
of the reserved colors of the process that faulted. To this aim, we added
the following code snippet at the beginning

Listing 6.12: Code to choose the color pool to allocate from
1 if(( gfp_flags & (GFP_DMA | GFP_DMA32 | GFP_ATOMIC))

||
2 (order > 0) || !ccount(get_allowed_cinfo ())) {
3 ci = get_kernel_cinfo ();
4 } else if(! colored_task(current)) {
5 ci = get_allowed_cinfo ();
6 } else {
7 ci = get_task_cinfo(current);
8 }

The first if statement checks whether the target for the allocation is
the kernel (for a DMA allocation, for example), and eventually selects
as color set the cinfo_kernel pool; ci, in fact, is a pointer to a struct
color_info and is passed to lower layers of the allocator to provide
information about the cinfo_allowed is used, or the task’s pool if avail-
able.

Once the color pool is chosen, if a page is requested the allocator
attempts to allocate from the per-cpu pageset. To choose an allowed
color, Rainbow adds the following code to iterate on the bitmask over
the task’s allowed colors.

Listing 6.13: Color-aware pageset search
1 color = find_color_round(cmask(ci),get_last_color(

ci));
2 list = &pcp ->lists[migratetype ][ color];
3 while(list_empty(list)) {
4 color = find_color_round(cmask(ci),color + 1);
5 list = &pcp ->lists[migratetype ][ color];
6 }

Here, find_color_round iterates over the task’s colors by jumping to the
initial color if it reaches the last; furthermore, it returns if it has iter-
ated over all the colors. In particular, within listing 6.13, the starting
color given in input to find_color_round is color successor to the one
used in the last allocation. This information, stored inside each struct
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color_info as a hint to the allocator, permits to iterate in a round-robin
manner over colors, thus distributing allocations over all colors. In fact,
starting from a fixed color would use all the pages of the first color before
using others, causing a lot of task’s data to be mapped to a single LLC
portion and under-exploiting the cache. Moreover, distributing alloca-
tions decreases the probability of emptying one list, in turn decreasing
the number of iterations required to find a color with available pages.

If instead the allocation order is greater than 0, the allocator goes
through the per-order free_areas, passing the variable ci as the color
pool.

Lower levels make several attempts to allocate a page from migrate-
type pools, in case previous attempts fail. In particular, buffered_rmqueue
calls __rmqueue, which makes a first attempt to allocate a page from
the requested migratetype via __rmqueue_smallest, whose failure forces
__rmqueue to call __rmqueue_fallback, which iterates through all the
migratetypes to find a suitable page. Both __rmqueue_smallest and
__rmqueue_fallback implement the basic concepts of the buddy algo-
rithm, looking for a buddy of the desired order and eventually splitting a
larger one. These functions receive the color pool ci from buffered_rmqueue
, and similarly search for a color with available buddies starting from the
last used color. If no buddy is available, the search moves to a higher or-
der, where it is fundamental to look only among buddies of the suitable
mcolor, so that the split procedure is guaranteed to return the desired
color. To this aim, these functions employ the macro mcolor_from_color
previously defined to compute the mcolor from the desired color and
the current order they are looking in. Once a buddy to split is found,
both functions call expand to perform the splitting. This function splits
a buddy in two buddies of lower order, stores one inside the list of free
buddies and further splits the other, until it obtains a buddy of the
requested order. To finally obtain the desired color, Rainbow changes
the splitting procedure according to section 4.5.2 in order to implement
color chasing. While in the standard implementation the half to split is
determined a priori (the first one), Rainbow determines it at runtime,
with the following check:

Listing 6.14: Color chasing implementation
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1 if(mcolor_from_color(color ,high) !=
mcolor_from_color(__page_color ,high) ) {

2 struct page *tmp = twin;
3 twin = page;
4 page = tmp;
5 __page_color = page_color(page);
6 }
7 list_add (&twin ->lru , &area ->free_list[migratetype ][

page_mcolor(twin ,high)]);

where page is the first half of the split buddy, twin the second half,
color the desired color, __page_color the color of the first half and high
the current order. As visible in the if statement, if the mcolor of the
first half is different from the desired mcolor, the variables holding the
two halves are swapped, and the undesired half stored in the list of free
buddies according to its color.

6.5 Implementation of the cacheset cgroup

Using the new facilities of Linux version 3.17.1, the cacheset cgroup
integrates into the kernel to provide userspace with a file-like interface.
On the kernel side, cacheset hooks into the Linux cgroup subsystem by
defining the variable

Listing 6.15: Main data structure for cacheset cgroup
1 struct cgroup_subsys cacheset_cgrp_subsys = {
2 .css_alloc = cacheset_css_alloc ,
3 .css_free = cacheset_css_free ,
4 .attach = cacheset_attach ,
5 .can_attach = cacheset_can_attach ,
6 .exit = cacheset_exit ,
7 .bind = cacheset_bind ,
8 .legacy_cftypes = files ,
9 .early_init = 1,
10 };

which follows a strict name convention to be automatically recognized
as a cgroup at compilation time. This structure exports the kernel and
userspace interfaces to cacheset, in particular the functions that are
called during the lifetime of cacheset. For the userspace interface, the
field legacy_cftypes contains a list of file names and functions: when an
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application writes a file, the related functions are called for input pars-
ing, for providing information, etc.; in this way, a user can, for example,
set the number of desired colors by writing a color sequence to a file,
and Rainbow applies this setting to the cgroup.
The other fields inside cacheset_cgrp_subsys constitute the kernel in-
terface. When, for example, a process tries to hook into a cacheset my
writing its PID into a file, the kernel calls the function can_attach to
perform initial checks, and the function attach to finally perform the
attachment.

Internally, all these functions represent a cacheset with the data
structure in listing 6.16. For example, attach links the color set informa-
tion to the task_struct of the inserted process and perform bookkeeping,
like incrementing task_count and thread_count.

Listing 6.16: The cacheset data structure, to store information of a single
cacheset
1 struct cacheset {
2 struct cgroup_subsys_state css;
3 unsigned int nesting_level;
4 atomic_t task_count;
5 atomic_t thread_count;
6 struct color_info cinfo;
7 spinlock_t cinfo_lock;
8 };

Among other fields in listing 6.16, css connects other cacheset in a tree-
like manner, and cinfo the set of colors.
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In this chapter we present the results obtained through Rainbow . The
final goal is to achieve isolation of co-running applications inside the
LLC using the capabilities Rainbow provides. This isolation must be
guaranteed in both the Nehalem and the Sandy Bridge platforms. Sec-
tion 7.1 explains the experimental environment setup by describing the
two platforms used for testing Rainbow , the tests adopted to show Rain-
bow ’s effectiveness and the measurement methodology. Following these
guidelines, section 7.2 shows how the test applications behave with differ-
ent LLC reservations, in order to devise the tests’ sensitiveness to this
resource and provide a reference behavior for co-location. Section 7.3
analyzes how Rainbow is able to isolate diverse co-running applications
on an on-demand basis, hence with an LLC partition of varying size.
Similarly, section 7.3.1 measures the effectiveness of Rainbow with a
more regular workload, where polluting I/O patterns are more limited.
Finally, section 7.5 summarizes the results of this chapter.

7.1 Experimental environment

Our evaluation comprises several aspects. The first aspect to be evalu-
ated is Rainbow ’s effectiveness to partition the LLC, guaranteeing isola-
tion to requesting applications. The second aspect to be studied is how
LLC partitioning impacts on the target architectures for which Rainbow
is designed. To this aim, it is important to choose the experimental en-
vironment and the test cases properly. Therefore, section 7.1.1 provides
the details about the environment setup, in which Rainbow will run the
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applications chosen in section 7.1.2. Finally, section 7.1.3 explains the
measurement details and tools.

7.1.1 Testbed and coloring parameters

For our test, we employed two different machines, one equipped with a
Nehalem CMP and the other with a Sandy Bridge CMP. These machines
are representative of low- and middle- end servers typical of computing
environments. The Nehalem machine has a 64 bit quad-core Intel Xeon
W3540 CMP, with a clock frequency of 2.93 GHz and 12 GB of RAM.
In particular, Xeon W3540 has three layers of cache, with a fixed line
size of 64 B:

• a shared L3 (LLC) cache of 8 MB, with 8192 sets and 16-way
associativity

• a per-core L2 cache of 256 KB, with 512 sets and 8-way associa-
tivity

• a per-core L1 instruction cache of 32 KB, with 128 sets and 4-way
associativity

• a per-core L1 data cache of 32 KB, with 64 sets and 8-way asso-
ciativity

The parameters of the caches are the following:

• 12 bits of physical page offset

• 6 bits of cache line offset

• 13 bits of LLC set number

• 9 bits of L2 set number

• 7 bits of L1 set number (considering only the instruction cache,
the one with more sets)

Since the physical page size in x86 architectures is 4 KB, he fundamental
parameters for page coloring are:
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• 13 + 6− 12 = 7 bits in common between LLC set index and page
address

• 9 + 6− 12 = 3 bits of L2 set index that overlap with the previous
bits

• 7− 3 = 4 bits of color, thus with 16 possible partitions of 512 KB
each; these color bits are bits 15 to 18

Similarly, the other platform is a Sandy Bridge CMP Intel Xeon E5-
1410 running at 2.8 GHz frequency with 6 GB of RAM. In this archi-
tecture, only the upper LLC is different from Nehalem’s, as it is 20-way
associative, still with 8192 sets, and is split in four slices of 2048 sets
each, connected through the familiar ring-interconnection. Overall, its
capacity is 10 MB. Therefore, the parameters Rainbow leverages for this
CMP are the following:

1. 11 + 6 − 12 = 5 bits in common between per-slice LLC set index
and page address

2. still 3 bits of L2 set index overlapping with LLC set index,

3. 5− 3 = 2 bits of per-slice color, thus with 16 possible partitions of
512 KB each; these color bits are bits 15 and 16

4. 2 bits of hash, for a total of 4 bits for the color

Because of the complexity of modern architectures, several capa-
bilities can affect the measurements in an unpredictable way. Cache
prefetchers aggressively load data according to speculative decisions based
on the access pattern, and can create pollution or become a lieu of con-
tention [28]. Hyper-Threading support [40] causes two threads to share
many resources inside a single core (lower caches, physical registers,
execution units, ...), unpredictably disturbing each other. Finally, the
Turbo Boost capability [41] aggressively boosts the core frequency for
limited time periods, but is entirely under the control of the hardware
according to internal, undisclosed policies. Therefore, we disabled all
these sources of noise.

The software environment comprises the Ubuntu Linux distribution,
version 12.04 Long Term Support (LTS), running on a Rainbow -modified
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Table 7.1: Selected SPEC CPU2006 tests

Test Input
libquantum control

gcc g23
omnetpp omnetpp
leslie3d leslie3d

xalancbmk t5
sphinx ctlfile
astar rivers
bzip2 text

kernel. As the default setting, the maximum order for buddies is 10, so
that the largest allocatable area spans 4 MB.

7.1.2 Test applications

To stress Rainbow ’s capabilities, CPU-intensive applications are needed.
A common reference in the literature, the SPEC CPU2006 benchmark
suite [78], offers a wide variety of CPU-intensive applications with di-
verse characteristics and cache access patterns [16]. SPEC tests are
single-threaded applications, a characteristic that allows us to evaluate
the features of Rainbow while co-locating different applications with-
out any disturbance from the kernel scheduler or from external, thread-
management libraries. In particular, multi-threaded applications have
more complex access patterns towards the shared LLC, which could hin-
der the evaluation of Rainbow .

Since many SPEC applications run with more input sets sequentially,
they can have different phases that can present different access patterns.
Therefore, we chose to separate all the possible inputs of each application
and to evaluate each one separately, collecting only the execution time.
At the end of the evaluation, we selected 8 benchmarks with different
access patterns in order to have a representative set of patterns. For
each application we chose the input set causing the longest run. The
selected applications and inputs are reported in table 7.1.

98



7.2. Application characterization

7.1.3 Experimental methodology and tools

To characterize the LLC pattern of an application and its implications
on the overall behavior. Two different metrics are needed. For the pat-
tern, the most suitable metric is the LLC miss rate, which shows the
ability of an application to effectively exploit the LLC. To characterize
the overall behavior of an application, also the runtime is a suitable met-
ric that suggests how the performance change.
To collect these metrics, several tools are available; for these work, we
chose perf, [67] which is integrated in Linux and exploits the hardware
performance counters available in modern x86 architectures. In particu-
lar, we used the perf stat command to choose the events to measure and
run the test.

Throughout our experiments, all the applications are forced to run
on a fixed core (core 0, unless specified otherwise) through the taskset
command. This avoids overheads due to the kernel moving the appli-
cation, which causes the application to re-load data into the L2 and L1
caches. Moreover, power-controlling mechanisms have been disabled and
the fixed maximum frequency is set pn all the cores.

To launch an application and give it a LLC partition, a small launcher
application has been developed, which takes in input the cacheset and
the target application to run. This launcher retrieves its own PID, writes
it into the cacheset proper file and launches the target application with
an exec call, so that the target application “inherits” the LLC partition
from the launcher.

7.2 Application characterization

To characterize the access pattern, we build an accurate profile of each
application’s behavior with respect to varying size of caches. The ob-
tained profiles will indicate the sensitivity of each application to the
cache space, guiding the choice of suitable workloads to show the effec-
tiveness of Rainbow in a co-location scenario. Each application is run
10 times with a different LLC partition, on both the Nehalem and the
Sandy Bridge machines. Since LLC-sensitive applications typically reach
an execution plateau when the cache space increases, it is interesting to
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profile them in particular when the LLC reservation is small, where the
behavior is typically more diverse. In the following measurements, the
test application is the only one running inside the machine, and thus its
behavior is optimal with respect to a co-location scenario.

7.2.1 Profiles in Nehalem

Figure 7.1 shows the profiles of the test applications running in our Ne-
halem machine: the red curve plots the execution slowdown with respect
to the case with full cache (8 MB) and its scale is on the left side, while
the blue curve plots the miss rate and its reference axis is on the right.
Each point in the plots is the average of all the 10 measures. Moreover,
for each measure the plots also show the Standard Error of the Mean
(SEM) with bars, which are hardly visible in most cases.
As we expected, the LLC profiles are quite diverse: for example, libquan-
tum is almost insensitive to the LLC size, while bzip2 and omnetpp
benefit from more space. However, the miss rate of two cache-friendly
applications as bzip2 and omnetpp can still differ slightly, as the miss
rate curves of these two applications show. In general, this is due both
to the access pattern and the size of the working set. In the specific case
of bzip2 and omnetpp, bzip2 has a larger working set than omnetpp:
hence, we can infer that the difference is due only to the access pattern.
In fact, while bzip2, a compression application, has very strong local-
ity, omnetpp scans a large part of the dataset to perform an event-drive
simulation of a complex ethernet network.

In general, looking at fig. 7.1 we can note that the SEM is small
across the measures. This suggests that the selected applications have
regular access patterns, hence with a predictable behavior. Secondly, the
predictability of the runs suggest that the design and the implementation
allow Rainbow to effectively control the LLC.
An exception is sphinx, whose SEM is clearly visible. Sphinx is a speech
recognition system based on Viterbi search [90] and on beam search
heuristic [75], which is a graph-search algorithm. Furthermore, sphinx
loads multiple files from disk to recognize multiple words. Therefore,
sphinx has irregular access patterns that depend on input data and on
the position of memory areas in each single run. In fact, with more than

100



7.2. Application characterization

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
a
li
ze
d
sl
ow

d
ow

n
[%

]
bzip2

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
o
rm

a
li
ze
d
sl
ow

d
ow

n
[%

]

libquantum

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
al
iz
ed

sl
ow

d
ow

n
[%

]

astar

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
al
iz
ed

sl
ow

d
ow

n
[%

]

omnetpp

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
al
iz
ed

sl
ow

d
ow

n
[%

]

leslie3d

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
al
iz
ed

sl
ow

d
ow

n
[%

]

gcc

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
al
iz
ed

sl
ow

d
ow

n
[%

]

xalancbmk

1 1.5 2 3 4 6 8
LLC partition size [MB]

0

10

20

30

40

50

60

70

80

n
or
m
al
iz
ed

sl
ow

d
ow

n
[%

]

sphinx

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

0

20

40

60

80

100

L
3
m
is
s
ra
te

[%
]

Figure 7.1: Applications profiles in Nehalem with different cache parti-
tions
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6 MB of LLC its performance and miss rate is more moderate, as most
of its working set fits in the LLC.

7.2.2 Profiles in Sandy Bridge

Performing the same measurements in Sandy Bridge, we obtained the
plots in fig. 7.2. Here, applications run on core 0 and are given colors
starting from slice 0 and then reaching the other slices in order. Each
slice has a size of 2.5 MB and has increasing latency when accessed from
core 0 (as from table 5.1). Here, the limited RAM memory (6 GB) poses
some constraints on the tests: bzip2 and gcc, in fact, are not run with
only 1.25 MB of LLC because of the cache-memory constraint identified
in section 4.4.1. Thus, 1.25 MB over 10 MB corresponds to 12.5% of
the LLC size, constraining the memory to only 750 MB, while these two
applications have a barely superior memory footprint (around 850 MB).
Therefore, the profile of bzip2 and gcc start from 1.88 MB of LLC.

With respect to fig. 7.1, we can see, overall, that the runs are steadily
more sensitive to the increasing LLC partition size. Indeed, if we con-
sider the slowdown with 1.25 MB of LLC, it is in every profile higher
than that in 1 MB of section 4.4.1. This is even more interesting if we
consider the higher associativity of Sandy Bridge (20) with respect to
Nehalem’s (16). A higher associativity should decrease the miss rate
with the same amount of LLC, as it clearly happens with regular appli-
cations, whose miss rate curves values in Sandy Bridge are slightly lower
than the corresponding values in Nehalem. Thanks to the higher asso-
ciativity, the difference between the worst and best miss rate should be
smaller. Instead, this difference is comparable, and it is even higher in
the case of libquantum. Unlike with Nehalem, in Sandy Bridge libquan-
tum shows some degree of LLC-sensitiveness. This sensitiveness can be
explained with the hash-based addressing scheme. If a cache line can
be mapped to a slice only, it can be mapped to a single set, whose as-
sociativity is 20. If, instead, it can be mapped to two slices, it can end
up in two different sets, perceiving an associativity that is, roughly, the
double. Therefore, as the LLC an application can use increases, also the
associativity it perceives increases, with a consequent gain in terms of
reduced miss rate. Previous work on Intel’s caches [94] also found similar
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phenomena, which are, overall, new and not systematically studied.
Finally, we have to note the strange behavior of leslie3d and xalancbmk

with 5 MB of LLC, in which the miss rate increases with respect to the
3.75 MB point. Further investigation found that it is due to their work-
ing set having internal memory areas that have low access rate: if these
areas map to a considerable extent with areas of higher access rate,
they cause pollution. Moreover, the round-robin policy for color allo-
cation within Rainbow could, for certain configurations, cause polluting
overlaps between memory areas having different locality. In particular,
xalancbmk outputs a very large amount of data (around 100 MB), with
a cache-unfriendly streaming pattern.

7.3 Isolation with mixed workloads

With the cache profiles collected previously, we can classify applications
based on their LLC “sensitivity”, that is to say on how much applications
benefit from receiving more cache space. Therefore, we focus on the
slowdown for this classification.

We classify applications as sensitive when their slowdown with the
least amount of cache is equal or greater than 30%, while the others are
insensitive. The value of 30% derives from the direct observation of the
plots in figs. 7.1 and 7.2, and allows us to well separate applications in
the two distinct groups. This holds for both the architectures, where the
same value gives the same classification results. In Sandy Bridge, bzip2
and gcc have not been profiled with 1.25 MB of LLC for the reasons
explained above, and thus their classification is not directly available.
To estimate their slowdown, we computed the slowdown slope in Ne-
halem in the range 1.25 - 1.88 MB and used this value to compute the
slowdown with Sandy Bridge and 1.25 MB of LLC, resulting with the
same classification of Nehalem. Table 7.2 shows the classification of the
SPEC benchmarks used for the evaluation.

Starting from the classification, we randomly chose four workloads
with a sensitive application, called target, and three other applications,
called polluters, that run simultaneously. To have a diverse mix, the first
polluter is chosen from the sensitive applications while the other two pol-
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Figure 7.2: Applications profiles in Sandy Bridge with different cache
partitions
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Table 7.2: Classification of applications

Classification Applications
sensitive bzip2, omnetpp, xalancbmk, sphinx
insensitive libquantum, leslie, astar, gcc

Table 7.3: Test workloads

Workload Target Polluters
W1 bzip2 xalancbmk, leslie3d, gcc
W2 omnetpp sphinx, libquantum, astar
W3 xalancbmk omnetpp, libquantum, gcc
W4 sphinx bzip2, leslie3d, astar

luters are insensitive applications. Table 7.3 shows the four workloads,
with the target and the polluters.

The experiment consists in isolating the target, running on core 0,
through Rainbow ’s capabilities, while the polluters run on the other three
cores. In particular, the target is assigned an LLC partition, while the
polluters contend for the rest of the cache. Like previous measurements,
the size of the target’s LLC partition is varied throughout the tests, in
order to reconstruct a profile of how each target behaves in co-location
with the polluters. Furthermore, if a polluter terminates before the
target, it is immediately restarted.
It is fundamental to note that, in such experiments, the target can receive
only a part of the LLC, while a considerable part is left to the polluters.
This is particularly important because of the cache-memory constraint
of section 4.4.1: if the target receives, for example, 80% of the LLC,
then it also receives 80% of the system memory, and only 20% of RAM
is left to the three polluters, which could severely conflict for memory
pages and cause swapping.

7.3.1 Co-location in Nehalem

Figure 7.3 shows the targets’ profiles obtained in co-location on the Xeon
W3540. Each plot is named after the workload name and the target
application. The red continue line shows the slowdown, while the blue
continue line shows the miss rate. Instead, the dash-dotted lines show
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Figure 7.3: Profiles of the workloads in table 7.3 on Nehalem, with
different cache partitions

how the target behaves when not partitioned, being free to contend the
LLC with the polluters. For the sake of comparison, the plots also show
the stand-alone target profiles of fig. 7.1 with dashed lines and the same
colors. For the unpartitioned execution, the SEMs for the slowdown and
for the miss rate are reported on the right side.

In co-location, it is evident that regular applications benefit more
from LLC partitioning: in fact, in W1 and W2 the miss rate soon drops
below the dash-dotted line, in a controllable way; the same happens
for the slowdown, which is tightly related to the miss rate. In partic-
ular, bzip2 experiences strong contention when running un-partitioned,
and immediately benefits from Rainbow . In fact, despite it has a large
memory footprint, it has a small cache working set thanks to the zip
compression algorithm, which seeks symbols subsequences inside small
chunks of the entire dataset. Omnetpp has, instead, a greater cache
working set, thus needing a larger partition. Unlikely, less regular pat-
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terns like W3 and W4 benefit less from isolation, since their miss rate
and slowdown do not have a monotonically descending behavior. We
will explain these behaviors, in a more general view, in the following
paragraphs.

Focusing on the single profiles, we can see very different behaviors
with respect to the stand-alone execution. This is visible with W1, W3
and W4. In particular, we can notice that with 5 MB of LLC the miss
rate increases with respect to 4 MB. Furthermore, W3 and W4 have miss
rate curves that do not follow the stand-alone miss rate curve closely.
The only very regular pattern is that of W2, where the miss rate in
co-location is very close to the stand-alone profile.

Investigating these irregularities, we can anticipate the results of the
following sections to explain the divergent patterns. Through further
measurements, we found that the deviations from the stand-alone pro-
files in fig. 7.1 are due to I/O activity. In fact, the workloads in table 7.3
contain applications with very diverse execution times and I/O phases
overlapping with the target’s execution. For example, in W1, xalancbmk
and leslie3d have execution time longer than the target bzip2, while gcc
has shorter execution time and is loaded twice during the execution of
bzip2. Furthermore, gcc has a considerable working set (around 350 MB)
and sudden spikes at the beginning, to load inputs from disk. The same
holds for W3, with xalancbmk lasting much longer than gcc. Similarly,
in W4 all the applications last much less than sphinx, and are reloaded
multiple times, causing numerous I/O bursts; this holds in particular
for bzip2, which loads its large working set multiple times. Further-
more, since sphinx has non-optimal access patterns, it receives limited
benefits from partitioning if, at the same time, pollution happens; in-
deed, its performance is better than the unpartitioned case only when a
large portion of LLC is reserved, because most of its large working set
fits inside the partition, contrasting pollution.

In mode depth, I/O activity is detrimental to LLC isolation because
of the allocation patterns of DMA drivers. These drivers, indeed, reserve
large amounts of contiguous memory during the system boot. Since it
is impossible to predict at boot time which application (and which LLC
partition) a driver will serve, DMA memory pools are not restricted to
specific colors, spanning potentially all the colors. Moreover, the I/O

107



7. Experimental Results

subsystem leverages specific interfaces for allocation, which are outside
the buddy subsystem. Therefore, if repeated I/O activities happen when
the target is running, it experiences pollution because of accesses to
buffers. Furthermore, when the memory reserved to the target increases
due to a larger LLC partition, the probability of overlapping with buffers
data in LLC and of incurring in pollution increases. This explains the
increase in the miss rate with more than 4 MB of LLC. Pollution due
to buffers is visible by comparing the plots in fig. 7.1 with those of the
following sections, whose workloads have less intensive I/O activity.

Concerning the slowdown curve, it seldom follows the stand-alone
behavior closely: even in the case of a regular pattern like W2, the
red lines are well distinct. This is due to non-partitioned resources,
like the on-chip interconnection and the memory bandwidth, which are
still shared among co-running applications and cause uncontrollable con-
tention. This is especially evident for W2, where the target application,
omnetpp, maintains a high miss rate (above 50%) that causes frequent
accesses to main memory and to the on-chip interconnection, experi-
encing contention. Instead, bzip2 has a much lower miss rate and a
slowdown that is close to the optimal profile, since most of its data re-
main inside the LLC and the contention on the memory bandwidth is
limited.

7.3.2 Co-location in Sandy Bridge

Similarly to the previous section, fig. 7.4 shows the profiles when running
on Xeon E5-1410. Here we notice slightly less improvements due to
Rainbow , since the LLC has greater performance than Nehalem’s, in
particular higher capacity and associativity. However, isolation is still
fundamental to meet a strict performance requirement.

Comparing the co-location profiles with the stand-alone references,
we note similar behavior to fig. 7.3. Very regular applications like bzip2
and omnetpp still have comparable curves with respect to the stand-
alone execution, while other applications suffer from pollution in an un-
predictable way. Overall, these results on Sandy Bridge confirm our
findings with Nehalem, still highlighting the role of I/O with respect to
strict LLC isolation.
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Figure 7.4: Profiles of the workloads in table 7.3 on Sandy Bridge, with
different cache partitions

Table 7.4: More regular test workloads

Workload Target Polluters
X1 bzip2 xalancbmk, leslie3d, astar
X2 omnetpp sphinx, libquantum, xalancbmk
X3 xalancbmk omnetpp, libquantum, leslie3d
X4 sphinx bzip2, leslie3d, sphinx

7.4 Isolation with more regular workloads

After the findings of previous sections, in order to test Rainbow ’s effec-
tiveness we choose four new workloads with lower I/O activity. These
workloads derive from the those in table 7.3 by replacing the applications
identified as more polluting with others, performing less I/O. Table 7.4
shows the four new workloads, emphasizing the new polluters. The
choice of the applications is determined by their execution time: the
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Figure 7.5: Profiles of the workloads in table 7.4 on Nehalem

new polluters have an execution time that is roughly equal to or longer
than the target’s. In particular, the target of W8, sphinx, has maximal
duration with respect to any other application: hence, we chose another
instance of sphinx as polluter as the only way to limit I/O activity during
the target’s execution.

Repeating the measurements with the same methodology of the pre-
vious section, we also profiled the workloads in table 7.4. Figure 7.5
plots the workloads’ profiles on Nehalem, while fig. 7.6 plots the profiles
for Sandy Bridge.

In general, the plots show a more regular behavior of the targets,
whose curves are now monotonically decreasing and closer to the stand-
alone execution, with the only exception of X3 in Sandy Bridge. A
posteriori, this justifies the workload choice after the findings of sec-
tion 7.3.1, and highlights the effect of I/O on running applications, even
if isolated within an LLC partition. In particular, X4 has steeply de-
scending curves, which clearly indicate the presence of contention with
the polluters; this contention is due to the different polluter, which is
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Figure 7.6: Profiles of the workloads in table 7.4 on Sandy Bridge

another instance of sphinx. On Sandy Bridge, such effects are even more
visible, with the slowdown falling out of the plot. Looking at X3 and X4
in both fig. 7.5 and fig. 7.6, is evident how contention on the LLC hin-
ders the targets’ execution and, consequently, how Rainbow can provide
guarantees on the execution on a per-demand basis that are unachievable
without LLC partitioning. Similar considerations apply to X1 and X2,
even if the benefits are smaller, due to the better locality of their targets
that the cache can leverage. Focusing on Sandy Bridge, the curves of X3
and X4 are steeper with respect to Nehalem’s for the reasons explained
in section 7.2, indicating that Rainbow can provide even higher benefits.

7.5 Overall results

Throughout the previous sections, we measured how Rainbow is effective
in isolating applications in the LLC, allowing to control their perfor-
mance on an on-demand basis. Despite the effects of I/O, Rainbow can
positively affect running applications, in particular in the cases where
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the isolated application has an access pattern that cache-unfriendly. In
this case, indeed, the LLC is not able, per se, to optimally manage the
application’s data, and contention can severely worsen the final perfor-
mance. This is particularly evident with the Sandy Bridge architecture,
where a controlled LLC partition brings benefits in terms of cache space
and of increasing associativity (as from section 7.2.2).
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Conclusions 8

As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.
Laistrygonians and Cyclops,
angry Poseidon - don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.

Konstantin Kavafis, Ithaka
translated by Edmund Keeley

Reviewing the work done within this thesis, this chapter derives the
conclusions from what has been presented so far. Considering the goals
behind Rainbow , section 8.1, discusses the contributions of this work and
with its limits with respect to current state of the art approaches in the
field. Instead, section 8.3 shows possible work and research directions
starting from Rainbow .

8.1 Contributions

Considering the state of the art in chapter 3, this work provides sev-
eral contributions. A first contribution of this work is the systematic
identification of the constraints posed by page coloring when used with
modern commodity CMPs, as discussed in particular in section 4.4. A
second contribution is the implementation of page coloring with recent
CMP architectures like Sandy Bridge, with a thorough evaluation of all
the related aspects. To the best of our knowledge, no prior work ad-
dressed the novel challenges of the hash-based addressing scheme these
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architectures adopt1. Instead, this work shows how page coloring can
be implemented even on these architectures, overcoming the difficulties
due to the unpredictable mapping.
This contribution is particularly important in the context of cloud plat-
forms, a spreading phenomenon nowadays. In fact, also these infras-
tructure can benefit from page coloring, despite having modern hash-
addressed caches.

The third contribution is the adoption of the cgroup interface, which
allows a centralized control of the LLC partitions on behalf of a workload
manager, a component typical of cloud-like environments. Moreover,
this interface allows ease of use and deep control at the same time, and is
becoming a widespread interface paradigm in today’s Linux installations.
From this point of view, Rainbow is “on track” with recent facilities
for applications control, and provides a suitable interface to experiment
policies and allow application characterization.

8.2 Limits of the present work

Despite the novel contributions this work brings, several aspects still
deserve more investigation and effort.

The first issue to tackle regards I/O activity, in particular the pollu-
tion caused by DMA drivers. After the results in chapter 7, the need to
coordinate I/O buffers activity with Rainbow ’s mechanisms is clear in
order to achieve the strictest isolation. Looking at the state-of-the-art
in chapter 3, research work already exists that investigates these aspects
[26], but it is to be integrated into Rainbow ’s design, so that the alloca-
tion of both the applications’ memory and the buffers are automatically
managed by the kernel.

To test Rainbow ’s capabilities in production scenarios, a deeper eval-
uation is needed. The choice of the SPEC suite, in fact, imposes that
all the test applications are single-threaded and CPU-intensive, repre-
senting only a part of today’s workloads running within distributed en-
vironments. Therefore, it is important to validate Rainbow with a more

1The only prior work that, at the date of puslishing, implements page coloring
on a Sandy Bridge CMP is [98], which, yet, does not claim to control the LLC slice
data are mapped to
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diverse set of tests. In particular, cloud-like applications with network
I/O patterns and multi-threaded implementation are a key scenario.
Related to this aspect, it is also important to have a better understand-
ing of how the cache-memory constraint discussed in section 4.4.1 plays
with real workloads, whose memory requirement can be unknown or un-
predictable when the decision about LLC partitioning is made. In fact,
a bad choice can later harm isolation, especially if an application with
growing memory requirement is assigned colors that are already in use
for other tasks.

More investigation is also required to study the impact of renouncing
to hugepages. Even if this feature is rarely used in today’s applications
(and no SPEC test uses it), the ever increasing amount of data to elab-
orate will potentially push the usage of hugepages. With this vision,
the incompatibility of hugepages and page coloring requires high-level
decisions to choose whether to exploit the former or the latter feature,
and a deeper study on the pros and cons of them.

8.3 Future work

Following the above-mentioned limits of the current work, we stress
the importance of testing Rainbow in real-world, cloud-like scenarios,
that should comprise also batch workloads (e.g., Hadoop) and latency-
sensitive applications (e.g., web search).

To envision the employment of page coloring in real-world environ-
ments, the main lack is a dynamic mechanism. This mechanism should
monitor at runtime the status of each application, devise a proper LLC
partitioning scheme and apply it, possibly resizing partitions and re-
moving colors to an application. To implement this feature while guar-
anteeing strict isolation, re-coloring is needed. Yet, it has a high cost
that is still to be evaluated on latest hardware and is potentially open to
new solutions. Furthermore, a dynamic mechanism opens many research
possibilities about the policies that should drive re-coloring, and which
metrics are to be considered.

A promising scenario for Rainbow , VMs are widespread in cloud en-
vironments, as they enforce isolation among co-running workloads of
different users. To further enhance this isolation also at the level of the
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LLC, Rainbow would be particularly interesting to test, in particular
with latest Sandy Bridge CMPs. Moreover, the ever-increasing avail-
ability of LLC space inspires complex scenarios in which, for example,
a 2-levels LLC partitioning mechanism is in place: the first level runs
in the hypervisor and partitions the LLC among the VMs, while the
second level runs inside each VM and sub-divides the LLC among appli-
cations. However, such an organization requires a complex orchestration
between the hypervisor and guest OSs, which cannot control the physical
mapping and perform page coloring directly.

Another suggestion of this work is the possibility of partitioning the
lower layers of caches through the LLC, which could be a novel idea
for SMT architectures and is currently a completely unexplored area.
Due to the sharing of the L1 cache by the threads running on the same
physical core, contention on this layer is likely to occur, and should be
evaluated.

Finally, as more CPU manufacturers are showing interest in the mar-
ket of distributed platforms and servers, and some already have market
niches, Rainbow could be ported and tested on other architectures like
ARM, Sparc and IBM Power.

8.4 Final considerations

Through page coloring, this work achieved control over the LLC, a funda-
mental component in today’s computing platforms. Through Rainbow ,
the control over this resource is given to the software, which can manage
the LLC according to high-level constraints and objectives.
Yet, other resources are still hardly partitionable, or not partitionable at
all: CPU-to-memory bandwidth, I/O bandwidth, etc. Anyway, a cen-
tralized coordination of partitioned resources is missing, so that unbal-
anced situations can happen without the software to be aware of them.
Moreover, the ever-increasing demand of computational power and the
spreading of heterogeneous computational resources with higher energy
efficiency open new dimensions in the spaces of monitoring and of possi-
ble control actions. Because of these challenges, the research community
advocates both software and hardware changes. One the software side,
the research is still looking for general enough solution to schedule a

116



8.4. Final considerations

wide set of resources for computation and communication. On the hard-
ware side, manufacturers are unwilling to provide control interfaces to
the software layer, mainly because this increases the complexity of the
hardware and implies deep design shifts.

Facing this lack of control interfaces, this work has attempted to
give an enabling technology to achieve this control over today’s LLCs,
fulfilling a request that, in the broad view of this section, opens more
and more research opportunities.
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