
Politecnico di Milano

Computer Science and Engineering

Scuola di Ingegneria Industriale e dell’Informazione

Computer Science and Engineering

Avoiding CRUD operations lock-in in NoSQL

databases: extension of the CPIM library

Advisor: Elisabetta DI NITTO

Co-Advisor: Marco SCAVUZZO

Master thesis by:

Fabio ARCIDIACONO matr. 799001

Academic Year 2013-2014

Ringraziamenti

Ringrazio la professoressa Di Nitto e Marco Scavuzzo per avermi dato la pos-

siblità di svolgere questo lavoro di tesi e per l’aiuto e la disponibilità con cui

mi hanno seguito in questi mesi.

Ringrazio la mia famiglia per avere sempre assecondato le mie scelte e non

avermi mai fatto mancare il loro sostegno.

Ringrazio Crizia per essere un costante punto di riferimento nella mia vita e

per avermi sostenuto durante tutto il percorso.

Ringrazio gli amici per la pazienza con cui mi hanno sopportato in questi anni.

Infine voglio ringraziare Lorenzo e Riccardo, che hanno reso questi due anni

di magistrale un percorso memorabile.

We were stuck in a blender and now we’re saving lives!

Milano, 1 Aprile 2015

Fabio.

Abstract

Within the last years, especially for web applications, data requirements have

changed drastically; applications needs to handle information that are not

always well structured and, more importantly, their volume is not sustainable

for traditional data management techniques. Solutions that try to handle

those new kinds of data have emerged over the classical DBMS solutions; those

solutions come under the name of NoSQL (Not Only SQL), to underline the

different approach they bring with respect to traditional DBMS.

Many NoSQL databases has been developed in these years and, each of them,

uses a different approach to handle the previously mentioned requirements.

Those technologies provide a set of proprietary API that move toward the

user a lot of programming effort with respect to DBMS solutions.

The lack of a common language for NoSQL databases, require a clear un-

derstanding of the available NoSQL solutions, to be able to choose the right

technology for the application requirements. However, during the life cycle

of the application, changing the adopted NoSQL technology, maybe due to

possibly changes in requirements or in business, may become a problem. This

problem is known as vendor lock-in.

This work proposes a model that, using the CPIM library and through the

JPA interface, permits to the users to develop applications using a common

interface to interact with many NoSQL technologies and thus achieve code

probability, leveraging the complexity of NoSQL systems while exploiting the

advantages that those technologies bring in terms of scalability and perfor-

mance. Moreover this work proposes the integration, in the CPIM library, of

Hegira a migration and synchronization system to handle data migration and

synchronization among NoSQL database.

Estratto

Negli ultimi anni, specialmente per le applicazioni web, i requisiti sulla gestione

dei dati sono drasticamente cambiati; le applicazioni devono gestire dati che

per loro natura non sono strutturati e, principalmente, vengono generati in

una quantità tale che i sistemi tradizionali per la gestione dei dati non sono

più sufficientemente performanti. Varie soluzioni sono state proposte come

alternative ai classici DBMS; queste soluzioni prendono il nome di NoSQL

(Not Only SQL), per sottolineare il differente approccio adottato rispetto ai

tradizionali DBMS.

Molti database NoSQL sono stati sviluppati in questi anni e, ognuno di essi,

utilizza un approccio differente nel cercare di soddisfare i requisiti sopra citati.

Queste tecnologie forniscono un insisme di API che mettono l’utente in con-

dizioni di dover scrivere molto più codice rispetto a quanto sarebbe necessario

utilizzando i tradizionali DBMS. La mancanza di un linguaggio comune a tutti

i database NoSQL richiede una chiara e precisa conoscenza delle soluzioni

disponibili sul mercato, per essere in grado di scegliere la tecnologia che più

soddisfa i requisiti dell’applicazione. Tuttavia, durante il ciclo di vita di

un’applicazione, cambiare la soluzione NoSQL adottata, ad esempio a fronte

di un cambiamento nei requisiti o delle logiche di business, può essere un

problema. Questo problema è noto come vendor lock-in.

Questo lavoro propone un modello che, usando la libreria CPIM e sfrut-

tando l’interfaccia JPA, permetta all’utente di sviluppare applicazioni usando

un’interfaccia comune per molte tecnologie NoSQL e ottenere cos̀ı una buona

protabilità del codice, mitigando la complessità delle tecnologie NoSQL senza

perderne i vantaggi in termini di salabilità e performance. Inoltre questo la-

voro propone l’integrazione, all’interno della libreria CPIM, del sistema di

migrazione e sincronizzazione Hegira, per gestire la migrazione e la sincroniz-

zazione dei dati fra database NoSQL.

Table of Contents

List of Figures xiii

List of Tables 1

1 Introduction 3

2 State of the art 7

2.1 Introduction . 7

2.2 NoSQL databases . 7

2.2.1 NoSQL characteristics 8

2.2.2 NoSQL classification . 9

2.3 Approaches for offering a common language over NoSQL 11

2.3.1 SQLifying NoSQL . 11

2.3.2 Meta-model approaches 12

2.3.3 ORM approaches . 14

2.4 Cloud Platform Independent Model 20

2.5 Summary . 21

3 Problem setting 23

3.1 Introduction . 23

3.2 CPIM library extension . 23

3.2.1 CPIM NoSQL service . 24

3.2.2 Proposed solution . 25

3.3 Data migration . 27

3.3.1 Hegira integration . 28

4 Kundera clients development 29

4.1 Introduction . 29

TABLE OF CONTENTS

4.2 Overview of Kundera . 29

4.2.1 Kundera’s Client Extension Framework 31

4.2.2 Problems encountered 31

4.3 Developing client extensions . 32

4.3.1 Google App Engine Datastore client 33

4.3.2 Azure Tables client . 41

4.4 Summary . 46

5 CPIM extension 47

5.1 Introduction . 47

5.2 CPIM architecture . 47

5.2.1 NoSQL service . 48

5.3 Kundera integration . 50

5.3.1 Problems encountered 51

5.4 Hegira integration . 52

5.4.1 Migration Manager . 54

5.5 Intercept user operations . 54

5.5.1 Intercepting CRUD operations 55

5.5.2 Intercepting queries . 56

5.6 Adding support for data synchronization 57

5.6.1 Contacting the synchronization system 60

5.7 Build statements from user operations 62

5.7.1 Build statements from objects 64

5.7.2 Build statements from JPQL queries 67

5.7.3 Sending statements to Hegira 68

5.8 Interoperability of stored data 68

5.8.1 Kundera clients modification 69

5.9 Summary . 70

6 Evaluation 71

6.1 Introduction . 71

6.2 Test CRUD operations . 71

6.2.1 Tests structure . 72

6.3 Performance tests . 74

6.3.1 Yahoo Cloud Serving Benchmark 74

x

TABLE OF CONTENTS

6.3.2 YCSB adapters . 75

6.3.3 YCSB tests . 78

6.3.4 Discussion . 81

6.4 Summary . 83

7 Conclusions and future Works 85

Appendices 87

A Configuring Kundera extensions 89

A.1 Introduction . 89

A.2 Common configuration . 89

A.3 GAE Datastore . 90

A.4 Azure Tables . 92

B Configuring CPIM migration 95

B.1 Introduction . 95

B.2 migration.xml . 95

B.2.1 Configure the ZooKeeper client 96

B.2.2 Configure a sequence number backup 97

B.3 Use CPIM without migration system 98

C Run YCSB tests 99

C.1 Introduction . 99

C.2 Preliminary operations . 99

C.3 Run tests for low-level API version 100

C.3.1 Property files . 100

C.4 Run tests for Kundera version 102

C.4.1 persistence.xml configuration 102

D Hegira Generator 103

D.1 Introduction . 103

D.2 Hegira generator . 103

D.2.1 Exploited CPIM features 105

Bibliography 107

xi

List of Figures

2.1 SOS architecture [16] . 14

3.1 Perceived risk in data migration [20] 28

4.1 Kundera architecture [5] . 30

5.1 NoSQL service architecture . 49

5.2 The modified NoSQL service architecture 50

5.3 High level schema of interaction 53

5.4 Interaction flow chart . 53

5.5 MigrationManager class diagram 54

5.6 MigrationManager states . 54

5.7 Sequence numbers handling architecture 59

5.8 Contacting the synchronization system 61

5.9 Statements structure . 62

5.10 Statement builders . 64

6.1 Class diagram of the test classes 73

6.2 YCSB architecture [19] . 74

6.3 Google Datastore - read operation benchmark results 78

6.4 Google Datastore - write operation benchmark results 79

6.5 Azure Tables - read operation benchmark results 80

6.6 Azure Tables - write operation benchmark results 80

6.7 HBase - read operation benchmark results 81

6.8 HBase - write operation benchmark results 81

D.1 ER diagram of Hegira-generator model 104

List of Tables

4.1 Mapping of entity fields on Google Datastore 37

4.2 JPQL clauses support for the developed extension 39

4.3 Mapping of entity fields on Azure Tables 43

5.1 Column family and Key mapping among supported databases. . 69

Chapter 1

Introduction

In the last few years, due to the advent of Web 2.0, more and more data

become available, generated by a growing multitude of people. The nature

of this kind of data is intrinsically unstructured and comes in a volume that

traditional data management techniques are no more affordable to guarantee

modern application requirements. In this scenario, NoSQL databases have

emerged over traditional DBMS as a more suitable alternative to handle those

new kinds of data. NoSQL databases tries to address the new applications

requirements in terms of: fault tolerance, availability across distributed data

sources, scalability and consistency, in different ways, proposing different prop-

erties and characteristics. Each NoSQL database thus provides to its users a

different API interface tailored to exploit the specific characteristic that the

NoSQL offer.

The lack of a common language for NoSQL databases, require a clear under-

standing of the available NoSQL solutions, to be able to choose the right tech-

nology for the application requirements. However, during the life cycle of the

application, changing the adopted NoSQL technology, maybe due to changes

in requirements or in business, may become a problem. This problem is known

as vendor lock-in. Many solutions has been proposed by both communities and

industry, in defining a common way to access different NoSQL technologies.

We propose to use the one that seems to get most interest, especially by the

industry, which is the use of the JPA interface.

This work propose a way to develop complex applications that can potentially

use many different NoSQL technologies at once by means of a common inter-

face, extending the CPIM library. The CPIM library offers a way to access

Introduction

many services of cloud vendors (such as blob, mail, memcache and NoSQL

services) by using a common interface, to mitigate the vendor-lock in problem

in PaaS environments.

The objective is to make the CPIM library able to support many different

NoSQL databases and in order to do this we integrate Kundera, an ORM

for NoSQL databases based on the JPA standard interface, in the NoSQL

service of the CPIM library. This will give to the user the ability to build

complex applications exploiting many different database technologies together

and many services already supported by the CPIM library.

Furthermore we will contribute to the open source project Kundera; we will

develop two new Kundera clients, the adapters that Kundera needs for interact

with the underlying NoSQL database, extending thus the support of Kundera

to two more NoSQL technologies: Google Datastore and Azure Tables since

those are the NoSQL solutions available in the cloud environment currently

supported by the CPIM library.

To address modern applications requirement, this work also propose the in-

tegration, in the CPIM library, of the migration and synchronization system

Hegira to achieve complete portability, both of the code and of the stored

data. This gives to the user a way of moving and synchronizing its data from

a NoSQL technology to another without experiencing any application down

time, and be thus able to change the NoSQL technology to better fit the

requirements, without the need of re-engineering the application.

Original Contributions

This work include the following original contributions:

• two brand new Kundera clients, one for Google Datastore and one for

Azure Tables;

• the interaction for the NoSQL service of the CPIM library with the

migration and synchronization system Hegira.

Outline of the Thesis

This thesis is organized as follows:

4

• In Chapter 2 is described the evolution of NoSQL. As a first introduction

is discussed why in this years this technology have emerged over SQL

solutions and what are the main differences among those technology, the

second part aims to underline the lack of a common language for NoSQLs

in contrast to DBMS.

• In Chapter 3 we analyze the current implementation of the NoSQL ser-

vice in the CPIM library; underlying the problem of the implementation

and proposing a solution for each of them. Furthermore we explain why

we decided to integrate the migration and synchronization system Hegira,

given the migration requirements of modern applications.

• Chapter 4 is dedicated to present the development of the two Kundera

client extension, developed to support Google Datastore and Azure Ta-

bles, in order to maintain the support of those databases in the CPIM

library;

• In Chapter 5 is presented the work made on the CPIM library. As a first

step are described the modifications in the CPIM NoSQL service aimed

to integrate Kundera as unique persistence layer for NoSQL access using

the standard JPA interface. Furthermore is discussed the extension of the

CPIM library to include the required logic to interact with the migration

and synchronization system Hegira.

• In Chapter 6 are described the various tests that have been performed on

the developed Kundera clients both to guarantee the correctness of the

operations and to provide a measurement of the performance in terms of

latency and throughput. The results of the performance tests are then

discussed providing a performance comparison between the developed

Kundera clients and the direct use of the low level API.

• Chapter 7 draws the conclusions on the entire work and proposes some

possible future works.

5

Chapter 2

State of the art

2.1 Introduction

In this chapter NoSQL databases are firstly introduced, described in their main

characteristics and a general classification is provided. In section 2.3 are listed

some of the solutions that have been developed trying to define a common

interface to interact with different NoSQL databases.

In section 2.3.3 is also described the JPA interface and JPQL, the querying

language used for issuing queries. In section 2.4 the CPIM library is introduced

as a tentative of defining a common interface to interact with different vendors

in PaaS environments (which includes accessing their NoSQL solution).

2.2 NoSQL databases

NoSQL databases have recently became popular, due to the inadequacy of

traditional RBDMSs to guarantee adequate performances with respect to the

new application requirements that in these years have outlined. These require-

ments primarily concern the ability of handling huge amount of unstructured

or semi-structured data.

RDBMSs provide a general-purpose solutions that balance the various require-

ments of applications, but they works well for application handling structured

data and for applications that have strict requirement on consistency (as they

guarantee full ACID consistency). Examples are business or administrative

State of the art

application since RBDMSs were born more than 30 years ago, when these

were the most common applications.

NoSQL databases have emerged as a way to store unstructured, semi-

structured data and other complex objects such as documents, data streams,

and graphs. Moreover they provide the capabilities for handling huge amount

of those kind of data, while providing reasonable performance. This is done

primarily by recognizing that many modern applications such as social net-

works, does not need full ACID compliance. Indeed, full ACID compliance

may not be important to a search engine that may return different results

to two users simultaneously, or to Amazon when returning sets of different

reviews to two users.

2.2.1 NoSQL characteristics

Due to the different approaches that NoSQL database put in place to meet the

new application requirements, there is no a unique NoSQL definition but since

all of them provides similar features, we can say that NoSQL databases are

distributed databases with flexible data models aimed to provide: horizontal

scalability, fault tolerance and high availability.

As distributed systems, NoSQL databases are governed by the CAP theorem;

it states that, in a distributed system, we can only have two out of three of

the following guarantees:

• Consistency, a read is guaranteed to return the most recent write for

a given client;

• Availability, a non-failing node will return a reasonable response within

a reasonable amount of time (no error or timeout);

• Partition tolerance, the system will continue to function when network

partitions occur.

As a result, we can have a distributed system with only one of these three

combination of properties: CA, CP or AP.

Given that networks aren’t completely reliable, partitions must be tolerated;

according to the CAP theorem, this means that essentially two are the remain-

ing valid options: Consistency and Availability.

8

2.2 NoSQL databases

For those reasons, while RDBMS scale very well vertically, and thus adding

computational power to the node, they do not scale particularly well horizon-

tally and thus through sharding. This is because RDBMS guarantee ACID

properties, and thus consistency, while for sharding, the system should be

tolerant to partition but, being a distributed system, this means, in terms of

the CAP theorem, that RDMBS cannot guarantee availability. In contrast,

NoSQL database sacrifice consistency for the sake of efficiency an thus, with

respect to the CAP theorem, they can guarantee both partition tolerance and

availability, properties that permit them to scale well horizontally by means of

sharding.

The decision of neglecting consistency, makes NoSQL databases no more ACID

compliant, to highlight this fact, they are said to be BASE compliant, where

BASE is the acronym of:

• Basically Available, which indicates that the system does guarantee

availability, in terms of the CAP theorem;

• Soft state, which indicates that the state of the system may change over

time, even without input;

• Eventual consistency, which indicates that the system will become

consistent over time, given that the system doesn’t receive input during

that time.

Those properties are perfect for certain type of web application, as pointed

out previously, and permits to NoSQL databases to guarantee valuable perfor-

mance in the scenario of Web 2.0 applications requirements.

2.2.2 NoSQL classification

Many NoSQL datastore has been developed and each of them manage data

in different ways depending on the requirements it tries to address and how it

ranks as compared to the CAP theorem. There is not a general classification

for NoSQL databases, many are the method that can be used to classify them:

the data model, the architecture, the sharding or replication methods. We will

consider the classification based on the data model since is the most common

method used to categorize them.

9

State of the art

Accordingly to the meta model, NoSQL databases can be classified in four

groups: key-value, column-oriented, document-oriented and grap-based.

Key/Value stores This kind of databases are very similar to data structures

such as Maps or Hashtables, indeed, data are stored as values which are then

associated to a key. This databases are thus completely schema-free and can

easily store non structured data.This permits to write huge amounts of data

and even to horizontally distribute them (sharded) among the nodes of the

system. Examples of this kind of databases are Redis1 and Voldemort2.

Column-oriented databases Those databases are mainly inspired by the

Google Big Table [13] data model, and are designed for storing data tables

as sections of columns of data, rather than as rows of data. Hence, entity

properties are stored in Columns that are then grouped in Column families ;

rows are identified by a key and composed by a set of column, each row can

have a different set of columns with respect to other rows to be able to persist

even semi-structured and unstructured data. This kind of databases allows

great scalability options as they can both scale horizontally (sharding), by

distributing rows, and vertically, by distributing column families among the

node of the system.

Examples of this kind of databases are Cassandra3 and HBase4.

Document-oriented databases Document-oriented databases are de-

signed for storing, retrieving, and managing document-oriented data. These

systems are designed around an abstract notion of a Document identified in

the database via a unique key. Document database typically offer a query

language that allows the user to retrieve documents based on their content

because they extract and index all kinds of meta-data and usually also the

entire content of the documents. Documents can be stored in many different

ways such as JSON, BSON, YAML or XML.

An example of this kind of database is MongoDB5 and Couchbase6.

1http://redis.io
2http://www.project-voldemort.com
3http://cassandra.apache.org

4http://hbase.apache.org
5http://www.mongodb.org
6http://www.couchbase.com

10

2.3 Approaches for offering a common language over NoSQL

Graph databases Graph databases are databases that uses graph theory

to represent the data. Persisted entities are represented by nodes; each node

maintains the information about the entity it represents by storing them into

properties, while edges can be used to represent relationships among the enti-

ties.

An example of this kind of database is Neo4j7.

As we write there are more than 150 [3] different NoSQL databases and not

all of them can be strictly categorized in one of the previous classification.

Furthermore other solutions trying to propose multiple data models are being

developed. Example of those systems are: OrientDB8, an hybrid solution which

data model span across graph and document databases and ArangoDB9, which

data model is an hybrid of document, graph and key-value data models.

2.3 Approaches for offering a common lan-

guage over NoSQL

The variety of NoSQL systems is huge and the lack of a a common standardized

language for NoSQL databases is a great concern for companies interested in

adopting any of these systems, applications and data are expensive to convert

and competencies and expertise acquired on a specific system get wasted in

case of migration. Also, most of the NoSQL interfaces support a lower level of

interaction than SQL, which appear to be a step back with respect to DBMS.

2.3.1 SQLifying NoSQL

A fist approach that is emerging is the SQLfication of NoSQL databases.

NoSQL vendors, in order to overcome the problem of industry wasting the

expertise maturated over SQL systems, started to create, around their NoSQL

solutions, SQL-like wrappers, which typically offer different features with re-

spect to those of a traditional relational database query language, but main-

taining a grammar similar to that of SQL.

7http://neo4j.com
8http://www.orientechnologies.com

9https://www.arangodb.com/

11

State of the art

For example Google App Engine Datastore, provides GQL, a SQL-like lan-

guage for retrieving entities or keys from Datastore. Other NoSQL database,

such as Cassandra (with CQL), or OrientDB, provide such type of SQL-like

language support natively.

There exist also some independent projects that aim to create such kind of

SQL-like languages upon existing NoSQL databases.

Apache Phoenix

Apache Phoenix [11] aims to become the standard means of accessing HBase

data through a well-defined, industry standard API. It is a relational database

layer over HBase delivered as a client-embedded JDBC driver over HBase data.

Apache Phoenix takes standard SQL queries, compiles them into a series of

HBase scans, and orchestrates the running of those scans to produce regular

JDBC result sets.

UnQL

Unstructured Data Query Language [6], or UnQL (pronounced Uncle), is a

tentative to bring a familiar and standardized data definition and manipulation

language to the NoSQL domain. The project was started in 2011 by the joint

effort of Couchbase and SQLite.

After the project was started, and after some burst of activity, the project

came to a hold. So it seems, that at least as a project UnQL has been a

failure.

2.3.2 Meta-model approaches

Another way that has been investigated in order to achieve interoparability,

is trying to abstract from the data model by spotting common concepts in

the data model of various NoSQL solutions, in order to define a more general

meta-model that can offer an common interface to store data.

12

2.3 Approaches for offering a common language over NoSQL

Apache MetaModel

The aim of Apache MetaModel is to provide a common interface for discovery,

exploration of metadata and querying of different types of data sources [9].

The peculiarity of this project is that it does not only provide support for

NoSQL database (such as CouchDB, MongoDB, Hbase, Cassandra and Elas-

ticSearch) but also for relational databases (such as PostgreSQL, MySQL,

Oracle DB and SQL Server) and even for various raw data format (such as

JSON, XML and CSV files).

The defined meta-model gives the ability to add data sources at run-time and

provides a type-safe SQL-like API. An example for a table creation is reported

in the code 2.1, the meta-model defines a different semantic for the concept

of table depending on the underlying storage technology. For example, for

JDBC it issues a CREATE TABLE statement to the database, for a CSV file,

it creates or overwrites the file and for MongoDB, it creates a new collection

in the MongoDB database.

1 // CREATE a t a b l e

2 Table t ab l e = ca l l b a ck . c reateTab le (”Employee”)

3 . withColumn (” id ”) . ofType (INTEGER)

4 . withColumn (”name”) . ofType (VARCHAR) . execute () ;

Listing 2.1: Apache MetaModel example

SOS Platform

The SOS (Save Our Systems) Platform [16] is an academic project developed

by Unversità Roma Tre.

The platform achieves interoperability among NoSQL databases by defining a

common interface through a meta-layer of abstraction used to maintain entities

information. Database specific handlers read the meta-layer and translate the

meta-operations to database-specific operations that are finally performed over

the database instance. The architecture is shown in figure 2.1.

The supported NoSQL databases are: Hbase to represent Column-based

databases, MongoDB to represent Document-oriented databases and Redis

for Key/Value stores. The meta-layer exploit the data model similarities and

is actually very simple; it is composed by three main constructs: Struct, Set

and Attribute. Attributes contain simple values, such as Strings or Integers;

13

State of the art

Figure 2.1: SOS architecture [16]

Structs and Sets are instead complex elements whose values may contains both

Attributes and Sets or Structs as well. Each database is represented as a Set

of collections whose is a Set itself, containing an arbitrary number of objects.

Each object is identified by a key that is unique in the collections it belongs

to.

2.3.3 ORM approaches

Object Relational Mapping (ORM) solutions came into existence to solve the

object-relational impedance mismatch problem, that is often encountered when

a relational database management system (RDBMS) is being used by a pro-

gram written in an object-oriented programming language or style; ORM were

thus primarily introduced to ease the interaction with RDBMS.

Each ORM solution had its own API and object query language (like HQL

for Hibernate) which made it difficult for programmers to switch from one

framework to another. As a result, efforts were made to make standards and

specifications for this tools.

Today ORM have become the standard way that developers use to interacts

with RDBMS due to the great advantages they bring, such as the ability to

change RDBMS without modifications in the application code. The advantages

14

2.3 Approaches for offering a common language over NoSQL

that ORM led to RDBMS made people think that this approach, or a similar

one, should be applied to NoSQLs too. Furthermore people lack in-depth

knowledge of NoSQL and even if they do, their knowledge is limited to a

couple of them. For this reasons the ORM approach seems to fit perfectly

since they gives to developers a way to interact with NoSQL in a way they are

comfortable with, leaving the complexity of NoSQLs to the ORM.

The JPA interface

Since many of the ORM solutions have their roots in the JPA interface, an

ORM standard for Java based applications, is worth describe it.

The Java Persistence API [15] was first released as part of Enterprise JavaBeans

3.0 in 2006. As a more general-purpose object-relational mapping facility,

it was quickly recognized as such, and was expanded at the request of the

community to support use in Java SE environments as well as in the other

Java EE container types.

The Java Persistence API provides an object/relational mapping facility to

Java developers for managing mainly relational data within Java applications.

Java Persistence consists of three areas:

• the Java Persistence API;

• object/relational mapping meta-data;

• the query language.

Mapping meta-data are defined by the user as Java annotations upon the

classes that he wants to map to the underlying database. The user annotates

classes representing entities; typically, an entity represents a table in a rela-

tional database, and each entity instance corresponds to a row in that table.

Entities are managed by the entity manager; the EntityManager API creates

and removes persistent entity instances, finds entities by their primary key, and

allows queries to be run on entities. The EntityManager.createQuery and

EntityManager.createNamedQuery methods are used to query the database

using Java Persistence query language queries; the only difference among them

is that the latter permits to define queries statically, within the entity meta-

data, through a specific annotation and referencing it later by name.

15

State of the art

A peristence unit is set to all entity classes managed by the EntityManager

instance. Persistence units are defined by the persistence.xml configuration

file. Each persistence unit is identified by a name, that is unique across the

persistence units scope.

The JPA supports two methods for expressing queries, in order to retrieve

entities and other persistent data from the database: query languages and the

criteria API. The primary query language is Java Persistence Query Language

(JPQL), a database-independent query language that operates on the logical

entity model, as opposed to the physical data model. Queries may also be

expressed in SQL to take advantage of the underlying database. The criteria

API provides an alternative method for constructing queries based on Java

objects instead of query strings. An example of defining the same query with

the two approaches is shown in the code 2.2. the JPA approach.

1 // using c r i t e r i a API

2 C r i t e r i aBu i l d e r cb = em. g e tC r i t e r i aBu i l d e r () ;

3 Cr iter iaQuery<Employee> query = cb . createQuery (Employee . class) ;

4 Root<Employee> e = query . from (Employee . class) ;

5 query . s e l e c t (e) ;

6

7 // using JPQL

8 TypedQuery<Employee> query = em. createQuery (”SELECT e FROM Employee e”) ;

Listing 2.2: Create queries with JPA

JPQL has its roots in the Enterprise JavaBeans Query Language (EJB QL)

that was first introduced in the EJB 2.0 specification to allow developers

to write portable “find” and “select” methods, for container-managed entity

beans. It was based on a small subset of SQL and it introduced a way to

navigate across entity relationships both to select data and to filter the re-

sults. JPQL was then introduced as part of the JPA to significantly extend

EJB QL, thus eliminating many of its weaknesses, while preserving backward

compatibility.

Kundera

Kundera [5] is an open source project started by Impetus Inc. an India based

tech company active in Big Data and Cloud engineering. Kundera provides

16

2.3 Approaches for offering a common language over NoSQL

a JPA 2.1 compliant object-datastore mapping library for NoSQL datastores

leveraging the existing NoSQL database libraries, and builds on top of them a

wrapper compliant to the JPA specifications.

The main advantage of the Kundera approach is that, using a well known

and defined interface, developers do not need to learn a new framework, fur-

thermore, the use of the JPA interface permits code re-usability since each

annotated entity and each JPQL query will work independently from the un-

derlying technology actually used.

Kundera also implements the possibility of polyglot persistency that allows the

user to use different NoSQL technology at once by using different persistence

units. Furthermore Kundera provides what they call Client Extension Frame-

work, which allows developers to build their own Kundera clients over new

NoSQL technologies extending thus the support of Kundera to those technolo-

gies.

Spring-data

Spring Data [10] is a high level SpringSource project whose purpose is to

unify and ease the access to different kinds of persistence stores, both relational

database systems and NoSQL data stores. It is an umbrella project which

contains many sub-projects that are specific to a given database. The database

currently supported are: MongoDB, Redis, Neo4j, CouchBase, Elasticsearch,

Cassandra, DynamoDB and JDBC support.

JPA introduced a standard for object/relational mapping (i.e. mapping ob-

ject graphs to relational database tables), with Spring Data, this support is

extended to NoSQL datastores with object-like data structures. Each type

of datastore comes with its own set of annotations that provides the needed

meta information for the mapping. An example of such diversity, in handling

different datastore mapping, is reported in the code 2.3 which shows the an-

notations required to be able to persist correctly the same entity in MongoDB

and in Neo4j. As can be seen, the approach does not permit the migration

from a NoSQL technology to another, without modifying the application code

due to the very different requirements in terms of class and fields annotations.

1 // MongoDB mapping

2 @Document(c o l l e c t i o n=”usr ”)

17

State of the art

3 public class User {
4 @Id private St r ing id ;

5 @Field (” fn ”) private St r ing name ;

6 private Date l a s tLog in ;

7 . . .

8 }
9

10 // Neo4j mapping

11 @NodeEntity

12 public class User {
13 @GraphId Long id ;

14 private St r ing name ;

15 private Date l a s tLog in ;

16 . . .

17 }

Listing 2.3: Spring Data object mapping

When working with data, developers generally write some Data Access Ob-

ject (DAO) classes that encloses the required logic for implementing CRUD

operations or build queries. With Spring Data, DAO classes are completely

handled by the framework, requiring the user only to provide an interface of

the DAO that extends a specific Spring Data repository which will map the

operation to the underlying database specific implementation. An example of

this is reported in the code 2.4.

1 public interface UserRepos i tory extends MongoRepository<User , Str ing> {
2 Lis t<User> findByName (St r ing name) ;

3 Lis t<User> f indByEmail (S t r ing emai l) ;

4 }

Listing 2.4: Spring Data repositories

While this approach reduces drastically the amount of code needed to execute

CRUD operations on the underlying technology, it requires code modification

in case a user wants to change its storage technology since each supported

technology have its own mapping as explained previously and shown in figure

2.3.

PlayORM

PlayORM [8] is an open-source library developed by Buffalo Software with

the aim of speeding up developer productivity of developing applications which

18

2.3 Approaches for offering a common language over NoSQL

interfaces with NoSQL databases. Currently supports Cassandra, MongoDB

and HBase.

PlayORM takes great inspiration from the JPA interface, but it recognizes

that the JPA was designed for RDBMS and thus they have re-defined the

JPA interface for better cope NoSQL databases. The framework makes use of

some JPA interfaces, such as EntityManager, for CRUD operations, and the

Query interface, for queries, but it re-define all the annotations. Furthermore it

defines an extensions of JPQL, called S-JQL (which stands for Scalable JQL),

that adds to JPQL the keyword PARTITIONS and which allows the user to

specify the specific data partition on which to execute the query.

An example of entity defined with PlayORM is shown in the code snippet 2.5

and it shows the great similarities with the JPA approach.

1 @NoSqlEntity

2 public class Employee {
3 @NoSqlId

4 private St r ing id ;

5 private St r ing lastName ;

6 @OneToOne

7 private Phone phone ;

8 . . .

9 }

Listing 2.5: PlayORM object mapping

PlayORM, while correctly notice that JPA has not been thought to be used

for NoSQLs, take too much inspiration from it but re-defines its annotations

completely but, in many cases, without changing their semantic at all.

Apache Gora

The aim of Apache Gora [7] is to extend the concept of Object Relational

Mapping tools (ORM) to introduce Object-to-Datastore Mapping where the

underlying technological implementations rely mostly on non-relational data

models. In essence Gora provides a storage abstraction for NoSQL technolo-

gies. Gora thus gives the user an easy-to-use in-memory data model and

persistence for big data framework with data store specific mappings and built

in Apache Hadoop support.

The objectives of Gora can be grouped as follows:

19

State of the art

• Data Persistence: persisting objects to Column-based stores such as

Apache HBase, Apache Cassandra, Hypertable; key-value stores such as

Voldermort, Redis, etc; SQL databases, such as MySQL, HSQLDB, flat

files in local file system of Hadoop HDFS;

• Data Access: an easy to use Java-friendly common API for accessing

the data regardless of its location;

• Analysis: accessing the data and making analysis through adapters for

Apache Pig, Apache Hive and Cascading;

• MapReduce support: out-of-the-box and extensive MapReduce

(Apache Hadoop) support for data in HDFS.

2.4 Cloud Platform Independent Model

Cloud Platform Independent Model (CPIM) [14] is a Java library built in

order to make Java developers able to abstract their application logic from the

specific PaaS Provider on which the application will actually be deployed.

During the life cycle of the application may be necessary, for example, due

to changes in application requirements or in the business strategy, to move

the application to a different cloud provider. In this process, the application

needs to be re-engineered since, even if services are similar among various

providers, they expose different API, locking the application to the specific

PaaS environment; this problem is commonly referred to as vendor lock-in.

The aim of CPIM is to overcome the vendor lock-in that affect the current

PaaS industry by providing, to application developers, a common interface to

interacts with many cloud services. The library then, at run-time, maps the

methods invocations on the generic interface, to specific cloud provider method

invocation.

The library now support three different cloud providers: Google App Engine,

Microsoft Azure and Amazon AWS. The services that are supported through a

common interface are: the blob storage, the mail service, the memcache service,

the SQL service (MySQL for Google App Engine and Amazon AWS while SQL

Server is the supported solution for Microsoft Azure), message queues service

20

2.5 Summary

and NoSQL service (Google Datastore for Google App Engine, Azure Tables

for Azure and Amazon SimpleDB for Amazon AWS).

2.5 Summary

This chapter introduced some of the main reasons that lead to the NoSQL

database introduction and why the industry is so interested in those kind of

technologies. We presented the main projects that have born trying to define

a standard NoSQL language or a standard way to communicate with different

NoSQL databases, and we gave a quick overview of the choices made by each

product. Finally it was presented an overview of the JPA interface and the

CPIM library, a more general approach for a common language definition in

PaaS environments.

21

Chapter 3

Problem setting

3.1 Introduction

In this chapter we expose the motivations that lead us to conduct this work,

in particular, we analyze the current problems in the NoSQL service imple-

mentation of the CPIM library and propose a solution to address them and,

at the same time, increasing the number of NoSQL database supported by the

library. Furthermore, we will discuss why we decided to include the possibility

for the CPIM library users to be able to migrate and synchronize data, across

databases, by means of a migration system called Hegira.

3.2 CPIM library extension

The CPIM library achieve the objective of making a developer able to interact

with many different services in the cloud. Due to modern application require-

ments in handling large volumes of data, CPIM should be extended, primarily

in order to let it support more NoSQL technologies; indeed, the great diversity

of the various NoSQL technologies makes certain solutions more suitable than

others in handling certain types of data. Hence, the possibility of choosing

among many different NoSQL solution and, at the same time, be able to in-

teract with them through a common interface, is an important feature to be

added in CPIM.

Problem setting

3.2.1 CPIM NoSQL service

The CPIM library uses various implementation of the JPA interface to ease

the communication with different NoSQL databases:

• Google Datastore is supported by means of the Google JPA implemen-

tation around Datastore API;

• Azure Tables is supported through jpa4azure a third party implementa-

tion of the JPA interface for Tables;

• Amazon Simple DB is supported through simpleJPA a third party im-

plementation of the JPA interface for Simple DB.

By choosing the cloud provider inside the configuration.xml, the library knows,

at run-time, which interface should be used for the service and this holds also

for the NoSQL service. Hence to use Google Datastore as NoSQL database,

Google must be selected as cloud provider.

The aim of CPIM is to offer to the user a way of writing cloud application in

a provider-independent fashion, to be able to migrate the application from a

provider to another without the necessity of re-engineer the application. For

the NoSQL service this is achieved by meas of the JPA interface that, beside

the fact that is is not a standard for accessing NoSQLs, many projects came

into play trying to bring the benefit of the JPA interface also in the NoSQL

world.

However the current implementation suffer of a significant problem:

P.1 the application code written to interact with the NoSQL service is not

interoperable and thus, the user is required to modify the application

code in order to be able to move the application to a different cloud

provider.

Moreover the NoSQL service suffer of some limitations too:

L.1 the choice of the NoSQL database is strictly bind to the selected cloud

provider;

L.2 even if the selection of the NoSQL database would be possible, the num-

ber of supported NoSQL database is very limited.

24

3.2 CPIM library extension

For P.1, the problem reside in the fact that for each of the currently supported

database, has been found and integrated into CPIM, a specific implementation

of the JPA interface. Even through JPA is a well defined standard, not ev-

ery JPA provider follows strictly the specification and thus, different provider

can behave differently while persisting the same entities, since they interpret

differently the semantic of some JPA annotation.

An example of this problem is how Collection fields are currently handled

in CPIM. In the Google JPA implementation for Datastore and in the JPA

implementation for Amazon SimpleDB, Collection fields are handled correctly,

with respect to the JPA specification, thought the @ElementCollection an-

notation, while, in the JPA implementation for Azure Tables, Collection fields

needs to be annotated with the @Embedded annotation. This require a modi-

fication of the code and thus eliminates the effort of CPIM in achieving code

portability among PaaS.

As regards L.1 and L.2, we would like to give to the user the ability to persist

data in the database that best fit his requirements. For example if the user

application will generate data that should be processed with Hadoop, the best

solution is to store those data in an HBase instance since its integrate easily in

Hadoop. Therefore we want to make the user able to persist different entities in

different datastore based on his needs and without the limitation of a specific

NoSQL technology.

3.2.2 Proposed solution

The proposed solution is mainly about the integration of Kundera, a JPA

compliant ORM for NoSQL databases, as unique persistence layer for the

NoSQL service.

There are many reasons why we choose to use Kundera among the other avail-

able solutions in the scenario of NoSQLs common language. The main reason

is that Kundera, through the use of the JPA interface will permit to the user

to handle the complexity of NoSQL databases with expertise he already uses

for SQL systems. Furthermore Kundera is in the field from 2010 and thus have

a big and active community, built in many years of activity, and has been used

successfully in some production environment. Furthermore its implementation

25

Problem setting

of polyglot persistency permits the development of complex applications that

can potentially use many different NoSQL technologies at once.

The only drawback of using Kundera is that it does not support any of the

NoSQL datastore currently supported by CPIM. Fortunately Kundera have,

as its primary goal, to make the library as much extensible as possible, to

let developers build their own client around new NoSQL technologies. The

solution will thus be to contribute to Kundera as an open source project by

developing two new Kundera clients, one for support Google Datastore and

the other to support Azure Tables.

This integration will be useful to solve the problems and mitigate the limitation

outlined as follow:

• since Kundera will be the unique persistence provider for the library we

will relay only on one implementation of the JPA interface overtaking in

this way, the problem P.1, related to different interpretation of the JPA

annotation, and thus achieving complete portability of the code of the

application model since no code modifications are required to work with

different NoSQL database through Kundera;

• the integration of Kundera permits a redesign of the NoSQL service

aimed to decouple the chosen PaaS provider and the NoSQL technology

overcoming limitation L.1, by giving to the user the ability of deciding

which technology is more suitable for his needs. Furthermore exploiting

the polyglot-persistence provided by Kundera, the user will be able to

persist entities within different NoSQL databases at the same time, sim-

ply by defining accordingly the persistence unit in the persistence.xml

file;

• choosing Kundera as persistence layer we can actually take advantage

of the already developed extension for many different NoSQL databases,

adding as a result the support of those database to CPIM, and thus

overcoming the limitation L.2.

26

3.3 Data migration

3.3 Data migration

NoSQL technologies do not offer a common querying language to interact with

them, as SQL does for RDBMS. Furthermore, NoSQLs offer a simpler interface

with respect to RDBMS and each of them exposes a proprietary API tailored to

the specific database needs. This requires to interact with NoSQL databases

at a lower level of abstraction, moving a good amount of developing effort

toward the user. Given the amount of NoSQL solutions available nowadays

[3], and this low-level approach in using such technologies, a company that

want to adopt a NoSQL solution to manage its data, finds itself locked to the

chosen technology. For this reasons while NoSQL solutions can be appetible

to industry, the high costs of application re-engineering and the necessity of

investments on qualified personnel, disrupt the adoption of such technologies.

The CPIM library can mitigate this vendor lock-in problem by giving to the

user the freedom to choose the NoSQL solution that best fit its application

requirements and, furthermore, by using the JPA interface, gives the possibility

to interacts with NoSQL databases with expertise that companies already have.

However when a company actually faces the problem of changing the storage

solution for its data, even if the application, through frameworks like CPIM,

permits effortless code portability, data migration from the old storage to the

new one became a huge problem.

Data migration has became a key feature in modern IT, there exists many

reasons to move data from one storage to another: for load balancing, system

expansion, failure recovery, etc.

Typical migration solutions involve applications stop to move the data offline

and restart the application when the process has been completed, to guarantee

the correctness. On the other hand, modern computer systems are expected

to be up continuously and thus even planned downtime to accomplish system

reconfiguration is becoming unacceptable [20].

However migrating data between database without causing application down-

time brings several new problems such as data synchronization between the

two involved systems, especially if those systems are not of the same vendor.

27

Problem setting

Figure 3.1: Perceived risk in data migration [20]

3.3.1 Hegira integration

To mitigate those problems we want to extend the CPIM library to make it

able to interact with Hegira a migration system able to perform interoperable

data migration and synchronization across column-based NoSQL databases

[12]. Hegira is already able to migrate data offline, but in many cases this

solution is not acceptable since this requires to turn off the application for a

period of time that depends on the volume of data that needs to be migrated

towards the new database. Downtime costs and risks of data loss can be

problematic so, Hegira was extended to be able to perform a live-migration

of the data by keeping them synchronized on the source and the destination

database. This feature needs to be exploited at application level and thus we

decided to embed it inside the CPIM NoSQL service, in order to make it as

transparent as possible to the user.

The CPIM library needs to be aware of the state of both the synchronization

and migration systems and acts accordingly intercepting user operation and

sending data manipulation queries (DMQ) to the migration system which is

in charge of keeping the data consistent across the replicated databases.

The result of such integration in the CPIM library will be the ability of the

user to migrate data from a NoSQL storage to another, while the application

is running, and still be able to read the data on the new system without

modifying the application code.

28

Chapter 4

Kundera clients development

4.1 Introduction

This chapter briefly presents in section 4.2 Kundera modular architecture, the

way in which Kundera is supposed to be extended, the problems occurred in

the process and how the community helped in achieving the result.

In section 4.3 are discussed the detail of the two developed Kundera extension,

in particular section 4.3.1 describe the extension for Google Datastore while

section 4.3.2 the one for Azure Tables.

4.2 Overview of Kundera

Kundera [5] is an implementation of the JPA interface that currently supports

various NoSQL datastore. It supports by itself cross-datastore persistence in

the sense that its allows an application to store and fetch data from different

datastores. Kundera provides all the code necessary to implement the JPA 2.1

standard interface, independently from the underlying NoSQL database which

is being used.

Currently supported NoSQL databases are:

• Oracle NoSQL (versions 2.0.26 and 3.0.5)

• HBase (version 0.96)

• MongoDB (version 2.6.3)

Kundera clients development

• Cassandra(versions 1.2.9 and 2.0.4)

• Redis (version 2.8.5)

• Neo4j (version 1.8.1)

• CouchDB (version 1.0.4)

• Elastic Search (version 1.4.2)

Figure 4.1: Kundera architecture [5]

The architecture of Kundera is shown in Figure 4.1. The figure highlights the

fact that the user application interacts with Kundera simply by exploiting the

standard JPA interface implemented in the Kundera-Core.

Kundera-Core, each time an operation need to be executed on the underly-

ing database, delegates the operation to the appropriate Client (creating it

through a ClientFactory if it does not exists yet). Clients are then responsible

of actually executing the operation on the underlying database.

30

4.2 Overview of Kundera

4.2.1 Kundera’s Client Extension Framework

Kundera tries to offer a common way to interact with NoSQL databases

through a well defined interface furthermore, since it is as on open source

project, it makes other developers able to extend it, adding support for other

databases. The Client Extension Framework, described in the Kundera doc-

umentation, provides a short description about how Kundera clients should

work and gives a description of interfaces and classes that should be developed

in order to make the client work properly.

Basically to build a new Kundera client, these are the blocks to be developed:

• the Client, which is the gateway to CRUD operations on database,

except for JPQL queries and named queries;

• the ClientFactory, which is used by Kundera to instantiate the new

Client;

• the QueryImplementor, which is used by Kundera to run JPA queries

by invoking appropriate methods in Entity Readers;

• the EntityReader, which is used by Kundera to translate the queries

into correct client method calls;

• optionally the SchemaManager, to support automatic schema generation.

4.2.2 Problems encountered

While trying to extend Kundera we faced several problems that were not cov-

ered by the documentation, two were the main problem in understating what

to do and how:

• when actually defined the classes and implemented the interfaces, it turns

out that there are actually little differences both on interfaces and the

required methods;

• the documentation lacks completely in describing what kind of infor-

mation are carried by the argument of the methods that needs to be

implemented.

31

Kundera clients development

After getting the updated information from the community it turns out that

the Entity Reader was unnecessary and all the translation, from JPA queries

to datastore specific queries, and their executions, should be done in the

QueryImplementor. Unfortunately no help was given by the community about

the issue on methods arguments. Hence the most valid solution to approach

the development of the extension was in a test driven way trying so to reverse

engineer those arguments.

4.3 Developing client extensions

The work carried out has also focused on the development of two Kundera

extensions, the first one for Google Datastore and the second one for Azure

Tables.

Kundera Client Extension Framework provides a generic interface which meth-

ods are supposed to carry out a lot amount of code. An example of this is the

persist operation that is handled by the onPersist method. Besides actually

perform the persist operation, it have to create an object that can be persisted

in the specific database by reading all the entity meta-data given as arguments,

looking for example to relational fields. The adopted solution is a template

pattern in which each method maintains the main algorithm structure and del-

egates every operation to a specific hook method. An example of this approach

for the Datastore case, is reported in pseudo code in the snippet 4.1.

1 @Override

2 protected void onPe r s i s t (. . .) {
3 Entity gaeEnt ity = Data s to r eUt i l s . c r ea t eEnt i ty (entityMetadata , id) ;

4 hand leAtt r ibute s (gaeEntity , e n t i t yAt t r i bu t e s) ;

5 hand leRe la t ions (gaeEntity , r e l a t i o nHo l d e r s) ;

6 handleDiscriminatorColumn (gaeEntity , ent ityMetadata) ;

7 pe r f o rmPer s i s t (gaeEntity) ;

8 }

Listing 4.1: Template for the persist operation

For the Azure Tables extension, since it has been developed as the last one,

the same structure has been kept and so it was only necessary to update the

code of the hook methods.

The following sections presents these extensions separately, describing each

one of the supported features.

32

4.3 Developing client extensions

4.3.1 Google App Engine Datastore client

Google App Engine Datastore [2] is the NoSQL solution build on top of Google

BigTable a sparse, distributed, persistent multidimensional sorted map avail-

able in the App Engine platform [13].

JPA identifier

The most basic unit that can be stored in Google Datastore is an Entity, which

is identified by a Key and it is composed of Properties. Keys contain various

information about the entity itself:

• the entity Kind, which is used to group entities of the same type;

• an entity identifier, used to distinguish entities of the same type;

• an optional parent entity .

Inspired by the Google JPA implementation for Datastore [4] the idea was to

use the Java class representing the datastore Key as identifier for the entity,

but, unfortunately, this was not possible since Kundera support only a pre-

defined defined set of Java data types.

Hence the adopted solution is to handle the key internally. Each time an

operation on Datastore is required the key, relative to the entity, is built. The

Kind is directly mapped to the table name and the Key identifier is the user

defined id specified in the @Id annotation. The @Id annotation, in fact, is the

annotation (available in the JPA specification) that is used to identify the class

field that will be used as primary key in the resulting table on the underlying

database.

IDs can be specified by the user or automatically generated, and they can be

associated to three different data types

• @Id annotation on a String type field

• @Id annotation on a Long type field

• @Id annotation on a primitive long type field

33

Kundera clients development

Since Kundera supports the JPA feature for auto-generated IDs by using the

annotation @GeneratedValue, this possibility has been exploited also for the

Datastore extension and so the user can annotate a String ID field so as

that it will be auto-generated and its value will be a string representation of a

random java UUID.

Auto-generated IDs are supported by Kundera only with AUTO or TABLE strat-

egy, it was not possible to use the Datastore API to generate IDs since it is

necessary to know the Kind of the entity to be persisted but neither the AUTO

strategy nor the TABLE one provides this information at generation time.

Consistency

In Datastore entities are organized in Entity Groups based on their Ancestor

Path. The Ancestor Path is a hierarchy of entities whose keys have relation

among themselves.

Consistency is managed through entity groups and so by defining the ances-

tor paths. Entities within the same entity group are managed in a strongly

consistent means. Entities which are not in an entity group are treated with

eventual consistent policy.

Datastore allows to create ancestor paths by defining entities parental rela-

tionships between entities and is it a task left to the user. Datastore low-level

API also leave this task to the user, for example in Objectify [18], a wrapper

for these API, the developer makes use of a @Parent annotation to make the

user able to specify the parent relationships and hence to be able to organize

entities through the ancestor path.

Since JPA is a well defined standard, adding such kind of annotation will break

the standard and the only alternative left is trying to automatically guess the

ancestor path.

An approach to do so can be to look at JPA relationships since they are

clearly a good place to found information for guessing if two entity kind can

be hierarchically related, hence for each type of relation we may define some

solutions that can be adopted:

• for One to Many and One to One relationships, since there is an

owning side of the relationship, the owning entity can be used as parent

for every related entity.

34

4.3 Developing client extensions

• Many to One relationships can be considered as One to Many rela-

tionships.

• as regards Many to Many relationships, a solution can be to persist the

elements of the join table as child of the entity in the owning side of the

relationship but the specular solution (persist elements as child of the

entity on the non-owning side) can be adopted too. The only solution

that is not acceptable in this case is to persist both the entities, the one

on the owning side and the one on the non-owning side, as parent to an

element of the join table. This is principally due to the fact that this

will require, as pointed out later, the Key of the join table element to be

able to retrieve the entities from Datastore.

Even though it could have been possible to infer such relationships we choose

not to implement it inside the Kundera extension for two main reasons:

1. entities are not require to have a single relationship so, for example, if

an entity contains two different relationships of type One to One there

is no way to decide which one should be used, unless asking to the user;

2. entities with a parent require, beside their own Key, the parent Key

(and thus its Kind and identified) to be universally identified. For how

Kundera is structured those information are not available and even if

the parent entity Kind can be retrieved from Kundera meta-data (by

searching in the relationships meta-data), its identifier is not available

inside meta-data as thus, since the complete Ancestor Path cannot be

built, the entity cannot be retrieved.

For those reasons it was not possible to automatically guess ancestor paths

by means of JPA relationships or make the user able manage them directly

through a specific annotation without causing errors. Each Kind is persisted

as a root Kind hence each entity is stored as a separated entity group identified

by its own Kind (the name of the JPA table associated to the entity).

JPA relationships

All the JPA supported relationships have been implemented in the client as it

would have been done in a relational database. So for One to One and One

35

Kundera clients development

to Many relationships, on the owning side of the relationship, a reference to

the non-owning side entity is saved.

For Many to One relationships there would be two solutions:

• to persist a list of references to the related entities;

• not to persist anything within the entity and fill the relationship with a

query.

The second solution has been adopted since it is more consistent with the

other Kundera client implementations and with the classic implementations in

relational databases.

As regards Many to Many relationships a join table is created based on user

directives specified by means of the entity class annotations. The join table is

filled each time a many to many related entity is persisted and a new row is

created inside the join table with the references to the entities involved in the

relationship.

The so far called reference for Datastore is exploited by persisting within the

entity the Key (Kind and identifier) of the related entity.

Can be useful at this point to show how an entity, annotated with the JPA

standard, is then mapped to a datastore entity. Let’s take as example the case

described in the code 4.2, the Employee class is annotated with many JPA

annotations.

• the @Entity annotation specify to the JPA provider that this will be

mapped to an entity in the underlying database and the @Table anno-

tation specify the name that the table should have and the persistence

unit to which the entity refer;

• the id field will handle the identifier for this entity as it is annotated

with the @Id annotation and furthermore this id will be auto-generated

due to the presence of the @GeneratedValue annotation;

• the @Column annotations specify to the JPA provider under which name

the fields should be persisted on the underlying database.

36

4.3 Developing client extensions

The same is for the Phone entity which is related to Employee with a one

to one relationships and thus a reference of the related phone entity will be

persisted within the employee one.

The resulting entities on Datastore will be persisted as shown in table 4.1.

1 @Entity

2 @Table (name = ”EMPLOYEE” , schema = ”keyspace@pu”)

3 public class Employee {
4 @Id

5 @GeneratedValue (s t r a t e gy = GenerationType .AUTO)

6 @Column(name = ”EMPLOYEE ID”)

7 private St r ing id ;

8

9 @Column(name = ”NAME”)

10 private St r ing name ;

11

12 /∗ an employee have one and only one phone ∗/
13 @OneToOne

14 @JoinColumn (name = ”PHONE ID”)

15 private Phone phone ;

16 }
17

18 @Entity

19 @Table (name = ”Phone” , schema = ”keyspace@pu”)

20 public class Phone {
21 @Id

22 @GeneratedValue (s t r a t e gy = GenerationType .AUTO)

23 @Column(name = ”PHONE ID”)

24 private St r ing id ;

25

26 @Column(name = ”NUMBER”)

27 private Long number ;

28 }

Listing 4.2: Example entities

Key ID/Name NUMBER

PHONE:3cb26744 3cb26744 123456789

(a) PHONE

Key ID/Name NAME PHONE ID

EMPLOYEE:112b18e7 112b18e7 Fabio PHONE:3cb26744

(b) EMPLOYEE

Table 4.1: Mapping of entity fields on Google Datastore

37

Kundera clients development

Queries

Kundera queries are to be expressed in JPQL; the standard JPA query lan-

guage, which is a object oriented query language based on SQL [15]. Kundera

supports all of the clauses of JPQL, but with some restrictions since clauses

can be applied only on primary key attributes (the ones annotated with the

@Id annotation) and column attributes (the ones annotated with the @Column

annotation).

Once a JPQL query is parsed and validated by Kundera it is passed to the

Query Implementor together with some meta-data extracted from it which

then need to be read in order to build a database specific compatible query.

Google Datastore has on its own a very good support to queries so almost all

the clauses are supported except for the LIKE one.

To be able to execute queries on properties, Datastore needs to construct sec-

ondary indexes for those properties. Those indexes consume the App Engine

application quotas to be stored and maintained. The API provides the possi-

bility to decide which property should be indexed, by calling a different method

when adding the property to an entity; in fact, setProperty(String name,

Object value) method is used to set a property which will be automatically

indexed, where setUnindexedProperty(String name, Object value) can

be used to create a non-indexed property.

Since a discriminator is needed to choose between the two methods, other

wrappers around Google Datastore low-level API (such Objectify [18]) pro-

vide to the user an @Index annotation to be placed upon the field that needs

to be indexed, but as previously explained, it is not convenient to add other

annotation to the JPA standard since this will break interoperability. For those

reasons, and in order to be able to actually execute queries, all properties are

set as indexed. This choice make queries able to be executed upon every prop-

erty of an entity but this, as stated before, requires App Engine to maintains

secondary indexes, consuming application quota.

Table 4.2 shows a complete list of the Kunedra supported JPQL clauses and

their support for both the developed extensions.

38

4.3 Developing client extensions

JPA-QL Clause Datastore support Tables support

Projections 3 3

SELECT 3 3

UPDATE 3 3

DELETE 3 3

ORDER BY 3 7

AND 3 3

OR 3 3

BETWEEN 3 3

LIKE 7 7

IN 3 7

= 3 3

> 3 3

< 3 3

>= 3 3

<= 3 3

Table 4.2: JPQL clauses support for the developed extension

Embeddable Classes

Embeddable classes are user defined persistable classes that function as value

types. As with other non entity types, instances of an embeddable class can

only be stored in the database as embedded objects, i.e. as part of a contain-

ing entity object. A class is declared embeddable by annotating it with the

@Embeddable annotation and can then be used in an entity, as a value type,

annotating the field as embedded with the @Embedded annotation.

Implementation of those kind of entities is straightforward for Datastore

because the embeddable classes can be mapped to the natively supported

EmbeddedEntity. The implementation makes use of such feature by trans-

lating the embeddable entity into a Datastore embeddable entity and then

persisting it within the parent entity.

39

Kundera clients development

Collection fields

JPA standard supports collection or maps to be used as entities field by using

the annotation @ElementCollection.

Java Collections are natively supported by Google Datastore but are supported

only if composed of one of the supported Datastore data types which includes

the main Java data types, such as String and Long, and Datastore specific

ones, such as Key.

To be able to save whatever kind of collection (or map) independently of

the data type that composes it, the collection (or map) itself is serialized

into a byte array when persisted and de-serialized when read. To simplify

the development, also Lists of primitive types, even if supported natively, are

serialized.

Enum fields

Enum fields are supported by the JPA through the annotation @Enumerated,

by simply persisting its string representation and, when the entity is read back,

by instantiating the corresponding enum type.

Schema Manager

The schema manager, as required by Kundera, has to make use of four opera-

tions:

• validate, which validates the persisted schema based on the entity defi-

nition;

• update, which updates the persisted schema based on the entity defini-

tion;

• create, which creates the schema and, thus the tables, based on the entity

definitions;

• create drop, which drops (if it exists) the schema and then re-creates it

by re-creating the tables based on the entity definitions.

The first two cases are quite useless for Google Datastore and in general for

NoSQL databases, since there is typically no fixed schema for the entities.

40

4.3 Developing client extensions

Entities with same Kind can have different properties without restriction. Also

the create case is meaningless for Datastore since when a new entity of an

unknown Kind is persisted it is created without the need of explicitly defining

it first as a new Kind.

The last case create drop will just drop the current schema, deleting all the

persisted kinds and so all the related entities, without re-creating the schema

since it constructs by itself.

Datastore specific properties

Kundera offers the possibility to define some datastore specific properties in an

external XML file that needs to follow a simple structure. This file is referenced

inside the persistence.xml and it is optional.

This possibility is exploited by the Datastore extension and make the user able

to configure the following properties:

• datastore.policy.read, to set the read policy;

• datastore.deadline, to define the RPCs calls deadline;

• datastore.policy.transaction, to specify if Datastore has to issue

implicit transactions.

Those properties are read by the Client Factory and used to initialize the

datastore connection with the required parameters.

A complete reference of Google Datastore extension configuration is available

in the the appendix A.3.

4.3.2 Azure Tables client

Azure Tables [1] is the NoSQL solution developed by Microsoft, it is a key-value

storage and it is available inside Azure environment.

JPA identifier

In Azure Tables an entity to be persisted must either implement a special

interface TableServiceEntity or be translated into a DynamicEntity which

41

Kundera clients development

is basically a dynamic property container (i.e. it does not impose a fixed data

scheme). An entity is then uniquely identified inside a table by a partition-key

and a row-key. Partition keys are used to handle consistency, strong consis-

tency is guaranteed for entities which are stored within the same table and

having the same partition key, otherwise consistency will be eventual by de-

fault.

Since both partition-key and row-key support only the data type String and

since the JPA annotation @Id can be declared only on one field per class,

the partition-key and the row-key are concatenated in a single String field

and handled internally by the extension through the class AzureTableKey (a

custom class built ad hoc for Azure Tables, since there is no such a class that

encapsulate both the partition-key and the row-key). This way the user has

complete control over partition-key and row-key and thus on the consistency

mechanism.

The user can handle those identifiers in three different ways:

1. manually define the row-key and the partition-key;

2. manually define only the row-key;

3. let the extension handle completely the identifier, annotating the ID

field also with @GeneratedValue(strategy = GenerationType.AUTO)

annotation.

In the first case, to help the user in define both the partition-key and

the row-key independently by how are handled internally by the extension,

a static method AzureTableKey.asString(String partitionKey, String

rowKey) is provided; its usage is not required, but in case the ID is manually

specified, it must follow the convention used internally by the extension which

is partitionKey rowKey.

To be able to specify only the row key, while keeping the partition key set to

the default value (which can be modified in the datastore specific property file

described later on), to have a more fluent API, an utility method is provided:

AzureTableKey.asString(String rowKey)

The third and last method will generate a java random UUID for the row key

and set the partition key to the default value.

42

4.3 Developing client extensions

JPA relationships

Also for Azure Tables extension, relationships are implemented similarly to

relational systems as described previously for Google Datastore in section 4.3.1.

In Azure Tables to universally identity an entity the partition-key, the row-key

and the table name are required. Since the table name is always provided by

Kundera (and is available in the entity meta-data), the only required infor-

mation to identify an entity are the partition-key and the row-key. When two

entities are related, the partition-key and the row-key of the related entity are

persisted within the entity that owns the relationship.

Taking the same example described for Google Datastore in section 4.3.1 and

reported in the code 4.2, the resulting mapping of the entities fields for Azure

Tables is the one reported in table 4.3.

Partition Key Row Key NUMBER

DEFAULT 3cb26744 123456789

(a) PHONE

Partition Key Row Key NAME PHONE ID

DEFAULT 112b18e7 Fabio DEFAULT 3cb26744

(b) EMPLOYEE

Table 4.3: Mapping of entity fields on Azure Tables

Queries

Supporting queries for Azure Tables was straightforward, the procedure was

the same described in 4.3.1 but due to the different operator supported by

Tables, beside the LIKE clause, also the IN and the ORDER BY clauses are

not supported.

Table 4.2 shows a complete list of the Kunedra supported JPQL clauses and

their support for both the developed extensions.

43

Kundera clients development

Embeddable Classes

Embeddable classes (described in 4.3.1) are not supported natively by Azure

Tables hence the solution adopted is to serialize the field annotated with

@Embedded, in order to be able to persist it to the storage like a byte array

and de-serializing it when the entity is read back.

Collection fields

As described for Datastore in section 4.3.1, JPA supports collections, but these

are not supported in Azure Tables, even if composed of supported data types.

To support collections and maps, the simplest solution is to serialize the entire

collection (or map) to a byte array when persisting the entity. When reading

back from the database, the entity is de-serialized properly.

Enum fields

Enum fields are supported by the JPA through the annotation @Enumerated,

by simply persisting its string representation and, when the entity is read back,

by instantiating the corresponding enum type.

Schema Manager

The Schema manager (as described in section 4.3.1) has also been implemented

for Azure Tables and, like Google Datastore, the first two cases are quite useless

since there is no fixed data schema and entities, within the same Table, can

have different properties without restrictions.

Azure Tables needs that the table in which entities are stored exists before

trying to create entities inside of it so, the create case simply iterates over all

table names and creates them in the database.

For the create drop case, all tables should be dropped (and so all the contained

entities) and re-created. The problem here is that tables deletion is performed

asynchronously and so there exists an unpredictable amount of time in which

the table cannot be re-created since it still exists, even if it is not listed any-

more. To overcome this problem two solutions can be adopted:

44

4.3 Developing client extensions

• catch the StorageException, thrown when trying to create the table

while it still exists, put the process to sleep for certain amount of time

and then try again until it succeeds;

• Do not delete the table itself, but delete all its entities in bulk.

The first method is clearly dangerous since no deadline is given or even guar-

anteed for the table delete operation. The second solution is actually not so

convenient because, even if deletion is performed as a batch operation, both

the partition key and row key must be specified and thus one or more queries

must be performed over the table to retrieve at least the partition-key and the

row-key for each entity in the table; this will require an high number of API

calls and thus an high cost of usage.

We have so decided that for the create drop case a drop of all the Tables is

performed and then these are re-created even if this can cause the previously

mentioned conflict. This option is left as is for testing purposes since in the

storage emulator the problem is not showing up because the Tables storage is

emulated over a SQL server instance.

Datastore specific properties

As described for Datastore in section 4.3.1, Kundera provides datastore specific

properties file that let the user set some specific configuration.

This possibility is supported also for Azure Tables with the following available

properties:

• table.emulator and table.emulator.proxy, to make the user able to

test against the local storage emulator on Windows;

• table.protocol, to make the user able to decide between HTTP or

HTTPS for storage API RPCs;

• table.partition.default, to let the user specify the value for the de-

fault partition key.

For a complete reference to Azure Tables extension configuration see the ap-

pendix A.4.

45

Kundera clients development

4.4 Summary

In this chapter has been introduced in details how the Google Datastore and

the Azure Tables Kundera extensions have been developed, the problems en-

countered during the development, how they have been addressed and the

details of the implementation of the two extensions, including the currently

supported features.

46

Chapter 5

CPIM extension

5.1 Introduction

This chapter presents the CPIM library extension. Sections 5.2 and 5.3 de-

scribe the previous state of the NoSQL service in the CPIM, the changes made

to integrate Kundera as unique persistence provider and the problems faced

during the process.

From section 5.4 up to section 5.8 are described the various parts we devel-

oped to support Hegira, an interoperable data migration sand synchronization

system for NoSQL databases [12], describing the supported features and the

design choices that have been put in place.

5.2 CPIM architecture

In order to be able to expose a common interface for the multiple services sup-

ported by the library, CPIM adopts heavily the factory and singleton patterns.

The main access point of the library is the MF (Manager Factory) class, a

singleton object which is responsible of reading the configuration files and

exposing a set of methods that will build instances for the service factories.

The initialization is done through a first call to the MF.getFactory() method,

which reads the configuration files and build an instance of the CloudMetadata

class; this class will be referenced by all the other services and it contains all

the information stored in the configuration files.

CPIM extension

The CPIM library is organized in several packages, each of which is responsible

of a particular service. Each service exposes a factory class which is invoked

through the MF factory; the service factory maintains a singleton instance of the

provider-specific service implementation which is built, at the first call, based

on the configuration available inside the singleton instance of CloudMetadata.

The result of this process is that with the same method call, based on the

configuration file, can be instantiated a different service implementation.

5.2.1 NoSQL service

The architecture of the NoSQL service before this work has been reported in

figure 5.1.

To use the service, the first step is to instantiate a CloudEntityManagerFactory

and, depending on the configuration file, this factory instantiates the vendor

specific factory. For example, in case Google is chosen as vendor, the instan-

tiated factory will be GoogleEntityManagerFactory. Each provider-specific

EntityManagerFactory is responsible of instantiating an EntityManager

which is the gateway to the underlying database. All vendor-specific

EntityManager(s) implement the common CloudEntityManager interface to

achieve uniformity in methods and behavior. The various implementation of

the CloudEntityManager delegates every method call to the vendor-specific

persistence provider.

The JPA is not a default language for NoSQL but, due to its wide usage

among Java developers, several JPA implementations have been built for vari-

ous NoSQL databases (both developed by the vendor of the NoSQL storage or

by the community). This means that to support the NoSQL service through

the JPA interface, an implementation of the JPA interface must be found

or developed ad hoc. For this reason there were three different persistence

providers in the CPIM library, one for each cloud provider:

• for Google Datastore an official JPA implementation (available inside the

SDK) was used;

48

5.2 CPIM architecture

+getFactory: MF
+getEntityManagerFactory(): CloudEntityManagerFactory
+…()

-instance: MF
-metadata: CloudMetadata
-instanceEMF: CloudEntityManagerFactory
-…

MF

+close()
+createCloudEntityManager(): CloudEntityManager
+getCloudEntityManagerFactory(metadata: CloudMetadata): CloudEntityManagerFactory
+getCloudEntityManagerFactory(vendor: String, persistenceUnit: String): CloudEntityManagerFactory
+getCloudEntityManagerFactory(vendor: String, persistenceUnit: String, properties: Map): CloudEntityManagerFactory

CloudEntityManagerFactory

+createCloudEntityManager(): CloudEntityManager
+…()

-factory: jpa4azure.impl.AzureEntityManagerFactory
AzureEntityManagerFactory

+createCloudEntityManager(): CloudEntityManager
+…()

-factory: javax.persistence.EntityManagerFactory
GoogleEntityManagerFactory

+createCloudEntityManager(): CloudEntityManager
+…()

-factory: com.spaceprogram.simplejpa.EntityManagerFactoryImpl
AmazonEntityManagerFactory

+createCloudEntityManager(): CloudEntityManager
+…()

-factory: javax.persistence.EntityManagerFactory
GlassfishEntityManagerFactory

+…()
-entityManager: jpa4azure.impl.AzureEntityManager

AzureEntityManager

+…()
-entityManager: javax.persistence.EntityManager

GoogleEntityManager

+…()
-entityManager: javax.persistence.EntityManager

AmazonEntityManager

+…()
-entityManager: javax.persistence.EntityManager

GlassfishEntityManager

+..()
<<CloudEntityManager>>

Figure 5.1: NoSQL service architecture

• for Amazon SimpleDB it used SimpleJPA, a third-party implementa-

tion of the JPA interface;

• for Azure Tables it used jpa4azure, a third-party implementation of the

JPA interface.

There are a couple of things to notice: Amazon SimpleDB has been depre-

cated in favor of DynamoDB and jpa4azure is not being maintained anymore,

therefore the CPIM library needs to be updated in order to get rid of those

outdated software.

49

CPIM extension

5.3 Kundera integration

To solve these problems and reduce the number of software on which the

CPIM relies to provide the NoSQL service, the proposed solution is to modify

the current CPIM architecture with a unique persistence provider that has

been identified in Kundera.

The renewed architecture is resumed in figure 5.2 in which the benefit of having

a single JPA provider are clearly visible, the architecture is slightly less articu-

lated and no check on the selected underlying technology is needed since this is

handled by Kundera, while reading the persistence.xml file, in which the user

defines the databases he is interested in. Another benefit of this architecture is

that the choice of the NoSQL technology is not bound to the vendor specified

in the CPIM configuration file anymore, in fact, it is possible, by configuring

the persistence.xml, to deploy the application in one of the supported PaaS

providers and choose to persist the data in a NoSQL database of another

provider. Moreover it is possible to exploit the Kundera polyglot persistency

to persist part of the data in a database and another part in another one,

defining the persistence units accordingly.

+getFactory: MF
+getEntityManagerFactory():
CloudEntityManagerFactory
+…()

-instance: MF
-metadata: CloudMetadata
-instanceEMF: CloudEntityManagerFactory
-…

MF

+close()
+createCloudEntityManager(): CloudEntityManager

-factory: javax.persistence.EntityManagerFactory
CloudEntityManagerFactory

+…()
-em: javax.persistence.EntityManager

CloudEntityManager

+..()
<<javax.persistence.EntityManager>>

+..()
<<javax.persistence.EntityManagerFactory>>

Figure 5.2: The modified NoSQL service architecture

The actual implementation is completely provider agnostic in the sense that

actually Kundera is not required as dependency and in fact it is not listed as a

dependency for the CPIM. At run-time, when a Kundera client will be listed

50

5.3 Kundera integration

among the dependencies of the user application, as well as the CPIM library,

the persistence provider dependency will be satisfied.

This provider agnostic implementation is due to the fact that the

CloudEntityManagerFactory and the CloudEntityManager respectively im-

plement the JPA interfaces EntityManagerFactory and EntityManager. The

actual call to the run-time provider is made within the CloudEntityManager

that, on construction, instantiate an instances of the provider EntityManager

and uses that reference to delegate every method execution to it.

This can seem an over-designed architecture, but it turns out to be extremely

necessary in order to provide a transparent interaction with the migration

system, as it will explained later on in this chapter.

5.3.1 Problems encountered

Kundera provides an uniform access through the JPA interface, independently

from the NoSQL provider which is being used. The desired target database is

defined in the persistence.xml file through the kundera.client.lookup.class

property. For this reason all the old libraries that provide a JPA implemen-

tation for a specific vendor can be removed from the CPIM. This tentative of

cleaning the dependency of the CPIM caused two main problems:

1. jpa4azure turns out to be used also for Queue and Blob service of Win-

dows Azure;

2. Kundera seems to have problems when multiple persistence providers

are found in the classpath and currently no way to force the selection of

Kundera as persistence provider has been found (besides specifying it in

the persistence.xml file).

To solve the first problem, the code of the extended version of jpa4azure has

been inspected. We found that the library was previously extended to sup-

port some missing functionalities of the JPA interface and contained two main

packages:

• jpa4azure, which contained the code that implements the JPA interface;

• com.windowsazure.samples, which contains the code to ease the com-

munication with the Azure services.

51

CPIM extension

The jpa4azure package has been removed and the library rebuilt since the

other package is the one used in the Blob and Queue service. Its possible to

completely remove jpa4azure but is necessary to rewrite also the CPIM Blob

storage service for Azure using the API provided by the Azure SDK.

Removing the jpa4azure library caused unexpected errors in CPIM in the code

of the Queue service. After some investigations, turns out that, when jpa4azure

was extended, the class AzureQueueManagerFactory were introduced. The

problem was that AzureQueueManagerFactory make use of the JPA interface

to communicate with the Queue service of Azure and thus by removing the

support to the JPA interface we have lost the support for Azure Queue service.

A solution to this would be to rewrite the CPIM Queue service for Azure, using

the API provided by the Azure SDK.

5.4 Hegira integration

To support data synchronization and migration, the NoSQL service was further

modified to integrate Hegira [17]. We have defined the interaction mechanism

required to make the CPIM library able to communicate with Hegira and

summarized it in the high level schema reported in figure 5.3.

The user interacts with the NoSQL service of the CPIM library by using the

JPA interface by expressing operations on the data though the EntityManager,

for CRUD operations, or through JPQL queries.

The normal operations flow is reported in the schema of figure 5.3 with dashed

lines. In this scenario, user operations are delegated by the CPIM library to

Kundera that, ultimately, interacts with the underlying database using the

appropriated client.

In the same figure, with filled lines, is reported the operation flow that needs

to be followed when a migration is in process; user operation are intercepted

and sent to the commit log of Hegira from which are then pulled and written

asynchronously on both the destination database and the source database.

The CPIM library needs to connect to the migration system in order to under-

stand when a migration is in progress to be able to choose the right destination

of the user operations. Data manipulation operation, such as UPDATE and

52

5.4 Hegira integration

User application

JPA-annotated
model

CPIM

NoSQL service

CloudEntityManager

Kundera

Client

Commit Log

SQL to Metamodel

Metamodel to DB specific

R / W

R / W

R / W

SELECT

as JPQL

as SQL INSERT

UPDATE

DELETE

SQL statements

Destination
DBSource DB

SQL to Metamodel

Metamodel to DB specific

SQL statements

Figure 5.3: High level schema of interaction

DELETE queries, and CRUD operations, are intercepted, translated in an

equivalent SQL operation and sent to the commit log of Hegira. The process

is summarized in figure 5.4 and described in detail in section 5.5.

NOYES

NO

YESYES

NO

YESNO

is Synchronizing? build from query
operation is a

query?

is Insert?

build statement

get ID from
zooKeeper

to commit log

get ID from
zooKeeper

is Insert?

to Kundera

INSERT / UPDATE / DELETE operation

Figure 5.4: Interaction flow chart

While data manipulation operations are intercepted, read operations, such as

SELECT queries, are ignored and thus also during a migration, they are issued

on the underlying databases by delegating them to Kundera.

53

CPIM extension

5.4.1 Migration Manager

Interaction with the migration system is handled primarily by the

MigrationManager class which follows a state pattern represented in the class

diagram 5.5.

+setState()
+startMigration()
+stopMigration()
+propagate(query: String)
+propagate(entity: Object)

-normal: State
-migration: State
-state: State

MigrationManager

- manager: MigrationManager
NormalState

+startMigration()
+stopMigration()
+propagate(query: String)
+propagate(entity: Object)

<<State>>

- manager: MigrationManager
MigrationState

Figure 5.5: MigrationManager class diagram

The pattern allows to the MigrationManager to delegate the method execution

to the current state, the state diagram is the one represented in figure 5.6 and is

composed by two states Migration and Normal that encapsulate the required

behavior.

MIGRATION

NORMAL

startMigration()

stopMigration()

Figure 5.6: MigrationManager states

5.5 Intercept user operations

The first operation that needs to be analyzed is whether it is possible to in-

tercept user operations in a way that is completely transparent to the user.

The operations that we want to intercept are the insert, update and delete

operations, in that, they are the operations that alter data and, thus, are the

ones that the synchronization system needs to process.

54

5.5 Intercept user operations

5.5.1 Intercepting CRUD operations

CRUD operations are handled by the EntityManager, three are the methods

that need to be intercepted:

• EntityManager.persist(Object entity) for insert operations;

• EntityManager.merge(Object entity) for update operations;

• EntityManager.remove(Object entity) for delete operations.

The user does not invoke methods directly on the provider entity manager, but

he interacts with the persistence provider, through the CloudEntityManager

class. In the standard implementation (i.e. without the support for the mi-

gration system) the CloudEntityManager, delegates every method call to the

provider entity manager; hence, in order to integrate the migration and syn-

chronization logic, the methods mentioned above should contain the applica-

tion of logic shown in the snippet of code 5.1, which takes as an example, the

update operation.

1 public <T> T merge (T en t i t y) {
2 i f (MigrationManager . i sMig ra t ing ()) {
3 MigrationManager . propagate (ent i ty , OperationType .UPDATE) ;

4 return en t i t y ;

5 } else {
6 return de l e ga t e . merge (en t i t y) ;

7 }
8 }

Listing 5.1: Integrate migration logic

In case of data migration, the provider is bypassed and a call to the propagate

method is visible. The call accepts two arguments: the entity to be con-

verted to a SQL statement and the operation that needs to be generated. The

method is called on the MigrationManager which then delegates the execution

to the current state (which should be the migration one). The migration state

propagate method is responsible for building the requested statements, using

the statement builders and then sending the generated statements to Hegira

commit log. Both actions are described in detail in the following sections.

55

CPIM extension

5.5.2 Intercepting queries

Looking at the JPQL specification [15] it turns out that JPQL does not support

INSERT statements and so the only way a user has to persist some entities is

by means of EntityManager.persist(Object entity) method, which was

described in the previous section; so, only the remaining queries (UPDATE

and DELETE) need to be intercepted as query.

The JPA interface provides several ways to build and execute queries, all avail-

able by calling the proper methods defined in the EntityManager interface:

• createQuery, which creates a Query instance from JPQL query string;

• createQuery, which creates a Query instance from an instance of

CriteriaQuery;

• createNamedQuery, which creates a Query instance from a JPQL query

identified by name and declared statically on classes;

• createNativeQuery, which creates a Query instance from a string rep-

resentation of the underlying database specific SQL dialect.

Native queries are not supported by Kundera, moreover the migration sys-

tem tries to abstract from the specific database query language, hence there

is no point in supporting this kind of queries. The createQuery and

createNamedQuery methods are supported, instead query creation through

CriteriaQuery is currently not supported.

The JPA does not provide, through the Query interface, a way to get the JPQL

representation of the query. Queries are supposed to be written as method

argument when creating them through the EntityManager or called by name

if they are defined as named queries upon some class. This was actually a

problem since, in order to be able to parse the query, its JPQL representation

is crucial.

The easiest solution was to implement the interfaces for Query and TypedQuery

respectively with the classes CloudQuery and TypedCloudQuery.

The wrapping of the persistence provider queries is achieved in the entity man-

ager and it is performed by the query creation method both for the Query and

TypedQuery returned objects. The actual JPA query generation is delegated

56

5.6 Adding support for data synchronization

to the persistence provider; before returning to the user, the result query is

wrapped in a CloudQuery that contains both the generated query and its string

representation.

For named queries things are little trickier since the user create instance

of Query or TypedQuery just by passing the query name. As can be seen

from the code snippet 5.2, named queries meta-data are maintained inside

the PersistenceMetadata class. This class, besides maintaining information

about named queries, principally maintains a mapping between table names

and their class canonical name (full package plus the class name). The first

time this class is queried, its content is created (since it is a singleton instance)

and it does not directly read the configuration files, but the CloudMetadata

instance that has been modified to include all the required parameters that

needs to be read from configuration files. The information of table to class

mapping is required for statements building and for sequence number handling

both described in the following sections.

1 public Query createNamedQuery (S t r ing name) {
2 St r ing queryStr ing = Pers i s tenceMetadata . getNamedQuery (name) ;

3 Query queryInstance = de l e ga t e . createNamedQuery (name)

4 return new CloudQuery (queryStr ing , queryInstance) ;

5 }

Listing 5.2: Wrap named queries

5.6 Adding support for data synchronization

In this section we report the solution adopted for supporting Hegira data

synchronization [12], which allows to perform online data migration.

A special look needs to be reserved to the insert operation. When the user

updates or delete an entity no matter if through the entity manager or through

a query, he already knows the entity identifier, since the insert operation has

already persisted that entity into the underlying database and thus generated

its identifier. Since we want to support the migration system, the user cannot

define its own identifiers, but they need to be assigned from the migration

system itself. The main caveats is that, such assignment needs to be made

57

CPIM extension

even if the migration is not running yet, so the identifier assignment has to be

made in two cases:

1. insert statements built from persist operation during a migration phase;

2. standard insert operation through the entity manager during a normal

state.

The solution is actually quite simple since everything can be checked inside

the EntityManager.persist method as described in the snippet of code 5.3.

1 public void p e r s i s t (Object en t i t y) {
2 i f (MigrationManager . i sMig ra t ing ()) {
3 MigrationManager . propagate (ent i ty , OperationType . INSERT) ;

4 } else {
5 St r ing tableName = Re f l e c t i o nU t i l s . getJPATableName (en t i t y) ;

6 int id = SeqNumberProvider . getNextSequenceNumber (tableName) ;

7 R e f l e c t i o nU t i l s . s e tEnt i t y Id (ent i ty , id) ;

8 de l e ga t e . p e r s i s t (en t i t y) ;

9 }
10 }

Listing 5.3: Persist operation

In the code snippet is visible a call to the SeqNumberProvider class, which is

the class responsible of actually interacting with the Hegira component that

handle the sequence numbers generation i.e., the entities identifiers defined by

Hegira to achieve fault-tolerant data migration and synchronization.

Handling the sequence numbers

The sequence numbers are handled by the class SeqNumberProvider, a single-

ton instance that provides a simple way to get the assigned sequence numbers

per table. The class diagram of this component, and of the component it

interacts with, is shown in figure 5.7.

The SeqNumberProvider keeps an instance of SeqNumberDispenser for each

table that needs to be persisted, and it is responsible of:

1. providing a unique access point when requesting the next assigned se-

quence number for a table;

2. initializing or restoring the state of the dispenser for each table.

58

5.6 Adding support for data synchronization

+getInstance(): SeqNumberProvider
-getDispenser(tableName: String): SeqNumberDispenser
+addTable(tableName: String)
+setOffset(tableName: String, offset; int)
+getOffset(tableName: String): int
+getNextSequenceNumber(tableName: String): int
-backupDispenserState(tableDispenser: SeqNumberDispenser)
-restoreDispenserState(tableDispenser: SeqNumberDispenser)

-instance: SeqNumberProvider
-dispensers: Map<String, SeqNumberDispenser>

SeqNumberProvider

+getTable(): String
+setOffset(offset: int)
+getOffset(): int
+nextSequenceNumber(): int
+save(): byte[]
+restore(byte[] state): boolean

<<SeqNumberDispenser>>

-getAssignedSequenceNumbers(): int[]

-tableName: String
-range: int[]
-next: int
-offset: int
-connector: HegiraConnector

SeqNumberDispenserImpl

Figure 5.7: Sequence numbers handling architecture

The first point is performed through the method getNextSequenceNumber(String

tableName) that delegates the operation to the correct SeqNumberDispenser

associated to the requested table. Since SeqNumberDispenser is an interface,

the actual implementation is delegated to the SeqNumberDispenserImpl

class. This mechanism has been used to be able to create more dispensers

with different logic. The SeqNumberDispenserImpl class maintains internally

the assigned range of identifiers provided by the synchronization system by

specifying the first and the last element of the range. The class consumes, one

by one, the identifiers in the range and, when the range has been completed,

requests the next range. This mechanism is internally handled, in fact the

SeqNumberProvider is only required to call the getNextSequenceNumber()

method on the dispensers.

The size of the range of sequence numbers requested to the synchronization

system, that is used by the SeqNumberDispenser, has been made configurable

at run-time. A default range size can be set using the migration.xml file,

otherwise, a call to the setOffset(String tableName, int offset) method

on the SeqNumberProvider, will change, at-runtime, the size of the range of

the SeqNumberDispenser responsible for the specified table.

The second functionality is achieved by requesting the state representation to

the SeqNumberDispenser(s) (as a byte array), calling the method save() on

the dispensers and, then, saving it to a Blob storage, or to a file, depending on

59

CPIM extension

the configuration specified inside the migration.xml file (described in Appendix

B). The restoring phase is performed just after construction; if a backup exists

either on file or on the Blob storage, the method restore(byte[] state) is

called on the dispensers, giving them their state representation to restore. In

this mechanism, the SeqNumberProvider is completely agnostic with respect

to the actual state representation chosen by the SeqNumberDispenser(s). This

makes future extensibility more easy and less constrained.

The list of all the tables to be persisted is retrieved from the

PersistenceMetadata previously mentioned for named queries.

5.6.1 Contacting the synchronization system

The interaction with the synchronization system has been, until now, only

described as a method call. Those calls are made on an external library

(zkWrapper) which provides an interface to a ZooKeeper instance, in order

to communicate with the synchronization system and to receive the assigned

sequence numbers. Since the ZooKeeper library uses threads to handle com-

munication, it was not possible to use this library for Google App Engine since,

the App Engine run-time, does not permit to spawn thread. The main reasons

to communicate with the synchronization system are:

• the migration state listener, that modifies the MigrationManager state

accordingly;

• the SeqNumberDispenser, that needs to retrieve the sequence number

assigned to tables.

The adopted solution was to modify the zkWrapper library to include an

HTTP version that handles the calls not by connecting directly to a zookeeper

instance, but contacting a remote server through some defined API, that ulti-

mately interacts with the migration system.

A simple structure has been built to make both the MigrationManager and

the SeqNumberDispenser(s) transparent to the type of client that is used to

retrieve information from the synchronization system. The architecture is

shown in figure 5.8.

60

5.6 Adding support for data synchronization

+getInstance(): HegiraConnector
+assignSeqNrRange(tableName: String, offset: int): int[]
+assignSeqNr(tableName: String)
+setSynchronizing(status: boolean)
+isSynchronizing(): boolean

-instance: HegiraConnector
-zkClient: ZKAdapter

HegiraConnector

+assignSeqNrRange(tableName: String, offset: int): int[]
+assignSeqNr(tableName: String)
+setSynchronizing(status: boolean)
+isSynchronizing(): boolean

<<ZKAdapter>>

-restClient: RestClient
ZKHttp -zkClient: ZKclient

-isSynchronizing: boolean

ZKThread

+countHasChanged(…)

SynchronizationListener

+…()
…

MigrationManager

Figure 5.8: Contacting the synchronization system

The HegiraConnector is the class responsible of deciding which kind of client

needs to be instantiated, the decision is done by reading the configuration that

the user specified in the migration.xml file, which is parsed by the CPIM and

kept in the CloudMetadata class. The HegiraConnector keeps internally an

instance of the chosen client and provides access to its method by delegation.

The two available clients implements the interface ZKAdapter, built to uniform

the methods of the two implementations.

Thread-based client If the user deploies the application on a thread-

capable cloud environment (for example on IaaS), and configures the migra-

tion.xml accordingly, an instance of ZKThread is built. This version of the

client directly uses the implementation of the library zkWrapper (since there

should not be any problem in thread spawning). The isSynchronizing()

method returns a value which is kept inside the ZKThread instance and is

queried by the MigrationManager. Both the state of the MigrationManager

and the value inside ZKThread are modified by the SynchronizationListener

which is asynchronously notified by the zkWrapper library when the synchro-

nization state changes.

HTTP-based client In the case in which threads are not supported by

the cloud provider (for example on PaaS), the client version that is instan-

tiated (by looking at the configuration) is ZKHttp which uses the API-caller

61

CPIM extension

added to the zkWrapper library. Since no listener can be register to be asyn-

chronously notified of a change in the synchronization state, each call of the

MigrationManager to the method isSynchronizing() will perform an API

call to the remote server, which will return the state of the synchronization

system.

5.7 Build statements from user operations

In the previous section we have focused on the sequence number retrieval, in

this section we will focus on the generation of the Data manipulation queries

(DMQs) to be sent to Hegira commit-log.

In order to be able to create SQL-like statements both from queries and from

objects, the first step has been to introduce the statement concept in the

CPIM library. This has been done through the abstract class Statement

that encapsulate the structure needed for maintaining the necessary data for

the statements. The Statement class is then extended by the three classes:

InsertStatement, UpdateStatement and DeleteStatement that basically

implement the toString() method to actually build the specific statement.

The class diagram of this statements structure is shown in figure 5.9

+getFieldsIterator(): Iterator<Filter>
+getConditionsIterator(): Iterator<Object>
+addField(name: String, value: Object)
+addCondition(name: String, operator: CompareOperator, value: Object)
+addCondition(operator: LogicOperator)
+haveConditions(): boolean

-table: String
-fields: List<Filter>
-conditions: List<Object>

Statements

+toString()

DeleteStatement

+toString()

UpdateStatement

+toString()

InsertStatement

+toString()
+fromString(string: String)

+equal
+lower_than
+greater_than
+lower_than_or_equal
+greater_than_or_equal
+not_equal

<<enumeration>>
CompareOperator

+toString()

-column: String
-operator: CompareOperator
-value: Object

Filter

+and
+or

<<enumeration>>
LogicOperator

Figure 5.9: Statements structure

The Statement class maintains three main fields:

62

5.7 Build statements from user operations

• table, that contains the table which the statements refer to;

• fields, that maintains a list of elements that represents, in case of an

UPDATE statements, the the values inside the SET clause and, thus, the

column names associated with their value; in case of INSERT statements,

instead, the column names that should be inserted, and their value;

• conditions, a linked list of Filter elements and CompareOperator el-

ements, to represents the WHERE clause.

Since not all those elements are needed in all the statements type, specific

statements implementations overrides the method that Statements provide

for handling those fields to deny their usage. For example since the INSERT

statement does not permit a WHERE clause, trying to add a condition on that

kind of statements will result in an UnsupportedOperationException. An-

other case is the DELETE statements that requires only the WHERE clause,

so when trying to add a field the exception is thrown.

After having defined the statements structure, it is then necessary to provide

a way to build the correct instance of a statement, starting by the query or

by the operation on an object. To do this in an agile way, a builder class has

been implemented.

The class diagram of the builders, shown in figure 5.10, shows that the same

pattern used for statements has been adopted.

The main abstract class StatementBuilder provides the facilities to build

a generic statement both from object and from a query string. Since many

operations are the same, for all the three types of statements to be built,

the StatementBuilder class provides an implementation of those common

behaviors, and it defines some abstract methods that are statement-specific

and that needs to be implemented in different ways in the three statement

builder classes: InsertBuilder, UpdateBuilder and DeleteBuilder. This

degree of abstraction has been possible due to the abstract definition of the

Statement class which allows to the StatementBuilder to act independently

from the specific statement type and then to delegate to the specific builder

in the cases in which such abstraction is not sufficient anymore.

63

CPIM extension

+followCascades(relevant: List<CascadeType>)
-addStatementToStack(stack: Deque<Statement>, statement: Statement)
-addJoinTableStatementToStack(stack: Deque<Statement>, statement: Statement)
-addCascadedStatementsToStack(stack: Deque<Statement>, cascadedStack: Deque<Statement>)
+build(statement: Object): Deque<Statement>
~initStatement(): Statement
~generateJoinTableStatement(entity: Object, element: Object, joinTable: JoinTable): Statement
~generateInverseJoinTableStatement(entity: Object, joinTable: JoinTable): Statement
~onIdField(statement: Statement, entity: Object, idField: Field)
~onField(statement: Statement, entity: Object, field: Field)
~onRelationalField(statement: Statement, entity: Object, field: Field)
~handleCascade(entity: Object; field; Field): Deque<Statement>
~handleJoinTable(stack: Deque<Statement>, entity: Object, field: Field)
~handleInverseJoinTable(stack: Deque<Statement>, entity: Object, field: Field)
+build(quest: Query, queryString: String)
~handleQuery(query: Query, tokens: List<Token>)
~nextTokenOfType(type: TokenType, itr: Iterator<Token>)

-followCascades: boolean
-relevantCascadeTypes: List<CascadeType>

StatementBuilder

~initStatement(): Statement
~generateJoinTableStatement(entity: Object, element: Object, joinTable: JoinTable): Statement
~generateInverseJoinTableStatement(entity: Object, joinTable: JoinTable): Statement
~onIdField(statement: Statement, entity: Object, idField: Field)
~onField(statement: Statement, entity: Object, field: Field)
~onRelationalField(statement: Statement, entity: Object, field: Field)
~handleQuery(query: Query, tokens: List<Token>)

DeleteBuilder

~initStatement(): Statement
~generateJoinTableStatement(entity: Object, element: Object, joinTable: JoinTable): Statement
~generateInverseJoinTableStatement(entity: Object, joinTable: JoinTable): Statement
~onIdField(statement: Statement, entity: Object, idField: Field)
~onField(statement: Statement, entity: Object, field: Field)
~onRelationalField(statement: Statement, entity: Object, field: Field)
~handleQuery(query: Query, tokens: List<Token>)

UpdateBuilder

~initStatement(): Statement
~generateJoinTableStatement(entity: Object, element: Object, joinTable: JoinTable): Statement
~generateInverseJoinTableStatement(entity: Object, joinTable: JoinTable): Statement
~onIdField(statement: Statement, entity: Object, idField: Field)
~onField(statement: Statement, entity: Object, field: Field)
~onRelationalField(statement: Statement, entity: Object, field: Field)
~handleQuery(query: Query, tokens: List<Token>)

InsertBuilder

+lex(input: String): List<Token>

Lexer

+update
+set
+delete
+from
+where
+compareop
+logicop
+comma
+param
+column
+string
+whitespace

<<enumeration>>
TokenType

+toString()

-type: TokenType
-data: String

Token

Figure 5.10: Statement builders

5.7.1 Build statements from objects

The main issue in generating statements from objects are the cascade types.

From the JPA specification [15], the user, on relational fields, can define which

type of cascade type he wants to be applied upon operations on the entity.

The cascade type can be specified through the annotation @CascadeType, four

are the relevant values:

• PERSIST, when the entity is persisted, every related entity is persisted

too, without the need of any explicit persist for that entity;

• MERGE, when the entity is updated, every related entity is updated too,

without the need of any explicit merge for that entity;

• REMOVE, when the entity is deleted, every related entity is deleted too,

without the need of any explicit delete for that entity;

• ALL, which enclose all the previous types.

The problem in supporting such operations is that statements generated by

cascade must keep a logical order, an example is reported in the code snippet

64

5.7 Build statements from user operations

5.4 in which the insert operation for the Employee should happen after the

insert of the Department since the employee maintains a foreign key of the

department n which he works.

1 INSERT INTO Department (id , name) VALUES (’ 123 ’ , ’Computer Sc i ence ’)

2

3 INSERT INTO Employee (id , name , department id) VALUES (’ 456 ’ , ’ Fabio ’ , ’ 123 ’)

Listing 5.4: Insert statements ordering example

During the development we decided to make the cascade following optional and

thus it is configurable in the migration.xml file (see the appendix B for further

details), but also at run-time, by calling the appropriate methods on the class

BuildersConfiguration. The statements builders, when created, ask to the

BuildersConfiguration class in order to decide if the build process should

or should not consider the cascade types and, if its the case they set the

relevantCascadeTypes accordingly. The relevant cascade types have been

defined as follow:

1. ALL and PERSIST, for INSERT statements

2. ALL and MERGE, for UPDATE statements

3. ALL and REMOVE, for DELETE statements

The statements execution ordering is the same that should be respected for

SQL databases in case foreign key constraints are applied, so, for example,

join table statements must be taken with particular care since inserts in the

join table must happen after the insert of the entity itself and deletes in the

join table must happen before the delete of the entity itself. An example is

reported in the code snippet 5.5.

1 −− i n s e r t e n t i t i e s

2 INSERT INTO Employee (employee id , name) VALUES (’ 123 ’ , ’ Fabio ’)

3 INSERT INTO Pro j ec t (p r o j e c t i d , name) VALUES (’ 456 ’ , ’ Apol lo ’)

4 −− i n s e r t record in the j o in t a b l e

5 INSERT INTO Emp Proj (id , employee id , p r o j e c t i d) VALUES (’ a ’ , ’ 123 ’ , ’ 456 ’)

6

7 −− d e l e t i n g the employee

8 DELETEFROM Employee Project WHERE id = ’ a ’

9 DELETEFROM Employee WHERE employee id = ’ 123 ’

Listing 5.5: Join table statements ordering example

65

CPIM extension

The abstract builder class StatementBuilder provides a single entry point for

statements building, by means of the method build(Object entity). This

method is designed following a template pattern, the designed general algo-

rithm (reported in algorithm 1) performs all the operations needed to build

the statement, and it calls several methods defined as abstract, which are

implemented in the specific builders (since they require specific logic), and

several hook methods that can be overrided by the specific builders to change

the algorithm behavior.

Algorithm 1 Template algorithm for statements building
1: function build(object)

2: stack ← empty queue

3: cascadedStack ← empty queue

4: statemet← initStatement

5: setTableName(statement, object)

6: for all field← getFields(statment) do

7: if isRelational(field) & ownRelation(field) then

8: if handle cascades then

9: cascadedStack ← handleCascade(object, field)

10: end if

11: if isManyToMany(field) then

12: handleJoinTable(stack, entity, field)

13: else

14: onRelationalField(statement, entity, field)

15: end if

16: else

17: if isManyToMany(field) then

18: handleInverseJoinTable(stack, entity, field)

19: end if

20: end if

21: if isId(field) then

22: onIdField(statement, entity, field)

23: else

24: onField(statement, entity, field)

25: end if

26: end for

27: addStatementToStack(stack, statement)

28: if isId(field) then

29: addCascadedStatementsToStack(stack, cascadedStack)

30: end if

31: end function

Cascade generation is handled through the method handleCascade(Object

entity, Field field) where field is the field of the entity that represents

the related entity. The handleCascade method checks whenever a statements

66

5.7 Build statements from user operations

needs to be generated, based on relevantCascadeTypes, and then it recur-

sively calls build(Object entity) passing as entity the related object.

5.7.2 Build statements from JPQL queries

The main problem for JPQL queries is parsing. Since JPQL is an object

querying language, it makes use of an object identifier on which it uses the dot

notation to specify the object properties, furthermore JPQL allows the user

to define parameter placeholders (the ones starting with ”:”) that are filled

later through the method setParameter(String name, Object value) of

the Query class.

The translation that should be performed is shown in the code snippet 5.6.

−− JPQL query s t r i n g

UPDATE Test t SET t . name = : name WHERE t . s a l a r y >= : sa l a r y

−− SQL vers ion

UPDATE Test SET name = ’ Fabio ’ WHERE s a l a r y >= ’ 42 ’

Listing 5.6: JPQL to SQL translation

The mapping among parameter name and its value is kept in the CloudQuery

and TypedCloudQuery classes by intercepting the setParameter method on

the query.

To solve the parsing problem, the Kundera code was inspected to understand

how JPQL queries are parsed, but it turned out they used a custom quite-

complex parser, especially for validation purposes. Even looking online no

specific JPQL parser has been found so, since we are not interested in validating

queries or build complex logic on them, a simple and less time consuming

solution was to write a lexer that through regular expressions tokenizes the

JPQL string.

Even the building of statements from queries follows a template pattern, the

StatementBuilder class provides the template method build(Query query,

String queryString) that tokenizes the query using the lexer and then calls

the abstract method handleQuery(query, tokens) that is implemented in

DeleteBuilder and in UpdateBuilder which are responsible of iterating over

the tokes to build the correct Statement instance. The build(Query query,

67

CPIM extension

String queryString) calls other various hook methods that can be overrided

by the specific builders to change the algorithm behavior.

5.7.3 Sending statements to Hegira

Both the method propagate(Query query) and propagate(Object entity,

OperationType operation) fill a statement stack which contains the gener-

ated statements in the execution order.

When iterating over the statement stack, statements are extracted one at a

time from the head of the stack (LIFO order). Each of the extracted statement

is then sent to Hegira.

5.8 Interoperability of stored data

The Kundera client described in chapter 4 was developed to be as consistent

as possible with the other clients, developed by the Kundera staff, to be more

likely accepted by the community and so are not thought to store data to be

interpreted also by other clients, and thus are not interoperable. In an optic of

data migration, what we want to achieve is that, data stored within a database,

and migrated to another one, are still readable from the application without

any changes, besides the new database configuration.

The problem for Kundera clients are the relationships. Each database has its

own way to define identifier for the persisted entities; for example, in Google

Datastore there is the Key with a Kind and an identifier ; for Azure there are the

partition-key and the row-key. These concepts are different, but actually quite

similar since both databases are key-value columnar databases. A solution

to the problem would have been to modify the migration system in order to

make it aware of the problem and let it translate the relational columns in

the format of the target database; in this way, the relational columns should

have been identified in some way to let the system recognize them by adding

a pre-defined prefix or a suffix to those columns. Since this solution requires

a good amount of changes in the migration system, other solutions have been

explored.

Back to the concept of identifier, generally, in columnar databases, columns

68

5.8 Interoperability of stored data

are grouped in a column family and set of columns are identified by a key,

actually the key can span among different column families, but that is not

the case either in Datastore or Azure Tables. The pair <column family, key>

is sufficient to identify an entity (composed by one or more columns), so a

mapping is needed between database-specific terminology to the more general

one, this mapping is shown in table 5.1.

General concept Datastore Azure Tables

Column Family Kind partition-key

Key key-identifier row-key

Table 5.1: Column family and Key mapping among supported databases.

At this point we needed a common way of persisting relationships as column

family, and key in a way that is interoperable among both the client extension.

The proposed solution is to persist a string in the formcolumnFamily key.

This solution has to be preferred with respect to the one that required modifica-

tion of the migration system since the interoperability is achieved transparently

by it.

5.8.1 Kundera clients modification

Since lot of work has already been done on the Kundera clients, the modi-

fication to them has been made on a separate branch of the projects named

migration.

Google Datastore The Datastore extension has been modified to persist

relationships as kind key-identifier instead of the Key instance. Join ta-

bles require particular care; Kundera does not provide the class of the entities

involved in the join table, but only the column names and the identifier (the one

with the @Id annotation). Queries are possible even if the Kind is unknown,

since Kundera provides the entity class with the entity identifier as arguments

to the find operation. To be more consistent, and to apply the newly defined

identifier pattern (kind key-identifier) even for join tables, a map is main-

69

CPIM extension

tained in the client and built inspecting Kundera meta-data, to keep track of

which entity classes are involved in which many to many relationship.

Azure Tables The Azure Tables extension has been modified too to reflect

the newly defined standard for relationships. In Azure Tables relationships

were already being saved as partition-key row-key due to the lack of a

class similar to Key for Datastore that encapsulate them. The actual prob-

lem here is that user can manually handle the partition-key, but it is not a

possibility that can be guaranteed anymore since, if an entity is persisted as

partition-key row-key, the partition-key, if read by the Datastore extension,

will be interpreted as a Kind. Since the Kind in Datastore extension is the

entity table name, it has been decided to lock the Azure Tables partition-key

to the table name, so that the user cannot decide on its own, since this will

break the interoperability of data.

The same discussion for the join tables previously made for Datastore , also

applies for the Azure Tables extension.

5.9 Summary

In this chapter has been described the CPIM structure and the architecture

of the NoSQL service before this work. Then has been described how it was

possible to integrate Kundera as unique persistence provider in the NoSQL

service together wit the problems encountered in the process.

From section 5.4 has been described the general interaction we wanted to

build to make CPIM and Hegira communicate. Then the architecture and the

design choices operated in order to develop such interaction, were introduced

and described.

70

Chapter 6

Evaluation

6.1 Introduction

In this chapter are reported the evaluation performed for the Kundera exten-

sions. To support the implementation of the Kundera extensions, as described

in chapter 4, we have adopted a test driven approach; in section 6.2, those

tests are described in detail. We will provide, in section 6.3, a comparison of

the performance of the developed Kundera extensions in terms of throughput

and latency. Tests has been performed to verify if the use of Kundera and its

clients adds an acceptable overhead with respect to the use of low level API.

To execute the benchmarks we have used Yahoo Cloud Serving Benchmark

(YCSB) [19] mainly because it was already used by the Kundera team to test

the other implemented Kundera clients and since we wanted to compare our

results with theirs.

6.2 Test CRUD operations

The Kundera extensions development, due to the lack of information both in

the documentation and from the community, has been approached in a test

driven way. The first step was to write the required JUnit tests, one for each

feature we have planned to support.

We primarily wanted to achieve code portability of the application model

classes, this should be exploited by the usage of the JPA interface but, as

Evaluation

stated in chapter 3, there were problems in the old NoSQL service imple-

mentation relatively to this point. Secondary we want to be sure that, while

entities are persisted in the underlying NoSQL database, they can be restored

without any loss of information and thus, the mapping between entities and

the NoSQL database data model, behaves correctly in both verses.

The approach we adopted was to define a single test suite, that will test each

of the features we planned to support, by interacting directly with Kundera

through the JPA interface. This makes us able to use the same tests inde-

pendently of the specific extension and, thus, testing the correctness of CRUD

operations through the JPA interface and the portability of the code by means

of tests portability.

Those tests have been primarily used to test the extensions during the devel-

opment against the local emulator of both Google Datastore and Azure Tables,

but they have also been executed on the remote database instances by connect-

ing to them through the network from the development machine. This tests

have been made to guarantee the correct functioning of the two extensions on

the real database instances, since tests executed locally, are executed against

emulators of real systems.

6.2.1 Tests structure

Tests are composed by the entities to be persisted, annotated with the JPA

annotations, and a test class for each feature. There are 20 defined entities

that include:

• simple entities related with the JPA relationships annotations, used to

test relationships among entities;

• embeddable entities and specific entities that use those embeddable en-

tities as data types, both used to test the embedded feature of the JPA;

• entities with enum fields, used to test the enum fields support;

• entities declared with different data types for the primary key identifier,

used to test ids auto-generation and user-defined ids validation.

The test classes, developed for testing the correctness of relationships, are:

72

6.2 Test CRUD operations

• MTMTest, to test the Many to Many relationship type;

• MTOTest, to test the Many to One relationship type;

• OTMTest, to test the One to Many relationship type;

• OTOTest, to test the One to One relationship type;

All of those test classes implement two different methods: testCRUD(), that

test the relationship by interacting with the method of the EntityManager

interface, and testQuery(), that tests the relationships by reading, updating

and deleting entities through JPQL queries.

The remaining tests classes are:

• ElementCollectionTest, that tests the JPA feature of persisting list of

objects as entity fields;

• EmbeddedTest, that tests the JPA feature of persisting user-defined as

entity fields;

• EnumeratedTest, that tests the Jsupport for enum fields;

• QueryTest, that tests the execution of SELECT queries and the support

for the various JPQL clauses in queries.

In figure 6.1 is reported the class diagram of the various test classes.

+testCRUD()
+testQuery()

DatastoreMTMTest+testCRUD()
+testQuery()

DatastoreOTMTest

+testCRUD()
+testQuery()

DatastoreOTOTest

+testCRUD()
+testQuery()

DatastoreMTOTest

+testElementCollection()

ElementCollectionTest

+testSelectQuery()
+testComparisonOperators()
+testOperators()
+testUpdateDeleteQuery()

QueryTest

+testEmbedded()

EmbeddedTest

+testEnum()

EnumeratedTest

+autoGeneratedIdTest()
+invalidIdTypeTest()
+invalidAutoGeneratedIdTypeTest()

IdsTest

Figure 6.1: Class diagram of the test classes

73

Evaluation

6.3 Performance tests

We wanted to test the overhead of the developed Kundera extensions with

respect to direct use of low-level APIs. To test those kind of performance in

terms of throughput and latency of the read and write operations, we have

used Yahoo Cloud Serving Benchmark. We choose this approach since it was

already used by Kundera developers to estimate the overhead that Kundera

adds to the low-level API versions of its clients. In this way, it is possible to

compare our extensions with those developed by other Kundera contributors.

6.3.1 Yahoo Cloud Serving Benchmark

Yahoo Cloud Serving Benchmark (YCSB) is a framework with the general goal

of facilitating performance comparisons of the new generations of cloud serving

systems [19].

YCSB provides the facility to benchmark various NoSQL database systems

such Apache Cassandra, DynamoDB, Voldemort, MongoDB and many others.

The key feature of the benchmark system is extensibility, it in facts supports

easy definition of new workloads and new systems to benchmark.

Figure 6.2: YCSB architecture [19]

The access point to the benchmark framework is the YCSB Client which is

responsible of generating the operations which make up the workload; the

74

6.3 Performance tests

workload is then executed by the Workload executor that drives multiple client

threads, which in turn execute a sequential series of operations by making calls

to the database interface layer.

The workloads are executed in two separate phases:

1. the load phase, which loads the workload data to the database system;

2. the transaction phase, which executes the workload on the loaded

data.

Each thread rules the rate at which it generates requests and measures the

latency and the throughput of its operations. At the end of the benchmark,

the statistics module aggregates the measurements and builds a report.

6.3.2 YCSB adapters

The YCSB Client abstracts from the specific database system under test

through the database interface layer ; this allows YCSB to generate opera-

tions like “read record” or “update record”, without having to understand the

specific API of the underlying database.

To create a database adapter, the abstract class com.yahoo.ycsb.DB must be

extended and the following methods need to be implemented:

• init(), which is used to perform any initialization operation such as

connecting to the database instance and it is called once per thread;

• read(String table, String key, ...), which is supposed to read the

given record;

• scan(String table, String startkey, int recordcount, ...),

which is supposed to perform a range scan;

• insert(String table, String key, ...), which is supposed to insert

the given record;

• delete(String table, String key), which is supposed to delete the

given record.

We developed several YCSB adapters:

75

Evaluation

• an adapter for Google Datastore low-level API

• an adapter for Google Datastore through the developed Kundera exten-

sion

• an adapter for Azure Tables low-level API

• an adapter for Azure Tables through the developed Kundera extension

• an adapter for HBase low-level API

• an adapter for HBase through the developed Kundera extension

Even if the two adapters for HBase were already been developed by the Kun-

dera team, they were outdated and therefore we had to rewrite them. The

Kundera adapter for HBase was outdated since it was using Kundera 2.6 while,

as we write, Kundera 2.16 is available; the low level API adapter was outdated

too and was not functioning with the latest versions of HBase.

Kundera adapters

Regarding the Kundera version of the adapters, the same structure has been

kept for all three databases. The EntityManagerFactory is instantiated at

construction time since this operation causes Kundera to initialize all its inter-

nal structure; an instance of the entity manager is created in the init method

since, the initialization of the EntityManager causes the initialization of the

specific Kundera client; in this way each thread will have its own instance of the

EntityManager with which interacting. Apart from the scan method, which

was not implemented since this operation is never issued during the workload

we want to execute, every other operations calls the responsible method on the

EntityManager, in the code 6.1 is shown an example for the insert operation.

1 @Override

2 public int i n s e r t (S t r ing tab le , S t r ing key , . . .) {
3 . . .

4 try {
5 AzureTableUser user = new AzureTableUser (key , nextSt r ing () , , . . .) ;

6 em. p e r s i s t (user) ;

7 i f (timeToClearEntityManager ()) {
8 em. c l e a r () ;

9 }
10 return OK;

76

6.3 Performance tests

11 } catch (Exception e) {
12 return ERROR;

13 }
14 }

Listing 6.1: Insert operation of the Azure Tables adapter

In the code 6.1 there are two elements that need a deep explanation. The first

thing to notice is that an instance of AzureTableUser is persisted, in fact, we

were not able to persist the entities generated by YCSB because, to be able

to persist an entity with the JPA, we need an annotated class which should

be then listed in the persistence.xml file. For this reasons three different user

class and three different persistence units have been defined:

• AzureTableUser, which refers to kundera azure pu, the persistence unit

with the configuration for Azure Tables;

• DatastoreUser, which refers to kundera datastore pu, the persistence

unit with the configuration for Google Datastore;

• HBaseUser, which refers to kundera hbase pu, the persistence unit with

the configuration for Hbase.

The second thing to notice is the call to the timeToClearEntityManager()

method, which returns true each time 500 entities are persisted, this causes

a clear of the persistence cache by calling EntityManager.clear(). If this

operation is not performed, entities read can occur within the persistence cache

bypassing the request to the underling database. We choose to clear the cache

every 500 entities, in our workloads of 100.000 entities, to maintain the same

proportion with the one used by Kundera in their test, in which the persistence

cache is cleared every 5.000 entities on workloads of 1 million operations.

Low-level API adapters

Also the adapters for the low-level API version follows the same general struc-

ture. The connection to the database is performed, through low-level API, in

the init method, to have a common behavior with respect to the Kundera

adapters. Read, insert and delete operations are performed by a call to the

specific low-level API, while the scan method has not been implemented.

77

Evaluation

The init method uses the properties defined in the property files specified in

the execution command of the benchmark, to locate the remote database and

instantiate a connection.

6.3.3 YCSB tests

YCSB comes with a core set of workloads, each workload represents a particu-

lar mix of read and write operations and defines the total number of operations

that should be executed. YCSB benchmarks are executed in two separate

phases and each of them generates a report. From the report of the load

phase, since this phase is responsible of storing the data required to run the

workload to the target database, we obtain information about the throughput

and the latency for the write operation. From the transaction phase we want

to obtain information about throughput and latency for the read operation.

To do so, we run a custom workload composed of 100.000 operations entirely

of type read so that the transaction phase will generate the statistics we need.

Defined the adapters and the workload we were able to execute the tests.

Google Datastore tests

The tests for Google Datastore have been executed over a remote Datastore

instance in a billed application billed and configured to accept remote API

execution.

The results of the tests for the read operation are reported in figure 6.3 whereas

figure 6.4 reports the results for the write operation.

T
h
ro

u
g
h
p
u

t
(o

p
s
/s

e
c
)

Read throughput

43.67

36

low-level API Kundera

0

10

20

30

40

50

(a) Throughput

L
a
te

n
c
y
 (

m
s
)

Read latency

759.711

834.079

low-level API Kundera

0

200

400

600

800

1000

(b) Latency

Figure 6.3: Google Datastore - read operation benchmark results

78

6.3 Performance tests

T
h
ro

u
g
h
p
u

t
(o

p
s
/s

e
c
)

Write throughput

32.08

30.12

low-level API Kundera

0

10

20

30

40

(a) Throughput

L
a
te

n
c
y
 (

m
s
)

Write latency

850.255 863.35

low-level API Kundera

0

250

500

750

1000

(b) Latency

Figure 6.4: Google Datastore - write operation benchmark results

The throughput of the Kundera version of the adapter shows in both cases a

lower value compared to the result of low level API; as regards latency, the

operations performed by the Kundera version of the adapter shows a higher

latency with respect to the low API version. However the overhead introduced

by Kundera and the Google Datastore extension, measured in terms of latency

and throughput, is very low compared to use of the low-level API, both for

the read and for the write operation.

Azure Tables tests

The tests for Azure Tables have been executed over a remote storage instance

deployed in Azure.

The results of the tests for the read operation are reported in figure 6.5 whereas

figure 6.6 reports the results for the write operation.

Also for Azure Tables, as for Google Datastore, we have observed a throughput

loss of the Kundera adapter with respect to the low level API version and the

higher latency. The loss in performance in this case is not as much as in Google

Datastore and thus also here we can conclude that the overhead introduced by

Kundera and the Azure Tables extension, measured in terms of latency and

throughput, is very low compared to use of the low-level API, both for the

read and for the write operation.

79

Evaluation

T
h
ro

u
g
h
p
u

t
(o

p
s
/s

e
c
)

Read throughput

56.6

55.73

low-level API Kundera

0

10

20

30

40

50

60

(a) Throughput

L
a
te

n
c
y
 (

m
s
)

Read latency

517.687 526.692

low-level API Kundera

0

100

200

300

400

500

600

(b) Latency

Figure 6.5: Azure Tables - read operation benchmark results

T
h
ro

u
g
h
p
u

t
(o

p
s
/s

e
c
)

Write throughput

27.35

25.66

low-level API Kundera

0

5

10

15

20

25

30

(a) Throughput

L
a
te

n
c
y
 (

m
s
)

Write latency

1 060.632

1 144.264

low-level API Kundera

0

250

500

750

1000

1250

(b) Latency

Figure 6.6: Azure Tables - write operation benchmark results

HBase tests

HBase test should have been executed over an instance of HBase, in full dis-

tributed configuration, in the cloud of Politecnico di Milano but, due to a

failure of the host machines, the tests could not be performed.

In figure 6.7 and 6.8 are reported the results obtained while testing the HBase

adapters. They have been executed on a workload of 1.000 entities in a locally

installed instance of HBase.

Even if the tests for HBase has been made on a local instance of the database,

they show a similar behavior with respect to the tests executed over the net-

work for Google Datastore and Azure Tables.

80

6.3 Performance tests

T
h
ro

u
g
h
p
u

t
(o

p
s
/s

e
c
)

Read throughput

1 767.86

1 122.45

low-level API Kundera

0

500

1000

1500

2000

(a) Throughput

L
a
te

n
c
y
 (

m
s
)

Read latency

17.794

22.052

low-level API Kundera

0

5

10

15

20

25

(b) Latency

Figure 6.7: HBase - read operation benchmark results

T
h
ro

u
g
h
p
u

t
(o

p
s
/s

e
c
)

Write throughput

1 434.78

990.99

low-level API Kundera

0

500

1000

1500

2000

(a) Throughput

L
a
te

n
c
y
 (

m
s
)

Write latency

20.169

26.769

low-level API Kundera

0

5

10

15

20

25

30

(b) Latency

Figure 6.8: HBase - write operation benchmark results

6.3.4 Discussion

The main objective of our tests was to guarantee that the loss of performance,

between the Kundera version of the client and the client written with direct

use of the low-level API, was minimum or at least not as much to discourage

the use of the JPA approach for NoSQL databases.

Since Kundera provides a set of benchmark results obtained through YCSB,

and since they show an acceptable performance loss, our objective included

the comparison of our results with the results obtained by Kundera. However

Kundera executes its tests on instances of the databases that reside on a local

testing machine, since it is meaningless for us to test the developed extensions

against their local emulator due to the fact that Google Datastore and Azure

Tables are NoSQL databases developed for DaaS, we cannot directly compare

81

Evaluation

our results with the Kundera ones. The idea was thus to replicate the results

obtained by the Kundera team for HBase, executing the tests no more on a

local instance of HBase but on a remote instance that deployed in the Politec-

nico di Milano cloud. Unfortunately the comparison of the results cannot be

done due to a malfunctioning of the HBase intance installed in the Politecnico

di Milano cloud.

Even if the comparison between our results and the Kundera results could not

be performed, we have notice, while executing the tests for HBase adapters

locally on the development machine, that with respect to the tests on Google

Datastore and Azure Tables, executed over the network, throughput drops

significantly.

YCSB tries to go as fast as possible in issuing operation on the database

instance trying to reach the maximum throughput the system can afford. The

cause of the throughput drop is due to the high number of TCP connections

that need to be maintained during the benchmark execution; in fact, each

requests needs a TCP connection to be opened and maintained, at least until

the response comes from the server. When executing the tests with 100.000

entities this becomes the bottleneck for the benchmark.

Similar considerations hold for the latency, the values reported for Google

Datastore and Azure Tables, include the round trip time of the requests and

furthermore it depends on the state of network congestion. By looking at the

network consumption data reported by the operating system of the testing

machine, we estimated that the average round trip time, during the tests, was

of 56,29 ms.

After these considerations, and by looking at the differences in both throughput

and latency for the low-level API and the developed Kundera extension, we

conclude that a performance loss exists, but is not enough to discourage the

usage of those NoSQL databases through Kundera, especially given the benefits

this solution brings in working with NoSQL databases.

82

6.4 Summary

6.4 Summary

In this chapter we have presented the test driven approach used to develop

the Kundera extensions. Then we described how we prepared and executed

the test of correctness and performance made for the two developed Kundera

extension, showing the minimal performance loss that Kundera add to the

low-level API.

83

Chapter 7

Conclusions and future Works

This work presented an approach of interacting with many different NoSQL

databases through the CPIM library and the integration of the migration and

synchronization system Hegira.

The CPIM library has been modified in order to get rid of the previous imple-

mentation of the NoSQL service that was not able to guarantee full portability

of the application code due to the numerous JPA implementation used to sup-

port different NoSQL databases. This work have made order in the CPIM

library and added the ability for the users to interact with numerous different

NoSQL solution through a common interface, identified in the JPA interface,

thanks to Kundera, an open source JPA compliant ORM for NoSQL databases.

Furthermore have been produced two brand new clients for Kundera contribut-

ing thus to the project by adding the support for Google Datastore and Azure

Tables. In chapter 6, the developed extensions has been tested in terms of

throughput and latency in order to verify that the overhead added by Kun-

dera and by its clients was not destructive for performance with respect to the

use of low level API for interacting with the NoSQL databases.

The results showed that, since no significant overhead is added to the low level

API version of NoSQLs, the approach we propose is worth the little loss of

performance due to the benefit it brings in terms of code portability, through

the CPIM library, and the ability of interacting with many different NoSQL

databases with a unique and well known interface.

Conclusions and future Works

The NoSQL service of CPIM library has been further modified to integrate

the required logic for interacting with the migration and synchronization

system Hegira, the work is described in chapter 5. This mitigates the vendor

lock-in problem by giving to the user the ability to change the adopted NoSQL

technology and still be able to read the migrated data without the necessity

of re-engineer the application.

Possible future works should continue on both CPIM and Kundera. Indeed,

CPIM needs to be updated to interacts with the latest version of the various

cloud provider API and some components needs to be rewritten, as explained

in section 5.3.1 for the Queue service.

Further work can also be done in intercepting the user queries, that are then

sent to the migration system, supporting for example the criteria API dis-

cussed in section 5.5.2.

Some work can be made in solving the problems that have prevented us from

replicating the YCSB tests for Hbase. In this way the results presented in this

work can be compared with the results of the tests performed by the Kundera

team on the other clients.

Finally some work can be done in adding to Kundera the support for more

NoSQL databases such as Dynamo DB.

86

Appendices

Appendix A

Configuring Kundera extensions

A.1 Introduction

In this appendix are described in detail the configurations available for the

two developed Kundera extensions. Are described the required properties that

needs to be configured in the persistence.xml file and the available properties

that can be defined in the external datastore specific properties file.

A.2 Common configuration

The main configuration is performed in the persistence.xml file and it follows

the JPA standard. The template of the file is as follow:

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>

2 <p e r s i s t e n c e . . . >

3 <pe r s i s t en c e−uni t name=” . . . ”>

4 <prov ide r>com . impetus . kundera . KunderaPers i stence</ prov ide r>

5 <c l a s s> . . . </ c l a s s>

6 <exclude−un l i s t ed−c l a s s e s>t rue</ exclude−un l i s t ed−c l a s s e s>

7 <p r op e r t i e s>

8 < !−− kundera p rop e r t i e s −−>
9 </ p r op e r t i e s>

10 </ pe r s i s t en c e−uni t>
11 </ p e r s i s t e n c e>

Listing A.1: persistence.xml template

A name for the persistence unit is mandatory as it will be referenced inside the

classes of the model as shown in the snippet A.2 in which has been declared as

schema the kundera.keyspace property to the persistence unit name. The full

Configuring Kundera extensions

name of the classes that needs to be handled through this persistence unit must

be specified in the <class> tag. Each extension needs different configuration

that needs to be specified inside the <properties> tag.

1 @Table (schema = ”gae−test@pu”)

2 public class Employee {
3

4 @Id

5 @Column(name = ”EMPLOYEE ID”)

6 private St r ing id ;

7

8 @Column(name = ”NAME”)

9 private St r ing name ;

10

11 @Column(name = ”SALARY”)

12 private Long sa l a r y ;

13 }

Listing A.2: Declaring the schema

A.3 GAE Datastore

Two configuration are possible:

1. use the datastore instance within the app engine application;

2. use a remote datastore instance through remote API.

The properties to be specified inside the <properties> tag for the first case

are:

• kundera.client.lookup.class (required), must be set to

it.polimi.kundera.client.datastore.DatastoreClientFactory;

• kundera.ddl.auto.prepare (optional), possible values are:

– create, which creates the schema (if not already exists);

– create-drop, which drop the schema (if exists) and creates it;

• kundera.client.property (optional), the name of the xml file contain-

ing the datastore specific properties.

90

A.3 GAE Datastore

In addition to the previous properties and in case of remote API, those prop-

erties are also necessary:

• kundera.nodes (required), url of the app engine application on which

the datastore is located;

• kundera.port (optional) default is 443, port used to connect to datas-

tore;

• kundera.username (required), username of an admin on the remote

server;

• kundera.password (required), password of an admin on the remote

server.

To test against local app engine run-time emulator the configuration is as

follow:

1 <property name=”kundera . nodes ” value=” l o c a l h o s t ”/>

2 <property name=”kundera . port ” value=”8888”/>

3 <property name=”kundera . username” value=”username”/>

4 <property name=”kundera . password” value=””/>

Listing A.3: GAE Datastore emulator configuration

in this case the value for kundera.password does not matter.

Datastore specific properties file

A file with client specific properties can be created and placed inside

the classpath, its name must be specified in the persistence.xml file

through the property <property name="kundera.client.property"

value="filename.xml"/>. The template of the file is the following:

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <c l i e n tP r o p e r t i e s>

3 <da ta s t o r e s>

4 <dataStore>

5 <name>data s to r e</name>

6 <connect ion>

7 <p r op e r t i e s>

8 <property name=” . . . ” va lue=” . . . ”></ property>

9 </ p r op e r t i e s>

10 </ connect ion>

91

Configuring Kundera extensions

11 </ dataStore>

12 </ da ta s t o r e s>

13 </ c l i e n tP r o p e r t i e s>

Listing A.4: GAE Datastore - datastore specific configuration

The available properties are:

• datastore.policy.read (optional) [eventual|strong] default is

strong. Set the read policy;

• datastore.deadline (optional). RPCs deadline in seconds;

• datastore.policy.transaction (optional) [auto|none] default is none.

Define if use implicit transaction.

A.4 Azure Tables

The properties to be specified inside the <properties> tag are:

• kundera.username (required), the storage account name available from

azure portal;

• kundera.password (required), the storage account key available from

azure portal;

• kundera.client.lookup.class (required), must be set to

it.polimi.kundera.client.azuretable.AzureTableClientFactory;

• kundera.ddl.auto.prepare (optional), possible values are:

– create, which creates the schema (if not already exists);

– create-drop, which drop the schema (if exists) and creates it.

• kundera.client.property (optional), the name of the xml file contain-

ing the datastore specific properties.

Datastore specific properties file

A file with client specific properties can be created and placed inside the class-

path, its name must be specified in the persistence.xml file. The template of

the file is the following:

92

A.4 Azure Tables

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <c l i e n tP r o p e r t i e s>

3 <da ta s t o r e s>

4 <dataStore>

5 <name>azure−t ab l e</name>

6 <connect ion>

7 <p r op e r t i e s>

8 <property name=” . . . ” va lue=” . . . ”></ property>

9 </ p r op e r t i e s>

10 </ connect ion>

11 </ dataStore>

12 </ da ta s t o r e s>

13 </ c l i e n tP r o p e r t i e s>

Listing A.5: Azure Tables - datastore specific configuration

The available properties are:

• table.emulator (optional) [true|false] default is false. If present (and

set to true) storage emulator is used. When using development server

kundera.username and kundera.password in persistence.xml are ig-

nored;

• table.emulator.proxy (optional) default is localhost. If storage em-

ulator is used set the value for the emulator proxy;

• table.protocol (optional) [http|https] default is https. Define the pro-

tocol to be used within requests;

• table.partition.default (optional) default is DEFAULT. The value

for the default partition key, used when no one is specified by the user.

93

Appendix B

Configuring CPIM migration

B.1 Introduction

In this appendix is presented the new configuration file added to CPIM to sup-

port the various configurations available for the interaction with the migration

system.

B.2 migration.xml

The template of the migration.xml file is the following:

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>

2 <migrat ion>

3 <zooKeeper>

4 <type> . . .</ type>

5 <connect ion> . . .</ connect ion>

6 <range> . . .</ range>

7 </zooKeeper>

8 <backup>

9 <execute> . . .</ execute>

10 <type> . . .</ type>

11 <d i r e c t o r y> . . .</ d i r e c t o r y>

12 <p r e f i x> . . .</ p r e f i x>

13 </backup>

14 <f o l l owCascades> . . .</ fo l l owCascades>

15 </migrat ion>

Listing B.1: migration.xml template

Three are the main section that can be configured:

Configuring CPIM migration

1. ZooKeeper client;

2. sequence number backup;

3. follow cascades while build statements.

The first two options are the most complex and are described in the following

sections, the third option can assume be true or false but is optional since is

set to false by default. In case the value is set to true, the statement builders

when builds the statements from objects will read the values specified for the

@CascadeType annotation and, if necessary, builds the cascade statements and

sends them to Hegira in the correct execution order as described in 5.7.

B.2.1 Configure the ZooKeeper client

For ZooKeeper client, must be chosen the thread or the http version as de-

scribed in 5.6.

Thread version An example configuration would be the following one:

1 <zooKeeper>

2 <type>thread</ type>

3 <connect ion> l o c a l h o s t : 2 1 8 1</ connect ion>

4 <range>50</ range>

5 </zooKeeper>

Listing B.2: ZooKeeper - thread type configuration

The <connection> tag is required and should contains an address in the

form host:port which should be the host address and the port on which the

ZooKeeper service is running.

The <range> is optional since the default is 10 and is the default dimension

of the range that SeqNumberDispenser(s) use to ask sequence numbers to the

synchronization system.

HTTP version An example configuration would be the following one:

1 <zooKeeper>

2 <type>http</ type>

3 <connect ion>ht tp : // s e r v e r . com/hegira−api / zkSe rv i c e</ connect ion>

4 <range>50</ range>

5 </zooKeeper>

96

B.2 migration.xml

Listing B.3: ZooKeeper - http type configuration

In this case the <connection> tag should contains the API base path of the

server in which the service is running.

For the <range> tag the same consideration made for the thread case applies.

B.2.2 Configure a sequence number backup

A sequence number backup can be configured either on a blob storage (when

running on PaaS) or to file (when running on IaaS).

The <execute> tag define if backup should or should not be performed, the

possible values are yes or no. This tag is optional since its default is yes. In

case backups must be turned off, the configuration should be the following:

1 <backup>

2 <execute>no</ execute>

3 </backup>

Listing B.4: Turning off sequence numbers backup

For the other configuration options, two cases must be distinguished:

Backup to Blob An example configuration would be the following one:

1 <backup>

2 <type>blob</ type>

3 <p r e f i x>SeqNumber </ p r e f i x>

4 </backup>

Listing B.5: Backup to blob

The text in the <prefix> tag will be prefixed to each blob created to avoid file

name conflicts. This prefix is optional field as default is set to SeqNumber .

Backup to file An example configuration would be the following one:

1 <backup>

2 <type> f i l e</ type>

3 <d i r e c t o r y>/backups</ d i r e c t o r y>

97

Configuring CPIM migration

4 <p r e f i x>SeqNumber </ p r e f i x>

5 </backup>

Listing B.6: Backup to file

The <directory> tag is mandatory and must contain the path to the direc-

tory in which the backup files should be stored.

For the <prefix> tag the same considerations made for backup to blob applies.

B.3 Use CPIM without migration system

The migration.xml file is not necessary if the user would not use the migration

system. If the file is not present inside the META-INF folder, the NoSQL service

will interact only with the underlying persistence provider without instantiat-

ing any of the classes required for the interaction with the migration system.

This is possible due to the lazy initialization of those components that are

initialized only the first time are actually used since are built with a singleton

pattern.

98

Appendix C

Run YCSB tests

C.1 Introduction

In this appendix is descried the required procedure to build the benchmark

project that contains the YCSB adapters, then are shown the required com-

mands to be executed in order to execute the tho phases of an YCSB bench-

mark and the available values to be configured for each of the supported

adapters.

C.2 Preliminary operations

In order to build the benchmark project, (available at https://github.com/

Arci/kundera-benchmark) some libraries needs to be downloaded since are

not available in any maven repository:

• Azure Tables extension

https://github.com/Arci/kundera-azure-table

• GAE Datastore extension

https://github.com/Arci/kundera-gae-datastore

The Azure Tables extension tests to run requires a reachable storage emulator

on Windows so if this is not possible, skip tests by running mvn clean install

-DskipTests.

Tests for the Datastore extension can be executed without any configuration

as they are executed thought Google in-memory Datastore stub.

Run YCSB tests

Also YCSB is not available in any maven repository, it must be downloaded

(https://github.com/brianfrankcooper/YCSB) and installed locally, always

through mvn install.

When all the required dependency for kundera-benchmark are resolved, is

possible to install it with mvn clean install and then lunch the com-

mand mvn dependency:copy-dependencies, this will create a directory called

dependency in the target directory containing all the jars of the dependencies.

The dependency folder will be used for defining the classpath later on.

C.3 Run tests for low-level API version

The two phases of the YCSB benchmark can be executed through the com-

mand:

java −cp KUNDERA−BENCHMARK−JAR−LOCATION:PATH−TO−DEPENDENCY−FOLDER/∗
com . yahoo . ycsb . C l i en t −t −db DATABASE−ADAPTER−CLASS−TO−USE
−P PATH−TO−WORKLOAD −P PATH−TO−PROPERTY−FILE
−s −threads THREAD−TO−USE −PHASE > OUTPUT FILE

Listing C.1: Run low-level API benchmarks

where PHASE should be load for load phase or t for transaction phase.

Available adapter classes are:

• it.polimi.ycsb.database.AzureTableClient for Azure Tables;

• it.polimi.ycsb.database.DatastoreClient for GAE Datastore;

• it.polimi.ycsb.database.KunderaHBaseClient for HBase.

C.3.1 Property files

As can be seen from the command, a property file must be specified. Properties

files must provide information to locate the database to test when running the

benchmarks on the low-level API versions.

100

C.3 Run tests for low-level API version

Google Datastore The available properties are:

• url (required);

• port (optional), default is 443;

• username (required), the username of an admin on the remote applica-

tion;

• password (required), can be omitted if tests are against localhost.

Azure Tables The available properties are:

• emulator (optional) [true|false];

• account.name (required) if not using emulator, available from azure por-

tal;

• account.key (required) if not using emulator, available from azure por-

tal;

• protocol (optional) [http|https], default is https.

If emulator is set to true the remaining properties are ignored.

HBase The properties must be configured inside the adapter class because,

to be more accurate w.r.t. the Kundera client, connection cannot be done in

the init() method.

The properties can be set modifying the following constants:

• node, the master node location;

• port, the master node port;

• zookeeper.node, the node location for hbase.zookeeper.quorum;

• zookeeper.port, the node port for hbase.zookeeper.property.clientPort.

Since property file is not needed for HBase, it does not need to be specified

while running the benchmarks.

101

Run YCSB tests

C.4 Run tests for Kundera version

Two phases of the YCSB benchmark can be executed through the command:

java −cp KUNDERA−BENCHMARK−JAR−LOCATION:PATH−TO−DEPENDENCY−FOLDER/∗
com . yahoo . ycsb . C l i en t −t −db DATABASE−ADAPTER−CLASS−TO−USE
−P PATH−TO−WORKLOAD −s −threads THREAD−TO−USE −PHASE > OUTPUT FILE

Listing C.2: Run Kundera clients benchmarks

where PHASE should be load for load phase or t for transaction phase.

Available adapter classes are:

• it.polimi.ycsb.database.KunderaAzureTableClient for kundera-

azure-table extension;

• it.polimi.ycsb.database.KunderaDatastoreClient for kundera-

gae-datastore extension;

• it.polimi.ycsb.database.KunderaHBaseClient for kundera-hbase

extension.

C.4.1 persistence.xml configuration

In the persistence.xml file each persistence unit must be configured to locate

the database to test.

The possible configurations are described in the appendix A.

HBase configuration make use also of a datastore specific property

file hbase-properties.xml in which can be configured the value for

hbase.zookeeper.quorum and hbase.zookeeper.property.clientPort.

102

Appendix D

Hegira Generator

D.1 Introduction

In this appendix is presented the application developed to test the data syn-

chronization capabilities of CPIM, while persisting data through the Datastore

Kundera extension.

D.2 Hegira generator

To be able to test the interaction between the CPIM library and the synchro-

nization system, and to provide an example of usage of the extended CPIM

library, we have developed Hegira generator.

The application provides two behaviors through command line interface, a

clean command to clean-up the remote Datastore instance by deleting all the

entities of all Kinds, and a generate command, that takes as argument the

number of entities, per table, to be generated and generates them.

Data generation is done upon a pre-defined entity model inside the application

and described by the ER diagram of Figure D.1. Building an entity generator

agnostic to the entities model was not our goal and it would have required a

way to automatically build the dependency graph of the entities since entities

related to other ones, should have a reference to the entity they depend on.

Hence the application is aware of the entities dependencies and generates them

accordingly.

Hegira Generator

works inEmployeeMTO

ID
Name Salary

Department

ID Name

Employee

ID
Name Salary

haveEmployeeOTO

ID
Name Salary

Phone

ID Number

works inEmployeeMTM

ID
Name Salary

ProjectMTM

ID Name

(1,1)

(0,1)

(1,N)

(1,N)

(1,1)

(1,N)

Figure D.1: ER diagram of Hegira-generator model

To be able to generate random entities, two methods are used:

• persist(Class master) that generates and persists entities without de-

pendencies (such as Employee in the application model);

• persist(Class master, Class slave, DependencyType type) that

generates and persists the entities of the master class and then uses

randomly extracted entities among those just generated to fill the depen-

dencies for the entities of the slave class. The DependencyType would be

SINGLE, if the slave class needs just one element to fill the dependency

(which is the case of One to One and Many to One relationships), or

COLLECTION, if the slave class needs more than one element to fill the

dependency (which is the case for Many to Many relationships).

The actual entity generation is delegated to the entity itself through reflection

since each entity of the model implements the Randomizable interface. An

example of entity genearion through this interface is shown in the snippet D.1.

1 @Entity

2 public class EmployeeOTO implements Randomizable<EmployeeOTO , Phone> {
3 . . .

4 @Override

5 public EmployeeOTO randomize (Phone dependency) {
6 setName (RandomUtils . randomString ()) ;

7 s e tSa l a r y (RandomUtils . randomLong ()) ;

8 setPhone (dependency) ;

104

D.2 Hegira generator

9 return this ;

10 }
11 }

Listing D.1: Entities generation

D.2.1 Exploited CPIM features

To perform the persist operation of the generated entities we used the

EntityManager interface on which we called the persist method. This is

completely JPA compliant and the user is not aware of what is done under

the hood since communication with the synchronization system is handled

automatically. An example is provided in the code D.2.

1 CloudEntityManager em = MF. getFactory () . getEntityManager () ;

2 Department dep = new Department (”Computer Sc i ence ”)

3 em. p e r s i s t (dep)

Listing D.2: Persisting entities in CPIM

The persist operation through CloudEntityManager contacts the synchroniza-

tion system to get the assigned sequence numbers for the specific tables and

assigns the first of them to the entity before delegating to Kundera the persist

operation.

The application makes use of the possibility of modifying at run-time the

size range that is requested to the synchronization system. Hence before the

persist operation, the size of the sequence number range is set to the dou-

ble of the number of entities to be generated. This is done through a call

to SeqNumberProvider.getInstance().setOffset(tableName, offset), if

the resulting range size is grater than the maximum size that can be requested,

is limited to that value.

The last feature that is exploited by the application is the backup of sequence

numbers to file. The backup is configured in the migration.xml file, as de-

scribed in the appendix B. This permit to the application, when is restarted,

to restore the sequence numbers without the need of contacting the synchro-

nization system. Furthermore, to avoid execution of the persist operations

105

Hegira Generator

on a table which entities generation was completed in a previous execution, a

file with the list of the table completely generated is kept in the same folder

specified for the sequence numbers backup files.

106

Bibliography

[1] Azure table storage. http://azure.

microsoft.com/en-us/documentation/articles/

storage-java-how-to-use-table-storage. [Online].

[2] Google app engine datastore. https://cloud.google.com/datastore/

docs/concepts/overview. [Online].

[3] nosql-database.org. http://nosql-database.org/. [Online, Accessed 14

March 2015].

[4] Using jpa with app engine. https://cloud.google.com/appengine/

docs/java/datastore/jpa/overview. [Online].

[5] Kundera. https://github.com/impetus-opensource/Kundera, 2010.

[Online].

[6] Unql. http://unql.sqlite.org/, 2011. [Online].

[7] Apache gora. http://gora.apache.org/index.html, 2012. [Online].

[8] Playorm. http://buffalosw.com/products/playorm, 2012. [Online].

[9] Apache metamodel. http://metamodel.apache.org/, 2013. [Online].

[10] Spring data. http://projects.spring.io/spring-data/, 2013. [On-

line].

[11] Apache phoenix. http://phoenix.apache.org/index.html, 2014. [On-

line].

[12] Elisabetta Di Nitto, Marco Scavuzzo, Michele Ciavotta, Fabio Arcidia-

cono. Modacloudml package on data partition and replication. Technical

report, Politecnico di Milano, September 2014.

BIBLIOGRAPHY

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gru-

ber. Bigtable: A distributed storage system for structured data. Technical

report, Google, 2006.

[14] Filippo Giove, Davide Longoni. Un approccio per lo sviluppo di appli-

cazioni portabili per sistemi di cloud computing. Master’s thesis, Politec-

nico di Milano, 2012.

[15] Keith Mike, Schincariol Merrick. Pro JPA 2. Apress, Berkely, CA, USA,

2nd edition, 2013.

[16] Paolo Atzeni, Francesca Bugiotti, Luca Rossi. Uniform access to non-

relational database systems: the sos platform. Technical report, Univer-

sità Roma Tre, 2012.

[17] Marco Scavuzzo. Interoperable data migration between nosql columnar

databases. Master’s thesis, Politecnico di Milano, 2013.

[18] Jeff Schnitzer. Objectify. https://code.google.com/p/

objectify-appengine/wiki/IntroductionToObjectify. [Online].

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-

nan, Russell Sears. Benchmarking cloud serving systems with ycsb. Tech-

nical report, Yahoo! Research, 2010.

[20] Hitachi Data Systems. Reduce costs and risks for data migrations. Tech-

nical report, Hitachi Data Systems, March 2014.

108

