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Abstract

Recent studies [Poeplau. 2014] showed that developers of Android applications
and frameworks, even the most famous ones (e.g., Facebook, Google Mobile Ads
SDK), need to load code dynamically. This technique has the advantages of
minimizing the code memory footprint and enabling silent updates strategies to
decouple updates of the main application from those of its third-party libraries.

Unfortunately, there are security drawbacks as well. Firstly, malware authors
may use dynamic code loading to bypass antivirus checks by loading malicious
code at runtime from an apparently benign application. Secondly, Android does
not perform any code verification for dynamically loaded code. Therefore, a
man-in-the-middle attacker can effectively modify the dynamically loaded code
executed on the victim’s machine without being spotted. These vulnerabilities
appeared in 16% of the top 50 free applications of the Google Play Store in
August 2013. Arguably, the main source of error is assuming that developers
are security experts, which is not often the case.

In this work, we remove such assumption and we propose a backward-
compatible redesign of the Android API functions needed for implementing
dynamic code loading, making this functionality secure by default. We im-
plemented our proposed design in a Java library, named Grab’n Run (GNR),
that can be incorporated in any Android project. Differently from previous
works, GNR requires no modification of the underlying runtime, ensuring easier
adoption. To further help developers migrating existing applications, we also
designed and implemented a repackaging tool, which rewrites dynamic-code-
loading calls to port them to use our secure API.

We validated GNR through a case study involving 9 Android developers.
Without GNR, 6 of them introduced security vulnerabilities by using HTTP
connection for retrieving the code instead of HTTPS, whereas 4 of them intro-
duced another vulnerability by storing the code in a world-writable location,
and, in the end, all of them forgot to implement custom integrity checks on the
fetched code. The participants also confirms that the learning effort for GNR is
little or close to zero and that this library is easier to maintain, simpler to read,
and more flexible than native DexClassLoader API. Finally, by comparing the
performance of GNR against DexClassLoader, we found out that the overhead
introduced by our library on load operations is negligible.
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Sommario

Studi recenti [Poeplau, 2014] hanno mostrato che gli sviluppatori di applicazioni
e framework per Android, anche i più celebri e complessi (e.g., Facebook, Google
Mobile Ads SDK), hanno spesso l’esigenza di caricare codice dinamicamente.
Questa tecnica di programmazione ha indubbi vantaggi, sia perché minimizza
l’uso del codice presente in memoria durante l’esecuzione (caricandone solo la
porzione strettamente necessaria), sia perché permette di implementare aggior-
namenti silenziosi, cioè dà la possibilità alle librerie di terze parti, incluse in
un’applicazione, di scaricare ed eseguire l’ultima versione del proprio codice
senza forzare ogni volta un aggiornamento dell’applicazione principale. Questa
politica risulta essere ad ovvio vantaggio dell’utente finale, che potrà, da un
lato, ridurre il numero di volte in cui é costretto ad aggiornare l’applicazione, e
dall’altro, beneficiare delle ultime funzionalità e patch di sicurezza, introdotte
nelle librerie utilizzate dalle sue applicazioni.

Purtroppo, questo meccanismo ha anche due principali svantaggi in ter-
mini di sicurezza. Primo, è utilizzato dagli autori di malware per bypassare
controlli antivirus, caricando solo a run time il codice malevolo all’interno di
un’applicazione apparentemente innocua, installata sul telefono della vittima.
Secondo, le API di Android per il caricamento di codice dinamico non implemen-
tano alcun controllo sull’integrità del codice caricato, né tanto meno sull’identitá
di colui che lo ha implementato. Per questo motivo, mentre lo sviluppatore che
carica una applicazione sul Google Play Store è sicuro che, grazie al meccanismo
di code signing, l’applicazione installata sul device dell’utente non sia stato mod-
ificata nel tragitto, la stessa conclusione non vale per il codice caricato dinamica-
mente. Questa falla permette ad un aggressore man-in-the-middle di modificare
il codice caricato dinamicamente e, dunque, di manipolare il comportamento
dell’applicazione durante l’esecuzione, senza che il sistema operativo se ne possa
accorgere. Vulnerabilità di questo tipo sono state riscontrate nel 16% delle 50
applicazioni gratis più scaricate sul Play Store in Agosto 2013. Discutibilmente,
tali vulnerabilità, cos̀ı come quelle derivanti dall’uso errato delle librerie crit-
tografiche, esistono per l’assunzione, molto spesso errata, che gli sviluppatori
siano esperti di sicurezza.

In questo lavoro, rimuoviamo questa assunzione e proponiamo una reim-
plementazione delle API di Android per il caricamento di codice dinamico,
rendendo questa funzionalità sicura di default e retro-compatibile con le API
esistenti. Abbiamo implementato questa idea in una libreria Java, chiamata
Grab’n Run (GNR), che può essere inclusa facilmente in ogni progetto Android.
Differentemente dalle precedenti soluzioni, GNR non richiede alcuna modifica
del framework sottostante e ciò ne garantisce una semplice adozione. Per facil-
itare gli sviluppatori nel compito di migrare le loro applicazioni, abbiamo anche
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sviluppato uno strumento di repackaging, che riscrive le chiamate per il carica-
mento di codice dinamico sostituendole con invocazioni alle nostre API sicure,
senza richiedere allo sviluppatore né il codice sorgente, né alcuna modifica nel
codice dell’applicazione da migrare.

Abbiamo valutato GNR attraverso un caso di studio condotto su 9 sviluppa-
tori Android. Senza GNR, 6 di loro hanno introdotto vulnerabilità di sicurezza
utilizzando una connessione HTTP per recuperare il codice da caricare invece
di una HTTPS; d’altra parte, 4 di loro hanno introdotto un’altra vulnerabilità
salvando il codice in una posizione sovra-scrivibile da chiunque in memoria; in-
fine, nessuno di loro si è ricordato di implementare degli ulteriori controlli di
sicurezza volti a verificare l’integrità del codice, prima di caricarlo. Inoltre, i
partecipanti hanno confermato che la difficoltà per imparare ad utilizzare GNR è
minima, se non addirittura nulla, e che questa libreria è più facile da manutenere,
più semplice da leggere, e più flessibile rispetto alla corrispondente API nativa
(i.e., DexClassLoader). Infine, comparando le performance di GNR rispetto
a DexClassLoader, abbiamo verificato che il ritardo introdotto dalla nostra
libreria sulle operazioni di caricamento è trascurabile.
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Chapter 1

Introduction

Dynamic code loading, or DCL, is a programming technique to execute code
loaded at runtime. This code may come from different sources such as the local
storage or from a remote location (e.g., storage server). DCL offers some ad-
vantages: first, it minimizes code memory footprint since only the static code
is stored in memory for the program’s lifetime; second, it enables the imple-
mentation of silent update strategies, for example decouple updates of the main
program from those of its third-party libraries, or whenever a continuous soft-
ware release must be implemented. These requirements should be met without
bothering the user. In Android, developers can accomplish DCL through several
application programming interface (API) functions, namely DexClassLoader,
PathClassLoader, and android.content.Context.createPackageContext.

Unfortunately, DCL has significant security drawbacks: firstly, malware au-
thors may use it to bypass antivirus checks, by loading malicious code at runtime
from a statically benign application; secondly, Android API do not implement
integrity check on the code loaded dynamically. This implies that, differently
from the Google Play Store, where users are sure that installed applications are
exactly as implemented by the developers thanks to code signing, they cannot
rely on this property for code loaded dynamically. Because of this, a man-in-
the-middle (MITM) attacker, who succeeds in modifying the byte code of the
container used for DCL, can manipulate the execution flow of the application.

Moreover, also developers of benign applications introduce security bugs in
their application. More precisely, they can introduce these bugs by fetching
remote code in an unsafe way, or storing it in a world-writable location, or
forgetting to include integrity checks to verify that the code to load has not been
spoofed. As shown in a study published in [15] over 1,632 popular applications
from Google Play Store in 2012, loading external code in an insecure way was
an issue in as much as 9.25% of these applications and in 16% of the top 50
free ones in August 2013. These numbers highlight that implementing remote
DCL in a safe way is an issue for Android developers. In Chapter 2, we present
this problem and, in particular, how errors introduced by developers may lead a
MITM attacker to execute arbitrary code by exploiting sloppy implementations
of remote DCL.

Previous work proposed different methodologies to mitigate this issue. Poe-
plau et al. [15] proposed a modification of Android’s runtime to add integrity
checks on DCL through an external verification service, so as to ensure that
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only verified code is loaded. A significant drawback is that this approach re-
quires a partial rewriting of Android runtime, thus requiring an OS update on
all the Android devices, which is cumbersome considering the issue of Android
market fragmentation [14], not to mention the difficulty of ensuring backward
compatibility with the recent introduction of the ART (Android RunTime) ex-
ecutable format [4]. Differently, Vidas and Christin [18] presented a protocol
for end-to-end verification of Android applications. The approach proposes to
use DNS to enforce a public key infrastructure (PKI). More in the details, the
authors propose that developers must place the certificate to authenticate an
app on a DKIM or TXT record of their own domain name, which is required
to match the reversed Java package name of the container to validate. In our
opinion, this protocol is too rigid (e.g., a developer may not be able to enforce
the proposed match on his domain). Moreover, the signature is checked upon
installation and not at runtime, which implies that any code change between
installation and execution, will pass unnoticed, rendering it useless to mitigate
the exploitation of DCL vulnerabilities.

Having considered the limitations of the current approaches, we propose to
mitigate the problem at the origin, by reducing the chances that a developer
introduces target vulnerabilities in terms of insecure implementations of DCL.

In this thesis, we propose Grab’n Run, or GNR, a Java library that helps
developers implementing DCL in a secure way. This library is backward com-
patible with current API and porting apps to use it requires little effort for
developers. Our tool is effective and innovative since it relieves the developers
from thinking about security. GNR implements a caching strategy to contain
performance overhead and to work partially even when little or no connectivity
is available. Alongside, we propose a repackaging tool to help developers in
migrating their applications to use our secure API. This tool does not require
the source code of the app to patch, but simply a copy of its application package
file and some settings on how to carry out the repackaging process.

GNR implements a verification protocol, which validates each code con-
tainer, used as a source for DCL, through signature verification against a trusted
certificate. In particular, the protocol stores securely-fetched containers into an
app-private folder to prevent their tampering and it retrieves the certificate
from a remote URL either directly provided by the developer or reconstructed
from reverting the package name of the class to load. The protocol allows DCL
only on successfully verified containers. In November 2014 we released GNR as
an open source project, publicly available on GitHub [10], whereas we plan to
release the repackaging tool in May 2015.

We evaluated GNR both qualitatively and quantitatively. First, to verify
our claim that GNR is easy to use for developers and more secure than the
native API, we set up a use case study: We contacted 9 Android app developers
with different levels of expertise, asking them to implement a DCL snippet in
a toy app, then to implement the same functionality using GNR. Even if we
explicitly asked developers to write their code carefully, many of them intro-
duced security vulnerabilities (6 of them failed in retrieving code securely, 4
of them in storing it, and not even one of them thought about implementing
custom integrity checks). These statistics, together with the positive feedbacks
from the participants, support our claim. Then, we compared the execution
time of DexClassLoader versus GNR API and we show that, excluded the time
to fetch certificates for the verification, strongly influenced by network latency,
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performance overhead of our solution is almost negligible compared to the native
API.

To summarize, our contributions over current state of the art are:

• We propose a verification protocol that ensures by design secure remote
DCL by reducing the chances for a developer to introduce vulnerabilities
because of insecure implementation of DCL.

• We implement this protocol into Grab’n Run, a Java library to make DCL
secure in Android benign applications, easy to use and to integrate in any
project, and whose performance overhead on load operations is negligible
over native DexClassLoader API.

• We propose and implement a repackaging tool, which takes an applica-
tion and some user preferences and port it automatically to use GNR
API, without requiring developers to write code or the source code of the
application to patch.
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Chapter 2

Motivation

In this chapter, after a recap on Android and some insights on its security model
(Section 2.1), we will focus the attention on DCL by presenting, at first, Dex-
ClassLoader, one of the native API for this task. Next, we will discuss how
benign Android app developers can accomplish and benefit from DCL, as well
as, how malware authors can use it in several ways to bypass Android security
model and detection tools (i.e., Google Bouncer) (Section 2.2).

After this overview on DCL, we will restrict our view only to benign app
developers, and, in particular, to the issue represented by sloppy-security imple-
mentations of remote DCL in Android apps, which can ultimately lead a MITM
attacker to execute arbitrary code on the target device (Section 2.3).

Later (Section 2.4), we will present some of the related solutions from the re-
search community that previously tried to fix this issue and their corresponding
shortcomings.

Finally, at the end of this chapter (Section 2.5), we set the goals for this
thesis work and the constraints we had to bear in mind in the design of our
system.

2.1 Background: Android and its security model

Smartphones gained more and more importance over the last decade. In this
general trend, Android, an OS for mobile devices based on the Linux kernel, has
raised its relevance over the years and it currently dominates the market share,
as shown in Figure 2.1. There are several reasons behind this enormous success
but the main one is that Android’s source code is released under open source
license by Google, in the so called Android Open Source Project (AOSP), and
therefore carriers and hardware vendors can customize it freely before selling
their devices to the users. The result of this process is a multitude of different
Android devices and this effect is also known as fragmentation.

Regarding the field of security, Android poses a challenging ecosystem for
researchers because of several reasons: (1) nowadays, mobile devices contain
an outstanding amount of personal data and, thus, attackers are more than
motivated to steal them to gain money or to compromise devices to create
distributed botnets; (2) the open source nature of Android makes it a suitable
target for attackers, who may try to exploit a zero-day vulnerability, found
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Figure 2.1: Worldwide smartphone OS market share (Q4 2014). Source: Inter-
national Data Corporation (IDC) [7]

by inspecting its code, to compromise millions of devices in one shot; (3) as
explained at page 17 of Chapter 1 of [13], although fragmentation can be seen
as a limitation on the scalability of the exploits of an attacker, it also makes
infeasible complete code auditing for security researchers because many actors
can customize the original code, thus introducing security vulnerabilities.

In the next subsections (Subsection 2.1.1 - Subsection 2.1.3) we deepen some
background topics by recalling, in this order, the five-layer architecture of the
Android OS, the complete toolchain for the compilation of Android code, and
the major security countermeasures introduced in this OS to prevent attackers
from succeeding in their exploits on the system.

2.1.1 Architecture

The overall architecture of Android consists of five layers. While describing
them, we start from the bottom layer (the Linux kernel), till the top one (the
application layer). This separation provides a fine-grained abstraction, thus
allowing a developer to extend the functionalities of the device without caring
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about the lower level details. In particular, the five layers are:

1. Linux kernel. On the lower level of the architecture Android presents a
customized version of the Linux kernel with many changes and additions,
also in terms of security (see Subsection 2.1.3). The kernel works as an
abstraction layer for the underlined hardware of the device and it provides
drivers to access all the physical components (e.g., Camera, Bluetooth,
WiFi), along with the mechanisms to manage memory, processes, and the
networking area.

2. User-space native code. This layer’s components include system and
networking services, as well as libraries, such as OpenSSL, SQlite and
libc. In this part of the system resides also the libraries for managing 2D
and 3D graphics (OpenGL/ES), as well as media codecs. These libraries
are usually written in C/C++, and then expose a Java interface to the
higher-level components.

3. Android runtime. The aim of this layer is satisfying the need for An-
droid OS to run in an embedded environment, like the one of mobile
devices, where battery, memory, and CPU are limited and power con-
sumption must be constrained. In particular, this layer contains two main
components: the first one is the set of core libraries that includes Java
programming language API (e.g., collection classes, I/O elements, util-
ities), whereas the second one is the runtime environment, where both
applications and the Android framework are executed. Till the release of
the latest version of Android (i.e, Lollipop 5.0.1), the default runtime en-
vironment of the OS was DVM, a register-based VM designed to interpret
DEX byte code to generate an optimized version of it, the optimized DEX
(ODEX) byte code. The structure of the DVM was designed to be par-
ticularly light and shared across processes, such that a device could run
multiple VMs efficiently. This enables every Android application to run in
its own process, with its own instance of the DVM. However, starting from
Lollipop, DVM was replaced by ART, the new Android runtime environ-
ment, introducing relevant changes in the compilation process, alongside
improvements in the garbage collection, and more support for developers
during both development and debugging phase [2]. For what concerns this
thesis, the important notion is that ART, although generating a different
final type of executable code, the executable and linkable format (ELF),
takes exactly as input the same DEX byte code accepted by the DVM to
grant backward compatibility. In particular, Figure 2.2 compares the I/O
requirements of both DVM and ART.

4. Android application framework. This layer provides the developer
with API to manage all features of an Android device and it represents
a bridge between applications and the runtime environment (i.e., DVM,
or ART). It includes components for managing the user interface, the
application life-cycle, and the retrieval of data from the device’s sensors.

5. Android applications. This upper layer contains all the applications
installed on the device. They can be roughly broken into two subparts:
pre-installed applications, including Google, original equipment manufac-
turer, and mobile carrier-provided ones, automatically shipped with the
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Figure 2.2: A comparison between the input and the output of both DVM and
ART.

device, and user-installed apps, which are those ones installed by the user
from either Google Play, an alternative market, or manually.

2.1.2 Toolchain

Figure 2.3 summarizes the compilation process for Java and Android applica-
tions:

In particular, once a developer finished to write the source code of his ap-
plication and he wants to run it on a mobile device, the development process,
behind the curtains, looks like this:

1. The developer writes his code in the Java language.

2. The source code is compiled into Java byte code (.class) by means of a
Java compiler (e.g., javac).

3. The resulting class files are translated into Dalvik byte code by dx, a
specific build tool in the Android Software Development Kit (SDK), which
outputs a single classes.dex file.

4. The resulting DEX file is provided in input to the Android runtime envi-
ronment (DVM, or ART), which generates its own optimized version of the
file (respectively, an ODEX or an ELF), and finally loads and interprets
it to execute the application.

2.1.3 Security model and mechanisms

In this last subsection on the Android OS, we will present the mechanisms and
tools used in Android to prevent an attacker from compromising the operative
system. For the first two paragraphs of this section, we summarize the main
notions presented by [13] in Chapter 2 (Page 25-34).
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Figure 2.3: A comparison of the compilation process between a standard Java
program (left side) and an Android application (right side).

Sandbox Android is built on top of the Linux kernel, inherits directly from it
the concept of process isolation. Processes run as separate users and, therefore,
cannot interfere with each other, such as by accessing the other process’ memory
space. Alongside, Linux applies the so-called principle of least privilege, which
means that, to access certain resources, any process must belong to a user, or
to a group of users, who holds the specific permission for accessing the resource;
we can summarize this principle as: “A user can modify only resources for
which he holds a permission, everything else is denied from being accessed”.
Android conjugates this model by using a sandbox based on standard Linux
process isolation, unique user ID (UID) for almost all the applications, and
restricted file system permissions. In particular, Android shares the concept of
Linux’s UID and Group ID (GID), but it also defines a map of names to unique
identifiers (i.e., numbers), known as Android ID (AID). The initial mapping of
the AID contains reserved, static entries for privileged and system-critical users,
but later a range of AID is used for identifying app UID. In additions to AID,
Android also reuses the concept of supplementary groups to regulate whether
an application can access shared or protected resource. For example, whenever
an application becomes a membership of the AID INET supplementary group,
it is allowed to open sockets. When an application is executed, its UID, GID,
and supplementary groups are assigned to its corresponding process. Running
under a unique UID and GID enables the operative system to enforce lower-level
restrictions in the kernel and for the runtime environment to control inter-app
interactions.
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Permission model Android provides three different levels of permissions:
(1) API, (2) file system, and (3) inter-process communication (IPC) ones. API
permissions (e.g., READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE) include those
used for controlling access to high-level functionality within the Android API
or framework and, in some cases, third-party frameworks. On the other hand,
file system permissions are relevant because applications’ unique UID and GID
are, by default, given access only to their respective data storage paths on the
file system. However, certain supplemental GID entitle for the access to shared
resources, such as sd cards or other external storage. As an example, consider
an application that requires the API permission WRITE EXTERNAL STORAGE: This
app will see its UID added to the corresponding supplemental group for the sd
card and, thus, the OS will grant it write access at this path. Finally, IPC per-
missions are those directly related to communication between app components.
Granted permissions can be enforced either by the runtime environment, when-
ever the application invokes certain methods, or by the kernel, or a library at
a lower level within the OS. In particular, some of the higher-level permissions
are enforced by corresponding lower-level OS capabilities. To establish the app
user’s rights and the supplemental groups that the app should join, Android
parses the AndroidManifest.xml, an entry in the APK, which resumes essen-
tial information on the application (e.g., its package name, the required API
permissions, the main components in it). At install time, the Android OS ex-
tracts all the permissions from the manifest and uses these entries to grant the
appropriate rights to the corresponding application’s process.

Code signing Code signing has the goal of guaranteeing (1) integrity, which
means that the executed code is actually the same code written by the developer,
and (2) signer authentication, which implies that we can always retrieve the key
used to sign the code. Code signing leverages the concept of asymmetric cryp-
tography, where a public and a private key pair is associated to a developer,
typically with a certificate. Depending on the implementation, a full-fledged
public-key infrastructure (PKI) is also deployed so that the authenticity of the
code can be verified against a chain of trust rather than just cryptographically.
All the Android developers have to generate their own key pair, and the Google
Play Store will identify, and recognize them, based on the corresponding certifi-
cate. Moreover, Android policy requires developers to sign their applications,
or the Google Play Store will reject them when uploaded on the market. During
installation, the device performs signature verification on the target APK and
allows or blocks the process accordingly. Although this process seems solid, it
has some weaknesses:

• Firstly, the Android OS does not enforce code integrity over time. This
means that, once the signature was verified at installation time, if the
attacker is somehow able to modify the application code, the system can-
not notice this change and it will still run the code without raising any
warning.

• Secondly, Android accepts self-signed certificates, which means that the
subject of the certificate is also the signer of it, and, therefore no third-
party authority grants for the trustworthiness of the certificate, except for
the certificate’s owner itself. We argue that, despite the security weak-
nesses caused by this choice, there are two aspects that must be considered.
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First, verifying the entire certificate chain can be costly for an embed-
ded system, or sometimes even unfeasible (e.g., no connectivity, and thus
no means to fetch the certificate-revocation list). The recent discoveries
about the fallacies derived from incautious implementations of PKIs (e.g.,
compromised CAs, bogus root CA certificates found in computers or used
to sign certificates) highlight how difficult it is to engineer and deploy a
bulletproof PKI. Second, on the positive side, Android forces developers,
who wants to update their already published application, not to modify
the package name (i.e., a unique identifier across the whole Play Store
for each application), and the private key used to sign the APK, which
means that an attacker, who wants to impersonate the benign developer,
cannot just create a fake certificate, but she is forced to steal, or sniff
somehow, the developer’s private key. These requirements are presented
and commented in [16].

Finally, we provide some technical details on how signatures are stored inside
of an APK, since this will come useful in Chapter 3. An APK is a format of
package file used to aggregate Java class files, linked metadata, and resources.
In particular, alongside the Java byte code, APK archives present also a special
file entry called MANIFEST.MF (it is important not to confuse this entry with the
AndroidManifest.xml since they are two completely different files). When an
APK container is signed by invoking the jarsigner tool on it, the manifest file
is patched to contain the digests of the signed entries in the archive. Moreover,
the tool stores other details on the signatures’ digest of all the entries into a
signature file, and it creates a signature block file, which contains the actual
cryptographic signature in a not human-readable, binary file. Notice that APK
constitutes an extension of the standard Java archive (JAR) files, thus inheriting
the signing procedure directly from those. More details on how the signature
process works in a JAR can be found in [9].

2.2 Dynamic code loading: principles, uses, and
vulnerabilities

After having discussed about the Android OS and its security model, we move
the focus to DCL, a programming technique to execute additional code, not
been previously defined with the rest of the program that is, instead, named
static code because of its translation at compile time. Code that is loaded at
run time may come from different sources such as local storage on the device or
from a remote location (e.g., storage server).

In Android, developers can benefit from DCL thanks to several native API
(e.g., DexClassLoader, PathClassLoader, and android.content.Context.cre-

atePackageContext), present since the first versions of Android, and remained
untouched, except for minor fixes, till nowadays. Under a security perspective,
code loaded dynamically runs with the same permissions of the application that
loaded it. This means that, if the main running application owns an API permis-
sion, like android.permission.INTERNET, also any piece of code dynamically
loaded by it will benefit of the same permission, and, thus, in this case, it can
open sockets. At a lower level, this implies that dynamically loaded code runs
in the same process of the main application and, therefore, it has the same UID,

11



GID, and it is a member of the same supplemental groups.
Finally, under an operational point of view, whenever an Android device

performs DCL, the OS provides the corresponding DEX classes to the run time
environment (i.e., DVM, or ART), which will load and execute them. Since the
runtime environment is responsible for this operation and it can interpret only
Dalvik byte code, the three input files supported as sources for DCL are: (1)
direct DEX files, (2) JAR archives that contains an extra classes.dex entry
(i.e., invoking the dx tool on the original JAR, as presented in Subsection 2.1.2),
and (3) APK archives, whose classes are automatically translated into a DEX
file by the Android tools at build time.

2.2.1 DexClassLoader API

dalvik.system.DexClassLoader has been present since the first versions of
Android API (version 3), and, as the name suggests, belongs to the family of
the Class Loaders. A developer can use them to load additional code at run time
by providing the URI of an external file, which stores the implementation of the
Java classes to load. In particular, since DexClassLoader relies on the Android
runtime, it takes as input only sources containing DEX files and translates
all of them into either an ODEX or an ELF file. Finally, for performance
improvements, it caches these optimized files into a folder that the developer
indicates at the time of DexClassLoader instantiation.

Although using this class properly is not a näıve task, official documentation
on the topic is miserable: the only affordable resource for this purpose is the
API reference page in the Android Developer website [3]. Still, this page lacks
many useful pieces of information. Firstly, description on how to use DexClass-
Loader class is poor. Moreover, differently from other well-written sections of
Android documentation and tutorials, there is not even a simple code example to
show how to properly setup DexClassLoader instances. These two deficiencies
together makes learning effort for this API consistent for a developer, especially
if he is willing to load additional code from a JAR container, since nowhere it
is explained how to add a classes.dex entry to a JAR container (i.e., invoking
the dx tool, present in the Android SDK, on the target container). Last but
not least, the reference page does not present any of the security bugs coming
from a sloppy use of DexClassLoader class, except for the danger of storing
optimized classes on the external storage, which, as the guide correctly suggests,
a developer can mitigate by requiring an application-private folder for caching
optimized classes. After this overview on the behavior, we introduce the two
relevant methods of DexClassLoader API.

The first one is the class constructor, whose signature is shown in Figure 2.4.
It is responsible of interpreting the first String parameter dexPath, which is a
list of strings pointing to source containers for DCL, separated by a special
path char (default value is “:”). Each one of these containers is analyzed and,
if any DEX file is found in the resource, the constructor translates it into an
optimized file format (i.e., ODEX, or ELF) and then stores the resulting file at
the location provided by the developer through the second String parameter op-
timizedDirectory. A developer may also decide to attach in the process extra
native libraries, written in C/C++, by filling in the third String parameter
libraryPath, and he can even opt for changing the parent loader of the Dex-

ClassLoader instance by setting a different class loader object in the fourth

12



Figure 2.4: DexClassLoader constructor. A screen shot of the signature of the
constructor for the DexClassLoader class, as presented in the API reference
page.

Figure 2.5: DexClassLoader loadClass(). A screen shot of the signature of
the loadClass() method, as presented in the ClassLoader API reference page.

parameter parent. Still, modifying these last two parameters from the default
values (respectively null and getClassLoader()) is usually not necessary.

The second method of interest is loadClass(), whose signature is presented
in Figure 2.5. This method, inherited directly from ClassLoader, takes as an
input a String parameter that is the name of the class that DexClassLoader

look for, among all the cached ODEX or ELF files created by the constructor. If
DexClassLoader finds one class implementation matching the target class name,
it returns an instance of such a class; otherwise it raises a ClassNotFoundEx-

ception. Notice that, to successfully find and load a class, DexClassLoader
requires its full name, which embodies both the package name and the class
simple name, separated by a dot.

In the end of this subsection, we present a näıve code example in Listing 2.1
showing how to properly initialize a DexClassLoader instance and how to set
it up for loading an external class, named com.example.MyClass, from a JAR
archive, whose path is stored in the helper variable jarContainerPath. This
snippet also shows how to setup an application-private folder for caching the
optimized version of the code container and which exceptions must be handled
in the process.
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Listing 2.1: DexClassLoader example snippet.

MyClass myClassInstance = null;
String jarContainerPath = getFilesDir().getAbsolutePath() + "/exampleJar.jar";
String dexOutputDirPath = getDir("dex", MODE_PRIVATE).getAbsolutePath();

DexClassLoader mDexClassLoader = new DexClassLoader( jarContainerPath,
dexOutputDirPath,
null,
getClassLoader());

try {
Class<?> loadedClass = mDexClassLoader.loadClass("com.example.MyClass");
myClassInstance = (MyClass) loadedClass.newInstance();

// Do something with the loaded object myClassInstance
// e.g. myClassInstance.doSomething();

} catch (ClassNotFoundException e) {
e.printStackTrace();

} catch (InstantiationException e) {
e.printStackTrace();

} catch (IllegalAccessException e) {
e.printStackTrace();

}

2.2.2 Benign developers and dynamic code loading

After presenting an example of API for DCL, the next question that we address
is how benign developers of Android applications can benefit from the use of it.
Indeed, there are several reasons that justify DCL in application development:

• Behavior customization. This is the most obvious reason why a devel-
oper should use DCL. The concept is to select the piexe of code to load
dynamically depending on the configuration of the running mobile device.
As an example, think about an application, customized by a phone ven-
dor, using the camera, which needs, depending on the model of the user’s
device, to load a different class to handle it properly. Also suppose that,
although being produced by the same vendor, some devices may have
both a front and a rear camera, whereas some others only the rear one
and, thus, we should find a solution that manages properly this differences
in the hardware components. Well, a neat way to abstract properly over
this plethora of different configurations would be to set up, in the main
application, a specific component that, at run time, checks the model of
the mobile phone and load dynamically the correct handler class, so to
support each camera properly.

• Flexible code reuse. Many applications may decide to share a certain
library container, common to all of them (e.g., video codec, or graphic
libraries) by dynamically loading classes from it, instead of having a local
copy of the same library file for each app. The plus is that storage space
is saved for better uses; the minus is that, since these applications are
sharing the same source container, we should put extra care on how the
system manages this container to avoid possible security threats.

• Application extensibility. The typical scenarios for showing this ad-
vantage are games that let the user add extra features by paying a certain
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fee or premium versions of popular applications. The idea here is to intro-
duce extra functionalities into the same application and, therefore, DCL
can be used to load code from a previously fetched, remote source archive
that contains, for example, code for a new level of a game, or an unlocked
functionality for a premium application.

• Self-upgrade functionality. This feature regards especially non-standalone
libraries (e.g., advertisement frameworks) included into other applications.
The default update distribution mechanism from application stores con-
flicts with continuous release-oriented development practices, where small
and frequent updates are released often. In particular, non-standalone
libraries developers are forced with the standard process to rely on the
final application, using their libraries, to have their code updated to the
latest version, since the app developer is responsible to import always the
latest versions of all the libraries in his code. On the other hand, we think
that it would make more sense to have the system working in the opposite
way round, that is, every time that a new version update is released for a
library, all the applications should just be pointed to run it automatically.
We name this latter strategy, which decouples the update mechanism of
libraries from those of the applications that contain them, silent-update,
and we find out that DCL is extremely useful to implement it since each
application relying on an external library can simply fetch at run time the
latest version of the source container, from the web domain of the library’s
developer, and, thus, execute the newest version of the library’s code.

• Memory footprint reduction. Differently from static code, where all
the classes are immediately compiled and stored in the phone memory, a
positive effect of DCL is storing only code that needs to run in memory
and, thus, contributing in minimizing the code footprint.

2.2.3 Malicious developers and security threats

Although we showed that DCL brings several advantages, unfortunately there
are some security drawbacks as well. In particular, malware authors may use
DCL techniques to attack mobile devices with two different strategies, fully
described in [15] and resumed in the next two paragraphs.

Evasion of off-line detection systems An attacker may use DCL to execute
a malicious payload from a statically benign application in different ways. For
example, she may use it to bypass the Google Bouncer, the off-line detection
system that analyzes all the incoming applications willing to be published on
the Play Store. In this case, to avoid detection, the attacker needs to design the
submitted application so that it does not contain malicious code statically, but
rather it downloads and load the malicious payload at run time, after having
been installed on users’ devices. Notice that, in this scenario, it is impossible for
an off-line system, like the Bouncer, to detect the malicious functionality in the
app because the analyzed code does not constitute a threat at the moment of the
analysis, and, moreover, the Bouncer cannot infer anything on the genuineness of
the code that will be loaded at runtime. With the same technique, an attacker
can also avoid detection from antivirus programs, since in Android they are
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nothing more than regular applications, limited by the sandbox model, and thus,
able only to compare signatures of the static APK against notorious malwares.
For this reason, also antivirus have no chance to detect the loaded malicious
code at run time.

Code injections against benign applications A different attack scenario
involves the use of DCL into benign applications. More in the details, native
Android API for DCL does not implement on the code loaded dynamically any
check on integrity, nor on developer authentication. In particular, while a user
downloading an application from the Play Store, can be sure that the installed
APK was not tampered on the road thanks to code signing, the same does not
hold for DCL. In fact, since the runtime environment (DVM or ART) does not
perform any signature verification on the loaded code, it will execute any byte
code provided in the code containers. Thus a remote attacker, who succeeds
in modifying the bytecode of the original source APK or JAR container, will
see her repackaged code executed by the runtime environment. This attack is
particularly dangerous, if you recall that dynamically loaded code runs with the
same permissions of the callee application and, so, in case of a successful attack,
the malicious injected code will run with the same permissions and full access
to the same data of the original benign application.

2.3 Threat model and problem statement

After having presented in the previous subsection the two attack scenarios for
a malicious guy relying on DCL, from now on, we will restrict the analysis only
on the latter presented case, in which developers of benign applications do not
get it right and inadvertently introduce security bugs in their code using DCL.

In particular, in our threat model the attacker is a MITM able to exploit
the fact that a benign application does not validate dynamically loaded code
properly, so as to execute arbitrary code. This can happen in various ways,
remotely or locally. To clarify which kind of attacks are allowed in our threat
model, we now introduce a simple interaction diagram, represented in Figure 2.6
that summarizes the main steps that a benign developer has to face to perform
DCL from a remote code container. Here it is the procedure:

1. The developer must fetch the code container from the remote location.

2. The developer has to save the fetched code archive on the mobile device’s
storage.

3. Because of the behavior of some API for DCL (e.g., DexClassLoader

API), the developer has to initialize a folder, where the already loaded
optimized version of the DEX files will be stored for caching. This helps
to improve the API performance in successive load operations on the same
source containers.

4. Finally, the developer needs to initialize the loading object from the native
API. During the initialization phase, he will define the fetched archive as
a source container for DCL and, later, he will use the object to perform
DCL of the target classes.
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Developer App 1. Fetch myLibrary-dex.jar from
a remote URL

myLibrary-dex.jar

2. Store myLibrary-dex.jar 
on the phone storage.

Optimized
Dex

3. Prepare a directory “optimizedDex”
to cache loaded dex files. Developer’s tasks

4. Initialize the object for dynamic code loading
from native API (e.g., DexClassLoader), and load the target class from the 
fetched source JAR container.

Figure 2.6: An interaction diagram that outlines the main steps that a developer
has to follow to perform DCL from a remote code container. In particular, notice
that steps 1, 2, and 3 must be implemented by the developer, even if native API
could have possibly taken care of them in his place.

After having discussed the interaction diagram, we next highlight the three
types of errors possibly introduced by benign developers that a MITM attacker
can leverage to create an exploit. As a summary, Figure 2.7 presents small
additions over the previous diagram by highlighting in red the errors introduced
by developers and in green the corresponding best practices that fix them. In
particular, the three conceptual mistakes are the following:

1. Fail to fetch the remote code in a safe way. No matter how simple
this may sound but not using the secure HTTPS protocol, or using it
incorrectly, may lead to an easily exploitable MITM vulnerability that
an attacker can leverage to inject arbitrary code in the running device.
A practical example is shown in Figure 2.7a, where the developer uses an
insecure HTTP connection to fetch the remote code container and, because
of this, the MITM attacker is able to substitute the original library file
with a repackaged version containing an extra malicious payload.

2. Fail to store code in a private location. Developers could just not
be aware of the file-system permissions in Android; for this reason, they
may simply store the (securely) retrieved code in a world-readable, or
worse, world-writable path. If it is not the developer’s fault, the under-
lying, vendor-customized OS may just adopt unsafe default permissions,
different from the best practices. In both cases, a local attacker (e.g.,
malicious application) may just exploit a race condition and overwrite the
original code with a repackaged version that, when executed, will inject its
malicious code at runtime. As an example, at first, consider Figure 2.7b
that presents the case where a developer stores the securely fetched re-
mote container into a world-writable location (e.g., external storage) and
the attacker is able to overwrite it, and execute her code without raising
any warning. Similarly, Figure 2.7c depicts another code injection attack,
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based on the same principle, where the developer fetched the source code
in a safe way and he stores it in an appropriate application-private folder
but, unfortunately, he carelessly initializes the optimized DEX folder in
a world-writable location. The attacker can now simply copy, or possi-
bly overwrite, a repackaged version of the optimized file and, at the next
load on the same code container, the Android OS will cache the malicious
optimized file and execute it.

3. Miss or fail to implement security checks on the fetched code.
A developer who fails in implementing this operation cannot evaluate
whether the fetched and stored code has been spoofed. This last error
is the key point of the whole discussion: In fact, all the attacks presented
in Figure 2.7 can be prevented by enforcing a proper policy based on code
signing of the code container, prior to DCL. By adding this security re-
quirement, the Android OS will allow the injection of additional code only
if the source container successfully verifies security checks based on code
signing. Still, by now, it remains unrevealed how this security verification
should be carried out.

To summarize, the problem that we want to solve is designing a protocol, and
later on an easy-to-use tool, based on the same protocol, that helps the benign
developers in implementing remote DCL securely in their Android applications.
The final system should fulfill this requirement under the threat model that we
outlined at the beginning of this section, if not even under a lighter extension of
it, which assumes that the attacker was also able to compromise the web domain
holding the code container and, therefore, she can substitute the original code
container with a repackaged version of it at her liking. To achieve the previous
goal, we require our tool to perform its task without incurring into anyone of
the security errors that we presented a while ago.
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Developer App 1. Fetch myLibrary-dex.jar from
a remote URL using HTTP

myLibrary-dex.jar

2. Store myLibrary-dex.jar 
on the phone storage.

Optimized
Dex

3. Prepare a directory “optimizedDex”
to cache loaded dex files.

4. Initialize the object for dynamic code loading
from native API (e.g., DexClassLoader), and load the target class from the 
fetched source JAR container.

MITM
attack

The app loads a 
repackaged, malicious 

JAR container now.

(a) Failure to fetch the source code securely: The developer uses an HTTP connection, instead
of an HTTPS secure one.

Developer App 1. Fetch myLibrary-dex.jar from
a remote URL using HTTPS 

properly.

myLibrary-dex.jar

2. Store myLibrary-dex.jar 
on the phone storage in a 

world-writable location (e.g., 
external storage).

Optimized
Dex

3. Prepare a directory “optimizedDex”
to cache loaded dex files.

The app 
loads an 

overwritten 
version of 
the code.

Code injection 
attack4. Initialize the object for dynamic code loading

from native API (e.g., DexClassLoader), and load the target class from the 
fetched source JAR container.

(b) Failure to store the fetched code: The developer stored the fetched source container into
a world writable folder (e.g., external storage).

Developer App 1. Fetch myLibrary-dex.jar from
a remote URL using HTTPS 

properly.

myLibrary-dex.jar

2. Store myLibrary-dex.jar 
on the phone storage in an 

application-private location.

Optimized
Dex

3. Prepare a directory “optimizedDex”
in a world-writable location to cache 
loaded dex files.

The app loads an 
overwritten version of the 

DEX classes.

Code 
injection

attack

4. Initialize the object for dynamic code loading
from native API (e.g., DexClassLoader), and load the target class from the 
fetched source JAR container.

(c) Failure to store the fetched code: The developer stored the optimized cached version of
the code container into a world writable folder (e.g., external storage).

Figure 2.7: Comparison through interaction diagrams of the main errors that a
developer may introduce in his code while performing DCL.



2.4 State of the art

After stating the problem that this work attempts to solve, we present in this
section some of the related research solutions targeting the similar issues. In
particular, we try to present the different alternatives by categorizing them
according to the similarity of the issue that they claim to solve.

More in the details, Subsection 2.4.1 presents two solutions to the issue of
verifying code prior to its execution on the mobile devices; whereas, Subsec-
tion 2.4.2 focuses on how to analyze and validate properly third-party libraries
before an application employs them in its code.

2.4.1 Code verification

The problem of code verification prior to execution has been a challenging issue
in several areas of computer science. For the Android OS, the first issue regards
DCL since the Android runtime environment performs no code verification (i.e.,
cryptographic signature verification) on the implied source containers but, in-
stead, it simply injects the found byte code. To solve this issue, Poeplau et all
proposed in [15] a partial rewriting of the DVM, which, at their time of writing,
was the unique runtime environment in Android OS. This provides the DVM
with an extra verification mechanism, mandatory for all the applications, that
grants the integrity of the code prior to its execution and mitigates all attacks re-
sulting from the ability to load external code at runtime. To perform integrity
checks, the proposed rewritten DVM relies on external verification providers,
which are trusted elements that states whether a certain piece of code is al-
lowed to run or not. Although the modifications of the DVM are quite cheap
in terms of performance, applying them to the underlying Android framework
is not; in particular, they would require forcing a system update for all the An-
droid devices, which will certainly be a troublesome operation given the issue of
fragmentation due to different OS versions, devices, and vendor-customizations.

A slightly different problem, faced in [18], is increasing the authentication
properties of the Android markets whenever a new application is installed. In
fact, differently from other systems, the Android OS suggests developers to
generate and use self-signed certificates for signature verification. This design
choice fell short under a security point of view as many malware authors tried
in the past to distribute, also through the official market, repackaged version
of popular applications containing an additional malicious payload. This at-
tack is indeed extremely easy in the current Android scenario since there is no
verification on the effective entity that release a certain certificate, and, there-
fore, an attacker could simply impersonate a popular company that provides
applications, with the Android OS incapable of discriminating between the at-
tacker’s certificate and the real company’s one. The solution that Vidas and
Christin developed in their work was to design a verification protocol that alle-
viates this issue by creating a PKI-like infrastructure over DNS: As to verify the
authenticity of their code, the developers must place the signing certificate on
a DKIM or TXT record of their own domain name, which is required to match
the reversed string extracted from the Java package name. With this trick, the
authors ensures end-to-end integrity for applications; still, their approach makes
no attempt to analyze the inner workings of an application or to protect the user
from originally-malicious applications. Anyway, in our scenario, this solution
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would not be sufficient because it offers stronger authentication properties only
on application marketplaces and not also on the devices at runtime. For this
reason, like other off-line detection techniques (e.g., the Google Bouncer), also
this solution cannot counteract attacks relying on DCL.

2.4.2 Third-party libraries’ security checks

Another research problem, which is quite close to the one stated before, regards
library-centric threats and, in particular, assessing whether a third-party library,
embedded into an application, is indeed benign and trustworthy or present some
suspicious, or even malicious, behaviors. To overcome this problem, Hu et all
presented in [12] Duet, a library integrity verification tool for Android appli-
cations that acts at application store level. Regarding its internals, this tool,
at first, fetches copies of many libraries across the web, as distributed by the
original library providers and reverse-engineer each one of them to reconstruct
a set of Java byte code classes (.class). Once this process is completed, Duet
computes, for each of these reverse-engineered libraries, both the digest of a
merged file containing all the set of the .class classes and the digests for each
single .class entry in the library. Finally, it stores all of these digests into a ref-
erence database. Whenever a new application containing third-party libraries
is submitted to the market, Duet computes once again both types of digests
on the incoming reverse-engineered library and, if matches are found in the
database, then we are sure that indeed the incoming library was not tampered.
Although useful, Duet has the limit of being, by design, a yes/no detection tool,
which implies that, once there is no match in the digest, the tool will simply
label the tested library as suspicious although the reasons behind this can be
not malicious (e.g., the reference database may not contain an instance of the
incoming library and, therefore, Duet will not find any matching digest during
the analysis).

A different research work [11] by Grace et all. targets embedded ad libraries
in the Android ecosystem, and in particular, it presented a system called AdRisk
to identify potential risks in third-party libraries systematically. The idea, here,
was to first decouple the embedded ad libraries from their host apps, and then
analyze them through AdRisk so to detect statically any risk, ranging from
uploading sensitive information to remote (ad) servers, till executing untrusted
code from Internet sources. After having analyzed 100 representative in-app ad-
libraries, this study claimed that many of these applications collects private user
data and, although some of these data were clearly used for benign purposes,
it was difficult to justify the collection of many others of them. The authors
also pointed out that among these 100 representative libraries, five of them
fetched and loaded code dynamically by relying on the use of DexClassLoad-

er API. Although the API for DCL were detected, AdRisk, a static analysis
tool, could not label this applications as certainly malicious. Proof of this is
that, among these five applications, the authors were able to found, only after
manual inspection, two samples that indeed fetched a malicious JAR container
that, when injected at run time, would have turned the host into a bot listening
to the commands coming from a remote controller.
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2.5 Goals and challenges

Finally, after having introduced the threat model and the problem that this
work aims to solve in Section 2.3, we summarize the requirements for the design
of our system by presenting a list of three goals, along with the challenges to
bear in mind for each one of those. Here is the list:

1. Our first goal is to design and implement a code-verification protocol suit-
able for DCL scenarios. While designing this protocol, we should consider
that:

(a) The verification protocol should be practical enough to be imple-
mentable as a drop-in, developer-friendly Java library that replaces
the native API without requiring any code modifications beyond sim-
ple refactoring.

(b) Our library should introduce negligible runtime overhead, and be
able to work securely even when no Internet connectivity is available
(i.e., should handle caching without any code or permission leaking).

(c) Our library should handle three basic functionalities, namely retriev-
ing, storing, and loading code, wrapped in one simple high-level func-
tion.

(d) While designing the library, we need to balance usability, which would
mean a high-level, and probably more secure API, with flexibility,
which would mean exposing more freedom to the developer, resulting
in a less secure API.

(e) Finally, a main assumption is that the code loaded dynamically is
benign, which is reasonable because it is developed and deployed by
benign developers. As such, once landed on the client, the code will
not try to escape our API at loading time (e.g., using reflection or
other tricks typically adopted by malware developers).

2. The second goal is to help developers to use our library with little or no
effort.

3. The third goal is to help application vendors and distributors, which do not
need to be developers or security experts, to migrate existing applications
effortlessly from the native API for DCL to the proposed one, without
need for the source code or for writing even a single line of code.
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Chapter 3

Grab’n Run: approach

In this chapter we present the approach designed to overcome the issues outlined
in Section 2.3.

At the beginning of the chapter (Section 3.1), we provide an overview of the
verification protocol for secure dynamic code loading by splitting it into logical
phases that we map into a sequence diagram of a simple use case.

Each step is detailed in Section 3.2. In Section 3.3 we show how GNR solves
by design all the errors presented in Section 2.3 and conclude with alternative
approaches and their shortcomings (Section 3.4).

In Section 3.5, we outline the methodology used to design our repackaging
tool to translate calls to the original API to calls to the GNR API, without the
need for the application’s source code.

We reserve details on the implementation of GNR library and the repackag-
ing tool for the next chapter.

3.1 Approach overview

We focus our approach on remote DCL (i.e., code fetched from a remote server).
Local DCL is actually a simplification where the man in the middle is on the
device.

In essence, our approach is based on the idea of running a cryptographic
code-verification protocol before executing every dynamically loaded code con-
tainer (e.g., JAR, APK, DEX class files). The verification protocol follows five
steps:

• Step 1: Code retrieval. Fetch remote code containers via HTTP/HTTPS.
Both protocols are acceptable since the protocol verifies the code out of
band. For local containers, we do not need this step since code is already
on the device.

• Step 2: Code storing. Store the retrieved remote containers in a folder
accessible (read and write) only by the application that performs DCL; lo-
cal containers are imported as well in the same application-private folder.
This step is not only a security requirement but it also reduces the per-
formance overhead of the whole system since, in case of successive load
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User
Smartphone

Grab’n run: show interactions during the verification process
Use case: an app verifying an archive to add advertisement components 

and execute its classes using dynamic code loading

Advertisement 
library

repository

Advertisement 
developer
website

Step 1: Code retrieval. Fetch APK 
container via HTTP or HTTPS

Package name: 
com.weadv.mobile

We skip 
this step for local

containers

Step 3: Certificate location resolution. 

Visit www.weadv.com/mobile/certificate.pem
and download the certificate via HTTPS

Step 4: Certificate retrieval. 

Import the certificate into an app-private directoryCertificate file name: 
com.weadv.mobile.pem

Step 5: Signature verification. 
Verify the signature of the classes in the APK

against the certificate’s public key

Load the required
class from the APK

Step 2: Code storaging. 
Store APK container into 
an app-private directory

Discard the container
and reject loading

Figure 3.1: Sequence diagram of a simple use case of remote DCL. The dia-
gram shows interactions between the user application and the advertisement
library servers. All the steps of our verification protocol are highlighted. All
lines marked with a green lock-pad must be secure interactions (e.g, HTTPS
encrypted connections).

operations, it prevents to fetch repeatedly the same remote code contain-
ers.

• Step 3: Certificate location resolution. We need to know where
to retrieve the certificate from. We build the location either by means
of a naming convention or of configuration information provided by the
developer.

• Step 4: Certificate retrieval. Fetch remote certificate at the con-
structed URL via HTTPS. Here, differently from Step 1, it is fundamen-
tal that the connection is guarantees integrity and sender’s authenticity,
so that the attacker cannot tamper with the certificate.

• Step 5: Signature verification. All the entries inside the retrieved
code container are verified against the certificate. If at least one of them
does not pass the signature verification check, the container is discarded.

Figure 3.1 provides a self-explanatory use case of the verification protocol,
in which a developer wants to dynamically load an advertisement library.

3.2 Verification protocol details

In this section, we dissect and examine in details each step of our approach.
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3.2.1 Step 1: Code retrieval

During this first step, the developer needs to provide the location of one or
more containers. For all of those, which are not directly accessible on the phone
storage, the device must fetch them from the web via HTTP or HTTPS. The
protocol used to download the container is not relevant since, later in the pro-
cess, we plan to verify both integrity and signer authentication on any piece of
code prior to its loading. We think that this choice is a good trade-off because,
although keeping the system secure against MITM attacks, it does not force li-
brary developers to serve all their resources to HTTPS, with obvious advantages
in terms of performance since SSL is not necessarily required for code retrieval.

3.2.2 Step 2: Code storing

The next step is storing all the candidate code containers into an application-
private directory. In our protocol, forcing containers’ storage in an app-private
folder is essential to prevent a local attacker (e.g., malicious application) from
overwriting the retrieved containers after a successful security verification pro-
cess. In fact, if the container would have been stored in a world-writable location
(e.g., external storage), a local attacker could overwrite the code container. This
requirement allows us to claim that, once a container is evaluated positively, it
can be always considered a trustworthy element since only the running appli-
cation can modify it but, in our threat model, we assume the application to be
benign, so trustworthy, thus not interested in tampering the container.

To lower times that the system has to fetch a remote container or to import
a local one, we set up a caching strategy. More in the details, whenever the sys-
tem imports a new code container into the application-private folder, it renames
the container as digest of the file plus the file extension (“.jar” or “.apk”). This
is an easy solution to disambiguate each container and avoid naming conflicts.
For the local case, before importing a container, the system calculates its digest,
checks whether there is a matching file in the app folder according to the in-
troduced naming convention, and, if so, caches this match instead of importing
the external container. On the other hand, for the remote case, the system
needs a strategy to understand whether a remote container has been already
stored without fetching it. One suitable solution is to use a table structure with
three fields per entry: (1) the URL at which the remote container is located,
(2) the name of the corresponding local container under our convention, and
(3) a time-stamp that indicates when the container was fetched. Thanks to this
table, every time that a remote container should be fetched, the system checks
instead whether a container associated with the input remote URL is present in
the table. If so, it retrieves the name of the linked local container and it checks
whether this cached copy actually exists in the folder. If this is the case, the
system verifies the container’s freshness by means of the time-stamp in the table
and, if the outcome is positive, it picks that container. On the contrary, when-
ever any of the previous checks fail, the system attempts to fetch the remote
container and, in case of success, it adds an entry to the table for the newly
fetched container.
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Input package name Corresponding remote certificate’s URL
it Invalid package name thus no valid URL.
it.polimi https://polimi.it/certificate.pem
it.polimi.necst.mylibrary https://polimi.it/necst/mylibrary/certificate.pem

Table 3.1: Construction of certificate URL from package name. The table lists
the rules used to reverse a container package name into a valid URL location.
The final suffix is “certificate.pem” by default. Package names must have at least
two not-empty, dot-separated subfields to be considered meaningful, otherwise
no link will be produced. The first two subfields are reverted and used as domain
name; whereas the successive terms are just appended to reconstruct the folder
structure of the URL. We enforce all the constructed URL to use the HTTPS
protocol.

3.2.3 Step 3: Certificate location resolution

The next step is retrieving the certificate of the developer that signed and pub-
lished that code. Our approach provides two alternative ways to obtain the
remote location of the certificate: (1) by constructing a URL by reversing the
package name of the target class to load; (2) a configuration map that developers
fill in the application’s source code. This object associates each package name
to the remote URL of the certificate that the protocol must use to validate all
the classes, and therefore all the containers, that share that package name.

For the first method, Table 3.1 summarizes the rules and gives examples on
how we construct remote certificate’s URL starting from a package name. While
this method is extremely simple, it does not grant enough flexibility since it
requires the developer to satisfy tight constraints on web domain names. That is
why we decided to provide a second solution, which requires little extra code but
greatly improves flexibility for the developer. This latter solution is acceptable
under a security point of view because, in our threat model, the MITM attacker
is not able to modify the code of the running application in memory therefore
she cannot even change the association between package names and certificates
in the developer-provided map. Table 3.3 presents an example of such a map,
whereas Table 3.4 shows how the different containers, presented in Table 3.2, are
linked with the appropriate certificate’s location according to the configuration
map.

3.2.4 Step 4: Certificate retrieval

For this step many of the considerations made in Step 1 and Step 2 still hold.
However, there is a strong difference: here it is necessary that the remote cer-
tificate is fetched through an encrypted and authenticated connection (e.g., via
HTTPS). This is a single point of failure in our model since, as soon as the
remote certificate is not correctly fetched (e.g., an attacker exploits a vulnera-
bility in the SSL protocol to substitute the legitimate certificate with a different
one), the attacker can easily compromise the security of our protocol. In differ-
ent words, we may say that remote certificates are the trusted elements of our
model.

Once the remote certificate is fetched, our approach requires to store it into
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Source code container for DCL Corresponding package names
Container1.apk com.example.cont1

Container2.jar
it.polimi

it.polimi.net

Container3.apk com.example.cont3

Table 3.2: Example of containers and their package names. Differently from
APK, which has a unique package name, JAR containers may have several of
them.

Package name Corresponding remote certificate’s URL
com.example.cont1 https://polimi.it/certificate1.pem
it.polimi https://polimi.it/certificate2.pem
it.polimi.net https://polimi.it/certificate2.pem

Table 3.3: Example of a possible configuration map that a developer can use
to indicate the location of remote certificates. Each entry connects one package
name with the corresponding URL of the certificate that the system must use
to validate a container including that package name.

Source code container for DCL Corresponding remote certificate’s URL
Container1.apk https://polimi.it/certificate1.pem
Container2.jar https://polimi.it/certificate2.pem

Container3.apk
No certificate for the verification

since the developer did not link any
of them to com.example.cont3

Table 3.4: Binding between containers and certificates. This table shows how
the code containers, presented in Table 3.2, are linked with the corresponding
certificate for the verification according to the settings provided in the con-
figuration map of Table 3.3. In particular, the last container has no binded
certificate because there is no entry in the map matching its package name to a
certificate’s location.

an application-private folder to prevent an attacker from tampering or over-
writing it. During the process, we rename certificates with the corresponding
package name associated with them in Step 3. For this reason, whenever a new
remote certificate is required, at first our system looks for a local certificate in
the folder named with the corresponding package name and, if it finds one, it
caches that copy; otherwise it fetches and import the remote certificate. One
may argue that a package name is not the best way to identify a certificate
but, in this particular scenario, it can be an acceptable choice for three facts:
(1) Google suggests developers to generate key pairs, and thus certificates, that
last for a long period of time (e.g. 25 years) [16] and, therefore, an application
changing its certificate is an unlikely event; (2) since developers are identified
with their certificate, once more, they are forced to keep the same certificate for
as much time as possible; (3) also package name must always remain untouched
across different versions of the same application. To sum up, both certificates
and package names are elements that tend to remain constant across different
versions of benign applications and that is why our system can reasonably link
them.
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3.2.5 Step 5: Signature verification

The input of this step is a container, which carries those classes that the de-
veloper wants to load dynamically, and a certificate, which is we use to verify
the genuineness of the container. The output of this step is a yes/no answer
indicating whether the code can be loaded (i.e., genuine) or not. The answer
is based on two aspects, integrity and authentication. Firstly, we consider the
integrity of all the entries of the container, which means that we will not accept
to load code from a container, in which there is one (or more) entry that does
not verify its signature. Secondly, we authenticate each entry of the container
to verify that it is actually signed by the developer associated with the trusted
certificate.

Algorithm 1 presents in pseudo-code how the signature verification process
works. The idea is that at first, we look for the manifest of the container. The
manifest of a Java-based archive contains all the signatures of the relevant entries
in the archive. A missing manifest or a non-matching is a necessary (yet not
sufficient) condition to discard the archive up front. For the reminder archives,
we verify the corresponding signature, stored in the container’s manifest, against
the public key, stored in the trusted certificate. A non-matching signature
happens in two cases: (1) the file entry in the archive has been altered after
the initial signing process; (2) the file entry has been signed or resigned with
a private key different from the one coupled with the public key in the trusted
certificate. In both cases, the algorithm rejects the container. Note that the
verification can fail for non-intentional causes. The benign library developer,
for example, may forget to sign the container or to resign it after a modification
of one of the entries; or, then again, the app developer may have coupled the
wrong trusted certificate with the code container in the app’s sources. Anyway,
our protocol assumes that it is library developer’s responsibility to sign his code
prior to publication and app developer’s task to pair correctly code containers
and certificates. We think these requirements are not troublesome to accomplish
since: (1) they can be easily automatized and integrated into development’s
tools; (2) app developers are used to sign their not dynamic code.

Moreover, our system introduces a caching strategy to benefit from the re-
sults of previous signature verifications, so to verify each container only once,
independently from the number of load operations performed on it. To achieve
this goal, the system relies on package name to discriminate which classes can
be immediately loaded or rejected without an extra signature verification. In
particular, whenever the system verifies a container, it propagates the result of
this verification to all the package names contained in it. Thus, when a new load
operation involves an already evaluated package name, the system can simply
refer to the previous outcome of the verification, instead of performing a new
one.

3.2.6 Code and certificate binding

After having analyzed the steps of our verification protocol, we discuss how our
system binds containers, certificates, and classes.

Containers and certificates In Step 5 the binding between containers and
certificates is constructed through the package name, which is an identifier for
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input : An APK/JAR container cont, a trusted certificate cert
output: True/False on whether cont verifies signature against cert

if cont has no Manifest then
// The container is not signed at all.

return False;

end

pk ←extractPublicKeyFromCert(cert);

foreach file entry fe in cont do
if fe is in the Manifest then se ←getSignatureForAnEntry(fe);
else

// This entry is not signed.

return False;

end

valid ←verifySignatureAgainstTrustedPK(fe,se,pk);

if ! valid then
// Entry fe was altered or not signed by the expected trusted

private key.

return False;

end

end

// Reaching this statement implies that all the entries passed the

signature verification.

return True;

Algorithm 1: Signature verification of a container against a trusted
certificate.

APK containers. Indeed, once an app is released on the Play Store, the policy
forces the developer to keep the same package name across different versions.
JAR containers, differently from APK, can have many package names (poten-
tially their number can be equal to the amount of classes in the JAR) thus a
developer, who wants to load many classes from the same JAR, could possibly
need to fill the configuration map with many package names all pointing to the
same certificate. To solve this issue, we decide to extend the current definition
of package name by introducing the concept of “root package name”. This is
the shortest but still significant package name, which is a common prefix for the
highest number of package names in the container. In particular, we consider a
package name significant if and only if it is composed by two or more not-empty
words separated by single dots. Table 3.5 presents an example of the JAR cor-
ner case that helps to understand how useful is the addition of root package
name for both our protocol and for the application developers, who will have
to fill in the configuration map with far fewer entries. According to this new
principle and to make developers’ job easier, we will ask them, while using our
final library, to link root package names with remote certificate’s URL.

Containers and classes Also for containers and classes we define a binding
through the package name. In this case, we did not actually make a choice but
we inherited this constraint from Android ClassLoader API for DCL because
many of them (e.g., DexClassLoader, PathClassLoader) only provide the final
user with the possibility to state which class to load but not in which container
to look for that class. Since one of our goals is designing a library, whose API
are as close as possible to the Android native ones, and since we want to avoid a
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Classes in the JAR
Entry without

root package name
Entry with

root package name
it.polimi.ClassA it.polimi it.polimi

it.polimi.test.ClassB it.polimi.test it.polimi

it.polimi.test.one.ClassC it.polimi.test.one it.polimi

it.polimi.settings.ClassD it.polimi.settings it.polimi

it.polimi.main.ClassE it.polimi.main it.polimi

Table 3.5: JAR corner case and root package name. We consider a JAR archive
containing five classes with five different package names. As shown in the table,
without the root package name, a developer has to populate the configuration
map with five different entries, each one pointing to the same remote certificate;
whereas, with this concept, the number of entries in the map is reduced to one
(i.e., the root package name it.polimi summarizes all the classes in the JAR).

full scan (and signature verification) on all the containers per load operation, we
decide to maintain an associative map to link package names to their containers.
With this simple addition, whenever a user attempts to load a class, our system
extracts its package name from the full class name, retrieves in one shoot the
possibly linked container, and finally it performs a signature verification of this
container against the certificate associated to the same package name (or too its
root package name when no certificate is directly associated with it). Figure 3.2
shows a summarizing example on how, starting from a class to load, our library
should extract the package name and use it to retrieve both the associated
container and the trusted certificate.

3.3 Approach validation

In Section 2.3, we presented three main errors that a developer can introduce
while using DCL with native API. In this subsection, we discuss how our remote
verification protocol solves and prevents each one of these three issues. More in
the details:

• The first error was fetching the code to load in an unsafe way (e.g., make
use of HTTP connection). Our protocol fetches code containers coming
from both HTTP and HTTPS connections. However, independently from
the chosen transport protocol, the system performs integrity verification
on any piece of code, before loading it dynamically. Therefore, even if an
attacker is able to replace the original container with a malicious one by
exploiting an unsafe HTTP connection, our protocol detects and rejects
the repackaged container, thus preventing the malicious code from being
loaded.

• The second error was storing the fetched code in a world-writable location
on the device (e.g., external storage). We design our system to store any
fetched remote resource (i.e., container, certificate) into an application-
private folder (modifiable only by the running application, which we as-
sume trustworthy). The protocol forces also the import of any local con-
tainer into the same private folder since these archives may have been
saved into a writable area, accessible by the attacker. To sum up, the
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com.example

Dev
Cert

Trusted certificate

Container File path

Verify container
against trusted 

certificate

The developer invokes the load method with the class name of the target class to load:

ClassA classA = mDexClassLoader.loadClass(com.example.ClassA)

Package name extraction

/mnt/sdcard/my-library.jar

com.example.pem

Figure 3.2: Bind containers and certificates via package name. Whenever the
app developer tries to load a class, our library should extract the corresponding
package name and use it to discriminate which container may have an implemen-
tation of the target class and which certificate to use for verifying the signature
of the container.

protocol always saves any implied resource into an app-private read and
write area of memory.

• The third error was missing or failing to implement integrity checks to
verify that the fetched and stored code has not been tampered, before
loading it. Our protocol requires a successful signature verification on
code containers against a trusted certificate provided by the developer
before allowing loading classes dynamically from them. Thanks to code
signing, our system grants both that a container has not been tampered
or repackaged, after having been signed, and that the signing process was
performed by the owner of the public key stored in the trusted certificate.
A successful result on both of these checks is a sufficient evidence to allow
DCL from a container.

In conclusion our protocol secures (by design) the DCL of Android under
the outlined threat model and it can detect at runtime whether a source code
container passes the signature verification check and load classes accordingly.

3.4 Alternative approaches

After having presented our approach, we discuss three alternative solutions and
highlight their shortcomings.

3.4.1 Use certificate in the container for verification

One may think to use directly the certificate inside of the code container instead
of fetching an external trusted one. However, this is extremely insecure under
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our threat model. In fact, we cannot trust the certificate inside the container as
the only element for the verification because, obviously, if we need the system to
be able to retrieve the container via HTTP and an attacker can substitute the
container with a repackaged version, she may also easily resigns this container
with a private key under her control before performing the substitution; in this
case, the repackaged container would result as perfectly legitimate since it would
successfully verify the signature against the certificate inside of it. Instead,
besides integrity of the container against its own certificates, our verification
protocol requires also that the trusted certificate provided by the developer is
among those ones used for the signature verification. Thanks to this measure,
we can grant that an executed code container is not only undamaged (i.e., not
tampered) but also approved by the legitimate developer.

3.4.2 Use a digest in place of a trusted certificate

Another alternative is the use of a securely-retrieved digest, instead of a trusted
certificate, to verify container’s integrity. This method does not fully meet
the requirements of the final system, specifically in allowing silent updating
strategies in the easiest way for developers. Once the certificate is cached, the
verification protocol can use it to validate all the containers coming from a cer-
tain developer, independently from the container’s version (this is a reasonable
assumption because it is likely that a developer signs all the versions of his ap-
plications with the same private key). Instead, using a digest computed on the
container requires that, every time that a new version of a container is released,
a new digest must be computed, published, and stored securely. This is both-
ersome for the developer, who must remember to make available a new digest
via an HTTPS URL every time that he updates his library. In simple words,
using a digest makes the system too strict, with respect to updates, with no
additional security benefits.

3.4.3 Alternative binding between containers and certifi-
cates

In Section 3.2.3, we proposed the use of a configuration map for a flexible bind-
ing between code containers and the required certificate for their verification.
While designing the protocol, we evaluated an alternative approach based on
storing the list of the certificates for the verification into an XML custom tag,
or set of tags, into the application manifest. In the end, we opt for the map
because, although being a simpler solution, it also offers enough flexibility to
the developer, who can customize it with a fine granularity (i.e., one-to-one
mapping between each package name and a certificate).

After this choice, a linked problem was deciding which attribute to use as a
key in this map. We evaluated several possibilities:

• Absolute container file path. This is a näıve solution since file paths
are usually long strings and, particularly in our scenario, where all the
code containers are stored in the same app-private folder, it is an enormous
waste of memory.

• Container file name. Although preventing the memory’s waste, this is
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a bad choice since it is extremely easy to hit naming conflicts, especially
when the system fetches many code containers from the web.

• Hash of the container file. This idea solves naming conflicts since it is
unlikely that different containers hash to the same exact value. However,
it does not scale with the release of new versions of the same library. In
fact, every time that a new version of the container is published, the hash
changes as well; this would force the application developer to insert a
different key (hash) in the map per new release thus it would make the
system impractical for supporting silent updates of third-party libraries.

• Package name of the container. In the end, we selected this attribute
as the key since it is a valid identifier for every APK and it remains
constant across the different version of an application. Thus, this solution
is the most convenient to handle silent updates and to overcome naming
conflicts. The only remaining issue is represented by JAR containers but,
as explained in Subsection 3.2.6, we were able to overcome this problem
thanks to the introduction of root package names.

3.5 Migrating existing code to Grab’n Run

In this section, we present the conceptual details of the repackaging tool to port
an Android application to use GNR API.

The idea is modifying as little as possible of the original application by
patching only those sensitive points of the archive, which directly make use of
DCL methods. With this premise, the goal is, given a non-obfuscated working
application using native API for DCL and some settings provided by the original
app developer, to obtain a DCL-secured version of the input application, which
is still full-working but makes use of GNR API. Here we summarize the steps
of the approach:

1. The tool performs static analysis on the input APK to retrieve whether
this container needs to be patched and, in case, which further extra permis-
sions (i.e., android.permission.ACCESS NETWORK STATE, android.per-
mission.INTERNET, and android.permission.READ EXTERNAL STORAGE),
required by GNR API, should be added to its manifest.

2. Then, the tool disassembles the original APK container. It manipulates
the manifest file for adding extra permissions and parses the intermediate
representation of the Dalvik bytecode.

3. Next, the tool identifies the sensitive points, where the native API for
DCL is used.

4. The tool substitutes each one of the sensitive points with an equivalent
method call, or snippet of code, which makes use of the functions from
the GNR API. The patching of the sensitive points differs according to
the developer-provided settings.

5. Finally, the tool reassembles the patched version of the original container
to reconstruct a runnable and fully-working application.
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Chapter 4

Implementation details

In this chapter we describe the implementation details of the Grab’n Run library
and the repackaging tool, which are the two implementations of the approach
outlined in Chapter 3.

At first (Section 4.1), we present open-source GNR library, which imple-
ments our remote verification protocol, acting as a wrapper of DexClassLoader
API and extends it both in security and functionality. More in details, in Sub-
section 4.1.1 we provide an overview of GNR architecture and on the use of its
API. Later, we examine the main components of the library (Subsection 4.1.2
- Subsection 4.1.6) with particular attention on the two main classes, Secure-
LoaderFactory and SecureDexClassLoader.

Next, in Section 4.2 we explain in great details how we implement the signa-
ture verification algorithm used by SecureDexClassLoader to evaluate whether
a class should be loaded.

In Section 4.3 we introduce the details on the implementation of the repack-
aging tool that we realized to ease migration from the original, insecure API
and reduce boilerplate code.

4.1 Grab’n Run: Library implementation

4.1.1 Overview and example usage

Table 4.1 maps each step of our verification protocol, as presented in Section 3.1,
to the corresponding classes of the GNR library that execute them. Differently,
Figure 4.1 shows a summarizing UML diagram that reports the relevant classes
of the current implementation.

The most important classes are SecureLoaderFactory, a factory class that
initializes secure loading components, and SecureDexClassLoader, which wraps
DexClassLoader and exposes a backward-compatible yet secure code-loading
API. We can logically map the main functionalities of SecureLoaderFactory

to the ones of the constructor of DexClassLoader and the loadClass() method
of the former to the corresponding one in the latter.

Now, we present a resume on how, and in which order, these two classes help
the developer obtaining a working snippet for performing DCL.

1. Initialize SecureLoaderFactory. At first, the developer initializes an
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Step of the verification protocol GNR classes performing the step
Step 1: Code retrieval CacheBinder (SecureLoaderFactory)

FileDownloader (SecureLoaderFactory)
Step 2: Code storing SecureLoaderFactory

Step 3: Certificate location resolution SecureLoaderFactory

Step 4: Certificate retrieval CacheBinder (SecureDexClassLoader)
FileDownloader (SecureDexClassLoader)

Step 5: Signature verification PackageNameTrie (SecureDexClassLoader)
SecureDexClassLoader

Table 4.1: Mapping between the verification protocol’s steps and GNR classes.
This table links each step of the verification protocol described in Section 3.1
with one (or more) classes that performs that step in GNR library. Classes in
brackets embed the classes that actually perform the step.

instance of SecureLoaderFactory, which requires a reference to a running
Activity object.

2. Initialize SecureDexClassLoader. Calling the method createDexClass-

Loader() returns a SecureDexClassLoader instance. Alongside the usual
parameters required by DexClassLoader’s constructor, the developer must
pass an associative map that links package names to the URL of the re-
mote certificate to verify code signature. We explained the reason for such
a map in Subsection 3.2.3.

3. Load code dynamically. Next, the developer uses the loadClass()

method on SecureDexClassLoader to load the class specified with its
full name. SecureDexClassLoader returns a class object if the imple-
mentation of the class is inside a successfully verified JAR or APK code
container.

4. (Optional) Wipe out cached resources. At the end of the process, since
GNR caches code containers and certificates to increase both performance
and success rate in the loading procedure, a developer may desire to delete
any or all the cached resources by using the wipeOutPrivateAppCached-

Data() method on the SecureDexClassLoader object.

Listing 4.1 compares the implementation of the same functionality with GNR
vs original API DexClassLoader (Listing 2.1). The goal of the code snippet
is loading an instance of com.example.MyClass from the code container at
a remote URL saved in the variable jarContainerPath. The snippet shows
how to properly handle the returned value of the loadClass() method since
a null reference is returned in case of a security constraint’s violation during
the loading process. We list possible return values and the security constraints
in Subsection 4.2.1. Although the developer has to handle only two classes
for performing DCL, the interactions among the internal components are more
complex: Figure 4.2 presents a sequence diagram showing the internal calls
between the five main classes of GNR, starting from the initialization till a class
is dynamically loaded.

The next subsections present all the main components of the library by
providing an overview on their purpose in the global system, their main methods,
and relevant implementation details.
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Figure 4.1: GNR UML class diagram. A representation of the main classes that compose GNR library. A final user only instantiates
SecureLoaderFactory and SecureDexClassLoader objects; whereas the remaining classes are internal helper ones. This diagram was
obtained by reverse-engineering GNR project with a tool, named GenMyModel.
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Listing 4.1: GNR example snippet.

MyClass myClassInstance = null;
jarContainerPath = "http://something.com/dev/exampleJar.jar";

try {
Map<String, URL> packageNamesToCertMap = new HashMap<String, URL>();
packageNamesToCertMap.put( "com.example",

new URL("https://something.com/example_cert.pem"));

SecureLoaderFactory mSecureLoaderFactory = new SecureLoaderFactory(this);
SecureDexClassLoader mSecureDexClassLoader =
mSecureLoaderFactory.createDexClassLoader( jarContainerPath,

null,
getClassLoader(),
packageNamesToCertMap);

Class<?> loadedClass = mSecureDexClassLoader.loadClass("com.example.MyClass");

// Check whether the signature verification process succeeds..
if (loadedClass != null) {

// Here class loading was successful, and performed in a safe way.
myClassInstance = (MyClass) loadedClass.newInstance();

// Do something with the loaded object myClassInstance
// e.g. myClassInstance.doSomething();

}

} catch (ClassNotFoundException e) {
// This exception will be raised when the container of the target
// class is genuine but its implementation is missing in the
// source archive..
e.printStackTrace();

} catch (InstantiationException e) {
e.printStackTrace();

} catch (IllegalAccessException e) {
e.printStackTrace();

} catch (MalformedURLException e) {
// The previous URL used for the packageNamesToCertMap entry
// was a malformed one.
Log.e("Error", "A malformed URL was provided for a remote certificate location");

}

4.1.2 SecureLoaderFactory

SecureLoaderFactory is a responsible of initializing the components that han-
dle DCL. As regards the remote verification protocol, which we outlined in
Section 3.1, this element covers roughly Step 1 to 3. At implementation level,
SecureLoaderFactory provides two methods: a constructor and a generator of
SecureDexClassLoader objects.

Constructor The invocation of this constructor lets SecureLoaderFactory

gain a hook to the complete mobile phone state (e.g., network, storage, and file-
system access) for later operations. This is accomplished by requiring a Cont-

ext object (e.g., the Context inside of an Activity class, or even an Activity

itself) as a mandatory parameter. Developers may also provide an extra integer
parameter to set up the maximum time span, in days, for which SecureLoad-

erFactory will consider a local copy of a remote code container fresh enough to
be cached. Therefore, whenever a container exceeds this time interval, instead
of caching it, SecureLoaderFactory discards it and retrieves a fresh copy of
the corresponding remote resource.
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Developer SecureLoader
Factory

CacheBinder
createDexClassLoader(..)

checkForCachedEntry(..)

Step 2: Code storaging.
Store fetched containers and import local 

ones.

File
Downloader

Step 1: Code retrieval.

downloadRemoteURL(..)

Return cached container, if any.

Return fetched container.

Step 3: Certificate location resolution.
Sanitized incoming associative map.

Return SecureDexClassLoader.

SecureDex
ClassLoader

CacheBinder

checkForCachedEntry(..)

File
Downloader

Step 4: Certificate retrieval.

downloadRemoteURL(..)

Return cached certificate, if any.

Return fetched certificate.

new SecureLoaderFactory(..)

Return SecureLoaderFactory.

new SecureDexClassLoader(..)

Return SecureDexClassLoader.

setCertificateLocationMap(..)

loadClass(..)

getPackageNameWithCertificate(..)

Return package name with
the certificate to use.

PackageName
Trie

verifyContainerSignatureAgainstCertificate(..)
Return loaded class or null.

Step 5: Signature Verification.

Figure 4.2: Sequence diagram at implementation level. This diagram shows the
interactions between the five main components of GNR so to perform a DCL
operation. The methods invoked by the components are typed in italics. Dashed
lines represent interactions that may not happen (i.e., it is not always necessary
to fetch a remote resource like a certificate). In the diagram we also point out
how the interactions are linked with the steps of our verification protocol.
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Listing 4.2: Signature of SecureLoaderFactory’s constructor.

public SecureLoaderFactory( ContextWrapper parentContextWrapper,
int daysBeforeContainerCacheExpiration);

Create a SecureDexClassLoader instance The second relevant method
of this class is createDexClassLoader(). Its signature is close to the class
constructor of native DexClassLoader, except for three differences: (1) this
method leaves out the optimizedDirectory parameter, which points to the
folder used to store ODEX or ELF files during the loading process; (2) it requires
a reference to the associative map linking package names to certificates’ remote
location; (3) it returns a SecureDexClassLoader object instead of a DexClass-

Loader one.

Listing 4.3: Signature of SecureLoaderFactory’s createDexClassLoader().

public SecureDexClassLoader createDexClassLoader(
String dexPath,
String libraryPath,
ClassLoader parent,
Map<String, URL> packageNameToCertificateMap,
boolean performLazyEvaluation);

Focusing on the internals of the implementation, the first step is parsing
the dexPath string to locate the paths of the potential code containers for
class loading. Differently from DexClassLoader, which is able to handle only
containers already saved on the local device storage, our class can manage also
paths pointing to remote code containers.

In fact, whenever SecureLoaderFactory finds a remote URL, it queries an
internal component, named CacheBinder and described in the next subsection,
to understand whether a fresh copy of the corresponding remote resource has
been already stored into a previously reserved application-private folder on the
device. If this is the case, the URL of the local copy is selected instead of
the remote one; otherwise, SecureLoaderFactory delegates another component
of GNR library, FileDownloader (see Subsection 4.1.5), to fetch the remote
container. Once the download is complete, SecureLoaderFactory stores the
fetched code container in the same app-private folder, after having renamed it
accordingly to the naming convention presented in Subsection 3.2.2. Similarly
to the remote case, when SecureLoaderFactory parses a path pointing to a
local archive, it checks whether this resource has been already imported in the
application-private folder. If so, it caches the internal copy; otherwise, it imports
and renames the local archive with the usual naming convention and then its
patches the corresponding dexPath segment with the new correct file path of
the resource.

Once SecureLoaderFactory finishes to analyze all the containers’ paths, it
sets up another app-private folder that will be used for storing cached ODEX or
ELF files generated by successful load operations in SecureDexClassLoader.

File dexOutputDir = mContextWrapper.getDir("dex_classes", ContextWrapper.MODE_PRIVATE);

Next, SecureLoaderFactory performs an extra sanity check on the associa-
tive map, provided by the developer, on both its keys (i.e., package names) and
its values (i.e., remote certificates’ URL). In particular, SecureLoaderFactory
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evaluates both the validity of the package names (i.e., a series of two or more
non-empty words, split by dots) and of the corresponding certificate (i.e., not
null reference, must use HTTPS protocol otherwise SecureLoaderFactory will
enforce it).

// Sanitize fields in packageNameToCertificateMap:
// - Check the packages names (only not empty strings divided by single separator char)
// - Enforce all the certificates URL in the map can be parsed and use HTTPS
Map<String, URL> santiziedPackageNameToCertificateMap =

sanitizePackageNameToCertificateMap(packageNameToCertificateMap);

After that SecureLoaderFactory has taken care of removing invalid entries
from the associative map, it generates a SecureDexClassLoader instance by
invoking its class constructor with the previously validated parameters and,
finally, it returns the resulting object to the caller.

// Initialize SecureDexClassLoader instance
SecureDexClassLoader mSecureDexClassLoader = new SecureDexClassLoader(

finalDexPath.toString(),
dexOutputDir.getAbsolutePath(),
libraryPath,
parent,
mContextWrapper,
performLazyEvaluation);

// Provide packageNameToCertificateMap to mSecureDexClassLoader
mSecureDexClassLoader.setCertificateLocationMap(santiziedPackageNameToCertificateMap);

return mSecureDexClassLoader;

4.1.3 CacheBinder

CacheBinder is an helper component, instantiated by SecureLoaderFacto-

ry, to keep track of the binding between remote code containers, identified
by their remote URL, and the corresponding local file copies, cached in the
application-private folder during previous fetching operations. The need for
such a component comes out because of our naming convention, which requires
the digest of the container to identify a cached archive. Since it is impossible
to compute the hash of a remote resource without actually fetching it (and we
clearly do not want it since we implemented a caching mechanisms precisely to
avoid to fetch continuously remote containers), we need a component, Cache-
Binder, to store and manage these pieces of information.

Listing 4.4: Signature of CacheBinder’s constructor.

CacheLogger(String cacheDirectoryPath, int daysTillConsideredFresh);

In particular, CacheBinder relies on a simple data structure, a three-column
table, which links the remote URL of the target container with the corresponding
file name of the local cached copy in the application-private folder and with a
time-stamp, recording when the local copy was fetched from the web.

Whenever the caller requires a new SecureDexClassLoader object, Se-

cureLoaderFactory creates a CacheBinder object by providing a parameter,
daysTillConsideredFresh, which was previously set in SecureLoaderFacto-

ry’s contructor.
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CacheLogger mCacheLogger = new CacheLogger(importedContainerDir.getAbsolutePath(),
daysBeforeContainerCacheExpiration);

When initialized, CacheBinder recreates the previously introduced three-
column table by parsing an helper file, stored in the app-private folder and con-
taining previous valid bindings. Every time that SecureLoaderFactory finds
a remote URL for a source container, it queries CacheBinder by providing this
URL to the method checkForCachedEntry; CacheBinder now answers with
either the name of the corresponding local cached copy or with a null.

final String checkForCachedEntry(String remoteURL) {

// If the remote URL is contained in the map, return the
// linked fresh local container
if (remoteURLToLocalFileMap.containsKey(remoteURL))

if (new File(cacheDirectoryPath + File.separator +
remoteURLToLocalFileMap.get(remoteURL)).exists())

return remoteURLToLocalFileMap.get(remoteURL);

// Otherwise no cached entry..
return null;

}

Notice that CacheBinder answers null in the following situations: (1)
when it does not find a valid entry in the table, (2) when it founds an en-
try pointing to a not-existent local resource, or (3) when the corresponding
local container results not fresh enough after comparing its time-stamp with
daysTillConsideredFresh; in the latter two scenarios CacheBinder updates
the table by removing the line of the missing or rotten container. In case of a
null return value, SecureLoaderFactory fetches and imports the remote con-
tainer with the usual naming convention and, later, it notifies CacheBinder to
add a new entry to the table for the new local resource; otherwise it caches
the local copy. Finally, when SecureLoaderFactory ends to parse the path
strings, it notifies CacheBinder of such an event; CacheBinder now frames the
current situation by storing the state of the table into the previously mentioned
helper file. This operation helps to keep consistency between the state of the
application-private folder and the CacheBinder instances.

4.1.4 SecureDexClassLoader

SecureDexClassLoader is the main class of the library and it handles the last
part of the remote verification protocol (Step 4 and Step 5). SecureDex-

ClassLoader wraps an instance of DexClassLoader and, accordingly to the
outcome of the security checks presented in step 5, it either prevents the call to
the native loadClass() method on the wrapped DexClassLoader or invokes it
allowing the dynamic load operation to happen.

Listing 4.5: Signature of SecureDexClassLoader’s constructor.

SecureDexClassLoader( String dexPath,
String optimizedDirectory,
String libraryPath,
ClassLoader parent,
ContextWrapper parentContextWrapper,
boolean performLazyEvaluation);

42



Initialization When SecureLoaderFactory invokes SecureDexClassLoad-

er’s constructor, the latter object instantiates its internal components including
a FileDownloader, responsible for fetching remote resources and presented in
the next Subsection, and a PackageNameTrie, an object that, given a package
name, returns the certificate that should be used for the corresponding container
verification (we describe PackageNameTrie in Subsection 4.1.6).

// Initialization of the linked internal DexClassLoader
mDexClassLoader = new DexClassLoader(dexPath, optimizedDirectory, libraryPath, parent);

certificateFolder = parentContextWrapper.getDir(CERTIFICATE_DIR,
ContextWrapper.MODE_PRIVATE);

containerFolder = parentContextWrapper.getDir(SecureLoaderFactory.CONT_IMPORT_DIR,
ContextWrapper.MODE_PRIVATE);

mPackageManager = parentContextWrapper.getPackageManager();
mFileDownloader = new FileDownloader(parentContextWrapper);
mPackageNameTrie = new PackageNameTrie();

// Maps initialization
packageNameToCertificateMap = new LinkedHashMap<String, URL>();
packageNameToContainerPathMap = Collections.synchronizedMap(new LinkedHashMap<String,

String>());

Next, SecureDexClassLoader parses the paths of the code containers from
which classes will be loaded and, for each one of those, it extracts all the package
names associated to the container. Operatively, we can accomplish this task
easily for an APK container since a simple query to the PackageManager object
returns the package name of the archive.

// APK container case:
// Use PackageManager to retrieve the package name of the APK container
if (mPackageManager.getPackageArchiveInfo(containerPath, 0) != null) {

packageNameSet.add(mPackageManager.getPackageArchiveInfo(containerPath, 0).packageName);
return packageNameSet;

}

return null;

On the other hand, we do not have a similar API for JAR containers and so
the extraction of the package names is a bit more laborious: at first, we need to
extract the classes.dex entry into the JAR archive; not finding such an entry
automatically implies an invalid JAR container for DCL; on the contrary, if this
entry is found, the program loads temporarily this DEX file into an application
private folder; next, it analyzes all the class entries stored in the cached DEX
file and, for each class, it retrieves the package name by pruning the last dot-
separated token from the full class name; lastly, the algorithm returns a set
containing all these collected package names. Figure 4.3 shows an example of
run of this algorithm to clarify all the involved steps. As soon as a new set
of package names for a container is generated, SecureDexClassLoader adds
entries to an internal associative map to connect each package name with the
respective code container. This is a simple workaround for later use to detect
easily which archive may contain the implementation of a class, chosen by the
developer with the invocation of the loadClass() method on the SecureDex-

ClassLoader instance.

After the constructor invocation, SecureLoaderFactory calls an auxiliary
method to provide SecureDexClassLoader with the sanitized associative map,
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classes.
dex

com.example.ClassA

it.polimi.test.ClassB

Class Entries JAR Package Names

com.example

it.polimi.test

com.example.ClassB

Return these two
package names.

Figure 4.3: JAR package names extraction. This figure shows a run of the
algorithm to extract package names from JAR containers. At first, the clas-

ses.dex entry is extracted and parsed to retrieve all the class names. Finally,
for each class name, the algorithm erases the last subfield after the dot and it
returns the set of the collected package names.

filled by the developer, that connects package names to the related certificate’s
URL. SecureDexClassLoader replaces now all the empty entries in the map
with URL constructed by reverting the package name accordingly with the rules
summarized in Table 3.1.

Signature verification After the initialization of SecureDexClassLoader,
the next step for a developer is querying this object to load dynamically new
classes by invoking the loadClass() method. Since this is the core part of our
implementation we take the time to describe it fully in Section 4.2.

Wiping out app-private cached resources A developer may find some-
times useful to remove resources (i.e., APK, JAR containers, or certificates) that
have been cached in the application-private folders to force the retrieval of fresh
copies of the same resources in the next load operations. For such a reason,
SecureDexClassLoader offers a simple public method, wipeOutPrivateApp-

CachedData(), to perform this task.

Listing 4.6: Signature of SecureDexClassLoader’s wipeOutPrivateApp-

CachedData().

public void wipeOutPrivateAppCachedData( boolean containerPrivateFolder,
boolean certificatePrivateFolder);

In particular, this method takes as an input two boolean variables: the first
one informs SecureDexClassLoader whether the content of the cached code
containers’ folder must be wiped out, whereas the second parameter is used for
regulating deletion of the stored certificates. Trivial to say that a call to this
method with both the parameters set to false has no effect.

4.1.5 FileDownloader

FileDownloader is a utility class to fetch remote resources, like code contain-
ers or certificates, used for DCL. Both SecureLoaderFactory and SecureDex-
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ClassLoader relies on this component in their code. In particular, Secure-

LoaderFactory makes use of this class every time that the library user requires
a new SecureDexClassLoader instance and provides at least one URL for a
remote-located code container, which has not been fetched yet. On the contrary,
SecureDexClassLoader delegates FileDownloader to retrieve via HTTPS all
the remote certificates, not already fetched, for later signature verifications.

At implementation level, FileDownloader provides a single public method,
downloadRemoteURL(), to fetch a remote resource, which requires the remote
URL of the resource, the location on the device where to store the retrieved
file, and a boolean parameter, which specifies whether FileDownloader should
allow redirect links.

Listing 4.7: Signature of FileDownloader’s downloadRemoteURL().

final boolean downloadRemoteUrl( final URL remoteURL,
final String localURI,
final boolean isRedirectAllowed);

While the first two parameters are self-explanatory, we need to widen more
on the use of the third one. The reason for it is that allowing redirect links
is necessary in GNR for the implementation of silent updates for third-party
libraries. However, following redirect links can be a security threat because an
initially protected HTTPS connection may be downgraded to an HTTP one
therefore an eavesdropping attacker may try to manipulate data traffic on this
unencrypted and unauthenticated connection. For this reason, we implemented
GNR with the possibility to decide selectively whether a connection is allowed
to follow redirections depending on the type of the fetched file. More in the
details, FileDownloader should allow redirection whenever SecureDexClass-

Loader attempts to fetch remote containers (remember that our verification pro-
tocol allows the retrieval of code containers via both HTTP and HTTPS); on the
contrary, FileDownloader must deny redirection when SecureDexClassLoader

attempts to fetch a remote certificate, as to prevent the attacker tampering with
it.

4.1.6 PackageNameTrie

The last presented component is PackageNameTrie. The goal of this class is,
given a package name, finding whether or not it exists a root package name,
whose definition was presented in Subsection 3.2.6, binded with a valid certifi-
cate. To clarify this concept, we present a simple example: Let us assume that
a developer initializes a SecureDexClassLoader instance and provides in the
associative map a valid certificate linked to the package name it.poli; next,
he decides to load the class it.poli.test.one.MainClass; what happens is
that, when triggered with the package name it.poli.test.one of the target
class, PackageNameTrie returns as a root package name the string it.poli,
since it is the longest prefix of the target package name associated with a cer-
tificate. In case the developer adds an extra entry to the associative map like
(it.poli.test, any remote certificate URL), PackageNameTrie must return
the string it.poli.test to the previous method call. On the other hand, if the
developer tries to load com.exa.pack.OtherClass from the same SecureDex-

ClassLoader instance, PackageNameTrie must return no root package name
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since there is no significant prefix associated to a certificate.

Operationally, as the class name suggests, we designed this component by
creating a trie-like data structure. The process requires to populate the trie
with all the package names stored in each source container and then to mark
among these all of those binded with a valid certificate. Once this setup is
done, every query on an input package name can be reduced to a simple visit
of the trie, starting from the corresponding leaf and moving backward till the
algorithm reaches either a marked node or the root of the trie. Figure 4.4 shows
an example of the setup of the trie data structure, the assignment of the package
names with valid certificates, and the execution of some queries over it.

At implementation level, mapping this approach into code is not straightfor-
ward since Java API does not offer any ready-to-use implementation for a Trie
data structure. We thought that the most suitable replacement was an asso-
ciative map linking each package name to a boolean indicating whether a valid
certificate was associated to it. As explained in Subsection 4.1.4, when a new
SecureDexClassLoader object is instantiated, it parses the strings pointing to
the paths of the code containers and, for each one of those, it constructs the
list of the related package names. Each package name is stored in the Package-

NameTrie by invoking the method generateEntriesForPackageName().

final void generateEntriesForPackageName(String packageName) {

String currentPackageName = packageName;
boolean hasFoundAnAlreadyInsertedPackageName = false;

while (!hasFoundAnAlreadyInsertedPackageName) {

if (packageNameToHasCertificateMap.containsKey(currentPackageName)) {

// In this case this entry has been already inserted in the map
// so the process of package name generation stops here.
hasFoundAnAlreadyInsertedPackageName = true;

} else {

// Need to insert this entry by populating the map accordingly
packageNameToHasCertificateMap.put(currentPackageName, false);

// Now remove the last part of the package name and then
// repeat the previous step recursively.
currentPackageName = getUpALevel(currentPackageName);

}
}

}

This call inserts in the associative map, not only the input package name,
but also all the dot-separated prefixes of it. All of these key-entries in the map
are coupled with a false value because, by now, none of them has a certificate
associated. Later, when SecureDexClassLoader receives the sanitized map,
which links package names to certificates, it invokes the setEntryHasAssoci-

atedCertificate() method on the PackageNameTrie for all the keys in the
latter sanitized map. This method takes as an input a package name and, if
this is a key of the internal associative map of the PackageNameTrie, it sets the
corresponding value to true.

final void setEntryHasAssociatedCertificate(String packageName) {

if (packageNameToHasCertificateMap.containsKey(packageName)) {
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Input package names:

➔ it.poli
➔ it.poli.test
➔ it.poli.test.one
➔ it.poli.set
➔ com.exa.pack

1. Trie construction

Root

it com

exa

pack

poli

test set

one

Root

it com

exa

pack

poli

test set

one

Root

it com

exa

pack

poli

test set

one

Developer attaches a valid 
certificate to the package 

names:

➔ it.poli
➔ it.poli.set

2. Mark the trie

Developer performs queries on the trie.
Output is either null, or the most close 
package name with a valid certificate.

Examples of queries:

Input package name Output of the query

it.poli.test.one it.poli

it.poli.set it.poli.set

com.exa.pack null (No certificate found)

Package name 
with a valid 
certificate

Invalid
Package name

Figure 4.4: PackageNameTrie setup, certificate assignment, and use. Given the
initial set of the package names of the involved classes, the algorithm constructs
the corresponding trie-like structure, where each package name is divided into a
set of nodes (the dot character is the separator). Next, the algorithm marks all
the entries with a valid certificate on the graph; on the other hand, the root node
is always marked as an invalid node. Finally, when the developer provides a new
class to attempt to load, the algorithm extracts the corresponding package name
and navigates the tree from the associated leaf till the root node. If a valid node
is found on the traversal, the algorithm returns as a result the reconstructed
package name by appending the node’s string content, starting from the root
till the valid node; otherwise, if no valid node is found, it returns a null.
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packageNameToHasCertificateMap.put(packageName, true);
}

}

Finally, when SecureDexClassLoader needs to retrieve the root package
name, it simply invokes the getPackageNameWithAssociatedCertificate()

method.

final String getPackageNameWithAssociatedCertificate(String packageName) {

String currentPackageName = packageName;

if (!packageNameToHasCertificateMap.containsKey(currentPackageName))
return "";

while (!packageNameToHasCertificateMap.get(currentPackageName))
currentPackageName = getUpALevel(currentPackageName);

return currentPackageName;
}

Starting from the input package name, this method checks whether the cor-
responding value in the internal associative map is set on true; if this is the
case, PackageNameTrie returns the current package name; otherwise it chops
the last part of it by invoking the private method getUpALevel() and then it
repeats the previous check. The end condition for this method is reached when
either the algorithm finds a package name with an associated certificate or when
the algorithm reaches the root node (the empty string), after a chop, because
of a getUpALevel() method call.

private String getUpALevel(String packageName) {

int lastPointIndex = packageName.lastIndexOf(’.’);

if (lastPointIndex != -1)
return packageName.substring(0, lastPointIndex);

else
return "";

}

4.1.7 Implement silent update strategy with GNR

Our library is able to handle correctly silent update strategy. The goal is mak-
ing a developer able to have his application always running the latest version
of an included third-party library without bothering the app users with con-
tinuous requests of updates. This should happen while granting the smallest
effort for both the third-party library developer and the application developer,
which includes GNR in his code. In particular, as depicted in Figure 4.5, the
developer of the third-party library needs to setup two links: (1) a redirect link
pointing to the latest version of the third-party library archive, signed with the
developer’s private key; (2) a secure HTTPS link that points to the certificate
that embeds the developer’s public key. On the other side, Listing 4.8 shows
how the developer, who is willing to use the third-party library in his appli-
cation, has to create an instance of SecureDexClassLoader by providing the
redirect link as the dexPath parameter and an associative map that links the
package name of the library (e.g., com.example) with the secure link as the
PackageNameToCertificateMap parameter.
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myLibrary.jar 
developer

She stores
on the web:

1. A redirect link that points to the 
latest version of myLibrary-dex.jar, 
signed with the developer private 
key.

2. An HTTPS link that points to the 
developer certificate, stored in a 
safe location under the developer 
domain.

http://myLibrary.com/downloads/mobile/latest vers 1.8.1

vers 1.9.0

https://myLibrary.com/developerCert.pem

Figure 4.5: Modifications on library developer’s side for silent updates. Firstly,
she needs to provide a link to the latest version of the library (via both HTTP
and HTTPS protocol) and, secondly, a link to the certificate to verify the li-
brary’s container (via HTTPS protocol).

Listing 4.8: Code for silent updates on application developer’s side.

Map<String, URL> packageNamesToCertMap = new HashMap<String, URL>();
packageNamesToCertMap.put( "com.example", new

URL("https://myLibrary.com/developerCert.pem"));

SecureLoaderFactory mSecureLoaderFactory = new SecureLoaderFactory(this);
SecureDexClassLoader mSecureDexClassLoader = mSecureLoaderFactory.createDexClassLoader(

"https://myLibrary.com/downloads/mobile/latest",
null,
getClassLoader(),
packageNamesToCertMap);

Class<?> loadedClass = mSecureDexClassLoader.loadClass("com.example.ClassA");

With this settled, the app developer can load the target classes from the
latest version of the library’s container. In particular, when the library developer
releases a new version of her software, she simply needs to update the redirect
link to reference the new container’s version. On the app developer’s side,
nothing changes in the code. When the application starts the next time, GNR
retrieves the latest version of the container and validates it against the usual
trusted certificate; since also this new version of the library was signed with
the same developer’s private key, the signature verification process is going to
succeed and, therefore, the app is going to load the latest version of the library
classes.

4.1.8 Open-source release

We implemented GNR as a Java project starting and we made it publicly avail-
able on Github [10]. Our library is compatible with both the Android Develop-
ment Tool (ADT) and the Android Studio (AS) IDE and it is a drop-in tool that
a developer can easily insert in his Android projects. We also published GNR
on Jcenter to make it compatible with tools, like Maven, that automatically
handle library dependencies. In the repository, alongside the source code, a
developer can find full and extensive documentation in a tutorial-like format to
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learn quickly how to use GNR and even a simple example project, which shows
some of the advantages in choosing our solution over native DexClassLoader

API.

4.2 Signature verification: Implementation de-
tails

The signature verification is the core part of the implementation of Grab’n
Run. In Subsection 4.2.1, we describe the loadClass() method of SecureDex-
ClassLoader, which embeds the verification and is used to load new classes dy-
namically; in Subsection 4.2.2, we describe the implementation of this method;
whereas in Subsection 4.2.3, we present the two strategies (i.e., lazy, or eager)
used by SecureDexClassLoader to perform the operation.

4.2.1 Signature verification as a “black” box

After the initialization of SecureDexClassLoader (Subsection 4.1.4), the next
step for a developer is querying this object to load dynamically new classes by
invoking the loadClass() method, which, as its original counterpart, takes as
a parameter the full name of the target class to load.

Listing 4.9: Signature of SecureDexClassLoader’s loadClass().

public Class<?> loadClass(String className) throws ClassNotFoundException;

Also the return values of this method do not differ significantly from the ones
of the native DexClassLoader: this method, in fact, returns a class instance, in
case that an implementation for the target class is found into one of the code
archives that successfully pass the signature verification; a ClassNotFoundEx-

ception, whenever the code archives successfully overcome the security checks
but none of them contains an implementation for the target class; and a null

reference, in case that one (or more) of the security requirements of our model
was not respected. Obtaining a null as a return value is a necessary but not
sufficient condition to conclude that an attacker tried to compromise the user
application. For this reason, we present the full list of the situations in which Se-

cureDexClassLoader returns a null to the caller of the loadClass() method:

1. Missing trusted certificate. SecureDexClassLoader was not able to
find a valid certificate to evaluate the container before loading the target
class. This situation may happen for several reasons (e.g., the developer
forgot to insert an entry that links the package name of the target class
with a remote certificate URL, or he might have inserted a typo in the
certificate URL, or, then again, he might have provided a URL pointing to
an inexistent certificate, or, finally, the device might lack of connectivity
therefore it was unable to fetch the remote certificate).

2. Invalid trusted certificate. SecureDexClassLoader was able to re-
trieve a certificate for the validation but this element was not a suitable
one. For example, the certificate does not conform to the required X.509
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standard, it is expired, or it is the Android Debug Certificate(i.e., the cer-
tificate used to sign applications in Android IDE for debugging purpose,
which must be rejected at production phase).

3. Unsigned source archive. Although this may sound näıve, many devel-
opers of JAR libraries are not accustomed in signing their archives before
releasing them. This bad practice makes impossible realizing whether a
container is genuine or a repackaged one. For such a reason, SecureDex-
ClassLoader always denies DCL from unsigned JAR containers.

4. Archive verified only against untrusted certificates. In this case,
a code container satisfies the signature verification against a set of cer-
tificates, which, unfortunately, does not include the trusted one. Because
of this absence, SecureDexClassLoader must reject dynamic loading for
classes in this container.

5. Invalid signature. In this last case, SecureDexClassLoader checked a
container, which resulted properly signed against the trusted certificate,
except for one (or more) entry that does not match the expected signature.
This is the most probable scenario in which an attacker tried to repackage
a genuine container coming from a benign developer. In such a case, the
attacker manipulated some of the entries in the archive but, since she
does not own the private key of the developer, she is not able to resign
the code container and that is why the manipulated entries do not match
the signature anymore.

Notice that, whenever one of the latter three scenarios happens, SecureDex-
ClassLoader deletes the container from the application-private cache folder. On
the other hand, in the first two situations, SecureDexClassLoader keeps the
cached version of the container on the device storage because the issue is missing
a trusted and valid certificate and, therefore, the cached container should be
considered genuine until we are able to prove the opposite.

One of the goals of our project is keeping GNR library as simple and easy-to-
learn as possible for developers. For this reason, instead of modifying the load-

Class() method signature by introducing custom exceptions that may result
bothersome to learn and handle, we decide to simply return a null for failures.
One may argue that this is a too simplistic way to handle so many different cases
of failure; but, indeed, simplicity is exactly what we are looking for. Moreover,
we dabbed this aspect by implementing all the classes of GNR to log their
own key events, including outcomes of the steps of the verification protocol.
Arguably, we think that this solution is a good trade-off between simplicity and
security: in fact, those developers that are not interested in security details
can simply perform a not-null check on the return value of the loadClass()

method to verify whether they can load a class dynamically; on the other hand,
developers, who want to figure out what is happening behind the curtains, can
inspect the device’s logs to have a clear look on the state of the library’s classes
and on the reasons of failures of loading operations.

4.2.2 Signature verification as a “glass” box

After having presented the input and output relationship of the signature ver-
ification process, we describe how we implemented the algorithm for signature
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verification, previously outlined in Section 3.2.5. Appendix A.1 contains its Java
implementation, named verifyContainerSignatureAgainstCertificate().

Listing 4.10: Signature of verifyContainerSignatureAgainstCertifi-

cate().

private boolean verifyContainerSignatureAgainstCertificate(
String containerPath,
X509Certificate verifiedCertificate);

The input parameters of the algorithm are a code container and a trusted
certificate. Notice that these inputs has been already sanitized previously in the
code, thus the first parameter is a path pointing to a code container (JAR or
APK) with a classes.dex entry and the second parameter is a valid X.509 cer-
tificate. The return value of this method is a boolean, which assets whether the
input container is properly signed against the trusted certificate. The algorithm
is split into two parts: the first one is executed when the input container is an
APK, whereas the second one is triggered either when the input is a JAR con-
tainer or an APK that successfully passed the first part. Moreover, the method
returns a true value only when the second part of the algorithm ends correctly;
so, this method returns true when either a JAR container succeeds in the second
part or an APK passes both the first and the second part; any other control
flow returns false.

In the first part, the algorithm queries a PackageManager object to retrieve
the array of the certificates used to sign the APK container. Notice that, in
this case, Android API are inaccurate and even confusing since they call a
“signature” what in fact is a certificate. Once the array of the certificates is
available, the next step is reconstruct each one of these entries as a Certificate

object, starting from its byte stream, check its validity, and finally compare all
the reconstructed certificates against the trusted one.

// Recreate the certificate starting from this signature
inStream = new ByteArrayInputStream(sign.toByteArray());
certFromSign = (X509Certificate) certificateFactory.generateCertificate(inStream);

// Check that the reconstructed certificate is not expired..
certFromSign.checkValidity();

// Check whether the reconstructed certificate and the trusted one match
// Please note that certificates may be self-signed but it’s not an issue..
if (certFromSign.equals(verifiedCertificate))

// This a necessary but not sufficient condition to
// prove that the APK container has not been repackaged..
signatureCheckIsSuccessful = true;

If one of those matches the trusted certificate, then the APK container may
have been signed with the proper private key so it is worthy to evaluate it also
in the second phase; otherwise we can already reject the input APK. In other
terms, passing this step correctly for an APK container is a necessary but not
sufficient condition for succeeding in the signature verification.

In the second step, we can generalize each incoming container to be a JAR
(and indeed this is correct because APK containers are just an extension of
regular JAR). The algorithm passes the candidate JAR container, along with
the trusted certificate, to a subroutine called verifyJARContainer(). This
routine raises an exception in case that the JAR violates one (or more) of the
security constraints. This is fine since the caller of this method catches any

52



raised exception and, in turn, reports that the signature process failed. The final
step is analyzing how verifyJARContainer() works internally. Appendix A.2
shows its code.

Listing 4.11: Signature of verifyJARContainer().

private void verifyJARContainer(JarFile jarFile, X509Certificate trustedCert) throws
IOException;

We implemented this method as a slight modification of the example code for
JAR signature verification, provided by the Java Oracle documentation [8]. In
particular, after the initial sanity checks for not null parameters, verifyJARCon-
tainer() looks for the JAR manifest. In case of a signed JAR, this file contains
the list of the digests of all the file entries at the time of container’s signing.
JAR containers missing the manifest can be immediately rejected because they
have never been signed.

// Ensure the jar file is at least signed.
Manifest man = jarFile.getManifest();
if (man == null) {

throw new SecurityException("The container is not signed");
}

Next step is verifying that the digests of all the file entries in the archive
match the digests in the manifest file. For this purpose, the algorithm retrieves
the byte stream of each entry and use the read API method to parse it. While
reading each entry, a SecurityException is raised whenever the digest of the
current file entry does not match the corresponding digest stored in the manifest.

// Current entry in the jar container
JarEntry je = (JarEntry) entries.nextElement();

// Skip directories.
if (je.isDirectory()) continue;
entriesVec.addElement(je);
InputStream inStream = jarFile.getInputStream(je);

// Read in each jar entry. A security exception will
// be thrown if a signature/digest check fails.
while (inStream.read(buffer, 0, buffer.length) != -1) {

// Don’t care as soon as no exception is raised..
}

// Close the input stream
inStream.close();

This check ensures the integrity of all the entries in the JAR archive. As an
additional check, digest values for the manifest file itself are recomputed and
compared against the values recorded in the signature file. Once again, when
an entry does not verify the signature, a SecurityException is raised. This
second check grants that the signing process was performed by the private keys
coupled with the certificates inside the signature block files. For this reason,
the last step of this method is rebuilding, for each signed entry, the list of the
certificates used to verify it and checking that, among those, there is also the
trusted certificate. If this condition holds for all the entries, except folders and
files in META-INF folder, which are not signed by convention, than the JAR
container successfully verifies the signature.

// Every file must be signed except files in META-INF.
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Certificate[] certificates = signedEntry.getCertificates();
if ((certificates == null) || (certificates.length == 0)) {

if (!signedEntry.getName().startsWith("META-INF")) {
throw new SecurityException("The container has unsigned class files.");

}
} else {

// Check whether the file is signed by the expected signer. The jar may be
// signed by multiple signers. So see if one of the signers is ‘‘trustedCert’’.
boolean signedAsExpected = false;

for (Certificate signerCert : certificates) {
try {

((X509Certificate) signerCert).checkValidity();
} catch (CertificateExpiredException | CertificateNotYetValidException e) {

// On Android a common practice is using certificates (even self signed)
// with at least a long life span and so temporal validity should be enforced..
throw new SecurityException("One of the used certificates is expired!");

} catch (Exception e) {
// It was impossible to cast the general certificate into an X.509 one..

}

if (signerCert.equals(trustedCert)) {
// The trusted certificate was used to sign this entry
signedAsExpected = true;

}
}

if (!signedAsExpected) {
throw new SecurityException("The provider is not signed by a trusted signer");

}
}

4.2.3 Lazy vs eager strategy of verification

We implemented GNR such that two strategies (i.e., lazy and eager) are available
for signature verification. The lazy strategy implies that SecureDexClassLoad-
er evaluates each code container only at the exact moment in which the main
application performs a call to the loadClass() method for dynamically loading
a class in it. An ideal use case for this mode is when the developer sets up a
SecureDexClassLoader instance with a considerable number of containers but
the application has to load at runtime just a couple of classes, which may also
vary from one execution to the other, and so validating all the containers in
such a scenario can be a waste of time. As regards performance overhead, this
strategy becomes less efficient than the eager strategy, presented later, when Se-

cureDexClassLoader, during its life-cycle, has to evaluate almost all the code
containers.

Operationally, we implemented the lazy strategy by moving the signature
verification process of the single code container at the beginning of the load-

Class() method. Thanks to the associative map linking package names to
container that SecureDexClassLoader creates during its initialization, knowing
which container to verify, given the full class name, is trivial. In a similar fashion,
the certificate that must be used for the validation is obtained by querying the
PackageNameTrie object, which, given a package name, returns whether a root
package name with an associated valid certificate exists. If this test returns true,
the algorithm performs the signature verification and propagates the outcome of
the process to all the other package names pointing to the same container. With
this method and by checking whether a package name has been already verified
at the beginning of the loadClass() method, we grant that GNR evaluates
each archive only once.
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On the contrary, the eager strategy relies on verifying the signature of all the
containers concurrently as soon as possible (i.e., at the end of the initialization
phase before returning a new SecureDexClassLoader instance). This concur-
rent evaluation reduces, at run time, the execution overhead of the application
from the sum of the times for signature verification of all the containers, to,
more or less, the time for signature verification of the biggest code container.
After this initial burden, any successive call to the loadClass() method will
have execution time almost equal to the respective call on native DexClass-

Loader, thanks to the caching system on the results of signature verifications.
Since eager strategy seems to fit better with general-purpose use cases of our
library, we decided to have it as the default strategy. Anyway, a developer can
decide to apply the lazy one by simply providing an extra true parameter to
the createDexClassLoader() method invocation on a SecureLoaderFactory

instance.
Operationally, we implemented the eager strategy by iterating over all the

package names stored in the associative map linking package names to the re-
lated container. For each of these package names, the algorithm checks whether
a related root package name exists by querying the PackageNameTrie object
and, if this is the case, it adds an entry to a temporary associative map, where
the key element is the container linked to this package name and the value is the
root package name that holds a valid certificate. Next, the algorithm initializes a
thread for each entry of the latter associative map; every running thread, then,
performs the signature verification process, presented in the next paragraph,
on its associated code container against the trusted certificate provided by the
root package name and, in case of success, adds it to a set containing only the
successfully verified containers. Once all the threads complete their job, the
algorithm returns the SecureDexClassLoader instance to the developer. Now
every time that the developer wants to load a class dynamically, SecureDex-
ClassLoader will allow the operation if the package name of the target class is
linked to a container that belongs to the set of the successfully verified ones.

4.3 Repackaging tool implementation

In the final section of this chapter, we present the implementation of the repack-
aging tool, which follows the approach outlined in Section 3.5. We implemented
the repackaging tool as a Python script that relies on Androguard [5], an open-
source Python tool for reverse engineering and static analysis of Android appli-
cations, and apktool [6], another tool for reverse engineering third-party, closed,
binary Android applications. At first (Subsection 4.3.1), we introduce the set-
tings that a developer can customize for the patching process, whereas in Sub-
section 4.3.2, we describe the most important details of the script’s functioning.
Finally, Subsection 4.3.3 provides insights on some technical challenges solved
by our tool while patching smali code.

4.3.1 User settings

A developer can execute the script either by filling in a simple GUI or by launch-
ing from command line the script with an attached configuration file. For sim-
plicity sake, we now describe the required inputs by presenting the different
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screens of the GUI.

Figure 4.6: First screen of the repackaging tool GUI. In this window the devel-
oper can select the APK of the application that he wants to patch, alongside
all the containers that will be used by the application as sources for the DCL
operations.

In the first screen (Figure 4.6), the GUI invites the developer to select the
APK container that he wants to patch, alongside all the different code containers
that the developer plans to use in his application as sources for DCL. These
latter code containers can be, as usual, either APK or JAR with a classes.dex

entry. Moreover, the user can provide both a path pointing to a container
stored locally or a URL for remote containers. Once the user presses the OK
button, as to help deciding the strategy to validate the previously inserted code
containers, the GUI presents a drop-down menu with three options (Figure 4.7):
(1) validate all the containers against a unique trusted certificate, whose remote
URL is provided by the user (Figure 4.7a); (2) link each container with the
remote URL of a different trusted certificate (Figure 4.7b); (3) provide directly
an associative map linking package names to the remote URL of the trusted
certificates (Figure 4.7c). Notice that this latter option is the equivalence of
the PackageNameToCertificateMap that a developer would have to provide to
initialize a new SecureDexClassLoader object in the application source code,
therefore this option should be selected only by a developer, who knows how
this map works in the GNR library. On the other hand, if a developer prefers
an immediate and more easy-to-use solution, he should pick one of the first two
options, which provide a simple way to directly connect containers to certificates
and also offer the possibility to verify against a default trusted certificate all of
those code containers, encountered at runtime, which were not directly listed
by the developer in the settings customization phase.
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(a) Validate all containers against the same trusted certificate.

(b) Validate each container against a different trusted certificate.

(c) Provide an associative map that links package names to remote certificates’ location.

Figure 4.7: GUI screens of the three strategies to verify code containers in the
patched application. 57



4.3.2 Functioning

After having presented the inputs required by the tool, we discuss how the script
patches the input APK according to the user preferences. Figure 4.8 summarizes
the main steps of the process explained in details in the next paragraphs.

Analysis and preprocessing As soon as the developer ends the settings
customization phase, the first step of the script is assessing whether the in-
put APK is valid. We delegate this operation to the APK class in the An-
droguard API, which provides a convenient is_valid_APK() method to per-
form the job. Next, the script performs static analysis on the input APK
container to extract the sensitive points that are going to be patched later.
Once again, we relied on Androguard for collecting the required pieces of in-
formation: In particular, the internal androlyze Python script provides an
easy-to-use method, AnalyzeAPK(), which requires as input the path pointing
to the APK and returns a triple of objects that can be queried to obtain useful
pieces of information. Among those, the script extracts the set of the app per-
missions and, by comparing them with the ones required by the GNR library
(i.e., android.permission.ACCESS NETWORK STATE, android.permission.IN-
TERNET, and android.permission.READ EXTERNAL STORAGE), it can easily de-
termine which permissions adding to the Android Manifest of the APK to
patch. Moreover, during its analysis, Androguard traces the calls regarding
DexClassLoader API (i.e., DexClassLoader constructor, and DexClassLoad-

er.loadClass()) and it makes the results available though the two methods
analysis.is dyn code(), which returns a boolean on whether function calls
to the cited API are performed, and analysis.show DynCode(), which shows
exactly which classes and methods invoke DexClassLoader API functions, if
any. Therefore, our script must at first call analysis.is dyn code(): If the
call returns false than the APK does not need any patching so the script termi-
nates with an explicative message; otherwise, Androguard has just found some
relevant DexClassLoader function calls that the script needs to patch. In this
latter case, the script parses the textual output of the analysis.show DynCo-

de() method to create its own data representation of the sensitive points. Notice
that this preprocessing step on the sensitive points, although not being manda-
tory, is extremely useful to understand whether an APK needs to be patched,
which classes needs to be fixed, and which ones can be skipped straightaway.

Decoding and adding missing permissions At the current stage, we have
an APK container, which makes use of DCL, a list containing all the sensitive
calls to the DexClassLoader API, and, finally, the set of the permissions to
add to the Android Manifest of the APK. Now, the first step is disassembling
the APK archive so that the script can patch it. For this purpose, our script
invokes apktool with the decode option. This brings resources (including the
Android Manifest) back to nearly original form and it disassembles the clas-

ses.dex entry into a hierarchical set of smali classes, which are human-readable
and can be patched more easily compared to the Dalvik byte code. Once an
APK is decoded, a programmer can modify both the resources and the smali
classes; finally, apktool can rebuild the modified version of the container and,
if the developer did not introduce any mistake, he obtains back a working and
patched application. This is exactly what happens in our script. In particular,
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Figure 4.8: Repackaging tool functioning. This figure illustrates the main steps
of the repackaging script, starting from the input provided by the developer till
the return of the patched APK.

after that the APK is decoded by apktool, our script worries about adding to
the Android Manifest the missing permissions necessary for running GNR. An
Android Manifest is nothing more than an XML file and, for this reason, our
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script simply parses it by leaning on the xml.etree Python module and adds
extra nodes, one per each missing permission, to the XML root tree.

Patching smali classes Before rebuilding the decoded and modified APK
through apktool, the final step of the script is patching the smali code. Our
tool needs to modify two kinds of classes: (1) those ones that are or extends
the Activity class, (2) those ones that performs calls to the DexClassLoad-

er API. While the script has already collected the names of the classes in the
latter category, as explained in Paragraph “Analysis and preprocessing,” the
script detects classes for the former category on-the-fly. The reason for detect-
ing Activity classes is merely a technical implementation detail: Differently
from native DexClassLoader API, when a SecureLoaderFactory instance is
initialized in GNR, it requires a hook to a Context object (e.g., an Activity

class) to be able to perform basic operations on a device, like opening a file on
the local storage or checking the network state; for this reason, we need to keep
track of all the not yet finished Activity objects to be able to provide a valid
hook independently from where exactly the patched application executes DCL.
The simplest solution is keeping a stack with all the Activity objects, from
which popping out a reference every time that a new SecureLoaderFactory

instance needs to be created. At implementation level, we inserted this stack
and the method to push an extra activity reference in RepackHandler, a static
class under our control used to ensure a correct patching. We also developed our
script so to add a call in the patched application to this method at the begin-
ning of each OnCreate() of smali classes extending the Activity one. With this
modification, whenever a new Activity class starts at run time, it adds a ref-
erence to itself in the RepackHandler’s stack. Correspondingly, the application
can easily identify at runtime activities for initializing SecureLoaderFactory

by simply inspecting the stack for a running Activity.
Finally, the last required patch operation regards all function calls trigger-

ing API for DCL. For this step, our script uses a grep-based approach that
analyzes all the smali classes that uses DexClassLoader API and, every time
that a sensitive point is found, it perform sanitation by substituting with either
a corresponding method invocation from the RepackHandler static class or a
partial rewriting of the sensitive point. Table 4.2 lists all these points patched
by our repackaging tool and, alongside the related sanitized code, it provides an
explanation for each modification.

4.3.3 Further technical details on patching smali code

Patching the smali code presents a set of technical issues that are not trivial
to solve. The biggest one is that smali requires, at the beginning of each class
method, the declaration of the number of local parameters that are going to be
used. Mishandling this number, for example, by declaring a smaller quantity
of local parameters than the actual number involved in the method, makes
the application unstable and leads it to crash at run time on the device. For
this reason, we need extra care when dealing with smali patching, especially in
our case, where the functions that we want to substitute (e.g., loadClass())
require for their invocation a consistent number of parameters, and thus of
locals. The easiest trick to circumvent this issue is substituting all the interested
function calls with signature-equivalent method calls to an external static class
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under our control. This class will perform in its methods the same semantic
functionalities of the initial dynamic calls but it will invoke, instead, equivalent
methods belonging to the GNR library. Thanks to this technique, the script
is able to substitute the native dynamic API and, at the same time, to keep
the smali classes working properly since the number of local parameters is not
changed. Another strength of this approach is that it does not require any
previous knowledge on the code in the input APK because we do not alter the
whole structure of the code but simply some specific function calls in it.

To make the substitutive methods callable, the tool has to copy into the
“smali” folder of the decoded project the translation in smali of all the classes
from the GNR library plus an extra one, RepackHandler, which is our static
class, whose methods will replace the native API for DCL. Among its methods,
RepackHandler provides a static one that takes as input the same parameters of
native DexClassLoader constructor and contains all the boilerplate code needed
for the instantiation of a SecureDexClassLoader instance, which is returned at
the end of the method. A relevant question is how exactly RepackHandler pop-
ulates the associative map linking package names to remote certificates’ URL
for SecureDexClassLoader setup and here it is where the developer preferences
play a significant role. Indeed, our script customizes, during its run, the imple-
mentation of a RepackHandler’s method according to the preferences set by the
developer. More in the details, our script translates user preferences into a set of
assignments to internal data structures of the class that, when triggered at run-
time, builds the corresponding associative map for the SecureDexClassLoader

instantiation. As an example, let us consider the case in which a developer
provides the repackaging tool directly with an associative map. In this scenario,
the tool has to face a simple task since it just needs to inject in the method the
corresponding smali code to populate the final associative map. A slightly more
difficult case to handle is when a developer provides in the user preferences one
(or more) container to link to a certificate. In this case, to avoid slow-down of
the performance on the device at runtime, we force the script to retrieve a copy
for all the code containers used as sources and, for each one of those, the tool
computes the set of the contained package names, before injecting smali code
for populating the associative map with the binding of each package name of
the container with the proper certificate. Once the script has completed this
injection step, when at runtime the application will invoke a method on the
RepackHandler for the first time, an internal method is going to be triggered to
generate the associative map according to the developer preferences and, from
now on, used in the initialization of all the SecureDexClassLoader objects.
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Patching of sensitive points in smali code

Original point: invoke-super {VAR0,VAR1}, LCLASSNAME;->onCreate(Landroid/os/Bundle;)V

Applied patch: invoke-static {VAR0}, Lit/necst/grabnrun/RepackHandler;->enqueRunningActivity(Landroid/app/Activity;V

Explanation: When a new Activity is created, its reference must be stored in the RepackHandler.

Original point: new-instance VAR0, Ldalvik/system/DexClassLoader;

Applied patch: Empty Line
Explanation: Instantiation of new DexClassLoader objects must be removed.

Original point: invoke-direct {VAR0, VAR1, VAR2, VAR3, VAR4}, Ldalvik/system/DexClassLoader;-><init>

(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/ClassLoader;)V

Applied patch: invoke-static {VAR1, VAR2, VAR3, VAR4}, Lit/necst/grabnrun/RepackHandler;->generateSecureDexClassLoader

(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/ClassLoader;)Lit/necst/grabnrun/SecureDexClassLoader;

move-result-object VAR0

Explanation: The invocation of DexClassLoader’s constructor must be substituted with a call to the RepackHandler’s method to generate a
SecureDexClassLoader. The returned object must be moved in the register originally holding the new instance of DexClassLoader.

Original point: invoke-virtual {VAR0, VAR1}, Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

Applied patch: invoke-static {VAR0, VAR1}, Lit/necst/grabnrun/SecureDexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

Explanation: Each invocation to the original loadClass() method must be substituted with a call to SecureDexClassLoader’s loadClass().

Original point: move-result-object VAR0

Applied patch: if-nez VAR0 :sec_checkgnr_LABEL

invoke-static {}, Lit/necst/grabnrun/RepackHandler;->raiseSecurityException()V

:sec_checkgnr_LABEL

Explanation: After a call to the loadClass() method, the return value must be evaluated in the patched code: If it is null, a security exception
must be raised by invoking the corresponding method on the RepackHandler.

Table 4.2: Patching of the sensitive points. This table correlates smali instructions that are marked as sensitive points by our tool, in
the first row of each block, with the corresponding substitutive snippet of code, in the second row. The third row provides a summary
explanation on each block.
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Chapter 5

Experimental validation

In this chapter we describe the set-up and the outcomes of the experiments
performed to evaluate GNR (Section 5.1) and the repackaging tool (Section 5.2).

More in the details, initially (Subsection 5.1.1) we present a case study that
we performed on 9 Android developers to verify whether GNR is easier to use
than DexClassLoader API and its learning overhead is modest for a developer.

Next (Subsection 5.1.2), we introduce a second experiment, whose goal is to
estimate the runtime overhead of GNR over standard DexClassLoader, and we
show that our solution adds only a negligible delay to the original API.

In the remaining part of this chapter (Section 5.2), we present the evaluation
performed on our repackaging tool.

5.1 Grab’n Run validation

In this section we outline the two experiments that we used to prove that GNR is
an easy-to-use, effective, and secure tool that does not impact the performance
of DCL operations significantly.

5.1.1 User study

Goal The goals of this first experiment are to evaluate whether our library
is easier to use than DexClassLoader API and to prove that GNR learning
overhead for a developer is modest, once he knows how to use native API for
DCL. Moreover, we would like to collect comparative results between the two
solutions under several aspects, such as efficiency, code readability, security, and
maintainability.

Setup To reach previous goals, we conducted a use case study on 9 developers.
In particular, we selected these guys with different ranks of expertise in Android
developing (e.g., some of them had developed only a couple of toy apps for fun,
whereas some others use Android on a regular basis); still, all the participants
had never used DexClassLoader API prior to this experiment.

For the study, the developer had to:
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Error Triggering example Percentage of developers
Fetch code in an unsafe way Use HTTP connection instead of HTTPS 66.7 % (6/9)
Store code in a world-writable area Save code container on external storage 44.4 % (4/9)

Wrongly initialize optimized cache folder 0.0 % (0/9)
Miss or fail security checks Do not implement any custom integrity check 100.0 % (9/9)

Table 5.1: Developers’ mistakes. This table lists the mistakes that a developer
may introduce in his code using DexClassLoader API. Each one of these errors
leads to a potential security vulnerability. The table correlates each error with
an exemplifying triggering condition and with the number of developers that
introduced it in our use case study.

1. Phase 1: Implement a functionality involving DCL using DexClassLoad-

er API. Starting from a skeleton application, he had to fetch a remote code
container, store it on the phone, and load dynamically a class inside of it.

2. Phase 2: Implement the same functionality but using our library instead.

3. Phase 3: Send us the source code of both implementations and fill in a
comparative survey on the two solutions.

Notice that, although we provided a toy app, we explicitly recommended the
participants to consider it as a real application, thus to implement it carefully
and so to be secure at their judgment. Additionally, we left developers free
to consult any on-line resource while performing the experiment, including the
official Android documentation.

Outcome Table 5.1 quantifies the occurrences of the mistakes discussed in
Section 2.3 using DexClassLoader API for implementing the DCL functionality
in the toy app. We collected these data by manually inspecting the source code
of all the submitted implementations. A positive result is that none of the
developers failed in storing the optimized version of the container in a world-
writable area of memory: The reason for this is that a warning on this specific
security issue is present in the DexClassLoader API documentation and all
the developers probably saw this best practice and applied it in their code.
However, an alarming result is that not even a single developer thought about
implementing custom checks for verifying the integrity or the signature of the
fetched container.

This result is in line with the results obtained in [15] on the number of DCL-
caused vulnerabilities found in Google Play apps. Thus, we can conclude that
performing DCL in Android securely is not a näıve task. That is why solutions
like GNR can be an helpful tool for developers.

Finally, Table 5.2, 5.3, 5.4, and 5.5 show a summary of the answers that
participants provided in the comparative survey of the user study: For all the
developers the learning overhead imposed by our library was little or almost
null. Moreover, the average time spent for understanding and implementing the
DCL functionality lowers from the 170 minutes of DexClassLoader API to the
just 40 of GNR. Additionally, 7 out of 9 of the involved participants thought
that the second implemented snippet of code, which relies on our library, would
be easier to maintain and modify and it is actually simpler to read compared to
the first one; 8 of them also asserts that GNR code was easier to implement and
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that our solution is more flexible (i.e., automatically fetch remote containers,
store them appropriately) and secure (i.e., perform integrity checks at run time
on source code containers) than the native DexClassLoader.

5.1.2 Measurement of the runtime overhead

Goal The aim of this experiment is showing that the performance overhead of
GNR is almost negligible over DexClassLoader API, after an initial one-time
penalty.

Setup For supporting this claim, we prepared a simple profiling application
that loads two classes from an APK container using DexClassLoader API or
GNRs SecureDexClassLoader. In particular, we instrumented both the app
and our library code to log initial and final time-stamps for relevant operations
during the dynamic loading procedure. Since DexClassLoader is not able to
fetch remote containers autonomously, we decided for both systems to use a
code container stored on the device as the source for DCL, so to have a fair test.
For this experiment, we defined two relevant test scenarios:

1. No cached resource. In this case, we want to simulate the first load oper-
ation performed on a source container, where the optimized version of it
has not been already created and cached. From a performance point of
view, this is the worst possible scenario since the system cannot rely on
any cached resource but it has, instead, to prepare them for performance
improvements in the next load calls. We achieved this result by erasing,
between each run of the test application, all the cached resources in the
private-application folders (i.e., ODEX or ELF cached files for DexClass-
Loader, and fetched remote certificates for GNR).

2. Cached resources. In this situation, we are addressing setup and load oper-
ations on a code container, from which classes have been loaded previously.
This implies that DexClassLoader has already prepared and stored the op-
timized version of the container in the cache folder and GNR has fetched
the certificate for the signature verification. Contrarily to the previous
scenario, this is the best case for performance. In practice, we cached
the resources and, then, started to collect time-stamps in the following
executions.

Outcome We aggregate the measured time-stamps all the data by phase com-
pute mean, median, and standard deviation for each phase. Table 5.6 and 5.7
show, respectively, the results of the performance comparison between the two
studied solutions. In particular, for each of the two situations, we collected
time-stamps over 100 iterations of the profiling application on a Nexus 5 device.
Figure 5.1 shows the same results using bar charts, which graphically highlight
the length of each separate phase.
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Background Information on Participants
Java programming experience
How long have you been developing in Java?
Between 0 and 1 year 0/9
More than 1 and less then 3 years 2/9
More than 3 years 7/9

Android programming experience
How long have you been developing Android apps?
Between 0 and 1 year 3/9
More than 1 and less then 3 years 4/9
More than 3 years 2/9

Android programming experience (2)
Which one of the following scenario is closer to your experience as an Android developer?
I played with Android just a couple of times in the past. 1/9
I develop apps just for fun in my spare time. 3/9
Programming in Android is a relevant part of my job and I use it on a daily base. 2/9
Other.. 3/9

Java/Android expertise level
Rank between 1 (Novice) and 10 (Expert) your knowledge of the Java/Android ecosystem.
0 - 6 2/9
7 or 8 6/9
9 or 10 1/9

Table 5.2: Use case study: Background information on the 9 participants.

DCL with DexClassLoader API (Phase 1)
Average time for completing Phase 1 in minutes: 170

Easy to learn
Was it easy to learn how to use DexClassLoader API given your previous
knowledge of the Android framework?
1 or 2 (Very Difficult) 5/9
3 2/9
4 or 5 (Very Easy) 2/9

Simple to use
Did you encounter any difficulties in making your first toy app work fine?
Did you succeed immediately?
1 or 2 (Many difficulties) 4/9
3 1/9
4 or 5 (No problem) 4/9

Official Documentation
Do you think that official Android API are good, complete, and clear enough
to learn how to properly use DCL?
1 or 2 (Extremely Poor) 8/9
3 0/9
4 or 5 (Excellent) 1/9

Final evaluation
To sum up, provide an average mark on your satisfaction after having
used DexClassLoader API.
1 or 2 (Disappointing) 6/9
3 0/9
4 or 5 (Excellent) 3/9

Table 5.3: Use case study: Summary of the evaluation of DexClassLoader API
(Phase 1).
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DCL with GNR API (Phase 2)
Average time for completing Phase 2 in minutes: 40

Easy to set up
Was it easy to insert GNR library in the second toy project?
Did you encounter issues?
1 or 2 (Very Difficult) 0/9
3 1/9
4 or 5 (Very Easy) 8/9

Easy to learn
Was it easy to learn how to use GNR given your previous knowledge of
the Android framework and of DexClassLoader API?
1 or 2 (Very Difficult) 0/9
3 0/9
4 or 5 (Very Easy) 9/9

Simple to use
Did you encounter any difficulties in making your second toy app work fine?
Did you succeed immediately?
1 or 2 (Many difficulties) 1/9
3 0/9
4 or 5 (No problem) 8/9

GNR documentation (Readme on Github + Tutorial on ReadTheDocs)
Do you think that the documentation is good, complete, and clear enough
to learn how to properly use GNR API?
1 or 2 (Extremely Poor) 0/9
3 0/9
4 or 5 (Excellent) 9/9

Final evaluation
To sum up, provide an average mark on your satisfaction after having
used GNR API.
1 or 2 (Disappointing) 0/9
3 0/9
4 or 5 (Excellent) 9/9

Table 5.4: Use case study: Summary of the evaluation of GNR API (Phase 2).
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Comparison: DexClassLoader vs GNR API (Phase 3)
GNR learning overhead
Please quantify the effort in learning how to use GNR API over
native DexClassLoader API.
1 or 2 (Almost Zero) 9/9
3 0/9
4 or 5 (Extremely Broad) 0/9

Easy to implement
Look at the two toy apps you have prepared, which one between the two
was easier to implement?
First toy app (DexClassLoader) was easier to implement. 0/9
Second toy app (SecureDexClassLoader) was easier to implement. 8/9
Both of them were too difficult! 1/9

Readability
Look at the two snippets of code you implemented for the apps, which
one is easier to read and understand at a first glance?
First toy app (DexClassLoader) is way easier to read. 0/9
Second toy app (SecureDexClassLoader) is way easier to read. 7/9
They are more or less equally easy to understand. 2/9
Both of them are difficult to read! 0/9

Flexibility
Between the two analyzed solutions, which one do you think offers more
flexibility and features for your Android app?
DexClassLoader API. 1/9
GNR API (SecureDexClassLoader). 8/9

Code maintainability
Let’s say that you decide to change the remote location of your APK used as a
source for DCL or that you want to add DCL also from a second remote APK,
stored at a different URL. Which one of the two apps would be easier to fix?
First toy app (DexClassLoader) would be easier to fix. 1/9
Second toy app (SecureDexClassLoader) would be easier to fix. 7/9
The amount of work would be exactly the same for both of them. 1/9

Security
Which one between the two toy apps do you think is more secure?
First toy app (DexClassLoader) is more secure. 0/9
Second toy app (SecureDexClassLoader) is more secure. 8/9
They are the same, security-wise. 1/9

Table 5.5: Use case study: Summary of the comparative evaluation between
DexClassLoader and GNR API (Phase 3).
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Phase Mean [ms] Median [ms] Std Deviation [ms]
DexClassLoader [Total Time] 334.20 332.00 23.50
— Setup 331.91 330.00 23.60
— First Load Operation 1.55 1.00 0.70
— Second Load Operation 0.30 0.00 0.46
SecureDexClassLoader [Total Time] 1,386.13 1,237.00 322.05
— Setup 1,384.13 1,234.00 322.09
—— Fetch Remote Certificate 972.32 822.00 321.32
—— Verify Signature 86.17 82.00 18.22
— First Load Operation 1.32 1.00 0.66
— Second Load Operation 0.39 0.00 0.60

Table 5.6: No cached resource. The table outlines mean, median, and standard
deviation of each phase of the load operations, starting from the collected time-
stamps. The highest part of the table outlines results for DexClassLoader

API, whereas the lowest part focuses on GNR API. All times are expressed
in milliseconds. Notice that the time of the “Setup” phase of SecureDex-

ClassLoader is composed by the times of “Fetch Remote Certificate,” “Verify
Signature,” and “SecureLoaderFactory Initialization,” which can be roughly
estimated as a subtraction from the other phases and is not listed in this table.

Phase Mean [ms] Median [ms] Std Deviation [ms]
DexClassLoader [Total Time] 6.28 6.00 1.39
— Setup 3.98 4.00 1.04
— First Load Operation 1.42 1.00 0.70
— Second Load Operation 0.44 0.00 0.61
SecureDexClassLoader [Total Time] 90.42 90.00 8.73
— Setup 88.25 87.50 8.55
—— Verify Signature 61.39 61.00 6.79
— First Load Operation 1.33 1.00 0.55
— Second Load Operation 0.49 0.00 0.77

Table 5.7: Cached resources. This table shows, in the same fashion of Table 5.6,
results for the case in which both certificates and optimized versions of the code
containers have been already cached. For this reason, time for fetching remote
certificate is null thus not shown. Moreover, many of the other time entries
are significantly smaller compared to the previous table because of the caching
effect.
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Figure 5.1: Comparative bar charts on the execution time. In the two upper charts, each phase is identified by a color, the height of each
bar depends on the mean of that step and the standard deviation is also represented using a thin solid line. The third bar is equal to
the second bar but it highlights the breakdown of the “Setup” phase of SecureDexClassLoader. The lower charts show the slowdown
introduced by SecureDexClassLoader over the original DexClassLoader on each different phase listed in Table 5.6 and 5.7. In (a), time
of execution is higher for both solutions since neither the optimized source container is already available(bigger red bars), nor the remote
certificate to fetch (cyan bar). On the other hand, in (b), having cached resources implies a reduction in execution time, as shown by
a smaller red bar, and by the absence of the cyan one; the biggest overhead becomes the signature verification process, which, anyway,
impacts only once during the initialization phase. Differently, load operations have always a comparable execution time.
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From the results of this experiment we can conclude that, once the setup
operations are completed, the difference of time implied for a load operation be-
tween the two systems is negligible. A non-obvious conclusion is that the signa-
ture verification process is indeed quite cheap (between 61 and 86 milliseconds)
compared to other phases. The costly operations are: (1) the translation of the
code container into an optimized version of it in DexClassLoader ( more than
300 milliseconds), and (2) the retrieval of the remote container for the signature
verification in SecureLoaderFactory (the “Fetch Remote Certificate” entry in
the first table). In particular, while the former operation is a common denom-
inator penalty for both the solutions, (remember that SecureDexClassLoader

wraps native DexClassLoader, which performs this translation for performance
improvements), the latter one is specific of GNR since DexClassLoader does not
perform any signature verification on the code to load. Besides being expen-
sive, fetching a remote certificate can be a troublesome bottleneck in the system
because its timing depends directly on the network latency, which can be seen
through the high standard deviation. However, after the setup phase, both
the original and the GNR-secure solution perform the loading operations in the
same time. Therefore, we conclude that the performance overhead introduced
by GNR is negligible, after an initial overhead paid during the initialization
step. In particular, whereas the signature verification process is executed every
time that a SecureDexClassLoader object is initialized, the translation of the
code container and the fetching of the remote certificate are executed only once,
unless the cached resources are explicitly erased by the developer.

5.2 Repackaging tool validation

In this section, we present the evaluation performed to show the effectiveness of
our repackaging script and we also explain the challenges that made this task
hard.

5.2.1 Patching sample applications

Goal First, we want to show that the script always terminates and substi-
tutes all the sensitive points successfully with a valid snippet of code using the
RepackHandler class and the GNR API. Secondly, we want to show that the
patched application is retained fully functional.

Setup For this experiment, we developed a simple application that uses DCL
on a source container. We also selected a corpus of 15 applications fetched from
the VirusTotal [17] dataset. We opted for VirusTotal since it can look for APKs
with specific features: we retrieved benign APKs that were known for using
dynamic code loading. We manually inspected each resulting APK.

Evaluation procedure For each APK, we apply the following procedure:

1. Install the target APK on an emulator and interact with the application
to trigger the DCL functionality and save a copy of the code containers
used as sources for DCL from the emulator.
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Listing 5.1: Output produced by an analysis.show DynCode() call on the
original APK.

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0xa8) --->
Ldalvik/system/DexClassLoader;-><init>(Ljava/lang/String; Ljava/lang/String;
Ljava/lang/String; Ljava/lang/ClassLoader;)V

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0xbe) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0xd6) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0xee) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0x106) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0x11e) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lcom/google/android/gms/internal/j;->e(Landroid/content/Context;)V (0x136) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lcom/qq/e/v2/managers/plugin/PM;-><init>(Landroid/content/Context;)V (0x8c) --->
Ldalvik/system/DexClassLoader;-><init>(Ljava/lang/String; Ljava/lang/String;
Ljava/lang/String; Ljava/lang/ClassLoader;)V

2. When a code container is retrieved successfully, analyze and reverse it to
gain knowledge of the certificate, if any, which was used to sign it and the
name of the classes inside of it, which, once again, may be obfuscated.

3. With the knowledge gained from the previous three points, set up the
configuration options of the repackaging script and then run it on the
target APK. Check whether the script terminates with no error.

4. Inspect the patched APK against the original one with Androguard and
verify that all the sensitive points have been substituted correctly. List-
ing 5.1 presents the output produced by the analysis.show DynCode()

method on an original tested APK, whereas Listing 5.2 shows the result
of the same call on the correctly patched version.

5. Finally, install the patched APK on the emulator and trigger the DCL
functionality again to verify that the application does not crash and pos-
sibly execute the loading operation as required.

Outcome At first, we patched our example application. The results were
encouraging since the tool both substitutes all the sensitive points and it kept
the patched APK fully-working. Later, we performed the same test but this time
using a code container, whose signature was broken, as the source container for
DCL. Also in this case, our tool performed the repackaging correctly: In fact,
while in the original application the DCL operation was executed, in the patched
version GNR correctly detected the incorrect signature of the code container,
used as source, and prevented the DCL operation from happening.

On the other hand, after a first analysis on the corpus of 15 benign APK, we
found out that all of them used DCL to include third-party ads library to inject
banner in their Activity classes. In particular, 14 apps embeded the Google
Mobile Ads SDK (package name: com.google.android.ads), whereas one used
a different library (package name: com.jnm.adlivo.androidsdk). Our script
terminates with errors on 2 of these applications because of an internal exception

72



Listing 5.2: Output produced by the same call on the APK patched by the
repackaging tool. Since this call traces all the invocation of DexClassLoader

API, the fact that none of the sensitive points, detected in Listing 5.1, is present
anymore is a proof that our script detects all sensitive points and substitute
them with snippets of code using GNR API. The result of this is that the only
invocations to DexClassLoader API are the ones included in our SecureDex-

ClassLoader class.

1 Lit/necst/grabnrun/SecureDexClassLoader;-><init>(Ljava/lang/String; Ljava/lang/String;
Ljava/lang/String; Ljava/lang/ClassLoader; Landroid/content/ContextWrapper; Z)V (0x1a)
---> Ldalvik/system/DexClassLoader;-><init>(Ljava/lang/String; Ljava/lang/String;
Ljava/lang/String; Ljava/lang/ClassLoader;)V

1 Lit/necst/grabnrun/SecureDexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;
(0x9a) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lit/necst/grabnrun/SecureDexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;
(0x108) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

1 Lit/necst/grabnrun/SecureDexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;
(0x1f8) --->
Ldalvik/system/DexClassLoader;->loadClass(Ljava/lang/String;)Ljava/lang/Class;

raised by apktool while decoding the resources of their APK. As regards the
remaining 13 applications, all the sensitive points were properly substituted.
However, none of the applications injected banner classes at runtime anymore
because they were all using unsigned JAR containers as sources for DCL and,
thus, GNR prevented the execution of those loading operations.

Roadblocks As the previous results showed, there may be some peculiar
cases, where our tool is not able to patch completely an incoming APK. This
outcome can be explained because of different roadblocks:

• Impossibility to find package names of the source containers.
Since the repackaging tool needs to set up an associative map, linking
package names to certificates’ remote URL to initialize SecureDexClass-

Loader instances, it is important to know all the package names of the
source containers prior to the execution of the script. Unfortunately, this
may become a problem in case that developers decide to use tools, like
Proguard, to obfuscate their JAR libraries used as sources for DCL.

• Impossibility to find a valid copy of the code containers. An al-
ternative way to avoid the previous issue is providing the repackaging tool
with a valid copy of the code containers used by the patched application.
With such an input, the tool can extract package names automatically
from a container and link them to the proper certificate. However, also
this requirement sometimes can be difficult to accomplish (e.g., the appli-
cation may erase the code container immediately after the load operation,
or the archive may be fetched only in unlikely conditions, difficult to trig-
ger in the application).

• Impossibility to trigger the dynamic loading behavior at run
time. In some applications that we tested, it was impossible to trigger the
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dynamic loading behavior, while executing the application on the emula-
tor. This is a well-known problem in the security research field, especially
for the detection of malicious behaviors of malwares using dynamic anal-
ysis. In our scenario, this can be troublesome because it usually prevents
the tested app from fetching the remote code containers for DCL.

• Source containers are not signed. This situation happens whenever
the patched application uses as sources JAR containers, which were not
signed by the library developer. Incurring in such a situation implies that,
although fully-working, the patched app will prevent these containers from
being loaded at runtime. This issue can be solved easily by requiring
developers to sign their code containers before publishing them, as they
are accustomed to do for static code.

Not all of these roadblocks prevented our script from finishing its execution
or from patching all the sensitive points, but they leaded to not fully-working
applications after the patch was applied. Anyway, it is important to underline
that these roadblocks occurred when we tried to patch unknown applications.
In particular, none of them, except the last one, should be a relevant issue for
a developer, who wants to patch his own application: This developer, in fact,
knows exactly how the app works, therefore he can provide easily all the pieces
of information needed for the operation (i.e., the package names or the code
containers, the locations of the remote certificates).
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Chapter 6

Limitations and future
works

6.1 Limitations

After having presented both GNR library and the repackaging tool, in this
chapter we outline the main limitations of our current solution.

Firstly, at the current implementation stage, we realized our library to as-
sociate only one source container per package name. This means that, if a
developer decides to create an instance of SecureDexClassLoader with two
source archives that contain an equal package name, attempting to load a class
with this specific package name, will generate an unpredictable behavior since
SecureDexClassLoader associates that package name with just one of the two
containers. Although this may seem a strong limitation, indeed it is not: APK
containers, in fact, requires a unique package name for being published on the
Google App Store therefore this issue is reduced only to JAR library containers.
We considered having two source JAR containers with one, or more, identical
package name a rare possibility and that is why we leave this check on package
names conflicts as a responsibility for the applications’ developers.

Secondly, our remote protocol accepts as legitimate for signature verifica-
tion self-signed certificates as long as they are formally valid and not expired.
This design choice derives from what Google suggests in its overview on appli-
cation security [1], which is trusting and using self-signed certificate for code
signing, since “Android currently does not perform CA verification for applica-
tion certificates”. For this reason, given that the use of self-signed certificate
is the common practice for signing in Android [16], the current implementation
of GNR does not take into account certificate chain validation during signature
verification.

Finally, let us consider the repackaging tool. As it was stated at the end of
Section 5.2, the real issue is finding a good method to evaluate the complete
effectiveness of our script. In fact, the evaluation that we applied in this work
was able to prove that the repackaging script terminates and substitutes all the
sensitive points of the original APK, but it didn’t show, except for our test
application, that applications patched by our tool are still fully-working at the
end of the process. However, it is conceptually very hard to write a testing
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oracle that tells whether an arbitrary, unspecified program has computed the
function that the developer wrote it for.

6.2 Future works

In addition to addressing the aforementioned limitations, we foresee some future
directions for our work.

As a first future work, after having released our library and the repackaging
tool, we are thinking about implementing a plug-in for Android Studio (AS). The
aim of this tool would be to assist developers by warning them when the native,
unsafe DexClassLoader API are used and, in case, by managing the automatic
refactoring of all their snippets of code to port them to use GNR API. An
obstacle to the immediate realization of this plug-in is that, since Android Studio
has just recently become the new official IDE for applications’ development,
resources for the implementation of AS plug-in are few and modest, at the
moment, and so we prefer to wait for a more stable release, before designing
and realizing this plug-in.

Moving back to GNR, we reasoned about extending it to wrap other native
API for DCL. More in the details, including PathClassLoader in our library
should be a quite näıve task, since this API works in a similar way to DexClass-

Loader and, therefore, reapplying the very same verification protocol should be
sufficient. On the other hand, android.content.Context.createPackageCon-
text would probably require a completely different study because the function-
ing of this API varies significantly from the DexClassLoader case and, thus, it
will be necessary to design an ad-hoc solution.

We may also introduce further improvements under the performance point of
view: In particular, by storing the results of previously executed signature ver-
ifications into an application-private folder, the library can avoid to perform an
extra signature verification every time that SecureDexClassLoader attempts
to load a class from an already-imported source container, which has been al-
ready evaluated in the past. Such a performance enhancement would impact by
removing the yellow bar in the cached resources scenario, as presented in the
right bar chart of Figure 5.1.

Finally, to obtain a more complete and useful evaluation of the repackaging
tool, we may think about performing a different use case study: We may try to
collect a set of users, who has already developed an Android application that
makes use of DexClassLoader API and ask each one of them to patch their
own application with our repackaging tool to obtain a final working APK using
GNR API. In this way, we could benefit from the experience of each developer to
properly tune the settings of the script and, thus, avoid almost all the challenges
presented in Section 5.2. With this, it should be way easier to evaluate whether
or not our tool keeps patched APK fully working.
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Chapter 7

Conclusions

In this thesis we presented GNR, an easy-to-use, drop-in Java library for An-
droid applications that helps developers to make remote DCL secure by default.
GNR is based on a protocol that we proved to be secure not only in the ini-
tial threat model, where a MITM attacker exploits security vulnerabilities in-
troduced by benign applications that do not validate dynamically-loaded code
properly, so as to execute arbitrary code, but also to an extension of it, where
the attacker is able to compromise the server that hosts the code to load. At
the current stage of implementation, the library wraps native DexClassLoader

API and enhances it both in functionalities (e.g., it handles fetching of remote
containers automatically) and, especially, in security since it prevents inexperi-
enced or inaccurate developers from introducing security vulnerabilities in their
applications because of insecure code fetching, storage, or lack of integrity and
authentication checks.

Compared to previous related research works, our solution has the remark-
able advantage of being really easy to deploy since it is a simple library that
can be plugged into any Android project. This is a plus since, while providing
a sufficient level of security against the main threats outlined in Chapter 2, our
library is an intermediate solution that does not require complex setup cost,
like a partial rewriting of the Android framework and a consequent update of
the operative system for all the devices. Moreover, our solution results easy
to adopt for all the main actors involved in the process: Google does not need
to modify anything in the current Android framework, application developers
need just to remember to import and use GNR in their projects, and third-party
library developers must remember to sign their code and make available on a
domain under their control the trusted certificate for the signature verification.

Along with this library, we have implemented a repackaging tool, in the
form of a Python script, which takes as an input a not obfuscated APK using
DexClassLoader API and some user settings, and automatically patches it by
enforcing the use of GNR API, without the need for the source code or for the
developer to write even a single line of code.

We evaluated the performance of GNR by measuring in a profiling test ap-
plication the overhead introduced by our library over native DexClassLoader

API: The results are encouraging since, except for a one-time penalty during
setup phase, which can be significantly reduced by the caching strategies of
GNR, the overhead introduced by our library on load operations is negligible

77



compared to the native solution. We also setup an use case study on 9 Android
developers to prove that: (1) GNR is an effective and useful solution since it
removes by design all the security vulnerabilities that these developers inserted
in their code inadvertently, while using native DexClassLoader API (i.e., 6 of
them failed in fetching code in a safe way by using HTTP connections instead
of HTTPS ones, 4 of them failed by storing the code in a world-writable loca-
tion, and all of them forgot to implement custom integrity checks on the fetched
code); (2) GNR requires only a little learning effort for a developer, who already
knows native API (indeed, all the participants quantify this learning effort as
“little” or “almost null”); (3) GNR is a more powerful, flexible, and easier to
use solution than DexClassLoader (developers agreed also on this point since
7 of them state that our solution, in the proposed experiment, would be easier
to maintain and it is simpler to read; whereas 8 of them find our library easier
to use, more flexible, and more secure than native DexClassLoader API).

Our personal hope is that this work will highlight the need for the Android
project and, thus, for Google to impress a significant change: In fact, although
DCL is a useful tool for Android app developers, such that even Google itself
makes use of it in its libraries (e.g., Google Mobile Ads), native API for DCL
are difficult to understand and use, and it is even easy for a developer to intro-
duce inadvertently serious security vulnerabilities. Moreover, compared to the
average high-quality standard provided by the Android project, documentation
for these API is extremely poor and no tutorial is present at all. This is both
a pity, given the usefulness of the feature, and a security concern and that is
why we hope that this thesis, along with similar research works, may sensitize
Google to provide a revised version of native API for DCL, which should be
more secure, easier to use, better documented, and, why not, maybe partially
inspired on what we have developed for GNR.

78



Bibliography

[1] Android. Application Signing in Android. url: https://source.android.
com/devices/tech/security/overview/app-security.html#application-

signing.

[2] Android. ART and Dalvik. url: http://source.android.com/devices/
tech/dalvik/index.html.

[3] Android. DexClassLoader API Reference Page. url: http://developer.
android.com/reference/dalvik/system/DexClassLoader.html.

[4] Android 5.0 Behavior Changes. Oct. 2014. url: http://developer.

android.com/about/versions/android-5.0-changes.html.

[5] Desnos Anthony. Androguard, Project Home Page. url: https://code.
google.com/p/androguard/.

[6] Brut.alll. Apktool, Project Home Page. url: https://code.google.com/
p/android-apktool/.

[7] International Data Corporation. Smartphone OS Market Share, Q4 2014.
url: http://www.idc.com/prodserv/smartphone-os-market-share.
jsp.

[8] Java Oracle Documentation. Example Code for JAR Signature Verifica-
tion. url: http://docs.oracle.com/javase/7/docs/technotes/

guides/security/crypto/MyJCE.java.

[9] Java Oracle Documentation. Jar File Specification: Signed Jar File. url:
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/

jar.html#Signed_JAR_File.

[10] Luca Falsina, Federico Maggi, and Yanick Fratantonio. Grab’n Run Repos-
itory on GitHub. Nov. 27, 2014. url: https://github.com/lukeFalsina/
Grab-n-Run.

[11] Michael Grace et al. “Unsafe Exposure Analysis of Mobile In-App Adver-
tisements”. In: Proceedings of the 5th ACM Conference on Security and
Privacy in Wireless and Mobile Networks(WiSec). 2012, 101112. isbn:
9781450312653.

[12] Wenhui Hu et al. “Duet: Library Integrity Verification for Android Appli-
cations”. In: Proceedings of the 7th ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks(WiSec). 2014, pp. 141–152. isbn:
9781450329729.

[13] Joshua J.Drake et al. Android Hacker’s Handbook. Ed. by Wiley. 2014.
isbn: 9781118608647.

79

https://source.android.com/devices/tech/security/overview/app-security.html#application-signing
https://source.android.com/devices/tech/security/overview/app-security.html#application-signing
https://source.android.com/devices/tech/security/overview/app-security.html#application-signing
http://source.android.com/devices/tech/dalvik/index.html
http://source.android.com/devices/tech/dalvik/index.html
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://developer.android.com/about/versions/android-5.0-changes.html
http://developer.android.com/about/versions/android-5.0-changes.html
https://code.google.com/p/androguard/
https://code.google.com/p/androguard/
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/MyJCE.java
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/MyJCE.java
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#Signed_JAR_File
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#Signed_JAR_File
https://github.com/lukeFalsina/Grab-n-Run
https://github.com/lukeFalsina/Grab-n-Run


[14] OpenSignal. Android Fragmentation Visualized. Aug. 2014. url: http:
//opensignal.com/assets/pdf/reports/2014_08_fragmentation_

report.pdf.

[15] Sebastian Poeplau et al. “Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications”. In: Proceedings of the
Network and Distributed System Security Symposium (NDSS). 2014, 2326.
isbn: 1891562355.

[16] Signing Considerations for Android Developers. url: https://developer.
android.com/tools/publishing/app-signing.html#considerations.

[17] VirusTotal team. VirusTotal, Project Home Page. url: https://www.
virustotal.com.

[18] T Vidas and N Christin. “Sweetening Android Lemon Markets: Measuring
and Combating Malware in Application Marketplaces”. In: Proceedings of
the 3rd ACM Conference on Data and Application Security and Privacy
(CODASPY). 2013.

80

http://opensignal.com/assets/pdf/reports/2014_08_fragmentation_report.pdf
http://opensignal.com/assets/pdf/reports/2014_08_fragmentation_report.pdf
http://opensignal.com/assets/pdf/reports/2014_08_fragmentation_report.pdf
https://developer.android.com/tools/publishing/app-signing.html#considerations
https://developer.android.com/tools/publishing/app-signing.html#considerations
https://www.virustotal.com
https://www.virustotal.com


Appendices

81





Appendix A

Implementation details of
relevant parts

This appendix reports the full Java implementation of two key methods for sig-
nature verification, presented in Subsection 4.2.2, while explaining the internals
of GNR library.
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A.1 Verify container signature against a trusted
certificate

// Given the path to a jar/apk container and a valid certificate
// instance this method returns whether the container is signed
// properly against the verified certificate.
private boolean verifyContainerSignatureAgainstCertificate(String containerPath,

X509Certificate verifiedCertificate) {

// Check whether the selected resource is a jar or apk container
int extensionIndex = containerPath.lastIndexOf(".");
String extension = containerPath.substring(extensionIndex);

boolean signatureCheckIsSuccessful = false;

// Depending on the container extension the process for
// signature verification changes
if (extension.equals(".apk")) {

// APK container case:
// At first look for the certificates used to sign the apk
// and check whether at least one of them is the verified one..

PackageInfo mPackageInfo = mPackageManager.getPackageArchiveInfo(containerPath,
PackageManager.GET_SIGNATURES);

if (mPackageInfo != null) {

// Use PackageManager field to retrieve the certificates
// used to sign the apk.
Signature[] signatures = mPackageInfo.signatures;

if (signatures != null) {
for (Signature sign : signatures) {

if (sign != null) {

X509Certificate certFromSign;
InputStream inStream = null;

try {

// Recreate the certificate starting from
// this signature.
inStream = new ByteArrayInputStream(sign.toByteArray());
certFromSign = (X509Certificate)

certificateFactory.generateCertificate(inStream);

// Check that the reconstructed certificate
// is not expired..
certFromSign.checkValidity();

// Check whether the reconstructed certificate
// and the trusted one match.
// Please note that certificates may be self-signed
// but it’s not an issue..
if (certFromSign.equals(verifiedCertificate))

// This a necessary but not sufficient condition
// to prove that the apk container has not been
// repackaged..
signatureCheckIsSuccessful = true;

} catch (CertificateException e) {
// If this branch is reached certificateFromSign
// is not valid..

} finally {
if (inStream != null) {

try {
inStream.close();

} catch (IOException e) {
e.printStackTrace();

}
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}
}

}
}

} else {
Log.i(TAG_SECURE_DEX_CLASS_LOADER, "An invalid/corrupted signature is associated

with the source archive.");
}

} else {
Log.i(TAG_SECURE_DEX_CLASS_LOADER, "An invalid/corrupted container was found.");

}
}

// JAR container OR successfull APK container case:
// This branch must be taken by all JAR containers and by those APK
// containers, whose certificates list contains also the trusted
// verified certificate.
if (extension.equals(".jar") || (extension.equals(".apk") && signatureCheckIsSuccessful))

{

// Verify that each entry of the container has been signed properly
JarFile containerToVerify = null;

try {

containerToVerify = new JarFile(containerPath);
// This method will throw an Exception whenever
// the JAR container is not signed with the trusted certificate
// N.B. APK are an extension of JAR containers..
verifyJARContainer(containerToVerify, verifiedCertificate);

// No exception raised so the signature
// verification succeeded
signatureCheckIsSuccessful = true;

} catch (Exception e) {
// Signature process failed since it triggered
// an exception (either an IOException or a SecurityException)
signatureCheckIsSuccessful = false;

} finally {
if (containerToVerify != null) {

try {
containerToVerify.close();

} catch (IOException e) {
e.printStackTrace();

}
}

}
}

return signatureCheckIsSuccessful;
}
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A.2 Verify a JAR container signature

private void verifyJARContainer(JarFile jarFile, X509Certificate trustedCert) throws
IOException {

// Sanity checking
if (jarFile == null || trustedCert == null)

throw new SecurityException("JarFile or certificate are missing");

Vector<JarEntry> entriesVec = new Vector<JarEntry>();

// Ensure the JAR file is at least signed.
Manifest man = jarFile.getManifest();
if (man == null) {
Log.i(TAG_SECURE_DEX_CLASS_LOADER, jarFile.getName() + "is not signed.");
throw new SecurityException("The container is not signed");

}

// Ensure all the entries’ signatures verify correctly
byte[] buffer = new byte[8192];
Enumeration<JarEntry> entries = jarFile.entries();

while (entries.hasMoreElements()) {

// Current entry in the JAR container
JarEntry je = (JarEntry) entries.nextElement();

// Skip directories.
if (je.isDirectory()) continue;
entriesVec.addElement(je);
InputStream inStream = jarFile.getInputStream(je);

// Read in each JAR entry. A security exception will
// be thrown if a signature/digest check fails.
while (inStream.read(buffer, 0, buffer.length) != -1) {

// Don’t care as soon as no exception is raised..
}

// Close the input stream
inStream.close();

}

// Get the list of signed entries from which certificates
// will be extracted..
Enumeration<JarEntry> signedEntries = entriesVec.elements();

while (signedEntries.hasMoreElements()) {

JarEntry signedEntry = (JarEntry) signedEntries.nextElement();

// Every file must be signed except files in META-INF.
Certificate[] certificates = signedEntry.getCertificates();
if ((certificates == null) || (certificates.length == 0)) {

if (!signedEntry.getName().startsWith("META-INF")) {
Log.i(TAG_SECURE_DEX_CLASS_LOADER, signedEntry.getName() + " is an unsigned

class file");
throw new SecurityException("The container has unsigned class files.");

}
}
else {

// Check whether the file is signed by the expected
// signer. The JAR may be signed by multiple signers.
// So see if one of the signers is ’trustedCert’.
boolean signedAsExpected = false;

for (Certificate signerCert : certificates) {

try {
((X509Certificate) signerCert).checkValidity();

} catch (CertificateExpiredException
| CertificateNotYetValidException e) {

// Usually expired certificate are not such a relevant

86



// issue; nevertheless on Android a common practice is
// using certificates (even self signed) but with
// at least a long life span and so temporal validity
// should be enforced..
Log.i(TAG_SECURE_DEX_CLASS_LOADER, "One of the certificates used to sign " +

signedEntry.getName() + " is expired");
throw new SecurityException("One of the used certificates is expired!");

} catch (Exception e) {
// It was impossible to cast the general certificate
// into an X.509 one..

}

if (signerCert.equals(trustedCert))
// The trusted certificate was used to sign this entry
signedAsExpected = true;

}

if (!signedAsExpected) {
Log.i(TAG_SECURE_DEX_CLASS_LOADER, "The trusted certificate was not used to sign

" + signedEntry.getName());
throw new SecurityException("The provider is not signed by a trusted signer");

}
}

}
}
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