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Abstract

There are many Low Earth Orbit SAR (LEOSAR) satellite orbiting around the

Earth that are used to monitor the planet. These satellites perform really well

for certain applications, but present some limits (mainly due to their high revisit

time) for other purposes.

Recently solutions involving Geosynchronous Synthetic Aperture Radar (GEOSAR)

systems have been proposed, but never implemented due to decorrelation issues in

the images. One of the most important decorrelation sources is the Atmospheric

Phase Screen (APS) originated in the troposhere.

This thesis will present few algorithms to estimate the APS seen with a GEOSAR

system.

At first the geometry, parameters and the technical requirements of the system

are shown. The data acquisition process is presented along with the generation

of the stack of images and the model, these will be used as data to be processed.

Then three methods to estimate the APS are proposed starting from the stack.

Each method will be introduce with strong assumptions that will be later removed

to move into a more realistic scenario.

In the end results of the simulations and a comparison of the three methods are

shown.
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Sommario

Ci sono molti satelliti Low Earth Orbit SAR (LEOSAR) che orbitano attorno

alla Terra per monitorare il pianeta. Questi satelliti si comportano in certe appli-

cazioni, ma presentano dei limiti per altri scopi (principalmente dovuti al tempo

di rivisita).

Recentemente, sono state proposte delle soluzioni che richiedevano l’uso di SAR

in orbita geosincrona, ma non sono mai stati implementati a causa di problemi di

decorrelazione nelle immagini. Una delle più importanti sorgenti di decorrelazione

è lo Schermo Atmosferico di Fase (APS) che ha origini nella troposfera.

Questa tesi presenterà alcuni algoritmi per stimare l’APS vista con un sistema

GEOSAR.

All’inizio verranno mostrati la geometria, i parametri e i requisiti tecnici del sis-

tema. Sarà presentato il processo di acquisizione dei dati e la generazione dello

stack di immagini che verranno utilizzati per la stima.

Poi verranno proposti tre metodi per la stima dell’APS. Ogni algoritmo sarà in-

trodotto partendo da forti supposizioni che verranno successivamente rimosse per

mostrare uno scenario più realistico.

Alla fine ci sarà un confronto tra i risultati ottenuti nelle simulazioni con i vari

metodi.
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Chapter 1

Introduction

Since 1957 when the Soviet Union launched Sputnik 1 in space, mankind has

been working hard in order to exploit satellites to communicate and monitor the

Earth, and in 1978 Seasat was the first satellite that had on board a spacebourne

synthetic aperture radar (SAR).

1.1 Synthetic Aperture Radar

A SAR system is a radar that is designed to achieve high resolution and coherent

images of the Earth.

It exploits microwaves in order to obtain some useful features[1]: the penetration

of clouds and also foliage if longer wavelength are utilized, the sensitivity to surface

roughness, the use of phase for target location and motion identifications.

The SAR is a radar mounted on a satellite or an airplane in order to mimic the

behaviour of a big array of antennas, this array simulates a wide-aperture discrete

antenna. Many low-resolution observations are obtained by the sensor during its

motion and then combined together to realize a high resolution image.

The geometry of a SAR is depicted in fig. 1.1, the antenna is not pointed directly
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1.1. SYNTHETIC APERTURE RADAR CHAPTER 1. INTRODUCTION

beneath the satellite, this is done to avoid the left-right ambiguity, the sensor

records the time interval between the transmission of the signal and the reception

of a replica scattered back from a target, but can not distinguish the direction. In

the picture θL and θI are the ”look angle” and the ”incidence angle” respectively,

notice that for a satellite borne SAR θL 6= θI due to the Earth curvature (θL < θI).

The incidence angle is usually between 20 and 50 degrees.

Figure 1.1: SAR geometry

Most SAR systems use microwaves in the bands between L and X.

The L-band (from 1 GHz to 2 GHz) is a lower limit because longer wavelength

would require large antennas and would not allow to use large bandwidth, and a

small bandwidth yields a coarse resolution.

The X-band (from 8 GHz to 12 GHz) is an upper limit because frequencies above

10 GHz are strongly attenuated by rain and clouds.
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1.1. SYNTHETIC APERTURE RADAR CHAPTER 1. INTRODUCTION

The L-band can penetrate the tree cover but higher frequencies are more sensitive

to motion and allow higher resolution.

The SAR is only capable of performing a 2D acquisition, it will sense every target

at the same distance as a single one. In order to see the third dimension we need

additional information like another SAR travelling on a parallel track, or a DEM

(digital elevation model, topology of the observed area).

In term of resolution, using a SAR we can get a very high resolution in range, the

slant range resolution depends only on the used bandwidth B

ρr =
c

2B
(1.1)

that we can convert to ground resolution knowing the incidence angle

ρg =
ρr

sin(θI)
=

c

2B sin(θI)
(1.2)

The azimuth resolution is very high if we synthetize a very wide-aperture antenna

using many observations

ρaz =
λ

2Ls
r0 (1.3)

where r0 is the slant range (distance between satellite and target) and Ls is the

length of the synthetic aperture that depends on the velocity of the satellite (or

airplane) v and the integration time T (Ls = vT ), so we can also write the azimuth

resolution in the following way

ρaz =
λ

2vT
r0 (1.4)

For an antenna with a physical size La the angular aperture is

∆ψ =
λ

La
(1.5)
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1.1. SYNTHETIC APERTURE RADAR CHAPTER 1. INTRODUCTION

This aperture will limit the synthetic aperture since a target would not be visible

for an interval wider than ∆ψ. Therefore the sinthetic length is at most

Ls < r0∆ψ = r0
λ

La
(1.6)

and this gives a limit in the azimuth resolution that depends on size of the antenna

ρaz =
λ

2r0
λ
La

r0 =
La
2

(1.7)

Equation 1.7 shows that the azimuth resolution improves with smaller antennas,

because that corresponds to a wider angle aperture and therefore to a possible

wider synthetic aperture.

Spaceborne SAR systems have been used and are still used on Low Earth Orbit

(LEO) satellites (at an altitude of about 800 Km).

Their main applications are: enviromental monitoring (especially for natural dis-

aster), DEM generation, military surveillance.

An example of working LEOSAR is the Italian Space Agency’s COSMO-SkyMed

whose applications[2] are: monitoring and preventions of natural disasters, coast-

line monitoring (erosion and pollution), agricoltural monitoring, urban monitoring

of buildings (subsidence of the ground) and accurate cartography; an other exam-

ple is the European Space Agency’s Sentinel-1 whose applications[3] are: moni-

toring of sea-ice zones, monitoring of movements and mapping of Earth surface

and mapping of natural disaster for emergency response.

LEOSAR systems perform really well for certain applications and have a cover-

age of all the Earth surface, but have an important drawback for other purposes,

their revisit time is quite high, therefore it will take few days to look at the same

section of the world, this mean that processes with short timescales are difficult

to be measured.

13



1.2. GEOSAR CHAPTER 1. INTRODUCTION

Figure 1.2: GEOSAR system acquisition geometry, red lines representing a con-
tinental GEOSAR, green lines representing a regional GEOSAR

1.2 GEOSAR

A possible solution in term of better revisit time is to place a satellite on a geosyn-

chronous orbit, this means that the satellite would stay at the altitude of a geosta-

tionary satellite (about 36000 Km) while travelling on an ellipse or an eight-shape

trajectory in one day, as illustrated in fig. 1.2.

As shown in fig. 1.2 there are two proposed SAR systems that have been presented

to work on a geosynchronous orbit, the first one is a continental system (intro-

duced by Tomiyasu in 1978 [4]) and the second one called TeLecom COMPatible

(TLCOMP) that can cover a regional area (Prati, Rocca, Giancola, Monti 1998).

Characteristics of the two GEOSAR systems and a comparison with the LEOSAR

are shown in the following table

14



1.2. GEOSAR CHAPTER 1. INTRODUCTION

Continental TLCOMP LEOSAR

Coverage Continental Regional World

Integration time Few minutes Few minutes - 7 hours <1 second

Atmosphere Almost frozen Sensed, to be compensated Frozen

Line of sight East-West North-South East-West

Revisit time Once a day Twice a day Few days

Table 1.1: Characteristics of two GEOSAR systems and a LEOSAR

Looking at the last table we can notice that a LEOSAR has a very low integra-

tion time because thanks to its high speed (about 8 Km/s) and that means a very

wide-aperture in less than a second and therefore a good resolution, but has a

very low revisit time if we compare it to the GEOSAR systems.

If we now focus only on the GEOSAR systems, we can see the technical charac-

teristics of the two systems shown in table 1.2.

Continental TLCOMP

Antenna diameter 15-30 m 3-6 m

Average PT 3000 W 400 W

PRF 200 Hz 50 Hz

Velocity at equator 1100 m/s 5 m/s

Table 1.2: Characteristics of two GEOSAR systems

Although many GEOSAR concepts have been proposed, none of them has been

implemented because of technological constraints, as we can see in table 1.2 the

continental GEOSAR would require a very big antenna and a really high trans-

mission power. The TLCOMP is actually feasible and this is the reason why from

now on we will consider only this system, but due to the higher integration time

it will suffer from a decorrelation problem (discussed later).

The TLCOMP requires the satellite to travel on an elliptic trajectory in one day
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1.3. DECORRELATION SOURCES CHAPTER 1. INTRODUCTION

and to revisit the same orbit in consecutive days. In order to obtain a good

azimuth resolution we would need large synthetic apertures, therefore the SAR

acquisition will be performed in the sections of the ellipse with lower curvature

(fig. 1.3). This gives us two integration time of about 8 hours per day.

Figure 1.3: The red sections of the elliptic trajectory will be used for synthetic
apertures

1.3 Decorrelation sources

The main challenges for a GEOSAR come from the long range from a geosta-

tionary orbit to the Earth surface, so scattered signals are weak and high power,

large antennas or long integration times are needed. With a high integration time

the targets and the atmosphere may be affected by temporal decorrelation and

this might prevent aperture synthesis (or at least deteriorate the resolution of the

images).

There are many factors that generates decorrelation in the images. Sometimes we

can compensate for this effect and prevent that some of the energy scattered back

from a target would spread on nearby targets, causing defocusing and blurring in

the images. In other cases we can not compensate for the decorrelation, the only

thing we can do is to evaluate how much the image will be deteriorated.

One source of decorrelation is scene decorrelation (or clutter decorrelation),

that is due to a target motion.

If we consider a displacement of a target during the integration time, the SAR

16



1.3. DECORRELATION SOURCES CHAPTER 1. INTRODUCTION

sees a displacement in the slant range that generates a phase distortion [5] and

the energy of the reflection would spread on a bigger area, this may cause a loss

of azimuth resolution.

The targets that generate this decorrelation are objects that moves during the

integration time (for example leaves blown by the wind), some of these targets

can be filter out by a GEOSAR that uses frequencies in the L-band (it may be

able to see the ground through the tree tops). Varying integration time (and the

resolution), different noise sources might be filtered out; this could help estimating

the effect of some decorrelation sources like the vegetations or the ionosphere.

Another source of decorrelation are the Earth tides, solid Earth has tides and

the surface slightly moves due to the gravity attraction by the Moon and the Sun.

There are three different relevant processes:

• Solid Earth tides: this is the biggest contributor to Earth tidal displacement,

it has a period of 12 hours and an amplitude comparable with λ and needs

to be compensated. There are models to estimate this displacement with

an accuracy of 1 mm, the residual error can be considered as gaussian noise

and will give a performace loss of about 0.01 dB;

• Ocean loadings: this effect has an amplitude of few centimeters, there are

models that can compensate this effect with an accuracy of 3 mm, if we

consider the error as gaussian noise the performance loss would be 0.15 dB;

• Pole tides: this is the response of the ocean to the variations of the centrifu-

gal force due to wobbling of the Earth’s rotational axis. Ita has a periods

of 12 and 14 months so displacement generated during the integration time

can be neglected.

Another source of decorrelation is the Ionospheric delay, the ionosphere causes

a delay in the SAR pulses that means an advance in the received signal that is

17



1.3. DECORRELATION SOURCES CHAPTER 1. INTRODUCTION

proportional to the total electon content (TEC) and inversely proportional to the

frequency

δφ = −2π

c0

40.28

f
TEC (1.8)

since the TEC can vary in a 8-hour integration time, this phase shift needs to be

compensated. There are two types of decorrelation: spatial decorrelation (differ-

ent points of the ionosphere have different TEC) and temporal decorrelation (the

TEC changes with time). Both of this issues can be solved using sub-aperture

focusing, this implies many windows with a shorter integration time (few min-

utes) in which the ionosphere can be considered still, and using a GEOSAR, the

synthetic aperture projected on the ionospheric layer (altitude of about 400 Km)

is only few Km where we can consider the ionosphere to be constant.

The last source of decorrelation is the Tropospheric delay, it is caused by local

eterogeneities in the air’s refractive index n in the troposphere (lower layer of

the atmosphere) that induce variations in the slant path from the target to the

satellite. This delay can be divided in two main components: hydrostatic and wet

delays.

(n− 1) 106 =
77.6P

T
+

3.73 · 105e

T 2
(1.9)

Where n is the refrective index, P the pressure measured in millibars, T the tem-

perature in Kelvin and e is the water vapor pressure in millibars.

The hydrostatic delay depends on pressure and temperature, while the wet com-

ponent is caused by the water vapor (humidity) in the air, it is usually smaller

than the hydrostatic one but much more variable and thus harder to remove; it

needs to be compensated before focusing to obtain a good resolution. It is a

zero mean gaussian process that introduces a random phase term that is called

Atmospheric Phase Screen (APS).
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1.4. PURPOSE OF THE THESIS CHAPTER 1. INTRODUCTION

1.4 Purpose of the thesis

We have just introduced the Atmospheric Phase Screen, that is generated in the

troposphere by the humidity in the air; this effect needs to be compensated, es-

pecially if high integration times are used, otherwise the APS will add a random

component in the phases of the targets that will cause defocusing in the scene and

blurring in the SAR images.

The purpose of this thesis is to present three different algorithms that should be

able to estimate the atmospheric phase screen starting from images taken over

many days.

Estimating the APS is a crucial point because this is one of the main problems

that have prevented the implementation of GEOSAR systems.

Implementing a TLCOMP system would allow us to realize the following appli-

cations:

• real time monitoring of events like landslides, motion of glaciers and volca-

noes [6] and building deformations in urban areas;

• generation of 3D ground subsidence map, combining TLCOMP and LEO-

SAR data [7].

• generation of water vapor maps [8] (humidity in the atmosphere);

A LEOSAR system would be capable to realize the first two applications, but not

in real time, while a GEOSAR is always looking at the same area and would be

able to notice any sudden change of the surface of the Earth.

1.5 Related Works

There have been studies on the estimate of the delay introduced by the atmo-

sphere.
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1.5. RELATED WORKS CHAPTER 1. INTRODUCTION

There are models that use meteorological data (temperature, pressure and hu-

midity) acquired at ground stations. Among these, the most common are the

Hopfield, Saastamoinen and EGNOS model [9].

In the Hopfield model the temperature is assumed to fall at a rate of β =

−6.5◦C/Km going up, the zenith atmospheric delay will be

d = 10−6k1
P0

T0

Hd − h
5

+ 10−6 [k3 + 273(k2 − k1)]
e0
T 2
0

Hw − h
5

(1.10)

WhereHd = 40136+148.72(T0−273.15)m andHw = 11000m are the height of the

dry and wet atmospheric layer, P0 is the ground pressure (mbar), T0 the ground

temperature (◦C), e0 the ground water vapor pressure (mbar) and h the height of

the observation station. There are three constant parameters k1 = 77.6 K/mbar,

k2 = 71.6 K2/mbar and k3 = 3.737× 105 K2/mbar.

The Saastamoinen model once again consider a constant rate of change of the

atmosphere of β = −6.5◦C/Km going up from the observation station. The

delay is modelled as

d = 0.002277
P0 +

(
0.05 + 1255

T0+273.15

)
e0

f(ϕ, h)
(1.11)

with

 e0 = rh× 6.11× 10
7.5T0

T0+273.15

f(ϕ, h) = 1− 0.00266 cos(2ϕ)− 0.00028h

where rh is the relative humidity (between 0 and 1), f(ϕ, h) is the modification of

the variation in the gravitational acceleration caused by the Earth rotation and ϕ

and h are the geocentric latitude (◦) and geodetic height (Km) of the observing

station respectively.

The EGNOS (European Geostationary Navigation Overly System) model divides

the dry and wet components of the troposphere

20



1.5. RELATED WORKS CHAPTER 1. INTRODUCTION

ddry =
10−6k1Rdp

gm

(
1− βH

T

) g
βRd

(1.12)

dwet =
10−6k2Rd

gm(µ+ 1)− βRd

e

T

(
1− βH

T

) (µ+1)g
βRd

−1

(1.13)

where g = 9.80665 m/s2, gm = 9.784 m/s2, Rd = 287.054 J/K/Kg, H is the

height of a receiver above sea level (m), T the temperature (K), e is the water

vapor pressure(mbar), p is the atmospheric pressure (mbar), β the change rate of

the temperature (K/m), µ is the change rate of the water vapor (dimensionless),

k1 = 77.604 K/mbar and k2 = 382000 K2/mbar.

Using radars, a method to estimate the APS by means of a ground-based radar

has been presented [10], and tests have been carried out. The main idea is to

look for the difference in the received phase from a stable target (ground control

point) in consecutive images, since the target is still the phase variations are due

to the atmospheric phase screen, this method can be improved exploiting data

obtained from a nearby meteo station to tune the humidity (looking to maximize

the average coherence of stable targets in consecutive images) and get an estimate

of the refractive index that leads to a first estimate of the delay introduced by the

APS.

Hobbs presented a method to track APS variations in time with a GEOSAR [11].

If the rate of change of the APS is linear this causes an azimuth shift that is

proportional to the rate of change, deviations from linearity causes defocusing

in the image. This fact provides an opportunity to track the variation of the

APS of a pixel (or a group of pixels) using consecutive images taken with short

integration times and looking at the azimuth displacements of a target in those

images. This method requires to use only integration times short enough that we

can approximate the changes in time as linear.

Another method presented for the estimation of the APS using a GEOSAR system
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1.5. RELATED WORKS CHAPTER 1. INTRODUCTION

looks for stable point targets. This scatterers should ideally present a constant

phase over time and the phase variations are due to the effect of the APS, in this

way we can estimate the atmospheric phase screen over this scatterers. If we have

many stable point targets (like in urban areas) we can get a grid of values of the

APS. Then if we use a temporal and 2-D cubic interpolation we can obtain the

continuous phase screen in time and space [12].
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Chapter 2

Model and data acquisition

2.1 GEOSAR system

From now on we will focus only on the GEOSAR based on the TLCOMP system

using frequencies between the L and X-band (for the reasons stated in the previ-

ous chapter).

Fig. 2.1 shows an example of a TLCOMP and introduces the differences in cover-

age at different bands.

Figure 2.1: GEOSAR system; L-band (green ray), X-band (red rays)
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2.2. ATMOSPHERIC PHASE SCREEN CHAPTER 2. MODEL

The main differences between the to working frequencies are shown in the following

table

L-band X-band

Coverage 3000 Km 300 Km

Resolution Coarse (50 m × 50 m) Fine (10 m × 10 m)

Effect of vegetation Penetration over vegetation Decorrelation of vegetation

Effect of clutter decorrelation Less affected Highly affected

Troposphere effect Fairly affected Highly affected

Ionosphere effect Fairly affected Not affected

Table 2.1: Main differences between L and X-band in a GEOSAR system

Different applications may require to use different bands, but they all be affected

by the atmospheric phase screen, especially if long integration times are used in

order to achieve better azimuth resolution.

2.2 Atmospheric phase screen

The atmospheric phase screen is a zero mean random process dAPS (measured in

millimeters) that depends on the humidity in the troposphere.

It is a 4D process (3D in space and the time dimension) and given a short enough

time interval (where we can consider no variations of the APS in time) a GEOSAR

should be able to sense a 2D APS (range and azimuth directions).

According to [13] we can describe the APS with its variogram

2V (t1, t2) = var [d (t1)− d (t2)] = E
[
|d (t1)− d (t2)|2

]
(2.1)

the APS is a stationary process and if we consider τ as the difference between t1
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and t2 we can write the variogram as

2V (τ) = E
[
|d (t+ τ)− d (t)|2

]
= 2σ2

t

(
1− e−

√(
τ
τ0

)2)
(2.2)

where σ2
t is the power of the process and τ0 is the decorrelation time.

Usually σ2
t assumes value around 400 mm2 (average atmosphere) and can get as

low as 200 mm2 (weak atmosphere) and as high as 1000 mm2 (strong atmosphere).

The decorrelation time is usually around 10 hours.

From the variogram we can also derive the autocorrelation function r(τ) knowing

that

r (τ) = σ2
t −

2V (τ)

2
(2.3)

we get

r (τ) = σ2
t − σ2

t

(
1− e−

√(
τ
τ0

)2)
= σ2

t e
−
∣∣∣ ττ0 ∣∣∣. (2.4)

These variogram and autocorrelation function depend only on time, but with

similar steps we can add the space dependence. From

2V (τ, χ) = var
[
|d (t+ τ, x+ χ)− d (t, x)|2

]
(2.5)

we will get the following variogram and autocorrelation

2V (τ, χ) = 2σ2
t,x

(
1− e−

√(
τ
τ0

)2
+
(
χ
χ0

)2)
(2.6)

r (τ, χ) = σ2
t,xe
−
√(

τ
τ0

)2
+
(
χ
χ0

)2
(2.7)

where χ0 is the decorrelation space (usually between 10 and 20 km).

An example of an APS is shown in fig. 2.2.

Until now we have considered the atmospheric phase screen dAPS in millimeters,
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Figure 2.2: An example of an atmospheric phase screen shown in millimeters.

this translates to a phase term φAPS that depends on the frequency (or wavelength

λ) used

ej
4π
λ
dAPS = ejφAPS (2.8)

This phase term will have a slightly different autocorrelation function (steps to

obtain it are in appendix A)

rφ (τ) = e
−( 4π

λ )
2
σ2
t

∣∣∣ ττ0 ∣∣∣ (2.9)

where we can also add the space dependence

rφ (τ, χ) = e
−( 4π

λ )
2
σ2
t

√(
τ
τ0

)2
+
(
χ
χ0

)2
(2.10)
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2.3 Acquisition model and APS effects

According to [14] in order to evaluate the impact of the atmospheric phase screen

on a GEOSAR acquisition, we have to start from the GEOSAR impulse response

function (IRF) in presence of the APS

h(t, τ,P ) = w(τ,P )g

(
t− R(τ,P )

2c

)
exp

(
−j 4π

λ
R(τ,P )

)
exp

(
−j 4π

λ
dAPS(τ,P )

)
(2.11)

where t is the fast time, τ is the slow time and P is the 3D location of the target,

there are four terms in the last equation: the first is the slow amplitude change

due to the antenna pattern and the spread losses, the second is the delayed version

of the transmitted pulse, the third is the phase term due to the sensor-to-target

distance variation and the fourth is the phase distortion introduced by the APS.

Starting from equation 2.9 we can compute the power spectrum of the APS process

SAPS(f, T ) =
2

k(T )

1

1 +
(2πf)2

k(T )2

(2.12)

with

k(T ) =
σ2
τ,χT

τ 20

(
4π

λ

)2

(2.13)

From equation 2.12 we may notice that the power spectrum of the APS depends

on the observation time T, the longer the integration time the more dispersed the

resulting APS power spectrum.

If we try to focus an image without compensating for the APS, the resulting image

would be the convolution between the GEOSAR azimuth IRF and the spectrum

of the APS at the time of the acquisition.

Thanks to this convolution the energy of the targets will spread through the image
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Figure 2.3: Azimuth resolution in L-band (left) and X-band (right)

causing a loss of resolution in the azimuth direction.

We stated in equation 1.4 that the SAR azimuth resolution is

ρaz,SAR =
λ

2vT
ro (2.14)

the final resolution can be approximated as the summation between ρaz,SAR and

the FWHM (full width at half maximum) of the APS process power spectrum

shown in equation 2.12

ρaz = ρaz,SAR + ρAPS,SAR =

(
λ

2vT
+

8πTσ2
τ,χ

vτ 20λ

)
r0 (2.15)

Fig. 2.3 shows the azimuth resolution (as a function of the integration time, and

APS power) for L and X-band GEOSAR systems. It can be noticed that the

resolution is slightly impacted by the APS power for an L-band system, while a

high APS power has a big impact on the resolution of an X-band GEOSAR.

If we were able to accurate estimate the APS, we could compensate for it and
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achieve the resolution shown in equation 2.14, so we could obtain better focused

SAR images.

2.4 Model for APS estimation

Although we would like to have a long integration time to achieve a good azimuth

resolution, we need to use a time window where the APS can be considered still,

that’s why we should split the total time into many shorter integration times (sub-

apertures) to get many images per day. In this way we can track the variations

in the APS.

Looking at equation 2.15 we may notice that the resolution depends on T , the

first term indicates that we need a long integration time, the second one that we

need a short T in order to achieve a good resolution. There is a minimum around

15 to 20 minutes, and in that time interval we can also consider the APS to be

still, therefore we should use integration times of about 15 to 20 minutes, and we

will get 3 to 4 images per hour.

One image is not enough to get an estimate of the APS, beacause we would have

more unknowns (ground reflectivity and APS) than data. Consecutive images

would look at the same area but from a different sub-aperture (different incidence

angle means a different perceived ground reflectivity) and would be affected by an

other APS, so we can not combine the informations from consecutive images to

estimate the APS because they would not sense the same scene and atmosphere.

In order to solve this problem we have to exploit the revisit time of the satellite

that every day comes back on the same orbit and can perform SAR acquisitions

from the same sub-apertures.

When the satellite looks at the Earth from the same sub-aperture, but in differ-

ent days, it should sense the same ground complex reflectivity (it will be slightly

changed due to temporal decorrelation) and a completely different APS.
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We can exploit the fact that the scene should remain almost unchanged in con-

secutive days to process the received data to remove the scene from the images,

and that should yield us the atmospheric phase screen.

We need a ”Stack of images”, it is a collection of SAR acquisitions that creates a

table of images taken in different days. An example of a stack of images is shown

in fig. 2.4, on the vertical axis we may see different days, while on the horizontal

axis we have the sub-apertures. Images on the same column are taken from the

same position of the satellite in different days and images on the same row are

taken in the same day but from different sub-apertures.

We will consider no temporal decorrelation, that means that the scene will not

vary, so in consecutive days and in the same sub-aperture (same column of the

Stack) the satellite will sense a constant ground reflectivity. This is an ideal case

but changes in the scene can be considered like noise to be added to the thermal

noise.

Figure 2.4: An example of a stack of images (images taken by Sentinel-1A [15])
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Now that the concepts of atmospheric phase screen (along with its variogram and

autocorrelation function) and stack have been defined, we should put them into

formulas and write the model.

We will start from already focalized images.

If we call a(x, y) the ground complex reflectivity, dAPS the atmospheric phase

screen in millimeters, the received signal will be

y (x, y, s, d) = a (x, y, s) ej
4π
λ
dAPS(x,y,s,d) + w (x, y, s, d) (2.16)

where s indicates the sub-aperture, d the day the data were acquired and w the

AWGN noise.

Since we will vectorize the data to process them and in order to simplify the

formulas we can substitute the coordinate (x, y) with p, knowing that the number

of pixels Np in an image will be Nx ×Ny.

Furthermore, similarly to what we showed in equation 2.8 we can write

ej
4π
λ
dAPS(p,s,d) = ejφAPS(p,s,d) (2.17)

From equation 2.17 we can notice that using a given frequency (or wavelength),

there is a relation between the phase of the APS and the APS in mm.

The model can now be written in the following way:

y (p, s, d) = a (p, s) ejφAPS(p,s,d) + w (p, s, d) (2.18)

but as it was stated before we can not combine together images from different sub-

apertures, therefore the dependence on s can be dropped, since only images from

the same sub-aperture and consecutive days will be processed together. After we

finished processing data from one sub-aperture we will move to the next one.

Exploiting this fact, the model can be simplified
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y (p, d) = a (p) ejφAPS(p,d) + w (p, d) (2.19)

Equation 2.19 is the model we will start from in order to estimate the atmospheric

phase screen.

As we said GEOSAR systems have been studied to work at frequencies between

the L-Band and the the X-Band and the main differences are shown in fig. 2.1

and in table 2.1.

In order to estimate the atmosphere we are really interested in the phases of the

different members of the model and in equation 2.8 it was shown the correspon-

dence between phase of the APS and the APS in millimeters.

We have to check that at the two working frequencies the wrapping effect is not

present. A situation in which the phase wraps around can create many problems

because it would mean that there is an ambiguity in the phase-to-millimeter con-

version. It might be really hard to understand the true phase in the presence of

wrapping.

If we take a look at the simulation of an atmospheric phase screen with a power

of 400 mm2 (an average power) seen in L and X bands we can notice that only in

one case there is no wrapping (fig. 2.5)
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(a) L-band (b) X-band

Figure 2.5: APS seen in L and X bands, wrapping is present only in the X-Band

This fact can also be seen from equation 2.17, if we set the phase φAPS(p, s, d) to

0 and 2π

4π

λ
dAPS = 0 dAPS = 0

4π

λ
dAPS,wrap = 2π dAPS,wrap =

λ

2

With λ = 0.3 m (L-band) and λ = 0.03 m (X-band), the phase wrap around every

150 mm using the L-band and only 15 mm with the X-band. From this example it

is clear that the best choice for estimating the APS is the L-band, since it is much

more difficult to find the wrapping effect, even if we could achieve better range

and azimuth resolution using the X-band (due to higher bandwidth and shorter

wavelength).

In case we need higher resolution images we could perform SAR acquisitions in

both L and X-band and use the L-band to estimate the atmospheric phase screen

in millimeters, then we could convert it using equation 2.8 to what would be an

APS sensed in the X-band and use it to remove the APS while focusing an X-band
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image.

2.5 Phase model for APS estimation

In equation 2.19 the model has been shown, but in certain situations a simplified

model can be used.

The model previously proposed is a non linear model and involves the use of

complex numbers, but what we are most interested in is the phases of the targets

in the scene and the phase of the APS.

If we take into account only the phases in the model we get

arg {y(p, d)} = φ(p, d) arg {a(p)} = φs(p)

where the s in φs(p) stands for scene, we obtain

φ(p, d) = φs(p) + φAPS(p, d) + tan−1

(
Im
{
w(p, d)e−j(φAPS(p,d)+φs(p))

}
|a(p)|+ Re {w(p, d)e−j(φAPS(p,d)+φs(p))}

)
(2.20)

in equation 2.20 the last term is the noise, if we call it φ̃w(p, d), we get the simplified

model:

φ(p, d) = φs(p) + φAPS(p, d) + φ̃w(p, d) (2.21)

This model can be really useful because it is linear and uses only real numbers

and this makes computations simpler.

It has a significant drawback though: we need to be careful that the phase does

not wrap around otherwise we could get meaningless results, since a linear model

can not take into account the wrapping effect.
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2.6 Power budget

Hereafter we want to highlight the working conditions of the system.

If we want to see the performances of a GEOSAR system the parameters we

are most interested in are the signal to noise ratio (SNR), range resolution and

azimuth resolution.

We have already talked about resolution and shown the formulas that allow us to

compute the azimuth and range resolutions.

How to compute the SNR is shown in Appendix B, here we will only write the

final expression

SNR = PM

(
G2λ2η2
(4π)3r40

)(
σ0,s

c

2B sin(θI)

La
2

)(
TS
N0

)
(2.22)

The first term is the average power, that is the product of the peak power and

the duty cycle (PM = PTdc = PTTcfprf ), the second term is the effect of the

antenna gain (G), spherical divergency and total losses (η2), the third term is the

radar cross section of the targets (product of σ0, ground resolution and azimuth

resolution), the last term is the noise power in the extent of the matched filter,

that is the duration of the synthetic aperture TS = λr0
vLa

. We will be in a scenario

shown in the following table.
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Data Symbol Value Unit

Peak power PT 2400 W

Antenna diameter La 6 m

Antenna TX efficiency η -2.22 dB

Duty cycle dc 16 %

Frequency f0 1.27E+9 Hz

Bandwidth B 2.2E+6 Hz

Noise Factor F 3 dB

Slant range r0 3.74E+07 m

Satellite height hs 4.216E+07 m

Satellite velocity v 5 m/s

Losses (rain and atmosphere) 3 dB

Mean reflectivity σ0 -15 dB

Integration Time T 900 s

Range resolution ρrg 85 m

Azimuth Resolution ρaz 1100 m

SNR 8.7 dB

Table 2.2: GEOSAR system parameters and working conditions

In the following chapters we will show few estimators to obtain the APS. Examples

are shown with the SNR shown in table 2.2 (8.7 dB) that is the average SNR we

expect (it may vary since it might experience different noise and losses). Moreover

we will show the error versus the SNR, and we will set a limit under which we

can consider the estimate to be good enough.
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Chapter 3

APS estimation through MMSE

estimator

The first method presented to estimate the atmospheric phase screen is by means

of the Minimum Mean Square Error.

In this chapter we will use the simplified model (equation 2.21).

3.1 Ideal case: only APS

We will not consider the ground reflectivity for the moment, this is not a real case

and will be used only for comparison with the case with the presence of the scene

to see the performance loss.

The model is even simpler than the one in equation 2.21

φ(p, d) = φAPS(p, d) + φ̃w(p, d) (3.1)

where

φ̃w(p, d) = tan−1

(
Im
{
w(p, d)e−jφAPS(p,d)

}
1 + Re {w(p, d)e−jφAPS(p,d)}

)
(3.2)
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and since taking into account just one image we have an equal number of unknowns

(Np) and data (Np), also the dependence on d can be dropped.

Looking one image at a time

φ(p) = φAPS(p) + φ̃w(p) (3.3)

that with matrices is

φ = HφAPS + φ̃w (3.4)

Where H is an identity matrix (Np ×Np). From digital signal processing theory

we know that for linear models with gaussian processes, the MMSE estimator is

φ̂APS = µAPS+CφAPSφAPSH
T
(
HCφAPSφAPSH

T +Cww

)−1
(φ−HµAPS) (3.5)

where CφAPSφAPS and Cww are the covariance matrices of φAPS and the noise

respectively, µAPS is the expected value of the APS, but the atmospheric phase

screen is a zero mean process and H is an identity matrix, so we can simplify the

estimator

φ̂APS = CφAPSφAPS (CφAPSφAPS +Cww)−1φ (3.6)

We will assume to have a gaussian noise and to know its covariance (Cww).

The last equation shows the MMSE estimator for the phase of the APS, then we

have to convert it to millimeters using equation 2.8.

An example of the estimate of the APS using this method is shown in fig. 3.1.

The Root Mean Square Error (RMSE) using this method is shown in fig. 3.2.

There is one last consideration to make: this estimator would be the best at
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Figure 3.1: True APS seen in L-band (left); data with a SNR=8.7 dB (center);
estimate of the phase of the APS (right)

Figure 3.2: MMSE: RMSE without the scene (blue line), goal set at 5 millimiters
(red dashed line)
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minimizing the MSE, but in order to achieve this minimum error we should take

into consideration every pixel of the image together and the covariance of the

phase should take into account the correlation of each target. This would mean a

huge covariance matrix (Np×Np), the problem is not only the big matrix, but the

fact that we have to compute the inversion of such a matrix and this procedure

is going to require a lot of time.

A wise method to improve the speed of this estimator is to split the images in

smaller sections and use the estimator in 3.6 on these regions and then combine

the sections to recreate the whole image.

Due to the fact that we use only close points to estimate the APS and their

correlations, and we do not take into account informations from farther points

there is going to be a small performance loss (slightly bigger error).

Fig. 3.3 shows the RMSE if we split the image into 25 smaller images, the error

is almost the same, but the estimator is much faster (about 400 times faster).
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Figure 3.3: MMSE: Comparison between the error in case we consider the whole
image (blue line) and in case we split the image into 25 smaller images (green
line), goal set at 5 millimiters (red dashed line)

3.2 Average and MMSE estimator

Now we add the ground reflectivity (with no temporal decorrelation) and use the

model in equation 2.21.

In this model we have more unknowns (Np + Np × Nd) than data (Np × Nd) we

have to find a way to reduce the number of unknowns.

One possible method to reduce the number of unknowns is to exploit the fact

that the scene remains unchanged in consecutive days, if looked from the same

sub-aperture.

If we consider the model in equation 2.19, we can notice that every process is zero

mean, but while the ground reflectivity remains the same in consecutive days, the

41



3.2. AVERAGE AND MMSE ESTIMATOR CHAPTER 3. MMSE

Figure 3.4: Phase error of the estimate of the ground reflectivity through average
over 10 days (SNR=8.7)

atmospheric phase screen and the noise vary.

If we average the images of the same sub-aperture in Nd consecutive days, we will

notice that we are adding Nd times the same scene and the APS and noise will

tend to cancel out, leaving us only the scene.

In this way we get an estimate of the ground reflectivity

â(p) =
1

Nd

Nd∑
d=1

y(p, d) (3.7)

This is a good estimate of the ground reflectivity, an example of the estimate of

the phase of the scene is shown is fig. 3.4.

The error in the estimate of the phase of the scene can be considered a noise to

be added to the thermal noise.

Now we can remove the phase of the scene from the model in equation 2.19

multiplying everything by the complex conjugate of the scene just estimated.
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ỹ(p, d) = y(p, d) ◦ â∗(p) (3.8)

where ◦ indicates the Hadamard product, so we get

ỹ(p, d) = a(p)ejφAPS(p,d) ◦ â∗(p) + w(p, d) ◦ â∗(p) (3.9)

Looking at the phases of the components of the last equation we get

φ̃(p, d) = φAPS(p, d) + φ̃w(p, d) (3.10)

The model we obtained is really similar to the one in equation 3.3.

The phase noise will be stronger than the previous one because it will contain the

previous phase noise plus the phase error of the estimate of a(p).

Now we can replicate the steps applied in the ideal case without the ground

reflectivity and looking at one image at a time we can use a MMSE estimator on

the model in equation 3.10.

The error will be bigger than the one without scene due to the fact that in the

previous case we can think that we knew the phase of the scene and removed it;

now we have to estimate it through an average with zero mean processes, but we

will get an error in estimating the ground reflectivity that will affect the MMSE

estimator.

The error in the estimate of the scene will be due to two factors that we have to

consider:

• we should average over many days (ideally infinite) to get an average of the

atmospheric phase screen and the noise that is equal to zero,

• if we use many days to compute the average we would get an almost zero

mean APS and noise but with higher variance, and over many days the scene
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will change.

This shows that there is a trade-off in chosing the number of days to be use in

the average estimator.

We should also consider that it might be true that there is a small temporal

decorrelation in consecutive days, but that may not be the case if we take into

account too many days.

Fig. 3.5 and fig. 3.6 present an example of this estimator (estimate of the APS

and RMSE respectively).

Figure 3.5: MMSE: Estimate of the APS with average estimator (right), true APS
(left), data after removal of the scene through average with SNR=8.7 dB (middle)
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Figure 3.6: MMSE: RMSE with average and MMSE estimator (green line) and a
comparison with the ideal case (blue line), goal set at 5 millimiters (red dashed
line)

The RMSE in fig. 3.6 has been obtained using the whole data together (and thus

a really big covariance matrix to be inverted was involved), as we said in the case

with known scene we can speed up the estimator dividing the images in smaller

areas; there will be a small performace loss shown in fig. 3.7, where the image has

been divided in 25 smaller areas.
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Figure 3.7: MMSE: RMSE with average estimator and use of smaller ares (green
line) and a comparison with the estimator using the whole scene (blue line), goal
set at 5 millimiters (red dashed line)
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APS estimation through SVD

In this chapter we will present a method that exploits the fact that the model

shown in equation 2.19 is actually a separable model that we can see in the

following way (the idea of looking it as a separable model was taken from [16],

where the SVD was used to look for permanent scatterers)

y = u · v + w (4.1)

Where u contains information on the ground reflectivity and v contains informa-

tion on the APS.

We can try to separate this model by means of a Singular Value Decomposition

(SVD), but we need to take into account informations from more than one day.

We can rewrite the model in matrix form

Y = UΛV +W (4.2)

In this case U and V are matrices that contain information on the scene and the

APS in different days respectively.

Matrix Λ contains the singular values of the SVD, but we will not look at this

matrix since it does not contain meaningful information for estimating the atmo-
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spheric phase screen.

Matrix Y is the data from the images acquired with the SAR acquisitions. Once

again we have to take into account few days in order to have more data than

unknowns.

Furthermore we have to split the images into smaller sections of dimensions

Ñp × Ñp (with Ñp � Np) for two main reason:

• if we use smaller areas, the time required for the computation of the SVD

would decrease,

• the SVD will assign the same value for the atmosphere to each pixel in the

same area, so if we use the whole image we would obtain an almost flat

atmospheric phase screen. In fig. 4.1 this effect is shown selecting a high

SNR.

Figure 4.1: The SVD tends to assign the same value to the APS in the area where
it is computed, so in the estimate we will see the images divided in big squares
(figure above).
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We still have to be careful not to choose sections that are too small, otherwise the

noise would affect too much the SVD.

As we said, matrix Y will contain the data from the same areas of the images

taken in consecutive days and it has to have the following structure

Y =


y(1, 1) y(1, 2) · · · y(1, Nd)

y(2, 1) y(2, 2) · · · y(2, Nd)

...
...

. . .
...

y(Ñp, 1) y(Ñp, 2) · · · y(Ñp, Nd)



This matrix Y will be the input of the SVD.

The SVD will return three matrices U ,Λ,V

[U ,Λ,V ] = svd (Y ) (4.3)

Matrices on the left side of the equal sign will have the following dimensions:

• U : Ñp
2 × Ñp

2

• Λ: Ñp
2 ×Nd

• V : Nd ×Nd

The first column of U contains the informations on the ground reflectivity, we

can reconstruct an image of Np × Np pixels using this column, while the other

columns can be discarded.

The first column of V contains the informations on the phase of the atmospheric

phase screen. It consists of Nd values that have to be assigned to the areas of the

Nd days used to compute the SVD. The value in V (1, 1) has to be assigned to the

whole area of the first day, V (2, 1) to the area of the second day and so on. The
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other columns can be discarded.

As stated before Λ can be ignored.

There is still one more relevant issue to be discussed, the SVD will find more than

one solution to our problem, because given a possible solution, another one can

be found simply rotating every obtained value by a constant phase. This would

still yield a good result.

The SVD does not know which one is the true solution, thus it will add a constant

phase to every term so that V (1, 1) has a phase that is equal to zero (the SVD

sets V (1, 1) to a real number).

It is up to us to solve the problem of the constant phase term, but we need addi-

tional informations.

Hereafter we will present a few method to estimate this phase constant starting

from a scenario with a strong assumption and then moving on to more realistic

cases.

4.1 Ideal case: known scene

In order to solve the problem of the phase constant introduced by the SVD we

will start from the same assumption we made in the previous chapter with the

MMSE estimator.

We will assume to know exactly the ground reflectivity for the moment.

The scene is still a(p) and it is completely known, if we call ã(p) the first estimate

of the ground reflectivity taken from the first column of U , we should have that

ã(p) is a(p) rotated by the constant phase term

ã(p) = a(p)ejφconst (4.4)
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4.1. IDEAL CASE: KNOWN SCENE CHAPTER 4. SVD

if we multiply ã(p) by the complex conjugate of a(p), looking at the phase of the

result we should find out the phase constant term

φ̂const = arg {ã(p)a∗(p)} = arg
{
|ã(p)| |a(p)| ej(φa+φconst−φa)

}
(4.5)

φconst is a constant for every pixel in the area for every day, therefore we could

use only one target to estimate the φconst, but there is also noise to be taken into

account, so if we just pick a point randomly, it could be affected too much by

noise and that might ruin the estimate of that given area. A better choice would

be to compute it for every point (so the error would not be affected too much if

we pick a noisy point)

φ̂const = arg {ã ◦ a∗} (4.6)

where ◦ is the Hadamard product.

This φ̂const is actually a correction that has to be applied to the phase of the APS

estimated with the first column of V

φ̂APS(p, d) = arg
{
ej arg{V (d,1)}e−jφ̂const(p,d)

}
(4.7)

Using this method we can get estimates of the APS that look like the image shown

in fig. 4.2

From the estimate shown in fig. 4.2 we may see that noise has a big impact on

the performance of the SVD estimator. Looking at the Root Mean Square Error

(RMSE) shown in fig. 4.3 we can notice that the error is too high, the estimate is

not good enough.
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4.1. IDEAL CASE: KNOWN SCENE CHAPTER 4. SVD

Figure 4.2: Estimate of the APS (above) achieved by means of the SVD with a
SNR=8.7 dB; true APS (below).

Figure 4.3: RMSE with known scene, the error is high due to the noise in the
estimate (like in fig. 4.2, goal set at 5 millimiters (red dashed line)

52



4.1. IDEAL CASE: KNOWN SCENE CHAPTER 4. SVD

4.1.1 Improvement in the estimate using multi-look

A common method to decrease the impact of the noise on the estimate is the use

of the multi-look in range, it consists on a sliding window that is used to average

the values along the range direction.

We can slightly improve the estimate of the atmospheric phase screen using the

multi-look in range, but we can still do better, reminding that the SVD assigns

the same value to the area over which we compute it, we may notice that the

differences are only due to the noise. If we average every pixel in the area we

should be able to cancel the noise.

Using this method we should get an estimate of the APS that has flat areas, and

steps between them, as shown in fig. 4.4.

Figure 4.4: Estimate of the APS averaging over the area used to compute the
SVD with a SNR=8.7 dB (above); true APS (below).
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4.2. ONE PERMANENT SCATTERER PER AREA CHAPTER 4. SVD

Figure 4.5: Comparison of the RMSE in the cases shown, plain SVD (blue line),
averaging over the area (green line), goal set at 5 millimiters (red dashed line).

The estimate of the APS improves, so the RMSE decreases: fig. 4.5.

4.2 One Permanent Scatterer per area

We now remove the assumption to perfectly know the scene, and we assume that

we only know one coefficient of the ground reflectivity per area in which we will

compute the SVD.

This assumption is not so unreasonable since we might find some permanent

scatterers in the scene. These targets are points that present a constant ground

reflectivity.

We have to search for these targets looking at which pixels remain unchanged in

the scene observing them for many days. Among these targets we can select the

ones with greater amplitude, so that they would be more resistent to the thermal

noise.

The steps to obtain the estimate of the APS have already been shown, we would
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4.2. ONE PERMANENT SCATTERER PER AREA CHAPTER 4. SVD

start by computing the SVD in equation 4.3, then from the first column of U we

have to reconstruct the scene (ã(p)) rotated by the phase constant, and finally we

can estimate the phase constant similarly to what we did in equation 4.5

φ̂const = arg {ã(p̄)a∗(p̄)} (4.8)

where p̄ indicates the permanent scatterer.

Then we have to remove this phase constant from the phase of the estimate of the

APS

φ̂APS(p, d) = arg
{
ej arg{V (d,1)}e−jφ̂const

}
(4.9)

Using this estimator, we may get an APS estimate as shown in figure 4.6 and a

RMSE like in figure 4.7.

Figure 4.6: APS estimate (above) knowing 1 permanent scatterer per area
(SNR=8.7 dB); true APS (below).
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Figure 4.7: Root mean square error of the estimate of the APS knowing only 1
permanent scatterer per area (blue line); RMSE with known scene (green line)
like in fig. 4.5, goal set at 5 millimeters (red dashed line).

4.3 Only one Permanent scatterer in the whole

scene known

Now we will move on to more stringent assumption, we will assume to know only

one ground reflectivity coefficient in the whole scene.

Knowing only one permanent scatterer, we can estimate only one phase constant

to be corrected in the area where the permanent scatterer is situated. This will

be done using equations 4.8 and 4.9.

Processing data from other areas in the way we did before is useless, we can not

distinghuish the ground reflectivity and the atmospheric phase screen (we need

a way to estimate the phase constant). We need to slighly overlap the areas, so

that starting from areas adjacent to the one we are able to estimate, we can say
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Figure 4.8: Estimate of the APS knowing only 1 target’s reflecivity and exploiting
overlapping areas with SNR=8.7 dB (above); true APS (below)

that the targets in the overlapped section must have the same values of APS and

ground scene. In this way we should be able to estimate the phase constant of

areas adjacent to the one with the permanent scatterer. Overlapping every area

we should be able to estimate the phase constant and remove it from the whole

image. Fig. 4.8 and fig. 4.9 show an example of the estimate of the APS and the

RMSE respectively using this method.

We may notice that the RMSE increases a lot compared with the prevoius case,

this is due to the fact that the SVD tends to assign a constant value to the APS

of an area and saying that the overlapping targets have the same APS tends to

assign to adjacent areas similar values.

This fact tends to squeeze the high and low values to values closer to zero, as we

can see in fig. 4.8.

Although the RMSE is high in this case, we can find more than one permanent

scatterer in the scene to estimate the phase constant and use the overlap only in
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Figure 4.9: RMSE of the estimate of the APS knowing only 1 target’s reflecivity
and exploiting overlapping areas (green line); knowing 1 PS per area (blue line),
goal set at 5 millimeters (red dashed line)

areas where there are no PS to estimate the phase constant there.

With some permanent scatterers and some areas estimated through overlapping,

the RMSE will decrease and will get closer to the blue line in fig 4.9.
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Chapter 5

APS estimation through ML

estimator

In this chapter we will present the last algorithm to estimate the atmospheric

phase screen, we will start from the model in equation 2.19 and we will implement

a Maximum Likelihood Estimator (MLE).

We can write the model as

y(p, d) = a(p)ej
4π
λ
dAPS(p,d) + w(p, d) = ŷ(p, d) + w(p, d) (5.1)

The maximum likelihood estimator is the one that finds the maximum of the

probability density function f(y|a,φAPS), it basically finds the most probable

ŷ(p, d) that fits the data and that will be our estimate.

Since the noise is a gaussian process the pdf will be gaussian and it will be

f(y|a,φAPS) =
1√

(2π)NpNd |Cw|
exp

(
−1

2
(y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS))

)
(5.2)

Now we have to find the values of a(p) and φAPS(p, d) that maximaze the previous

pdf
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a,φAPS = arg max
a,φAPS

{f(y|a,φAPS)} (5.3)

A common and useful method to solve equation 5.3 is to use the log form of the

pdf, that means to compute the natural logarithm of of both side of the equation.

What we get is

ln [f(y|a,φAPS)] = −NpNd

2
ln (2π)− 1

2
ln (|Cw|) +

−1

2
(y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS)) (5.4)

Looking at the left side of the equal sign we can distinguish three terms, computing

the maximum of the pdf we can neglect the first and the second terms since they

are constant. Looking at the third term we can neglect the 1
2

constant and since

there is a minus sign we can look for the minimum

a,φAPS = arg min
a,φAPS

{
(y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS))

}
(5.5)

If we call the argument to be minimized g(a,φAPS) we can write

g(a,φAPS) = (y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS)) (5.6)

Now we have to minimize g(a,φAPS), so we have to compute the derivatives w.r.t

a(p) and dAPS(p, d) and set them to zero


∂

∂a∗(p)
g(a,φAPS) = 0

∂
∂dAPS(p, d)

g(a,φAPS) = 0
(5.7)

The derivative w.r.t a(p) is really simple but the second derivative requires some

steps, the computation is quite long and it is shown in Appendix C; the results

will be
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
â(p) = 1

Nd

∑Nd
d=1 y(p, d)e−j

4π
λ
dAPS(p,d)

φ̂APS(p, d) = tan−1
(∑Ñp

p̃=1[Re{a(p̃)}Im{y(p̃,d)}−Im{a(p̃)}Re{y(p̃,d)}]∑Ñp
p̃=1[Re{a(p̃)}Re{y(p̃,d)}−Im{a(p̃)}Im{y(p̃,d)}]

) (5.8)

Where p̃ is a point in a space interval (Ñp) where the APS can be considered

constant, this is an approximation to make the computation simpler.

If we look carefully at the MLE in the system 5.8 we might notice that we actu-

ally need â(p) from the first equation to solve the second equation, and we need

φ̂APS(p, d) from the second to solve the first one.

A simple method to solve the system is to solve it iteratively.

Looking at the first equation we can see that the estimate â(p) is obtained by

averaging the data after removing the APS; at the first iteration, if we consider

dAPS = 0 we obtain â(p) as the average of the data (exactly like in the MMSE

chapter in equation 3.7).

Then we can use â(p) in the second equation to estimate the APS.

After we get a first estimate of φAPS(p, d), we can start the second iteration insert-

ing the APS into the first equation and that should yield a better estimate â(p)

that can improve the estimation of φAPS(p, d). We can go on with more iteration.

Fig. 5.1 and fig. 5.2 show an example of estimate of the atmospheric phase screen

and how the RMSE varies with the iterations.
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Figure 5.1: MLE: Estimate of the APS (above) with a SNR=8.7 dB, true APS
(below)

Figure 5.2: MLE: RMSE vs iterations
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It can be noticed that we are not estimating the atmospheric phase screen in a

good way since the RMSE actually worsens with more iterations (or at best re-

mains constant). This is due to the fact that we are estimating the APS dividing

it in areas that we assume to have constant values.

A possible solution would be to decrease the size of the area where we consider the

APS to be constant, this would yield an image with better resolution of the APS,

but if we decrease the size too much the noise might impact to much the estimator

and we would still have areas where the APS would have the same values.

A better solution would be the following, before moving to a new iteration, we can

smooth the edges between adjacent areas of the atmospheric phase screen filtering

the image with a square window about the size of the areas.

This improve the estimate of the APS and thus the estimate in the following it-

eration.

We can notice this by looking at fig. 5.3 and fig. 5.4 that show an example of

estimate of the atmospheric phase screen and how the RMSE varies with the it-

erations applying this spatial filter.

From fig. 5.4 we may notice that there is an improvement in the estimate of the

atmospheric phase screen at the second iteration, but after that the error remains

almost constant, so it does not make sense to make many iterations, two are

enough.

Fig. 5.5 shows the RMSE of the estimate of the atmospheric phase screen after

the second iteration when we apply the spatial filter.
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Figure 5.3: MLE: Estimate of the APS (above) with a SNR=8.7 dB, true APS
(below)

Figure 5.4: MLE: RMSE vs iterations
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Figure 5.5: MLE: RMSE of the estimate of the APS after the second iteration(blue
line), goal set at 5 mm (red dashed line).

In fig. 5.5 we may notice that the RMSE reaches a floor. The maximum likelihood

should not behave in this way and the error should keep decreasing for higher

SNR, but computing the derivatives in the system 5.7 we made an approximation

(Appendix C, equation 7.31) that impacts the estimation of the atmospheric phase

screen.
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Chapter 6

Comparison of estimators

Now we want to compare the accuracy of the estimators presented (MMSE, SVD,

MLE) to see which one performs better.

In fig.6.1 we can see the comparison of the RMSE of the estimators, it seems like

the Singular Value Decomposition achieve better results, but the RMSE has been

obtained assuming to know at one permanent scatterer per area, if this is not the

case and we do not know enough PSs we have to estimate the APS in some areas

using the overlapping of adjacent areas. This increases the error, the less PSs we

know, the higher the RMSE, that can be as high as in fig.4.9 (if we know only one

PS in the whole scene), where the RMSE is higher than any of the errors using

other estimators.

Otherwise if we have a high SNR (in table 2.2 we stated that we expect a SNR

of 8.7 dB) the best choice seems to be the MMSE after we estimated the scene

through the average over many days. In fact with high SNR the average will

yield good results, the residual error that is like noise added to the system will

be minimal and then the MMSE is the best estimator at minimizing the error. If

the SNR is low then the error of the average will be high and that will impact

the RMSE of the APS too much. In addition the average and MMSE requires

us to know the covariance of the APS (which we know from its autocorrelation
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Figure 6.1: RMSE: comparison of the three different estimators presented in this
thesis

function) and the covariance of the noise (which we might have to estimate).

The MLE seems to be the more resistant to noise so it is better with a low SNR,

although it does not get a really good RMSE. As stated in chapter 7, the error

reaches a floor because we made an approximation (Appendix C, equation 7.31).

In the end, in terms of RMSE, the SVD is the best choice if we have many

permanent scatterers, otherwise the average and MMSE is better with higher

SNR and the MLE with low SNR.

In terms of processing time the SVD and the MLE take about the same time,

while the MMSE is slower because it requires the inversion of a matrix that might

be quite big, depending on the size of the areas we use to divide the image.

In terms of memory used the MLE and the SVD are again similar, while the

MMSE requires the storage of the covariance matrices of the atmospheric phase

screen and the noise, that might be quite big.
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Chapter 7

Conclusions

In this thesis we have started from the theory of synthetic aperture rader and then

discussed the characteristics of a GEOSAR system, compared it to LEOSAR sys-

tems, introduced possible applications and presented the decorrelation issues that

prevented the GOESAR to be implemented.

Among these problems we find the atmospheric phase screen, we showed its char-

acteristics (variogram and autocorrelation function).

We presented three methods to estimate the phase distortion the APS introduces,

starting from strong assumptions and then moved on to a more realistic scenario.

The first method exploits the fact that the scene remains unchanged in consecu-

tive days to estimate it through an average over many days. Then we removed it

from the model and use an MMSE estimator to obtain the APS.

The second one exploit the fact that the model we used was a separable one to

estimate the APS and the scene by means of a singular value decomposition.

In the last one we started from model and computed the maximum likelihood

estimator.

In the end we showed a comparison of the results obtained using these methods.
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Appendix A

Autocorrelation of the phase of

the APS

As stated in equation 2.9 the autocorrelation function of the phase of the APS

when there is no wrapping is

r (τ, χ) = e
−( 4π

λ )
2
σ2
t

√(
τ
τ0

)2
+
(
χ
χ0

)2

If we take into account only time (with similar steps we can add the space de-

pendence) in order to compute the autocorrelation we have to solve the following

expected value

E
[
e−jφ(t+τ)ejφ(t)

]
this is equal to

E
[
e−j

4π
λ
dAPS(t+τ)ej

4π
λ
dAPS(t)

]
= E

[
ej

4π
λ
(dAPS(t)−dAPS(t+τ))

]
now using the property

E
[
ejϕ
]

= e
σ2ϕ
2

if we call

ϕ =
4π

λ
(dAPS(t)− dAPS(t+ τ))
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σ2
ϕ = var(ϕ) =

(
4π

λ

)2

var (dAPS(t)− dAPS(t+ τ)) =

(
4π

λ

)2

2V (τ)

and using equation 2.2

σ2
ϕ =

(
4π

λ

)2

2σ2
t

(
1− e

√(
τ
τ0

)2)
and since we will always work on the almost linear part of the variogram this can

be further simplified

σ2
ϕ
∼=
(

4π

λ

)2

2σ2
t

∣∣∣∣ ττ0
∣∣∣∣

and finally

r(τ) = E
[
ejϕ
]

= E

[
e
σ2ϕ
2

]
∼= e

−( 4π
λ )

2
2σ2
t

∣∣∣ ττ0 ∣∣∣

With similar steps we can add the space dependence end obtain

r(τ) ∼= e
−( 4π

λ )
2
2σ2
t

√(
τ
τ0

)2
+
(
χ
χ0

)2
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Appendix B

Formulas for the power budget

For a radar system, targets are all the objects that reflect an electromagnetic

wave. Each target is characterized by the radar cross section (RCS, σ), a complex

coefficient that defines the target reflection at a certain frequency and polarization

and depends on the view angles of the radar. Targets can divided in two categories:

point and distributed targets.

We define a target as a point target when in a resolution cell the energy reflected

comes from a single point that prevails over other nearby possible targets (a

scatterer has a much higher RCS than every other point in the resolution cell).

For example a mirror (with area A) directed to the antenna might act a a point

target and will backscatter most of the energy that illuminates it, the perceived

RCS will be

σ0 =
4πA2

λ2
(7.1)

We talk about distributed target when there are several scatterers in the resolution

cell and no one prevails over the others. If we consider to have N scatterers,

everyone will have a RCS like

RCS(n) = σne
jϕn n = 1, . . . , N (7.2)

where σn will be similar for each scatterer since no one prevails.

If we call sR(k) the sum of the contributions of the N scatterers to the kth pixel

sR(k) =
N∑
i=1

σie
jϕi (7.3)
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The radar will sense a total RCS that is the superposition of the N scatterers and

can be seen as a random walk

E [sR(k)] = E

[
N∑
i=1

σie
jϕi

]
= 0 (7.4)

E [sR(k)s∗R(k)] = E

[
N∑
i=1

N∑
k=1

σiσke
j(ϕi−ϕk)

]
=

=
N∑
i=1

E
[
σ2
i

]
= N · E

[
σ2
i

]
(7.5)

It is a zero mean random process with standard deviation proportional to the

number of scatterers in the resolution cell, the backscatter coefficient will be

σ0 = E
[
σ2
i

]
=
E [sR(k)s∗R(k)]

N
=
σ2
sR

N
(7.6)

We can get the received power from the radar equation

PR =
PTGT

4πr20
σ0

1

4πr20
AR (7.7)

where PT is the transmitted power, GT the antenna gain, r0 the slant range, σ0

the reflectivity of the target and AR the effective area of the receiving antenna.

Using the formula that links the effective area to the gain

AR = GR
λ2

4π
(7.8)

and since we are in a monostatic scenario GR = GT = G, we can rewrite equa-

tion 7.7 in the following way

PR =
PTG

2λ2

(4π)3r40
σ0 (7.9)
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All the targets are distributed over a surface S, so we can write the backscatter

coefficient like

σ0 = σ0,sS (7.10)

If we consider a rectangular antenna with size La × Lb, we can write the received

power like

PR =
PT (LaLb)

2 η2
4πλ2r40

σ0,sS (7.11)

where η2 accounts for the two way overall losses.

The surface that contributes to the scattering is

S =
c

2 sin(θI)
Tc∆ψr0 =

c

2 sin(θI)
Tc

λ

La
r0 (7.12)

where Tc is the duration of the transmitted pulse and ∆ψ is the azimuth antenna

aperture.

We can finally write the received power like

PR =
PT (LaLb)

2 η2
4πλ2r40

σ0,s
c

2 sin(θI)
Tc

λ

La
r0 (7.13)

The power spectral density (PSD) of the noise will be

N0 = KT0F (7.14)

where K is the boltzmann constant, T0 is the reference temperature and F is the

noise figure of the device.

The SNR will be given by

SNR =
PR
N0B

(7.15)
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where B is the used bandwidth.

Therefore substituting equation 7.13 in 7.15 and rearranging the terms

SNR = PM

(
G2λ2η2
(4π)3r40

)(
σ0,s

c

2B sin(θI)

La
2

)(
TS
N0

)
(7.16)

The first term is the average power, that is the product of the peak power and the

duty cycle (PM = PTdc = PTTcfprf ), the second term is the effect of the antenna

gain, spherical divergency and total losses, the third term is the radar cross section

of the targets (product of σ0, ground resolution and azimuth resolution), the last

term is the noise power in the extent of the matched filter, that is the duration of

the synthetic aperture TS = λr0
vLa

.
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Appendix C

Derivation of MLE for APS

estimation

Starting from the following model

y(p, d) = a(p)ej
4π
λ
dAPS(p,d) + w(p, d) = ŷ(p, d) + w(p, d) (7.17)

assuming to have a zero mean gaussian noise with covariance Cw, the probability

density function (f(y|a,φAPS)) will be gaussian

f(y|a,φAPS) =
1√

(2π)NpNd |Cw|
exp

(
−1

2
(y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS))

)
(7.18)

Now we have to find the values of a(p) and φAPS(p, d) that maximaze the previous

pdf

a,φAPS = arg max
a,φAPS

{f(y|a,φAPS)} (7.19)

Looking at the log-form of the pdf in equation 7.18

ln [f(y|a,φAPS)] = −NpNd

2
ln (2π)− 1

2
ln (|Cw|) +

−1

2
(y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS)) (7.20)
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the first two terms are two constants, we have to maximize the third term. Looking

at the third term we can neglect the 1
2

constant and since there is a minus sign

we can look for the minimum of

a,φAPS = arg min
a,φAPS

{
(y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS))

}
(7.21)

We can call the argument to be minimized g(a,φAPS), that will be

g(a,φAPS) = (y − ŷ(a,φAPS))H C−1w (y − ŷ(a,φAPS)) (7.22)

and this will be equal to

g(a,φAPS) =

Np∑
p=1

Nd∑
d=1

[(
y(p, d)− a(p)ejφAPS(p,d)

)∗ 1

σ2
w

(
y(p, d)− a(p)ejφAPS(p,d)

)]
(7.23)

and after multiplying the terms together

g(a,φAPS) =

Np∑
p=1

Nd |a(p)|2

σ2
w

+
1

σ2
w

Np∑
p=1

Nd∑
d=1

|y(p, d)|2 +

+
1

σ2
w

Np∑
p=1

Nd∑
d=1

[
y∗(p, d)a(p)ej

4π
λ
dAPS(p,d)

]
+

− 1

σ2
w

Np∑
p=1

Nd∑
d=1

[
y(p, d)a∗(p)e−j

4π
λ
dAPS(p,d)

]
(7.24)

Now we have to minimize g(a,φAPS), so we have to compute the derivatives w.r.t

a(p) and dAPS(p, d) and set them to zero


∂

∂a(p)∗
g(a,φAPS) = 0

∂
∂dAPS(p, d)

g(a,φAPS) = 0
(7.25)

The derivative w.r.t a(p) is really simple to be computed and it yields
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Nda(p)

σ2
w

− 1

σ2
w

Nd∑
d=1

y(p, d)e−j
4π
λ
dAPS(p,d) = 0

â(p) =
1

Nd

Nd∑
d=1

y(p, d)e−j
4π
λ
dAPS(p,d) (7.26)

The derivative w.r.t dAPS(p, d) requires a bit more steps, we will get

1

σ2
w

Np∑
p=1

[
−j 4π

λ
y∗(p, d)a(p)ejφAPS(p,d) + j

4π

λ
y(p, d)a∗(p)e−jφAPS(p,d)

]
= 0 (7.27)

where, after simplifying for the constants 1
σ2
w

and j 4π
λ

, we can recognize the differ-

ence of two complex conjugate numbers. Using the property

z − z∗ = 2jIm{z} (7.28)

we can rewrite equation 7.27 like

Np∑
p=1

2jIm
{
y∗(p, d)a(p)ejφAPS(p,d)

}
= 0 (7.29)

after we simplify the 2j constant, if we call


a(p) = b+ jc

y(p, d) = d+ je

φAPS(p, d) = ϕ

we can rewrite equation 7.29 like

Im

{
Np∑
p=1

(b+ jc)(d− je) (cos (ϕ) + j sin (ϕ))

}
= 0

Im

{
Np∑
p=1

(bd+ ce+ j (cd− be)) (cos (ϕ) + j sin (ϕ))

}
= 0
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Np∑
p=1

[(cd− be) cos(ϕ) + (bd+ ce) sin(ϕ)] = 0

Np∑
p=1

[(bd+ ce) sin(ϕ)] =

Np∑
p=1

[(be− cd) cos(ϕ)] (7.30)

Now if we assume the APS to have a constant value over points (p̃) close to each

other (p̃ = 1, . . . , Ñp with Ñp � Np), we can take sin(ϕ) and cos(ϕ) out of the

summation

sin(ϕ)

Ñp∑
p̃=1

(bd+ ce) = cos(ϕ)

Ñp∑
p̃=1

(be− cd)

tan(ϕ) =

∑Ñp
p̃=1(be− cd)∑Ñp
p̃=1(bd+ ce)

(7.31)

and finally we get the solution to the derivative w.r.t dAPS

φ̂APS(p, d) = tan−1

∑Ñp
p̃=1 [Re{a(p̃)}Im{y(p̃, d)} − Im{a(p̃)}Re{y(p̃, d)}]∑Ñp
p̃=1 [Re{a(p̃)}Re{y(p̃, d)} − Im{a(p̃)}Im{y(p̃, d)}]


(7.32)

Now that we have computed the two derivatives in equation 7.25 we have the

maximum likelihood estimator, which is the following system


â(p) = 1

Nd

∑Nd
d=1 y(p, d)e−j

4π
λ
dAPS(p,d)

φ̂APS(p, d) = tan−1
(∑Ñp

p̃=1[Re{a(p̃)}Im{y(p̃,d)}−Im{a(p̃)}Re{y(p̃,d)}]∑Ñp
p̃=1[Re{a(p̃)}Re{y(p̃,d)}−Im{a(p̃)}Im{y(p̃,d)}]

) (7.33)
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