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Abstract

In recent years, with the increase of the demand for location-based ser-
vices (LBS), the scientific community is more and more interested in lo-
calization systems. While for outdoor environments the Global Positioning
System (GPS) has been very successful, for indoor areas global solutions are
still lacking.

Many Indoor Positioning Systems (IPS) have been developed over the
years, using various technologies (Radio Frequency Waves, Ultra-Sounds, In-
frared, Magnetic Waves and Audible-Sounds) and several techniques. How-
ever, none of these methods meets completely the requirements of the mar-
ket. One of the best compromises between low cost requirements and per-
formance can be reached by systems that have their own dedicated wireless
sensor network (WSN) and are based on a widely used low-cost technology
such as Bluetooth.

Systems that use technologies with a limited radio band have a lim-
ited number of measurable quantities for location purposes. The parameter
mostly used is the Received Signal Strength (RSSI) since other parameters
such as Time Of Arrivals (TOA), Differential Time of Arrivals (DTOA) or
Angle Of Arrivals (AOA) are of very low quality or unavailable. So the lo-
calization technique that achieves the best performance with RSSI measures
is the so-callled Fingerprinting technique.

By looking for a system that repeats the success of GPS also in indoor
environments, this thesis proposes some guidelines for the design of IPSs.
An analysis model for the fingerprinting technique is proposed: this tool
allows to make a prediction of performance and an assessment of the possible
choices during the design step without extensive simulations.

Different innovative solutions have been also proposed: these techniques,
when integrated with fingerprinting, allow to achieve excellent system per-
formance and to reduce considerably the costs. The proposed solutions are:

• a technique that reduces the perceived variance of measures through
the reduction of the RSSI quantization bits;

• a new strategy which allows an optimal placement of the Base Stations
(BSs or beacons) without the use of optimization algorithms;



• the technique Adaptive Weighted K Nearest Neighbors (A-WKNN),
which ensures a better performance with respect to the classical WKNN
through a dynamic choice of the number of K neighbors to be used.

The combination of these solutions can be exploited and optimized in order
to reach, for example, an average error of about 1 meter.

Finally, some measurements have been made in order to characterize the
distribution of the received power in an indoor environment (an office room)
with the use of two Bluetooth Low Energy (BLE) sensors. These measure-
ments have been made in order to validate the proposed analysis model,
which also has some innovative aspects w.r.t. similar works, to the best of
my knowledge. This study suggests that BLE technology is an excellent
candidate for wireless networks dedicated to localization applications.
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Sommario

Negli ultimi anni, con l’aumento della domanda per i servizi basati sul-
la posizione (LBS), vi è stata una forte attenzione da parte della comunità
scientifica sui sistemi di localizzazione. Mentre per gli ambienti esterni il Glo-
bal Positioning System (GPS) è largamente diffuso, per gli ambienti interni
questo non è adatto ed inoltre non vi sono ancora soluzioni da implementare
su larga scala.

Molti sistemi di posizione per ambienti interni (Indoor Positioning Sy-
stem IPS) sono stati sviluppati negli anni, usando varie tecnologie (Onde a
Radio frequenza, Ultra-Suoni, Infrarossi, Onde Magnetiche e Suoni Udibili)
e diverse tecniche sono state adottate. Tuttavia nessuno di questi incontra
completamente le esigenze dei mercati. Il miglior compromesso tra costi e
prestazioni è raggiungibile con un sistema che abbia una propria rete locale
di dispositivi o di sensori (WPAN o Wireless Sensor Network) e che si basi
su una tecnologia a basso costo e largamente utilizzata, come ad esempio il
Bluetooth.

I sistemi che usano tecnologie con una banda radio limitata, hanno a
disposizione un numero limitato di quantità misurabili ai fini della localiz-
zazione. Il parametro che viene maggiormente usato è la potenza ricevu-
ta o Received Signal Strength (RSSI). Con questo parametro la tecnica di
localizzazione che garantisce la migliore prestazione è il Fingerprinting.

Nella ricerca di un sistema che replichi il successo del GPS anche negli
ambienti interni, questo lavoro propone delle linee guida per l’implementa-
zione di un sistema di localizzazione per ambienti interni e inoltre è proposto
uno strumento di analisi delle tecnica di fingerprinting. Tale strumento per-
mette di fare una predizione delle prestazioni e una valutazione delle possibili
scelte durante la fase di progetto senza simulazioni estese.

Sono proposte inoltre diverse soluzioni innovative che, integrate con la
tecnica di fingerprinting, permettono al sistema di raggiungere ottime pre-
stazioni e di ridurre considerabilmente i costi. Questi contributi innovativi
si possono riassumere nei punti seguenti:

• una tecnica che permette di ridurre la varianza percepita delle misure
attraverso la riduzione dei bit di quantizzazione del RSSI;



• una nuova strategia che permette di allocare in maniera soddisfa-
cente i Beacon (o stazioni base BS) senza l’utilizzo di algoritmi di
ottimizzazione;

• la tecnica Adaptive Weighted K Nearest Neighbors (A-WKNN), che
garantisce prestazioni migliori della piućlassica WKNN attraverso una
scelta dinamica del numero di K vicini da usare.

Una combinazione di queste soluzioni puoéssere ottimizzata e dimensionata
per raggiungere, ad esempio, un errore medio di circa 1 metro.

Infine sono state fatte delle misure al fine di caratterizzare la distribuzione
della potenza ricevuta in ambienti chiusi e con l’utilizzo di sensori Bluetooth
Low Energy (BLE). Queste misure sono state fatte al fine di validare il
modello di analisi proposto e non ci risultano lavori simili. Questo studio
suggerisce che la tecnologia BLE è un ottimo candidato per le reti radio
personali o di sensori dedicate alla localizzazione.
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INTRODUCTION

Position information in terms of coordinates and, possibly, addresses
is an important enabler of new value-added services.

An intense research work by the scientific community is carried today
in order to design and build localization systems that can operate in in-
door environments and achieve a degree of precision, reliability and cost
comparable to the well known GPS system. The availability of such IPS
(Indoor positioning systems) will permit numerous advances in the disci-
plines of location-aware, pervasive computing, ambient intelligence, and it
will facilitate the deployment of location-based services (LBS).

In order to make indoor positioning systems a large-scale reality, not only
a business opportunity must be present, but also the technology should be
low-cost, low-power, with low maintenance expenses and it should require
the minimum amount of new infrastructure w.r.t. those already present and
installed for Wireless Personal or Local Area Networks (WPAN / WLAN).

Although there is no lack of such technologies, high-accuracy indoor posi-
tioning is an unconquered domain for the commercial solutions in the mass-
market. The research in the area ranges from WLAN coverage area modeling
to WLAN fingerprinting, from UWB (Ultra-Wide Band) ranging to RFID
(Radio Frequency Identification) tags, from BLE (Bluetooth Low Energy)
devices to visual-based solutions.

Systems based on WLAN technology are probably the most interesting
in terms of costs. This is because those systems are based on pre-installed
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Access Points (APs) and also because the most of mobile terminals (new
smartphones) are equipped with a WLAN radio. So infrastructure and end-
user devices are already available. However, the barrier is the availability of
reference data: whereas the commercialized mass-market medium-accuracy
WLAN positioning solutions retrieve the reference data from Global Navi-
gation Satellite System (GNSS) (especially in crowd-sourcing), there is no
such source of independent reference position data for database collection in
indoor environments. Also, it should be noted that WLAN is an exception in
terms of existing infrastructure. For instance, both UWB and RFID-based
solutions require a new infrastructure and new radios into mobile devices.

According to [1], the high-accuracy indoor positioning and navigation
will be based on dedicated positioning-specific tags and this is due to com-
promises between costs and performances. In fact, the choice of WLAN
technology, based on the reuse of existing APs, offer certainly the best solu-
tions in terms of costs, but it has many limitations in terms of performances
and reliability. However, the global large-scale uptake of such technologies
requires that the positioning is based on some existing radio interface. This
ensures that the mobile terminals require no new hardware components and
that the radio components are already in mass-production keeping the costs
of deployment and new applications really low. In addition to the medium
range WLAN radio, also the short range Bluetooth Low Energy is an exam-
ple of technology with several advantages in terms of costs and deployment.

The work carried out in this thesis is related to the design of Indoor Posi-
tioning Systems, especially those based on a dedicated wireless personal area
or sensor network. The technology we have considered for these systems is
the Bluetooth Low Energy since this option allows many advantages, among
which the most important is the low power consumption. Of course in a sen-
sor network the available energy is a crucial issue; tags works with standard
battery coins, which should be changed or recharged as little as possible in
order to keep low the costs of maintenance. Secondarily, the Bluetooth is
a large-scale technology and almost all the new generation smartphones are
provided with a BLE radio interface. This fact is vary important in a com-
mercial perspective. The users can use their smartphones and have access to
the localization system by an application that they can easily download and
install and, consequently, the provider of the IPS has only to install sensors
and set up the system.

This work is organized as follow. Chapter 1 presents the state of art in
indoor positioning systems: many of the developed IPS are presented and
compared and they have been also classified according to the used technol-
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ogy. In Chapter 2, the mathematical tools for the localization process are
introduced and discussed: these are the backbone of the system and their
use depends on the requirements and on the available resources. Chapter
3 presents the analysis model for the fingerprinting technique and the de-
veloped model, which relies on a Gaussian assumption, allows to predict
performance and to simplify the design of such systems. In Chapter 4, some
experimental measurements between two BLE sensors are used to validate
the assumptions made for the analysis model; in addition the main issues
that can be met in the design and the implementation of an IPS are pre-
sented and some of the solutions that can be found in the literature are
introduced. Finally Chapter 5 gives some general guidelines for the design-
ers and also some specific solutions for the fingerprinting-based IPS; in this
context the originality and novelty of the proposed solutions will be dis-
cussed and corroborated by numerical results for several system and layout
combinations.



INTRODUZIONE

Informazione sulla posizione in termine di coordinate e, possibilmente,
di indirizzo e importante al fine di fornire nuovi servizi (LBS) agli utenti.

La comunità scientifica oggigiorno sta portando avanti un intenso lavoro
di ricerca per implementare e costruire sistemi di localizzazione adatti ad
ambienti interni e che possano raggiungere una certa precisione, affidabilità
e costi comparabili al noto sistema GPS. La disponibilità di tali sistemi per-
metteraúna crescita nelle discipline di location-aware, pervasive computing,
ambient intelligence, e faciliterà lo sviluppo di nuovi servizi LBS.

Al fine di fare dei sistemi di localizzazione per ambienti interni una realtà’
globale, oltre alle opportunità economiche, la tecnologia dovrebbe essere a
basso costo, bassa potenza, con bassi costi di mantenimento e dovrebbe
richiedere il minor numero di nuove infrastrutture rispetto a quelle gia pre-
senti ed installati per le Wireless Personal or Local Area Networks (WPAN
/ WlAN).

Anche se non vi sono mancanze di tali tecnologie, sistemi localizzazione
indoor ad alta accuratezza sono ancora un dominio inconquistato per le
soluzioni commerciali nel mercato globale. La ricerca su quest’area si es-
pande dalle WLAN con modello di copertura dell’area a WLAN basati
sul Fingerprinting, da UWB (Ultra-Wide Band) ai tags RFID (Radio Fre-
quency IDentification), e dai dispositivi BLE (Bluetooth Low Energy) fino
alle soluzioni visual-based.

I sistemi basati sulla tecnologia WLAN sono i più interessanti dal punto
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di vista dei costi. Questo perché questi sistemi si basano sugli Access points
(APs) pre-installati e anche perché molti dei nuovi dispositivi mobili (smath-
phones) sono equipaggiati con interfacce WLAN. Tuttavia, il loro limite è
la mancanza di dati di riferimento che non è possibile ottenere in ambienti
interni. Inoltre, la tecnologia WLAN è un eccezione per quanto riguarda le
infrastrutture. Altre soluzioni come UWB e RFID richiedono nuove strut-
ture e nuove interfacce radio nei dispositivi mobili.

Secondo [1], sistemi di localizzazione e navigazione ad alta accuratezza
saranno basati su infrastrutture dedicate e questo è dovuto ai compromessi
tra costi e prestazioni. Infatti, la scelta della tecnologia WLAN, basata sul
riutilizzo di APs esistenti, offre certamente la miglior soluzione in termine di
costi, ma tuttavia, presenta molti limiti nelle prestazioni e nell’affidabilità.
Per una soluzione globale su larga scala, è importante la scelta di una tec-
nologia a basso costo e che permetta l’utilizzo di interfacce radio esistenti.
Questo fa si che i terminali mobili non richiedano nuovi componenti hard-
ware e che la produzione di massa delle interfacce radio mantenga i costi
bassi. Oltre alle tecnologie WLAN a medio raggio, anche il Bluetooth Low
Energy a corto raggio è una possibile candidata in quanto presenta diversi
vantaggi in termine di costi e sviluppo.

Il lavoro svolto in questa tesi è legato alla progettazione di sistemi di
localizzazione indoor e specialmente quelli basati su una WSN dedicata. La
tecnologia che abbiamo considerato per questi sistemi è il Bluetooth Low
Energy in quanto questa opzione permette molti vantaggi, tra i quali il
più importante è il basso consumo di energia. Ovviamente in una rete di
sensori, l’energia disponibile è un problema cruciale; i tags lavorano con
batterie standard, le quali dovrebbero essere cambiate o ricaricate il meno
possibile per mantenere bassi i costi di mantenimento. Secondariamente,
il Bluetooth è una tecnologia a larga-scala e quasi tutti gli smartphone di
nuova generazione sono forniti di un interfaccia radio BLE. Questo fattore
è molto importante in prospettiva commerciale. Gli utenti possono usare i
loro smartphones ed avere accesso al sistema di localizzazione tramite un ap-
plicazione che potranno facilmente scaricare ed installare e, di conseguenza,
il fornitore dovrà solamente installare i sensori e impostare il sistema.

Questo lavoro è organizzato come segue. Nel primo capitolo viene pre-
sentato lo stato dell’arte nei sistemi di localizzazione indoor: diversi IPS
vengono presentati e comparati, vengono inoltre classificati in base alla tec-
nologia usata. Nel secondo capitolo, gli strumenti matematici per il processo
di localizzazione sono introdotti e discussi: questi sono il cuore del sistema,
quale usare dipende dalle richieste e dalle risorse disponibili. Il capitolo 3
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presenta un modello di analisi per la tecnica di fingerprinting, tale modello
si basa su delle ipotesi di gaussianità delle misure e permette di predire quali
possono essere le prestazioni e di semplificare la progettazione di tali sistemi.
Nel quarto capitolo, diverse misure sperimentali tra due sensori BLE sono
state fatte al fine di validare le ipotesi usate nel modello di analisi; inoltre i
principali problemi che si possono incontrare nell’implementazione degli IPS
sono presentati insieme alle principali soluzioni che si trovano in letteratura.
In fine, il quinto capitolo fornisce delle linee guida generali per i progettisti e
anche nuove soluzioni specifiche supportate da risultati numerici per diversi
sistemi e diverse combinazioni dei parametri.



1
The state of the art in indoor positioning

systems

Over the years, many positioning systems have been developed for
indoor location estimation. Different techniques have been realized ad-hoc
and one of the most popular is the fingerprinting technique, conceived by
Microsoft researchers while developing the Radar system. Nowadays it’s one
of the most used, especially where technologies with limited bandwidth such
as Bluetooth or WLAN are adopted.

This chapter gives a comprehensive survey of numerous IPSs, which in-
clude both commercial products and research-oriented solutions. Before pre-
senting them, it is necessary to introduce some criteria to evaluate and com-
pare IPSs. Different applications have different requirements and goals, for
which the choice of a system rather than another is strongly related to the
application. Thess criteria aim to simplify and clarify the possible selections.

Hereinafter, a classification of the presented indoor positioning systems
is based on the used technology. Then we present a comparison among these
systems and we evaluate them according to the proposed criteria.

1.1 Criteria for evaluating indoor positioning

systems

The Indoor Positioning Systems (IPSs) can be assessed according to dif-
ferent criteria. The following ones take into account the user preferences
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and experience [2]:

1. Security and privacy: this is an important issue in IPSs since con-
trolling access to the location information and distribution can affect
privacy.

2. Cost: it is constituted by several parts, as infrastructure, user’s device
and cost of system installation and maintenance.

3. Performance: accuracy and precision are two main performance pa-
rameters for evaluating an IPS, where accuracy means the average
error distance and precision is defined as the success probability of po-
sition estimations with respect to predefined accuracy. Moreover delay
and scalability are important performance factors.

Of course performance of an IPS should be evaluated in order to ex-
amine whether it meets the requirements of the location-based services
and applications or not.

4. Robustness and fault tolerance: a robust IPS should be able to
operate even in serious cases such as the failure of part of the devices
in the system or if a mobile device runs out of its battery energy.

5. Complexity: one aspect of the complexity of IPSs is about the hu-
man necessary efforts during the deployment and maintenance of the
IPS. In IPS deployment, a rapid set-up of a system requires a low
number of fixed infrastructure components and an easily manageable
software platform for the users. A second and more important aspect
of the complexity is the required computing time of the device car-
ried by the user to determine his/her position. Because of the limited
CPU processing and battery power of the mobile devices, for an IPS a
positioning methodology whit lower calculation complexity is clearly
preferred.

6. Commercial availability: among the existing IPSs, some are com-
mercially available and others are research-oriented. For the com-
mercially available products, we can buy their devices and deploy the
positioning systems. However, most of the producers keep the working
principles of their commercial IPSs as secrets due to the competition
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among companies. For the research-oriented positioning systems, we
can know their design details clearly, which is a valuable aspect for the
future improvement of IPSs.

7. Limitations: although the proposed IPSs have achieved various valu-
able improvements, they still have some limitations due to the posi-
tioning technology and other issues in the systems. For example we
can mention the limited coverage area, the low scalability and the
unsatisfactory error performance.

The proposed criteria will be used to compare and evaluate the indoor
positioning systems in the following sections.

1.2 Infrared (IR) positioning systems

Infrared (IR) positioning systems are among the most common because
IR technology is available on board of various wired and wireless devices,
such as TV, printers, mobile phones, PDAs, etc.

An IR-based positioning system, which offers absolute position estima-
tions, needs line-of-sight communication between transmitters and receivers
without interference from strong light sources. Thus the coverage range per
infrastructure device is typically limited within a room [2]. Here we list some
IR-based IPSs:

1. Active Badge: it is one of the first IPS, designed at AT & T Cam-
bridge in 1990s. The Active Badge system uses diffuse IR technology
to realize location sensing [3] and it provides room level accuracy.

The Active Badge system is an old project, which has been closed
down. There is no commercial product available anymore.

2. Firefly: designed by Cybernet System Corporation, it is an IR-based
motion tracking system. Since the Firefly system is a commercial
product, its location techniques and algorithms are proprietary and
have not been published, and so they cannot be described.

However this system is not suitable for the implementation in a large
public area such as a shopping mall.
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3. Optotrack Pro Series: designed by Northern Digital Inc. for con-
gested shops and work spaces [4]. The system is a type of active system,
where markers mounted on different parts of a tracked object emits IR
light that is detected by the camera to estimate their location.

It can offer a high accuracy (till to 0.5 mm with 95% success probability
[5]) but it has two main disadvantages: limited area covered (20 m3)
and the requirement of the line-of-sight condition.

4. Infrared Indoor Scour Local Positioning System (IRIS LPS):
it is an optical IR local positioning system [6]. Cheap stationary
mounted stereo-cameras receive IR signals from a tag carried by a
target object to measure the angle of arrival and calculate the location
of the tag by some triangulation technique.

The system can offer accuracy of about 16 cm covering 100 m2, which
is larger than the covered areas of Firefly and Optotrak.

The IR-based systems perform positioning estimations in a very accurate
way. IR emitters are small, light-weight and easy to be carried by a per-
son. The system architecture is simple, which does not need time-consuming
installation and maintenance. However, there are still some disadvantages
with these indoor IR positioning systems. IR signals have some limitations
for sensing location, for example interference from fluorescent light and sun-
light and necessity of the line-of-sight condition. Another disadvantage is
the expensive system hardware requirement. In fact there should be a trans-
mitter or receiver in every measured place and, as a consequence of that, we
have a limited coverage.

1.3 Ultra-sound positioning systems

Using ultrasound signal is another way for achieving position estimation.
Ultrasound signals are used by bats to navigate in the night, which has
inspired people to design a similar navigating system in the last hundreds of
years. In this section, several ultrasound positioning systems are introduced.

1. Active Bat: designed by researchers at AT & T Cambridge, it pro-
vides 3-D position and orientation information for the tracked tags [7].
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It uses ultrasonic technology and triangulation location techniques to
measure the location of a tag carried by a person.

The system can reach an accuracy of about 3 cm for 95% of measure-
ments. However, the performance of this technology is influenced by
the reflection and obstacles between tags and receivers, which degrades
the system accuracy.

2. Cricket: It’s a location system with the aim of offering user privacy,
efficient performance and low costs [8]. The system uses Time Of
Arrival (TOA) measuring method and triangulation location technique
to locate a target; it also addresses the issues of fault tolerance by using
RF signals as a second method of proximity positioning in case of not
enough emitters available.

The Cricket system can provide a position estimation accuracy till to
10cm and an orientation accuracy of 3◦. However, the located receivers
in the system perform location estimations and receive both ultrasound
and RF signal at the same time. Thus a receiver in the cricket system
consumes more power, and its power supply needs to be designed in
an efficient way to bring convenience to the users instead of frequently
changing batteries at the receiver.

3. Sonitor: it’s an indoor tracking and positioning solution provided by
Sonitor Technologies Inc.[9]. An energy-efficient method is proposed
by the Sonitor ultrasound IPS, where the tags are activated by inside
motion sensors, and transmit ultrasound signals in case the tracked
targets change locations. A sleeping mode is proposed by the designers
to save power for the tags. Thus battery life time is extended up to 5
years[2]. However, the Sonitor system can not give absolute position of
a target and the system needs numerous detectors fixed in each place
of the tracking coverage area.

Ultrasound positioning systems give a kind of inexpensive positioning
solutions. However, ultrasound-based positioning systems have lower mea-
surement accuracy (several centimeters) than IR-based systems (several mil-
limeters).
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1.4 Radio Frequency (RF) positioning sys-

tems

Radio frequency technologies are used in IPSs since they provide some
important advantages: a larger coverage area, less need of hardware compar-
ing to other systems and possibility of reusing the existing RF technology
systems such as Access Points (APs) in WLAN.

The radio frequency systems can be subdivided into 4 groups, according
to the technology used, as described in the following sections.

1.4.1 Radio Frequency IDentification (RFID)

The RFID positioning systems are commonly used in complex indoor
environments such as offices, hospitals, etc. RFID, as a wireless technology,
enables flexible and cheap identification of individual person or devices [10].

There are two kinds of RFID technologies: passive RFID and active
RFID [10]. With passive RFID, a tracked tag is a receiver. Thus the tags
with passive RFID are small and inexpensive but the coverage range of tags
is short. Active RFID tags are transceivers, which actively transmit their
identification and other information. Thus the cost of tags is higher but,
on the other hand, the coverage area is larger. Hereinafter the Zebra IPS
RFID-based system is introduced.

• WhereNet: developed by Zebra Technology Company [11] in order
to provide various equipments to support indoor and outdoor real-time
positioning. RFID technology is employed to identify various located
tags, which can be mounted on located objects, such as a device or a
person.

The WhereNet offers an error range around 2 m to 3 m, which is not
very accurate in indoor situations. The system can be complex with
numerous infrastructure components fixed in different locations. Thus
the installation of these devices is generally time consuming.

The RFID technology is used not only for the indoor positioning ap-
plications but it also provides many potential services for the users. The
advantages of an RFID positioning system are light and small tags that can
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be taken by people to be tracked. However, proximity and absolute posi-
tioning techniques need numerous infrastructure components installed and
maintained in the working area of an RFID positioning system.

1.4.2 Wireless Local Area Network (WLAN)

The WLAN technology is very popular and it has been implemented in
public areas such as hospitals, train stations, universities, etc. WLAN-based
positioning systems that reuse the existing WLAN infrastructures in indoor
environments, lower the cost of a co-located IPS. The accuracy of location
estimations based on the signal strength of WLAN signals is affected by
various elements in indoor environments such as movement and orientation
of human body, mobile devices, walls, doors, etc. Now some WLAN-based
IPSs will be introduced and discussed.

1. RADAR: It was proposed by a Microsoft research group [12] as an
indoor position tracking system, which uses the existing WLAN tech-
nology. This system employs signal strengths and signal-to-noise ratios
with the triangulation location technique. The multiple nearest neigh-
bors in signal space (K-NNSS) location algorithm was proposed, which
needs a location searching space constructed by a radio propagation
model. The RADAR system can provide 2-D absolute position infor-
mation and thereby it enables location-based applications for users.

In the experiments, the RADAR system achieves an accuracy of about
4 m with about 50% probability [2]. However, the main limitation
is that the located object needs to be equipped with WLAN technol-
ogy, which is difficult for some lightweight and energy-limited devices.
There is also no consideration of privacy issues in the design of RADAR
system, where a person using a device with WLAN interface may be
tracked. In addition, the RADAR system suffers from the limitations
of the RSS positioning methodology [2].

2. Ekahau: developed by Ekahau Inc. [13], a US-based company founded
in 2000. It uses the existing indoor WLAN infrastructures to continu-
ally monitor the motion of WiFi devices and tags. The triangulation
positioning technique is used for locating any WiFi enabled device.The
received signal strength indication (RSSI) values of the transmitted
RF signals recorded at different APs are used to determine the targets
locations.
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The accuracy of the positioning system can achieve 1 m, if there are
three or more overlapping APs that can be used to locate objects.

3. COMPASS: the system [14] takes advantages of WLAN infrastruc-
tures and digital compasses to provide low cost and relative high ac-
curate positioning services in order to locate a user carrying a WLAN-
enabled device. The COMPASS system uses fingerprinting location
technique and a probabilistic positioning algorithm to determine the
location of a user. A major contribution of the COMPASS system is
that the user’s orientation is considered in the location sensing process.

In the experiments, the COMPASS system achieves an accuracy of
about 1.6 m, while the RADAR system shows an error distance of
2.2 m in the same conditions [2]. However, the COMPASS system
considers only tracking of a single user. Thus the scalability of the
COMPASS system is too low for providing location sensing of multiple
targets.

IPSs have the goal of increasing the location estimation performance,
and at the same time reducing the cost of the system. WLAN-based in-
door positioning is an example of a low cost positioning technology, which
uses the existing infrastructures in indoor environments. However, because
of complex indoor environments consisting of various influenced sources [2],
performance is not very accurate. Furthermore, using the stored informa-
tion and fingerprinting technique in the location estimations is complex and
expensive if the number of users in the system increases significantly.

1.4.3 Bluetooth

Bluetooth, the IEEE 802.15.1 standard, is a technology for Wireless Per-
sonal Area Network (WPAN). It enables a range till to 100 m (Bluetooth 2.0
Standard) and it can replace the IR ports mounted on mobile devices. Also,
Bluetooth technology has been installed in several types of devices such as
mobile phone, laptop, desktop, etc. In addition, Bluetooth chip sets are
low cost, which results in low price tracked tags usable in the positioning
systems. In this section, a Bluetooth-based IPS is introduced and briefly
revised.

• Topaz: The Topaz location system [15] uses Bluetooth technology
combined with IR location technology to locate tags in indoor envi-



1.4 Radio Frequency (RF) positioning systems — 15

ronments. By using Bluetooth technology, it can provide only 2-D
location information with about 2 m of error range. The IR can not
penetrate the walls of the rooms and hence this is compatible with per-
fect room level accuracy. However, the tag consumes more batteries
than others systems. In fact these need to be charged once per week
[2]. Also the delay due to calculating the position of a tag is quite
long, between 10 adn 30 s.

Using Bluetooth technology in location sensing can take advantage from
the devices already equipped with this technology. Since Bluetooth is a low-
cost and low-power technology, it can be an efficient way to design IPSs.
However, a disadvantage of this technology is that it suffers from the draw-
backs of RF positioning techniques in complex and time variant indoor sit-
uations.

1.4.4 Ultra Wide Band (UWB)

The UWB RF positioning systems suffers from the multipath distortion
of radio signals reflected by walls in indoor environments. The UWB pulses
[16] have a short duration (even less than 1 ns), and this makes possible to
filter the reflected signals from the original signal, achieving higher accuracy.
In this section, the Ubisense positioning system is introduced and briefly
discussed.

• Ubisense: the Ubisense company, which was funded by engineers from
AT & T Cambridge, provides a new real time positioning system based
on UWB technology [17].The triangulation locating technique, which
takes advantages of both the time difference of arrival (TDOA) and
Angle Of Arrival (AOA) techniques, is employed in the system to pro-
vide flexible capability of location sensing. Since Ubisense can measure
signal angles and difference in arrival times, the complex indoor en-
vironments do not significantly influence the performance [17] even if
non line-of-sight conditions have a negative impact on the positioning
error. The accuracy offered by Ubisense is about tens of centimeters.

The system is scalable with respect to a large position monitoring area.
The tracked tags are wireless, easily wearable and have long battery
life time of about 1 year. However, the price of this high performance
positioning system is also high.
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UWB technology offers various advantages over other positioning tech-
nologies used in the IPSs: less line-of-sight requirements, more robustness
to multipath distortion, less interference, high penetration ability, etc. Thus
using UWB technology provides a higher accuracy. However, the costs of the
infrastructure and mobile device is high if compared to other technologies.

1.5 Magnetic positioning systems

Using magnetic signals is an old and classic way for measuring positions
and tracking [2]. Magnetic positioning systems offer high accuracy and do
not suffer from line of sight limitations. Hereinafter a magnetic IPS is intro-
duced and briefly discussed.

• MotionStar Wireless: MotionStar Wireless [18] is a motion tracking
system that uses pulsed DC magnetic fields to simultaneously locate
sensors within 3 m coverage area. MotionStar Wireless was designed
by Ascension Technology Corporation.

MotionStar wireless system provides precise body motion tracking by
measuring numerous sensors mounted on the different parts of a per-
son. Thus the position information of sensors determined by the Mo-
tionStar Wireless system can be used by various applications, such as
Animation, Biomechanics, virtual reality,etc.

The error range of the static position estimating is about 1 cm. How-
ever, the disadvantage of the Motion Star system is that the magnetic
trackers are quite expensive, the battery life time for continuous mo-
tion tracking is around 1 or 2 hours and the performance of the Mo-
tion Star system is influenced by the presence of metal elements in the
positioning estimating area. In addition, the coverage range of each
transmitter is limited within 3 m, which is not scalable for large indoor
public applications and services.

The magnetic sensors are small in size, robust and cheap, which bring
benefits for positioning estimations in indoor environments. The magnetic-
based positioning systems can offer higher accuracy and achieve multi-position
tracking at the same time. However, the limited coverage range is a major
drawback for their performance.
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1.6 Vision-based positioning systems

Vision-based positioning is a way for tracking the locations and identify-
ing persons or devices in a complex indoor environment. The vision-based
positioning does not need the tracked person carrying or wearing any de-
vice and vision can easily provide some location-based information. In this
section an example of vision-based positioning system will be presented.

• Easy Living: designed by Microsoft research group, the Easy Liv-
ing positioning system is based on vision-based location techniques
[19]. These techniques can capture the motion of the targets with
data from a single perspective or multiple perspectives. Easy Living
uses the multiple perspective vision-based location technique with two
cameras covering the whole measuring area. The location estimation
in Easy Living system combines color and depth from the two cameras
to provide position sensing and target identification services.

Although Easy Living system is very convenient for the users, there
are still some disadvantages. It needs substantial processing power
to process the images taken by the stereo cameras, because image
processing is complex and computationally heavy. Furthermore, the
system accuracy can not be always guaranteed due to the interference
of dynamic changing environment on the vision data.

In vision-based positioning systems, a low price camera can cover a large
area. The users do not need to carry any location device to be tracked. How-
ever, these systems still have some drawbacks. First, the privacy of people is
not guaranteed. Secondly, the system is not reliable in a dynamic changing
environment. In addition, tracking multiple persons moving around in the
same place is still a challenge for the vision-based positioning, which needs
very highe computational capability w.r.t. other positioning systems.

1.7 Audible sound positioning systems

Audible sound is a possible technology for indoor positioning [20]. Nearly
every mobile device has the ability of emitting audible sound such as mobile
phones, PDA, etc. The system can reuse these devices owned by the users
for indoor positioning. Wearable tracked tags are no longer needed resulting
in a low-cost system. The following system is based on this technology.
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• Beep: it is a 3-D IPS [21] designed as a cheap positioning solution that
uses audible sound technology. A triangulation location technique is
adopted in Beep with a standard 3-D multilateration algorithm based
on TOA measured by the sensors in the system.

In testing experiments the positioning system achieve an accuracy of
0.4 m in 90% of all cases. In addition, the effect of sound noise and
obstacles reduces the positioning accuracy by 6 − 10%. One of the
benefits brought by the Beep system is that the privacy of the users is
considered by avoiding them to be tracked automatically.

Audible sound is an available service in various mobile devices used in
our daily lives. However, it does not have high penetration ability, so the
scope of an infrastructure component is within a single room. Furthermore,
transmitting audible sound is a kind of noise in indoor environments, because
people would not like to hear strange and fastidious sounds.

1.8 Summary

In tables 1.1-1.2 we provide a brief overview on the revised IPSs and a
global evaluation and comparison of them according to the criteria proposed
in 1.1 [2].

Table 1.1: Summary and comparison among IPSs according to security, costs, perfor-
mance and robustness

System Name Security and
privacy

costs Performance Robustness

Active Badge No Reasonable Room level accuracy Line of sight require-
ments and influence
from light source

Firefly No Expensive Error range below
3.0 mm; high po-
sitioning frequency;
short delay

Influence from light
source

Optotrack No Expensive An accuracy of 0.1
mm to 0.5 mm in
95%

Line of sight require-
ment

IRIS LPS No Expensive Error range is about
16 cm

It can locate only
a static object with
acceptable accuracy.
For moving objects,
the system needs to
be improved

Continued on next page
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Table 1.1 – Continued from previous page
System Name Security and

privacy
costs Performance Robustness

Active Bat No Expensive The accuracy is
about 3.0 cm with
95% of probability

Influenced by reflec-
tion from and obsta-
cles between a tag
and a receiver

Cricket Yes Cheap An accuracy of 10 cm Good
Sonitor No Inexpensive Room level accuracy Hidden targets can

be tracked
WhereNet No Not Cheap Error range of 2 m to

3 m
Instead of using
RFID technology in
positioning, mag-
netic signals are used
to give the location
zone of a tracked
target

Radar No Research-
oriented solu-
tion

Room level accuracy As the accuracy is
low, the position
measurement are not
reliable

Ekahau No Inexpensive The accuracy is up to
1 m, and system can
simultaneously track
thousands of device

Only if there are
enough APs (more
than 3), the system
can locate a target
with an accuracy of
up to 1 m

COMPASS No Inexpensive The accuracy is
about 1.6 m

The system consid-
ers the human body
blocking effect and
use digital compasses
to improve the per-
formance

Topaz No Expensive Room level accuracy Using Bluetooth and
IR technologies to
achieve higher ro-
bustness

OPT No Cheap Error range is about
1.5 m to 3.8 m

The system needs
at least three sensor
measurements to lo-
cate target

Ubisense No Expensive The accuracy is
about 15 cm

Good

MotionStar No Expensive The accuracy is
about 1 cm; both
the position and
orientation are
estimated

Influenced by metal
elements

Easy Living No Inexpensive
Camera

The system accuracy
cannot be guaran-
teed due to various
interference sources

The system is not
reliable in a dy-
namic changing
environment

Beep Yes Inexpensive The accuracy is up to
0.4 cm in 90% cases

Influenced by sound
sources in the same
place
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Table 1.2: Summary and Comparison between Of IPSs in Complexity, Availability and
Limitations

System Name Complexity Availability Limitations
Active Badge Low Not Available Absolute location

information is not
available

Firefly Low Commercially avail-
able

The scope of this sys-
tem is limited within
7 m

Optotrack Low Commercially avail-
able

Limited coverage
area

IRIS LPS Low Not Available A trade-off between
accuracy and cover-
age

Active Bat Complex Not Available Deploying large
numbers of sensors
on the ceiling for
each room is a
time-consuming task

Cricket Low Not Available Mobile device’s
power consumption

Sonitor Complex Commercially avail-
able

The system cannot
give absolute posi-
tion measurements

WhereNet Complex Commercially avail-
able

The accuracy of the
system is not good
enough

Radar Problems of installa-
tion not addressed

Not Available The system does not
take advantages of
the existing WLAN
infrastructure in in-
door environments

Ekahau The system needs
several hours of site
survey

Commercially avail-
able

The system needs
site calibration time
in the installation
phase

COMPASS The system reuses
the WLAN infras-
tructure

Not Available The system does not
give real-time track-
ing services

Topaz Complex installation
of APs

Commercially avail-
able

The delay of calcu-
lating the position of
a tag is long

OPT Low Not Available The location mea-
surement is not is not
reliable

Ubisense Low Commercially avail-
able

The UWB technol-
ogy is new and the
price of the system is
high

MotionStar Not scalable Commercially avail-
able

The system is de-
signed for short
range mobility
tracking

Easy Living Commercially avail-
able

Inexpensive Camera The image process-
ing is complex and
needs substantial
processing power

Continued on next page
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Table 1.2 – Continued from previous page
System Name Complexity Availability Limitation
Beep Low Not Available The audible sound

technology is influ-
enced by sound noise
in indoor environ-
ments

1.9 Conclusions

From this overview, we can see that each medium used in position estima-
tions has its limitations. None of the technologies can satisfy all the system
requirements of performance and cost. According with [1], we believe that in
the future, indoor positioning systems should be based on a dedicated sensor
network. This allows a wide range of possible research directions in order to
improve the performances. On the contrary, systems that reuse the existing
infrastructures like Radar, Ekahau and Compass have more limitations and
constraints.

Furthermore, in order to keep costs and energy consumption low, we
think that a technology like Bluetooth Low Energy can be considered as an
interesting candidate since it is available on a large scale, and nowadays it is
present in the a large and increasing part of the smartphones in the market.



2
Mathematical tools for indoor localization

An Indoor Positioning System consists of a set of base stations (BS)
or beacons placed at known locations in the displacement area, and a mobile
station (MS) which is carried by the person or object to be located. During
the operation of the IPS, signals are exchanged between the BS and the MS,
enabling the localization of the latter. When the signals are transmitted
from the MS to the BS we are talking of a centralized IPS, in which the
infrastructure is aware of the presence and location of the user; in the oppo-
site scheme, the MS utilizes signals transmitted from the infrastructure to
compute its location on its own.

Once obtained the measurements from the signals, it is possible to esti-
mate the location of the MS. The choice of the mathematical method that
is suited to the context is of vital importance. In fact these methods are the
backbone of the system and this chapter aims to present a comprehensive
review of them.

The first section is devoted to the mathematical background for local-
ization and to the measurable quantities that can be used for positioning
purposes. After that, mathematical tools for localization are presented and
classified into four categories [22]: geometry-based methods, minimization
of the cost function, Bayesian techniques and fingerprinting.

2.1 Mathematical background

From a mathematical point of view, position estimation is interpreted
as a problem in which we require the solution of systems of nonlinear equa-
tions. The accuracy of the solution is related to the information contained

22
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in the measurements, through the Fisher Information Matrix (FIM). This
provides a general basis for analyzing sensor configuration and sufficiency of
information for a specific accuracy requirement.

Let us assume that the MS receives the signal from B tags or BSs placed
at known positions PBSi = {xi, yi}, {i = 1, 2, ..., B} and from them it obtains a set
of measurements S = {si}. The target is to estimate the position PMS

t = {xt, yt}

of the MS at time t. The relation between the measurable variables and the
unknown position can be generally written as

St = h
(
PMS
t ,PBS

)
+ Wt (2.1)

where h is function of both MS and BS positions, and W is the er-
ror affecting the measurement, with a probability density function pw(w).
The function h and the probability density function of the error completely
characterize the measurement process.

2.1.1 Measurement categories

Typical measurements obtained by the signals exchanged between MS
and BSs are summarized in the following points.

1. RSSI (Received Signal Strength Indicator): the transmitted and
received power are known to the system, so the channel attenuation
(which increases with distance) can be computed.

The most common model adopted to measure the RSSI is the log
normal shadowing:

RSSI(d) = A − 10 α log10(d) + w (2.2)

where A is a constant, α is the path loss exponent (PLE), d is the the
distance between transmitter and receiver, and w is the noise affecting
measurements.

2. TOA (Time of Arrival) : the signal traveling time can be measured
in a completely synchronized network. The MS clock is usually not
synchronized and hence its clock bias must be treated as an additional
nuisance parameter. Performance depends mainly on the synchroniza-
tion accuracy, which in turn is limited by the chip rate.
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3. TDOA (Time Difference of Arrival): taking time differences of
TOA measurements eliminates the clock bias nuisance parameter. It
is a practical mobile measurement related to mutual distances among
BSs. The measurements are reported to the network, which performs
the necessary computations. With this approach, it is not necessary
neither to guarantee the complete network synchronization nor the
reference point locations to the mobile.

4. AOA (Angle of Arrival): the use of directional antennas provides
AOA information. Performance depends on the angular resolution of
the antenna and it can be typically around 120◦ with a single antenna
and 30◦ with arrays of antennas [23].

5. Digital map information: a digital map contains, for instance, RSS
measurements relative to reference points either predicted or provided
via dedicated measurement scans in the service area. Performing ac-
tual measurements is only plausible in very limited service areas, like
in indoor environments. This category of measurements is used for the
fingerprinting technique.

It is possible to derive the Cramér-Rao Bounds (CRBs) for the accuracy
in each category as a function of the system and environment parameters
(see for example [24]).

2.2 Geometrical-based methods

Geometric methods are used when ranges or angles between the BS and
MS can be measured with relatively small error. In this case, the set of
equations given by h is easily established by simple algebraic relations. For
example, for TOA, the range between the MS and the i-th BS is given as

si = ‖PMS −PBS
i ‖+ wi i = 1, . . . , B (2.3)

where w ∼ N (0, σ2) is assumed to be a Gaussian random variable with
zero mean and unitary variance.

The relations for TDOA and AOA are obtained similarly from geomet-
rical considerations, while the equation for RSS can be obtained through a
propagation model.

Even in this simple situation, the resulting set of equations is nonlinear
and, in general, over-determined, and therefore, it cannot be solved in an
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exact, closed way. However, in literature there are many solutions: some
of them use linear estimators, others apply the constrained minimization or
subspace decomposition. For more details see [22] and references therein.

• Linearization :
1. One simple linearization scheme expands (2.3) and groups together
the nonlinear terms in an additional variable. Through a straightfor-
ward manipulation we get the following matricial form


s21 − ‖PBS1 ‖2
s22 − ‖PBS2 ‖2

...
s2B − ‖P

BS
B ‖2

 =


xBS1 yBS1 1
xBS2 yBS2 1

...
...

...
xBSB yBSB 1


− 2 xMS

− 2 yMS

‖PMS‖2

 (2.4)

which, in compact form, is

S = G X.

The Weighted Least-Square solution of (2.4) is

X̂ = (GT C−1 G)−1 GT C−1 S (2.5)

where C is the error covariance matrix. Although this method provides
a closed form solution, the results are not optimal since the third
element of vector X is not an independent variable. In the case that
C is not known, it can be estimated along with the position by an
iteratively re-weighted least squares (IRLS) method, provided that we
have many different measurements from every BS.

2. Another simple linearization technique consists in subtracting the
first equation of (2.4) from the remaining others. We get


s22 − s21 + ‖PBS2 ‖2 − ‖PBS1 ‖2
s23 − s21 + ‖PBS3 ‖2 − ‖PBS1 ‖2

...
s2B − s

2
1 + ‖PBSB ‖2 − ‖PBS1 ‖2

 =


− 2 (xBS2 − xBS1 ) − 2 (yBS2 − yBS1 )
− 2 (xBS3 − xBS1 ) − 2 (yBS3 − yBS1 )

...
...

− 2 (xBSB − xBS1 ) − 2 (yBSB − yBS1 )


(
xMS

yMS

)
(2.6)
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which has the same general form of (2.4). Although these equations
are truly linear in the MS coordinates, we have discarded information
during the linearization process and therefore this method does not
provide optimal estimations either.

3. A linearized version of the location equations around a position
estimate PMS

0 is obtained by using the Jacobian of h(PMS
t ,PBS)

h(PMS
t ,PBS) ' h(PMS

0 ,PBS) + Jh(PMS
0 ,PBS) (PMS

t −PMS
0 ). (2.7)

From this linearization, obtained by a Taylor expansion, we can ap-
ply a Maximum Likelihood estimator, that determines the location
iteratively:

PMS
t = PMS

0 +
[
JT
h (PMS

0 ,PBS) C−1 Jh(PMS
0 ,PBS)

]−1
JT
h (PMS

0 ,PBS) C−1
[
S− h(PMS

0 ,PBS))
]
.

(2.8)

In some circumstances the functional dependence of PBS, with the geo-
metric arrangement of the base stations, can lead to problems in the compu-
tation of the pseudoinverse in (2.5) or of the Jacobian in (2.7), and physically,
to large errors of the position estimation of PMS. This phenomenon of error
amplification, which is due to imprecise measurements, is called ”dilution of
precision” (DOP), and it has been studied extensively in the GPS literature
([22] and references therein).

Geometry-based localization methods are computationally efficient, but
not particularly well suited for measurements in NLoS. The NLoS impair-
ment can be limited when (i) data si in NLoS are few, (ii) there is a sufficient
redundancy or (iii) it is possible to mitigate efficiently its effects (typically,
in ultrasonic and ultra wide-band radio based LPS). Techniques for NLoS
correction take advantage of the redundancy and self-consistency of the mea-
surements. Other techniques come from the robust statistics field. For ex-
ample, multiple position estimations can be produced by exhaustively using
small subsets of nmin elements with the received ranges, and then using a ro-
bust estimator like the median for the final estimation of position. However,
achieving these benefits has a cost in terms of complexity and computational
load.
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2.3 Minimization of the cost Function

This approach consists of finding the minimum of the following cost func-
tion:

L(PMS,PBS) = log Pw
(
S− h(PMS,PBS)

)
. (2.9)

This is equivalent to maximizing the conditioned function p(S|PMS). Un-
like the methods presented in the previous section, direct minimization of
the cost function is applicable to arbitrary error distributions pw(w). Only
in the case w ∼ N (0 , C), the cost function simplifies to

L(PMS,PBS) =
(
S− h(PMS,PBS

)T
C−1

(
S− h(PMS,PBS)

)
. (2.10)

Standard methods like Gauss-Newton or Levenberg-Marquardt (see Ap-
pendix ??) can be used for the minimization of L. Also here, convergence
problems arise from bad initialization values and also when the MS is close
to a position where the arrangement of the BS causes high values of the
DOP.

For the case of indoor localization through the signal strength, usually
(2.2) is used as a model to relate RSSI with range:

si(P
MS
i ,PBS, αi) = A0 − 10 αi log10(‖PMS

i −PBS‖) + wi. (2.11)

In general the path loss exponent is different for the base stations. This
is due to the fact that it depends on the environments. Location estimates
will be accurate only if the used propagation model describes well specific
propagation conditions present at each instant. So, the precision achieved
on position estimations from the RSSI measurements depends directly on
using a path loss exponent which fits well with the existing propagation
conditions. More detailed models of the propagation characteristics of the
signals can be used for improving the estimation of RSSI. For example, the
attenuation caused by the presence of walls between MS and BS can be
incorporated in (2.11). However, many researchers argue that this does not
bring many benefits to the final estimation [22].

Methods presented in other publications related to RSSI location, need
a previous exhaustive measurements campaign in the particular scenario
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where location takes place. This alternative achieves good accuracy, but it
needs an expensive previous stage for making a measurements campaign.
Moreover, this tends to lose its validity as soon as the environment changes.
A solution for this issue is, for example, to use a dynamic technique that
minimize the cost function [25]:

L(PMS,PBS, α1, . . . , αB) =
m∑
i=1

‖si − si(PMS
i ,PBS, αi)‖. (2.12)

The two methods presented so far, suffer from propagation impairments
as NLoS conditions. Systems based on UWB and Ultrasound can be efficient,
while for the other RF technologies some countermeasures are needed against
the NLoS. In fact, the following methods consider the issue of NLoS as a
natural part of the estimation problems and so they turn out to be more
effective.

2.4 Bayesian methods

The Bayesian estimation can be used whenever the a-priori informa-
tion on the parameters to be estimated is available. In case of localization,
where the system is time variant, the estimator must not only compute the
location, but also, it has to track the MS along its trajectory. Since the
problem requires an adaptive solution, the class of Bayesian estimators that
is commonly used is called ”Bayesian estimators of the state”. These ones
take advantage of some knowledge about the mechanisms of evolution of the
parameters and, from an ordered sequence of observations, they calculate
iteratively the a-priori and a-posteriori probability density functions (pdf)
called also Belief and Belief −.

2.4.1 Operation principles

Let us consider the transition from time t− 1 to t. The a-posteriori pdf
p(PMS

t−1 | S1:(t−1)) is assumed to be known. The purpose is to estimate the
state at time t and, in order to do it, you have to proceed in two steps:

• Prediction: estimate the a-priori pdf p(PMS
t | S1:(t−1)) at time t by

using past measurements {S1, . . . ,St−1} and the dynamic model of the
state evolution
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PMS
t = ft(P

MS
t−1), αt) (2.13)

in which αt is a process that determines the state evolution. The
relation that allows the prediction of the a-priori pdf at time t from the
a-posteriori pdf at time t− 1 (called Chapman-Kolmogorov equation)
is

Bel−(PMS
t ) = p(PMS

t | S1:(t−1)) =

∫
p(PMS

t | PMS
t−1) p

(
PMS
t−1 | S1:(t−1)) dPMS

t−1 (2.14)

where p(PMS
t | PMS

t−1), called transition pdf, is obtained by using the
dynamic model in (2.13). This can be produced by readings from
a sensor carried by the MS (like odometers and inertial sensors in a
mobile robot) or, if it is a person, can consist of a region of possible
displacements limited by the maximum velocity that the person can
achieve, as well as features in the indoor environment like walls and
doors that impose which regions are accessible.

• Update or correction: by using the new measurement St, it is pos-
sible to update the a-priori pdf predicted before, and by the Bayes’
relation, to obtain the a-posteriori pdf as

Bel(PMS
t ) = p(PMS

t | S1:t) = p(PMS
t | St,S1:(t−1)) =

p(PMS
t ,St | S1:(t−1))

p(St | S1:(t−1))
=

=
p(St | PMS

t ,S1:(t−1)) p(P
MS
t | S1:(t−1))

p(St | S1:(t−1))
(2.15)

where p(St | PMS
t ,S1:(t−1)) = p(St | PMS

t ) is the likelihood function, and it de-
pends on the relation in (2.1) between parameters and measurements.
The denominator is a normalization factor such that the integral of the
probability distribution over all possible positions in the displacement
area turns out to be one.

2.4.2 Bayes filters

To implement Bayes filters, you have to specify the likelihood function
model p(St | PMS

t ), the transition pdf p(PMS
t | PMS

t−1), and the representation
of Belief . The properties of the different implementations of Bayes filters
strongly differ in the way they represent probability densities over the state
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PMS
t . Here we report a brief presentation of the most common implementa-

tions [26]:

1. Kalman filters: they are the most widely used variant of Bayes fil-
ters. Roughly speaking, these approximate the a-priori pdfs by uni-
modal Gaussian distributions, represented by their mean and variance.
While the mean gives the expected location of the person, the variance
represents the uncertainty in the estimate. Even though Kalman fil-
ters make strong assumptions about the nature of the sensors and a
persons motion, they have been applied with great success to various
estimation problems. The main advantage of Kalman filters is their
computational efficiency.

The classical kalman filter works with the assumption that the dynamic
system evolves linearly. Since the localization systems are not the case,
the Extended Kalman Filter (EKF) is used. The working principles
are similar with the exception that the EKF linearizes the dynamic
model by means of the Jacobian similar to (2.7).

Typical sensors used for Kalman filter based estimations are cameras,
laser range finders and GPS systems.

2. Multi-hypothesis tracking (MHT): it extends Kalman filters to
multimodal distributions. MHT represents the a-priori pdf by mix-
tures of Gaussians, where each hypothesis is tracked using a Kalman
filter. The weights of the hypotheses are determined by how well they
predict the sensor measurements. Due to their ability to represent
multimodal distributions, MHT approaches are more widely applica-
ble than the Kalman filter.

3. Grid-based approaches: they overcome the restrictions imposed on
Kalman filters by relying on discrete, piecewise constant representa-
tions of the a-priori pdf. For indoor positioning estimation, grid-based
filters tessellate the environment into small patches, typically of size
between 1 cm and 1 m. Each grid cell contains the probability that the
person is currently in the cell. A key advantage of these approaches is
that they can represent arbitrary distributions over the discrete state
space. However, these approaches are computationally complex, mak-
ing them applicable just to small areas.
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4. Particle filters: they represent the a-priori pdfs by sets of weighted
samples. Particle filters realize the update step according to a sampling
procedure. The key advantage of particle filters is their ability to
represent arbitrary probability densities, which makes them applicable
to problems for which Kalman filters are not well suited. Compared to
grid-based approaches, they are very efficient since they automatically
focus their resources (particles) on regions in state space with high
probability. However, since the complexity of these methods grows
exponentially with the growth of the state space, one has to be careful
when applying particle filters to positioning systems in large areas.

Figure 2.1: Properties of the most common implementations of Bayes filters
for location estimation.

Bayesian estimation methods have a number of advantages for indoor
positioning. They are robust against NLoS situations: depending on how
much information you have about the probabilities of LoS and NLoS, and
the pdfs of the error in both instances, effective mitigation of NLoS effects
can be achieved [22]. They are iterative, which allows to improve upon
previous location estimations by processing many imprecise measurements.
Moreover, no assumption on the form of the pdf needs to be done, which
means great flexibility.

2.5 Fingerprinting methods

In indoor positioning systems based on RF technologies such as WLAN
or Bluetooth, fingerprinting methods are among the most used, thanks to
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their simplicity and reliability. There is a variety of measurements that
can be used. The most common is the RSSI, but also signal to noise ratio
(SNR), link quality information (LQI), channel impulse response and others
are exploited. The fingerprinting methods consist on a two phase process.
First, in the offline step, a radio map of the measurements is built. Second,
in the online step, the MS location is computed according to the current
measurement.

• Offline: this is a calibration phase, where the fingerprints are collected
and stored into a database. The construction of the radio map begins
by dividing the area of interest into cells with the help of a floor plan.
RSSI values of the radio signals transmitted by BSs are collected by a
test MS inside the cells (or calibration points Pl = {x, y}l) for a certain
period of time and stored into the database. The i-th element in the
radio map has the form

Rl = {r , (x, y)l} l = 1, . . . , L (2.16)

where r is the fingerprint vector of measured RSSI from the BSs, (x, y)i
is the location of the i-th fingerprint, and L is the number of cells
(fingerprints). Ri can contains further information, such as orientation
or others indicators.

The radio map can be modified or pre-processed before applying it
in the location estimation phase. The reason can be the reduction of
the memory requirements of the radio map or the reduction of the
computational cost of location estimation. In addition, different loca-
tion estimation methods use different characteristics of the fingerprint
histogram, such as the mean and the variance.

• Online: this is the estimation phase. The MS collects a vector of
measurements (for example RSSI) from the BSs:

R̃ = {r̃1, . . . , r̃B}. (2.17)

To estimate the position of the MS, there are two approaches.

– Deterministic: in this case, the state pMS is not considered as
a random vector [27]. The main objective is to compute the
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estimate ˆpMS of the state at every time step. Usually the estimate
is a convex combination of the calibration points Pl, that is

p̂MS =
L∑
l=1

wl∑L
j=1wj

Pl (2.18)

where wl are weights for the considered calibration point l. A
possible weight can be the inverse of the RSSI norms, as

wl =
1

‖rl − r̃‖
(2.19)

where ‖.‖ is the Euclidean norm. Others possible norms are in
the following table:

Name Norm

P-Norm ‖x‖p =
(∑

i x
p
i

)p
Weighted P-Norm ‖x‖w−p =

(∑
iwi x

p
i

)p
Mahalanobis-Norm ‖x‖M =

√
xT C−1 x

Infinity-Norm ‖x‖∞ = maxi(|xi|)

The matrix C in the Mahalanobis-norm is a diagonal matrix with
the sample variance of the fingerprints. This is because the mea-
surements from different BSs are assumed to be mutually inde-
pendent:

Cl =


σ̂2
l,1 0 . . . 0
0 σ̂2

l,2 . . . 0
...

...
. . .

...

0 0 . . . σ̂2
l,B

.

The estimation technique described in (2.18) is known in the lit-
erature as ”Weighted K-Nearest Neighbor” (WKNN). It is one
of the most used in the fingerprinting methods. When all the
calibration points have the same weight it is called ”K-NN” and,
with K = 1, it becomes simply ”NN”.
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In general the K-NN and the WKNN can perform better than
the NN method, particularly with parameter values K = 3 and
K = 4 [27]. However, if the density of the radio map is high, NN
method can perform as well as more complicated methods.

– Probabilistic: the state pMS is considered as a random vector.
The idea behind the probabilistic approach is to compute the
conditional pdf (a-posteriori) of the state from the measurements
S. The procedure is described in subsection 2.4.1.

The a-posteriori pdf contains all the necessary information for
computing an arbitrary estimate of the state and an estimate of
the error. Two common estimators are the Maximum A Posteriori
(MAP) and the Minimum Mean Square Error (MMSE). The first
computes the maximum of the a-posteriori pdf and the second
computes its mean:

p̂MS
MAP = arg max p(PMS

t | S1:t) (2.20)

p̂MS
MMSE = E{PMS

t |S1:t} =

∫
PMS
t p(PMS

t | S1:t) dPMS
t . (2.21)

Finally fingerprint based methods have some drawbacks: the offline phase
is laborious and time consuming, changes in the environment can compro-
mise the overall system, RSSI measurements are very inaccurate in indoor
environments. However, they often produce the most accurate estimation
of position in indoor environments [22], they are easy to implement and the
cost of the system is low since there is no need of further hardware if RSSI
measurements are used. Moreover, many researcher have been studying so-
lutions that can improve further performance of this technique. In the sequel
of this work, some improvements of this method are presented and analyzed.



3
Analysis of the fingerprinting technique

Fingerprinting techniques are widely used in indoor positioning sys-
tems, especially when technologies as Bluetooth or WLAN are adopted.
Over the recent years, these techniques were examined empirically and ex-
perimental results related to such positioning systems were presented. How-
ever, how to design these systems (what is the impact of the architecture of
a building and thus the radio propagation characteristics) and what are the
factors that mostly affect the system (for example what should be the spac-
ing of the grid where location fingerprints are stored), are questions which
still need an answer. In this chapter, an analytical model for positioning
systems is presented and discussed, with the aim to give a tool that can
help the developers in designing IPSs. Moreover, an analysis of the effect
of some parameters on a simple IPS is carried out and compared with some
numerical simulations. The results show that the availability of such model
can be useful in the deployment of IPSs.

This chapter is organized as follow: in Sect. 3.1.1, the analytical model
of Kaemarungsi [28] and a new model are presented and discussed, in Sect.
3.2.1 the results from a comparison between the presented model and a
simulation are shown and discussed and finally, in Sect. 3.3 further, possible
improvements to the model are introduced and motivated.

3.1 Modeling of a fingerprint-based IPS

The deployment of fingerprinting based positioning systems is divided
into two phases as stated in the previous chapter. The most common tech-
nique for estimating the location is the Nearest Neighbor (NN) algorithm,

35
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which computes the distance (usually the Euclidean one) between the mea-
sured RSSI vector and each fingerprint in the database. The coordinates
associated with the fingerprint that provides the smallest distance are re-
turned as the estimate of the position. Other algorithms that relate the
sample RSSI vector to the fingerprint in the database have an accuracy and
precision quite similar to the NN.

The model presented here is based on the work of Kaemarungsi [28],
which is explained in the next Section.

3.1.1 Basic model

Notations and assumptions

Let us consider an indoor positioning system on a single floor. Let us
assume to have B base-stations in the area and that they are all visible
throughout the area under consideration. A square grid is defined over the
two-dimensional floor plan and any estimate of a MS location is limited to
the points on this grid. Assuming that the grid spacing results in Lx points
along the x coordinate and Ly along the y coordinate, we have Lx×Ly = L2

positions in the area. Any position can be represented by a triplet with label
(x,y,z) where x and y represents the 2D coordinates on the floor plane while
z represents the height of the antenna at that particular grid position. The
coordinate z = 0 is assumed for all the points unless otherwise mentioned.

After the site survey, there are K = L2 vectors of length B with the form

M = {Ri, (x, y)i} For i = 1 to K (3.1)

where Ri = {r̄1, . . . , r̄B} is the fingerprint vector (average RSSI vector)
at position (x, y)i. The elements of the vectors (RSSI measured during the
offline phase) are assumed as the true mean of the RSSI from each BSs.
Usually, this is achieved by collecting a large number of samples of the RSSI
for each orientation of the user and of the MS.

During the online phase, the MS measures the RSSI from the BSs to its
unknown position; the vector of RSSI is called ”sample vector”:

R̃ = {r̃1, . . . , r̃B}. (3.2)
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Each component in this vector is assumed to be a random variable with
the following assumptions:

• the random variables r̃i (in dBm) for all i are mutually independent;

• the random variables r̃i (in dBm) are normally distributed;

• the (sample) standard deviation of all the random variables r̃i is as-
sumed to be identical and denoted by σr̃ (in dBm);

• the true mean of the random variable r̃i or E{r̃i} is denoted as r̄i (in
dBm).

The assumption of Gaussianity for the RSSI in dB (or dBm), is due to
experimental measurements and several studies repeated in many locations
over the last few decades.

The expected value of r̃i or the true value r̄i can be computed by (2.2)
as

RSSIi(d) = A− 10 α log10(d) (3.3)

where A is an attenuation constant, α is the path loss exponent and d is
the distance between the i-th BS and the MS.

Characterization of the metric

The signal distance between the sample vector and the fingerprint vectors
is used to determine which of the points on the grid corresponds to the
position of the MS. This simple technique (NN) selects the (x, y) coordinates
corresponding to the fingerprint vector with the smallest signal distance to
the sample vector as the estimated location. Note that the signal distance
is not the same as the actual physical distance between the two positions
in the real world. The common metric used to calculate the signal distance
between the two vectors is the Euclidean distance

Dl =

√√√√ B∑
i=1

(r̃i − r̄i,l)2 =

√√√√ B∑
i=1

q2
i,l for l = 1 to K. (3.4)

The variables qi,l have zero mean if each element in the sample vector

R̃ have the mean that corresponds to the fingerprint vector Rl. Thus, the
square of the distance D2

l in the signal space is a random variable with
central Chi-square distribution χ2

B with B degrees of freedom:
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Figure 3.1: Central Chi-square distribution.

pχ2(x) =
1√

(2σ2)BΓ(B/2)
e−x/(sσ

2)x(B/2)−1 For x > 0. (3.5)

In Fig. 3.1, the central Chi-Square distribution is plotted varying the
degree of freedom.

If the sample vector is compared to a location fingerprint in the database
that does not correspond to the correct location, the random variables qi.l
will have a non-zero mean equal to µi,l = E{r̃i} − r̄i,l. In this case, the
distribution of the square of the distance D2

l has a non-central Chi-squared
distribution with non-centrality parameter λl =

∑B
i=1 µi,l and B degrees of

freedom:

px;B,λ(x) =
1

(2σ2)
e−((x+λ)/2σ2)

(
x

λ

)B−2
4

IB−2
4

(

√
λx

σ2
) For x > 0. (3.6)

In Fig. 3.2, the pdf of a non central Chi-square density is plotted varying
the central parameter λ and the degree of freedom.
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Figure 3.2: Non central Chi-square distribution.

Probability of correct decision

Let us assume now to have a radio map formed by two points; the fin-
gerprint vectors are R = {r̄1, . . . , r̄B} (point 1) and S = {s̄1, . . . , s̄B} (point
2). Let us assume the MS is in position 1 and that the sample vector is
R̃ = {r̃1, . . . , r̃B}. Then the probability of returning a correct decision is de-
fined as the probability that the square distance between R and R̃ is smaller
than the square distance between S and R̃:

Prob{CorrectDecision} = Prob{
B∑
i=1

(r̃i − r̄i)2 <

B∑
i=1

(r̃i − s̄i)2}. (3.7)

Noticing that {A < B} = {A ≤ B}, it is possible to compute the
probability of the following event:
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B∑
i=1

(r̃i − r̄i)2 ≤
B∑
i=1

(r̃i − s̄i)2

B∑
i=1

(r̃i − r̄i)2 −
B∑
i=1

(r̃i − s̄i)2 ≤ 0

B∑
i=1

(r̃2
i + r̄2

i − 2r̃ir̄i)−
B∑
i=1

(r̃2
i + s̄2

i − 2r̃is̄i) ≤ 0

2
B∑
i=1

r̃i(s̄i − r̄i) +
B∑
i=1

(r̄2
i − s̄2

i ) ≤ 0

C = 2
B∑
i=1

r̃iβi +
B∑
i=1

Γi ≤ 0.

(3.8)

In order to determine the probability of the event (3.8), it is necessary
to characterize the random variable C. The sum of independent Gaussian
random variables is a Gaussian random variable and the resulting mean
value and variance are

µc = 2
B∑
i=1

r̄iβ +
B∑
i=1

Γi (3.9)

σ2
c =

B∑
i=1

(2βiσi)
2. (3.10)

Therefore, the probability that the system returns the correct location is

Prob{C ≤ 0} =

∫ 0

−∞

1√
2πσ2

c

e−
(c−µc)2

2σc dc

=
1

2
+

1

2
erf
(
− µc√

2σ2
c

)
.

(3.11)

The probability of correct decision (PCD) in (3.17) depends directly on
the number of BSs B and on the variance of RSSI measurements σ2 and
indirectly on many parameters: the PLE α (a higher value relates more
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strongly the distance to the RSSI), the grid resolution (higher values mean
higher precision but lower PCD and vice versa), the displacement of the BSs
(choosing the locations of the BSs that differentiate more the fingerprints
will guarantee better performance), the environment (that affects parameters
like PLE and variance, but also others such as correlation, grid resolution,
etc...). All this parameters will be deeply discussed and analyzed. Moreover,
guidelines on how to set up some of them will be given in the sequel.

In a real positioning system, the radio map contains several entries de-
pending on the size of the environment and on the grid spacing. The po-
sitioning system makes comparisons between the sample RSSI vector and
all of these location fingerprints. To be able to calculate the probability of
returning a correct location, the joint probability density function (PDF)
of all random variables of the form C should be known. Deriving an ana-
lytical model can be quite cumbersome where tens or hundreds of location
fingerprints are compared.

So let us consider a radio map with L fingerprints points and for each
location fingerprint Sl we have

Cl =
B∑
i=1

(r̃i − r̄i)2 −
B∑
i=1

(r̃i − s̄i,l)2. (3.12)

The variable Cl compares the distances between the sample vector R̃ and
the correct location fingerprint R and the l-th incorrect location fingerprint
Sl. The index l runs from 1 to L except the index of the correct location
fingerprint. The PCD is

Pc = Prob{C1 ≤ 0, . . . , Cc−1 ≤ 0, Cc+1 ≤ 0, . . . , CL ≤ 0}. (3.13)

With the assumption of independence between the variables Cl, it is
possible to compute the PCD without the knowledge of the joint PDF as

Pc '
L∏
l=1
l 6=c

P{Cl ≤ 0}. (3.14)

Even if this assumption is not exactly correct, simulations have shown
that it provides a reasonable approximation [28].



3.1 Modeling of a fingerprint-based IPS — 42

This analytical model is a first basic work on this topic, it is simple
to implement and it gives an idea about performance of the positioning
system. However, the assumption made on the training phase is too strong
and it does not take into account different factors. Even if it is possible to
collect many samples of RSSI from the BSs, the location fingerprints are
still random variables. Moreover, it does not give any information about
the database or the error distribution, and, more importantly, it is not well
suitable for large environments.

3.1.2 Proposed model for the analysis

The proposed model differs from the previous one mainly in the assump-
tions made for the offline phase. In fingerprinting-based indoor positioning
systems, the training is the hardest task since it is time consuming and la-
borious. Because of that, collecting many samples of RSSI will burden the
system and it does not ensure that their average values correspond to the
true mean values. To overcome this limitation, the proposed model con-
siders the location fingerprints Rl = {r̄1,l, . . . , r̄B,l} as random vectors. In
addition, the fingerprints are assumed correlated. We observe that this is
supported by many experiments in indoor environments [29].

Notations and assumptions

The assumptions made for the online phase are the same as the basic
model in ??. For the training phase, let us consider the fingerprint vector
Rl = {r̄1,l, . . . , r̄B,l}, where each element r̄b of the vector is obtained by the
Log-Normal Shadowing (LNS) model

r̄b,l = A− 10 α log10(db,l) + zb,l. (3.15)

The parameter A is an attenuation constant, α is the PLE, db,l is the
distance between the BS ”b” and the position ”l” and zb,l ∼ N (0, σ2

sh) is a
random variable modeling the shadow fading effect.

Concerning the shadowing effect, three assumptions have been made:

• The received signals at locations ”l” and ”h” are correlated with a cor-
relation coefficient ρ that depends on the distance gl,h between the two
locations. The following exponential model for the spatial correlation
is widely accepted [29],[30]:

ρ(zb,l, zb,h) = e
−
gl,h ln(2)

DCorr . (3.16)
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In (3.16) DCorr is a constant called ”the decorrelation distance” (the
distance where the correlation coefficient decreases till to 0.5).

• The received signals from different BSs at a single position are uncor-
related. In fact, according to past studies, the cross-correlation of the
shadowing effect mainly depends on the geometrical angle between the
two signal links. It was observed that for angles less than 10◦ it can
be considered, otherwise it can be neglected.

In a fingerprinting system, we are interested in measuring the signals
coming from base stations that are properly distributed in different
directions. The received signals with similar angles of arrival are not
interesting from a localization point of view. So here we assume that
the measured radio signals in the fingerprints come from dispersed base
stations and so we may consider the corresponding received signals
uncorrelated.

• The measurements made during the training step are uncorrelated
from the samples taken in the online step. This is due to the fact that
the two operations are made in different time instants, meanwhile the
environment changes (different disposition of equipment, people, doors
and windows). Moreover, others factors also change, for example the
MS (different smartphones).

Probability of correct decision

The definition is the same as the basic model (3.1.1) previously presented.
The PCD is computed by evaluating the event {A ≤ B}. As stated before,
the probability of correct decision is

Prob{CorrectDecision} = Pc '
L∏
l=1
l 6=c

P{Cl ≤ 0}. (3.17)

The random variable Cl is different from the basic model. For notation
simplicity the random variable Cl will be denoted as C.

By the assumptions made, the pdf of C is not determinable because it
requires the knowledge of the joint pdf. However, simulations have shown
that it can be assumed Gaussian and, in fact, this is reasonable in case of
many BSs. The central limit theorem states that the sum of infinite random
variables is a random variable with a Gaussian distribution. In our context
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this is true with 2 BSs or more, while in the case of 1 BS the distribution is
slightly skewed.

Considering the random variable C Gaussian, its mean value and the
variance are computed hereinafter.

Let us consider the correct location fingerprint vector R and one of the
other location fingerprints S. The random variable C is defined as

C =
B∑
b=1

[(r̃b − r̄b)2 − (r̃b − s̄b)2] =
B∑
b=1

Cb (3.18)

where r̃b ∼ N (µr̃b , σ
2
r̃b

),r̄b ∼ N (µr̄b , σ
2
r̄b

) and s̄b ∼ N (µs̄b , σ
2
s̄b

) are Gaus-
sian by hypothesis. Moreover, the variables r̄ and s̄ are correlated with a
correlation coefficient ρ that is computed by the model in (3.16) and they
are uncorrelated with the variable r̃. To compute the mean value and the
variance of C we proceed in a progressive way. Let us consider the variable
Cb

Cb = (r̃b − r̄b)2 − (r̃b − s̄b)2 = X2 − Y 2 (3.19)

where X ∼ N (µX , σ
2
X), Y ∼ N (µY , σ

2
Y ) and their mean values and

variances are

µX = µr̃ − µr̄
µY = µr̃ − µs̄
σ2
X = σ2

r̃b
+ σ2

r̄b

σ2
Y = σ2

r̃b
+ σ2

s̄b
.

(3.20)

The mean value of Cb is by definition

µCb = E[Cb] = E[X2 − Y 2] = E[X2]− E[Y 2]

= σ2
X − σ2

Y + µ2
X − µ2

Y

(3.21)

and the variance is computed by mean of

σ2
Cb = var[Cb] = var[X2 − Y 2]

= var[X2] + var[Y 2]− 2ρ(X2, Y 2)
√
var[X2]var[Y 2]

(3.22)
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where the correlation coefficient ρ(X2, Y 2) is different from that defined
in (3.16). Defining the standard normal distribution G ∼ N (0, 1) then we
have

X = σXG + µX (3.23)

A = X2 = σ2
X G2 + 2 σX µX G + µ2

X

where G2 ∼ χ2
1, which is the central Chi-square distribution with one

degree of freedom. Moreover

σ2
A = var[σ2

X χ2
1 + 2 σX µX G + µ2

X ]

= 2 σ4
X + (2 σX µX)2.

(3.24)

Notice now that var[χ2
1] = 2k, where k is the degree of freedom. The

same definition is made for B = Y 2. The correlation coefficient is

ρ(X2, Y 2) = ρ(A,B) =
E[(A− µA)(B − µB)]

σAσB

=
E[AB]− E[A]E[B]

σAσB

(3.25)

where

E[AB] = E[(r̃b − r̄b)2 − (r̃b − s̄b)2]

= E[(r̃2
b + r̄2

b − 2r̃br̄b)− (r̃2
b + s̄2

b − 2r̃bs̄b)]

= E[r̃4
b ] + E[r̃2

b r̄
2
b ] + E[r̃2

b s̄
2
b ] + E[r̄2

b s̄
2
b ] + 4E[r̃2

b r̄bs̄b]− 2E[r̃3
b r̄b]

− 2E[r̃3
b s̄b]− 2E[r̃br̄

2
b s̄b]− 2E[r̃br̄bs̄

2
b ].

(3.26)

Now each expected value can be solved singularly by definition and by
the assumptions made before. Let us consider the following

E[r̃2
b r̄bs̄b] = (σ2

r̃b
+ µ2

r̃b
)(ρ(r̄b, s̄b)σr̄bσs̄b + µr̄bµs̄b). (3.27)

The expected values E[A] and E[B] can be computed easily as E[X2]
and E[Y 2].
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Figure 3.3: Probability density function of C.

These results are confirmed by simulation as shown in Fig. 3.3.

Finally, in order to determine the probability of correct decision, it is
necessary to compute the overall mean value and variance. The mean value
of C is the sum of the mean values computed for each BS, while for the
variance this is true only when the variables Cb are uncorrelated, which is
our case from the assumptions made. So we obtain the following results.

• Mean Value:

E[C] =
B∑
b=1

µCb . (3.28)

• Variance:

var(C) =
B∑
b=1

σ2
Cb . (3.29)

The probability of returning a correct decision is a useful parameter
for evaluating Indoor Positioning systems. However, in order to evaluate
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coorectly the precision and accuracy it is necessary to have the distribution
of the error distance. The following section presents a model for computing
an approximate error distribution.

Distribution of error distance

The derivation of the distribution of error distance is obtained from an
extension of the PCD model. Instead of computing the probability of correct
decision, we compute the probability of selecting an arbitrary fingerprint
vector and then we associate it with the corresponding error in the physical
distance.

Let us assume to have a MS in the c-th fingerprint location with the
sample vector R̃. The idea is to compute the probability of selecting an
arbitrary fingerprint vector S and not the others. In order to do that, it
is necessary to compute the probability that the signal distance between
the sample vector R̃ and the selected fingerprint vector S is less than the
signal distance between R̃ and all the other fingerprint vectors, including
the correct fingerprint vector.

Let us consider the event CS,l = ‖R̃ − S‖ − ‖R̃ −Rl‖ ≤ 0. The random
variables CS,l are Gaussian, their mean value and variance can be computed
by (3.28) and (3.29). The probability of selecting the fingerprint S instead
of the others is

P{Selecting F ingerpint S} = P(CS,1 ≤ 0, ..., CS,L). (3.30)

In order to compute the distribution of the error, the probability of se-
lecting an arbitrary fingerprint must be computed for each fingerprint in
the grid except for the correct one. Clearly the derivation becomes soon
intractable, and hence some approximations are needed. Considering that
the far fingerprints (in terms of signal distance) have a lower probability of
being selected (even negligible), a reasonable approximation is to consider
only the fingerprints that have a small signal distance from the sample vector
R̃. A second approximation that can be made is to consider the variables
CS,l independent as in (3.14). So the PSF becomes

Prob{Selecting F ingerpint S} '
L∏
l=1
l 6=s

P{CS,l ≤ 0}. (3.31)
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Now we use the other approximation to reduce the computational com-
plexity. As mentioned above, the major contribution to the PSF is given
only by those fingerprints that are neighbors of S in the signal space while
the others that are too far can be neglected:

Prob{Selecting F ingerpint S} '
∏

l ∈ Neighbors of S

P{CS,l ≤ 0}. (3.32)

The idea behind (3.32) is the following: instead of using all of the com-
parison variables Cl as in (3.17), only the most significant neighbors are used
as possible error candidates. The influence from remote fingerprints is ig-
nored by using this approach. The set of neighbors to be employed in the
approximation can be chosen by setting a threshold for the distances in the
signal space (in [31] proximity graphs are proposed as a tool that determines
the set of neighbors).

The probability of selecting a fingerprint in addition to providing an
approximation of the error distribution, also allows to make an analysis
of fingerprints distinctiveness. This is a useful information: the higher,
the better will be performance. It can be used, for instance, to eliminate
fingerprints that can return a detection error, or it can give an idea on where
to add BSs for improving the system.

Figure 3.4: Fingerprints cells, Triangles are the BSs.
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3.2 Simulations and results

The presented analysis models are analyzed via simulations varying the
design parameters (in particular the resolution of the grid, number of BSs,
etc...) and the constrained parameters (variance of RSSI, decorrelation dis-
tance, etc...). The results show which tradeoffs should be made for achieving
a fixed target in terms of performance, and also how to set up the design
parameters.

The simulations are done in a square grid of 5× 5 cells and the measure-
ments are taken in the center of the cells.

3.2.1 RSSI variance

The RSSI variance is one of the most important problems in RSSI-based
indoor positioning systems, especially those ones that use technologies with
a limited bandwidth such as Bluetooth or WLAN. Nowadays, researchers
are studying the problem in order to find countermeasures. However this
topic will be discussed in the next chapter.
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Figure 3.5: Probability of correct decision vs RSSI variance.
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The variance of the received signal strength depends on many factors,
the most important being the environment. Different measurements taken
in indoor environments during the years report a variance of about 6 dB;
our measurements with a Bluetooth device outline the same values.

With a grid resolution of 3 m, a decorrelation distance of 3 m and a path
loss exponent α = 4, the PCD is plotted in Fig. 3.5.

As expected, the PCD decreases when the variance of the RSSI increases.
However, with this configuration and for a variance of 6 dB the probability
of correct decision is around 93%.

3.2.2 Decorrelation distance

As stated before, the measurements during the training phase are spa-
tially correlated and the exponential correlation model in (3.16) is adopted.
The quantity Dcorr defined as the distance where the correlation coefficient
decreases to 0.5 is measurable and it depends on the environment and on
the presence of line of sight conditions. Our measurements in indoor envi-
ronments outline a value of less than 1 m.
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Figure 3.6: Probability of correct decision vs Decorrelation distance.
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With a grid resolution of 3 m, variance of 6 dB and a path loss exponent
α = 4, the PCD is plotted in Fig. 3.6.

From the characterization of the variable C we notice that the higher the
correlation coefficient, the lower the variance and the better the performance.
Fig. 3.6 of the PCD confirms this observation.

3.2.3 Path loss exponent

Adopting the log-normal shadowing model in (2.11) for estimating the
received signal strength, the path loss exponent becomes a key parameter.
While in wireless data transmission areas a lower PLE means a slow power
decay with respect to the distance and then better performance of the sys-
tems, in localization processes this is not true. Higher values of PLE relate
better the distance to the RSSI and, on the contrary, lower values mean
worse performance.

Measurements in indoor environments outline values which are below the
free space PLE. Our measurements in an office room using Bluetooth devices
outline values around 1.6.
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Figure 3.7: Probability of correct decision vs Path Loss Exponent.
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Defining a grid resolution of 3 m, a variance of 6 dB and a decorrelation
distance of 3 m, the probability of correct decision is plotted in Fig. 3.7.

3.2.4 Grid resolution

The grid resolution represents the physical distance between the finger-
print vectors and it is an important parameter. Defined the area to be cov-
ered by IPS, a lower resolution value will give a faster training phase (and
efficient maintenance), smaller fingerprints database (efficient computation
of the location) and better probability of correct detection with NN algo-
rithm. However it will give also a large uncertainty area and lower precision
and, consequently, its value must be chosen searching a tradeoff between all
these factors.

With a variance of 6 dB, a path loss exponent α = 4 and a decorrelation
distance of 3 m, the probability of correct decision is in Fig. 3.8.
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Figure 3.8: Probability of correct decision vs Grid Resolution.
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3.2.5 Error distribution

The discussion about the number of BSs is a little more complicated
compared to the other parameters, because performance does not depend
only on the number of BSs but also on their location. The BSs should be
placed in a way that the signal distances between RSSI fingerprints vectors
result the largest possible. This issue will be discussed in the next chapter
and some strategies to improve performance by means of a good placement
of the BSs will be also presented.

Concerning the approximate error distribution, a grid of 40× 40 cells is
considered and the MS is assumed to be in the cell (15, 23). Two cases are
analyzed:

1. σ2 = 6dB, ∆R = 1m, α = 3, Dcorr = 3m. The error distribution is in
Fig. 3.9.

The first graph represent the worst case and there is indeed a higher
probability of selecting wrong fingerprints vectors and moreover the
dispersion is higher, which means that far locations might be erro-
neously selected. The results from the simulation of these cases match
with the analytical ones.
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Figure 3.9: Approximate Error Distribution
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Figure 3.10: Approximate Error Distribution

2. σ2 = 4dB, ∆R = 5m, α = 6, Dcorr = 3m. In Fig. 3.10 the error
distribution is represented.

3.3 Extensions and conclusions

The proposed model for the analysis can give an idea on the performance
the system can reach and also general guidelines on how to set up the design
parameters. However this model is built on the idea that the NN algorithm is
used and this could be not the case. The K-NN with K > 1 is the algorithm
usually adopted with the fingerprinting technique because it performs better
than the case with K = 1. For this reason, the analysis model can be used
as a lower bound for the performance or it can be extended for K > 1 as
discussed in the next section.

3.3.1 K-Nearest Neighbors (K-NN)

The extension of the model is based on the working principles of the
KNN algorithm which are:
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• Given the sample vector R̃ and the fingerprint vectors Rl, the algo-
rithm computes the signal distances between R̃ and each element of
the database:

Sdl = ‖R̃ − Rl‖2. (3.33)

• Given the signal distances, the algorithm chooses the K fingerprint
vector with the lowest signal distances and it gives as estimated loca-
tion the mean of their location. The WKNN variant uses a weighted
mean.

To make an example on how the extension should be done, let us consider
the case of K = 2 and a MS close to the location fingerprints l = 1 and l = 2.
The probability of correct decision is

Prob{CorrectDecision} = Prob{Sd1 ≤ Sd3, ..., Sd1 ≤ SdL, Sd2 ≤ Sd3, ..., Sd1 ≤ SdL}. (3.34)

The assumption of independency can be adopted as in the case K = 1
in order to compute the event singularly.

Notice that P{Sd1 ≤ Sdl} = P{Sd1 − Sdl ≤ 0} = P{C1,l ≤ 0}.

3.3.2 Conclusions

To the best of our knowledge the proposed model for the analysis of
fingerprinting-based indoor positioning systems is the first work that con-
sider the measurements during the training phase as correlated Gaussian
random variables. This assumption is made to consider real effect of corre-
lated shadowing that is present in indoor environments. Thus, the model
describes better real situations, giving a more accurate evaluation of per-
formance. Moreover, the probability of selecting an arbitrary fingerprint
vector, used to compute the approximate error distribution, can also be
used to predict how different parameters could make the fingerprint vectors
more distant or, on the other hand, more mixed.

Using this model, the time to deploy and tune the positioning systems
could be reduced. Moreover, system designers could add additional details
to this framework in order to study the indoor positioning system with-
out going through too many tedious measurement experiments or numerical
simulations.



4
Design issues in fingerprinting-based indoor

positioning systems

Designing an indoor positioning system based on the fingerprinting
technique is a complex task. This difficulty is related to some lack of the-
oretical understanding of the matter and to the complicated impact of the
scenario and environment on the performance. Since most of the parame-
ters depend on the environment, a general scheme cannot be optimal. The
solution that is commonly adopted is a laborious and time consuming cal-
ibration phase. Moreover, there are many issues to handle, such as RSSI
variance, base-stations placement, training phase complexity, etc. There are
also many constraints and limitations in addition to the costs which must
be taken into account in the final solution design.

Many issues are present during the design step and the most important
one is probably the RSSI variance. In the last years, the scientific commu-
nity has studied the problems related to IPSs and many researchers have
produced different solutions and countermeasures with a particular view on
the steps, possibly simplified, that should be considered when designing IPSs
and on the reduction of the time necessary during the calibration phase.

The rest of this chapter is organized as follows: in Sect. 4.1, RSSI
distribution and measurements are used to validate the assumptions made
in the analysis model proposed in the previous chapter. In Sect. 4.2 the main
issues are discussed and some common solutions that have been developed
by researchers during the last years are presented.

56
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4.1 RSSI distribution and measurements

In the previous chapter, an analysis model is proposed: this model can
predict performance by computing the probability of correct decision and
the error distribution. These factors are calculated by assuming the RSSI
measurements Gaussian distributed. In order to validate this assumption,
measurements in an indoor environment have been collected and analyzed.
The results confirm that the assumption was acceptable and compatible with
real system conditions.

4.1.1 Instruments and environment

From the first chapter of this thesis, indoor positioning systems based on
a dedicated wireless sensor network (WSN) that uses a technology such as
Bluetooth Low Energy (BLE) are suggested as one of the most interesting
choices. This is because, in addition to costs issues (Bluetooth is low cost
and widely adopted and so there is no need of new hardware for the mobile
stations) there is a further benefit which is the energy consumed by the
sensors. BLE is properly designed for the WSNs and, being the energy
consumed by the sensors very low, the sensors can reach a lifetime till to
about 5 years with a coin cell battery. This means also low maintenance
costs. For these reasons, our experiments are carried out by using two BLE
sensors.

1. Transmitter sensor: it is constituted by the CB-OLP425I-26 BLE
module, developed by the ConnectBlue (acquired now by U-Box). It has an
internal antenna with gain of 0 dB and maximum output power of 2 dBm.
The theoretical covered range is 50 m (the data sheet can be recovered at
the company website http://www.connectblue.com).

2. Receiver sensor: it is the BLE113 module which is mounted on the
BLE112 development board and it is produced by BlueGiga. It has an
internal antenna with gain of 0 dB, maximum output power of 0 dBm and
a receiving sensitivity of −93 dBm (the data sheet can be recovered at the
company website http://www.bluegiga.com).

The measured RSSI is an 8 bit value, that goes from 30 dBm to −127
dBm.

The indoor environment chosen for the measurements is the guests room
on the 3rd floor of the DEIB department (Dipartimento di Elettronica, In-
formazione e Bioingegneria) at Politecnico di Milano.

http://www.connectblue.com
http://www.bluegiga.com
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(a) Transmitter sensor: CB-OLP425I-
26 BLE module.

(b) Receiver sensor: BLE113 module
and BLE112 development board .

Figure 4.1: Bluetooth Low Energy sensors.

4.1.2 Measurements of RSSI

The measurements have been taken varying the distance and the orienta-
tion of the transmitter sensor OLP425I while the position and the orientation
of the development board BLE112 were left fixed. Moreover, they have been
taken in the two typical conditions: line-of-sight and non line-of-sight.

Figure 4.2: RSSI probability distribution function at 75 cm.



4.1 RSSI distribution and measurements — 59

Line of sight measurements

The measurements have been taken for distances between 1 cm and 6 m.
For each distance and orientation, 2000 samples of RSSI have been collected.

It was observed that one single measure results in a ragged distribution
of the RSSI. However, the measures distribution can be approximated by a
Gaussian distribution. An example of the RSSI measurements at distance
of 75 cm is in Fig. 4.2.

One of the strategies used for reducing the RSSI variance is to collect
multiple measurements in both online and offline phases and then to take the
expected value as the indicator for the sample/fingerprint vector. During
the training phase, the fingerprints have been taken by rotating the MS and
averaging the measured values. This is done to reduce the sensibility of the
RSSI w.r.t. the orientation and the human body. By using this strategy,
the distribution of the RSSI obtained averaging the measurements resulted
from the rotation of the transmit sensor turns out to be Gaussian. In the
following, 4 orientations have been considered; from each one, 2000 samples
have been collected. The average of the 4 measurements is in Fig. 4.3.

The estimated path loss with the BLE sensors in LoS conditions results
in a slow power decay. Thus, as stated before, the relation between the
received signal strength and the distance is weak and this will penalize final
performance.

(a) RSSI distribution at 50 cm. (b) RSSI distribution at 150 cm.
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(a) RSSI Distribution at 250 cm. (b) RSSI Distribution at 600 cm.

Figure 4.3: Some examples of measurements under LoS conditions.

From Fig. 4.4, which represents the conditions of propagation in the
considered indoor environment and using the BLE sensors described above,
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there are some observations concerning the constrained parameter presented
in the previous chapter:

• The variance of RSSI: the observed values are around 6 dB. More
importantly, there is no clear correlation between the distance and the
variance.

• The path loss exponent (PLE): the estimated value is α = 1.52. The
estimator used is the Least Square (LS) with the log-normal shadowing
model in (2.2). The estimated reference attenuation is A = −38.9
dBm.

As stated in the previous chapter, low values of the PLE mean low
performance and in this case some countermeasures should be taken.

Non line of sight measurements

The same measurements have been taken under NLoS conditions. The
receive sensor collects the RSSI values measured from the the received pack-
ets; there are 2000 samples from each distance and orientation and only the
4 main directions have been considered. An obstacle between the transmit-
ter sensor and the receiver board guarantees the non line-of-sight condition.
The represented distributions are the average of 4 distributions, one for each
direction. The results shown in Fig. 4.5, highlight a distribution of the RSSI
that can be approximated to a Gaussian better than in the LoS condition.

(a) RSSI Distribution at 25 cm. (b) RSSI Distribution at 100 cm.
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(a) RSSI Distribution at 250 cm. (b) RSSI Distribution at 300 cm.

Figure 4.5: Some examples of measurements under NLoS conditions.

Compared with the LoS condition, the variance is slightly higher. The
estimated path loss and the measured one are plotted in Fig. 4.6.
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The measured path loss in non line of sight outlines that propagation
conditions (referring to location problems) are even worst with respect to
the presence of LOS. In fact the estimated path loss exponent is α = 1.4
. Moreover, the variance, as in the previous case, does not depend on the
distance.

Comparison between NLoS and LoS conditions

The proposed log-normal shadowing model matches well the measure-
ments of the RSSI in indoor environments with the BLE technology. The
evolution of the RSSI with respect to distance is similar in both cases. How-
ever, the curve in NLoS results more flattened if compared to the LoS ones.
In Fig. 4.7 we report the two curves.

4.2 Design issues and existing solutions

Many difficulties can occurs during the implementation of an indoor po-
sitioning system. How to deal with each one is up to the designers. In
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this section, the most common problems are analyzed and the strategies
proposed in the literature are presented.

4.2.1 Received signal strength variation

This is one of the main problems in fingerprinting location based on the
RSSI. Since the process is divided into two phases, the system suffers from
the RSSI variance problem: accuracy is degraded when the RSSI vectors
observed in the localization phase are different from the ones collected during
the training phase.

The causes of RSSI variance in a fingerprinting-based indoor positioning
system can be divided into two groups:

• Traditional causes: they are the well known slow fading and fast fading
also denoted as shadow fading and multipath fading. During the years,
they have been widely studied in outdoor and indoor environment
and many solutions were proposed; in particular these solutions relies
on the well-known diversity techniques, such as antenna diversity or
frequency diversity. However, in a localization system that is based on
a wireless sensors network, where the resources of energy and hardware
are limited, these solutions are often difficult to be applied. So, even
if these solutions are effective, they are not suitable for IPSs based on
BLE sensors nor on systems that reuse the WLAN infrastructures.

• System-based causes: they are relative to designed system. There
are differences in MS device type, user direction, and environmental
changes between the two phases. The problem becomes serious in a
pervasive environment, where users may have different kinds of smart-
phones and carry them in different places such as in a pocket or bag,
or in their hand. In [32] an exhaustive analysis of these problems is
carried out. In the sequel some common solutions are reported.

So, among the several solutions proposed for the RSSI variance problem,
against the fading the classical countermeasures are the diversity systems
while, for the other causes of variance, an overview of the publications on
this subject have revelead the following techniques.

1. In [33] a manual calibration is proposed. An RSSI map is constructed
for each device during the training phase and then a corresponding
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RSSI map is used in the localization phase. This approach is accurate
but impractical, since new types of devices are constantly produced.

2. In [34] an automated method that calibrates the RSSI variance in
different devices during the online learning phase. This method solves
the scalability issue, but it requires an additional learning phase and
it is less accurate than the manual-calibration method. Moreover, it is
a ratio-based localization system, which uses the ratio of RSSI values
between different BSs rather than absolute RSSI values.

3. In [35] an unsupervised learning system that automatically learns the
linear-transformation function between two different Wi-Fi devices.
The method roughly estimates the current location with the Pearson
product-moment correlation coefficient (see AppendixA), and then an
expectation maximization learning algorithm is applied to track the
transformation function.

Figure 4.8: An example of linear transformation.

4. The work in [32] is an improvement of [35] since, instead of building the
linear-transformation function between different devices or situations,
it makes an approximation by looking for the peaks of RSSI.



4.2 Design issues and existing solutions — 66

Let us consider, for example, the linear transformation function be-
tween two devices as in Fig. 4.8

yl = axl + b (4.1)

where yl and xl are the RSSI at location l. The considered approxi-
mation is

arg max{yl} = arg max{axl + b} ' arg max{xl}. (4.2)

This choice solves the problem of scalability and it is effective. How-
ever, it is not suitable for all the environments, but only where the
peaks of RSSI are present. This happen only in corridors and almost
never in rooms.

5. In [36] a simple method is proposed. It creates the following rule: the
BS transmits two consecutive signals, at high and low power. The
MS receives the two signals and computes the difference. Since the
path loss is the same, the difference of the two signals is a predefined
constant and, if the result of the RSSI difference does not correspond,
the RSSI is discarded.

The rule is effective for instantaneous signals, thus it is compatible
with any time-series filter. By combining this rule filter and time-
series filter, the resultant RSSI stability is excellent.

Other solutions perform localization by considering different receiver
gains according to the device type, or by reducing the RSSI difference be-
tween devices though wide smoothing of the signal-strength distribution
function. All these solutions are time consuming, often not scalable or they
have limitations in their application.

4.2.2 Base stations placement

A good placement of the BSs improves the performances of an IPS. What
is the minimum number of BSs for achieving a predefined accuracy? How
adding new BSs will impact on performance? What can be the maximum
number of BSs in a certain area of the considered environment ? These are
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questions that usually have answers only after a calibration phase of the
system.

In fact the existing systems treat this kind of issues as a coverage problem
and they solve them by putting some constrains on the number of BSs visible
in a certain point or for avoiding specific coverage gaps. However, some
studies that relate both coverage and BSs placement to the corresponding
accuracy have been carried out. Here we briefly review some of them:

1. the strategy proposed in [37] consists of local search techniques. The
configuration space (in our case, access point coordinates) is searched
for the optimal configuration by starting from an initial position, that
is either random or generated by a pre-processing step, and then by
changing the configuration by means of local movements until some
local minimum of the error is found.

2. In [38], the authors consider this issue as a multi-objective optimization
problem (MOOP) and they define a cost function with two conflicting
subjects that are the cost of BSs and the quality of the system. A
different evolutionary algorithm was proposed to solve the MOOP.

3. In [39], the authors introduce a new parameter that can be used to
evaluate the quality of reference nodes placement and its influence
on the network terminal positioning accuracy. They also present a
software for computer aided optimization of the reference stations for
indoor positioning systems. The software implements an optimiza-
tion algorithm based on resilience phenomenon and Brownian motion
mode. The proposed solution is substantially similar to the previous
ones, even if the parameters setup of the two works is different.

Other works use the same optimization strategies but, for increasing the
final accuracy, they need more information about the environment and the
propagation conditions.

4.2.3 Calibration phase

The fingerprinting techniques have the advantages of simplicity and po-
tential accuracy. However, the main drawback is represented by the time
spent and the successive updates of the calibration phase when the system
is set up for the first time or during any recalibration. As previously stated,
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environment changes will cause a change of the measured RSSIs and so the
system will need a new training phase. To my best knowledge, there is no a
valid countermeasure that can avoid the recalibration of the radio map.

This issue, which is also related to the online phase, was studied by many
researchers and some solutions were proposed:

1. the solution proposed by [40] consists of a virtual radio map. Using a
propagation model that considers the attenuation of walls and floors,
the virtual calibration procedure exploits the measures of the RSSI
between pairs of BSs. In particular, it proposes two procedures for
virtual calibration, and it evaluates their performance with respect to
an ad-hoc calibration campaign by performing measures in an indoor
environment with an IEEE 802.15.4 sensor network.

The idea is to use the information about the environment obtained
from the signals that the BSs exchange in order to build an accurate
propagation model, so creating a virtual radio map. The presented re-
sult show that the proposed virtual calibration can reach the accuracy
of the classical ad-hoc calibration.

2. In [41] an automatic radio map recalibration technique is proposed.
The automatic radio map recalibration takes the measurements re-
ported by a small number of static calibration points and it applies
them to surrounding points in the radio map using geometric tech-
niques. This is done in order to calculate the change to be applied
to the stored values of the signals. In this way the radio map can be
frequently updated, to continuously maintain the accuracy of the sys-
tem. However, the recalibration is done only when the measurements
in the calibration points exceeds a fixed threshold, in order to avoid
too frequent recalibrations that can cause the system to be unstable.

Others works are based on the same strategies seen in [40] and [41]. A
different strategy was proposed in [42], where the distribution of the elec-
tromagnetic field is calculated in each room. This procedure is complex
and computationally heavy and the situation becomes intractable for large
covered areas.
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4.3 Conclusions

In the analysis model proposed in Chapter 3, in order to ensure a mathe-
matical tractability of the problem, the values of RSSI have been considered
Gaussian random variables. In order to confirm this hypothesis, to char-
acterize the RSSI distribution and thus to validate the model, experiments
have been conducted by measuring the received signal strength between two
sensors with BLE technology in an indoor environment. It comes out that
the hypothesis was good. This is a plus for future works on similar models
or for improvements to the presented analysis.

After that, the problems that can occur during the design steps of an
IPS are presented and discussed. The attention of the scientific community
to these issues has been relevant in the last few years, thanks to the growth
of the demand for location information in indoor environments. Moreover,
some countermeasures have been introduced. Obviously there are still many
limitations and unsolved questions; however a global solution for a large-scale
indoor positioning system is getting closer. Some possible contributions to
these issues are presented in the next chapter.



5
Design guidelines and results

In recent years, the scientific community have paid much attention to
indoor positioning systems. To achieve the success of GPS in indoor environ-
ments, some targets on accuracy, precision, cost, robustness and scalability
must be met. Looking at this purpose, the solutions that some researchers
have conceived for these systems have been presented in the previous chap-
ter.

Even though a considerable progress has been already made, an IPS to
be deployed on a large scale is still a challenging and difficult structure. In
this thesis we have considered and investigated some original solutions to
some of the major problems of IPSs based on the fingerprinting technique.

The correct quantization of the RSSI is one of the solutions we have
considered in detail. In fact, this operates mainly as a countermeasure for
the variability of received signal strength, but it also allows to develop a
placement technique for the BSs, and other development ideas.

All the proposed solutions have been tested and evaluated via simulation
with Matlab. It comes out that the proposed solutions not only enhance the
accuracy and precision, but also can reduce the costs and achieve a better
scalability and robustness.

The rest of the chapter is organized as follows: in Sect. 5.1 we present
the key idea of RSSI quantization, in Sect. 5.2 the design guidelines, in Sect.
5.3 the simulations and numerical results. Finally conclusions and comments
are in Sect. 5.4.

70
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5.1 Quantization of the RSSI

As stated in the previous chapters, the RSSI variance is the main cause of
the accuracy degradation. Since there is a lack of effective countermeasures,
our idea is to reduce the quantization bits of the RSSI.

The received signal strength measured by the sensors is a signed value
of 8 bits that ranges from 30 dBm to −127 dBm: reducing the quantization
bits will reduce the perceived variance. However this turns out to be not the
real goal since the greatest benefit is that it will allow us to see the system
from a new point of view. From the following simple example, it will be
clear how this strategy can be exploited:

• through the quantization of the RSSI with one bit, the RSSI will have
2 levels and the BSs will have a coverage as in Fig. 5.1.a.

Defining the reference distance dr, it is possible to compute theRSSIref
from (2.2). Since there are two possible levels of RSSI, the assigned
values are 0 and 1 (this is not mandatory but it is convenient be-
cause it allows to introduce binary codes) and the fingerprints vector
Rl = {r1, ..., rB} or the sample vector R̃ = {r̃1, ..., r̃B} will be binary
vectors where each element is computed as

ri =

{
1 if RSSImeasured ≤ RSSIref
0 Otherwise.

(a) coverage with 1 quantization
bit.

(b) Coverage with 2 quantization
bits.

Figure 5.1: Example of how the BSs cover the area with 1 and 2 quantization
bits of the RSSI.
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Figure 5.2: The red triangles are the BSs.

• Let us consider a fingerprints grid of 2× 2 cells as in Fig. 5.2.

The radio map of this simple example is the following:

Fingerprints vector BS1 BS2 BS3 BS4 BS5

R1 1 0 0 0 1
R2 0 1 0 0 1
R3 0 0 1 0 1
R4 0 0 0 1 1

From this simple example it is possible to make some considerations:

1. The fingerprints vectors Rl must be different in order to avoid uncer-
tainty that will degrade the accuracy of the system.

2. The greater the distinctiveness between the fingerprints vectors Rl,
the better the performance. Since the vectors are binary, the corresponding
Hamming distance can be defined and, clearly, the higher the minimum
hamming distance among fingerprints vectors, the better the accuracy.

3. The BS number 5 does not increase the Hamming distance between
any of the vectors Rl. This means that it is useless because it does not bring
any advantage to the system.

Through this example it is possible to give an answer to many of the
issues described in the previous chapter and to questions such as what is the
minimum or maximum number of BSs for achieving a target performance.

About the first question, a simple answer is obtained by setting the
fingerprints vectors in a way so that the situation of uncertainty is avoided:
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Fingerprints vector BS1 BS2

R1 1 1
R2 0 1
R3 1 0
R4 0 0

To obtain this configuration of RSSI fingerprints vector, the BS must be
placed as in Fig. 5.3.

About the second question, the maximum number of the BSs that can
be reached without replicating the same configuration in the fingerprints
vectors (or placing two BS in the same location) is

NMAX ≤ 2L−1 (5.1)

where L is the number of fingerprints vectors. The equality is valid only
for L = 4 in this case.

The fingerprinting technique can be considered as a quantization tech-
nique and, in fact, through the definition of a fingerprinting grid, measure-
ments of the RSSI are implicitly quantized uniformly in the space domain.

Our suggestion is to limit the number of levels considered for the RSSI.
The number of levels or bits to be used depends on the propagation con-
dition: if we consider for example our measurements, from Fig. 4.4, it is
possible to use 3 levels or at most 4. This happens because the propagation
conditions are not favorable for localization purposes.

Figure 5.3: The red triangles are the BSs.
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5.2 Design guidelines

To design an indoor positioning system, there are many questions that
have to be solved and many decisions to be made. The designers have to
deal with many tasks, from the choice of the technology and the equipment
to how the maintenance of the system should be done.

Hereinafter, a summary of the solutions presented and some new ideas
that could improve the system accuracy are proposed. The presentation
will follow the chronological path of the design process. All the proposed
hints will be tested and their benefits to the system performances will be
evaluated in the next section 5.3.

5.2.1 Infrastructures

The first decision that should be done is the choice of the infrastructure
and thus of the equipment. The possible solutions in this step are 2:

1. Reuse of the available infrastructure.

2. Building a new dedicated infrastructure.

The first is the most convenient in terms of costs while the second has
less constraints and it can perform much better. The right decision is a com-
promise between costs and performance and it depends on the application
requirements and available resources.

5.2.2 Technology

The technologies that can be used are numerous (Infrared, Ultra-Sound,
Radio Frequency, Magnetic-Based, Vision-Based and Audible Sound) and
their pros and cons have been discussed in Chapter 1. The decision about the
right technology depends on the selected infrastructure, on the requirements
in terms of accuracy and on the cost constraints.

The best compromise between costs and performance is given by a ded-
icated infrastructure and a low cost radio frequency technology. A wireless
sensor network with BLE sensors is here considered: it is convenient in terms
of cost (the price of Bluetooth tags is less than 5$ and the MS can be any
smartphone provided with a Bluetooth radio interface) and it can achieve



5.2 Design guidelines — 75

acceptable performances. Furthermore, security and privacy are manage-
able by the supplier and it is up to him to decide what strategies should be
adopted.

5.2.3 Localization technique

The localization technique is the backbone of the indoor positioning sys-
tem. Which one to use depends on the technology chosen and on the kind of
measurements that is possible to obtain with a certain quality. By using a
technology with a limited bandwidth, the best measurements are RSSI and
the best location technique to be used is the fingerprinting one, while for
a technology with large bandwidth (such as UWB), it is possible to mea-
sure the TOAs or DTOAs with excellent precision and so more location
techniques can give good accuracy. The most used one with these kind of
measurements are the geometrical techniques such as trilateration, multilat-
eration or triangulation.

Some of the available techniques have been presented and discussed in
Chapter 2. Coherently with the suggestions reported above, the fingerprint-
ing technique has been chosen in this thesis: compared to other techniques,
it gives the best accuracy especially when the measurements are of low qual-
ity such as the RSSI with BLE. The drawback is the complexity because
it needs a time consuming site survey and a continuous maintenance of the
radio map.

The classical fingerprinting technique gives a room level accuracy. Some
improvements presented in the following lines, allows the system to reach an
accuracy around 1 meter or less and to reduce the complexity.

Training phase

The training phase is laborious and time consuming, and it is the main
drawback of the fingerprinting technique. Thus many researchers have stud-
ied the problem and they have also produced some solutions. However, many
of their ideas are based on a virtual training phase which needs the estima-
tion of different parameters for the propagation model. Furthermore, the
accuracy that systems based on virtual fingerprinting techniques can reach,
is less than that of the traditional one.

Here we suggest to build a hybrid radio map. Let us define a grid with a
low resolution to cover all the considered area: this means that the number
of cells to consider will be small and the time of the calibration phase and
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maintenance will be also low. If higher resolution is needed it can be com-
puted virtually by adopting a propagation model. The parameter requested
for the propagation model can be estimated from the real measurements.

In addition, for a large area it is recommended to split it into small sub-
areas. This allows an efficient management of resources in order to reduce the
complexity and it allows an easy scalability mechanism bringing robustness
benefits.

Malicious fingerprints

In any indoor environment, there are some areas that are rarely or phys-
ically not accessible. There are also places where there is no need of lo-
calization. The presence of fingerprints in these areas can bring to wrong
decisions or can degrade the accuracy in some regions.

Eliminating these malicious fingerprints or weighting them in order that
they have a lower influence in the system can improve performance. The
weighting process can be done adaptively during the work of the IPS, for
example by using the statistics of the located fingerprints (counting the
number of selections of a fingerprint).

Quantization of the RSSI

The number of levels to be considered for the RSSI (or the quantization
bits) depends on the propagation condition. Since this varies because of
many factors, there is no reason of keeping the number of quantization bits
fixed. Setting the number of RSSI levels is an operation that can be done
after the training phase.

We suggest to build a multi-layered fingerprinting technique with n levels.
In layer 0, a fingerprints grid with low resolution is used and the RSSI is
quantized with a low number of bits. This level can be used whenever the
propagation conditions for location purpose are very poor or some BSs are
not working as they have to do.

As the propagation conditions become favorable, a higher level can be
used. Level n will have the best grid resolution and the highest number of
quantization bits. By this way, it is possible to get a smart system that can
adapt to the conditions of the environment and can efficiently manage the
available resources.
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Measurements between the BSs or feedback from the MSs can determine
the propagation conditions and hence the level to assign.

Base stations placement strategy

The quantization of the RSSI suggests a placement strategy that does
not need any optimization algorithm and has an easy interpretation at least
when a single quantization bit is used for the RSSI measures.

Reconsidering the example seen in Sect. 2, a base station is added where
there are no other BSs and where it increments the Hamming distance be-
tween at least a couple of fingerprints vectors Rl.

Fig. 5.3 represents, in this example, the best placement with the min-
imum number of BSs in the defined conditions. To improve the system
accuracy by a smart placement, new BSs have to add distinctiveness to the
fingerprints vectors. In Fig. 5.4 a possible BSs allocation is shown.

The starting minimum Hamming distance dmin is 1 (see the radio map
in Table 5.1). The best placement is the one that gives the higher increment
of the Hamming distance.

In Fig. 5.4.a, the increase of dmin is 0, and the increase of the Hamming
distance between any couple of BSs is 0 too; so this placement is useless
and it should not be done. In Fig. 5.4.b, the dmin does not change but
the Hamming distance between the fingerprint vector R1 and the others
increases and consequently this placement is acceptable. In the last Fig.

(a) Placement type 1. (b) Placement type 2. (c) Placement type 3.

Figure 5.4: Three types of possible addition of a base Station to the layout
in Fig. 5.3.
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(a) Placement type 1. (b) Placement type 2. (c) Placement type 3.

Figure 5.5: Three types of possible MS locations (the red star is the MS).

5.4.c, the dmin is increased to 2 and hence this is the best placement.

For a large grid the strategy remains the same. The grid is divided into
sub-grids of 2× 2 and, for each sub-grid, the allocation can be seen in Fig.
5.3. If two BSs overlap, the rule is simply to delete one of the two.

It can be seen that, even when more bits for the RSSI are used, this
placement still remains good.

Adaptive weighted K-nearest neighbors

The WKNN is a simple technique that estimates the location of the MS
by means of a weighted average of the K nearest fingerprints. The signal
distance between the sample vector R̃ and the fingerprints vectors Rl is
computed, then the K fingerprints with the lowest signal distance are chosen
as neighbors.

From many simulations it comes out that this technique performs well
with K that goes from 4 to 6. The correct number to be used depends on
where the MS is. In Fig. 5.5.a the correct parameter K is 5, in 5.5.b K
should be 4 and in 5.5.c the correct K is 6.

We suggest to use a predefined threshold, so that the algorithm select
all the K neighbors that have a signal distance lower than the threshold
and compute the weighted average of their location as the estimate of the
MS position. Clearly, the threshold to be used must allow the algorithm to
select a number of neighbors between 4 and 6.
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5.3 Simulations and results

In order to evaluate the potential of all the aspects and proposals dis-
cussed in the previous section, we have performed numerical simulations
which reproduce the impact of the propagation conditions, of the algorithm
A-WKNN and of the main issues related to the fingerprinting technique.

Unless specified, for all the simulations, the following models and param-
eter values are considered:

• The RSSI is computed by the log-normal shadowing model

rb(d) = −10 α log10(d) + Z (5.2)

where Z ∼ N (0, σ2
r), d is the distance between the BS considered and

the target and α is the path loss exponent that is assumed to be 1.6,
in agreement with our measurements with BLE sensors (Chapter 4).

• Elements of the sample vectors R̃ = {r̃1, ..., r̃b, ..., r̃B} are assumed to
be independent, with a variance of 4 dB.

• Elements of the fingerprints vectors Rl = {r1,l, ..., rb,l, ..., rB,l} mea-
sured from the same BS are assumed to be spatially correlated. The
model used is the exponential correlation in (3.16). The variance is a
quarter compared to the value that is used in the online phase (this
difference is justified by the fact that during the training phase it is
possible to collect more measurements, and therefore to obtain RSSI
values with a lower variance).

• Square grids N ×N are considered, with a resolution of 2.5 m.

• In all the simulations, unless expressly stated, the algorithm A-WKNN
is used. The weights considered are obtained from the distance be-
tween the sample vector and the fingerprints vectors.

• The location of the MS is randomly selected and it varies at each cycle
of the simulation. This is done because the accuracy of the estimate
depends on the position in the grid. By this way we obtain a value
averaged over the entire grid.
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The evaluation will be conducted by evaluating the average error as a
function of some design parameters. Of course the error is the distance in
meters between the true MS location and the estimated MS location.

5.3.1 Benefits of BSs placement strategy

Typically the BSs are placed in order to cover all the considered area
or in such a way that each cell is covered by at least a certain number
of BSs. Improvements to this kind of strategy are based on optimization
algorithms, which are computationally heavy and complex. On the contrary
our strategy, introduced in Sect. 5.2.3, is simple, intuitive and effective.

Numerical simulations have been taken to show the advantages of this
strategy. In the first one, the RSSI is quantized with 1 bit, the used finger-
printing grids are formed by 2× 2 , 4× 4 and 8× 8 cells. The average error
is estimated for these three cases by increasing the number of BSs.

Beginning from the case 2× 2, the maximum number of BSs that guar-
antees an increment of the Hamming distance is 8 (given by (5.1)). The
simulation results in Fig. 5.6 confirm that for our placement strategy the
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Figure 5.6: Grid of 2× 2 cells.
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Figure 5.9: Grid of 8× 8 cells.

average error decreases as far as the number of BSs increases. However, for
a number of BSs that exceeds 8, there is no further improvement. The result
is compared with the case of random placement that ensure the coverage.

The difference between the two different strategies becomes more relevant
as far as the considered fingerprinting grid becomes larger. In Fig. 5.7 and
5.8 the considered grids are 4× 4 and 8× 8 respectively.

The results obtained in Fig. 5.9 show the trend of the average error as a
function of the variance of RSSI. By comparing the two strategies, one can
see that when the propagation conditions worsen, the difference in accuracy
becomes more important. The simulation parameters are as follow: 20 BSs
are used, 4 bits are used for the quantization of the RSSI and the random
placement ensures the coverage.

5.3.2 Utility of reducing the quantization bits

The main advantage of reducing the quantization bits of the RSSI is the
increment of the computational efficiency, especially when the grid has to
cover a very large area, and therefore it increases both the number of cells to
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Figure 5.10: Grid of 2× 2 cells.
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Figure 5.12: Grid of 8× 8 cells.

be considered and the number of BSs. Given that the sensors have a limited
memory, this can be a considerable advantage.

It is possible to decrease the number of quantization bits all the times
that this does not decrease the accuracy of the system. This can happen if
many BSs are available (with respect to a given area) or when propagation
conditions are very bad.

Simulations results in Figs. 5.10, 5.11 and 5.12 show how the average
error varies when the number of BSs increases. Each plot compares 4 real-
izations with different quantization bits (1, 2, 3 and 4 bits respectively).

For the grid with 2 × 2 cells (Fig. 5.10), decreasing the quantization
levels (or bits) of the RSSI does not reduce the accuracy. The RSSI in this
case should be represented by 1 bit.

For the grid of 4 × 4 cells (Fig. 5.11), realizations with 2, 3 and 4 bits
have the same performance, while for the 1 bit implementation, a lower
accuracy is obtained. In this case, a representation of the RSSI with only 2
bits should be recommended.

For the last grid of 8 × 8 cells (Fig. 5.12), the RSSI can be quantized
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Figure 5.13: Comparison between different quantization bits for the RSSI.
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Figure 5.14: Comparison between different quantization bits for the RSSI.
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with 3 bits, or accepting a loss in accuracy of 8 cm, it is possible to use 2
bits to represent the RSSI.

The propagation becomes difficult when the variance increases or the
PLE decreases. In both cases, it is convenient to reduce the quantization
bits of the RSSI. In Figs. 5.13 and 5.14, the simulation results confirm what
was anticipated.

In Figs. 5.13.a and 5.14.a, a grid of 4 × 4 cells is considered: 12 BSs
are placed in such a way that the Hamming distance between the binary
fingerprints vectors is increased. It can be observed that in these cases, 2
bits are enough to represent the RSSI, especially when the variance is high
and the PLE is low.

For the results in Figs. 5.13.b and 5.14.b, the grid considered is of 8× 8
cells and 41 BSs are arranged according to our strategy. In this case 3
quantization bits are recommended, but also 2 bits can be used for higher
variance.

5.3.3 The advantage of adaptive weighted K nearest
neighbors (A-WKNN)

This technique allows the system to use the best number K of neighbors
with respect to the MS location. The results in Figs. 5.16 and 5.15 show
the average error as a function of the variance and the PLE; the algorithms
AWKNN, WKNN with K = 1, 4, 5 and 6 are used for the single realizations.

It is possible to observe that the algorithm with K = 1 (NN) is the worst
in terms of accuracy, while the proposed one (AWKNN) is always the best,
especially when propagation conditions become adverse for the localization
process. So using the algorithm AWKNN appears advantageous as it is very
simple and it does not affect the computational efficiency of the system.

5.3.4 The multi-layered fingerprinting technique (MLF)

The higher the resolution of the grid, the better the performance. Ob-
viously there is a limit to the resolution, under which performance does
not improve, and in some cases it worsens. This limit depends mainly on
the propagation conditions. Achieving this maximum, if the resolution is
lowered using a less dense grid, can help to reduce the complexity of the sys-
tem and to make it more efficient from many points of view without losing
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Figure 5.17: Comparison among different grid resolutions.

So the idea behind MLF is to have different grids or levels and, based on
propagation conditions, to use the one most suited given the performance
target.

A numerical simulation is useful to see that, when the propagation con-
dition worsens, reducing the resolution of the grid does not reduce the lo-
calization accuracy. The results in Fig. 5.17 refer to an area of 50m× 50m
and to grids of 6× 6 , 8× 8 , 16× 16 and 50× 50.

5.4 Conclusions

In this chapter several original solutions have been presented for improv-
ing performance of location systems that are based on the fingerprinting
technique. Many of these were tested by means of numerical simulations
and it turned out that the efficiency of the system (from a computational
point of view) is improved and, in some cases, also that the accuracy of the
system is increased.



Conclusions

The increase of demand of location base services (LBS) has generated a
strong interest in researchers and many companies in the field of positioning
systems.

The Global Positioning System (GPS) system has achieved a great suc-
cess in outdoor environments, but, it is not suitable for indoor use and so,
an ad-hoc solution is needed. Many Indoor Positioning Systems (IPS) have
been developed during the last years (Chapter 1): some of them are also
commercially available, others are research oriented. Various technologies
and localization techniques (Chapter 2) have been explored. However, the
systems so far developed have several limitations and they are not suitable
for large-scale distribution. From the analysis made in the first chapter, it
turned out that an excellent compromise between cost and performance is
given by systems with low-cost technologies and with a dedicated infrastruc-
ture.

This thesis contains some contributions in the search of novel solutions
for a global IPS. Two useful tools that can analyze fingerprinting-base IPS
technique have been improved (Chapter 3): these can predict the perfor-
mance of such systems by computing the probability of correct decision
(PCD) and the error distribution. These useful tools allow to save time in
the implementation step and to simplify it.

The Bluetooth Low Energy (BLE) is a good candidate technology for
localization because, potentially, it has many advantages in terms of cost
and maintenance. As, to the best of my knowledge, experimental measures
are scarce in the literature, we took some measures (Chapter 4) in order to
understand its behavior in a typical room.
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Designing an IPS is a difficult task and, for some techniques such as
fingerprinting, there are still some issues to be addressed from a theoretical
point of view. Chapter 4 presents some common problems and some possible
solutions available in the literature.

The major contributions of this thesis are presented in Chapter 5. Dif-
ferent original solutions that, combined with the fingerprinting technique,
allow the system to achieve satisfactory performance, in terms of both cost
and accuracy. The main proposal is here to quantize the Received Signal
Strength Indicator (RSSI) with a smaller number of bits. This solution is
conceived as a countermeasure to the variance of RSSI and also it allows to
make interesting similarities with the binary codes theory. In fact, using a
single bit to represent the RSSI, it is possible to obtain a radio map with
binary vectors and also the measurements during the online phase are binary
vectors. So it is possible to make many considerations starting from the con-
cept of Hamming distance between the vectors of the radio map, which is
directly related to the localization performance. Moreover, it is possible to
increment the Hamming distance between these vectors by a smart arrange-
ment of the BSs and therefore, to improve the accuracy hopefully reducing
the costs.

In the thesis only some of the implications of these similarities have been
presented and analyzed. Much work can still be done. For example (i)
placing the BSs so that neighbors in the physical space have the minimum
Hamming distance, so creating neighbors which are close also in the signal
space (this reduces the error in case of wrong decision), (ii) investigating the
applicability of efficient decoding that can determine the correct fingerprints
from the database (this could make efficient the database management and
reduce computational costs). Furthermore it would be important to make
experimental tests of a real system in order to confirm the results shown
here, and also to test some of the proposals that cannot be simulated.
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