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Summary

In scientific computing and in general in High Performance Computing (HPC),

stencil computations play a crucial role as they appear in a variety of different

fields of application, ranging from Partial Differential Equations (PDEs) solv-

ing, to computer simulation of particles interaction, to image processing and

Computer Vision (CV), and a lot more. The computationally intensive nature of

those algorithms has created the need of good solutions to efficiently implement

them, in order to save both execution time, and energy consumption. This, in

combination with their regular structure, has justified a wide study and the pro-

posal of a lot of different approaches, in which virtually every kind of computing

device currently available has been explored.

The work proposed in this thesis addresses Iterative Stencil Loops (ISLs) em-

ploying as enabling technology the Polyhedral Model (PM), with the aim of

accelerate them using a Field Programmable Gate Array (FPGA) as target de-

vice. In particular, this research propose a streaming-based microarchitecture called

Streaming Stencil Time-step (SST), able to achieve, thanks to an optimal Full Buffer-

ing (FB), a really low usage of the available resources as well as an efficient

data reuse; and a technique, named SSTs queuing, able to effectively increase the

throughput by a pseudo-linear factor, which exploits the characteristics of the pro-

posed microarchitecture putting replicas of it in cascade, enabling, thanks to the

streaming nature of the SSTs, a pipelined execution within the queue.

The methodology has been tested with some significant benchmarks on a

Virtex-7 using the Xilinx Vivado suite. Results show how the efficient usage of

the on-chip memory resources realized by an SST allows to treat problem sizes

xiv
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whose implementation would otherwise not be possible synthesizing directly

the original code via High Level Synthesis (HLS), but also how the scalability

given by the SSTs queuing ensure a pseudo-linear increase in throughput, while

remaining with constant bandwidth.



Sommario

Nel vasto scenario della scienza computazionale e dell’High Performance Com-

puting (HPC) in generale, le computazioni di tipo stencil giocano un ruolo fon-

damentale in quanto appaiono sistematicamente in una pletora di campi appli-

cativi, spaziando dalla risoluzione di equazioni differenziali alle derivate par-

ziali, alla simulazione dell’interazione di particelle, all’image processing e alla

Computer Vision (CV), e molto altro. Data la loro natura computazionalmente

pesante, nel tempo si è evidenziata la necessità di soluzioni implementative effi-

cienti, con l’obiettivo di ridurre sia il tempo di esecuzione, che il consumo energe-

tico. Questo, in aggiunta alla loro struttura regolare, ha giustificato un esteso stu-

dio ed una varietà di approcci proposti, in cui praticamente qualsiasi dispositivo

di elaborazione attualmente disponibile è stato esplorato.

Il lavoro proposto in questa tesi si focalizza sulla implementazione dei co-

dici stencil, definiti Iterative Stencil Loops (ISLs), utilizzando come tecnologia

abilitante il Polyhedral Model (PM), con l’obiettivo di accelerarli su una FPGA.

In particolare, questa ricerca propone una microarchitettura streaming chiamata

Streaming Stencil Time-step (SST), capace di ottenere, realizzando un Full Buffe-

ring (FB) ottimo, un basso uso delle risorse disponibili ma anche un efficace riuso

dei dati; ed una tecnica, chiamata accodamento delle SST, in grado di aumentare il

throughput di un fattore pseudo lineare, e che consiste nello sfruttare opportuna-

mente le caratteristiche della microarchitettura proposta collegandone in cascata

delle repliche, abilitando, grazie alla natura streaming delle SST, un’esecuzione

in pipeline all’interno della coda.

xvi
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La metodologia è stata testata con alcuni significativi benchmark su una Virtex-

7 utilizzando la suite Vivado di Xilinx. I risultati mostrano come l’efficiente utiliz-

zo delle risorse di memoria on-chip realizzato da una SST consenta di trattare

problemi la cui dimensione non ne consentirebbe l’implementazione sintetizzan-

do via High Level Synthesis (HLS) direttamente il codice originale, nonché come

la scalabilità data dall’accodamento delle SST garantisca un incremento pseudo

lineare del throughput, pur restando a banda costante.
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Introduction

Anyone can build a fast CPU. The trick is to build a fast system.

– Seymour Cray

In this Chapter it is introduced the context required to motivate the work

done in this thesis. Section 1.1 describes this context, namely the High Perfor-

mance Computing (HPC) field and its evolution towards the Exascale era. In

Section 1.2 the main challenges that arise when designing the next generation

systems are presented, while Section 1.3 provides a brief description of the het-

erogeneous systems, with special attention on Field Programmable Gate Arrays

(FPGAs), that current trends sees as a promising approach to meet the presented

challenges. Finally, Section 1.4 provides a high level overview of the proposed

work within the context of the transition towards Exascale computing.

1.1 Context

Over 3 millions cores, clustered into 16k nodes, where each node has 88 giga-

bytes of memory, for a grand total of over 1 petabyte, a power consumption of 24

megawatts (accounting also cooling) and a performance of 33.86 petaflops: this

is Tianhe-2, today’s top supercomputer [10]. Although from these numbers it is

clear that HPC systems can now deliver performance whose order of magnitude

was simply unimaginable at the time of the first supercomputers, there are still

1



1. INTRODUCTION 2

certain classes of problems that are unmanageable with the currently available

computing power. Therefore, it is time for HPC to take a step further.

In HPC, the important milestones are considered the emergence of systems

whose overall performance, expressed as the number of Floating Point Opera-

tions Per Second (FLOPS) a given system is able to perform, crosses the threshold

of 103k, for some k ∈ N. A first important achievement was made in 1985 where

the Gigasacale (109) was reached with the Cray-2. In 1997 Terascale (1012) was

delivered by Intel’s ASCI Red, and in 2008 Petascale (1015) was achieved by the

IBM’s Roadrunner. It is believed that in the near future, approximately in 2020,

the systems will achieve Exascale (1018).

The need of such a technology advancement can be justified with a simple

claim: some of the key computational challenges, that are faced not only by in-

dustry, or science, but civilization as a whole, can be addressed thanks to Exascale

computing. There are a lot of practical problems that can benefit substantially

from it: in climate modeling, it could help to adapt faster to climate changes and

sea level rise thanks to a much more accurate forecasting; in medical systems

it could allow a dramatic advancement in the research for preventing and cur-

ing cancer as well as the other challenging diseases of our age; in astrophysics

it could finally lay bare the secrets of the formation of the universe; in the en-

ergy field the impact would be even stronger, as it could allow to better control

fusion but also to effectively reduce pollution helping to design innovative cost-

effective renewable energy plants. Last but not least, it is believed that Exascale is

the order of processing power of the human brain at neural level, and because of

that, an Exascale system could allow the reverse engineering of a human brain,

but also - and more interestingly, though - the possibility to emulate it [9].

Current trends, however, suggest that there is the need to explore alternative

solutions, or the goal of achieving Exascale computing may remain only feasible

on paper. Indeed:

• Moore’s Law, if interpreted incorrectly as the doubling of performance every

18-24 months, has hit a power wall, as indeed clock rates have been essen-

tially the same since the beginning of 2000s.
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• Moore’s Law, if interpreted correctly as the doubling of the number of tran-

sistors on a chip every 18-24 months, is still valid. However, it must be

stated that it is impossible to reach Exascale just by doing more of the same

but bigger and faster. Indeed, current technology cannot be used to build

an Exascale system, as it would probably cost more than 100 billion dollars,

and require its own dedicated power plant and over 1 billion dollars per

year to be powered [108].

• The attempt to hide the ever increasing memory latency wall by designing

larger and more complex cache hierarchies has definitely hit its limit in

terms of effectiveness on real applications.

• New parallelization strategies are needed. It is increasingly complex to ex-

tract parallelism from sequentially designed programs automatically, but

also the distribution of the load onto an enormous number of Processing

Elements (PEs) requires a radically different approach.

• The traditional single-domain research activities where hardware and soft-

ware are explored in an isolated way cannot anymore sustain the growing

demand of efficient solutions.

1.2 The Challenges of Exascale Computing

While designing a new system that can be competitive with HPC modern

standards requires a non negligible effort, managing to make a performance leap

of orders of magnitude is infinitely more complex. There are in fact some impor-

tant challenges within the HPC field that must be addressed in the proper way

in order to be able to make such an accomplishment [27]. The focus of this sec-

tion is to clearly define what they are, and how they impact the design of the

next-generation systems.
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1.2.1 The Energy and Power Challenge

Power consumption is the most compelling concern, since it is absolutely crit-

ical to reduce its requirement of at least 2 orders of magnitude for future hard-

ware and software technologies. This is because one of the main cost of operating

an HPC system, i.e. of the operating expenditure (OpEx), is precisely power con-

sumption. Indeed, assuming a linear scaling of the best of breed system in terms

of performance, the already cited Tianhe-2, the power requirements for an equiv-

alent Exascale system would still be of the order of gigawatts, with an energy cost

of more than 2 billion dollars per year. Therefore new serious research challenges

arise to achieve a better power efficiency, and it is believed that this will be the

area in which significant improvement will be the most difficult to achieve.

The majority of the power consumed by supercomputers today is not used to

handle computations, but is used to move data around the system. Indeed, we

can model the power demand of the copper wires within a system as [101]:

Power ≈ B× I2/A

Where B is the bandwidth of a wire, A is the cross-sectional area of the wire

and I2 is the length of the wire. From this model, which is a simple RC model

that does not take into account all the variables that concur in the actual power

consumption, it is already clear that:

• Power consumption increases proportionally to the bit-rate, so as we move

to ultrahigh-bandwidth links, it can become a major concern;

• Power consumption is highly distance-dependent, as it is quadratic with

the wire length.

• Making smaller-sized wires will not improve the energy efficiency or data

carrying capacity.

Therefore the emerging constraints on energy consumption will effectively influ-

ence the way of designing an HPC systems, for example leading to an increase in

the usage of optical technologies to perform data movements, also adding to the

goals of algorithm design the power constraints as well as an efficient reduction

of data movements.
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Designing an HPC system with lower power requirement leads to various

advantages, first of all the scale down of the cooling system size which in turn

involves in cutting the overall costs of the HPC system. Even if there have been

substantial improvements in energy efficiency during the last years, HPC contin-

ues to be criticized for its extraordinarily high energy demand, leaving a strong

need for an accelerated progress.

The U.S. Department of Energy has set the goal of 20MW as the limit of

energy consumption for an Exascale system to keep its operational cost in a

feasible range, whereas modern data centers typically provide that amount of

power. However, the most efficient large-scale HPC system, the german L-CSC

[5], makes us understand how distant the actual technology is from the desired

goal, since it is capable of achieving only 5 GFLOPS/W. An Exascale system

would need an improvement of 10×with respect to the L-CSC’s power efficiency

in order to stay under the limit of 20MW.

1.2.2 The Memory Challenge

The second major challenge is undoubtedly related to information storage,

and is due to the lack of currently available technology to retain data at high

enough capacities, but also to access it at high enough rates, still remaining within

an acceptable power demand.

Memory capacity using traditional Dynamic RAM (DRAM) technology turns

out to be a matter of costs. Current trends show that although the number of

cores per processor is increasing, the amount of memory ratio with respect to

the available computational capacity is decreasing. This is essentially due to fact

that the cost of memory has not been decreasing as rapidly as the cost of floating

point performance, simply because the rate of increase of memory density has

never been as rapid as that of Moore’s law for the number of transistors on a

processor. Even though enormous progress in this sense have still been made, as

the memory cost has decreased by a factor of over 1010 in less than sixty years,

current costs are still prohibitive when a very large amount of it is needed.
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Memory bandwidth is instead a structural issue rather than a cost issue. In

fact, while for processors the demand has ever been for more rapid instruction

execution, memory evolution has been guided by the demand of an increase in

density to maximize the amount of data available to the processors, resulting in

the employment of production technologies that allowed to build large capacity

memories, for which, however, the latency was relatively high. This in turn re-

sulted in an ever growing gap between the number of instructions a processor is

able to execute and the number of memory transfers that can be done within the

same amount of time.

Figure 1.1: An illustration of the von Neumann Bottleneck. The graph refers to the evolution of
canonical CPUs.

This problem is known as the “von Neumann bottleneck”, as it can be thought

as structural, related to how computation systems are made. Processor designers

addressed this issue by designing hierarchical memories to mask the memory

latency. Modern processors are in fact equipped with different levels of memory

caches that can store data from DRAM so that future requests for that data are

readily available. Cache memories located on-chip are typically built from Static

RAM (SRAM). This type of memory is constructed from transistors and it has

lower latency with respect to DRAMs, but it has very low data density and it

is also more susceptible to errors that force them to be designed with error cor-

rection logic, resulting in higher costs, the reason why they are small-sized and
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still need to be backed by traditional DRAM. Considering this hierarchical na-

ture of memory, it is obvious that is preferable for the processor to find the piece

of required data in the cache, as it can be accessed more rapidly. Hence, when

the processor needs to read or write a location in main memory, it first checks if

it is available in the cache. If the data is present this is called a cache hit, if not,

it is a cache miss. When the cache misses ratio is high, the impact given by the

employment of a hierarchical memory system can be completely null, therefore

care must be taken in order to exploit it properly.

To summarize, the memory challenge must be addressed in two different but

nevertheless complementary ways:

• providing as much capacity at each level of the hierarchy, but with an ac-

ceptable request in terms of cost;

• providing the most effective methods for moving data among the levels as

dictated by the needs of the various applications. This is crucial also be-

cause memory latency heavily impacts parallel cores performance, essen-

tially due to the inherent need of synchronizations.

1.2.3 The Concurrency and Scalability Challenge

The end of the increase in single compute node performance by increasing

instruction level parallelism and higher clock rates has left explicit parallelism

as the only mechanism to increase overall performance of a system. Mathemati-

cal models, numerical methods, and software implementations will all need new

conceptual and programming paradigms to make effective use of extreme lev-

els of concurrency. With clock rates flat at several gigahertz, systems will require

more than one billion concurrent operations to achieve Exascale levels of perfor-

mance and most of this increase in concurrency will be within the single compute

node.

Concurrency can be measured in three ways:

• The total number of operations that are instantiated in each cycle to run the

applications.
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• The minimum number of threads that run concurrently to provide enough

instructions to generate the desired operation-level concurrency.

• The overall thread-level concurrency that is needed to allow some percent-

age of threads to stall while performing high-latency operations, and still

keep the desired dynamic thread concurrency.

A clear medium-term priority is the definition and implementation of algorithms

that are scalable at very large levels of parallelism and that remain sufficiently

fast varying latency and bandwidth availability; scalability should be modeled

and analyzed mathematically, using abstractions that represent key architectural

features.

The increased levels of concurrency in a system greatly increases the num-

ber of times that different kinds of independent activity must come together at

some sort of synchronization point, increasing the potential for races, metastable

states, and other difficult to detect timing problems. It will be necessary to main-

tain something like a billion threads of control, subdivided into a millions of

processors cores to achieve an exaflop. A directly related problem will be the

need to make sure that the required data is readily accessible to the computa-

tional units. Thus the data must be staged appropriately and the locality of the

data must be maintained. Performance scalability of computing systems has been

and will continue to be increasingly constrained by both the power required and

speed available to enable data communications between memory and processor,

but also by the phenomenon knows as dark silicon [45], caused by the failure of

Dennard scaling [43], i.e. transistor scaling and voltage scaling are no longer in

line with each other. The mere increase of the amount of cores cannot be carried

out without exceeding in power density, which in turn can result in the impos-

sibility to keep the chip temperature in the safe operating range. This limitation

force to systematically power up only a fraction of the entire die, causing large

idle or heavily underclocked portions of silicon area, hence the term dark silicon.

This phenomenon inevitably restricts the amount of cores a chip can accommo-

date. The inability to go beyond a certain limit is indeed influencing also the em-

ployed parallelism paradigms, as in fact the pure many-core parallelism is being
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gradually replaced by forms of process-level parallelism, an example of which is

MapReduce [42].

1.2.4 The Resiliency Challenge

Resiliency is the property of a system to continue effective operations even

in the presence of faults either in hardware or software. The vast majority of

today’s applications assume that the system will always operate correctly. How-

ever, an HPC system must be able to use so many components that it is unlikely

that the whole system will ever be operating normally, as it is obvious that, the

more the system is large, the shorter is the mean time between failures (MTBF).

The common approach for resilience, which relies on automatic or application

level checkpoint and restart, is not suitable for very large systems, as the time for

checkpointing and restarting could even exceed the mean time to failure (MTTF),

resulting into an irreversible deterioration of the integrity of the system. Also, the

problem intensifies when considering that there is the need of handling the lack

of resilience of not only computation, but also communication and storage.

1.2.5 The Software Challenge

While large scale parallel processors have greatly increased the performance

potential for HPC, they have also introduced substantial new software develop-

ment problems. There are basically two schools of thought regarding the issue of

properly adapting software development to the context of HPC. In the first case,

the belief is that is it feasible to extract parallelism opportunities from current

software, as well as enhance the available paradigms to be able to deal with the

enormous amount of concurrency needed. In the second case, the belief is that

a radical rethink is required, and that new methods, algorithms, and tools are

needed to enable the performance leap.

The reality is however that both philosophies must coexists, and that the ac-

tual need is to figure out how to integrate and support existing computation

paradigms while enabling new revolutionary paradigms.
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At the same time, it is also crucial to provide software developers with the

right skills, since up to now there is a serious lack of parallel programming skills

across all the degrees of experience, from entry level to very high end. An effort

must be also made to raise awareness among HPC users, scientists in the first

place, to understand the software challenges and train them to deal with the ever

increasing complexity of the systems.

1.2.6 Metrics

Different HPC systems have in general really different architectures, employ

a variety of computing devices and handle data movements with different ap-

proaches. Hence, there is the need to define some standard metrics that can be

used as terms of comparison. Within the HPC field, the most significant metrics

are:

• Throughput, measured in FLOPS,

• Bandwidth, measured in bit/s,

• Total Power and Power Efficiency, measured respectively in watts (W), and

FLOPS/W.

1.3 Meeting the Challenges: Heterogeneous Systems

The majority of existing supercomputers generally achieve only a fraction of

their peak performance on certain portions of some application tasks. This is be-

cause different subtasks of an application can have very different computational

requirements that result in different needs for processing capabilities. An homo-

geneous architecture cannot satisfy all the computational requirements in certain

applications equally well.

Thus, the construction of an heterogeneous computing environment is more

appropriate. Employing an heterogeneous system can be the solution to prop-

erly meet all the presented challenges, as it offers the opportunity to increase
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the computational performance keeping low the energy requirements. Heteroge-

neous computing [103] refers to systems that use more than one kind of PEs, each

of which is particularly efficient within a specific application domain. These PEs

communicate through a system of high-performance interconnections. To take

advantage of such a system, a given task is decomposed into subtasks, where

each subtask is computationally homogeneous, and assigned to the PE whose

characteristics are the most appropriate to its execution. One or more PEs, being

canonical Central Processing Unit (CPU), are in charge of managing the offload-

ing to the other PEs, as well as the execution of general purpose components of

the computation such as operating system services.

Figure 1.2: A simple scheme of an heterogeneous system.

The rationale beyond the employment of an heterogeneous system is that

CPUs are designed to handle complex control flows, but their general purpose

nature makes them unfit to retain a high and cost effective throughput whit re-

spect to other available solutions. CPUs are then coupled with other coproces-

sors, namely General Purpose Graphic Processing Units (GPGPUs) and FPGAs,

both of which have specific characteristics that make them suitable to perform

certain kinds of computation. GPGPU, being Single Instruction Multiple Data

(SIMD) processors, perform very well on highly data parallel tasks. They have

a massively parallel hardware architecture, are capable of achieving high float-

ing point performance and have large off-chip memory bandwidth, however it
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is usually very difficult to make GPGPUs work at their full capacity and use

all the available bandwidth. Also, for high end chips the power demand can be

huge, even though they are still capable of delivering high power efficiency - at

least with respect to conventional CPUs, which justifies their employment as co-

processors in heterogeneous systems. FPGAs offer very high I/O bandwidth and

fine-grained, custom and flexible parallelism. They are mainly composed of three

building blocks [61]: the Control Logic Block (CLB) is the main component, it can

implement one or more function generators using Look-Up Tables (LUTs) which

in turn implement an arbitrary logic function, storing the result of the function for

every possible combination of the input. The Input-Output Blocks (IOBs) are in

charge of connecting the signals of the internal logic to an output pin of the FPGA

package. The interconnection resources allow the connection of CLBs and IOBs.

An FPGA can have additional resources embedded on the die, such as Random

Access Memory (RAM) cells (also called Block RAM (BRAM)) that can be used

to store data on-chip during the computation, Digital Signal Processings (DSPs)

and other specific processors.

Figure 1.3: The general architecture of an FPGA.
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The structure of an FPGA enables tasks-tailored logic to be created on-the-fly,

that, considering the ever-increasing computational needs coupled with the fre-

quency/power wall, is the perfect solution to have both performance and low

power consumption. Indeed, the employment of custom logic, shaped on the

specific type of computation, allows to have, within the entire fabric of an FPGA,

only the part demanded to implement the circuit to be powered on. Therefore,

an efficiently designed custom logic can lead to both sustained performance and

low power consumption, as previously stated, thus high power efficiency. High

Performance Reconfigurable Computers (HPRCs) based on conventional CPUs

and FPGAs as coprocessors have indeed been gaining the attention of the HPC

community in the past few years. In these systems, the main application exe-

cutes on the CPUs, while the FPGAs handle kernels that have a long execu-

tion time and are suitable to hardware implementations. Such kernels are typi-

cally data-parallel overlapped computations that can be efficiently implemented

as fine-grained architectures. Optimization techniques such as overlapping data

transfers between the CPUs and FPGAs with computations are useful for data-

intensive, memory bound applications.

However, there is an underlying complexity in heterogeneous systems that

simply cannot be handled with modern software solutions, as different archi-

tectures must be programmed in different ways. Therefore, there is the need to

provide automatic solutions capable to hide the complexity of these systems, as

well as promoting the adoption of techniques that bring together software and

hardware design, the so called co-design, which is believed to be a promising so-

lution to make Exascale computing a reality [19].

1.4 A Contextualized Overview of the Proposed Work

Within this context, the work proposed in this thesis embraces the principles

of heterogeneous computing to make a little step towards the achievement of the

Exascale milestone. We restrict ourselves to treat one class of algorithms, namely

the Iterative Stencil Loop (ISL), a relatively small but very interesting domain in
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the context of HPC, as they systematically appear in both scientific and industrial

related computations. ISLs usually operate on multi-dimensional arrays, with

each element computed as a function of some neighboring elements, and these

neighbors represent the stencil. A thorough description of them will be provided

in section 2.4.

In this work, we attempted to meet the presented challenges for the class of

ISLs by designing a domain-tailored hardware accelerator, which relies on the

following key points:

• the employment of custom logic to deliver high power efficiency;

• a custom memory architecture to reduce data movements to the minimum, re-

alizing an efficient data reuse;

• a technique that realize linear scaling which enables throughput increase

with constant bandwidth requirements;

• an inherent parallelism due to the use of a distributed microarchitecture,

which fits perfectly with the distributed nature of an FPGA;

• a design automation flow to automatically derive the accelerator from the in-

put source code.

1.5 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2 the needed back-

ground knowledge is provided, where all the basic concepts related to this work

are presented. In Chapter 3 the thesis motivation is clearly stated, followed by a

general overview of the proposed solution. Chapter 4 describes all the details re-

lated to the proposed design flow and the resulting hardware accelerator, whose

evaluation is reported in Chapter 5. The conclusions are then presented in Chap-

ter 6, along with some considerations on possible future work.
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Background Knowledge

In order to easily read through the rest of this thesis, a full understanding

of the background is absolutely essential. Hence, in this chapter the state of the

art of technologies, methodologies and key concepts relevant to this work are

thoroughly examined. In Section 2.1 the Polyhedral Model (PM) is presented, as

it will be employed to provide automatic information extraction from the input

program, while in Section 2.2 Streaming-based Systems on Field Programmable

Gate Arrays (FPGAs) are introduced, since the proposed architecture is streaming-

based as well. Section 2.3 is instead dedicated to High Level Synthesis (HLS),

because it is the technology that in this work allows to connect the PM with the

generation of the architecture, and nonetheless substantially ease the hardware

design, also enabling automation. Finally, in Section 2.4 focus is on Iterative Sten-

cil Loops (ISLs), which are indeed the target of this entire work.

2.1 Polyhedral Framework

In scientific and engineering applications, but in general in the great part

of computationally intensive programs, most of the execution time is spent in

nested loops. This obviously imply that the ability to perform loop nest restruc-

turing towards optimization and parallelization is mandatory, although undoubt-

edly non-trivial. Standard compilers use in fact Intermediate Representations

(IRs) such as syntax trees, call trees, control-flow graphs which are simply not appro-

15
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priate to perform such a task, as the the kind of abstraction of those techniques

inevitably hides certain properties and features of programs, making impossible

to perform complex code transformations.

These limitations have created the need to develop techniques specifically

aimed at optimizing loop nests, to be used in place of or in combination with

standard compilers. A first attempt in this direction has been made in the eight-

ies [89, 123], motivated by the need to map parallel computations onto systolic

arrays [73]. It was based on the work of Karp et al. [63] that proposed a math-

ematical model which mapped onto uniform recurrence equations, which also

inspired a series of fundamental papers from Feautrier [46, 47, 48, 49], arrived

in the late eighties as well and quickly followed by other works related to the

same topic, such as [119, 120, 15]. Those works provided a robust mathematical

framework for regular imperative programs, and gave the basis to which is now

known as the PM (sometimes called Polytope Model). The proposed model rapidly

evolved and gained importance, as it allowed to map programs onto a mathemat-

ical representation, creating a solid link with algebra, as well as Operations Re-

search (OR), thus making possible to extend their applicability also in the field of

programs optimization. With the aid of the Polyhedral Model, loop optimization

has reached the point in which a finely calibrated transformation can condense

in a single step the equivalent of a significant number of textbook loop transfor-

mations [56, 13].

In the following section, a detailed overview of the polyhedral framework is

then provided, starting from the model, described in section 2.1.1, and explaining

what can be accomplished with such a model, which is the topic of section 2.1.2.
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2.1.1 Polyhedral Model

The PM has been proved to be a powerful tool for automatic optimization and

parallelization. In fact, at the price of certain regularity conditions, this model

can deliver very high standard in terms of execution time, throughput, number

of processors and communication channels, memory requirements, and so on. It

is indeed based on an algebraic representation of programs, whose manipulation

allows to construct and search for complex sequences of optimizations.

This section precisely describe this model, giving a comprehensive overview

of all the building blocks.

Mathematical Background

In order to understand the following concepts, this section provides the key

definitions for polyhedral theory, the mathematical background on which the PM

rests its foundations [82].

Definition 2.1.1. Convex Set. Given S a subset of Rn . S is convex iff, ∀µ, λ ∈ S

and given c ∈ [0, 1]:

(1 − c).µ+ c.λ ∈ S

A set is convex if for every pair of points within the object, drawing a line seg-

ment that joins the pair of points, each point on this segment is also in the set.

Definition 2.1.2. Affine Function. A function f : Km → Kn is affine if there exists

a vector ~b ∈ Kn and a matrix A ∈ Km×n such that:

∀~x ∈ Kn, f(~x) = A~x+ ~b

Definition 2.1.3. Affine Spaces. A set of vectors is an affine space iff it is closed

under affine combinations.

A line in a vector space of any dimensionality is a one-dimensional affine space.

Definition 2.1.4. Affine half-space. An affine half-space of Km (affine constraint) is

defined as the set of points:

{~x ∈ Km| ~a.~x 6 ~b}
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Definition 2.1.5. Affine hyperplane. An affine hyperplane is anm− 1 dimensional

affine sub-space of anm dimensional space.

An hyperplane divides the space into two half-spaces, the positive and negative

half-space. Each half-space can be represented by an affine inequality.

Definition 2.1.6. Polyhedron. A set S ∈ Km is a polyhedron if there exists a system

of a finite number of inequalities A~x 6 ~b such that:

P = {~x ∈ Km|A~x 6 ~b}

Equivalently, it can be defined as the intersection of finitely many half-spaces.

Hence the representation as above, where each inequality corresponds to a face

of the polyhedron.

Definition 2.1.7. Parametric Polyhedron. Given ~n the vector of symbolic parame-

ters, P is a parametric polyhedron if it is defined by:

P = {~x ∈ Km|A~x 6 B~n+ ~b}

Definition 2.1.8. Polytope. A polytope is a bounded polyhedron.

Definition 2.1.9. Integer Hull. The integer hull of a rational polyhedron P is the

largest set of integer points such that each of these points is in P.

Definition 2.1.10. Lattice. A subset L in Qn is a lattice if is generated by integral

combination of finitely many vectors: a1,a2, ...,an(ai ∈ Qn).

L=L(a1, ...,an) = {λ1a1 + ... + λnan|λi ∈ Z}

If the ai vectors have integer coordinates, L is an integer lattice.

Definition 2.1.11. Z-polyhedron. A Z-polyhedron is the intersection of a polyhe-

dron and an affine integral full dimensional lattice.

P ′ = Zn ∩ P
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Static Affine Nested Loop Program

Let us start with the most generic definition for the PM, as it provides the

conditions for given a program to be described in the PM.

Definition 2.1.12. Static Affine Nested Loop Program (SANLP) [76]. A SANLP con-

sists of a set of statements and function calls, each possibly enclosed in loops

and/or guarded by conditions. The loops do not have to be perfectly nested. All

lower and upper bounds of the loops as well as all expressions in conditions and

array accesses have to be affine functions of enclosing loop iterators and static pa-

rameters. The parameters are symbolic constants, so their values can not change

during the execution of the program. Data communication between function calls

must be explicit.

Static Control Parts

The next definition that comes after SANLP, moving to a finer granularity,

it the one of Static Control Parts (SCoPs). A SCoP is a subclass of general loops

nests that can be represented in the polyhedral model [24].

Definition 2.1.13. Static Control Part. A SCoP is a maximal set of consecutive

instructions such that:

• the control structures are only for loops or if conditionals

• loop bounds and conditionals are affine functions of the surrounding loop

iterators and the global parameters ( values unknown at compilation time,

but constant).

Even if the definition of SCoPs may seem restrictive, a pre-processing stage

can extend its applicability.

As said, SCoPs are a set of statements. A polyhedral statement is the atomic

dowel of polyhedral representation, and can be defined as:
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Definition 2.1.14. Polyhedral Statement. A polyhedral statement is a program in-

struction that:

• is not an if conditional statement with an affine condition

• is not a for loop statement with affine loop bounds

• has only affine subscript expressions for array accesses

• does not generate control-flow effects

The resulting statements in the polyhedral representation may differ from

those in the input source code, because the compiler may change the internal

representation.

Iteration Domain

Iteration Domains capture the dynamic instances of all statements - i.e. all

possible values of surrounding loop iterators - through a set of affine inequalities.

In order to get to the definition in a rigorous manner, let us first of all define what

an iteration vector is:

Definition 2.1.15. Iteration Vector. For a polyhedral statement, the iteration vec-

tor of a multi-level loop nest over a m-dimensional grid is a vector of iteration

variables,~i = (i0, i1, ..., im−1)
T , where i0, ..., im−1 are the iteration variables from

outermost to innermost loop.

Starting from the iteration vector, the Iteration Domain can be defined as:

Definition 2.1.16. Iteration Domain [48]. The Iteration Domain (ID) D ⊆ Zm is

the set of iteration vectors of the loop nest, and is expressed by a set of linear

inequalities D = {~i |P~i > ~b}

Each integral point inside this polyhedron corresponds to exactly one exe-

cution of a statement, and its coordinates in the domain matches the values of

the loop iterators at the execution of this instance. This model let the compiler

manipulate statement execution and iteration ordering at the most precise level.
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Figure 2.1: ID Example.

Notice that, to model IDs whose size are known only symbolically at compile-

time, parametric polyhedra are used.

Since the definitions of iteration vector and ID have just been introduced,

the notion of lexicographic order can now be provided, as it will be useful to

effectively model both data dependencies and schedules.

Definition 2.1.17. Lexicografic Order [48]. Lexicographic order relation �l of two

iteration vectors~i and~j is defined as:

~i �l
~j⇔ (i0 > j0)∨ (i0 = j0 ∧ i1 > j1)∨ (i0 = j0 ∧ i1 = j1 ∧ i2 > j2)∨ ...

∨(i0 = j0 ∧ ... ∧ im−2 = jm−2 ∧ im−1 > jm−1)

Data dependencies

The modeling of data dependencies is crucial for the effectiveness of the PM,

since not all program transformations preserve the semantics, and the semantic

is automatically preserved if the dependencies are preserved. Here, some impor-

tant definitions for data dependency analysis and representation are given.

Firstly, an essential definition to model the dependencies in the PM is the sub-

script function, as well as the notion of image and preimage.

Definition 2.1.18. Subscript Function [20]. Given the set of array AP of a program

P, a reference to an array B ∈ AP in a statement S ∈ SP is written 〈B, f〉, where f

is the subscript function. If f is affine it can be written as f(~x) = F~x + ~a where F is

the subscript matrix, ~a is a constant vector.
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Figure 2.2: Subscript Function Example. The three subscript functions are relative to the three array
accesses for s, a and x.

Definition 2.1.19. Image. The image of a polyhedron P ∈ Zn by an affine function

f :Zn → Zm is a Z-polyhedron P ′:

P ′ = { f(~x) ∈ Zm|~x ∈ P}

Definition 2.1.20. Preimage. The preimage of a polyhedron P ∈ Zn by an affine

function f :Zn → Zm is a Z-polyhedron P ′:

P ′ = {~x ∈ Zn|f(~x) ∈ P}

The image of a polyhedron by an affine invertible function is a Z-polyhedron.

The image of a polyhedron by a subscript function fA in an ID DS is the set of

cell of A accessed from the statement S.

Thanks to those notion, the data domain (or data space) of a given array refer-

ence can be easily modeled. In fact, it is enough to compute the image of the ID

of the statement by the reference subscript function.

Within the context of PM dependencies analysis, there is another important

definition that must be provided, as it can be useful to check for the legality of a

given transformation, but it can be employed for a whole lot of other purposes.

This definition is the so called data distance vector, which comes together with the

definitions of lexicographically non-negative distance vector and as an extension the

legality condition for a given distance vector.

Definition 2.1.21. Data Distance Vector. Consider two subscript functions fRA and

fSA to the same array A of dimension n. Let ν and σ be two iteration of the inner-

most loop. The data distance vector is defined as an n-dimensional vector:

δ(ν,σ)fRAfSA
= fRA(ν) − fSA(σ)
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Definition 2.1.22. Lexicographically non-negative Distance Vector. A distance vector

v is lexicographically non-negative when the left-most entry in v is positive or all

elements of v are zero.

Definition 2.1.23. Legal Distance Vector. A distance vector is legal when it is lexi-

cographically non-negative (assuming that indices increase).

In order to easily define the notion of polyhedral dependency, there is first the

need to provide some introductory definitions, the first being the Bernstein condi-

tions.

Definition 2.1.24. Bernstein Conditions [28]. Given two references, there exists a

dependency between them if the three following conditions hold:

• they reference the same memory location;

• one of this access is a write;

• the two associated statements are executed;

Let us consider two statement instances, S0, S1, with S0 occurring before S1,

there are three categories of dependencies that can be identified [58]:

• Read After Write (RAW), S1 reads what is written by S0. If the dependency

is not respected, S1 incorrectly gets the old value.

• Write After Read (WAR), S1 write a destination after reading from S0. If the

dependency is not respected, S0 incorrectly gets the new value.

• Write After Write (WAW), S1 write to a memory location after S0. If the de-

pendency is not respected, the writes end up being performed in the wrong

order, leaving the value written by S0 rather than the value written by S1 in

the destination.
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As already stated, to preserve the semantic of the program, instances contain-

ing dependent references should not be executed in a different order. [82] classi-

fies the dependency relation into three kinds:

• Uniform dependencies: the distance between dependent iteration remains

constant

• Non-Uniform dependencies: during the execution the distance between

dependent iterations varies

• Parametric dependencies: the distance between two dependent relation is

expressed regarding to, at least one parameter

Finally, let us define when two statements are said to be in dependence in the

PM, leveraging the previously given definitions:

Definition 2.1.25. Dependency of statement instances. A statement S depends on a

statement R (R → S), if there exists an operation S(~xS) and R(~xR) and a memory

location m such that:

• S(~xS) and R(~xR) refer to the same memory location m, and at least one of

them writes to that location

• xR and xS belongs to the ID of R and S

• in the original sequential order, S(~xS) is executed after R(~xR).

To effectively model dependencies between statements, a Data Dependency

Graph can be employed.

Definition 2.1.26. Data Dependency Graph. A Data Dependency Graph (DDG)

G = (V ,E) is a directed multi-graph with each vertex representing a statement.

An edge e ∈ E, from R to S represent a dependency between the source and

target, due to a conflict access in R and S.
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Another useful representation in polyhedral theory is the dependence polyhe-

dron, used in combination with the DDG. The dependency polyhedron provides

the relation between the instances of the statements S and R. It is possible to ob-

tain this kind of information because there exists an affine relation between the

iterations and the accessed data for regular programs, that can be obtained thanks

to the previously defined subscript function. Before providing the definition of

the dependence polyhedron, there is first the need to introduce the involved el-

ements. First of all, the ID (being a set of affine inequalities) of S and R can be

described as AS~xS + cS > 0, and AR~xR + cR > 0, where ~xS and ~xR are the iter-

ation vectors of S and R. A dependence between S and R means that they refer

to the same memory location, which implies that the two subscript functions are

equal, hence FS~xS+aS = FR~xR+aR (both expressed as in definition 2.1.18). There

is also a precedence order between S and R, at the given dependence level, i.e. the

common loop depth l in which the dependency takes place. For each dependence

level l, the precedence constraints are:

• the equality of the loop index variables at any depth lesser to l:

xR,i = xS,i ∀i < l

• S is executed after R at the common depth l:

xR,l < xS,l

If S and R does not share any loop, there is no additional constraint and the de-

pendence only exist if S is syntactically after R. These constraints can be expressed

using linear inequalities, i.e. Pl,S~xS − Pl,R~xR + b > 0.

Definition 2.1.27. Dependence Polyhedron. The dependence polyhedron DR,S,fR,fS.l

for R→S at a given level l and for a given pair of references fR, fS is described as:

DR,S,fR,fS.l : DR,S

 ~xR

~xS

+~dR,S =



FR −FS

AR 0

0 AS

PR −PS


 ~xR

~xS

+


aR − aS

cR

cS

b


=0
>~0
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Figure 2.3: An example of a dependence polyhedron. In this example the polyhedron over the
iteration vectors (one for the first statement, two for the second) and the scalar part are condensed
in a single matrix (notice the 1 after the three iteration vectors). On the right there is a visual
representation of the dependencies among the instances of the two statements.

Given all the definitions above, the Polyhedral Model can be finally defined:

Definition 2.1.28. Polyhedral Model [113]. The polyhedral model of a sequential

program consists of a list of statements represented by:

• an identifier;

• a dimension di;

• an ID;

• a list af accesses;

• a location;

A subscript function and a type (read or write) are associated to each array.
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Schedules

The ID does not describe the order in which each statement instance has to be

executed with respect to other instances. A scheduling function specifies a virtual

timestamp for each instance of a corresponding statement, providing an order re-

lation between statement instances. Hence, statement instances will be executed

according to the increasing order of the timestamp. If two instances have the

same timestamp can run in parallel.

Figure 2.4: A simple schedule example. In this picture, the statement on the left has an identity
schedule, as the statement instances are trivially the points (i, j) within the statement ID.

Definition 2.1.29. Affine Schedule [81]. Given a statement S, a p-dimensional affine

schedule ΘS is an affine form on the outer loop iterators ~xS and the global param-

eters ~n.

ΘS(~xS) = TS


~xS

~n

1

 , TS ∈ Kp×dim(~xS)+dim(~n)+1

A schedule assigns a timestamp to each executed instance of a statement. A

schedule can be:

• One-dimensional, if T is a vector;

• Multidimensional, if T is a matrix.

A one-dimensional schedule express the program as a single sequential loop,

while a multidimensional schedule expresses the program as one or more nested

sequential loops [84].

There are however schedules which by construction are not legal, i.e. they en-

force an execution order which violates the dependencies. The following defini-

tions are essential to model this condition in the PM.
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Definition 2.1.30. Precedence Condition. GivenΘR a schedule for the instance of R,

ΘS a schedule for the instances of S. ΘR and ΘS are legal schedules if ∀〈~xR,~xS〉 ∈

DR,S,fR,fS.l (i.e. for each instance of R and S in dependence, as specified in the

corresponding dependence polyhedron DR,S,fR,fS.l):

ΘR(~xR) ≺ ΘS(~xS)

Definition 2.1.31. Legal Shedule. A schedule Θ, is legal if the precedence condition

holds.

Lemma 2.1.1. Affine form of Farkas Lemma. Let D be a nonempty polyhedron defined

by A~x+ ~b > ~0. Then any affine function f(~x) is non-negative everywhere in D iff it is a

positive affine combination:

f(~x) = λ0 +~λT (A~x+ ~b) , with λ0 > 0 and~λ > ~0

λ0 and~λT are called the Farkas multipliers.

Tha Farkas lemma allows to translate the precedence constraints into an affine

equivalent, i.e. an affine function. In order to satisfy the dependency R→ S (def-

inition 2.1.25), a schedule must satisfy [84]:

ΘR(~xR) < ΘS(~xS)

for each point of the dependence polyhedron DR,S,fR,fS.l. Hence:

∆R,S = ΘS(~xS) −ΘR(~xR) − 1

must be non-negative everywhere in DR,S,fR,fS.l:

∆R,S > 0

The set of legal schedules satisfying the dependency R → S is given by the rela-

tion:

∆R,S = λ0 +~λT

DR,S

 ~xR

~xS

+ ~dR,S

 > 0

whereDR,S is the constraint matrix representing the dependence polyhedron

DR,S,fR,fS.l over ~xR and ~xS, and ~dR,S is the scalar part of these constraints, as de-

scribed in definition 2.1.27.
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2.1.2 Polyhedral Transformations

So far, the PM has been described, providing the mathematical toolset which

allow to design sophisticated optimization heuristics by combining analysis power,

transformation expressiveness and flexibility. In this section instead, the frame-

work built on top of the PM is illustrated, in all of its phases: analysis/representation,

transformations and as last step code generation.

Static Control Parts Extraction

The first task is obviously SCoPs extraction, as it allows the subsequent ma-

nipulations done in the successive phases. Briefly, it can be summarized by the

following steps [23]:

1. Information Gathering: it consists of traversing the syntax tree of a given

function, storing during this sweep loop counters, bounds and strides, condi-

tionals, array references, and parameters.

2. Affine Loops Recognition: Once the collecting phase is done, identified

loops are inspected in order to select the static control ones. First of all,

bounds expressions are checked in order to extract only those with affine

conditions. Then, conditionals are also checked to further refine the extrac-

tion, since they must be affine expressions of parameters and loop coun-

ters. Finally, only array references whose subscript function is also an affine

expression of parameters and loop counters are selected.

3. SCoPs Building: In this phase the syntax tree is traversed once again, but

this time aided by the previous extracted information, and only for the part

containing the loops remained after the aforementioned refinements, in or-

der to build the set of SCoPs. First, a new SCoP is created; then, for each

static operational or control node in the loop body:

• if it is a loop, this loop is added to the SCoP;

• if it is a conditional, then it is added with its branches to the SCoP;

• if it is not a conditional or a loop node, then it is added to the SCoP;



2. BACKGROUND KNOWLEDGE 30

• otherwise, close the current SCoP and create a new one;

• drop the current SCoP if it eventually does not contain any loop

4. Global Parameters Identification: Finally, for each identified SCoP, iterate

over loop bounds, conditionals and array references to collect global pa-

rameters.

Data Dependency Analysis

Once a function has been translated into the corresponding set of SCoPs, then

data dependency analysis takes place. The objective of this phase is to compute

the set of statements instances which are in dependency. Even though different

approaches to this task have been proposed through the years, such as for in-

stance the Omega Test [87], the widely accepted technique it the Data Flow Analy-

sis proposed by Feautrier in [47]. Starting from this work, the state of art tech-

nique aims at building a Polyhedral Dependency Graph (PDG), consisting of

a DDG in which, according to definition 2.1.26, nodes are the statements and

edges are dependencies between them, and, for each edge, a corresponding de-

pendence polyhedron, described in definition 2.1.27.

The procedure to build the DDG can be characterized by the following algo-

rithm (algorithm 1):

Algorithm 1 DDG Construction
Create a graph in which every node is a statement
for all pair of nodes R, S do

for all array references fR, fS do
if fR and fS are on the same array then

Compute the set Z of RAW,W of WAR, X of WAW dependencies
if R 6= 0 orW 6= 0 or X 6= 0 then

Add an edge between node i and j
Mark the edge with the array reference
Mark the edge with the corresponding dependency type

end if
end if

end for
end for
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Then, by traversing the obtained DDG, the dependence polyhedra are built,

as shown in algorithm 2.

Algorithm 2 Dependence Polyhedra Construction
for all pair of nodes R, S do

for all edge between those nodes eR,S do
if R and S does not share any loop then
min_depth← 0

else
min_depth← 1

end if
for all level l frommin_depth to number_of_common_loops do

Build the Dependence Polyhedron DR,S,fR,fS.l
end for

end for
end for

Note that the two operations can also be done concurrently, since the depen-

dence polyhedra can be constructed right after each discovery of a new depen-

dency (edge), resulting in a single algorithm. It must be also noticed that, when-

ever some types of dependencies are not needed, those dependencies can be sim-

ply not checked. In the case in which data reuse is the major concern, then also

Read After Read (RAR) dependencies can be checked [31], although they don’t

actually belong to the canonical data dependencies categorization. Furthermore,

redundant edges between nodes can be condensed obtaining what is called a

Polyhedral Reduced Dependency Graph (PRDG).

Program Transformations

In a nutshell, the goal of a transformation is to modify the original execution

order of the operations, i.e. the original schedule. At this point, OR comes into

play, since transformations are always done targeting a specific optimization (or

even more than one, in some cases) such as latency, parallelism, data reuse, and so

on.

Obviously, in order not to alter the program so as to impair the correctness, a

legal schedule must be found, i.e. the schedule which optimize the given objective

function must be selected within the legal transformation space [84, 83]. Hence,
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finding a good scheduling algorithm is basically a two-step approach [82]: the

first consisting of finding the solution set of all legal affine schedules, the second

consisting of finding an Integer Linear Programming (ILP) formulation for the

objective function. After those two steps, an ILP solver can be used to find the

optimal legal schedule.

The loop transformations achievable thanks to the PM are quite a few. Below,

an overview of them is provided, and for some of them, the description comes

along with a simple example.

Loop Reversal It basically reverses the order in which values are assigned to

the index variable, changing the direction in which the loop traverses its itera-

tion range. This kind of transformation can help to give space to further opti-

mizations, previously not possible.

for (i = 1; i < ni; i++)

for (j = 1; j < nj; j++)

A[i][j] += A[i-1][j] + 1;

Listing 2.1: Before

for (i = 1; i < ni; i++)

for (j = nj - 1; j >= 1; j--)

A[i][j] += A[i-1][j] + 1;

Listing 2.2: After

Loop Interchange Also known as loop permutation, it consists of exchanging the

position of two loops in a loop nest. It is mainly used to improve cache effective-

ness, modifying the behavior of accesses to arrays. Also, it can be used to control

the granularity of the work in nested loops, interchanging for instance a parallel

loop with a non parallel one, thus modifying the amount of work per parallel

instance.
for (i = 1; i < ni; i++)

for (j = 1; j < nj; j++)

B[i] += A[i][j];

Listing 2.3: Before

for (j = 1; i < nj; j++)

for (i = 1; i < ni; i++)

B[i] += A[i][j];

Listing 2.4: After

This technique is however only legal if the distance vectors of the loop nest

remains lexicographically positive after the interchange.

Loop Shifting It is a technique where operations inside a loop body are re-

ordered. Obviously, it cannot be done whenever this reordering alters the depen-

dencies. This transformation is sometimes referred also as loop restructuring.
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Loop Fusion It consists of combining two loops body, and is also knows as

jamming. The application of this transformation is safe only if no forward depen-

dency between the two fused loop becomes a backward loop carried dependency.

It is used in order to enhanche data reuse, reduce loop overhead or eliminate syn-

chronization between parallel loops.

for (i = 1; i < ni; i++)

A[i] = B[i];

for (i = 1; i < ni; i++)

C[i] = B[i] * A[i];

Listing 2.5: Before

for (i = 1; i < ni; i++){

A[i] = B[i];

C[i] = B[i] * A[i];

}

Listing 2.6: After

Loop Distribution also called fission, this transformation is basically the in-

verse of loop fusion. It breaks a single loop into multiple loops, iterating over

the same index range. It can be done only if splitting the loop body does not al-

ter dependencies between iterations instances. Its application can enable other

transformations, and also reduce resource requirements, as well as allow partial

parallelization.

for (i = 1; i < ni; i++){

A[i] = B[i];

C[i] = B[i] * A[i];

}

Listing 2.7: Before

for (i = 1; i < ni; i++)

A[i] = B[i];

for (i = 1; i < ni; i++)

C[i] = B[i] * A[i];

Listing 2.8: After

Loop Peeling This transformation consist in extracting one iteration of a given

loop. It is done essentially to enable other kind of optimizations

Index-set Splitting Similar to peeling, but in this case the index set of the loop

is splitted, so instead of extracting a single iteration, now the iteration space is

divided among different loop instances.

for (i = 1; i < ni; i++)

C[i] = B[i] * A[i];

Listing 2.9: Before

for (i = 1; i < ni/2; i++)

C[i] = B[i] * A[i];

for (i = ni/2; i < ni; i++)

C[i] = B[i] * A[i];

Listing 2.10: After
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Loop Skewing It takes a nested loop iterating over a multidimensional array,

in which each iteration instance of the inner loop depends on previous iterations,

and rearranges its array accesses so that the only dependencies are between it-

erations of the outer loop. Technically speaking, the transformation makes the

bounds of the inner loop depend on the outer loop counter, enabling inner loop

parallelization.

for (i = 1; i < ni; i++)

for (j = 2; j < nj; j++)

A[i][j] = A[i-1][j] + A[i][j-1];

Listing 2.11: Before

for (i = 1; i < ni; i++)

for (j = i + 2; j < i + nj; j++)

A[i][j] = A[i-1][j] + A[i][j-1];

Listing 2.12: After

(a) Original schedule (b) After skewing

Figure 2.5: Loop Skewing Example. The ID is “skewed” to allow inner loop parallelization.

Tiling Sometimes known as strip mine and interchange or loop blocking, this trans-

formation is used to enable coarse grain parallelism or enhance locality by mak-

ing blocks whose data is sized to fit in the cache. What it does is partition the

iteration space into tiles, whose size can be fixed or parametric [124]. A tile can

be of three types:

• Full Tile: all points in the tile are valid iterations;

• Partial Tile: only a subset of the points are valid iterations;

• Empty Tile: no points are indeed valid iterations;
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Obviously, an important task when doing code generation is to ensure that

empty tiles are actually not visited, effectively reducing control overhead.

for (i = 0; i < ni; i++)

for (j = 0; i < nj; j++)

A[i][j] = B[j] * C[i];

Listing 2.13: Before

for (ii = 0; i < ni; i + TILE_SIZE)

for (j = 0; i < nj; j++)

for (i = ii; i < ii + TILE_SIZE; i++)

A[i][j] = B[j] * C[i];

Listing 2.14: After

Figure 2.6: Loop Tiling Example. The ID is partitioned into the so called “tiles”.

Tiling Hyperplane Method Implemented in the state of art framework known

as PLuTo, the tiling hyperplane method [31] is aimed at making the loop tilable

(i.e. making tiling applicable) by computing a set of transformations, driven by

an integer linear optimization formulation, done in order to minimize synchro-

nizations and maximize locality. The computed transformations must ensure the

following condition to be legal:

Lemma 2.1.2. Legality of tiling multiple domains with affine dependencies. Let

φsi be a one-dimensional affine transform ( i.e. schedule ) for statement Si.

For {φs1 ,φs2 , ...,φsk} to be a legal (statement-wise) tiling hyperplane, the following

should hold for each edge e ∈ E of the PDG:

φsj(~t) − φsi(~s) > 0, 〈~s,~t〉 ∈ Pe

where Pe is the dependence polyhedron associated to e.
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Code Generation

Code generation is the last phase of program optimization through the PM.

This is indeed a critical step in the polyhedral framework, simply because the ef-

fective optimization really depends on the target code quality. As the name sug-

gest, it consists of regenerating the code in a given target language from the poly-

hedral representation obtained after the transformation step. This stage basically

generates a scanning code [88] of the IDs of each statement, with the lexicographic

order imposed by the current schedule. This scanning code is an AST-based IR

which is then quite easily translated into a target language, typically imperative,

such as C.

In the early years of the PM, code generation was considered the bottleneck

of the entire framework, due to the lack of scalability of the generation algo-

rithms [81], mainly because of bad control management, which produced redun-

dant conditions or complex loop bounds, as well as rapid code size explosion.

This problem has been overtaken only recently, thanks to the work from Bas-

toul [21, 22], which proposed an extended version of the algorithm developed

by Quilleré et al. [88]. The proposed technique from Quilleré et al., in which the

essential part was a recursive generation of the scanning code (the Abstract Syn-

tax Tree (AST)), was the first algorithm able to eliminate redundant control in the

target code, but not able to deal with predicates and their impact on the control-

flow, resulting easily in unacceptable code size. The later version from Bastoul

was instead able to effectively reduce code size and processing time. Lately, Bas-

toul work have been further improved [111], reaching the ability to scale up to

thousand of statements.
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2.2 Streaming Systems in FPGAs

Early years FPGAs have been primarily used to implement small amount of

glue logic between other chips, simply because they were not mature enough to

handle complex computations and large problem sizes. However, recent trends

shows that FPGAs are becoming increasingly powerful, more and more aligned

with Application-Specific Integrated Circuits (ASICs) performance, but also com-

parable to other computing devices, thanks to an improved production process,

a reduced power consumption, an increased speed, a larger amount of resources,

in addition to an increasing possibility of on-the-fly re-configuration. This proves

that FPGAs can now be considered a computing platform on their own, able to

deliver very high performance even for complex problems [104].

It is however obvious that, due to their completely different architecture,

FPGAs cannot be used as replacement of the other available computing devices.

Instead, ad-hoc solutions must be found in order to effectively exploit their po-

tentialities, while abstracting implementation details to facilitate scaling.

Streaming-based systems are a perfect example in this sense, as they embody

precisely the distributed nature of the FPGAs. The flexible granularity of those

devices, in combination with memory elements distributed through the entire

fabric, can easily deliver high quality results when used for such a purpose,

granting high internal communication bandwidth while minimizing contention

between elements.

Streaming-based architectures found their first applications in media process-

ing [114], a type of computation well suited to be implemented in a streaming

fashion, for the following reasons:

• The information, at least in an uncompresed form, is stored in multidimen-

sional arrays;

• There is an enormous amount of information involved;

• Many of these algorithms does not need simultaneous access to the entire

data array, as indeed processing usally operates on bounded regions (few

frames, a single frame, or even a portion of a frame)
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• The data access pattern is typically fixed.

However, due to the nature of certain regular computations, which enjoys

the above properties as well, lately streaming-based systems have also been em-

ployed for a whole lot of other purposes, especially in the High Performance

Computing (HPC) field.

Below, the working principles of a generic FPGA-based streaming architec-

ture are explained.

2.2.1 Streaming Architectures

A stream-based processing system can be viewed as a Multiple Instruction

Single Data (MISD) architecture [114], although the individual processing ele-

ments may themselves be SISD, SIMD, or MIMD in nature. It tends to be orga-

nized in a systolic structure, in which neighbours communicate directly through

dedicated channels, implemented as FIFOs, and the computation is performed

as the data streams flow through the corresponding units.

Figure 2.7: Streaming Computing: A General Picture.

However, since storage capacity of FPGAs is relatively low with respect to

the problem size of real applications, those architectures relies usually on exter-

nal memory systems, employing specific logic demanded to communication with

those systems, such as Direct Memory Accesses (DMAs).
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Figure 2.8: Generic Streaming Architecture.

For these architectures, the memory interface is the key part of the entire sys-

tem. In fact, in order to provide data at a sufficient rate, the input arrays are lin-

earized into a mono-dimensional stream, and partitioned into smaller sub-blocks,

following the array access patterns. This kind of explicit management of the mem-

ory, although it requires an additional effort with respect to traditional memory

systems, avoids completely resource contention, allowing multiple concurrent

accesses. Such an arrangment of the memory interface is able to deliver very

large bandwidth towards the computational units, at a cost of increased design

complexity.

In summary, when translating a problem specification into the corresponding

streaming architecture, there are two major steps:

• For the computaional part, instructions are mapped into processing units

• Regarding memory, it requires explicit management, as it is first splitted fol-

lowing data access patterns, and then organized as a chain of FIFO buffers,

in order to break the stream allowing multiple concurrent accesses.

This can be easily represented as a graph, whit computational nodes and memory

blocks linked together by streams, implemented as dedicated channels (i.e. FIFOs),

as previously stated.
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2.3 High Level Synthesis

A higher level of abstraction, beyond Register-Transfer Level (RTL), is in-

creasingly important and unavoidable due to the growing of System-on-Chip

(SoC) design complexity. The latest generation of HLS tools offers: different lan-

guages coverage, platform-based modeling and a domain-specific approach [36].

The abstraction level used by the early generation of commercial HLS systems

was partially timed, and because of that they were not widely adopted, since

neither languages nor the partially timed abstraction were well suited to model

behavior at high level. The following generation provided synthesis of circuits

starting from high level languages, e.g. C-code specifications. This, with other

technical advances, enabled their industrial usage. Nowadays there is a growing

demand for high-quality HLS solutions; more and more functionality can be inte-

grated on a single chip, but this involves increasing the number of design teams

and design time. Lately they are constantly improving and the industry is now

starting to adopt them into their design flow [25].

2.3.1 What is HLS?

High Level Synthesis is an automated design process that interprets an algo-

rithmic description of a desired behavior and creates digital hardware that imple-

ments that behavior [38]. The synthesis starts from an high-level specification of

the problem, where behaviour is decoupled from timing. The input specification

language is analyzed, first Resource Allocation is done, that is the specification of

how many and which type of operator and memory elements are required. Then

the Scheduling assigns each operation to a time slot (clock cycle). During Resource

Binding, operations and data element are bound to specific operators and mem-

ory element. Also the interfaces are generated, consisting of data and control

signal, between periphery and circuits. The result is an RTL design, which is in

turn synthesized to the gate level by the use of a logic synthesis tool. An HLS tool

is characterized according to different criteria:

• Input language: a designer would have the possibility to specify the algo-
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rithm in a high-level language rather than an hardware oriented language.

It is obvious that some restriction must be applied on the high-level lan-

guage, but they should not cause excessive difficulty in expressing a certain

behaviour.

• Easy of use: a clear and complete documentation must be provided to flat

the learning curve. Also a well designed graphic user interface (GUI) can

simplify the design.

• Data Type: In hardware the primitive data type is a single bit. Support for

complex data types is usually limited to integers, so additional data types

eases the transition from algorithm to RTL.

• Design Exploration: the tools evaluate different architectures and choose

the one that fits the design specifications.

• Verification: this phase can be speeded up if a tool generates testbench

together with the design, and integrating the source code (the reference)

and the generated design into one testbench.

• Metrics: the RTL design generated must have the information about la-

tency, the estimated clock rate and resource usage. An HLS tool can pro-

cesses different RTL design exploitig Domain Space Exploration (DSE).

2.3.2 Advantages

The synthesis can be optimized taking into account performance, power, and

cost requirements of a particular system. Design abstraction is one of the most

effective methods for controlling complexity and improving design productivity.

Adopting an HLS flow, fewer line of code are written, this reduce mistakes and

save time. A RTL implementation has a fixed microarchitecture and protocol,

while an HLS code can be retargeted to different technologies and requirements,

so it can be reused in other desing. More and more accelerators are included

in a System-on-Chip. HLS is particularly appropiate to build the architecture in

support of this accelerators.
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When targeting FPGAs, designers have even more advantages in adopting

HLS:

• Modern FPGAs have many pre-fabricated Intellectual Property (IP) com-

ponents embedded; HLS tools can apply a platform-based design method-

ology, taking into account this components.

• HLS significantly reduces the design time, or achieve quality of results com-

parable to hand-written RTL, putting the performance-power trade-off in

the hands of the designers.

• Thanks to the recent advances in FPGAs, many HPC application can be

accelerated on a reconfigurable computing platforms. The software devel-

opers do not write in RTL, so it is required a highly automated synthesis

flow from C/C++ to FPGAs.

2.3.3 Evolution

As the design complexity of integrated circuits grows, arises the need of gen-

erating circuit implementation from high-level behavioral specifications. The first

HLS tools targeted ASICs design, and is CMU-DA [115], developed at Carniege

Mellon University in the 1970s, where the design is specified using an Instruction

Set Processor Specification (ISPS) language, and then translated into an interme-

diate data-flow representation, before producing RTL. The tool included code-

transformation techniques, hierarchical design and included a simulator of the

original ISPS language.

During the subsequent years other tools were developed, most of them were

academic projects. These tools typically decompose the synthesis process into

steps, such as register binding, scheduling, datapath allocation. Different algorithms

were developed to solve each phase. Until 2000 the tools often used custom lan-

guages for design specification, and because of the RTL synthesis tools were not

mature, the HLS tools were not widely accepted.
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Different reasons have influenced the adoption and guided the evolution of

early HLS tools:

• They utilized an intermediate language as input, instead of a high-level

languages; this implied a learning curve for software/hardware develop-

ers. Even when the tools started to include C language, they did not accept

more than a language, complicating the software/hardware co-design or

simulation.

• The specification was tool-dependent so the produced implementation was

unlikely to be portable.

• The HLS tools were not be able to meet timing/power requirements in real

life design, because the algorithms focused on reducing the number of func-

tional units, and they did not take into account the IP blocks on a specific

platform such as DSP and Block RAM (BRAM).

• The tools were born when the design complexity was acceptable to be han-

dled without HLS. So there was not the necessity to spend time learning a

new unproven design methodology.

A breakthrough was made when the tools focused on C-like language to cap-

ture design intent. In this way the tools are more accessible to the system de-

signer, and facilitate software/hardware co-design and co-verification. However,

the C-based language are criticized to be only suitable for describing sequential

software that run on a Central Processing Unit (CPU). In particular C/C++ lan-

guage has the following limitations from the hardware point of view:

• does not include constructs to specify accuracy, timing, concurrency, syn-

chronization etc.,

• have complex language constructs, such as recursion, that lead to difficul-

ties in synthesis.

To fill the gap between C/C++ and HDL the tools have included: hardware-

oriented language extensions, libraries (SystemC [12]), compiler directives and
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restrictions/interdiction of dynamic construct. Hardware and software co-simulation

can be done without rewriting the code, if pragmas and directives are used. Do-

ing so, standard C/C++ compiler can compile the code bypassing the pragmas.

Many HLS tools nowadays target FPGA platform; improvement made on this

platform, make them attractive for many applications. Some of the tools focus on

a specific application domain, such as Digital Signal Processing (DSP) or floating-

point scientific computing applications.

2.4 Iterative Stencil Loops

Appropriate exploitation of HPC is nowadays of paramount importance for

many scientific and engineering applications, as the increasing computational

power has allowed to push the limits of what can be modeled and simulated,

widening dramatically the range of problems that can be addressed. However,

architectural trends show that there is a growing gap between time for proces-

sors to perform arithmetic operations and time they take to communicate [62], a

limit which is unacceptable for memory bound computations such as ISLs, an im-

portant part of solvers in this field. In this section focus is on what ISLs are, their

properties and characteristics, and how they are currently treated in the state of

the art.

2.4.1 Definition

The so called Iterative Stencil Loops are basically a class of iterative algo-

rithms, whose features makes them belonging to the class of SANLP (see section

2.1.1), which consists of the repeated updating of values associated with points

on a multi-dimensional grid, usually 2- or 3-dimensional, modeled as an array,

using weighted contributions from a subset of its neighbors in both time and

space. The fixed pattern of neighbors is called stencil, and the function that uses

those elements to update an array cell is called transition function. An ISL can be

generically represented by the pseudocode of algorithm 3.
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Algorithm 3 Generic ISL Algorithm
for t 6 TimeSteps do

for all points p in matrix P do
p← ftransition(stencil(p))

end for
end for

As previously stated, the number of algorithms that fall into this category is

quite large, which is why efficiently implement them is a great concern, even if

not an easy task at all. Indeed, a lot of algorithms for scientific computing, such

as [105, 26, 94], as well as image and video processing, such as [33, 51], belong to

this class and can be generalized in the form of algorithm 3

Figure 2.9: An illustration of a generic 5-point 2-Dimensional ISL.

Formal Model

Formally speaking, an Iterative Stencil Loop can be defined as a 5-tuple (I,S,S0, s, T)

[50] in which:

• I =
∏k

i=1[0, . . . ,ni] is the index set. It defines the topology of the array.

• S is the set of states, one of which each cell may take on any given time-step.

• S0 : Zk → S defines the initial state of the system at time 0.

• s ∈
∏l

i=1 Zk is the stencil itself and describes the actual shape of the neigh-

borhood. There are l elements in the stencil.

• T : Sl → S is the transition function which is used to determine a cell’s new

state, depending on its neighbors.
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Coefficient Types

As stated when ISLs has been defined, the contribution of the points of the

stencil is usually weighted by some coefficients. The type of coefficients to which

neighbours are weighted could lead to two scenarios:

• Constant coefficients: When the coefficient values are constant scalars,

there is no need to read them repeatedly. They can be instead hard-coded

into the stencil loop, resulting in a reduction of storage requirements and

memory traffic. As intuition suggest, the case in which coefficients are con-

stant is the ideal scenario, since stencil-related optimizations fully impact

the resulting implementation.

• Variable coefficients: In this case the stencil weights can change during

the execution, being different between time-steps or from one grid point to

another. This weights are stored in separate grids streamed during the com-

putation, which obviously causes an extra memory traffic. This requires

special care as stencil are already memory-bound by themselves.

Boundary Conditions

Depending on the nature of the computation, two basic types of boundary

conditions for the ISLs can be identified:

• Constant Boundaries: This scenario is the one in which boundaries are

constant during the computation (figure 2.10a). This is the general case, in

which they can be simply represented as a ghost zone of the stencil array,

i.e. the one updated during the ISL computation. Furthermore, if it is the

case in which these cells have all the same value, or at least they can be

clustered into smaller sets than the entire number of ghost cells, they can

be stored in fewer registers and referenced multiple times. This is obvioulsy

a matter of implementation choiches, as it depends on the underlying com-

puting architecture.

• Periodic Boundaries: In this case, the grid wraps around all its dimen-

sions, an operation in mathematics called compactification. In the case of a



2. BACKGROUND KNOWLEDGE 47

two dimensional grid for instance, this means that the left boundary is ad-

jacent to the right boundary, and the top boundary is adjacent to the bottom

boundary. This kind of boundary type is often chosed to approximate large

- or even infinite - systems. Obviously, this means that in this case also the

boundary change over time, as it is indeed updated during the computa-

tion, thus not allowing the optimizations available when dealing with con-

stant boundaries (figure 2.10b).

(a) An ISL with constant boundaries (b) An ISL with periodic boundaries

Figure 2.10: ISLs boundary types.

2.4.2 Main Characteristics and Implementation Challenges

When it comes to implement stencil computations, there are at least two im-

portant characteristics of those algorithms that must be taken into account, since

they cause some cumbersome implementation challenges.

Memory Boundedness

The main difficulties that arises when implementing ISLs are due to the fact

that the performance is bound by the memory transfers, mainly because of archi-

tectural limitations - memory is intrinsically slower than the computational units

- but also due to the nature of these algorithms as they require multiple constant

accesses to the stencil array.

On CPUs based platforms for example, the matrices on which the computa-

tion is performed, are much larger than the capacity of the available data cache

[41, 62], causing continuous misses and resulting in penalties which inevitably

slow down the execution.
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Regarding FPGAs, the limited amount of memory resources can even lead to

infeasibility for problem on large grids, not to mention port contention on BRAM

[37], which is by the way a major concern not only for ISLs, but for basically every

FPGA implementation.

Furthermore, for ISLs in general there is always a bandwidth problem: in fact,

memory slowness can cause the computation to stall if there is not enough data

ready for arithmetic units [116], lowering performance with repsect to theoretical

peak on every device, as the aforementioned, and including also General Purpose

Graphic Processing Units (GPGPUs) [98].

Spatial dependence between grid points

Another important aspect to deal with, is the eventual presence of true data

dependencies between updated points of the grid in the same time frame. Triv-

ially, this yields the following two distinct cases.

• Dependency-free points This first scenario is the one in which there is ab-

solutely no dependency between points of the grid, which imply that every

point can be independently computed from each other. It basically means

that updating of points is trivially parallelizable, giving space to a whole

lot of optimizations, but due to the nature of stencil computations, this also

come with an important drawback, caused by the temporal dependency

between different time-steps. In fact, when parallelizing, this dependencies

require communication and synchronization for which non negligible over-

head may incur, obtaining significantly lower performance than in theory.

The Jacobi iterative method [105, 94], is an example of such a type of algo-

rithm.

• Dependent points When the neighboring elements used in the stencil comes

also from the same time frame, i.e. the data used for an update comes from

a computation made within the same time-step, this can lead to also spa-

tial dependencies between points, enforcing an order of execution even in

the same time-step. This sequential ordering imply that no - or at least non
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trivial - parallelization optimization can be made. The result is that, in this

case, improvements are even harder to achieve than in the first scenario.

The Gauss-Seidel method [94] is a perfect example of this category. A par-

allel version of this method has been however developed, namely red-black

Gauss-Seidel [68], but it requires a specific traversal of the grid which by

the way makes useless any kind of cache optimization, as switching from

one set of points, i.e. color, from another, cause cache misses that, especially

for large problems, are the dominating factor which negatively impact on

performance [116].

2.4.3 State of the Art

The implementation challenges discussed so far in section 2.4.2, that arise

when dealing with ISLs, have created an entire research branch focused only on

optimizing stencil computations. The resulting extensive study has led to a wide

range of different optimizations. Here, an overview of them is provided.

Tiling Based Optimizations

The first category is the one in which tiling, also known as blocking (see sec-

tion 2.1.2), is employed to effectively improve performance by enhancing data

locality and exposing parallelism. This technique has been exploited in a number

of different ways, and performed in both spatial - when possible - and temporal

dimension, resulting in a variety of classes [90], which are shown below.

Single iteration tiling This first type of tiling is the most trivial one, as it con-

sists of applying conventional loop blocking to improve cache reuse. In this case,

a single time frame (i.e. a single iteration) is partitioned into smaller blocks, al-

lowing points that are close in space to remain in cache when used, thus allowing

to update them toghether, improving locality [62]. This technique has been also

exploited to distribute the computation to multiple Processing Elements (PEs), in

order to parallelize points computation within a single iteration [52], also lever-

aging specific Application Programming Interfaces (APIs) such as OpenMP [40].
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Figure 2.11: Single Iteration Tiling.

However, tiling across multiple PEs reaches far from optimal results since sten-

cils along the boundary of a tile require values that were previously computed

by other PEs, resulting in an increasing need of communication and synchroniza-

tion between tiles, proportional to the number of them. An effective technique to

overcome this issue is the one known as ghost zone optimization or overlapped tiling

[74, 66, 60], which basically consists in the enlargement of the tiles with ghost

zones, i.e. the overlapping regions between tiles, replicating some computations

but nevertheless reducing communication and synchronization. Although it may

seem that applying this technique can always lead to better performance, despite

replication, it must be noticed that an improper selection of the ghost zone size

may result in even worse performance with respect to no optimization at all.

As last consideration, when dealing with ISLs which have also spacial depen-

dencies between grid points, this type of optimization is not applicable, at least

not for parallelization purposes, and performance are usually not satisfying also

regarding cache optimizations [116].

Time skewing In this scheme of tiling, multiple iterations are collectively parti-

tioned into blocks, so the essential difference between this strategy and single-

iteration tiling, is that in this case multiple iterations are included as part of each

tile. The reason beyond the application of such a strategy is to use also the tempo-

ral locality, and thus increase the overall data reuse. However, in order to make
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Figure 2.12: Time Skewing.

tiling legal, loop skewing (see section 2.1.2) along the time dimension is required.

In fact, due to the fact that points update is performed in both spatial and tempo-

ral dimensions in each block, they must shift their collection of points backward

on the time dimension to respect temporal dependencies induced by the ISL,

i.e. transform dependency distances into non-negative values [91], resulting in

a loss of inter-tile concurrency, because of the fact that the skewing introduces

inter-tile dependencies in the spacial direction. As it may seem that this variant

could always deliver better performance than the simple single-iteration tiling,

it actually really depends on a careful selection of the skewing factor [90], as

well as on the form of the tile [106, 91], which can be a major concern especially

on FPGAs [126]. Whit respect to the previously mentioned strategy, time skew-

ing can provide better cache hit rates and effectively reduce processor idle time

caused by the ISLs memory boundedness [121].

As for the previous tiling strategy, even in this case blocks distribution among

different PEs is possible [14], but likewise single-iteration tiling, it requires ex-

plicit synchronization between them, since a block must wait for its neighbors to

complete in order to have enough data to start. As a consequence of this needed

scheme of synchronization, rather than a purely parallel execution, in this case

blocks are executed in a pipeline fashion.

A possible solution to the necessity of time skewing when tiling along multi-

ple iterations is proposed in [75], where code transformation is performed with the
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aim of fusing the stencil loops, in order to reduce the number of reads and writes,

and increase instead the computational intensity. This is an effective solution to

overcome the memory boundedness of ISLs, since usually the computational part

of those algorithms is a fraction of the entire execution time, and enlarging it

with a corresponding reduction of memory traffic can exploit the computational

power of modern architectures. A very similar technique has been developed in

[34], in which a domain-specific compiler is proposed, namely Caracal, able to

perform unrolling of the time loop and fuse accordingly the stencils, with the

same effects as of [75].

Wavefront parallelization This strategy is somehow similar to the previous,

but instead of pipelining the execution of time-skewed blocks, these blocks are

scheduled collectively in a wavefront fashion [117, 98, 110]. In this case then, in-

stead of requiring explicit synchronization, blocks are arranged in a way that

on the time dimension the computation blocks are independent from each other,

thus not requiring synchronization.

Figure 2.13: Wavefront Parallelization.

Although in [90] this scheme has been explicitly defined as the one in which

multiple blocks are scheduled together, this class can be easily extended to the case

in which only one block implements a single iteration. In fact, these collections are

executed in a pipeline fashion along the time dimension, coming with no need

of synchronization. Indeed, this is exactly the kind of behavior exhibited when
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tiling is only applied on the time dimension [95, 96, 79], and by far this approach

is the most promising one with respect to the previous two, as it has been proven

to be scalable [95, 96, 79], and comes with no communication overhead.

In a sense, the work proposed in this thesis can be at least partially included

in this class.

DSLs Based Optimizations

Another important approach towards optimization, extensively used in liter-

ature, and which is becoming increasingly popular, consist of the exploitation of

Domain Specific Languages (DSLs) and ad-hoc frameworks. As indeed General

Purpose Languages (GPLs) are the dominating software development tools in

HPC, the lack of specialized features for narrow domains such as ISLs is a great

limitation, since most of the times it does not allow to express a problem in a way

which is easy to manipulate, making optimal implementation an hard task.

In this sense, Domain Specific Languages are certainly more powerful, as they

provide, at a cost of losing broad applicability (although in some cases it could

be still technically possible), the ability to define a problem within the specific

application domain in such a way that some features are explicitly expressed, en-

abling a whole sort of transformations, manipulations and optimizations simply

not possible - or hard to achieve - with GPLs.

Currently, the ISLs domain can count a number of available DSLs, each one

with its own peculiarities. For instance, PATUS [35] is able to achieve high perfor-

mances by auto-tuning, targeting different hardware architecture, while Pochoir

[109] provides a C++ template library based on a divide-and-conquer skeleton

which is then translated into Cilk [30], a C/C++ extension designed for mul-

tithreaded parallel computing. ExaStencils [69] employs a direct mathematical

formulation (ExaSlang) of the problem, and through a series of steps of trans-

formations, included a wide range of PM-based optimizations, generates target

code in a specific language, which by now is C/C++, but in the future could be

extended to other languages. DeLite [107] abstract from Scala with the aim of

making stencil programming easier, and use metaprogramming to construct an
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IR of the problem and compile to a large number of languages, so that it can

easily target heterogeneous hardware. In [125], a single mathematical formula is

used to implement 3-D stencil codes on GPGPUs, via auto-tuning and automatic

target code generation, and GPGPUs is also the target device of [60], in which

low-level code is generated, starting from an abstract representation, by trading

an increase in the computational workload for a decrease in the required global

memory bandwidth. In [118] a single high-order function specified in Haskell,

and specifically in CλaSH [17], a functional HDL able to translate plain Haskell

(with some restrictions) into synthesizable VHSIC Hardware Description Lan-

guage (VHDL), is used in combination with a series of transformation to generate

hardware accelerators.

As final consideration, although using DSLs can lead to good performance, as

previously stated in HPC this is not the common practice at all, as GPLs are pre-

ferred due to their versatility and ease of use. This trend is not going to change,

at least in the near future, and because of that, trying to achieve the best from

General Purpose Languages is still an important but nevertheless challenging

task.

Custom architectures

When designing custom hardware, FPGAs offers a high flexibility, and never-

theless can deliver sustained performance with high energy efficiency, often or-

ders of magnitude better than other hardware platforms. Due to those interesting

characteristics, FPGAs have been extensively used as target device for the opti-

mizations aforementioned, but they express their real potential especially when

designing custom microarchitectures. In fact, an increasing number of works are

focusing on exploiting FPGAs to implement ISLs with the production of ad-hoc

hardware, finely designed to efficiently leverage the regular structure of this class

of algorithms, which allow complete compile-time analysis. In particular, this

kind of approach has been proved to be especially useful to overcome the mem-

ory boundedness issue of stencil computations.



2. BACKGROUND KNOWLEDGE 55

In [92] for instance, a generic tunable VHDL template has been proposed to

parallelize 3-D stencil computations, which use, in favor of Partial Buffering (PB)

where only the data needed by the current computation is stored to minimize

memory consumption, the so called Full Buffering (FB) [71], a technique in which

data is stored on the on-chip memory until all the computation relying on it has

completed, showing that the increasing number of available resources in modern

FPGAs has made the time ripe enough to allow to push the limits of what can be

achieved on such a device.

In [37] the PM is employed to take advantage of the stencil access pattern

and perform non-uniform memory partitioning in order to generate a custom

microarchitecture, streaming oriented, which is proven to be optimal with respect

to memory usage, since it allows FB with the minimum number of reuse buffer

banks and minimum buffer size. Although this architecture has been never really

tested - it has been actually only simulated - to prove its validity, and the case

in which the computation has as input other matrices than the stencil one is not

covered, the ideas behind this work are still of great value, so that they have been

used in this thesis as basis for the development of the proposed custom memory

microarchitecture.

In [65] 2-D stencils are addressed using ScalableCore, a system composed of

multiple small capacity FPGAs, connected in a 2-D-mesh. To efficiently exploit

such an architecture, the stencil computation is tiled and each computational

block is assigned to an FPGA, and in order to overcome the communication over-

head introduced by tiling, the execution order is customized in each FPGA. The

work proves as an FPGA custom architecture can deliver power efficiency much

higher than traditional computing devices.

In [100] a memory architecture is developed to implement symmetric 3-D

stencils, i.e. of the form of n × (n + 1) × n, which use First In First Out (FIFO)

queues for both the input and output stream, one for each dimension, a data en-

gine (also called front-end) which prefetch data, a compute engine (the back-end),

which consists of multiple instances of the computation unit, and a control engine

responsible for synchronizing the data flow in the whole architecture.



3

A Scalable Hardware Accelerator

for Iterative Stencil Loops

In this Chapter the thesis proposal for a custom hardware accelerator for

Iterative Stencil Loops (ISLs) is presented, from a clear statement of the problem,

to the proposed solution. In particular, Section 3.1 provides an in-depth analy-

sis of the challenges and the issues related to the implementation of ISLs, while

Section 3.2 presents the problem statement along with the thesis contribution. Fi-

nally, Section 3.3 introduces the proposed solution from a high level perspective,

supplying the fundamental principles of the work, in Subsection 3.3.1; a descrip-

tion of the hardware accelerator, in Subsection 3.3.2; a definition of the accepted

input code, in Subsection 3.3.3; and a comparison with existing works, in Subsec-

tion 3.3.4.

3.1 The Issue of Finding an Efficient Implementation

Numerical methods for Partial Differential Equations (PDEs) solving employed

in weather and ocean modeling [72, 29], fluid dynamics [44, 97], quantum dy-

namics simulations [77, 80], heat diffusion [53], geometric modeling [64] and

non-equilibrium statistical mechanics [32], but also seismic simulations [67, 93]

and cellular automata [78], as well as multimedia/image-processing applications

such as [51, 57], gaussian smoothing [102] and Sobel edge detection [16], repre-

56
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sent only a fraction of a wide number of applications that share the same com-

putational nature, in which a series of sweeps (time-steps) are performed over

a regular grid, where points are updated using a fixed nearest neighbor pattern.

This kind of kernel is known as ISL, as already discussed in the previous chapter,

in section 2.4. Since stencil computations are characterized by this regular com-

putational structure, they are the perfect candidate for automatic compile-time

analysis and transformation aimed at improving their performance. However,

there are some important remarks that have to be done in order to understand

why, even considering this possibility, an optimal solution is yet to be found.

As already discussed in section 2.4.2, the memory boundedness is the prob-

lem of ISLs, and it is transversal to all the computing architectures, although in

slightly different manners. As a matter of fact, even if the problem has been thor-

oughly investigated, and many techniques for alleviating it have been proposed,

all the proposed approaches are either limited in their applicability, or unsatis-

factory in terms of the performance gains compared to the theoretical peak the

available computing architectures can offer.

All the state of the art techniques, presented in section 2.4.3, tackles this issue

trying to balance the computation and the memory transfers, both with in-core

and inter-core optimizations.

In the first case, the obvious approach is to enhance data locality, which can lead

to a reduced number of memory accesses. This can be achieved exploiting either

the locality within a single time-step (spatial locality) or across multiple time-

steps (temporal locality). Although it may seem that this could be an effective

solution, both the approaches are actually hard to implement, as they require a

proper tuning to match the target architecture characteristics, scratch-pad mem-

ory size as first thing. The difficulty escalates considering also that in the general

case algorithm developers have profound knowledge of the application domain,

but they often lack a proper understanding of the underlying architectures. Some

solutions in this sense have been actually proposed, namely cache oblivious algo-

rithms [86], but usually their optimality is only theoretical - asymptotical - and

even if in principle they promise to be “architecture-inpependent”, they instead
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require tuning of parameters in real cases.

The situation is even more complicated when trying to overcome the memory

boundedness with parallelization-oriented solutions. For instance, within the spa-

tial domain of a single time-step, many ISLs are highly - trivially, indeed - paral-

lelizable, simply because the update of a grid point is totally independent from

the others, enabling to run these updates concurrently on many processing units.

However, this comes with an important drawback, as the increase in the number

of those computational units corresponds to a dramatic increase of the memory

bandwidth demand, due to the necessity to both concurrently feed the compu-

tational units with the needed data and synchronize their outputs, effectively

bounding the achievable performance by the available memory bandwidth in-

stead of the computational capacity.

In the context of multi-core architectures, the computation can be made less de-

pendent on memory bandwidth performing both parallelization and locality en-

hancement together. However, this often lead to pipelined startup [18], i.e. not all

processors are busy during parallelized execution, resulting in bad resource us-

age and consequently low power efficiency. Also, the lack of full concurrency at

the start can impact negatively the asymptotic degree of parallelism when tyring

to scale up both data set size and number of computational units [122].

In theory, a solution for the memory issue could then be to employ architectures

equipped with high bandwidth memories, such as General Purpose Graphic Pro-

cessing Units (GPGPUs). In practice, even GPGPUs suffers of memory bound-

edness. In fact, the data from the off-chip memory is transferred in contiguous

blocks, and therefore high bandwidth can be achieved only when read requests

by concurrent threads in a warp fall within such contiguous blocks. When op-

timizations aimed at distributing the ISL computation, such as tiling, are em-

ployed, the result is usually that threads perform sparse memory accesses, but

also that they follow different control paths, causing branch divergence, which is

another source of inefficiency. Last but not least, in GPGPUs scratch-pad mem-

ory is usually implemented as a banked memory system. If concurrent threads

request data from the same bank, the conflict will result in the serialization of the
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read requests. In all these scenarios both performance and power efficiency are

impaired, and do not achieve their respective maximum.

Another important problem that arise when inspecting the state of the art of

ISLs implementation is undoubtedly the limited applicability. Indeed, the great

part of the currently available approaches often address only a fraction of the

entire ISL domain, targeting for instance only 1-D [59, 39], 2-D [99, 65, 59] or

3-D [125, 100, 92] grids. Also, the vast majority is simply not able to deal with

ISLs that have spatial dependencies among points within a single time-step (see

section 2.4.2 for an explanation of what they are), which, however, constitute an

important part of this class of algorithms.

As previously stated, the scalability of ISL algorithms in large-scale clusters is

limited by data dependency between the distributed workloads. This is mainly

due to architectural limitations, which by the way also narrows the optimizations

exploration space, pushing them all in the same direction. For this reason, archi-

tecture customization can be considered a valid method towards the optimal ISLs

implementation. In particular, the acceleration of stencil applications using Field

Programmable Gate Arrays (FPGAs), can lead to exploit not only fine-grained

parallelism, as well as limit the memory boundedness issue, but can also enable

scaling over multiple FPGAs nodes. The state of the art regarding custom FPGAs

architecture has been already explored in section 2.4.3, there are however some

further considerations to make, due to the inherent complexity of these solutions.

First of all, a lot of architectures are tailored to specific algorithms [33, 55], which

means that they are in general not applicable to the entire class of ISLs. Also,

building an hardware architecture is in general a hard task, usually done by hand

(or lightly assisted), and because of that, error prone. Furthermore, this process

can take a non negligible amount of time, and despite the efforts made, result in

improvements so small that it is simply not worth the hassle. This means that

a widely applicable, efficient, but nevertheless automatic solution must be pro-

posed, in order to take advantage of hardware design in the most effective way.
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3.2 Thesis Contribution

From the context described in the previous section it is evident that:

• The obtainable performance of parallelization-oriented techniques can be

bounded by the available bandwidth, due to the increase in bandwidth

demand consistently to the increase in parallelism, but also for the con-

sequent need for synchronization of the parallel units. Hence, in most cases

the achieved performance can be far below the theoretical peak.

• The techniques designed to take advantage of the data locality are not ef-

fective, mainly due to the inadequacy of the computing architectures on

which they are applied.

• The scalability of ISLs in large-scale clusters is hard to achieve and never-

theless the performance does not increase linearly with the scaling.

• Although the employment of custom logic explicitly designed to target ISLs

could be promising, it is in general a hard task, and it definitely needs au-

tomation in order to ease the process and make it accessible to a broad user

base.

To the best of our knowledge, the existing works does not address all the pre-

sented issues, as they instead focus only on subsets of them, resulting in subop-

timal solutions that are not able to efficiently cope with all the challenges posed

by the ISLs implementation. The aim of the work proposed in this thesis is in-

stead to address all the presented issue at once with the proposal of an hardware

accelerator specifically designed to target ISLs, indeed:

• We realized a distributed microarchitecture which exploits the inherent par-

allelism of the distributed nature of an FPGA. Our source of parallelism

comes also from the employment of a technique which enables a pipelined

execution of multiple time-steps within the accelerator, allowing to per-

form concurrently multiple time-steps in one pass. The robustness of this

technique comes from the fact that the increase in performance is achieved
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without an increase in bandwidth demand, therefore it is always possible

to increase the throughput, even in the case where the available bandwidth

is very limited.

• The proposed memory system is designed to allow multiple concurrent ac-

cesses - that is exactly what is needed in ISLs as they compute using a near-

est neighbour pattern, and avoid resource contention, a practical issue in

the case of FPGAs. Another important peculiarity of the memory system is

the fact that it is able to deliver full data reuse, thus reducing to the min-

imum the amount of required communication with the off-chip memory,

realized with the minimum achievable on-chip memory requirements.

• The previously cited technique that enable the execution of multiple time-

steps in one pass ensure linear scalability, with constant bandwidth require-

ments. This allows to easily scale without incurring in performance degra-

dation, and can also enable scaling over multiple FPGAs nodes, solving

effectively the problem of scaling in large clusters.

• The proposed hardware accelerator can be directly derived from an im-

perative specification of the ISLs, e.g. an algorithm written in C/C++. We

indeed proposed a design automation flow, which employ the Polyhedral

Model (PM) to achieve this goal.

A detailed overview of the proposed solution will be supplied in the next

section. Let us however briefly summarize the thesis contributions. In practice,

we provided:

1. A streaming-based microarchitecture that implements a single stencil time-

step able to realize full data reuse with the minimum on-chip memory re-

quirements, the Streaming Stencil Time-step (SST);

2. A scalability-oriented technique able to deliver pseudo-linear speed-up,

namely SSTs queuing;

3. A methodology - a design automation flow - to automatically implement ISLs

with the proposed hardware accelerator.
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3.3 The Proposed Solution

The work proposed in this thesis targets ISLs implementation employing a

custom hardware accelerator. For this purpose, we developed a streaming mi-

croarchitecture aimed at performing a single ISL time-step, which we called SST.

The entire accelerator is represented by the composition of multiple SSTs in a

queue fashion. We then also proposed a design automation flow, to automate the SST

derivation and the queuing process.

In the rest of this section we provide the key points, a description of the hard-

ware accelerator in all of its components, a set of constraints for the input code of

the proposed solution, and a comparison with existing works.

3.3.1 Fundamental Principles

Let us first expose the fundamental principles on which the proposed work

rests its foundation, since introducing them clearly is a crucial precondition to

understand the work completely.

Streaming Computation

Within the context of regular computations, such as ISLs, a streaming paradigm

is undoubtedly a well suited choice. The ability to perform complete compile-

time analysis allows to determine precisely the data flow, and as a consequence,

to arrange the computation in the most effective way. A streaming computation

model is indeed a data-centric model, where the focus is on constant data flow,

granting high throughput, but nevertheless keeping low the amount of needed

resources, especially when the underlying architecture enables this kind of op-

timization. In the case of ISLs, where the update of each grid point requires a

number of concurrent reads, this approach can avoid - or at least limit - the prob-

lem of memory boundedness effectively reducing resource contention. Also, the

distributed nature of a streaming model fits perfectly the distributed nature of a

configurable architecture such as FPGAs, enabling the exploitation of the inher-

ent parallelism of those devices.
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Scalability

In assessing the quality of an implementative solution, scalability is abso-

lutely an essential parameter. The scalability issue is actually a hot topic, as in-

deed a large amount of work, theoretically valid, are actually suffering from a

limited scalability or in the worst cases they do not scale at all. Our work is

instead completely focused on scalability (practically measured in chapter 5),

which is in fact addressed in two different and complementary ways:

• The accelerator itself is based on a scalable architecture. SSTs are connected

in a queue that constructs a deep pipeline. Because the depth of the queue

does not influence the bandwidth requirements, the computing performance

can be increased with a constant memory bandwidth by connecting more

SSTs for a longer queue.

• For large problem sizes, whenever the available on-chip memory resources

are not enough, the communication channels can be removed and substi-

tuted with an off-chip memory interface, thus increasing the bandwidth

consumption while reducing the on-chip buffering requirements.

Optimal Full Buffering

When the memory resources were so limited that memory systems on FPGAs

allowed storage of only a very small amount of data, Partial Buffering (PB) was

the only way to go. The principle beyond PB is that data is fetched from external

memory only when it is needed, which means that, if needed multiple times, the

same data is transferred more than once. This technique allows to keep low the

resource usage, but also the overall performance, as it implies repeated reads for

the same data from off-chip memory, consequently resulting in the waste of clock

cycles.

Modern FPGAs have now enough resources to allow, when the computation

is performed on reasonable problem sizes, the employment of Full Buffering (FB),

a technique in which data is read only once and stored on the on-chip memory

until all the computation relying on it has completed. The advantage of a FB
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scheme is that, at a cost of an increase in scratch-pad memory requirements, the

off-chip traffic is reduced to the minimum.

An SST is able to perform FB in an optimal way, employing the PM to per-

form non-uniform memory partitioning of the input stream. The compile-time

analysis allows to compute the minimum size of the reuse buffer for a data array,

which is indeed equal to the maximum lifetime of any element in the array it-

self. In this way an SST can deliver FB with the minimum number of buffer banks

(represented in the architecture as communication channels), were each of them

have also the minimum possible size.

Wide Applicability

A lot of existing works focus only on ISLs without spatial dependencies between

grid points within the same time-step (see section 2.4.2), mainly because it is dif-

ficult to extract parallelism from those algorithms. Hence, they intentionally limit

their applicability, as their solutions are not suitable for this kind of ISLs.

We instead treat indiscriminately both ISL types, as our methodology leverages a

streaming-based computation and the performance gain is given by the pipelin-

ing of multiple SSTs. We do not account directly for parallelism, our source of

parallelism is indeed implicitly given by the distributed organization of the mir-

coarchitecture, which in turn takes advantage of the distributed nature of FPGAs.

As last remark, even though a proper restructuring of the input stream could re-

move this limitation, it must be said that our methodology does not target ISLs

with periodic boundary conditions. This is indeed a limitation shared by a lot of

available works, since those kind of ISLs are not as common as the one with con-

stant boundaries.

Automatic Process

As stated in section 3.1, hardware design is an hard task and, if it is done by

hand, also error prone. For this reason we proposed an automated design flow, able

to generate the accelerator directly from the input source code. This flow will be

detailed in the next chapter.
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3.3.2 A General Overview of the Proposed Hardware Accelerator

Hardware acceleration is one of the techniques used to improve performance

of a computing system. It consists of offloading the general purpose processor

from the computationally intensive part of a given algorithm, that can rely on

computer hardware specifically designed to perform those computations. The

proposed microarchitecture embody exactly this logic, as it is indeed an hard-

ware accelerator. This means that it requires a host processor to drive the execution

and control the in and out data flow.

From a general perspective, the proposed hardware accelerator can be viewed,

at every level of granularity, as a composition of independent modules, that com-

municate over First In First Out (FIFO) channels and employ blocking reads and

writes to manage the data flow and ensure its correctness.

At the top level, the accelerator consists of a series of blocks arranged in a

queue fashion, each of which is responsible for the execution of a single ISL time-

step. Those blocks are called Streaming Stencil Time-step (SST), a name we chose

as it recalls exactly their functionality. Since the microarchitecture is streaming-

based, data flows from an SST to another as soon as it is produced, resulting in

a pipelined execution of the entire computation. In some occasions the SSTs data

flow can be managed by an additional module, which is always aware of the

progress of the computation as well as the total number of time-steps to be per-

formed, which we called mux. This happens in two cases (which can also occur

together):

• the number of SSTs - and hence the corresponding number of time-steps

- of the hardware accelerator are not an exact divider of the total number

of iterations. In this case the mux is responsible to break the computational

flow when the total number of time-steps of the ISLs is performed, and

redirect the output to the off-chip memory.

• the queue length is large enough to be able to cycle the data flow, redi-

recting the output stream of the queue back to the queue itself, instead of

transferring it back to the off-chip memory. We called this condition queue
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looping, which will be further detailed in section 4.4.1. In this case the mux

is responsible to break this loop when the total number of time-steps has

been executed.

Figure 3.1: The high level scheme of the proposed hardware accelerator. The three different ver-
sions represent the three distinct described cases: the first (a) is the standard case, the second (b) is
the case in which the queue length is not an exact divisor of the total number of ISL time-steps, the
third (c) is the case in which there are enough available resources to enable queue looping.

Now that we have described the accelerator from a high level, the only thing

that remains to detail is how an SST is actually implemented. We already claimed

that an SST is demanded to execute a single ISL time-step, let us now describe its

internal components.

As first thing, an SST in general has one input stream and one output stream.

In the case in which the ISL updates grid points employing constants or other

arrays, the input streams are obviously more than one. The components within

an SST can be divided into two main categories, the first being the memory system,

the second being the computation system.



3. A SCALABLE HARDWARE ACCELERATOR FOR ISLs 67

Figure 3.2: A general scheme of an SST.

Memory System This part of the SST consists of a series (or one, when the in-

put is just the single stencil array, i.e. the one updated from the ISL) of chains of

modules connected by FIFO channels, one chain for every distinct input array,

all responsible to feed the computation system with the needed data. Each chain

receives a single data stream, which is indeed the array itself, and the modules

within the chain represents the different read array references. Trivially, if the ar-

ray reference is unique, the chain is made up of a single element. These modules

are indeed the one actually responsible of sending the data, as in fact they read

any existing data element from their preceding FIFO and send the data element

to the successive FIFO as well as to the computational system. From a high level

perspective, this arrangement can still be viewed as a single stream, from were

each module filters data only when needed, which is why we called them filters.

The chain-like organization of filters ensures that the data is read only once and

at the same time allows more concurrent accesses, realizing also the optimal FB.
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Computation System The computation system is composed of a series of mod-

ules that perform the actual computation taking data from the memory system.

However, there are some further considerations to make to better understand

how they are arranged.

First of all, given the fact that ISLs update grid points using a nearest neigh-

bour pattern, it is evident that there is always the presence of the boundary to

take into account. This condition can cause performance loss when hardware

accelerators are employed, as the host processor could be forced to waste time

to reconstruct the array from the output. For this reason, our SST consider the

boundary in an explicit way. This is indeed also a prerogative for the SSTs queu-

ing. In fact, since the accelerator consists of a chain of replicas of a single SST, it

is obvious that within an SST both the output and the input must be of the same

form. To accomplish that, the last computing module, the one actually responsi-

ble for the production of the SST output, will actually always decomposed into

two parts, one demanded to compute the ISL output, which we may refer to as

computation part, and one which transfer the boundary from the memory system.

To ensure that the output stream is rearranged in the exact same form of the in-

put, we inserted an additional module, called demux, whose function is precisely

the one just stated.

There is also another possibility, that can lead to a further decomposition of a

computation part, that is the presence of spatial dependencies between grid points.

This situation will be addressed in detail in the next chapter, however we antici-

pate that the computation part will be decomposed in more than one equivalence

class, that realize the computation considering the presence of these dependen-

cies. A demux will be added also in this case, for the same reasons as of the bound-

ary.
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Figure 3.3: An SST for ISLs with spatial dependencies.

We claimed previously that an SST has in general a single output stream. This

is true in most cases, but not when performing queuing with an ISL that takes

multiple array as input, i.e. which has variable coefficients. In fact, to provide the

needed data to all the SSTs, additional streams must be added, in order to trans-

fer the input data within the queue. In this case then, the filters chains referred

to arrays which are not the output one are equipped with an additional commu-

nication channel, used to drive those data to the next SST in the queue. This is

obviously not true for the last SST.

Figure 3.4: An example of the accelerator for an ISL with multiple inputs. The green arrows rep-
resents the additional streams. As described in the text, the last SST has only the actual output
stream.
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3.3.3 Some Considerations on the Input Code

We already stated in section 3.3.1 that our solution targets indistinctly ISLs

with or without spatial dependencies. There are however some considerations to

make about the input code to allow the proposed design automation flow to work

properly:

1. The algorithm must be specified in an imperative form, e.g. C/C++. Also, it

must fall into the category of Static Affine Nested Loop Programs (SANLPs),

which is indeed the case for nearly every ISL;

2. There is virtually no limit on the input problem size. Even if the available

resources are not enough to handle large arrays, there is always a band-

width/buffers trade-off that can be made to solve the issue. This case will

be further inspected in the next chapter.

3. Even though multiple inputs are allowed, the actual output must be the

only stencil array, i.e. the one updated from the ISL. In a nutshell, this means

that whenever the ISL contains more than one statement, they must be as-

signment on the same array (the stencil one though). The only case in which

statements with assignment on different arrays can happen, is when those

statements are in a dependence relation, i.e. the array updates of one state-

ment Si are read subsequently by another Sj. Even in this case the actual

output is only one, indeed the array updated by the statement Sj. Hence,

array updates of Si - that can be thought as “intermediate” results - which

are not used by Sj, will be still present in the internal data flow of an SST,

but not forwarded.

Such a restriction is indeed necessary to derive effectively the SST. How-

ever, it is important to notice that this condition is not at all restrictive, as

loop nests that does not have this single output feature are not proper ISLs.

4. Conditionals which are affine functions of the time dimension indices are

admitted, but require a pre-processing phase, as will be described in the

next chapter. Instead, conditionals on the array dimensions indices are not

allowed, as indeed a code with such a structure would not be a proper ISL.
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5. Array sizes are inferred by the polyhedral analysis. This is perfectly pos-

sible, given that the stencil array accesses map their data space also on

the boundary. If the array is bigger than the computed dimension - loop

nest and boundary conditions - the design automation flow should be as-

sisted with additional information, e.g. specific pragmas. The situation in

which arrays are bigger than the computed size is however very unlikely to

happen, as boundary are present only to ensure the algorithm correctness.

In the general case, there is no need to have boundaries bigger than the one

employed in the computation, as they would be unnecessary information,

and by the way also a waste of memory space.

3.3.4 A Comparison with Existing Works

The work proposed in this thesis, from a high level perspective, can be an-

alyzed from three different point of views: the automated PM-based C-to-FPGA

flow, the streaming-based SST microarchitecture that targets ISL with a memory

system able to achieve full data reuse, and the exploiting of the time-iterative na-

ture of ISLs with the SSTs queuing to overcome the memory boundedness. The

goal of this subsection is to compare the proposed work with the works that, as

far as we know, appear to be the leading in each of the three different aspects.

PM-based C-toFPGA flow

Although High Level Synthesis (HLS) have seen an intense evolution, as al-

ready described in section 2.3, such that today’s HLS tools are capable of gener-

ating high quality Register-Transfer Level (RTL) code for a wide range of input

programs, they still lack the ability to exploit all the available performance en-

hancement opportunities, especially for SANLPs. In particular, the essential lim-

itation is given by the absence of a structured approach to efficiently manage data

movements from off-chip to on-chip memories, which by default are completely

left in the hand of the software designer. The PM can be effectively exploited to

overcome this issue, and in fact a number of C-to-FPGA frameworks have been

proposed, in particular [85, 70] and [126], which employ the PM as optimizing
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engine. The aim of all this works is to mask the off-chip transfer latency manag-

ing to intrinsically overlap communication and computation. However, they are

not always able to achieve the desired results, mainly because of the way they

use HLS. As a matter of fact, they use HLS only as a back-end for their optimiza-

tions, instead of focusing on the real issue, namely the production of an efficient

accelerator which leverages the real capabilities of the underlying hardware.

The work of [85] use tiling hyperplane transformations to expose data local-

ity as much as possible, and then carefully manage on-chip buffer to enable data

reuse and pre-fetching. The generated code is then further optimized to be used

for HLS. This work has been implemented in a toolchain, named PolyOpt/HLS.

PolyOpt/HLS is able to realize data reuse only among subsequent iterations of a

loop, although for a given loop nest the depth to which data reuse is exploited -

i.e. which two successive iterations are used - can vary. This is indeed a limitation,

since the framework does not necessarily capture all the reuse potential in a loop

nest. In particular, reuse between two non-consecutive iterations is not exploited

at all. Even though they claim that this should not be a huge limitation, this is

indeed not true, since when access patterns are of the form of ISLs, their tech-

nique can fail completely the task of alleviating the memory boundedness issue.

Also, when reuse opportunities are only between non consecutive iterations, the

quality of their results can be unsatisfactory with respect to the goal of achieving

efficient data reuse. Although in the later work of [70] PolyOpt/HLS has been

extended with optimizations tailored to solve the resource contention on mem-

ory banks ports and achieve an initiation interval of 1 clock cycle on pipelined

kernels, two points of failure of the initial work, they admit that with certain kind

of data access patterns they still fail to achieve optimal results.

In [126] the authors extends the state of art framework PoCC [7] ( a framework

for polyhedral optimizations that wraps all the most relevant state of the art tools

and libraries ) in order to:

• Use their PM-based methodology to extract inter-block and intra-block par-

allelism and pipelining,

• Produce HLS ready code with all the needed directives,
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• Generate the communications interfaces (generally FIFOs) between com-

putation and communication blocks.

Their methodology consists of a set of loop transformations to obtain desired data

dependencies between iterations (unimodular transformation), they then utilize

a cost model to estimate which transformation is the best in the application con-

text - FPGA resources, type of dependencies and communication costs - and pro-

duce the corresponding scheduling. This work is however restricted to the case

in which the loop nest dimensionality and array dimensionality are equal for

all sets of blocks in the program. This is actually a restriction that dramatically

limits the applicability of the proposed methodology, as for instance we experi-

mented that all the benchmarks of PolyBench/C [8], the benchmarking suite for

PM-based optimizations, cannot be treated with the proposed framework. The

only case in which it could be applied is for a subset of the ISLs benchmarks,

namely adi, jacobi-1D, jacobi-2D and seidel, and only if the outermost loop - i.e. the

time dimension - is removed from the original code. They essentially claim that

their methodology is in general applicable to SANLPs, but the reality is that it

can only be applied to a very small subset of them, not even all ISLs.

Even though our application domain is smaller - but not that much - with

respect to the entire class of SANLPs, an aspect that must be considered for the

comparison, there is an essential difference between the two aforementioned C-

to-FPGA flows and the one proposed in this thesis. We indeed employ the PM not

to transform the input source code to be “HLS-friendly”, but instead to realize an

hardware accelerator able to exploit efficiently the available hardware resources

and perform optimal FB. In our case, the HLS is not our target, it is instead a link

to connect the polyhedral framework and the hardware design.

SST microarchitecure

There are essentially two architectures that can be compared with the one re-

alized from the SST. The first comparison can be made with the work in [37],

which by the way has been a starting point of the one proposed in this thesis. In-

deed, from a functional point of view the chains within the SST’s memory system
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share some similarities with the working principles of [37], even if technically

they are implemented differently. There are however two observations that have

to be made, since the work in [37] is lacking in two aspects, that the proposed

work instead properly addresses:

• the proposed architecture is not able to deal with ISLs with spatial depen-

dencies among points updates, e.g. the Gauss-Seidel method, for which the

PolyBench/C version has been employed as benchmark in chapter 5.

• they never validate the proposed microarchitecture in real test cases. Con-

sequently, they do not provide any insight on how well it performs, consid-

ering also that estimated results does not take into account practical con-

straints such as the available bandwidth.

The second comparison can be made with Maxeler [6]. Maxeler is indeed an

FPGA-based heterogeneous system, where the accelerator has to be implemented

with a dataflow specification, i.e. a Dataflow Engine (DFE). Maxeler’s computing

system includes Central Processing Units (CPUs) and DFEs, and DFEs configura-

tions are created using Maxeler’s MaxCompiler. To create applications exploiting

DFE configurations, an application must be explicitly splitted into three parts:

• Kernel, which implement the computational components of the application

in hardware.

• Manager configuration, which connects Kernels to the CPU, engine Random

Access Memory (RAM), other Kernels and other Dataflow Engines via a

custom interconnection (MaxRing).

• CPU application, which interacts with the dataflow engines to read and

write data to the Kernels and engine RAM.

From an architectural point of view, the structure of our accelerator is similar with

the one obtainable with Maxeler - a Maxeler’s DFE - on the specific application

domain of ISLs. There is however an essential difference between Maxeler and

the work of this thesis: in the case of Maxeler, the software designer must have

a deep knowledge of the Maxeler system, of the Maxeler language, which is an
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extended version of Java, called MaxJ, and nevertheless a deep knowledge of

the general structure of a dataflow architecture, as it must specify the accelerator

behaviour in an explicit way. Hence, there is a learning curve and a required

expertise that is but easy to attain: being able to implement complex program

can be an hard and time consuming task. On the other hand, our methodology is

able to extract the accelerator from plain C/C++, with the restrictions specified

in section 3.3.3, automatically.

SSTs queuing

The exploitation of the time dimension in order to increase the performance

is not a new idea, there are indeed a few works in which this is done effectively.

The key idea is to exploit the iterative nature of ISLs and the temporal locality

in order to reduce the amount of communication with the memory, resulting in

an alleviation of the memory bandwidth issue. There are two techniques which

employ this idea in two different ways, that can be thought of as “software” and

“hardware”.

In the software version the original ISL is rewritten to merge two or more

time-steps into a single update by expanding the stencil formula along the time

dimension. This is done in both [75], where the target is hardware design, and

[34], where the target is canonical CPU-based architectures. In [75], the code re-

structuring can however lead to ports contention on memory banks, due to the

enlargement of the stencil windows and the resultant increase of required con-

current accesses on the memory banks, a problem that cannot occur in the case

of an SST where the memory system is exactly designed to allow multiple con-

current memory accesses. In [34] the lack of awareness of the memory subsystem

in the transformation process limits the applicability to x86 CPUs only. As im-

portant remark, it must be noticed that both works propose and implement an

automatic flow to perform this software restructuring.

The hardware version, which as the name suggests is related to hardware ac-

celerators design, consists of replicating the architecture demanded to perform

one time-step a number of times putting them in cascade, i.e. the output of one
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architecture is the input of the next. This is the idea employed in this thesis, and

is also proposed in [95], where the hardware accelerator is a composition of soft-

processors that must be explicitly programmed, hence it is a totally different ap-

proach with respect to the one proposed in this thesis where an SST is an auto-

matically derived microarchitecture, and in [54], where it is analyzed only from a

theoretical point of view. Although the idea is already present in the state of the

art, the work of this thesis is the first that propose a methodology to perform it

automatically, along with some concepts, such as the already cited queue looping,

which are completely novel.



4

Proposed Design Flow

The purpose of this Chapter is to provide a thorough description of the pro-

posed methodology. In Section 4.1 a general overview of the proposed design

automation flow is presented, while Section 4.2 explains briefly the pre-processing

phase, needed to reshape the input code in order to be manipulated thereafter.

Section 4.3 details the first part of the process of automatic production of the

Iterative Stencil Loop (ISL) accelerator, namely Streaming Stencil Time-step (SST)

Microarchitecture Derivation, along with some important remarks on the SST it-

self. Then, Section 4.4 provides a description of the second part, that is the SSTs

queuing technique.

4.1 Design Automation Flow

As already described in section 3.3, the proposed methodology is a 2-step

process. The first step consists of deriving the microarchitecture that is demanded

to implement a single iteration - i.e. a time-step - which we called Streaming Stencil

Time-step (SST). This can be viewed as the basic building block of the system. The

second part addresses the system construction, in which SSTs are arranged in

a queue fashion, unleashing the power of the methodology by enhancing all the

peculiarities of a single SST, with an eye also on scalability.

The 2-step methodology has been employed to develop a design automation

flow, that takes as input the ISL’s SCoP, written in an imperative form (e.g. in

77
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C/C++), and produces the corresponding accelerator. The proposed flow prepends

to the aforementioned steps a pre-processing phase, in which the so called Reduced

Static Control Parts (rSCoPs) are extracted. This is done in order to simplify the

architecture derivation, as already stated in section 3.3.3. An overview of the pro-

posed flow can be seen in figure 4.1.

Figure 4.1: The Proposed Design Automation Flow.

Let us briefly describe the two macroblocks of figure 4.1. The first macroblock

is the SST microarchitecture derivation, and is composed of the following parts:

• The first part performs the polyhedral analysis in order to extract a poly-

hedral Intermediate Representation (IR) of the input code, and also the cor-
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responding Data Dependency Graph (DDG), which is crucial for the entire

SST derivation process.

• The second part consist of an ad hoc manipulation of the obtained DDG in

order to obtain the skeleton of the SST, which we called streaming-oriented

graph.

• After that, two concurrent phases take place. The first is the memory sys-

tem derivation, that employs the polyhedral IR along with the streaming-

oriented graph in order to derive the chains described in section 4.3.3 and

the corresponding involved streams. The second is the computing system ex-

traction, whose function is to shape the computing system that effectively

realize the Iterative Stencil Loop (ISL) computation.

The result of this process is an IR of the derived SST, which is used to generate

the code of the modules that will be synthesized via High Level Synthesis (HLS).

The second macroblock is the SSTs queuing, that employ the estimated resource

usage of an SST and the total amount of available resources in order to derive

the maximum achievable queue length and generate the final Register-Transfer

Level (RTL) of the resulting hardware accelerator.

Although not actually realized, we will prove in the following sections that

this design flow is completely automatable, by proving that each component part

is itself automatable.
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4.2 Pre-processing Phase

In order to allow the subsequent manipulations, we claimed that a pre-processing

phase is essential, since it could be that the original Iterative Stencil Loop (ISL)

code is not in a suitable form. Here we describe how this can be easily accom-

plished by employing the Polyhedral Model (PM) and the state of the art tools,

without particular modifications.

Although it is a situation that is very unlikely to be found in canonical ISLs

codes, it can happen that the ISL’s SCoP contains conditionals which are affine

functions of the outermost loop, that is indeed the time dimension (see section

2.4.1). Notice that the reason why affine conditionals on the inner loops are sim-

ply not allowed at all are already discussed in section 3.3.3.

When such a situation is in place, the code must be transformed, otherwise the

microarchitecture derivation steps may lead to unwanted behavior. The reason

why this pre-processing is needed is pretty straightforward: a conditional on the

time dimension means that only certain code parts are executed within a time-

step, i.e. code parts execute in a mutually exclusive manner. When deriving a

streaming microarchitecture which is demanded to implement the code of a sin-

gle stencil iteration, this situation is unacceptable. However, assuming that n is the

number of the mutually exclusive code parts, we could in principle derive n dif-

ferent microarchitectures, and leave their actual usage to the host processor, which

employ one microarchitecture or the other according to the given time-step.

To deal with this case without deeply modifying the already complex flow, a sim-

ple solution is to apply the index-set splitting transformation along the only time

dimension (the outermost loop). The affine conditionals can be used to effectively

drive the splitting on the original loop nest, in order to obtain a different loop nest

for each mutually exclusive part. If such a transformation is performed, it can be

safely assumed that the conditionals can be removed from the obtained code.
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for (t = 0; t < T; t++){

for (i = 1; i < N-1; i++){

if(t < T/2)

A[i] = (A[i+2]+A[i+1]+A[i]+A[i-1]+A[i-2])/5;

else

A[i] = (A[i+1]+A[i]+A[i-1])/3;

}

}

Listing 4.1: The original ISL code

for (t = 0; t < T/2; t++)

for (i = 1; i < N-1; i++)

A[i] = (A[i+2]+A[i+1]+A[i]+A[i-1]+A[i-2])/5;

for (t = T/2; t < T; t++)

for (i = 1; i < N-1; i++)

A[i] = (A[i+1]+A[i]+A[i-1])/3;

Listing 4.2: After index-set splitting, two rSCoP are obtained

The result of this process is a series of loop nests, each one iterating over a sub-

set of the original iteration vector of the time dimension. We call them Reduced

Static Control Part (rSCoP), since they actually still belong to a single SCoP, but

despite this we treat each of them individually. Such an rSCoP is the input of the

following block within the design automation flow, namely the SST Microarchi-

tecture Derivation. Notice that from now on, we will refer to both ISL in general

and rSCoP indistinctly, since for our purposes they can be thought as equivalent.

4.3 The SST Microarchitecture Derivation

As shown in figure 4.1, the first part of the proposed methodology is the

derivation of a Streaming Stencil Time-step (SST) microarchitecture from the in-

put rSCoP, which could pass the pre-processing phase completely unchanged

(thus being the entire Static Control Part (SCoP), instead of a fraction of it). To

work properly, this macroblock relies heavily on the PM, that allow all the analy-

sis and manipulations which will be explained in a moment. For this reason, we

will assume that the reader has at least a basic knowledge of what the PM is, and

how it can be employed to perform static analysis on Static Affine Nested Loop

Programs (SANLPs), and by extent on ISLs. The reader may refer to section 2.1
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for a comprehensive overview of the PM, which provides all the concepts and

definitions used in this section.

In order to support the following steps with concrete examples, we will em-

ploy two sample ISLs, shown in the listings below.

for (t = 0; t < T_Step; t++)

for (i = 1; i < N-1; i++)

S0: A[i] = 0.2*(A[i-1]+A[i]+A[i+1]);

Listing 4.3: Sample ISL number 1

for (t = 0; t < T_Step; t++){

for (i = 1; i < N-1; i++)

S0: B[i] = C[i]*(A[i-1]+A[i]+A[i+1]);

for(i = 1; i< N-1; i++)

S1: A[i] = B[i];

}

Listing 4.4: Sample ISL number 2

There are essentially three reasons for which both ISLs are deemed useful:

• They are representative - respectively - of the two basic types of ISLs, since

the one in listing 4.3 has spatial dependencies between grid points, while the

other in listing 4.4 has only dependencies along the time dimension (see

section 2.4.2);

• They cover both cases in which: a) the stencil array is the only input (listing

4.3), or b) there are more than one input arrays (listing 4.4)

• They are really simple, being both only 3-point stencils and also mono-

dimensional. We decided to use those samples since we considered a com-

plex example simply not suitable to support effectively the description.

From now on, we will refer to the sample in listing 4.3

as sample1, while the sample in listing 4.4 will be referred

as sample2.

4.3.1 Streaming-oriented Graph Construction

The purpose of this first phase is to construct a graph,

namely streaming-oriented graph, which will be used as a

skeleton for the SST microarchitecture. This graph, as it will be shown in a mo-

ment, is nothing more that the result of a manipulation of the Data Dependency

Graph (DDG).

The first task that must be performed is the data dependency analysis, in order to
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produce, for a given rSCoP, the corresponding DDG. This can be easily achieved

with the already available tools in the state of the art. The result of this process

for sample2 is shown in figure 4.2.

Figure 4.2: An example of a complete DDG. The graph is computed for sample2 in listing 4.4. On
the right, there is the output of the state of the art tool for polyhedral dependency analisys Candl [1],
while on the left, there is the graph in its graphic form.

However, the DDG, as it is, contains unnecessary information. Since in fact

our purpose is to obtain a streaming-oriented graph, the only dependencies that

must be taken into account are the Read After Write (RAW) dependencies (true

data dependency), i.e. the one enforced by the data flow. Indeed:

• As we do not operate any alteration of the control flow, i.e. the execution

follows the original schedule, an SST can be viewed as an in-order microar-

chitecture [58], which means that we can safely neglect the Write After

Read (WAR) dependencies (antidependency);

• Even though the observations made above are not sufficient to neglect the

Write After Write (WAW) dependencies (output dependency), just by adding

to the previous considerations the fact that the data flow is completely under

control - as it is determined at compile time - we can discard also them in

the analysis process.
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(a) The proper DDG for sample1, listing 4.3.

(b) The proper DDG for sample2, listing 4.4.

Figure 4.3: The DDG with the only RAW dependencies, the only dependencies we take into ac-
count. As for image 4.2, on the right there is the output of Candl, while on the left the DDG is its
graphic form.

Figure 4.3 shows the proper DDG (the one we will employ) of the two sam-

ples, without WAW and WAR dependencies.

After the DDG extraction, the graph manipulation phase takes place.

First of all, the DDG must be pruned further, because it could still contain depen-

dencies that are not significant in the SST microarchitecture derivation. In partic-

ular, the dependencies carried by the time dimension (the one marked with depth

1 in the figure 4.3) must be discarded, since, as stated before, an SST is demanded

to implement the execution of a single time-step. There is however a case in which

an edge marked with depth 1 (along the time dimension) can remain after this

pruning task. This situation can occur whenever the rSCoP loop nest is imperfect,

such as in the case of sample2, as it can be that the flow dependencies within the
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same time-step are carried exactly by the time dimension. Those dependencies

are in fact enforced by the execution order of the statements, and not carried be-

tween a time iteration and the subsequent, which is why they are significant for

our purposes.

As a result, we can define the following conditions for an edge to be removed

during the pruning task:

Definition 4.3.1. DDG Edge Removal Conditions. Let us consider a DDGG = (n, e),

with only RAW dependencies, in which each node n is marked with a growing

number given by the execution order of each statement, that, by the way, in the

case of an rSCoP corresponds also to the syntactic order. For the process of the

streaming-oriented graph construction, an edge e must be removed if it represents a

dependence carried along the time dimension (depth 1), and:

• e is a self-loop or

• e is directed from ni to nj and i > j.

The result of this process is shown for both samples in figure 4.4.

(a) sample1, listing 4.3. (b) sample2, listing 4.4.

Figure 4.4: The DDG after the pruning process, whose conditions are given in definition 4.3.1

The next step is the key part of the DDG manipulation phase, as it will effec-

tively turn the original DDG into the so called streaming-oriented graph. Firstly,

each node (which is indeed a statement) of the DDG is expanded in the following

way:

1. Each array reference - read or write for now does not matter - becomes a

new node. Since for each array assignment - i.e. statement - the polyhe-

dral analysis (indeed the parsing that takes place at the beginning) is able
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to identify the read and write operations, we employ this information to

connect those nodes. Specifically, each read node of the given assignment

will have an outgoing edge connected to the corresponding write node,

as the write operation trivially depends on these data. Furthermore, read

nodes with the same array reference are merged. Note that the write nodes

symbolically represents the statement execution, hence, they are associated

with the statement’s assignment (i.e. formula) and its Iteration Domain (ID).

2. The original edges of the DDG are now connected, rather than with the

entire statement, to the specific node - i.e. array reference - involved in the

corresponding dependence. The result of this two operations is displayed

for both sample1 and sample2 in figure 4.5.

(a) sample1, listing 4.3. (b) sample2, listing 4.4.

Figure 4.5: The expanded version of the DDG for both samples. In order to easily distinguish them,
read and write nodes are represented with different shapes.

Figure 4.6: The dependence within the
red circle is an example of the so called
“copy” dependency.

The last step towards the construction of a

streaming-oriented graph consists of an iterative

removal of the “copy” dependencies, i.e. an

outgoing edge from the write node W of a

statement entering another nodeN , such that:

• N has no outgoing edges which en-

ters backW, causing a cycle;

• if N is a read node, the corresponding write node must not refer to the



4. PROPOSED DESIGN FLOW 87

same array asW;

• if N is a read node, its data domain - i.e. the image of the corresponding

statement ID on the reference subscript function - matches the ID ofW;

• if N is a write node, its ID is the same as ofW.

Notice that this reduction can only be made if the aforementioned write node

W does not have other outgoing edges. This operation is described by the fol-

lowing pseudocode:

Algorithm 4 Iterative Reduction of the Streaming-oriented graph
Input: the streaming-oriented graph G = (n, e)
Output: the reduced version of G
R = 0
for all write node n ∈ G do

if n has only one outgoing edge e∧e is directed to a node n ′ in a “copy” dependence relation
then

R← R ∪ (n, e,n ′)
end if

end for
while R 6= 0 do

remove r = (n, e,n ′) from R

substitute the reference to n in n ′ with n assignment’s formula
create a new write node wwith the same formula of n ′

substitute r in Gwith the single node w
ifw has only one outgoing edge e∧e is directed to a nodew ′ in a “copy” dependence relation

then
R← R ∪ (w, e,w ′)

end if
end while

Figure 4.7: The Streaming-
oriented Graph of sample2,
listing 4.4.

The obtained reduced graph no longer contains the

notion of statement, and is completely different from the

orignal DDG. This is the skeleton of the SST microar-

chitecture, and we called it Streaming-oridented Graph.

However, the streaming-oriented graph, as it is, repre-

sents only a part of the whole picture. In order to have

the Intermediate Representation (IR) of an SST, both the

computing system and the memory system must be prop-

erly characterized. In the following two subsection we

will explain the procedures to achieve this goal.
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4.3.2 Computing System Extraction

The streaming-oriented graph has provided the only

write nodes that will effectively become computation

modules of the computing system. We already stated

that to work properly, within an SST - and between

SSTs - the streams entering the filter chains of the mem-

ory system must be in the form of the entire array. Given that premise, it is obvious

that, as already described in section 3.3.2, the boundaries must be explicitly man-

aged. To do so, the following steps have to be executed:

1. Firstly, we make important remark, that comes directly from both the na-

ture of an ISL computation and also the consideration made in 3.3.3: the

array updated within the statement with the highest index - i.e. the last in

the syntactic order - must be the stencil array. We employ this information to

identify explicitly the output array (stream) of an SST, as the one updated

from the last write node;

2.

Figure 4.8: A visual rep-
resentation of the in-
stantiation of a demux.

A demux D is instantiated and associated to the last

write node L such that L → D. Note that how the

boundary is managed will be explained when the

memory system will be derived;

3. The streaming oriented-graph is traversed, and each node N whose state-

ment updates the same array of L, is also associated to D, i.e. N → D. If

more than one write node is associated to the same demux, this means that

there are different portion of the array which will be updated with different

formulae. We call these portions equivalence classes. Since the write nodes

themselves are indeed responsible of the update of these regions of the ar-

ray space, we will refer indistinctly to both regions and corresponding write

nodes as equivalence classes. We now precisely define what an equivalence

class is, as it will be also needed later.
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Definition 4.3.2. Equivalence Class. An equivalence class is the maximal set

P of points of a given array, updated within the ISL computation, such that:

• Each point of P has the same update formula;

• Each point of P is dependent on the same set of filters.

4. The process is repeated with all the remaining write nodes, whose array

updates won’t be forwarded as output of the SST. They will be only needed

to ensure the correctness of the computation of an SST.

After the pruning task of the DDG previously described, no cycles between

statements can be in place. The only kind of cyclic dependencies that can be ad-

mitted are statement’s self-dependencies. When deriving the streaming oriented-

graph, this translates into cycles between a given write node and some of its in-

put read nodes. This indicates the presence of spatial dependencies between grid

points. In this case, the write nodes involved in this cyclic dependencies require

a further treatment. From now on we will refer to:

• write nodes that enjoy this characteristic as cyclic-write nodes,

• read nodes which concur in the cyclic dependency as cyclic-read nodes.

Figure 4.9: An illustration of the cyclic de-
pendencies between the output of the cyclic-
write node and the cyclic-read node (filter)
A[i-1] of sample1, listing 4.3.

First of all, we claim that this cyclic

dependencies can only involve read nodes

whose subscript function is not of the form

f(~x) = I~x (being f(~x) = F~x + ~a where the

subscript matrix F is the identity matrix I,

and ~a = 0). This condition is trivially en-

forced by the fact that these dependencies

are between subsequent integral points of

the ID. Hence, every cyclic dependence is

indeed realized as an edge from the cyclic-write node entering a cyclic-read node

whose array reference data space (also called data domain), which is the image of

the cyclic-write node ID on the reference subscript function, partially overlaps with
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the boundary. This means that for the given cyclic-read node, there is a part of

the data space which will come from the boundary, and a part which instead is

given by the cyclic-write node’s output, which in turn means that it will take data

from two different input streams, one of which being the cyclic-write node’s out-

put itself. Therefore, cyclic-read nodes will be implemented as two distinct filters,

each belonging to a different chain, leading the cyclic-write node to have different

portions of its ID dependent on different sets of filters.

The actual arrangement of the memory system will be discussed in the next sub-

section, for now we simply mark the cyclic-read nodes with two symbolic values,

one representing the part of the data domain which overlaps with the boundary,

one representing the part which overlaps with the cyclic-write node ID, since they

will be needed in a moment. Here, we instead focus on the implications of such

a condition on the computing system. What happens is that the ID of each cyclic-

write node is partitioned into subsets which are indeed dependent on a different

set of filters, even if the formula is actually the same. Hence, they are indeed dif-

ferent equivalence classes, as previously defined, even though we will refer to them

in the rest of this subsection as sd-equivalence classes (the prepended “sd” stands

for spatial dependence), to differentiate them from the one previously derived. To

partition the original cyclic-write node ID, we need three basic information:

• the number of sd-equivalence classes,

• the ID of those sd-equivalence classes, each of them being a partition of the

original ID

• the set of input filters of each sd-equivalence class

The number of sd-equivalence classes can be computed with a simple formula.

We argue this claim with the following observations:

1. an sd-equivalence class can exist if and only if there is a spatial dependence

between computed points;

2. in the case of a single array reference involved in this dependence, the num-

ber of sd-equivalence classes is trivially two, as the data space of the array
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is divided in two from the overlap with the boundary, resulting into two

corresponding partitions on the ID;

3. in the streaming-oriented graph construction, read nodes with the same array

reference are merged;

4. hence, when there is more than one cyclic-read node, the preimage of the

array reference of their respective data domains cannot completely over-

lap, as those references have necessarily different subscript functions, and

nevertheless all are applied on the same ID.

That said, we can now define the number of sd-equivalence classes as:

Theorem 4.3.1. Number of sd-equivalence classes for a given cyclic-write node.

A given cyclic-write note w has a number of sd-equivalence classes n which is given by

the following formula:

n = 1 + k

where k is the number of cyclic-read nodes. If the number of cyclic-read nodes is k = 0,

there is only one sd-equivalence class, as indeed n is equal to just 1.

However, determining the ID of each sd-equivalence class, as well as the set

of actual input filters, is a completely different task, as it will require a specific

algorithm. This algorithm employ the original ID of the cyclic-write node and

the subscript function of each cyclic-read node. An important precondition for

the applicability of the algorithm is that it operations of intersection and difference

between polyhedra can be performed easily by employing the state of the art

library isl [112], a library for manipulating sets and relations of integer points

bounded by linear constraints.

The result is the set of sd-equivalence classes with the associated input filters and

ID. Note that the read nodes which are not cyclic-read nodes are implicitly input of

each sd-equivalence class, as they themselves are indeed implemented as a single

filter.
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Algorithm 5 sd-Equivalence Classes Extraction
Input: I: the ID of the cyclic-write node w.
Input: A: set of cyclic-read nodes ai = (fw, fnw), with a subscript function fai

.
fw is the symbolic value representing the part of the data domain which overlaps with I, while
fnw represents the part which overlaps with the boundary.

Output: E: set of equivalence classes e = (ie, re), where ie is the ID and re the set of input fw.
E← 0
P ← 0 {P is the set of the preimage portion of each ai that overlaps with I}
for all ai ∈ A do
Dai

← fai

S← Da,i ∩ I
pai
← (f−1

ai
(S), ai) {the first element of the tuple is the preimage, the second is the identifier}

P ← P ∪ pai

end for
i0 ← ∩ipreImage(pai

), pai
∈ P

E← E ∪ e0 = (i0, F = {fw(ai) |∀ai ∈ A})
i1 ← I− (∪ipi, pi ∈ P)
if i1 6= 0 then
E← E ∪ e1 = (i1, 0)

end if
while P 6= 0 do
paj
← firstElement(P)

Temp← P − paj

inew ← preImage(paj
)

rnew ← 0
rnew ← rnew ∪ fw(identifier(Pai

))
while Temp 6= 0 do
tak
← firstElem(Temp)

Temp← Temp− tak

iold ← inew

inew ← inew ∩ preImage(tak
)

if inew = 0 then
inew ← iold

else
rnew ← rnew ∪ fw(identifier(tak

))
end if

end while
for all pai

∈ P do
preImage(pai

)← preImage(pai
) − inew

if preImage(pai
) = 0 then

P ← P − pai

end if
end for
E← E ∪ e = (inew, rnew)

end while
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The complexity of the proposed algorithm is O(n2) in the worst case, where

n is the number of cyclic-read nodes. However:

• the worst case occurs only when the number n is very small (near to 1),

• in real world cases, n is always small enough

for the algorithm to terminate in an affordable

time.

4.3.3 Memory System Derivation

In order to characterize the memory system, the

following steps have to be performed for each write

node:

1. The cyclic-read nodes - whenever present - are splitted in two, and imple-

mented as two different filters, for the previously described reason. The

remaining read nodes will be implemented as a single filter. Filters are then

clustered according to both the corresponding array name and the input

stream - i.e. whether it is the output of the write-node or not - to obtain the so

called chains. In order to disambiguate, the different chain will be referred

hereafter as:

• output-chain, the one whose input stream is the cyclic-write node’s out-

put. This chain could be absent, whenever the write node is not a cyclic

one.

• input-chain, the other chain whose array is the same as the one updated

by the write node.

• the remaining will be simply referred as generic chains.

2. Whenever a chain contains more than one filter, those filters are ordered

from the lexicographic maximum, to the lexicographic minimum. The in-

put stream will enter the maximum and flow following the reverse lexico-

graphic order, up to the minimum, which means that those filters are linked

together by the input stream. Those links, which are indeed communica-

tion channels between the filters, will effectively implement the optimal
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Full Buffering (FB), employing a non-uniform memory partitioning of the

input stream. The channels size are in fact computed as the modulus of

the data distance vector of a fixed and common - but nevertheless arbitrary

- iteration between the subscript function of the filter which writes in the

communication channel and the subscript function of the filter which reads

from the communication channel.

The partitioning is non-uniform because the communication channels (the

buffers) size will be non-uniform, shaped following the access patterns. The

microarchitecture is optimal with respect to FB as those buffers will be both

in the minimum possible number, given that all the array accesses can be

done concurrently, and with the minimum possible size that can allow full

data reuse. We chose a reverse lexicographic ordering of filters within the

chain because, considering the fact the input stream arrives following the

lexicographic order, the opposite ordering of the chain would make it not

work properly. In fact, a lexicographic ordering of the chain would lead to

have the first filter to start filtering data to the computation system before

the others could even read from the input stream. As we employ, in or-

der to have independent modules, blocking read and writes, the first filter

would stall waiting for the computation to proceed, also stalling the input

stream flow, and thus causing a deadlock. In summary, we can define the

conditions for the proper structuring of a chain as:

Definition 4.3.3. Chain Structuring Conditions. A chain of ordered filters

{f1 → f2 → ... → fn} related to an array A must be compliant to the fol-

lowing two rules in order to have FB being also be deadlock-free:

• For every couple fi and fj such that i < j, then

fi �l fj

• The size W of a communication channel between a filter fi with sub-

script function f iA and a filter fj with subscript function f jA must be

W > | δ(ν,ν)f iAf jA
|

IfW is minimal ( = ), the FB is also optimal.
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3. As stated before, there is also the boundary of the output array to consider.

Within the input-chain the filter whose data domain perfectly overlaps with

the ID, i.e. for which the subscript function is f(~x) = I~x (intuitively, this

is the “central” node of the chain), will be the one demanded to route the

boundary towards the demux. If eventually this node is not present (the

stencil shape does not include the “central” point, i.e. the update of a grid

point is performed without reading the previous value), it will be added

and its functionality will only be to route the boundary.

4. Each remaining communication channel, indeed every channel within an

SST except the one inside a chain, will be of size 1.

(a) sample1, listing 4.3. (b) sample2, listing 4.4.

Figure 4.10: The resulting chains for both samples.

4.3.4 SST IR and Code Generation

The purpose of the previous phases was to extract from the input rSCoP all

the information needed to enable the actual implementation of an SST as an hard-

ware microarchitecture. At the end of these phases, the information is encoded

in the form of an IR. This IR indeed contains:

• For each filter:

– an identifier
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– Its data domain, which is the filtering condition

– The input and output streams, i.e. the input and output communica-

tion channels

• For each equivalence class:

– an identifier

– Its ID

– The array update formula

– The input communication channels, as well as the output one

• For each communication channel:

– an identifier

– Its minimum size

Information on the demux are not needed - they would be indeed redundant - as

its structure can be inferred by the ID of the associated equivalence classes.

From the SST’s IR the hardware equivalent is generated employing High

Level Synthesis (HLS), hence, it is required to generate the code for each module

of the microarchitecture: demuxes, equivalence classes and filters.The communi-

cation channels will be implemented as First In First Outs (FIFOs) queues.

The modules code can be easily generated using the state of the art tools of the

PM, the most important of which is CLooG [3], integrated with the additional

information we need in our case, such as read and write instructions on respec-

tively input and output ports of the communication channels. There are however

two important remarks about the SST code generation:

• The boundary transfer is made with a single channel from the filter to the

demux. No additional modules will be inserted in between, as they are in-

deed unnecessary;

• The equivalence classes could in principle be implemented within one sin-

gle module. As a matter of fact, doing so would force the code generation
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phase to insert conditionals inside the loop nest. The presence of condi-

tionals in the synthesized module can however lead to unnecessary con-

trol overhead, which can result in an overall slow-down or even in the im-

possibility to reach timing closure, considering that update formulae when

synthesized may already themselves require a non negligible number of

clock cycles. In order to avoid this situation, we decided to implement each

equivalence class as a single module, with the aim of having generated

code that is as simple as possible. Notice that whenever an equivalence

class takes as input constants - but also array with constant subscript func-

tion f(~x) = ~a - the actual read instruction will be placed at the beginning of

the generated code, before the loop nest, since they will not change during

the computation, thus they are needed to be read only once.

(a) sample1, listing 4.3.

(b) sample2, listing 4.4.

Figure 4.11: A representation of the resulting SSTs for both samples.
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4.3.5 Pipelining the SST

Once the chains are running steadily, they are able to send new data to the

computation system within a very small number of clock cycles. It will be how-

ever very likely that the equivalence classes will not be able to produce new output

at the same ratio, since there is a complexity gap between the synthesized circuit

of an equivalence class and a filter, due to the fact that equivalence classes are

demanded to perform the actual computation, while a filter’s purpose is only to

route the data stream, which result in a substantial difference in latency.

Hence, to increase the overall throughput it is quite obvious that equivalence

classes must be speeded up. In a streaming system, pipelining the computation

is a well suited technique that can effectively help to increase the overall through-

put. Therefore, in our case a speed up could be obtained by pipelining the equiv-

alence classes. This has proven to reduce the execution time by orders of magni-

tude, as will be shown in chapter 5.

However, care must be taken in using this type of optimization, because it could

lead to situations of deadlock. If we indeed consider the fact that blocking reads

and writes are used from every SST module, a pipeline of an equivalence class

could stall because of the absence of input data, and thus produce no output.

A stalled equivalence class could lead to block the computation whenever the

demux is listening on its communication channel and the memory system has

instead started to feed another equivalence class, that cannot proceed as its com-

munication channel towards the demux will be full before the demux could even

start to read from it, causing then a deadlock. This situation can be explained

better with an example.

Let us consider an SST with two equivalence classes: the first being the bound-

ary EC0, the second being the computation part EC1 with a pipeline of depth p.

At the beginning of the computation, the demux D starts to read data from the

memory systemM through the communication channel of EC0, and after a while

begin to read on the communication channel with EC1. Meanwhile, EC1 reads

the needed data fromM, and since it is pipelined, it reads fromM at every clock

cycle, not producing however any output before p clock cycles has passed.
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Figure 4.12: A deadlock condition occurred because EC1 is fully pipelined.

M finishes to send data to EC1 in k < p clock cycles, and begin to send again data

towards EC0. The pipeline of EC1 is then stalled.D is still waiting to read the first

output of EC1 on its communication channel, thus it will not take any data from

the channel of EC0. M soon fills the communication channel of EC0 with D, and

then stall, as it cannot proceed because it has no space to write. This is indeed a

deadlock, asM, EC1 and D are all stalled and cannot proceed.

There are two solutions to this problem:

• The communication channels between the memory system and any equiv-

alence class could be oversized, thus allowing the memory system to pro-

ceed even if the equivalence classes are stalled. However, this solution has

two important drawbacks. The first is that if those channel are oversized,

than the SST will not anymore enjoy the property of having optimal FB. The

second and most important is that to compute the communication channels

size the pipeline depth of each equivalence classes must be known, some-

thing that in general is not easy to do.

• Only the innermost loop of each equivalence class is pipelined, which result

into the flushing of the pipeline right when the memory system starts to

send data to another equivalence class. This hence allows the production
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of the output of the equivalence class, that cannot stall anymore, avoiding

completely the possibility of a deadlock within an SST. This solution will

be further detailed in chapter 5.

There is a last, important, remark to be made. In the case of the presence of

spatial dependencies, the related equivalence classes cannot be pipelined, as the

input of some of them will depend from their output, recombined by the demux,

resulting in a cyclic dependency that will surely lead to a situation of deadlock.

This is a structural limitation, and cannot be resolved in any way.

4.3.6 Scaling on the Problem Size

As already stated in section 3.3.1, whenever the available on-chip memory

is not large enough to allow the instantiation of all the communication chan-

nels, there is always the possibility to tackle the problem by trading bandwidth

requirements for on-chip memory usage. In practice, this means that there is al-

ways the possibility to remove the largest communication channel and and re-

place it with an additional input data stream from the off-chip memory. The

process could be repeated iteratively until the overall memory requirements are

compatible with the available resources. Notice that this trade-off possibility is

however limited - obviously, though - by the available off-chip bandwidth.

Figure 4.13: A communication channel is removed, to reduce the memory space requirements, and
substituted with another off-chip access.
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As last observation, although it could lead to a decrease of the overall perfor-

mance, some FIFO channels could be implemented as distributed SRAM FIFOs

(LUT-based) instead of BRAM-based, in order to balance the usage of the dif-

ferent components. This could be another solution to allow the scaling on the

problem size.

4.4 The SSTs Queuing Technique

The functionality of an SST is, as

already stated, to perform the com-

putation within a single time-step.

Hence, having an hardware accelera-

tor made up of a lone SST would mean

that, in order to perform more time-

steps, the same SST should be em-

ployed over and over again, transferring back and forth data from the off-chip

memory to the accelerator itself. These frequent off-chip memory transfers can

effectively bound the achievable performance, as an off-chip memory access is

definitely much more expensive in terms of latency compared to data transfers

within the accelerator. This is an already seen issue for ISLs, their inherent mem-

ory boundedness is in fact the reason why obtaining high performance with ISLs

is in general a hard task. A possible solution to this problem could be to have a

technique to limit as much as possible the off-chip memory transfers, exploiting

the available hardware resources to offload not only the computation within a

single time-step, but also the data transfers across time-steps. The SSTs queuing

is exactly such a technique.

Its key point is that multiple SSTs are arranged in a queue fashion, which

means that, within the queue, the output of one SST is the input of the next.

Off-chip memory transfers occurs then only at the beginning and at the end of

the queue. This implies that having a queue of arbitrary length or a single SST

will involve the same amount of off-chip/on-chip memory transfers, which in turn
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means that the bandwidth requirements will remain constant. Therefore, the mem-

ory boundedness degrades progressively as the queue length increase, since a

greater volume of computation will be performed with the same bandwidth re-

quirements.

The queuing technique takes its advantage from a peculiarity of the single SST:

its streaming-based computation. In fact, the continuous data flow ensured by a

streaming system allows, within this context, to have a pipelined computation in

the SSTs queue. As a matter of fact, the SST can be viewed as a set of Processing

Elements (PEs) connected in series, each operating on a “portion” of the stream,

i.e. as soon as an SST produces data, this data will flow into the queue in order to

be processed by the subsequent SSTs. A streaming-based computation of an SST

allows then to have, at a certain point, a concurrent processing of all the SSTs,

therefore, as previously stated, a pipelined computation.

Figure 4.14: A visualization of the pipelined execution within the queue.

We claim that employing the SSTs queuing will speed up the ISL computation,

and hence the throughput, by a pseudo-linear factor, dependent on the number of SSTs

instantiated within the hardware accelerator, i.e. the queue length. We provide a

simple proof of this claim.

Proof. Let us model the completion time C of a given ISL when using an SST as

hardware accelerator. We take as reference the state of a single grid point between

two subsequent time-steps, thus:

C = T ∗ (N ∗ (min + sst+mout))

where T ∈ N is the total number of time-steps,N ∈ N is the total number of points

to be updated, min ∈ N is the number of clock cycles a given point takes to be



4. PROPOSED DESIGN FLOW 103

transferred from the off-chip memory to the hardware accelerator, sst ∈ N is the

number of clock cycles spent from an SST to actually update it, and mout ∈ N is

the number of clock cycles it takes to be transferred back to the off-chip memory.

Then, if we employ queuing, with a queue of length q ∈ N, the completion time

Cq is:

Cq = T
q ∗ (N ∗ (min + q ∗ sst+mout))

Consider nowmin +mout to be equal to sstmultiplied by a certain constant

k ∈ R, hence:

min +mout = k ∗ sst

the previous two formulae now become:

C = T ∗ (N ∗ ((k+ 1) ∗ sst)) and Cq = T
q ∗ (N ∗ ((k+ q) ∗ sst))

If k � q, which in turn means k � 1, as obviously q > 1, we can perform these

approximations:

k+ 1 ≈ k and k+ q ≈ k

Therefore:

C ≈ T ∗ (N ∗ k) and Cq ≈ T
q ∗ (N ∗ k)

Cq ≈ C
q

Even without the approximation made above, the same proof would still hold

whenever T or N are large numbers. Indeed, if:

T ∗N� q and T ∗N� min + sst+mout

it would mean that:

T ∗N ∗ (min + sst+mout) ≈ T ∗N ∗ (min + q ∗ sst+mout)

hence, as before:

C ≈ T ∗N and Cq ≈ T∗N
q

Cq ≈ C
q

Remark. The speedup is pseudo-linear because of the approximation k + q ≈ k

made in the first case, or of the approximation T ∗N∗(min+sst+mout) ≈ T ∗N∗

(min + q ∗ sst +mout) made in the second. Furthermore, the effect of queuing,

whenever T andN are small, could in principle be mitigated if the queue length q

reaches the same order of magnitude of k, which, however, is a difficult condition
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to be achieved, considering the possibility of queue looping, a concept that will be

explained in a moment.

The proof is also not exact, as indeed it assumes implicitly in the first case

that the transfer time is much greater than the time spent within an SST, min +

mout � sst, which is however true in most cases, as it will be empirically proven

in chapter 5, or in the second case that T and N are large numbers, which is also

quite common in real ISLs.

4.4.1 Queue Length Estimation

Within the proposed design automation flow, the queue length estimation is a

process that takes as input:

• The estimated resource usage of an SST given from the HLS, but also the

resource usage of the communication channels, both platform dependent;

• The resource vector Rmax which represents all the available resources;

• The total number of time-steps of the ISL.

By employing this information, the estimation process can actually be repre-

sented as simple division between Rmax and the sum of the needed resources

for both the communication channels - also those necessary to forward data from

one SST to the other - and the SST, limited however, whenever the number of

time-steps t is relatively small, by the obvious constraint that the queue length q

must be q 6 t. This limitation is nevertheless virtually nonexistent as in general

ISLs are characterized by a very large number of time-steps.

Interestingly, it should be noticed that there is an analytical bound to the queue

length, and therefore a maximum numberQmax of iterations to be queued. When

this analytical bound is reached, the stream can then flow back again in the queue

instead of being transferred back to the off-chip memory, thus reaching the maxi-

mum achievable speed-up. We call the condition for which the hardware acceler-

ator is able to perform all the iterations of the ISL queue looping.
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Definition 4.4.1. Qmax estimation. An SST holds a fraction f of the sum of all the

array involved in the computation, whose total size is SA, hence:

f = SA

k

Therefore, the number of SSTs to be queued in order to perform queue looping is:

Qmax = min{q |
∑

q f > SA , q ∈ N}

In order to allow the queue looping, we already stated in section 3.3.2 that a

mux must be added to the accelerator (figure 3.1 (c) ), hence when estimating the

total resource usage, the presence of the mux must be taken into account. This

also happens when the queue length is not an exact divisor of the total number

of time-steps, as the mux will break the queue when the total number of time-

steps of the ISL are executed (figure 3.1 (b) ). Notice that a mux is indeed very

similar to a filter, since its functionality is simply of routing the streams. There-

fore, generating the code for a given mux can be made in the exact same way as

of a filter.

Lastly, we recall, as shown in figure 4.1, that the actual implementation of

the hardware accelerator could be an iterative process, since the estimated queue

length may be too high to be able to instantiate the accelerator, whenever the

available resources are not enough. This is indeed a platform related situation,

as it depends on the accuracy of the resource estimation provided by the specific

HLS tool. A simple solution could be to iteratively decrement the queue length

until the accelerator fits onto the available resources.

4.4.2 Handling More than One Input

The solution to handle more than one input array when performing the SSTs

queuing has already been described in section 3.3.2 (figure 3.4). The only detail

that must be added is that in such a case, the HLS must produce two different

versions of the SST: one with the added streams, and one with the only actual

output. The filter within a chain demanded to forward the data will be the first.

The way in which they are arranged is determined within the module integration

phase.

There is however an additional remark that must be done when dealing with
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more than one input array, i.e. the possibility of deadlock when pipelining is en-

abled within an SST. This is indeed an extension of the problem already analyzed

in section 4.3.5. Since an SST is a streaming-based microarchitecture, the chains

which have the added communication channels will be forced to forward the

data to the next SST as they read it, which by the way corresponds to the moment

in which they forward it to their computing system. This means that those chains

can stall whenever the next SST does not empty these communication channels,

which by the way are of size 1. In order to explain how the deadlock can occur, let

us now consider two SSTs, S1 and S2, S2 being the subsequent in the queue. both

S1 and S2 are pipelined. S1 will not produce any output - except the boundary -

until the first equivalence class E1 has not computed data to be forwarded to its

demuxD. E1 reads from a chain C1 that forwards also the data to the chain C2 of

S2. S2 is however stalled waiting for the stream ofD. the communication channel

between C1 and C2 is filled within few clock cycles, as is indeed of size 1, causing

C1 to stall trying to write onto a full channel. The fact that C1 is stalled will cause

also E1 to stall, as it cannot proceed until C1 does not provide the needed input.

This overall stall cannot be recovered, causing a deadlock.

Figure 4.15: The deadlock condition that can occur when queuing pipelined SSTs with multiple
inputs.

The solution to this problem is to oversize only the added communication

channels - the one demanded to forward the multiple inputs - between SSTs, in

order to allow the related chain to proceed even if the subsequent SST is actu-

ally stalled. The size of these communication channels can be computed as the

largest iteration vector size among all the innermost loops of an rSCoP, given that

however only the inner loop of each equivalence class is pipelined, as described
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in section 4.3.5.



5

Results

The focus of this Chapter is to prove the validity of the proposed accelerator.

The experimental results are presented in Section 5.3, preceded by the description

of both the experimental setup in Section 5.1, and the used benchmarks in Section

5.2.

5.1 Experimental Setup

To test the proposed hardware accelerator we employed the Vivado Design

Suite [11]. The Streaming Stencil Time-step (SST) microarchitecture derivation

has been partially aided by state of art polyhedral tools, and partially done by

hand. We performed the polyhedral analysis phase with:

• Clan [2] (Chunky Loop ANalyzer), to extract a polyhedral Intermediate Rep-

resentation (IR) from the source code;

• Candl [1] (Chunky ANalyzer for Dependencies in Loops), to compute polyhe-

dral dependencies, and thus the corresponding Data Dependency Graph

(DDG), from the polyhedral IR.

The SST’s modules have been implemented using Vivado HLS (v2014.3.1). This

tool enables implementing the modules with C language and exporting the cor-

responding Register-Transfer Level (RTL) as a Vivado’s Intellectual Property (IP)

108



5. RESULTS 109

core. The reader may refer to section 2.3 for further details about High Level Syn-

thesis (HLS).

Both SST’s modules integration and queuing have been performed using Vi-

vado (v2014.3.1), used also to synthesize and implement the resulting RTL. Syn-

thesis and implementation have been performed with an Intel Core i7-3630QM,

featuring an 8GB DDR3 RAM. These specifications allowed to push queuing only

to a fraction of the total available resources, since beyond a given percentage of

the total area we systematically ran out of memory during place and route.

All the tests have been performed on the VC707 board, which has a Xilinx

Field Programmable Gate Array (FPGA) chip Virtex-7 XC7VX485T. Along with

other resources, the board features a 1GB DDR3 RAM, which we also employed

in our tests as reference off-chip memory.

Figure 5.1: The VC707 board. Image taken from the product site.

In order to perform the actual testing, we have also implemented onto the

Virtex-7 an embedded system, mainly composed of the following parts:

• An host processor, the MicroBlaze, a soft processor core designed for Xilinx

FPGAs. Since it is a soft processor, it is entirely implemented within the fab-

ric of the Virtex-7. To program it and hence drive the whole testing phase,

we used Vivado SDK (v2014.3.1).

• A memory interface towards the 1GB DDR3, implemented through a mem-
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ory interface generator, to which we attached one or more Direct Memory

Accesses (DMAs) according to the needs of the specific test case.

• A timer, thanks to which we have measured the total number of clock cycles

required by the accelerator.

The operating frequency we used to generate the HLS modules, and to which we

put the entire system, in all our tests, is 200MHz.

5.2 Test Cases

Let us now focus on the three benchmarks we chose to test our accelerator.

Two of them belong to PolyBench/C [8], which is a collection of benchmarks con-

taining Static Control Parts (SCoPs), designed to test polyhedral based optimiza-

tions, and are jacobi-2D and seidel-2D. The third is taken from the FASTER’s [4]

implementation of Reverse Time Migration (RTM), and is the function do_step.

The rationale beyond these choice is that the three benchmarks are three relevant

case studies, as indeed:

• jacobi-2D is the simplest of the three, but due to its nature it is well suited

to perform queuing. As previously stated, our limited computational re-

sources forced us to limit the queue length in order to successfully complete

the accelerator synthesis and implementation. However, with jacobi-2D, we

were still able to push queuing up to a considerable number of SSTs with-

out running out of memory during the synthesis process.

• RTM’s do_step is a 3-dimensional, compute- and memory-intensive Iterative

Stencil Loop (ISL) with variable coefficients, and thus multiple input arrays;

• seidel-2d contains spatial dependencies between grid points updates, hence

it has no parallelization opportunities.

All three benchmarks have been carried out with single precision floating point

data types.
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5.2.1 Polybench/C Jacobi 2-D

1 for (t = 0; t < T_Step; t++){

2 for (i = 1; i < N-1; i++)

3 for(j = 1; j < M-1; j++)

4 B[i][j] = 0.2*(A[i][j]+A[i][j-1] + A[i][1+j] + A[1+i][j] + A[i-1][j]);

5 for(i = 1; i< N-1; i++)

6 for(j = 1; j < M-1; j++)

7 A[i][j] = B[i][j];

8 }

Listing 5.1: Polybench/C Jacobi 2-D

The Jacobi method is a popular algorithm for solving Laplace’s differential equa-

tion on a square domain, regularly discretized. As can be seen from listing 5.1, it is

a 5-points ISL, and within a single time-step it does not have spatial dependencies

between updates of points. The number of Floating Point Operations (FLOPs)

for the update statement, line 4, is 5, being 4 sums and a multiplication. For this

benchmark, we used a problem size where N = 1080 and M = 1920, thus being

a FULL-HD array.

5.2.2 FASTER RTM 3-D

RTM is a powerful seismic imaging method for the interpretation of steep-

dips and subsalt regions. Since the original implementation of the FASTER’s ver-

sion of RTM was not suitable to be successfully analyzed by our methodology,

we focused on the only do_step function, the one responsible for the actual sten-

cil update. We slightly modified it to be used as an effective benchmark, and

the result is presented in listing 5.2. It is a 31-points, 3-dimensional ISL, and it

also employs multiple arrays during the computation. In this case the number

of FLOPs of each array update is 51. The problem size we chose is 100x100x100,

being the first of the three used by the FASTER’s implementation itself.
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1 for (t = 0; t < T_Step; t++){

2 for(i=5; i < N-5; i++){

3 for(j=5; j < N-5; j++){

4 for(k=5; k< N-5; k++){

5 pp[i][j][k]=(2.0*p[i][j][k]-pp[i][j][k]+dvv[i][j][k]*(

6 p[i][j][k]*c[0]

7 +c[1]*(p[i+1][j][k]+p[i-1][j][k])

8 +c[2]*(p[i+2][j][k]+p[i-2][j][k])

9 +c[3]*(p[i+3][j][k]+p[i-3][j][k])

10 +c[4]*(p[i+4][j][k]+p[i-4][j][k])

11 +c[5]*(p[i+5][j][k]+p[i-5][j][k])

12 +c[6]*(p[i][j+1][k]+p[i][j-1][k])

13 +c[7]*(p[i][j+2][k]+p[i][j-2][k])

14 +c[8]*(p[i][j+3][k]+p[i][j-3][k])

15 +c[9]*(p[i][j+4][k]+p[i][j-4][k])

16 +c[10]*(p[i][j+5][k]+p[i][j-5][k])

17 +c[11]*(p[i][j][k+1]+p[i][j][k-1])

18 +c[12]*(p[i][j][k+2]+p[i][j][k-2])

19 +c[13]*(p[i][j][k+3]+p[i][j][k-3])

20 +c[14]*(p[i][j][k+4]+p[i][j][k-4])

21 +c[15]*(p[i][j][k+5]+p[i][j][k-5])

22 ))+source_container[i][j][k];

23 }

24 }

25 }

26
27 for(i=5; i < N-5; i++)

28 for(j=5; j < N-5; j++)

29 for(k=5; k< N-5; k++)

30 p[i][j][k]= pp[i][j][k];

31 }

Listing 5.2: Modified do_step of FASTER’s RTM 3-D

5.2.3 Polybench/C Seidel 2-D

1 for (t = 0; t < T_Step; t++){

2 for (i = 1; i < N-1; i++)

3 for(j = 1; j < M-1; j++)

4 A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]

5 + A[i][j-1] + A[i][j] + A[i][j+1]

6 + A[i+1][j-1] + A[i+1][j] + A[i+1][j+1])/9.0;

7 }

Listing 5.3: Polybench/C Seidel 2-D

The Gauss-Seidel method is an iterative method used to solve a linear system of

equations. The corresponding PolyBench/C’s version, presented in listing 5.3, is

a 9-points ISL that has spatial dependencies between points. In fact, since each

update of an iteration depends upon all previously computed points, the updates
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cannot be done simultaneously as in the Jacobi method, enforcing a sequential

execution. The number of FLOPs of each array update is 9, being 8 sums and

a division. As for jacobi-2D, for this benchmark we used a problem size where

N = 1080 andM = 1920, thus being also in this case a FULL-HD array.

5.3 Experimental Results

In this section we present the experimental results of the previously described

benchmarks. Before actually presenting them, there is an important remark that

have to be done. In the first two benchmarks we experimented that the obtainable

performance was bounded by the embedded system we employed. Indeed, since

the datapath towards the off-chip memory was 32 bits wide, and the frequency

200MHz, the available bandwidth was 800MB/s. The estimated clock cycles of

both the pipelined versions - we are referring to the single SST test - of jacobi-

2D and RTM was cc ≈ 2millions, but the actual measurement showed a total

number of clock cycles that was cc ≈ 4millions. This performance gap is certainly

caused by the available bandwidth, as in both cases, considering the employed

problem sizes, the total transfer would exactly take a number near 4 millions of

clock cycles, indeed cctotal =
ProblemSize∗Frequency

Bandwidth .

This however does not influence the quality of the obtained results, as in fact

our purposes when performing the tests were:

• to show how the efficient usage of the on-chip memory resources realized

by an SST allows to treat problem sizes whose implementation would oth-

erwise not be possible synthesizing directly the original code via HLS;

• to show how the scalability given by the SSTs queuing ensure a pseudo-

linear increase in throughput, while remaining with constant bandwidth,

which is especially true in our case where the bandwidth was bounding

the obtainable performance.

We compared our results with the Central Processing Unit (CPU) version, car-

ried out on an Intel Core i7 2675QM with 8GB DDR3-1333 RAM. For the first two
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benchmarks, we also performed a comparison with an implementation on Max-

eler’s MaxWorkstation. We chose the first comparison to show how employing

an heterogeneous system can be highly effective with certain kinds of compu-

tations - ISL being one of them, and the second simply because the resulting

architecture of our work is in a sense related to the dataflow architecture obtain-

able with Maxeler, as previously stated in section 3.3.4. Notice that however the

bandwidth issue should be considered when comparing our results with the CPU

and the MaxWorkstation, where the available bandwidth is higher than ours. A

part from the fact that our goal was to prove the two aforementioned points, and

not to compare our results, since it would be unfair due to the described band-

width issue, there are two reasons why we did not make any comparison with

the other existing works that, as far as we know, target ISLs - or even generic

Static Affine Nested Loop Programs (SANLPs) - on similar FPGAs and employ

the same benchmarks, and we instead chose to compare our results with actual

measurements:

• All the works we inspected during our research did not provide compara-

ble results, since they usually only provide the speedup with respect to a

naive implementation, or simply they do not specify the workload (e.g. the

problem size) which are essential if a comparison have to be made.

• Even worse, almost all of them provide only the estimated results (the HLS

reports), they did not perform any real measurement on real hardware.

This is indeed a huge limitation, as in these estimations potential deviations

from the theoretical peak due to hardware constrains, such as the available

bandwidth, are not considered.
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5.3.1 jacobi-2D

Figure 5.2 shows the performance of the jacobi-2D version when pipelining

within the SST is not enabled. Notice that, since the interesting benchmarks were

those with pipelining enabled, we chose to test a queue length of only up to 2

SSTs, just to show how the throughput doubles passing from a single SST with a

queue of length 2.

(a) Throughput (expressed in GFLOPS)

(b) Power Efficiency (expressed in GFLOPS/W)

Figure 5.2: Performance measurement of jacobi-2D without pipelining enabled within the SST.

In figure 5.3 the performance of the pipelined version of jacobi-2D is reported.

In the case of jacobi-2D, we were able to synthesize up to 48 SSTs without running
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out of memory during the synthesis process. Notice how in this case the pseudo-

linear increase in throughput is even clearer than with the no-pipelining version.

Observe also that with 48 SSTs the accelerator has a power efficiency greater than

the top green500 system [5], which is of 5.271 GFLOPS/W (although in our case

we are using single precision floating point, while the green500 measurements

are done with double precision floating point). We expect to go even beyond this

power efficiency systematically with the increase of the queue length, in all cases,

due to the experimented linear scalability the SSTs queuing is able to deliver.

(a) Throughput (expressed in GFLOPS)

(b) Power Efficiency (expressed in GFLOPS/W)

Figure 5.3: Performance measurement of jacobi-2D with pipelining enabled within the SST.
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Figure 5.4 shows the resource usage of all the performed tests, expressed as a

percentage of the total available resources.

(a) without pipelining enabled within the SST

(b) with pipelining enabled within the SST

Figure 5.4: Resource usage of the accelerator for the jacobi-2D benchmark.
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Table 5.1 summarizes the results of all tests performed with jacobi-2D, and

reports also the results of the CPU and the MaxWorkstation.

Table 5.1: jacobi-2D

Throughput Power Efficiency LUT FF DSP BRAM

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU Sequential 1.662 0.066 - - - -
CPU 8 Threads 6.688 0.268 - - - -
MaxWorkstation 0.449 - - - - -
Naive N.A. N.A. N.A. N.A. N.A. N.A.
1 SST w/o Pipeline 0.030 0.011 0.444 0.668 0.464 0.388
2 SSTs w/o Pipeline 0.061 0.021 0.904 1.364 0.929 0.777
1 SST 0.490 0.171 0.696 1.089 0.679 0.388
2 SSTs 0.987 0.337 1.408 2.216 1.357 0.777
8 SSTs 3.887 1.191 5.083 8.500 5.429 3.107
32 SSTs 15.074 4.051 21.376 29.680 21.714 12.427
48 SSTs 23.596 5.775 31.931 40.847 32.571 18.641

Notice that the naive implementation, i.e. the one consisting of a direct syn-

thesis of the original source code via HLS, could not fit on the board since the

total available Block RAM (BRAM) is not enough to hold the entire involved

data.

In the case of jacobi-2D, due to the absence of spatial dependencies within

points update, a strongly hand-tuned parallel version have been also tested on

CPU, where all the eight available cores have been employed.
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5.3.2 RTM do_step

As for jacobi-2D, the first results are for the version without pipelining, shown

in figure 5.5.

(a) Throughput (expressed in MFLOPS)

(b) Power Efficiency (expressed in MFLOPS/W)

Figure 5.5: Performance measurement of RTM do_step without pipelining enabled within the SST.

In figure 5.6 we instead report the performance of the pipelined version of

RTM do_step. Notice that we could not synthesize more than 4 SSTs without

running out of memory during the synthesis process. The graphs shows how-

ever a linear increase in throughput even in this case. Due to the fact that this

ISL employs multiple arrays in the computation, when performing queuing two

different versions of the SST have to be used (as described in section 4.4.2): the
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first has a single output - the array updated by the ISL - and is placed at the end

of the queue, the second also routes the other involved streams, and is the one

replicated within the queue. The second version is responsible to perform more

operations, namely the forwarding of the other streams, hence it is a bit slower.

For this reason, the throughput from 1 SSTs, where there is only the first SST ver-

sion, to 2 SSTs, where both versions are in place, does not exactly double. From 2

SSTs onwards, since increasing the queue length consists in the replication of the

second version of the SST, the trend is instead as expected.

(a) Throughput (expressed in GFLOPS)

(b) Power Efficiency (expressed in MFLOPS/W)

Figure 5.6: Performance measurement of RTM do_step with pipelining enabled within the SST.
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In figure 5.7 we report the resource usage of all the performed tests, as for

jacobi-2D.

(a) without pipelining enabled within the SST

(b) with pipelining enabled within the SST

Figure 5.7: Resource usage of the accelerator for the RTM do_step benchmark.
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Table 5.2 summarizes the results of all tests performed with RTM do_step,

and reports also the results of the CPU and the MaxWorkstation.

Table 5.2: RTM do_step

Throughput Power Efficiency LUT FF DSP BRAM

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU Sequential 2.271 0.091 - - - -
CPU 8 Threads 5.084 0.203 - - - -
MaxWorkstation 3.138 - - - - -
Naive N.A. N.A. N.A. N.A. N.A. N.A.
1 SST w/o Pipeline 0.045 0.014 4.122 5.609 3.286 15.049
2 SSTs w/o Pipeline 0.088 0.024 8.320 11.776 6.571 30.243
1 SST 1.569 0.450 5.996 8.100 4.679 15.049
2 SSTs 2.048 0.512 12.046 16.267 9.357 30.243
3 SSTs 3.065 0.720 18.095 24.494 14.036 45.437
4 SSTs 4.075 0.853 24.139 32.448 18.714 60.631

Even in this case, the naive implementation could not be implemented as it

exceeds the total available on-chip memory requirements.

As for jacobi-2D, the absence of spatial dependencies has allowed to perform

tests also on a strongly hand-tuned parallel version on the CPU.
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5.3.3 seidel-2D

This ISL has spatial dependencies within points updates, thus a pipelined

version cannot be obtained. Hence, only a no-pipeline version has been tested,

for which performance and resource usage are reported respectively in figure

5.8 and figure 5.9. We remark that in this case we were able to achieve, without

running out of memory during synthesis, a queue length of 10 SSTs.

(a) Throughput (expressed in MFLOPS)

(b) Power Efficiency (expressed in MFLOPS/W)

Figure 5.8: Performance measurement of seidel-2D without pipelining enabled within the SST.
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Figure 5.9: Resource usage of the accelerator for the seidel-2D benchmark.

As for the previous two benchmarks, table 5.3 summarize all the results. Due

to the presence of spatial dependencies enforce a sequential execution, no parallel

CPU implementation could be tested.

Also in this case, the naive implementation could not be implemented, as it

exceeded the total available on-chip memory.

Table 5.3: seidel-2D

Throughput Power Efficiency LUT FF DSP BRAM

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU Sequential 0.777 0.049 - - - -
Naive N.A. N.A. N.A. N.A. N.A. N.A.
1 SST w/o Pipeline 0.053 0.018 4.670 5.477 1.714 0.583
2 SSTs w/o Pipeline 0.106 0.033 9.331 10.994 3.429 1.165
8 SSTs w/o Pipeline 0.421 0.098 37.311 41.276 13.714 4.660
10 SSTs w/o Pipeline 0.525 0.113 46.715 52.877 17.143 5.825
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Conclusions and Future Work

This final Chapter provides the thesis conclusions, in Section 6.1, and the en-

visioned future work, in Section 6.2.

6.1 Conclusions

In this work, we proposed an hardware accelerator to target Iterative Stencil

Loops (ISLs), consisting of a queue of microarchitectures demanded to perform

a single ISL time-step, the Streaming Stencil Time-step (SST). The power of this

accelerator lies in the fact that an SST is able to efficiently exploit the available re-

sources realizing an optimal Full Buffering (FB), but also that the queuing ensure

a linear increase in throughput with the increase of the queue length, i.e. the num-

ber of SSTs within the queue, without increasing the bandwidth demand, which

is indeed constant regardless of the queue length. We also proposed a design au-

tomation flow to derive the accelerator automatically from the original source

code, employing the Polyhedral Model (PM) in combination with the High Level

Synthesis (HLS). Experimental results clearly show that the efficient usage of the

on-chip memory resources realized by an SST allows to deal with problem sizes

that would otherwise be untreatable with a direct synthesis of the original code

via HLS, as well as that the SSTs queuing technique ensure a pseudo-linear in-

crease in throughput obtained with constant bandwidth requirements. Also, the

comparison made show that the proposed accelerator has the potential to out-

125
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perform all the state of the art solutions thanks to its inherent scalability, but also

that the delivered power efficiency rivals the currently available top power effi-

cient systems, and is expected to grow linearly with the increase of the number

of SSTs within the queue.

6.2 Future Work

We envision a number of further developments of the proposed work. The

first is obviously to implement the automatic framework that realize the pro-

posed design automation flow, following the algorithms and the directives de-

scribed in chapter 4.

Another important future work is the validation of the accelerator under

a multi-FPGA environment, which should however be carried out flawlessly

thanks to the inherent scalability of the queuing technique, but also the test of

the queue looping, that could not be done due to the absence of enough resources

as well as the systematic memory overrun issue that limited our synthesis capa-

bilities.

Furthermore, there are two important enhancement that we foresee to un-

leash the real power of the proposed accelerator: the first is the study and devel-

opment of techniques to boost the HLS, such as for example an ASAP scheduling

of the operations inside the computation modules, which are however orthogo-

nal to this work; the second enhancement is to find a way to overcome the band-

width issue explained in section 5.3.

Another important future work is to better formalize the performance model

able to provide a performance estimation given the characteristics of the accel-

erator, i.e. the SST performance and the throughput increase given by the SSTs

queuing.

Also, another further development would be the extension of the method-

ology to deal with periodic boundary conditions, and we suggest that a proper

restructuring of the input stream should be enough.

Finally, although we target only the ISLs domain with the proposed acceler-
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ator, we envision a direct link with the entire category of Static Affine Nested

Loop Programs (SANLPs) thanks to the employment of the PM, therefore a very

important possible future work could certainly be the extension of the proposed

methodology to the entire class of SANLPs.
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