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ABSTRACT

This work presents a procedure for the acquisition and the 3D reconstruction

of the sail shapes during navigation. Large differences, in fact, exist between a

computer based design shape and the resulting flying shape due to different fac-

tors such as pressure distribution, sail trim controls and fluid structure interaction

forces. Nowadays Computational Fluid Dynamics (CFD) codes assess the yacht

performances starting from the design shape; however, the actual flying shape is

the only one truly related to moments, heeling and thrust forces. Hence the reason

for this study. Moreover, analyzing the reconstructed shape in terms of geometrical

features can be of interest for sail makers to redesign the sail and for crew members

to adjust the trim. The main goal of this work was the development of a method-

ology for data acquisition and elaboration. A Time-Of-Flight 3D based device was

realized ensuring non-contact, wide range and outdoor measurement. Its metrolog-

ical qualification was performed, including tests to assess the influence of distance,

incident angle, target material and lighting conditions. Furthermore, most efforts

were addressed to the development of a custom post process algorithm. Raw data

are acquired in terms of point cloud and several steps are required to lead to the sail

surface reconstruction. Those are primarily: registration of the different scans into

a common reference system, scene interpretation - i.e. segmentation of the cloud

to extract the sail cluster -, filtering of the data to remove outliers and to reduce

measurement uncertainty, and meshing - i.e. the creation of a surface -. The pro-

cedure was validated onto synthetic data sets representing simple scenes and onto

design sail shapes. Finally, the algorithm was exploited to reconstruct sails during

wind tunnel campaigns and even for few tests on field leading to promising results.



SOMMARIO

Col presente lavoro si descrive lo sviluppo di una metodologia volta all’acquisizione

e alla ricostruzione della forma delle vele durante la navigazione. Esistono infatti,

notevoli differenze tra la forma della vela disegnata dal costruttore e la forma che

essa assume sotto l’azione di diversi fattori quali: distribuzione delle pressioni, re-

golazioni delle vele e forze generate nell’interazione fluido struttura. Attualmente,

le prestazioni di un’imbarcazione a vela vengono valutate grazie a analisi CFD in-

cludendo nel modello le vele di progetto, tuttavia è la forma reale della vela in

navigazione la vera responsabile di sbandamento e forze di propulsione. Ecco per-

ché, la conoscenza della forma reale può risultare di particolare interesse in campo

nautico. Inoltre, un’analisi geometrica di tale forma può essere utile ai velai per

eventuali modifiche in fase di design e agli equipaggi per migliorare le regolazioni.

L’obiettivo principale è, quindi, lo sviluppo di una metodologia per l’acquisizione

ed elaborazione dei dati. Uno strumento di acquisizione basato sulla tecnologia laser

a tempo di volo è stato realizzato, garantendo misure 3D, senza contatto, ad ampia

regione di indagine, sia indoor che outdoor. La qualificazione metrologica dello

strumento è stata effettuata e ha permesso di valutare l’influenza sulla misura di

diversi fattori quali distanza dal sensore, angolo di incidenza del raggio laser, mate-

riale del bersaglio e luminosità ambientale. La maggior parte degli sforzi sono stati

rivolti allo sviluppo del software dedicato di post processing dei dati che vengono

acquisiti sotto forma di nuvole di punti. Diversi passaggi sono necessari per giun-

gere alla ricostruzione 3D della superficie velica. In particolare, sono: registrazione

di diverse scansioni in un comune sistema di riferimento, interpretazione della scena

– cioè segmentazione della nuvola al fine di estrarre il cluster della vela -, filtraggio

dei dati per eliminare gli outliers, e creazione della superficie. L’algoritmo è stato

validato attraverso test su dati sintetici, rappresentanti scene semplici, e su dati

rappresentanti la forma di progetto. Il software è quindi stato utilizzato per la ri-

costruzione di vele, sia acquisite in galleria del vento, sia in navigazione; restituendo

risultati sono soddisfacenti.
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Chapter 1

Introduction

1.1 The Research Context

Computational Fluid Dynamics (CFD) analysis has become a valuable tool in yacht

design. Compared to wind tunnel or towing tank testing it is a cost efficient tool

for analyzing aero- and hydrodynamics of design variations, allowing to alter geom-

etry systematically according to predicted forces. While CFD analysis has become

routine in hull design for the investigation of hydrodynamic forces, its application

in predicting the aerodynamics of a yacht is not yet widely exploited since mod-

elling what happens above the waterline is always a complex work. The angles of

attack of the onset flow vary greatly and regions of flow separation are inevitable.

Moreover, the geometry of the sails is usually unknown. In fact, the design shape

is just one special case of the set of possible flying shapes that a sail might assume.

The aerodynamic pressure distribution acting on the surface of the sail, the forces

resulting from rig design and trim, and the elasticity of the sail material influence

its actual flying shape in varying wind conditions. The combination of all these

factors leads to a virtually infinite number of flying shapes and, this is especially

true considering offwind sails because of the lightweight construction materials and

their relatively unconstrained nature. On the other hand, the geometry of the sails

determine the aerodynamic flow around them and the resulting forces. It is thus

of fundamental importance for the reliability of sail force predictions using CFD to

know the real geometry of the sail at given wind conditions.

It is possible, although computationally expensive, to model the areo-structural

coupling by combining CFD codes with Finite Element Analysis (FEA) of the
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sail. Up to date numerical codes still need a massive validation work on both

wind tunnel tests as well as on water testing at full scale. Direct acquisitions can

give a substantial contribution, supposing that reliable flying shapes are provided,

reflective of the realistic sailing and trim conditions.

1.2 The State Of The Art

Several contributions can be found in literature aiming at assessing sail flying

shapes. One of the first attempts in measuring the resulting shape variation of a

design shape, focusing on downwind sail in different wind conditions using wind tun-

nel tests, has been made by Razenbach and Kleene in [Ranzenbach R., 2002]. The

resulting shapes were found using a Coordinate Measuring Machine (CMM) and a

photogrammetry based technique. Photogrammetry has also been used at Politec-

nico di Milano Twisted Flow Wind Tunnel by Fossati et al. [Fossati et al., 2008]

where an in house near IR-camera camera measurement system has been devel-

oped to recover sail flying shapes during wind tunnel tests. The photogram-

metric technique has been exploited also at the YRU-Kiel Wind Tunnel, and in

[Graf and Müller, 2009] Graf and Muller presented some tests on a set of spinnakers

for an IMS600 custom design, comparing flying and design shapes, wind velocity

and wind twist impact on flying shape. More recently, in [Renzsch and Graf, 2011],

results of wind tunnel tests on two different asymmetric spinnakers have been re-

ported. As a general comment, it can be said that the photogrammetry based tech-

nique was judged accurate and relatively fast during the tunnel occupancy phase,

requiring only that digital images were recorded from at least three vantage points.

Its chief disadvantages are that it requires an intensive data post-processing and

that suffers from occlusion problem. This means that sometimes some grid points

are not properly recorded by the cameras. To overcome the problem, a large number

of cameras is required, leading to relevant difficulties in system set up in the wind

tunnel. On the other hand, CMM processes requires a longer period during the

tunnel occupancy phase (about half an hour per configuration), but yields results

within moments after the digitizing process is complete. Its principal disadvantage

is that the CMM and its operator can potentially influence the shape of the sail,

moreover it requires the user to accurately select points directly upon the surface of

the sail with the digitizing arm stylus. As far as the flying shape recovering at full

scale are concerned, a valuable research activity concerning sail shapes and perfor-
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mance measurements at full scale using a sail dynamometer boat called Fujin has

been presented in [Masuyama and Fukasawa, 1997], [Masuyama et al., 2009] and

[Fossati et al., 2008]. The sail shape was recorded using pairs of CCD (Charge-

Coupled Device) cameras: horizontal stripes were drawn on the mainsail and jib

at different heights and the image processing software retrieved shape parameters

at these sail sections, such as maximum camber, maximum draft and twist an-

gle values. The same procedure is used by several computer programs, which are

nowadays commonly available on the market aiming at analyzing sail pictures taken

onboard by means of a standard camera and providing some sail shape parameters

in a certain number of sail sections. For instance, North Sails has developed a

proprietary software called ASA (Advanced Sail Analyzer) to digitize pictures de-

riving synthetic parameters for each section that has been marked by the horizontal

stripes on the sails. Upwind sails aerodynamics with flying shapes measurements

at full scale have been also provided by the 33-foot dynamometer boat DYNA

([Hochkirch and Brandt, 1999]): for that project a system based on photogram-

metric methods was used. The hardware, which mainly consists of a set of six

digital cameras installed in fixed position on the boat, is described in details in

[Clauss and Heisen, 2000] and a grid of discrete markers applied to the sails form-

ing a grid of horizontal and vertical lines is used to define their flying shape. More

recently, in [Le Pelley and Modral, 2008], a method called Visual Sail Position and

Rig Shape (V-SPARS) aimed at measuring also downwind sails has been presented.

It is based on cameras that capture fluorescent colored stripes on the sail and on

an image processing software that produces the global coordinates of each stripe

relative to a fixed datum position on the yacht. This method has been used for

downwind sail aerodynamics investigation at full scale combining pressure and sail

shape measurements ([Motta et al., 2014], [Deparday et al., ]). The above men-

tioned background is extremely useful not only for use while racing but also for sail

design tool development which rely on a trustworthy validation process. One of

the main drawback is that these systems can recover only few horizontal sections,

deriving the relative angle between them but not being able to describe the three-

dimensional position of the leading edge, therefore not being able to reproduce with

accuracy the entire sail surfaces, which represent respectively the reference or the

input in case of FSI or CFD calculations. Moreover, these systems rely on the

assumption that the stripes remain in a horizontal plane, which is questionable for

downwind sails especially when a large range of apparent wind angle is considered.
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Considering the above, we decided to develop a new tool for the sail shape

acquisition based on Time Of Flight (TOF) technology. It allows us to perform

three dimensional (3D) measurement of the entire sail shape, overcoming the limits

of the techniques mentioned above. Moreover, it is suitable both for indoor and

outdoor environment as it is not sensible to light conditions. It presents a wide

measurement range that perfectly meets the nautical field application.

1.3 Aims And Objectives

Aware of the importance of recovering the actual flying sail shape to assess the

yacht performances, as explained so far, the current work presents an innova-

tive tool developed within the Lecco Innovation Hub Sailing Yacht Lab Project

([Fossati et al., 2013]). It concerns the realization of a new generation sail dy-

namometer boat fitted with instruments dedicated to the acquisition of data on the

behavioral variables of boat and its components at full scale, to support a scientific

approach to research activities related to sailing yachts design and performance. To

retrieve the sail shape data in dynamic situations a dedicated measurement system

has been developed, as well as a proper data elaboration procedure. In fact, the

tool considered starts from the acquisition of the geometrical information regarding

the sail shape, assumed in a specific time instant and ends with the reconstruction

of a 3D surface.

More in detail, data acquisition is performed through a LABView dedicated

software retrieving point spatial coordinates of the sampled scene. The elaboration

algorithms exploits all open source libraries. Code is implemented using C++

programming language and enclosed in a Qt Creator application. Qt Creator is

a cross-platform C++, JavaScript and QML integrated, open-source, development

environment, which is part of the SDK for the Qt GUI Application development

framework. The scripts run on a Linux operated system, in order to facilitate

the integration with external libraries. Qt Creator supplies the user interface part

of the software, while operations on data points such as visualization, filtering and

meshing are based on Point Cloud Library (PCL). PCL is a large scale, open project

for 2D/3D image and point cloud processing. Computational Geometry Algorithms

Library (CGAL) is exploited too. Once more, the CGAL Open Source Project is a

library aimed to provide easy access to efficient and reliable geometric algorithms

in the form of a C++ library.
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All the elaboration procedure steps are described in detailed in the following

chapters.

In particular, the structure of this theses counts:

� in Chapter 2, a brief description of non-contact measurements technique to

motivate the choice of the technology we considered to test, the description

of the acquisition unit and its metrological qualification;

� in Chapter 3, a discussion of all the data post processing steps such as data

registration in a reference coordinate system, the scene interpretation and

the extraction of the sail cluster, noise filtering, meshing and sail surface

reconstruction. For each steps, the most common approaches presented in

literature are discussed and combined or modified to suit our application.

Once the strategy is selected, results for tests on synthetic data and on real

acquisitions are reported;

� in Chapter 4, two study cases to present the algorithm performances on wind

tunnel and on field acquisitions;

Finally, in the Conclusion paragraph, our consideration on the developed work and

possible ideas for further improvements, such as making the algorithm more robust

and automated, are reported.
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Chapter 2

The Acquisition System

Measuring a shape consists in its sampling by using a proper technology. In case of

regular geometry shapes fewer points need to be acquired, because, since the shape

is a priori known, just its dimensions have to be measured. Instead, free-form

shapes require a large number of points in order to get a proper reconstruction,

consequently the measurement process must be optimized in terms not only of

accuracy but also of speed. A point cloud data set is created through a 3D scanner

or a depth camera; these devices register the external surfaces of an object or

scene and for each sample return the information needed to retrieve its spacial

coordinates. Basically there exist two families of methods allowing user to measure

a shape: one of them requires the contact between a probe and the surface to be

sampled (contact techniques), the other one does not (non-contact techniques).

2.1 Contact Measurement Techniques

Nowadays almost all the industrial metrology applications requiring very high accu-

racy are handled by using computer controlled Coordinate Measurement Machine

(CMM) [Huang et al., 2004]. Basically, a probe is mounted on a traversing frame

with three orthogonal axes embodying a spatial coordinate system and the points

are sampled using that probe, whose position is known with very high accuracy in

the coordinate system. In spite of its high measure performances, this technique

has two main drawbacks: it is time-consuming, because just one point is sampled

at a time, and it introduces intolerable load effects dealing with deformable shapes.

As this research is aimed to classify sail shapes, this technique cannot be used.

24



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

2.2 Non-Contact Measurement Techniques

Between the non-contact optical measurement techniques able to get a complete

3D information [Curless, 1999], [Trucco and Verri, 1998], only four of them may be

considered suitable to measure quickly and reliably big shapes: stereo vision, active

triangulation and Moiré and Time-of-Flight (TOF) scanners.

2.2.1 Stereo Vision

Optical passive measurement systems determine the 3D scene coordinates by using

the information contained in at least two images acquired synchronously. This

approach uses the principle of the triangulation: two images of the same point P,

acquired by two calibrated cameras placed in well-known positions, contain all the

information required to compute the 3D coordinates of P in the reference system

of one camera. Based on the known geometry of the vision system (see Figure 2.1),

each camera is able to find out the direction of P. This direction corresponds to

infinite points lying on a straight line passing through the camera optical center.

The second camera, suitably angled, singles out a second straight line that has to

contain the point P. Evidently the intersection of the two straight lines coincides

with the point P.

Figure 2.1: Principle of triangulation in stereo vision

The main difficulty of the method is the identification of the homologous points

in the different images. The homologous points are the points identifying the same

point in the scene. These landmarks can coincide with points easy to be identified,

like edges or corners, or they are“artificially created”by using markers or projecting

a laser spot (in this case this method is called active stereo vision). In literature
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several algorithms that reconstruct the 3D by using a suitable number of homol-

ogous points [Kobayashi et al., 1990], [Molton et al., 1998] are presented. The use

of this technique with markers is for example widespread in medical applications

[Hajeer et al., 2001]. Moreover another issue is due to the fact that real images do

introduce considerable uncertainties in the determination of the homologous points.

Thus it is necessary to use error minimization techniques in order to get the 3D co-

ordinates. The stereo vision is considered as an intrinsically dense method, because

it allows user to get 3D information without using images shot at different times.

2.2.2 Active Triangulation

In this method the triangulation is performed intersecting the straight line contain-

ing the point to be measured identified by a digital camera with a light pattern

(very often a plane) that illuminate that point. In a way the light pattern takes

the place of the second camera.

Figure 2.2: Principle of active triangulation (left) – model of scan in progress (right,
courtesy of SICK)

It follows that the camera is able to “see” only the points illuminated by the

pattern, so this method is not intrinsically dense. If a plane is projected, the in-

tersection with the scene is a curve, called profile. In order to measure a whole

object, several profiles must be acquired, so the measurement device has to be

moved. Usually the resolution is not homogeneous: its value along the scan lines is

generally much higher than between the lines. It is possible to increase the number

of the acquired profiles, but it means to increase the acquisition time and, above all,

the data processing time; this choice is a trade-off. The correspondence between

the world and the image processing is obtained through the device calibration: it

is possible either to calibrate the camera or to calibrate the whole measurement

26



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

system. Its sensibility and its measurement range are related to the relative posi-

tioning between the camera and the light pattern: an improvement of the sensibility

makes the measurement range smaller and vice versa. The device able to measure

the profile coordinates is called profilometer: it is made up of a camera, a device

that generates the light pattern and a support. Usually the light pattern is a plane

generated using a laser diode. Although a laser diode is fairly expensive, lasers

have very good qualities: the diodes are small and do not have problems related

to the heating, the light can be properly collimated and, since it is narrow-banded,

the noise due to light present in the scene can be dramatically reduced mounting

on the optics an interferential filter properly dimensioned. The complete measure-

ment device, made up of the profilometer and the motion system, is called scanner.

In a first stage the profile coordinates are expressed in the profilometer reference

system (it depends on the calibration procedure), then all the profile coordinates

are related to each other provided that the position of the profilometer when each

profile has been acquired is well-known. A profilometer can be translated, rotated

or even rototranslated, in accordance with the particular needs.

2.2.3 Moiré Interference Fringes

Moiré does not identify a well-defined technique, instead several methodologies

which share the physical principle: the interference fringe analysis [Patorski, 1993].

When two grids, made up of equispaced bright and dark stripes are superimposed,

dephase, because of the resulting mechanical interference, some interference fringes,

that lie on the surface, arise. Practically, an undistorted grid is projected and ac-

quired by using a digital camera, then the same grid is projected onto the object to

be measured. This time the grid is distorted and its phase modulation is related to

the measured object depth: this deformed grid id acquired too. The comparison of

the phases allows the user to find out the depth coordinate; the other two coordi-

nates are computed by means of the camera calibration. Basically there exist two

families of Moiré methodologies [Harthong et al., 1991]:

� Projection Moiré: a grid is projected onto the surface of the object to be mea-

sured; the interference is generated by looking at the scene through a second

grid equal to the first one, but slightly rotated [Takeda and Mutoh, 1983].

� Shadow Moiré: just one grid is used and it is placed close to the object to

be measured, which is illuminated by using a punctual source. There is a
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Figure 2.3: Projection Moirè functioning scheme

slight parallax between the light source and the user and the grid shadow

on the object interferes with the grid itself: some interference fringes arise

[D’Acquisto et al., 2002], [Dursun et al., 2003].

Figure 2.4: Shadow Moirè functioning scheme

In general Moiré methods are relative methods and are more suitable for continuous

surfaces, without sudden differences in depth, sharp edges or high curvature regions,

because they would generate phase differences difficult to be evaluated. Like stereo

vision, these techniques are intrinsically dense. Basically the analysis follows the

scheme represented in Figure 2.5.

The phase unwrap is easy to be carried out if the phase variation is less than

2π, otherwise an ambiguity in the phase value arises and this has to be tackled

by using some sophisticated algorithms. For that reason, Moirè methods are more

effective dealing with continuous and low curvature objects. The use of the Direct

and the Inverse Fourier Transform and the filtering operation in the middle is aimed
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Figure 2.5: Moirè Analysis Pipeline

to discriminate the amplitude and the phase modulation, because only the latter is

related to the depth of the measured object. Finally it is worth recalling that the

Moirè are relative measurement methods, then the shape is in general reconstructed

up to a scale factor.

2.2.4 Time-of-Flight (TOF)

The acquisition techniques explained are generally utilized for registering small

volumes, up to human figures, while for bigger shapes a different principle is used,

due to the divergence of the light patterns or to the sensor dimension requested

in the active triangulation case. For bigger targets, usually, the acquisition units

exploit the Time-of-Flight principle, which is essentially retrieving the time needed

by a light emitted to travel to the target and then return to the measurement

system [Guidi et al., 2010]. The knowledge of the time, along with the properties

of the electromagnetic wave used, allows to go back to the distance between the

instrument and the surface. Although the measure retrieved is a punctual value,

adding additional information on the tilt and span angle allows to have to all the

three dimensional coordinates for every point. Systems that utilize the principle

of the distance measure are usually referred as Laser Scanners o LIDAR (LIght

Detection And Ranging). There are two ways to measure the time of flight of the
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wave:

� Direct (pulsed) time-of-flight: the time measured is obtain with a single pulse

of light, which is shot towards the target surface, while a timer records the

instant of start and return. The time taken to travel and return is given by

the subtraction of these values.

d =
∆T ∗ c

2

Figure 2.6: Pulsed Time-of-flight principle

� Indirect (continuous wave) time-of-flight: the light emitted is a continuous,

amplitude modulated (AM) wave. The beat from the reference wave and the

returning, shifted, wave returns the information on the time searched, as it

is proportional to the shift between the two signals. When the shift exceeds

the oscillation cycle of the wave, an ambiguity is introduced, which can’t be

eliminated without the introduction of additional information.

d =
c ∗ ε

4 ∗ π ∗ f0

Figure 2.7: Continuous Wave Time-of-Flight principle - ε is the beat signal: ε =
s(t+ T0)− s(t) = signal received - signal emitted
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2.3 Choice Of The Technology

The research purpose is to analyze big free-form shapes, as are the sails, both in

a indoor, controlled environment, the wind tunnel and during output navigation.

The acquisitions have to be reliable and quite quick in many cases, due to the flap

in some sailing trim. Moiré interference fringes analysis is characterized by several

drawbacks [Marshall et al., 1998]: it is not reliable dealing with high curvature sur-

faces and it is very difficult and expensive to get a projector generating high quality

big grids, above all in an industrial environment. Moreover calibration procedure

is very complex and it is very complicated to realize during the measurement if

something is wrong. At last, analysis algorithms are not trivial and the analyzed

signals have to satisfy the periodicity conditions required by the Fourier transform

[Bendat and Piersol, 2011]: these signals also introduce problems like leakage that

does not exist using the other techniques. Stereo vision is currently used in others

works [Salzmann et al., 2007] to retrieve the sail shape, however its use is not effec-

tive in the outdoor campaign, because of the presence of strong ambient light, which

interferes with the markers detection. The same issue is present also in the active

triangulation technique and, in general, in every choice involving cameras, as they

are likely to saturate in the outdoor acquisitions. This is the main reason that lead

to the choice of a Time-of-Flight acquisition system, which is mainly unaffected by

the environment conditions. Moreover the laser scanners are able to detect without

problems large objects, which is the case, with sail up to 12/15 meters high. To

avoid misinterpretation due to ambiguities, the direct time technique is preferred.

In the following the measurement device that has been chosen and integrated is

described and characterized.

2.3.1 The Sick LMS 511 Laser Scanner

The Sick LMS 511 is a laser scanner based on time-of-flight (TOF) technology. The

operating principle is widely described both in [Reina and Gonzales, 1997] and in

[Guidi et al., 2010], while a schematic representation is reported in Figure 2.8: a

pulsed infrared laser beam at 905 nm is emitted and reflected on the target surface

back to the sensor.

The time between the transmission and the reception of the laser beam is used

to measure the distance between the scanner and the object. The sensor scans the

surrounding perimeter on a plane, thanks to a rotating mirror that deflects the laser
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beam, so the position of the object is given in the form of distance and angle, as in

Figure 2.9.

Figure 2.8: SICK Operating Principle Scheme

Figure 2.9: SICK Scanning Principle Scheme and Range of Measurement

The LMS 511 operates with many possible scanning frequencies (25Hz / 35Hz

/ 50Hz / 75Hz / 100Hz ), therefore achieving different angular steps for every

configuration. Since the field of view is 190°, with a starting angle of -5° and a

stop angle of 185°, the angular resolutions selectable are 0.167° , 0.25° , 0.333°

, 0.5° , 0.667° and 1°. We selected a value of 0.5° and fixed it for all the tests.

Thus, each scan is composed of 381 measured ranged points. According to the

manufacturer’s specifications [Sheet, 2014], the scanner can measure ranges up to

80 m for 100% of object remission with accuracy of ±12 mm at a distance of 6 m.

For a 10% target remission, the device presents for distances of 1 to 10 m a nominal

systematic error ± 25 mm and a statistical error ± 7 mm; for distances 10 m to

20 m the nominal systematic error is ± 35 mm and the statistical error ± 9 mm.

The LMS 511 itself can scan only a plane, following the prism’s rotation; to obtain
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a full three-dimensional acquisition an further movement, the tilt rotation, has to

be added. A rotation around a horizontal axes has been implemented screwing the

SICK unit to a metal plate, which is in turn connected to a servomotor. Both the

information from the laser scanner and from the servomotor are used in a dedicated

LabView software to retrieve the spacial coordinates of the point considered. The

full explanation of this work is object of [Perego, 2008].

Figure 2.10: Final configuration of the SICK LMS 511 laser scanner

2.4 Description Of The Acquisition Unit

Acquisition and saving of the data was done through a dedicated software developed

in LabVIEW environment, while the data processing was computed mostly through

Matlab scripts. 1000 measurements were performed for each configuration tested, at

a room temperature of around 20° C. A setup using a linear guide, as commonly ex-

ploited in [Ye and Borenstein, 2002], [Kneip et al., 2009] and [Alwan et al., 2005],

could not be easily realized due to the extended measure range of interest (1 to

12 m). Two different setups were utilized depending on the type of test to be

conducted.
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2.4.1 Setup A

The experimental setup for tests regarding the influence of target distance and

material properties is shown in Figure 2.11.

Figure 2.11: Setup A. Schematization of the setup components viewed from the
top and from a side.

As rectilinear reference a wall of the wind tunnel of the Politecnico di Milano

was considered, and using a Leica Total Station equispaced marks the ground were

sketched. The laser scanner was placed parallel to the wall and the planar target

perpendicular to it (see Figure 2.11 - left). In order to properly measure the dis-

tance to the target, a whole scan in the XY plane was registered and the beam

presenting the minimum distance value was detected. Then, the tilt angle of the

scanner was adjusted, moving the servomotor 0.5° each step up or down since a

minimum value for the beam selected before was found (see Figure 2.11 - right).

This procedure guaranteed that the scanner measured always the true distance,

and that the target plane was always perpendicular to the wall while moving away

from the scanner. The distances measured by the LMS 511 were compared to the

ones obtained through the Total Station aligned to the scanner and whose accuracy

(0.25 mm at 35 m) is by far smaller than the one of the laser scanner.

2.4.2 Setup B

A second setup was built up for the tests on the dependency of the angle of incidence

between target surface and laser ray direction. Figure 2.12 shows it.

34



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

Figure 2.12: Setup B. Schematization of the setup viewed from the top.

This setup is composed of a planar base over which a second element can rotate

on a point, ensuring that no translation is implied. This movement is obtained

inserting a nail in the rotating element, that will be inserted in a corresponding

hole in the base. Using well-shaped elements and good precision tools we can assure

that the faces of the structure are parallel or perpendicular from each others. A

metal plate is also added to tighten the grip of the nail on the rotating element.

A goniometer is used to achieve a coarse measurement of the rotation, while the

exact value is given by a best-fitting plane retrieved through a Singular Value

Decomposition of nine sample points on the target scanned with the Total Station.

During the orientation test the rotating element was changed to a board supporting

the SICK LMS 511, while the target was held in the same place, allowing to check

the response of different beams ensuring a target at the same distance.

2.4.3 Characterization of the LMS 511

This section presents the results of all the tests conducted. First, the effect of drift

is analyzed; then the influence of the distance between target and sensor, the target

properties (in terms of color and material), the ray orientation and the incidence

angle are investigated. Considering the outdoor application, also the influence of

lighting conditions is examined, and finally a test showing the mixed pixel problem

is reported.
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2.4.3.1 Drift Effect

Since the warm-up time is expected to increase with the increasing of the measured

distance – as suggested by [Lee and Ehsani, 2008] -, the drift effect was analyzed

placing the wooden target at the maximum distance of interest (12 m). The LMS

511 sampled 13500 full scans, over a stretch of time of about 2 hours. The results

are visualized in Figure 2.13.

Figure 2.13: Drift Effect over 2 hours, there is no evident trend in the mean of the
measures.

Note that there is not an evident drift effect, neither on the average value nor

on the standard deviation of the measures (see Table 2.1). This means that the

LMS 511 is a prompt sensor and does not need a warm-up time. This result is in

contrast with the majority of the previously mentioned papers, where the authors

highlighted an hour-minimum measurement drift.

The test was then repeated at a different distance to verify the results, and it

confirms the above. Moreover, to reject the hypothesis of a warm-up time longer

than two hours, an experimental campaign of 9 hours was conducted. Once again,

the results were confirmed. Table 2.1 below presents the trend of the average

distance for each hour and the correspondent standard deviation. No significant

trend is evinced.
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Hour # Mean [mm] Standard Deviation [mm]

1 2971.8 4.2
2 2971.2 4.0
3 2971.1 3.9
4 2971.0 3.9
5 2971.1 4.0
6 2971.2 4.0
7 2971.2 4.0
8 2971.2 3.9
9 2971.1 3.9

Table 2.1: Drift Effect on 9 Hours

Figure 2.14: Data distribution from the drift effect test

Thanks to the high number of data registered in this test (more than 150000

acquisitions) it is possible to prove that the range values returned from the laser

scanner follow a Gaussian distribution. Since that, in the next sections the results

of tests can be compared in terms of their means and standard deviations.

2.4.3.2 Distance Effect

A planar target was placed in front of the scanner at different distances: from 2

m to 12 m with steps of 2 m each, following the procedure described in Section

2.4.1. Tests beyond 12 m were not performed as they would overcome the purpose

of this paper. Figure 2.15 and 2.16 show the absolute and percentage errors and

the standard deviations respectively.
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Figure 2.15: The Distance Absolute Error (blue), it increases almost linearly, while
the Distance % Error in the range analyzed has an inverted proportionality relation
with the distance.

Figure 2.16: Distance Standard Variation, its trend does not vary significantly with
the distance.

The standard deviation varies approximately from 3,55 mm to 3,95 mm. These

values, that absolutely meet the manufacturer’s specification, can be considered

irrelevant compared to the distance measured.

2.4.3.3 Material Effect

Dependency on the target material properties is discussed in this section. The

experimental setup is depicted in Section 2.4.1.

To allow the comparison of our results with the ones obtained by other re-

searchers, we conducted experiments onto some common target materials:
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� Wood

� Cardboard

� Aluminum

� Plastic

In addition, considering our specific application, other two targets were built up:

� Reflective tissue

� Sail tissue

Basically, for each material, the planar target was placed in front of the scanner at

a distance of around 2 m.

Figure 2.17: Distributions of ranges sampled for target covered in different materi-
als.

The beam perpendicular to the target was identified by searching for the min-

imum measured distance among the ones corresponding to the target. 1000 whole

scans were acquired for each material. Only distances registered by the perpendic-

ular beam were considered. Figure 2.17 shows the distribution of the 1000 scans.

Note that the material presenting the lowest standard deviation (3,3 mm) is the re-

flective one (red line). This could be due to the higher signal intensity that reaches

the receiver. The worst material came out to be the sail tissue: standard deviation

(4,1 mm, black line) . This is probably due to the transparency of the mold that

did not reflect properly the laser signal. Figure 2.18 reports a picture of the sail

highlighting the transparency of the surface (note the cloud beyond the sail).
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Figure 2.18: Transparency of the Sail Tissue

2.4.3.4 Color Effect

In this section, the effect of the target color is discussed. Different colored adhe-

sive films were pasted, one after the other, onto a glass planar surface placed at

a fixed distance of 2000 mm far from the sensor. 1000 scans were acquired for

each film. Once more, the data could be approximate by a normal distribution and

mean values and standard deviations were computed. Various colored films were

available, but we limited the analysis to the most interesting cases suggested by

[Ye and Borenstein, 2002], [Kneip et al., 2009] and [Alwan et al., 2005]. In partic-

ular these cases are: green, yellow, black, and two different gray level films. Figure

2.19 shows the results for these tests.

Color Mean [mm] Standard Deviation [mm] Nominal-
Measured

Distance [mm]

Green 1997.8 3.8 2.2
Yellow 2005.3 3.8 5.3
Black 2005.3 3.9 5.3

Light Gray 1997.7 3.7 2.3
Dark Gray 2014.7 4.0 14.7

Table 2.2: Values of the colors test comparison, the light gray film was the one with
the narrowest response.

From these tests, we can state that the effect of the color does not influence

significantly the measures. However, looking in detail, we can notice that:
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Figure 2.19: Distributions of ranges sampled for target placed at 2000 mm and
covered with the adhesive film of different colors.

� dark gray and the black target present the highest values of spread (standard

deviation respectively 4,0 and 3,9 mm)

� dark gray target presents the less precise measured distance (maximum dis-

placement to the nominal distance – 14,7 mm-)

� light gray test presents the most precise measured distance (minimum dis-

placement to the nominal distance – 2,3 mm-)

Thus, we can conclude that brighter targets lead to slightly better performances,

probably because of a better reflection of the laser signal. The results obtained are in

agreement with the ones reported in the previously mentioned works. Comparing

the spread of the measures obtained testing the sail tissue (4,1 mm) to the one

obtained in the light gray test (3,7 mm), we thought about coating the sail with

this bright film to increase the quality of the measures on field.

2.4.3.5 Angle Effect

Considering Setup B (see Section 2.4.2), the wooden target placed at a distance of

1000 mm is rotated from 0° (target facing frontally the sensor) to 80°, with step of

10° each. The aim is to investigate the influence of the angle of incidence between

the laser beam and the target surface. 1000 scans for each angle were acquired,
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and only the distances retrieved by the central ray were considered. Afterward, the

target was moved away from the scanner to reach the distances of 2000 mm and

3000 mm, and the procedure was repeated to support the first test. Figure 2.20

presents the standard deviation trends for the three distances as a function of the

angle of incidence between the laser beam and the target surface.

Figure 2.20: Angle Effect: influence of the rotation of the target on the standard
deviation of the measures. Trends for tests at different distance are compared, in
all tests over 70° the standard deviation values rise considerably.

Standard deviation trends look similar for the three tested distances and the

values are comparable with the ones shown in the sections above, until an incidence

angle of approximately 70°. A more oblique beam leads to a considerable increase

in the data spread. This test was of particular interest to understand some faulty

measures in the data acquired on the boat. In fact, the sensor placed astern and

scanning the mainsail was not able to estimate a distance for some point on the top

of the sail since the laser beams reached the surface with an angle beyond the 70°.

2.4.3.6 Angulation Effect

Differently from the previous test, it aims to clear the possible differences in data

returning from different angle (i.e. different beams) to the scanner. Recalling the

operating principle, these could be caused by imperfections in the rotating prism

inside the scanner. For this test the scanner was placed onto the rotating base and

the target was fixed at a distance of 2000 mm. The scanner was rotated and 1000

measurements were acquired for the beam perpendicular to the target. The setup

is schematized in Figure 2.21.
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Figure 2.21: Angulation test setup: the scanner is progressively rotated

Results are showed in Figure 2.22, note that the standard deviation values

resulting are all included between 3.7 mm and 4.05 mm, consistent with the previous

considerations. On the other hand it seem that the sensor slightly overestimates

the distance in the first section of the acquisition, from 0 to 60 degrees, and it

underestimates it on the opposite side, from 90 to 180 degrees. Note that this effect

could be due to a misalignment of the center of rotation used from the position of

the reference axis of the SICK scanner. The manufacturer assured that they are

placed exactly in the middle of the geometrical size of the unit, but the impossibility

to open it prevented to verify this information.

Figure 2.22: Effect of the angulation on the measure, the standard deviation is not
in influenced, while the data acquisition seems to be affected.

2.4.3.7 Light Effect

Other faulty cases came out during the acquisitions on field because of the sun

light that directly hit the scanner. Thus, the effect of an intense light source onto

the sensor performances was investigated. To reproduce this situation a lamp was

placed beyond the sail target, so that the source of light was completely covered

by the sail tissue and then progressively moved close to an edge until it came out

completely. A similar test was conducted outdoor, placing the laser scanner and

the sail target in the sun light direction. As one can see from Figure 2.23, the light

source impaired the measures. Moreover, as soon as the light entered the sensor,
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the standard deviation increased almost three times.

Figure 2.23: Light Effect: the peak in the blue and red measures corresponds to the
position of the sun beyond the target. For every acquisition the standard deviation
worsen with respect to a standard lighting case, but the worst case is when the sun
hits directly the scanner (+ 350% Standard Deviation).

2.4.3.8 Mixed Pixel

The mixed pixel problem occurs when the spot mark of the laser beam, that hits the

tested surface, falls on the edge of the target. For that point, the sensor averages

the contribute of the signal reflected by the target and the one reflected by the

background leading to an averaged estimated distance. Two tests were reported

to verify that the mixed pixel problem occurs independently from the gap distance

between target and background: test 1 considered a target placed at 1000 mm far

from the sensor and a background at 2000 mm; test 2 considered a target placed

closer to the background (at 1750 mm far from the sensor). Figure 2.24 shows these

tests.

Both scans present non physical points in the gap between the planar target and

the background due to the averaged distance performed by the scanner. Concerning

our application, we can correlate the sail surface to the target and the sky to a

background placed at an infinite distance from the sensor. Thus, we performed

a test with a planar target oriented towards the sky. No mixed pixel error was

evident. This is probably due to the fact that the only contribute that can be

measured is the one coming from the spot mark onto the sail surface. This might

be too low to let the sensor evaluate a distance and thus the point is lost.
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Figure 2.24: Mixed Pixel: two cases of occurrences. The target profile distortion is
more prominent with the higher target-background distance.

2.4.4 Conclusions

This chapter aimed to displayed the main three-dimensional acquisition techniques

currently available, characterize the measurement device, justifying the choice made

for the measurement device, which ended up being the the LMS 511 Pro laser

scanner manufactured by Sick. After the first acquisition campaigns the need for

its characterization rose, due to some issue in data registration. Different tests to

investigate several aspects that could affect its measures were performed. From the

drift test it is concluded that the instrument does not suffer from a notable warm-

up time, unlike others analyzed in previous literature. In the range considered

(1m - 12m) the distance error is within the expected tolerance (max 0.27% of

measure), while the standard deviation is bounded from 3.5 to 4 mm without an

evident correlation with the distance. A comparison of the distribution of measures

coming from different materials showed that the sail tissue does not have a good

response with respect to others. As expected a reflective tissue has the lowest

measures spread, and could be used to improve the field acquisition, wrapping the

target with it. Another possibility is to use an adhesive film, as its color affect

the quality of the measurement. From the different colors available, the best found

are a light gray and yellow, generally leading to the conclusion that a brighter

color leads to a better result. We showed that the effect of the incident angle rise

with the increasing of the distance and that a limit angle, around 70°, is present,

over which the accuracy of the laser scanner drops sensibly. The measure is more

deeply influenced by the angulation from which the target has been recorded, as

the distance is underestimated or overestimated in function of the acquisition angle.

Moreover we proved that the lighting condition affects greatly the measures, as their

standard deviation could increase by 50% where the sun is beyond a transparent

target and up to 350% when the sun light hits directly the sensor. Finally same
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cases where the laser scanner fails to correctly detect the target are displayed; these

are due to the mixed pixel problem, which occurs when both the target and the

background are within the scanner’s range of field, while on outdoor test, without

a fixed background this does not happen, but could lead to a loss of some data

points. At the end of the characterization not only we have concluded that the

considered scanner has met the manufacturer’s specification but also found a quick

and inexpensive way to improve the quality of the acquisitions.
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Chapter 3

The Data Elaboration Procedure

The following chapter includes all the elaborations needed to transform a raw point

cloud acquisition into an actual surface of a sail. Such transformations are:

� Rigid registration, which is the alignment of different scans into a common

reference system;

� Scene interpretation, separating the samples representing the sail from the

whole acquisition;

� Data re-sampling, re-sampling of the points help in removing the outliers and

reducing measurement uncertainty

� Meshing, which is the creation of the surface starting from a set of points.

For each operation known algorithms are presented. Their performances are as-

sessed first on synthetic data sets and on a sail model, and further on real acquisi-

tions acquired both in wind tunnel and from on-field campaign. When a suitable

algorithm for the purpose of the thesis is not found, a custom one is developed and

tested. In the following, some basic concepts, that need to be clear for a better

understanding of the work, are explained.

3.1 Basic Concepts

3.1.1 Point Cloud

A point cloud is a data structure used to represent a collection of multi-dimensional

points. Commonly, a point cloud is a three-dimensional set that encloses the spatial
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coordinates of an object sampled surface. Adding information about the color,

the point cloud becomes 4D. Point clouds can be acquired using stereo cameras,

time-of-flight scanners, depth cameras, or generated through computer programs

synthetically. In Figure 3.1 two point clouds are presented: a model sail cloud

(extracted from the CAD model), paired with a photo of its realization, and a raw

point cloud coming from the acquisition device.

(a) Sail (left) and its point cloud model (right)

(b) Wind tunnel raw acquisition point cloud - the sail is highlighted in
the red square

Figure 3.1: Point Cloud Examples

3.1.2 Neighborhood

The neighborhood of a point p is the set of its closest points, according to the

Euclidean distance, and with a limit criterion. Points belonging to the neighborhood

set are called neighbors. There are two types of neighborhood: if the limit is the

distance threshold, it is r-neighborhood , which means that all the points inside

a sphere of radius r are considered neighbors of p. The other way of creating a

neighborhood is by number of neighbors. This means that only the k-th closest

points to p are its neighbors; this is a k-neighborhood. The neighborhood is not an
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object which is an end to itself, but it is used as initial step for retrieving further

object information (see below).

3.1.3 Surface Normals

A surface normal, or simply normal, associated to a point p, is a vector perpendic-

ular to the tangent plane that approximate the surface around p. The problem of

Figure 3.2: Surface Normals Example

determining the normal to a point on the surface is approximated by the problem

of estimating the normal of a plane locally tangent to the surface, which in turn

becomes a least-square plane fitting estimation problem. The solution for estimat-

ing the surface normal is therefore reduced to an analysis of the eigenvectors and

eigenvalues (through the Principal Component Analysis, or PCA) of a covariance

matrix created from the neighborhood of the query point. For each point pi, the

covariance matrix C is constructed as:

C =
1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T , C · −→vj = λj · −→vj , j ∈ {0, 1, 2} (3.1)

Where k is the number of point neighbors considered in the neighborhood of pi, p̄

represents the 3D barycenter of the nearest neighbors, λj is the j-th eigenvalue of the

covariance matrix, and −→vj the j-th eigenvector. The normal −→ni is the eigenvector

corresponding to the smallest eigenvalue. −→ni gives the direction of the normal,

however there is no mathematical way to solve for the sign of the normal, so the

orientation results ambiguous. This means that, for a same surface, some normals

are oriented inwards and other outwards. A simple solution, proposed by Rusu in

[Rusu, 2010], is to align all the normals orientations towards the origin of the axis.

This is especially reasonable under the assumption that the point cloud comes from
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an acquisition device, which is placed in the origin of the axis. The choice of the

neighborhood have a great influence in the output normals. The minimum number

of neighbors of a point p needed to retrieve its normal is three, because a plane

can be retrieved from a minimum of three samples. Using small neighborhood

lead to the creation of normals which explain the local behavior of the surface,

while a big neighborhood creates normals that represent the general trend of the

surface. The size of the neighborhood has to be balanced in function of the point

cloud considered. The presence of noise on the samples lead to imprecision in

the normals value, if the neighborhood is too small, as visible from Figure 3.3.

While a large neighborhood may help in reducing noise, on the other hand, it

(a) Plane With No Noise (b) Noisy Plane - k=5 (c) Noisy Plane - k=100

Figure 3.3: Plane Normals Example with k-neighborhood

may filter some important information about object local features, such as sharp

edges or corners. They might be smoothed as shown in Figure 3.4 where normal

directions change more gradually around the corner. More in detail, a synthetic

point cloud representing a 90° angle between two planar surfaces has been generated

and the normals were computed using two different neighborhood sizes (small k=5

and large k=100). Comparing the results, one can notice that in the second case

(a) k=5 (b) k=100

Figure 3.4: Edge Normals Example with k-neighborhood

normals do not follow the original surface, but tend to anticipate the 90° change.
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The same results displayed in Figure 3.3 and Figure 3.4 can be obtained using a

r-neighborhood, however the radius has to be adapted to the density of the point

cloud, which has to be known in advance and has to be constant in the whole data

set. These conditions are not always verified, so the use of the k-neighborhood is

usually more robust. Normals are used in most of the processing methods as basic

information, along with the spatial coordinates of the points. Whenever their use

is requested, it should be reminded that they are not unique values, but depend on

the neighborhood chosen, which then acts as an additional parameter to take into

account.

3.1.4 Surface curvature

Intuitively, curvature is the amount by which a geometric object deviates from

being flat. Rigorously, the curvature of a point p is a scalar number, found as:

σ =
λ0

λ0 + λ1 + λ2
(3.2)

Where λi are is the i-th eigenvalue of the covariance matrix created from the neigh-

borhood of p, as explained in the previous section. The eigenvalues are ordered in

ascending order, so λ0 is always the smallest eigenvector.

3.1.5 Point Feature Histogram

Surface normal and curvature can provide local geometry information around a

specific point. They are extremely fast and easy to compute, but sometimes not

sufficient to identify object features. A Point Feature Histogram (PFH) representa-

tion, introduced by Rusu in [Rusu, 2010] is based on the relationships between the

points in the k-neighborhood and their estimated surface normals. A PFH takes

into account all the interactions between the directions of the estimated normals,

defining a new local coordinate system (u,v,w), as explained in Figure 3.5, on the

point query and expressing all the normals in the neighborhood as deviation from

(u,v,w). The histogram describes the distribution of the deviation among the neigh-

borhood. Using the local frame presented in Figure 3.5, the difference between the
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u = ns

v = u× (pt−ps)
‖pt−ps‖2

w = u× v
(3.3)

Figure 3.5: Point Feature Histogram local coordinate system

two normals ns and nt can be expressed as a set of angular features as:
α = v · nt

φ = u · (pt−ps)
d

θ = arctan(w · nt, u · nt)

(3.4)

where d is the Euclidean distance between the two points ps and pt, d = ‖pt − ps‖2.
The quadruplet < α, φ, θ, d > is computed for each pair of points in the neigh-

borhood, reducing the 12 values (xyz and normal information, for each point) to

four. For most cases, the fourth feature, d, does not present an extreme signif-

icance ([Rusu, 2010]), as for real acquisition d increases from the viewpoint and

omitting d from the histograms has proved to be beneficial. For the creation of the

actual histogram from the three features the reference is always Rusu’s dissertation

[Rusu, 2010]. Examples of the histogram are showed in Figure 3.6. The important

property of PFH is that points that lie on similar surface have similar PFH. This

means, for example, that points that lie on a plane have similar PFH. Points can

then be classified as “point on a plane”, “point on a sphere”, “point near a corner”,

and so on. This information is much more accurate respect than the only normal

information obviously.
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(a) Plane PFH (b) Edge PFH

Figure 3.6: Point Feature Histograms Example

3.1.6 Fast Point Feature Histogram

The fast point feature histograms (FPFH) start from the PFH concept and reduce

the computational complexity. The concept is similar to PFH but for more de-

tails refer to [Rusu, 2010] and [Rusu et al., 2009]. Main differencies from standard

feature histograms are listed below:

� FPFH does not fully interconnect all neighbors of the considered point and

thus some value pairs, which might contribute to capture the geometry around

the query point, are missing.

� the PFH models a determined surface around the query point, while PFPH

includes additional point pairs outside the neighborhood (the maximum dis-

tance is limited).

� the overall complexity of FPFH is greatly reduced, making possible to use it

in real-time applications.

� the resulting histogram is simplified by decorrelating the values, that is simply

creating separate feature histograms, one for each feature, and concatenating

the together.

3.1.7 K-d tree

The K-d tree (k-dimensional tree) is a data structure used in computer science for

organizing points in a space with k dimensions. It is a binary search tree with

additional constraints imposed. The algorithm iteratively splits the space into two

parts and builds a tree structure. Each point of the cloud is associated to a bounding

box of the last level that encloses it, but thanks to the tree structure is linked to

the all other larger boxes of the higher levels. K-d trees are, thus, very useful for

range and nearest neighbor searches.
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(a) 2D K-d tree visualization and
corresponding tree structure

(b) 3d K-d tree visualization - the first
division is in red, the second in green and
then blue

Figure 3.7: K-d tree examples

3.1.8 Octree

An octree is a tree-based data structure for managing sparse 3-D data, with the

same purpose of the K-d tree. The difference is that each node of the octree has

exactly eight children, instead of two. Dividing the space in eight children means

that the cubic bounding box of the data is split in eight equal cubes iteratively for

each level.

Figure 3.8: Octree Visualization and corresponding tree structure
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3.2 Multiple Point Clouds Registration

The problem of consistently aligning various 3D point cloud data views into a com-

plete model is known as registration. Its goal is to estimate the relative positions

and orientations of the separately acquired views in a global coordinate framework,

and to find a way to align and merge them together into a single point cloud so

that the intersecting areas overlap perfectly. The work presented in this section

is motivated by finding correct point-to-point correspondences in real-world noisy

data scans, and estimating rigid transformations that can rotate and translate each

individual scan into a consistent global coordinate framework. A motivation exam-

ple in this sense is given in Figure 3.9, where two separate scans from two TOF

laser scanners, one dedicated to the mainsail and the other to the offwind sail, are

merged to form a unique point cloud representing the whole yacht model.

Figure 3.9: Example of registration: two point clouds representing the yacht model
from different views (left and center) and the merged model (right)

The registration problem becomes easily solvable if point to point correspon-

dences are perfectly known in the input data sets. This means that a selected list

of points pi ∈ P1 have to “coincide” from a feature representation point of view

with another list of points qj ∈ P2, where P1 and P2 represent two partial view

data sets. Differently said, the sets of pi and qj have been sampled on the same

real world surfaces, but from different acquisition poses. This means however, that

in the complete point cloud model that needs to be created, they could be merged

together, especially if their coordinates are equal pi = qj, and thus reduce the num-

ber of points overall. Because the quality of the data sets is influenced by sensor

noise and other perturbing factors, the coordinates of the points will almost never be
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equal unfortunately, and the above simplification will not hold. In the next sections

the most common algorithms for point cloud registration are briefly introduced, and

results onto artificial point clouds are presented. Considering the strengths of every

algorithm, a registration procedure dedicated to the clouds acquired in the wind

tunnel has been developed and described in the last Section.

3.2.1 SVD Based Registration Algorithm

One of the most popular registration methods for unorganized point cloud data

sets is based on the singular value decomposition (SVD) of a matrix containing

the three dimensional coordinates of corresponding points [Arun et al., 1987]. The

singular value decomposition of a real or complex matrix m×n M is a factorization

in the form:

M = UΣV T (3.5)

where U is an m×m real or complex unitary matrix, Σ is an m×n rectangular

diagonal matrix with non-negative real numbers on the diagonal, and VT is an

n × n real or complex unitary matrix. The diagonal entries σi of Σ are known

as the singular values of M, from which the name of the method. When M is an

m×m real square matrix with positive determinant, U, VT, and Σ are real m×m
matrices as well, Σ is a scaling matrix, and U, VT are rotation matrices. Imposing

a unitary scale factor, U, VT define the registration matrix ([Arun et al., 1987],

[Soderkvist, 2014]), which can be expressed as a unique rotation and a translation,

obtained as:

R = V ·

 1 0 0

0 1 0

0 0 det
(
V · UT

)
 · UT (3.6)

T = p2 −R · p1 (3.7)

where p2 and p1 are the center of mass, respectively, of the target data set and

the source data set. The input matrix M, is composed from other two matrices A

and B, through these steps:
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µ̄x =
1

N

N∑
i=1

xi µ̄y =
1

N

N∑
i=1

yi µ̄z =
1

N

N∑
i=1

zi (3.8)

µ̄R = [µ̄x, µ̄y, µ̄z] is the barycenter of the reference point cloud and respectively

µ̄F the barycenter of the registering cloud.

A =

 xR1 − ¯µRx yR1 − ¯µRy zR1 − ¯µRz

.. .. ..

xRm − ¯µRx yRm − ¯µRy zRm − ¯µRz

 (3.9)

B =

 xF1 − ¯µFx yF1 − ¯µFy zF1 − ¯µFz

.. .. ..

xFm − ¯µFx yFm − ¯µFy zFm − ¯µFz

 (3.10)

M = B ∗ AT (3.11)

Since, the SVD procedure does not require all the cloud points, but matches

only few of them (at least three pairs of points), it is not influenced by the number of

points in the clouds, neither by their initial relative position. However the choice of

the samples is critical: if not corresponding points are selected, a wrong registration

occurs. Thus, the presence of noise in the data sets influences the algorithm results.

The relative position of the point picked also influence a good result of the

algorithm, in fact, choosing points close to each others can lead to the calculation

of singular matrices, which obviously unwanted. It is usually good practice to

choose the samples as distanced as possible.

The SVD algorithm has been tested for the artificial scene described in Figure

3.10, where a rotation of 45° around one axis was imposed to the original cloud.

Four matching pairs of points have been manually selected from the input data sets

(highlighted in red in the figure), and the rigid registration has been computed.

The resulting transformation matrix is reported in (3.12).
0.707 0 0.707 0

0 1 0 0
−0.707 0 0.707 0

0 0 0 1




0.707 0 0.707 −0.001
0 1 0 0.001

−0.707 0 0.707 −0.003
0 0 0 1

 (3.12)

Table 3.1: Transformations matrix for noise free data sets - Imposed transformation
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Figure 3.10: SVD scene: the point chosen for the registration are highlighted in the
reference cloud (top) and registering cloud (bottom)

The transformation matrices correspond almost perfectly, aside from minimal

errors, due to numerical operations performed by the machine. The noise effect is

evaluated in the further test; the same scene presented in Figure 3.10 is considered,

but noise is added to every point. The noise values follow a Gaussian distribution

with mean equal to zero and standard deviation σ = 0.05 (a.u.). So that, the

maximum level of noise (3σ) is equal to 0.5% of the distance between the origin of

the reference system and the furthest point in the synthetic data set.
0.707 0 0.707 0

0 1 0 0
−0.707 0 0.707 0

0 0 0 1




0.700 0.006 0.714 0.036
−0.002 1 0.007 0.281
−0.714 −0.004 0.700 0

0 0 0 1

 (3.13)

Table 3.2: Transformations matrix for noisy data sets - Imposed transformation

As expected, the SVD based procedure performs worse than the previous case

since there is not perfect correspondence between the sample points in the two

clouds (three plan corners and vertex of the cone) due to the noise. The relative

pose is correctly estimated, as the rotation part of the matrix is right, however the
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error on the translation is notable, 56% of the spatial resolution of the reconstructed

cloud.

Another test was done in order to verify that the procedure is not influenced

by the total number of points in the clouds to be registered. In this case the point

cloud has been cut and rotated by 45 degrees, as visible in Figure 3.11.

Figure 3.11: SVD scene for partial data sets: the point chosen for the registration
are highlighted in the reference cloud (left) and registering cloud (right)


0.707 0 0.707 0

0 1 0 0
−0.707 0 0.707 0

0 0 0 1




0.707 0 0.707 0.005
0 1 0 −0.001

−0.707 0 0.707 0.006
0 0 0 1

 (3.14)

Table 3.3: Transformations matrices for poor overlapping data sets - Imposed trans-
formation

As expected, the presence of few points does not impair the registration when-

ever a few correspondence are perfectly known.

The test conducted on the real acquisition lead to the same conclusions, as

notable in Figure 3.12a where the clouds can not be perfectly aligned due to the

noisy scans.

The faulty alignment is visible especially looking at the wind tunnel walls as

shown in Figure 3.12b and in the gennaker luff, in Figure 3.12c.
0.942 −0.239 0.235 −576.20
0.335 0.681 −0.651 −1886.35
−0.004 0.692 0.722 −192.41

0 0 0 1

 (3.15)

Table 3.4: Final transformation for real wind tunnel acquisition
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(a) Final Registration

(b) Wall Close-Up, walls do not co-
incide

(c) Gennaker Side Close-Up, the
right borders do not coincide

Figure 3.12: SVD Registration

Resulting distances between points belonging to a cloud with respect to the

relative closest points belonging to the other clouds are more then ten times bigger

than the acquisition accuracy. They can not be ignored and lead to discharge the

SVD method for the real acquired cloud registration.

3.2.2 ICP Algorithm

Another widely exploited method for rigid registration is the Iterative Closest

Point (ICP) algorithm [Besl and McKay, 1992], [Zhang, 1992], an iterative descend

method which tries to find the optimal transformation (rotation matrix R and

translation vector T) between two data sets pi∈ P1 and qj ∈ P2 by minimizing the

Euclidean distance error metric between their overlapping areas.
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min
n∑
i=1

‖R · pi + T − qi‖2 (3.16)

Modified algorithms, considering not only 3D spatial information, have been

implemented: [Johnson and Kang, 1999] takes into account the colors acquired

as well, [Eggert et al., 1998] performs the simultaneous registration of multiple

range views, [Declerck et al., 1997] carries out 3D-2D projective transformations.

[Ristic and Brujic, 1997] instead proposes to use a triangular mesh model approxi-

mation to accelerate the algorithm and suggests to assume the standard uncertainty

of the device used to perform the measurement as tolerance to terminate the ICP

iterations.

Whichever the approach considered, the ICP performs the steps in Algorithm

3.1.

Algorithm 3.1 ICP Algorithm

1. The set Q of closest points between the source data set Sd and the target
dataset Td is identified

2. The transformation matrices (R and T), minimizing the chosen cost function
over Q, are determined.

3. The transformation is applied to the measured points set as S
′

d = R ∗Sd + T .

4. If change in the cost function is greater than a preset value the procedure is
repeated from the point 1.

5. Else the procedure ends.

[Besl and McKay, 1992], proved that ICP algorithm converges always to a local

minimum, it means that the algorithm is able to provide the optimal solution only

if the relative position of the cloud data set is close. Clouds that start the procedure

presenting very different spatial positioning are not likely to be correctly registered,

while on the other hand, ICP can achieve fine accuracy, when there is only a little

displacement between the two data sets. As a good initial relative position can be

consider the case in which the cloud centers of mass are close to each other and the

relative cloud orientation is small. In order to better understand the reason beyond

this, step (2) has to be further investigated. For each iteration, the procedure

estimate the best rotation matrix R, performing a singular value decomposition of
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the matrix M = B*A’ (see Section 3.2.1 for details) containing data belonging to

a cloud A and the relative closest points in cloud B. [Besl and McKay, 1992] also

proved that the score function can be expressed as function of the cloud centers

of mass, µcorr and µreg and that the optimal translation vector applied to the

registering cloud, at every iteration can be written as:

−→qt = µcorr −R · µreg (3.17)

The construction of the correspondence set B is the critical step: for each point

of the cloud to register the closest point (in terms of Euclidean distance) of the

model cloud is assigned as “correspondent”. If the clouds are poorly aligned, a

model point could be matched to several points of the registering data set. This

leads to the creation of a correspondence set composed of several identical points,

which, in turn, leads to incorrect transformation matrices. For every iteration step

the registering cloud is first rotated and then its barycenter is superimposed on

the correspondence set barycenter, as (3.17). If the correspondences set is not

correctly built (i.e. bad initial position) the translation moves the registering cloud

not toward the model center of mass. This behavior in not bad in itself, as it still

moves the cloud closer the model but the subsequent ICP iteration might reach a

local minimum ending the procedure prematurely. In other words, this means that

the algorithm won’t move anymore the data because any movement would lead to

an increasing of the cost function, although globally another minimum (i.e. better

relative position) exists.

This issue is well known and discussed in many works, as [Chen and Medioni, 1991],

[Park and Subbarao, 2003] and [Pottmann et al., 2004]. In the latest Pottmann et

al. analyzed the problem and proposed a procedure that takes into account also in-

formation about the point normals and obtains the transformation matrices through

an instantaneous kinematics approach rather than SVD. The use of instantaneous

kinematics, however, only simplified the processing operation of the procedure pro-

posed by Chen and Medioni in [Chen and Medioni, 1991]. They apply a motion to

the cloud such that the sum of the squared distances from the reference cloud is

minimal. For each point x, its velocity vector is defined as:

v(x) = c̄ + c× x (3.18)

where c̄ is the velocity vector of the origin of the reference coordinate system
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and c represents the vector of angular velocity (or Darboux vector). Up to the first

differentiation order, every three-dimensional movement can be expressed locally

as translation with constant velocity (c̄ = 0), a uniform rotation around an axis

(c · c̄ = 0) or an uniform helical motion (c · c̄ 6= 0). A generic velocity vector field

is hypothesized, such that the corresponding velocity vectors vi(x) for each point

minimize the quadratic cost function F:

min
N∑
i=1

Fi(xi−v(xi)) (3.19)

From the velocity vector field a transformation that displaces the points xi in the

same way as the velocity vector would do is calculated, through a linearization of

the motion. The set of correspondences is required as before, but also the normals

ni of the corresponding points are calculated and stored. The motion is considered

as general as possible, so it would be a helical motion in the form (3.18). The

generic distance from the point xi to its matching point yi can be expressed as

function of their initial distance di and the velocity vector as:

di + ni · (c̄ + c× xi) (3.20)

the cost function (3.19) can be written as

min
N∑
i=1

(di + ni · (c̄ + c× xi))
2 (3.21)

The minimization can be solved using a system of linear equations, rewriting

(3.20) as:

di + ni · c̄ + (xi × ni) · c = di + (xi × ni,ni)

(
c

c̄

)
= di + AiC (3.22)

and (3.21) as:

F (C) = min

N∑
i=1

(di + AiC)2 =
∑
i

d2i + 2
∑
i

diAiC +
∑
i

CTATi AiC (3.23)
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= D + 2B · C + CTAC

The unique minimum of the quadratic cost function is a column vector C, with

six entries (since Ai is, by construction, a general positive six-by-six matrix) which

solves the linear system

AC +B = 0 (3.24)

where A = ATi Ai and B = 2
∑
diAi can be obtained from the registering points

and their corresponding point normals. The rotation and translation matrices can

be recovered from the elements of C, with the relations (3.25) and (3.26), since at

the start of the procedure, an helical motion was supposed. For more details on

helical motion refer to [Pottmann and Wallner, 2009].

R =

 c2 ∗ c3 c3 ∗ s1 ∗ s2− c1 ∗ s3 c1 ∗ c3 ∗ s2 + s1 ∗ s3
c2 ∗ s3 c1 ∗ c3 + s1 ∗ s2 ∗ s3 c1 ∗ s2 ∗ s3− c3 ∗ s1
−s1 c1 ∗ s1 c1 ∗ c2

 (3.25)

where
c1 = cos(C(1)) c2 = cos(C(2)) c3 = cos(C(3))

s1 = sin(C(1)) s2 = sin(C(2)) s3 = sin(C(3))

T =

 C(4)

C(5)

C(6)

 (3.26)

Visually speaking, in the first ICP algorithm presented ([Besl and McKay, 1992])

the cost function minimizes the distance from points in the cloud to register and

their correspondences, while the second one minimizes the distance between the

point and the target surface (i.e. the distance from the plane tangent to the target

surface in the correspondence point). This is why the first is usually referred as

point-to-point ICP, while the other as point-to-plane ICP. Both of them rely on the

construction of the correspondence set, which is a computational expensive step,

since has to find a correspondence for each point of the cloud to register, comparing

it to every point of the reference cloud. In [Rusu, 2010], Rusu proposed an alter-

native construction of the correspondences set, through the use of Point Feature

Histograms (see section 3.1.5 for details). Briefly, PFH are histograms of the dis-
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tribution of the normals in a point neighborhood; they can identify peculiar points,

like corner points, edge points, points lying on a plane or on a curved surface, etc.

His assumption is that corresponding points from different data set should have at

least similar PFH (feature persistence hypothesis) and that it is not necessary to

compare the whole data sets, but only the points whose PFH are less common. For

example, for registering two cones, it should be sufficient to match the vertices and

the lowest circumference edge points. In this way, the computational cost of match-

ing points significantly drops, since number of the points compared are usually at

least cut in half, respect to a classical ICP method. In his implementation, used

in the PCL libraries, a registering point pi is matched with another one qi from

the target cloud, selecting it randomly from the list of points Q whose PFH are

similar to pi PFH. Once the points has been matched, a point-to-plane registration

is performed, using the cost function:

min
N∑
i=1

‖(R · pi + T − qi) · nqi
‖ (3.27)

which is comparable to (3.21). The random selection of the correspondences

might seem suboptimal, but it is a decision made to speed up the computational

time. This algorithm then proceeds to complete the registration with the same steps

explained for the point-to-plane ICP. Both [Besl and McKay, 1992] and [Zhang, 1992]

found that the ICP algorithm has fast convergence (i.e. large transformation) in

the first iterations but it is strongly dependent from the initial position. Thus, it

is often referred as a finely registration algorithm, which comes after a first rough

alignment. All the algorithms perform an iteration until an end condition is verified;

most of the time this condition is represented by a maximum number of iterations

allowed or a minimum cost function value to reach that estimates the convergence

in the procedure.

Tests were conducted on point cloud representing the same scene with regular

geometry objects as in the previous section, as visible in Figure 3.13a. Then, a

rotation of 30° around the Y axis has been imposed to the original point cloud, as

visible in Figure 3.13b, and the registration via different ICP algorithms has been

performed, retrieving the final transformation matrix. This matrix can be seen

as the composition of a translation (represented by the contribute of the fourth

column, row one to three), and a rotation, given by the 3× 3 up left sub matrix.

The tests reported below compare the performances of different ICP algorithms,
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both in terms of alignment result and time consumption. The values shown are

retrieved from tests performed on the same computer, which has Intel Core 2 CPU

6600 @ 2.40GHz working on a 32-bit Linux operative system.

(a) Cloud 1 (b) Cloud 2

(c) ICP point-to-point regis-
tration - only Cloud 2 is vis-
ible due to the perfect align-
ment

(d) ICP point-to-plane reg-
istration - only Cloud 2 is
visible due to the perfect
alignment

(e) PFH ICP registration -
Clouds very close to each
other

Figure 3.13: Artificial point clouds before (up) and after (down) registration, the
green curve represent the path taken by the cloud baricenter through the iteration
steps

As shown in Figure 3.13c and (3.28), all the ICP procedures provide the correct

alignment; the green lines and dots highlight the path and the position covered by

the center of the cloud to register during the registration procedure at each itera-

tion. Moreover, all the algorithm were tested setting as end iterative condition a

fixed number of iteration (25 in this case) or a relative mean error between two con-

secutive iterations (set at 10-3). The mean error is the squared sum of the distance

for each point from its correspondence divided by the number of points consid-

ered. When the difference between the mean error in two consecutive iterations is

smaller than a threshold it means that the algorithm is near a local minimum and

convergence is reached, further iterations would not improve the resulting output

transformation.

The performances are compared with two different tests, in the first, whose

results are showed in Table 3.6, all the algorithms are ended after 25 iterations. In

the second test, the ending condition is chosen as the relative mean error between
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Point Plane PFH

Iterations 25 25 25
Time [s] 150 226 7

Relative Error 10-16 10-18 10-9

Table 3.5: ICP algorithms comparison for scenes described in Figure 3.13 - Iteration
Number Ending Condition

Point Plane PFH

Iterations 15 7 13
Time [s] 90 66 4.2

Relative Error 10-5 10-5 10-4

Table 3.6: ICP algorithms comparison for scenes described in Figure 3.13 - Relative
Error Ending Condition

two iterations. The relative error threshold is fixed to 10-3 after experimental tests.

From Table 3.5 is evident the greater speed of the Point Feature Histograms ICP.

The incredibly high accuracy of point-to-point and point-to-plane are due to the

fact that for the test the same point cloud, rotated, is used both as registering

cloud and target cloud, but this could not be expected for noisy data sets. Even

though the PFH ICP have a smaller accuracy it retrieves successfully the correct

transformation, as visible from the matrices comparison in Table 3.8. This results

are expected from the theory previously explained. Since each procedure converges

before reaching 25 iterations the matrices obtained in both the ending cases for a

single ICP are the same; this proves that iterating after the convergence is useless.

The trade-off between time and result suggest the PFH ICP as the best choice.


cos(30) 0 sin(30) 0

0 1 0 0
− sin(30) 0 cos(30) 0

0 0 0 1

 =


0.866 0 0.5 0

0 1 0 0
−0.5 0 0.866 0

0 0 0 1

 (3.28)

Table 3.7: Transformations matrix for noise free data sets - Imposed rotation
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0.866 0.007 0.499 −0.1
−0.009 0.999 −0.003 0
−0.499 0.007 0.866 0.6

0 0 0 1


(a) Point-to-point ICP


0.866 −0.010 0.499 1
0.001 0.999 −0.017 0.1
−0.499 0.014 0.866 1.6

0 0 0 1


(b) Point-to-plane ICP

0.866 0.007 0.499 −0.1
−0.009 0.999 −0.002 0
−0.499 0.007 0.866 0.5

0 0 0 1


(c) PFH ICP

Table 3.8: ICP matrices retrieved for noise-free data sets, rotated one by each other

Point Plane PFH

Iterations 25 25 25
Time [s] 174 258 11

Relative Error 0.027 10-9 0.231

Table 3.9: ICP algorithms comparison for scenes described in Figure 3.14e - Itera-
tion Number Ending

Point Plane PFH

Iterations 37 16 44
Time [s] 222 143 19.3

Relative Error 10-4 10-4 10-4

Table 3.10: ICP algorithms comparison for scenes described in Figure 3.14e - Rel-
ative Error Ending


cos(120) − sin(120) 0) 30
sin(120) cos(120) 0 20

0 0 1 0
0 0 0 1

 =


−0.5 −0.866 0 30
0.866 −0.5 0 20

0 0 1 0
0 0 0 1

 (3.29)

Table 3.11: Transformations matrix for noise free data sets - Imposed transforma-
tion

The sensitivity to the starting relative position of the two confronted data sets

is the main flaw of the algorithm, to test its behavior a transformation composed

by a rotation of 120° on the Z axis, followed by a translation on the X and Y
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(a) Cloud 1 (b) Cloud 2

(c) Cloud 2 registered
against Cloud 1 - Point to
point ICP

(d) Cloud 2 regis-
tered against Cloud 1
- Point to plane ICP

(e) Cloud 2 registered against
Cloud 1 - PFH ICP

Figure 3.14: Artificial point clouds rotated and translated before registering (up)
and after (down)

axis of 30 and 20 (a.u.) respectively has been imposed to the same cloud used in

Figure 3.13a. The translation applied has the purpose to keep the barycenter close,

in order to highlight the influence of the different orientation of the scenes. The

result of ICP in this case are displayed in Figure 3.14e and (3.12), both the image

and the matrices comparison show that the algorithms do not find an appropriate

solution. The matrices retrieved showed in Table 3.12 are the ones found with the

convergence criterion ending. The issue of the initial position for ICP algorithms is

hard to define and it is still discussed in the scientific community, especially because

all the solution adopted lacks generality and have to rely on pre-knowledges on the

composition of the scenes (presence of planes, guess on the relative position of the

reference systems, etc.). Tables 3.9 and 3.10 shows that all algorithms manage to

converge, even though with a higher number of iterations respect to the previous

case.
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0.866 0.441 −0.236 −2.9
−0.421 0.897 0.130 −6.3
0.269 −0.013 0.963 −0.4

0 0 0 1


(a) Point-to-point ICP


0.998 0.078 −0.129 −2.2
−0.050 0.982 0.181 1.1
0.141 −0.172 0.975 0.84

0 0 0 1


(b) Point-to-plane ICP

0.858 0.453 −0.240 −2.8
−0.433 0.891 0.132 −6
0.274 −0.009 0.962 −0.5

0 0 0 1


(c) PFH ICP

Table 3.12: ICP matrices retrieved for noise-free data sets, rotated and translated
one by each other

cos(30) 0 sin(30) 0
0 1 0 0

− sin(30) 0 cos(30) 0
0 0 0 1

 =


0.866 0 0.5 0

0 1 0 0
−0.5 0 0.866 0

0 0 0 1

 (3.30)

Table 3.13: Transformations matrix for noisy data sets - Imposed transformation


0.866 0.006 0.500 −0.1
−0.009 1 −0.004 0
−0.500 0.008 0.866 −0.5

0 0 0 1


(a) Point-to-point ICP


0.864 0.074 0.499 0.7
0.008 0.999 0.029 0
−0.499 −0.029 0.866 1.5

0 0 0 1


(b) Point-to-plane ICP

0.866 0.006 0.500 0.1
−0.009 0.999 −0.004 0
−0.500 0.008 0.866 0.5

0 0 0 1


(c) PFH ICP

Table 3.14: ICP matrices retrieved for noisy data sets, rotated one by each other
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Point Plane PFH

Iterations 25 25 25
Time [s] 166 247 8

Relative Error 10-7 0 10-9

Table 3.15: ICP algorithms comparison for noisy scenes, similar to Figure 3.14e -
Iteration Number Ending

Point Plane PFH

Iterations 16 6 15
Time [s] 107 64 6

Relative Error 10-4 10-4 10-4

Table 3.16: ICP algorithms comparison for noisy scenes, similar to Figure 3.14e -
Relative Error Ending

Also in this erroneous case the PFH ICP can be selected as best choice. The

presence of a limited noise, uniformly added to the points coordinates and sim-

ulating the TOF scanner measure uncertainty for a scene acquired at 1 m, does

not influence significantly the behavior of the algorithm, which can still recover the

correct transformation, as visible from the comparison between (3.30) and (3.14).

To achieve these results, the same clouds used for the first test are used, with the

addition of a level of noise comparable to the values found in section 2.4.3. The

value of the relative error for the point-to-plane ICP at the twenty-fifth iteration,

exactly equal to 0, means that the procedure has perfectly converged (i.e. no further

transformations), not that the registering points are perfectly matched. Moreover,

ICP method assumes that each points in the reference cloud has a corresponding

one in the other cloud. Failures, in facts, come out whenever the overlapping area

between the two point clouds to be registered is too small with respect to the whole

scene acquired in each scan or when a cloud is by far less populated than the other.

In these cases, if the algorithm can not find a correspondence for each point and

the procedure performs a wrong transformation even after hundreds of iterations,

as presented in (3.31) and in Figure 3.15.
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(a) Cloud 1 (b) Cloud 2

(c) Cloud 2 registered
against Cloud 1 - Point-to-
point ICP

(d) Cloud 2 registered against
Cloud 1 - Point-to-plane ICP

(e) Cloud 2 registered against
Cloud 1 - PFH ICP

Figure 3.15: Poor overlapping data sets needed to be registered (left) and after ICP
registration (right)

cos(30) 0 sin(30) 0
0 1 0 0

− sin(30) 0 cos(30) 0
0 0 0 1

 =


0.866 0 0.5 0

0 1 0 0
−0.5 0 0.866 0

0 0 0 1

 (3.31)

Table 3.17: Transformations matrix for poor overlapping data sets - Imposed trans-
formation


0.867 −0.052 0.493 8.8
0.033 0.997 −0.058 0.3
−0.495 0.034 0.867 0.4

0 0 0 1


(a) Point-to-point ICP


0.870 −0.058 0.488 8.5
0.009 0.995 −0.101 0.9
0.491 0.083 0.866 0.6

0 0 0 1


(b) Point-to-plane ICP

0.867 −0.058 −0.494 8.8
0.033 0.997 −0.058 0.3
−0.496 0.034 0.867 0.4

0 0 0 1


(c) PFH ICP

Table 3.18: ICP matrices retrieved for noise-free partial data sets, rotated one by
each other

In the following tests, a region of the original cloud has been extracted and

rotated, with two different transformation, and then ICPs have been performed
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Point Plane PFH

Iterations 25 25 25
Time [s] 125 213 6.6

Relative Error 10-6 10-20 10-9

Table 3.19: ICP algorithms comparison for scenes described in Figure 3.15 - Itera-
tion Number Ending

Point Plane PFH

Iterations 24 8 22
Time [s] 120 67 6.1

Relative Error 10-4 10-4 10-4

Table 3.20: ICP algorithms comparison for scenes described in Figure 3.15 - Relative
Error Ending

retrieving a valid and non valid solution. In the first test the partial data set is

rotated by 30° on the Y axes, like the very first test proposed in this section; in this

case the response is correct for every algorithm, as visible from Figure 3.15 and Table

3.18. In the second the same partial data has also been further moved from the

initial rotation and now neither algorithm can retrieve the correct transformation,

as visible from Figure 3.16. As mentioned before, the results are comparable to the

ones found in previous tests and PFH ICP is still the best choice, as it is at least

ten time faster than the others, while reaching a sufficient level of accuracy. The

results of the last test are displayed in Figure 3.16, and Tables 3.21, 3.22.

Point Plane PFH

Iterations 25 25 25
Time [s] 126 211 10

Relative Error 10-4 10-4 10-3

Table 3.21: ICP algorithms comparison for scenes described in Figure 3.16 - Itera-
tion Number Ending

Also these last tests stress the importance of the initial positioning as the most

critical factor for a proper recognition of the two data sets considered. Experimental

tests to obtain the minimum percentage number of points that the data set have

to share in order to achieve a correct registration (given a “good” transformation)

found that this is value is around 50%. Under this value the ICP algorithms fail,

due to their tendency to move one barycenter close to the other.
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(a) Cloud 1 (b) Cloud 2

(c) Cloud 2 registered
against Cloud 1 - Point-to-
point ICP

(d) Cloud 2 registered
against Cloud 1 - Point-to-
plane ICP

(e) Cloud 2 registered against
Cloud 1 - PFH ICP

Figure 3.16: Poor overlapping data sets needed to be registered (left) and after ICP
registration (right)

Point Plane PFH

Iterations 22 10 29
Time [s] 110 85 12

Relative Error 10-4 10-4 10-4

Table 3.22: ICP algorithms comparison for scenes described in Figure 3.16 - Relative
Error Ending

Unfortunately this is the most likely situation to be encountered for the ap-

plication considered. Each acquisition unit - with its proper coordinate reference

system - scan a single sail, which means that for a complete acquisition of the rig

a registration between two clouds is required. The scanners are placed properly

in order to avoid occlusion, but this leads to a poor overlapping scanned area. A

simple test has been conducted on raw acquisitions, the registration has been tried

with the PFH ICP, since it has proven to be the algorithm with the best trade-off

between time elapsed and accuracy. It fails in registering the raw clouds as shown

in Figure 3.17, the procedure is not able to converge, even with a high number of

iterations (more than 500 iterations).
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(a) Cloud 1 (b) Cloud 2

(c) Cloud 2 registered against Cloud 1

Figure 3.17: PFH ICP Registration of wind tunnel acquisition

To overcome the problem a proper algorithm has been developed and presented

in the last Section.

3.2.3 Registration of Wind Tunnel Acquisition

A new procedure has been proposed to achieve a correct registration of acquisitions

taken in the wind tunnel. The first step is to compute a good initial alignment and

eventually perform several iterations of the ICP algorithm, until reaching a desired

level of accuracy. The rough alignment is not done through the SVD, but through

a specific algorithm for this application, whose purpose is to reduce the imprecision

due to points noise and not perfect correspondences. The key idea is to limit the

number of points that has to be directly correlated and exploit the knowledge of

the environment’s composition. In particular, the presence the walls, which are

inevitably visible in every acquisition, can be used to retrieve the transformation

needed to register the point clouds.
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Algorithm 3.2 Wind Tunnel Acquisitions Registration Procedure

1. Segmentation of the reference point cloud

(a) Identification of the reference wall and reference ceiling [User Aided]

(b) Extraction of the pose of the reference wall and reference ceiling

2. Segmentation of the registering point cloud

(a) Identification of the registering wall [User Aided]

(b) Extraction of the pose of the registering wall

3. First rotation : the registering wall is aligned with the reference wall

4. Segmentation of the wall-aligned point cloud

(a) Identification of the registering ceiling

(b) Extraction of the pose of the registering ceiling

5. Second rotation : the previously wall-aligned cloud is rotated again such that
also the ceilings are aligned

6. Extraction of a pair of matching points from the reference dataset and the
reference dataset, after the rotations [User Aided]

7. Translation: the selected points are overlapped, this transformation create a
“roughly” aligned point cloud

8. ICP algorithm:

(a) Filter the clouds in order to have comparable point clouds, removing
non-overlapping areas

(b) Perform ICP algorithm until reaching the desider accuracy level and
store the resulting tranformation matrix

(c) Apply the ICP transformation matrix to the registering cloud

Using the entire set of points representing a wall allows also to reduce the

inaccuracies coming from the laser scanner’s sampling. To detect the planes in

the scene the procedure uses two different segmentation algorithms, the RANSAC

Paradigm and the Region Growing Clustering, that are explained in detail in section

3.3.2 and section 3.3.3 respectively. The procedure, fully explained in Algorithm

3.2, first aligns the walls of the two data sets, then the ceilings and, in the end, asks
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the user to select a pair of corresponding points within the two clouds to perform

a final translation.

(a) 1a- Identification of reference wall and
ceiling

(b) 2a - Identification of the registering wall

(c) 3 - Registering point cloud (red)
after first rotation (top view)

(d) 5 - Registering point cloud (red)
after second rotation (front view)

Figure 3.18: Wind Tunnel Acquisitions Registration Procedure - Step by step -
Part 1

These steps allow to obtain a rough registration, which is although still influ-

enced by the acquisition’s sampling and the user’s inaccuracy, via point picking. In

order to reduce their unwanted contribution, the ICP algorithm is performed, until

achieving a satisfying level of accuracy. The precision of the final transformation

is evaluated through the Fitness Score of the algorithm, which is defined as the

sum of squared distances from the source to the target. If its value is smaller than

the acquisition accuracy found in section 2.4.3 then the registration is considered

well-performed. Although limiting the user influence on the output accuracy, the

procedure still needs for its interaction, especially in the planes recognition phase.

This happens because the Region Growing algorithm, used for generating the cloud

showed in Figure 3.18a and Figure 3.18b, is able to separate different objects in the

scene, but can’t recognize their geometry. Moreover, since the wall and the ceilings

are both planar object and the two reference systems position and pose is not a pri-

ori known, developing a fully-automatic procedure to recognize them is extremely

difficult and quite useless, compared to the simplicity of the user interaction.

The user have to recognize the wall and the ceiling, indicate it to the software,
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(a) 7 - Registering point cloud (red) after the translation (front view)

(b) 8a - Clouds after the filter / Input clouds of ICP algorithms

Figure 3.19: Wind Tunnel Acquisitions Registration Procedure - Step by step -
Part 2

selecting one of their points. The procedure is then able to identify their pose

through the RANSAC paradigm, which can identify the normal associated to a

plane. Given two vectors, v1 and v2, the transformation matrix, R, to rotate one

onto the other come from :

v = v1 × v2 (3.32)

c = v1 • v2 (3.33)

R = I + [v]x + [v]x
1− c
‖v‖2

(3.34)

where [v]x is the skew-symmetric cross-product matrix of v:
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[v]x :=

 0 −v3 v2

v3 0 −v1
−v2 v1 0

 (3.35)

The cross-product v between v1and v2 can be interpreted as the rotation axes,

while the dot-product is the cosine of the angle that has to be applied. Figure

3.18c shows the result of the first rotation, which aligns the walls, and Figure 3.18d

shows the rotation respect to the ceilings. The order of the transformations is not

important, this means that the procedure returns the same output, when aligning

first the walls and then the ceilings or vice versa. In the point picking phase for the

translation, choosing points from the wall has proven to achieve a slightly better

translation, respect to choosing them from the sails or ship model. Even if the

clouds are already registered the result is not acceptable, as visible from the details

in Figure 3.19a, the reasons for this misalignment are the same explained for the

SVD algorithm in section 3.2.1. The ICP can’t be performed on the clouds as

they are at the current point of the procedure, because there are many areas where

points do not match and this could cause the algorithm to fail, as demonstrated in

section 3.2.2. To overcome this issue, a particular filtering has been implemented,

starting from the classical spherical filter.

Figure 3.20: 8c - Registering point cloud (red) after the ICP algorithm (front view)

Normally the spherical filter create a sphere of fixed radius around each point,

if the sphere does contain no other points from the same clouds (or less then a fixed

number of points), the center point is considered as noise and removed from the

data set. In this case the filter, after constructing the sphere, checks if there are

close points from the other data set; the point clouds filtered are shown in Figure

3.19b. Note that, correctly, all the areas where the data do not overlap are removed,
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especially on the ceiling and in the background, but also part of the sails, from each

acquisition as been canceled, because there are no correspondence. Without the

use of this filter the ICP can’t converge to a solution, but it should be larger enough

to keep the majority of the sails point. The final registration scene is showed in

Figure 3.20.

(a) Gennaker Sail - Side View

(b) Gennaker Sail - Top View

Figure 3.21: Registering point clouds details - pre-ICP (left) and post-ICP (right)

Although the scene does not seem to change respect to Figure 3.19a, there are

improvement, as visible from Figure 3.21, where close-ups of the clouds before and

after the ICP are compared. The effectiveness of the algorithm can be proven also

through a statistical analysis the minimum point to point distance changes between

the registering cloud and the reference cloud with, or without, the last refinement

step. Figure 3.22 shows the histogram of the distribution of the registering points

respect to their minimum distance with points belonging to the reference cloud.
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Figure 3.22: Statistical point to point distance before (left) and after (right) per-
forming ICP

As visible, the pre-ICP cloud has a steadier distribution, while the post-ICP

distribution presents a higher number of samples, more than doubled, in the low-

distance (blue) zone. Evaluating the performance of the whole procedure is not

easy task, because the output of the ICP implementation, the fitness score, the

sum of squared distances from the source points to the target points, in the case of

clouds with different points can’t be used to retrieve the single point registration

accuracy. A generic, mean accuracy can be found dividing the fitness function with

the total number of points of the registering data set:

f̄ =
Fn
n

=
2345.3[mm2]

32829
= 0.071[mm2] (3.36)

which represents the medium area for a registering points to contain a neighbor

reference point. This result is not significant of the procedure precision, since we

are comparing clouds that do not have point to point correspondences and more-

over, still after the filter, there are parts that do not overlap (see Figure 3.19b).

To test the effective accuracy of the procedure a wind tunnel full acquisition is

rotated by 90° one of the axes and then moved by 1000 mm in each direction is reg-

istered against its original position and pose. The imposed transformation matrix

is compared to the registration matrix returned from the procedure in (3.23b).

The registration is almost perfectly achieved and the imperfections can be im-

puted to numerical approximation in the transformation implemented. The overall

fitness function is Fn = 9.8 · 10−4 mm2, which is expected, as the clouds considered

are composed by the same, identical points.

Since the overall fitness is well below the acquisition system’s accuracy (section

2.4.3), it follows that the single point fitness has to be smaller and that the condition
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1 0 0 1000
0 0 −1 1000
0 1 0 1000
0 0 0 1


(a) Imposed transforma-
tion


0.999 10−8 10−7 1000
10−7 10−7 −0.999 999.97
10−7 1 10−7 1000.01

0 0 0 1


(b) Retrieved transformation

Table 3.23: Wind tunnel registration with perfectly matching clouds

to obtain a well performing procedure is satisfied.

Figure 3.23: Statistical point to point distance of the registration a same trans-
formed cloud against the original cloud

After achieving the registration, the final transformation matrix is saved as an

output file, which can be applied to other acquisitions from the same set that need

to be registered, saving time in the complete processing operations.
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3.3 Scene Interpretation and Clustering

Segmentation and clustering are generally described as the operation of dividing

large data sets in smaller, disjointed subsets.

Handling chunks of data instead of the whole has many advantages, but the

developing of these algorithms was first pushed by the need of reducing the pro-

cessing time of further operations (i.e. triangulations). The initial attempts were

carried on only considering the euclidean distance as discriminating factor, while

eventually adding additional information, like normals and curvature allowed to

achieve a more intuitive decomposition.

Segmentation and clustering end up with almost the same result, although with

a main distinctive difference, as segmentation supply additional information on the

subsets returned, while clustering only creates several possible data sets. Segmen-

tation returns extra information since it searches in the data set pre-determined

models, such as spheres, planes or cones and it can identify the parameters of the

model, like the radius of the sphere. On the other hand clustering divides the orig-

inal data in subsets starting from its local properties, so it could be run without

the knowledge on what shape has to be searched.

Since the difference between the output of the two procedure is so subtle that

in many situations they can easily be used interchangeably,this work refers to “seg-

mentation” as a general procedure that extracts a set of points from a wider data

set.

Segmentation is a key process in computer vision and its main contribution goes

to obstacle avoidance problems, where identifying information on the position of an

object, its spatial coordinates and its dimensions are clutch towards the resolution

of the issue. Most of the algorithms developed were initially applied on 2D data

coming from cameras. Later, with the spread of 3-D sensors (laser scanners and

depth cameras), they started have being applied to point clouds.

In this chapter a comparison of different algorithms is presented. Strength and

weak points are discussed, in order to establish the most suitable for the application

considered: it has to extract correctly the data points from the whole scene acquired.

In detail, the Euclidean Cluster Extraction algorithm is presented at first, since

is the simplest and

Then segmentation procedures using RANSAC and Region Growing algorithm

are described and finally the Hough Transform is reported. These procedures were
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tested on simulated data, depicting simple scenes with regular geometry objects,

and then on real acquisition scenes with both mainsails and gennakers.

3.3.1 Euclidean Cluster Extraction

As mentioned before, this procedure divides the original scene into parts, creating

many subsets whose cardinality is way smaller than the original one. Euclidean

Cluster Extraction, as the name suggests, relies only on the euclidean distance to

populate the clusters. This means that given two points belonging to the data

set, they are put in the same cluster only if their distance is smaller then a given

threshold. As it is possible to imagine, rarely this kind of clustering is able to

separate some objects, because when the rate of acquisition is constant, which is

an expected choice, consequently the point-to-point distance is locally fixed. What

this algorithm is capable of doing is to split wide pieces from the original data, for

example it could be useful for separating a target from a further background or

similar application where the area of interest is limited and well localized.

To populate a cluster, the Euclidean Cluster Extraction first selects a point p,

labeled as “seed”, in the data set and then search for all the other points within

a sphere of radius r centered in p, which will form the initial cluster. Then these

added points turn into seeds and the procedure goes on until no more points can

be added to the current set. The pseudocode of the full algorithm is shown in

Algorithm 3.3.

A cluster seed is the first concept that has to be introduced. It acts as a starting

point from which the algorithm develops and can be chosen randomly, as in this

case, or has to satisfy some conditions in order to be picked. In the procedure, a

K-d tree (see section 3.1.7 for details) is exploited in the neighbors research, as its

space-partitioning data structure for organizing points is able to drop significantly

the computational costs. The only parameter that can be handled is the radius

of the sphere, which enlarges or shrinks the volume that is considered in the close

points research. Setting the radius to a value similar to the density of the cloud will

result in a finer research, while, on the contrary, setting it to a high value (w.r.t.

the cloud density), will split the data set in a coarse way. This is the main flaw of

the Euclidean Cluster: an acquisition of a real scene will unlikely have a defined

distinction between the objects, because also intermediate points are acquired, and

so the procedure will progressively incorporate them in one cluster. So a scene
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Algorithm 3.3 Euclidean Cluster Extraction

1. Create a K-d tree representation for the input point cloud dataset P;

2. set up an empty list of clusters C, and a queue of the points that need to be
checked Q;

3. for every point pi ∈ P, perform the following steps:

(a) add pi to the current queue Q;

(b) for every point qi ∈ Q do:

i. search for the set Pk
i of neighbors point in a sphere with radius r

< dth;

ii. for every neighbor pi
k ∈ Pk

i, check if the point has already been
processed, and if not add it to Q;

(c) when the list of all points in Q has been processed, add Q to the list of
clusters C, and reset Q to an empty list;

4. the algorithm terminates when all points pi ∈ P have been processed and are
now part of the list of point clusters C.

composed as in Figure 3.24 (left) it is possible to use this procedure to identify the

objects, while in Figure 3.24 (right), the identification is no more achieved.

Figure 3.24: Comparison between a scene composed by the objects (left) and one in
which the various objects are more realistically placed on a plane (right) - Different
colors refers to different clusters.

Due to this problem it is evident that for the application considered in this work

the Euclidean Cluster Extraction is not a suitable solution for the identification of

the sail cluster. Methods that take into account more geometrical information are

needed.
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3.3.2 RANdom SAmple Consensus paradigm - RANSAC

The RANSAC algorithm starts from the assumption that in the data considered

there is a subset of points that can be explained through a mathematical model.

Data can then be divided in inliers, i.e. points that well suit the considered model

(accepting a certain tolerance), and outliers, i.e. points that do not suit it. The orig-

inal paradigm was developed by Fischler and Bolles in [Fischler and Bolles, 1981]

to solve the Local Determination Problem related to cartography. The goal was to

find the spatial position from which an image had been shot evaluating the per-

spective distortion between straight lines joining some know landmarks. In this

case the model to be found was the simplest one, the straight line. Afterward,

other authors improved the procedure including some planar models such as circles

and ellipses. Finally, the first three-dimensional implementation was published by

Schnabel, Wahl & Klein in [Schnabel et al., 2006], they were able to identify planes,

spheres, cylinders and cones.

Despite the fact that the yacht sails could not be represented perfectly by these

regular geometries, the RANSAC algorithm was taken into consideration to test

whether, under certain tollerance, it could extract the sail shape, approximating it

with a cone or a cylindrical model. The results for these tests are reported below.

The algorithm could be divided in three main parts. In the first step, a subset

containing the smallest number of points required to construct the model sought

is extracted (and the model is effectively created); in the second step, data points

are tested and flagged as inliers or outliers with respect to an error tolerance.

Repeating these steps leads to different identified shapes, each formed starting by

different minimal subsets. The final step is evaluation of the best shape extracted,

that is the shape that provides the maximum number of inliers, i.e. the highest

score function. The RANSAC algorithm, reported in Algorithm 3.4, requires as

input only the model describing the sought shape and a parameter ε representing

the maximum discrepancy acceptable between a point and the model constrain. It

returns only one cluster for each data set; so that, to extract two or more objects

in a scene, an external iteration loop is needed.

In the next sections, the procedure steps are discussed more in detail.
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Algorithm 3.4 RANSAC paradigm

1. Computation of an octree representation for the input point cloud data set P

2. Extraction of the minimal point set S to create the model

3. Creation of the candidate shape ψ from the points in S and computation of
the shape’s parameters (i.e. radius, planarity...)

(a) Identification of inliers or outliers points from the point cloud P

(b) Evaluation of the score function σv(ψ)

(c) Re-computation of the shape parameters starting from all the inliers
identified

4. Repetition of step 2 and 3 for a fixed number of times to extract many can-
didate shapes and their score functions

5. Rejection of candidate shapes with too few points

6. Extraction of points of P belonging to the shape with the highest score func-
tion

3.3.2.1 Extraction of the minimal point set

RANSAC algorithm uses both information about the spatial coordinates of the

points and their normals, that are computed implicitly within the algorithm. What-

ever the shape to identify, the algorithm extracts a minimal subset composed of

three points, with their corresponding normals, <(p1,n1),(p2,n2),(p3,n3)> . The

first point p1 of the minimal subset is picked randomly in the whole data set. Then,

after computing an octree spatial subdivision - extremely useful in the research of

neighbor points, (see section 3.1.8), a box C (or a level of the tree) containing p1

is selected. p2 and p3 are chosen within the same box C. The algorithm, in fact,

works under the hypothesis that the shape sought is a local phenomenon in a wider

set of data and so a shape created from close points has more probability to be the

right one instead of one built from distant points. Moreover, choosing C from a

proper level of the octree is an important aspect. The smaller the C dimension is,

the greater the probability that the points in the minimal subset correspond to the

same shape. For sure, the density of the cloud must be taken into account and the

algorithm can automatically adapt to point cloud with non-uniform density, which

is especially convenient in this study.
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3.3.2.2 Shape estimation

Each model is constructed differently and, if possible, is immediately checked for

consistency, in order to avoid to carry on shapes that have low possibility of being

the correct one.

Planes <p1,p2,p3> constitutes a set that permits to retrieve the parameters of

a plane. If the deviations of the normals n1, n2, n3 from the plane’s

normal is less than an angle threshold, α ,then the shape is accepted,

otherwise it is immediately rejected.

Spheres a sphere is fully defined by two points with their normal vectors. The

sphere is accepted if all the three points are within a distance of ε from

its surface and all their normals do not deviate by more than α degrees.

Cylinders to generate a cylinder two points and the corresponding normals are

needed. Again the shape is verified by applying the thresholds on eu-

clidean distances and normal deviations.

Cones although a cone can be constructed with the same starting base as the

previous two shapes, for simplicity all the points and normals are used

in its generation.

The procedure to reconstruct each model and its parameters is explained in detail

by Schnabel, Wahl & Klein in [Schnabel et al., 2006].

3.3.2.3 Score Function

The score function σv(ψ) is responsible for measuring the quality of the shape ψ and

is formally defined as σ(ψ) = |Pψ|, where Pψis the maximum connected component

on the parameter domain of the corresponding shape and can be expressed with:

Pψ = maxcomponent(ψ, P̂ψ)

P̂ψ = {p|p ∈ P ∧ d(ψ, p) < ε ∧ arccos(|n(p) · n(ψ, p)|) < α} (3.37)

In (3.37) the second condition represents the threshold on the euclidean distance

from the point to the shape, while the third is the correspondent threshold on the

deviation between their normals. The connected component is sought in a bitmap
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in the parameters space where a pixel is set if a point is projected into it and

the parametrization changes depending on the model considered. In the end what

stands out is that the score function is simply a cardinality operator and due to

this the RANSAC algorithm will return, from the candidate shapes found, the

one which is able to explain the higher number of points; this could lead to some

data misinterpretation, that will be shown in the Result section. Moreover there

is another adjustment to explain, which take place in the final step of 3.4 and it’s

the fact that the score function is not calculated over the whole data set, because

this operation would be really computational expensive, so the expected value of

σv(ψ) is forecasted. Before calculating the connected component, the whole data

set is split in disjointed random subsets P = {S1...Sr}, the score is evaluated only

on S1and and estimate of the score is calculated through inferential statistics as:

σ̂p(ψ) = −1−f(−2−|S1|,−2−|P |,−1−σS1(ψ)). f(N,x,n) is the mean plus/minus

the standard deviation of the hypergeometric distribution, so σ̂p(ψ) can assume two

values, a or b. σ̂p(ψ) can be seen as a confidence interval [a,b] for the true score

σp(ψ), whose expected value E(σp(ψ)) is given by a+b
2

. At this point each shape

has an expected value for its score, but it comes with an uncertainty, that has to be

taken in consideration, before comparing the values to extract the best candidate.

For this reason E(σp(ψ)) for a candidate is accepted only if no confidence interval

of others overlaps with it. If this happens, then the estimate σ̂p(ψ) is recalculated

for all, adding one more subset Si and so on until the uncertainty in the estimation

decreases, the intervals do not overlap and they can be compared.

3.3.2.4 Parameters

Here is a recap of the parameters involved in the RANSAC paradigm and the differ-

ences involved between the theoretical algorithm explained and the implementation

using the PCL libraries.

� Minimum size τ of a candidate shape; used to eliminate candidates too

small. Not settable by the user in the Random Sample Consensus model

from the PCL, so either it’s set automatically starting from the size of the

original point cloud or this supplementary control is not used.

� Distance error tolerance ε, establish what is the acceptable distance from

a point to the hypothetical surface so that the point is considered as an inlier.

Should correspond as possible to the accuracy of the scanning device. This is
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the only parameters that the PCL use as input, due to the strict dependence

to the acquisition.

� Normal deviation tolerance α, the least critical parameter, as said in

[Schnabel et al., 2006], and in general can be set arbitrary large, even though

smaller values permits the find smoother edges. However this can be also eas-

ily done in a post-processing step, so setting α to a high value helps decreasing

the computational cost of RANSAC, without any drawback. PCL does not

consider it as input.

� Pixel-size β, used in the passage to the parameters space in the calculation of

the score function. Should be equal to the sampling density of the point cloud.

If this is unknown, it can be replaced by the result of a minimum neighbors

computations on the data, which is what is done in the PCL method. In case

of point clouds with variable density, the minimum local density should be

returned by the nearest neighbors procedure.

In addition it has to be reminded that, since the normals are computed inside the

method, in the implementation we don’t have access to their parameters, that are

explained in section 3.1.3.

3.3.2.5 Results

In this section segmentations of various scenes are presented, they are constructed

through mathematical models, ideals or with the addiction of noise, to evaluate the

actual performances of RANSAC and identify its main problems. A reconstructed

scene is set up, with all the basic elements available, built from code, which means

that there is a full three-dimensional shape and its points are well spaced, meaning

that every area of the shape is well acquired. Also actual scenes will be used in the

test, both similar to the previous and segmentation of the sails will be performed.

Let’s begin with showing some good segmentations, for each model available

and their statistics.

As visible all the basics shapes are detected with a high level of accuracy, as

the percentage of correctly identified points is around 90% for all, with the notable

exception of the plane, which takes in also points from the other shapes. The

time needed by RANSAC to complete the procedure rises with the increase of the

number of parameters that have to be identified, as expected.

90



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

Figure 3.25: Basic elements segmented with RANSAC paradigm - Up left: plane,
up right: sphere, down left: cylinder, down rigth: cone

Unfortunately a good segmentation strongly depends on an suitable value for

ε, because a relatively high value could lead to a total misinterpretation of the

data. The main problem in RANSAC is that it tries to force the input data into

the selected model. It returns the candidate shape with maximum cardinality,

as explained, without further considerations, so could happen that in the scene a

subset of data can create a candidate shape with high score function, even though

it does not really form a complete shape. In Figure 3.26 a failed segmentation of

a cone, with ε=0.5, is showed. Similar results have happened also with cylinders

and especially with spheres, in scenes with a sphere on a larger plane; in this case

the plane could be identified as a sphere with a huge radius. A strong dependence

on the geometric composition of the scene has been detected, because the relative

position of the object on the scene also influenced the interpretation.

With the presence of a realistic noise the situation worsen to the point that

the cone and the cylinder can’t anymore be identified, however the effect of the
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Shape # of
original
points

# of
identified

points

% of
correctly
identified

points

ε Time
Elapsed

[ms]

Plane 3600 4140 85 0.04 202
Sphere 8100 8105 99.94 0.04 31
Cylinder 3600 3608 99.78 0.04 1159

Cone 3620 3301 91.71 0.04 8444
SCENE 18920

Table 3.24: Segmentation of basics elements with RANSAC paradigm

Figure 3.26: Failed segmentation for a cone

inaccuracies can still be countered raising the value ε on the sphere, as visible in

Figure 3.27, where on the left the inliers band is narrower and on the right it’s wider

and allows all the points to be grouped in one shape. One of the identification case

that remains unclear is the result of a segmentation where the candidate shapes have

the same cardinality, a rare case to be honest, but still worth of a more exhaustive

analysis. To study this situation a scene with a four cones, built with the same

number of points, but with different geometrical dimensions, is set up.
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Figure 3.27: Noise effect and counter-effect of ε (on the right ε=0.04, on the left
ε=0.3)

(a) Iteration #1 (b) Iteration #2

(c) Iteration #3 (d) Iteration #4

Figure 3.28: RANSAC on shapes with same number of points but different geomet-
ric dimensions: smaller shapes are identified first

When a shape is found then it is removed from the point cloud and then the

algorithm is run again to confirm the result. Figure 3.28 shows each step of the

iteration and what stands out is that, on other conditions being equal, RANSAC

first identifies the smallest set.

Until this point all the figure used in the tests are fully three dimensional, but
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this does not represent a real acquisition, which has a fixed field of view.

In the best case a single point cloud can cover only up to 180 degrees around an

object. Moreover the attempt or retrieving a sail through this procedure supposed

that its surface could more or less be approximated as a part of a cylinder or cone,

so investigating the performances of the algorithm with partial shapes could bring

some information on the possibility of a successful conclusion.

(a) Sphere (b) Cylinder (c) Cone

Figure 3.29: Identification of partial shapes, only 2
3

of a shape are available

(a) Sphere (b) Cylinder (c) Cone

Figure 3.30: Identification of shapes coming from real acquisitions

In Figure 3.29 is showed that the algorithm has a mixed response, because it

can successfully retrieve the shape of a 60° cone and sphere, but fails in the cylinder

case. Similar observations can be made on model coming from real acquisitions, as

can be saw in Figure 3.30. This series of point clouds were registered with a Kinect

unit instead of the acquisition system described and characterized in section 2.4.3.

The last step is to perform the segmentation on real acquisitions taken both on the

field and in the wind tunnel. The value of ε has to be chosen considering the type

of data used, because the laser scanner has a spatial definition that changes with

the distance of the surface acquired; a worst-case value is considered initially and
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then adapted to the data set. The images show the best results that is possible to

obtain through the RANSAC and, as can be seen, it’s absolutely ineffective. The

tables 3.25 stress out the great difference from these segmentation from the first

performed.

(a) Mainsail (b) Gennaker

Figure 3.31: RANSAC segmentations of cylinders on sails acquisitions, ε = 60

(a) Mainsail (b) Gennaker

Figure 3.32: RANSAC segmentations of cones on sails acquisitions, ε = 60
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# of
sail

points

% of
correctly
identified

points

Mainsail 7054 0
Gennaker 11799 28.86

(a) Cylinder

# of
sail

points

% of
correctly
identified

points

Mainsail 6537 21.65
Gennaker 8837 43.7

(b) Cone

Table 3.25: Segmentation of sails through RANSAC

3.3.2.6 Conclusions

The RANSAC paradigm fails to identify the sails in every case tested, the reason

is that the sail considered not only are curved but also a little twisted and so they

can’t be approximated as cones or eventually cylinders. An effective use of the

algorithm remains restricted to scenes where its main hypothesis is verified, where

it showed great precision in first analysis. The objects searched have to be really one

of the basic shape; given this the algorithm provided great adaptability in presence

of considerable level of noise and is able to detect also partial objects. Another

main drawback is the presence of an error threshold, ε, which has to be adapted to

the data set, in order to have a significative result. The RANSAC paradigm is a

good choice for segmenting scenes composed of quasi-geometrical shapes or when a

single object has to be decomposed in its principal parts (i.e. identifying its faces)

but in this case, another solution has to be found.

3.3.3 Region Growing Clustering

The region growing type of solution was developed initially for the segmentation

of intensity images and starts from the postulate of similarity of pixels within

regions. This principle states that pixels that represent the same region or ob-

ject share the same properties, like the same level of gray in a gray-scale im-

age. This type of procedure was particularly improved by Adams and Bischof

in [Adams and Bischof, 1994], where they proposed a Seeded Region Growing al-

gorithm, in which they required an input set of seed points. As deducible from its

name the algorithm proceeds to create a region with similar properties starting from

each seed. Since it divides the data set considering the information coming from
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local properties and not from an external model, the region growing is a clustering

algorithm.

Algorithm 3.5 Region Growing Clustering

1. create a region list R, initially empty, an available points list A, such that
{A} ← {1, ..., |P|} and a seed list S;

2. while A is not empty:

(a) create a current region set Rc;

(b) select the seed as the point with minimum curvature in A and add it in
S;

(c) for i=0 to size(S) do:

i. find the nearest neighbours Bc of the current seed point Si;

ii. for j=0 to size(Bc) do:

A. for the current neighbour point Pj ← Bc(j);

B. if Pjhas still not be assigned (Pj∈ A) and

cos−1(|N{Si}, N{Pj}|) < θth

then add the point to the region and remove it from the available
points:

C. if
c(Pj) < cth

then add the point to S;

(d) if the current region Rc has too little points or too much points
(|Rc|<Nmin∧ |Rc|>Nmax) then is rejected, else

(e) return the current region Rc as cluster;

3. return the set of clusters.

The transposing in the three dimensional space was implemented by Rusu in

[Rusu, 2010] as a “natural extension” of the Euclidean Cluster Extraction. His first

intention was to identify and extract different surfaces colliding with each others,

like a table lean on a wall, so he has chosen as the discriminating factor the normal

of a point, which replaces the Euclidean distance used in section 3.3.1. Moreover

he chooses the automatically pick the seeds as the points with minimum curvature

in the original data set, while all the previous procedures required them as inputs.
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This is quite important because it means that the segmentation starts from flat

areas and proceeds to aggregate as many points as possible, according to their

properties, as explained in Algorithm 3.5. When considering if adding a point to a

cluster it is compared with the current seed in consideration: if their normals does

not diverge more than a threshold θth then they are considered as part of a single

object. Here the critical condition for a region growing procedure is checked, if the

point has a low curvature, or at least lower then a curvature limit cth, then is added

as a seed point for the current considered cluster.

This step allows the grow gradually the number of points that can be added;

consider three points p1, p2, p3 and their normals n1, n2, n3, everyone on a curved

surface, such as n3 diverges from n1 more than θth and instead n2 that has the

opposite property both respect to n1 and n3. p3 can be added to the cluster of p1

only through p2, while it wouldn’t be added at all with a different type of clustering.

Through the mechanism it is also assured that the region grows from the areas with

lower curvature, in other words planar surfaces will be identified first. The Region

Growing Clustering is much simpler algorithm respect to the RANSAC because it

needs less objects and computations to create a cluster; moreover the user has more

control on the performance, as a higher number of parameter is available to be set.

Another peculiarity is the possibility for a point to not be part of a cluster at the

end of the steps, which happens when it is assigned to a cluster that is eventually

rejected due to its cardinality.

3.3.3.1 Parameters

The final clustering if the data set depends from many parameters, listed below:

� Minimum size Nmin of the cluster: allows to reject clusters that have too

many few points. Although its simplicity it’s a very useful parameter, espe-

cially in this work, where the the sail usually takes up to one third of the

total points of the whole data set and never less then one tenth. We can tune

it in order to try to achieve a unique cluster containing the sail, but this is

effective only with data sets coming from on field acquisition, since they don’t

have a background, which is present in data sets from the wind tunnel. Walls

and ceiling are identified and most of the times are represented by a number

of points comparable to the one of the sails.

� Maximum size Nmax of the cluster: allows to reject clusters that have too
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many points. It is the complementary parameter of Nmin and it could be used

in the wind tunnel acquisition to eliminate possible clusters containing the

wall points, while in other cases it’s quite useless, because the sail is usually

the cluster with the most points.

� Smoothness threshold θth: allows a point to be added to a cluster if its

normal differs less than it from the normal of the current seed, so increasing

the smoothness threshold allows points with large normals difference to be

part of the same cluster. The main advantage of this parameters is that it is

(a) θth=2.25 (b) θth=5

(c) θth=12 (d) θth=20

Figure 3.33: Smoothness threshold effect on a sphere generated with random points
- red points can’t be assigned to a cluster, other colors correspond each to a different
cluster. Other parameters: cth=50 , Nmin=50 , Nmax=1000000.

independent from the point cloud dimensional scale, so it is possible to com-

pare values from an outdoor acquisition with the ones used in a segmentation

of a wind tunnel acquisition. On the other hand it has to be adapted not

only to the type of sail considered, but also to the sailing point of the boat

at the registration of the sail shape. The mainsail has usually an almost flat

surface, while gennakers are more convex and close-hauled andature generates

straighter sails, on the contrary running before the wind creates more rounded

shapes. To explain the mechanism, a segmentation on a simple scene as been

performed, where the other parameters are set to be non influential. Figure
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3.33 shows the creation and composition of the clusters with the change in

the value of θth. Points colored in red are the ones that are unassigned to a

cluster, as explained further above, while in Figure 3.34 there is a detail of

the normals calculated. Starting from the up left, in Figure 3.33.a the only

object returned is the plane, because all of its points have normals that are

very similar and fall within the angle threshold. With the rise in the value

of θth (see Figure 3.33.b) two different clusters are generated, although they

can’t unite because the normals generated from random points can be noisy

and lead to this issue. However this is solved in Figure 3.33.c, where an ad-

equate level for the threshold allows to successfully separate the two objects

and an additional rise would group all the point in a single cluster, since no

points is being filtered anymore.

Figure 3.34: Normals visualization for Figure 3.33 - normals in the sphere-plane
contact area are noisy

� Curvature threshold cth: allows a point to be added as a seed for further

points. Points are confronted with seeds in order to be added to the cluster,

updating the list of seeds permits the cluster to grow over the initial possible

set, which is given by θth. As explained in section 3.1.4 the point curvature

is obtained together with the normal, so the curvature threshold shares the
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properties explained for the smoothness threshold. Raising cth let the cluster

grow among surfaces with higher curvature and its effect is demonstrated in

Figure 3.35, using the same scene as before. A low value for this parameter

(a) cth=0.003 (b) cth=0.03

(c) cth=0.09 (d) cth=0.2

Figure 3.35: Curvature threshold effect on a sphere generated with random points -
red points can’t be assigned to a cluster, other colors correspond each to a different
cluster. Other parameters: θth=50 , Nmin=50 , Nmax=1000000.

means that a cluster can unlikely grow itself and the algorithm will end up

having several sets with a low number of points (see Figure 3.35.a), because

the sphere is divided in many colors. The sphere is a surface that has constant

curvature, so when cth reaches its value then the shape can be fully identi-

fied (see Figure 3.35.b and Figure 3.35.c), excluding areas with noise coming

from intersection from different surfaces. Similarly to what happens for the

smoothness, a too much high threshold, results in a unique cluster containing

the whole initial data set (see Figure 3.35.d).

Unlike the RANSAC paradigm, the Region Growing Clustering allows to tune also

the creation of the normals, that are requested as an input in the PCL implemen-

tation. This can be considered as an additional degree of freedom in the procedure,

although manipulating it does not have immediate, intuitive result and should be

done carefully; its effects are displayed in section 3.1.3. It still can be really useful
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in simple situations, like splitting two different, incident surfaces. In this case there

are two possible strategies: have a large neighbor to calculate the normals (i.e.

smooth transition between close normals) and detect minor changes in their orien-

tation to identify the change of surface. Or, at the opposite, use a small neighbor

(i.e. possibility of noise on the normals) and search for great orientation changes.

In Figure 3.36 is provided an example using two planes, built from random points,

forming a 90 degrees edge.

(a) Big Neighbor approach:
Nmin=50, Nmax=10000, cth=1,
θth=0.1, Nneigh=100

(b) Small Neighbor approach:
Nmin=50, Nmax=10000, cth=1,
θth=4, Nneigh=10

Figure 3.36: Corner segmented with Region Growing, using two different ap-
proaches

Using planes registered with equally spaced points, the two strategies have the

same, successful, output, thanks to their lack of imperfection. Using a noisy data set

the “small neighbor” approach has an error in the identification, where the surfaces

touch, and, in general, the output is more sensible to changes in the parameters.

On the other hand the “big neighborhood” test shows a no-detection zone exactly

in correspondence of the corner and clearly distinguish the different planes. This

approach is more safe with respect to the value of the parameters, as the only major

difference is the shrinking or enlarging of the corner zone, so it is chosen as the best.

3.3.3.2 Results

In this section, first, segmentations on the same scenes used for the RANSAC

algorithm in section 3.3.2.5 will be performed and, eventually, also tests on real

acquisitions are presented. A main difference between the two is that the Region

Growing produces many clusters, so it’s possible to identify many objects within a
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single segmentation. Figure 3.37 give a visual representation of the output, whose

quality is better explained in Table 3.26a.

Figure 3.37: Region Growing Segmentation on a computer constructed scene - red
points cannot be assigned to any cluster

Figure 3.38: Poor normal estimation near the cone’s vertex

The percentages of correctly identified points are lower respect to the RANSAC

case, for each shape. Analyzing each object separately it has to be noted that, for

the plane, most of the points that are missed are the ones inside the cylinder and

cone bases, which can’t be present in a real acquisition ( they would be covered),

so this percentage is expected to grow in a real registration. The sphere and the

cylinder are well segmented, due to their constant curvature, while the cone is the
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Shape # of
original
points

# of
identified

points

% of
correctly
identified

points

Plane 4000 3087 77.17
Sphere 8100 8273 97.86

Cylinder 3600 3654 98.5
Cone 3620 2497 68.75
Not

Identified
1409

SCENE 19320
Time

Elapsed
1119

(a) Results of the segmentation

cth θth #neigh Nmin Nmax

0.1 20 200 1000 1000000

(b) Parameters set for the segmentation

Table 3.26: Region Growing Segmentation result for a computer constructed scene

worst of all four shapes, this happens due to the poor normal estimation on its

vertex, where they change orientation suddenly, as can be seen in Figure 3.38. This

problem is related to the construction of the cone, in fact each “horizontal slice”

has the same number of points, resulting in a high point density near the vertex;

also this issue should be minimized in a real data set.

The Region Growing algorithm can handle robustly noisy data set, differently

from the RANSAC, which has to adapt its parameter to the level of noise (whose

knowledge is not always predictable) and nevertheless could fail the recognition.

Figure 3.39 and Table 3.27a show the result for a segmentation performed on a data

set with an appropriate noise and what stands out is that the performances are not

far from the ideal case and it even seems to perform slightly better. This small rise

in the identified percentages is manly due to a better normal reconstruction in the

surface contact areas and on top of the cone.
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Figure 3.39: Region Growing segmentation on a reconstructed scene with added
noise - red points cannot be assigned to any cluster

Shape # of
original
points

# of
identified

points

% of
correctly
identified

points

Plane 3600 3111 86.41
Sphere 8100 8277 97.8

Cylinder 3600 3627 99.25
Cone 5611 4127 73.55
Not

Identified
1769

SCENE 20911
Time

Elapsed
1119

(a) Results of the segmentation for the noisy scene

cth θth #neigh Nmin Nmax

0.1 20 200 1000 1000000

(b) Parameters set for the segmentation

Table 3.27: Region Growing Segmentation result for a computer constructed scene
for the noisy scene

Partial shapes are also detected with reliability in most cases (see Figure 3.40)

and in general surfaces whose normals collide have more chance to be easily iden-

tified correctly. On the contrary, for example, a partial sphere has normals on

the contact area that have similar orientation with the plane, so its recognition is

tougher with this procedure. This issue is present not only for recreated scenes,

but also in real ones, referring to Figure 3.41.a and Figure 3.41.b. Well-defined
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shapes are recognized with good precision (99,67 % and 98.89% of correctly identi-

fied points for a sphere and a cylinder respectively), while in Figure 3.41.c a smooth

transition between the cone and its frame prevent a fully correct segmentation. The

last step is applying the Region Growing Clustering on the acquisition of real size

sails to verify if it could be applied in this work. Unlike the RANSAC, its results are

absolutely positive when tested with these data sets, in fact it is able to recognize

most of the points belonging to the sails, see Table 3.28a. Most important, these

clustering allow to extract almost all the interested points, while the major part of

the errors come from extra points included, which can be eventually removed via

filtering or through an human operator intervention.

Figure 3.40: Region Growing Segmentation results for partial shapes - Cone cor-
rectly identified points: 99.25% - Cylinder correctly identified points: 89.35%

(a) Sphere (b) Cylinder (c) Cone

Figure 3.41: Region Growing Segmentation on real acquisitions
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(a) Gennaker (b) Mainsail

Figure 3.42: Region Growing Segmentation with on-field sails acquisitions

# of original points % of correctly
identified

points

Time Elapsed [ms]

Gennaker 8837 97.17 514
Mainsail 7054 89.58 1462

(a) Results

cth θth #neigh Nmin Nmax

Gennaker 0.01 5 50 6000 100000
Mainsail 0.025 15 20 5000 100000

(b) Parameters

Table 3.28: Region Growing Segmentation performed on on-field sails acquisitions

The presented segmentations, until now, are referred to acquisitions on open

air field, it is following showed that the same procedure, adapting the parameters,

works also on acquisitions recorded during wind tunnel campaigns. Figure 3.43

displays the segmentation performed on two wind tunnel acquisition with the pa-

rameters reported in Table 3.29. The first data set is dedicated to the gennaker

acquisition, while the second to the mainsail. It is evident that a unique scan could

not acquire both the sails, since the gennaker, in the second acquisition, is partially

covered by the mainsail. Always in Figure 3.43.b note that all the shrouds are

separated correctly from the actual sail, while in Figure 3.43.a the forestay become

confused with the gennaker. This happens because, in order to acquire correctly all

the surface of the gennaker, the acquisition device needs to be placed really close to

the model of the yacht (in fact the hull is not visible in the gennaker acquisition).
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In this case, the high density of the point cloud, lead not only to the acquisition of

a more detailed shape, but also unwanted details (as the forestay is) are acquired

with better precision and their transition from the sail is smoother (and thus they

are harder to eliminate) respect to the mainsail case, where the shape is recorded

from a bigger distance. This issue is not directly solvable with the segmentation, be-

cause the acquisition device has to be placed in a position where the sail is acquired

completely in a unique scan, to guarantee a proper surface reconstruction.

# of original points % of correctly
identified

points

Time Elapsed [ms]

Gennaker 9615 98.8 499
Mainsail 2585 97.1 715

(a) Results

cth θth #neigh Nmin Nmax

Gennaker 0.9 7 50 5000 100000
Mainsail 0.8 7 50 2200 100000

(b) Parameters

Table 3.29: Wind tunnel segmentation

(a) Wind tunnel gennaker segmentation - full size (left) and zoomed (right)

(b) Wind tunnel mainsail segmentation - full size (left) and zoomed (right)

Figure 3.43: Wind tunnel segmentations
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3.3.3.3 Conclusions

Region Growing Clustering proved to be a successful algorithm for extracting a sail

from a whole acquisition and more generally, is able to separate different objects

from each others. The procedure relies on the local information brought by the

point cloud, so the parameters are not influenced by the scale of the measurements.

The possibility to set different parameters allows also to have a good control level

on the result, so slightly different shapes can be extracted in the best way possible,

adapting the input values. Identifying different surfaces can be difficult in case of

a smooth transition between them, this could lead to the inclusion of extra point

in the segmentation, in this particular work could happen that the spreaders and

some sheets are included in the sail cluster. On the other hand the Region Growing

has performed great in excluding the forestays from the sails. In the end, a perfect

segmentation can’t be assured and an eventual human control has to be performed,

however this intervention is minimized to clearing a few number of points respect

to the initial case.

3.3.4 The Hough Transform

The Hough transform is a technique which allows to detect straight lines, curves

or pre-defined shapes within an image, starting from their point-to-point projec-

tion onto a parameters space, named “Hough Space”. Introduced and patented

by Hough in 1962 with [Hough, 1962], it has been expanded by Duda and Hart,

[Duda and Hart, 1972], who improved and extended with the detection of further

geometrical figures. It’s a procedure widely used in digital image recognition, with

several employments, as far as faces identification through their generalized shapes

as circumferences and ellipses. Developments in the three dimensional space are

relatively recent, starting from the 2000’s years and particularly interesting is the

work of Knopp et al. [Knopp et al., 2010], who achieve shape recognition through

the comparison of point cloud features with the features of a pre-defined set. For

each data set to be identified they calculate the SURF features [Knopp et al., 2010],

which are then compared to the features of a training data set, that is assigned to

a shape. This procedure allows to retrieve a wide range of shape classes, not only

geometrical, but even far more complex, like animals and people. However the
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training features, and so the corresponding set have to be really similar in order

to assure a correct identification, meaning that a crouched man, for example, can’t

be identified as a human figure using a standing man training data set. At the

same time objects registered from point of views can encounter difficulties in the

features matching. The solution proposed is to create a database of the most pos-

sible angle of view for each class that has to be retrieved in the acquisition and

perform the procedure with every instance. The creation of such databases is not

a demanding work in the case of rigid body classes and nowadays several internet

sites that provide them are also available. In this work, however we deal with a

particular class, the sail, which not only is a surface more than volume, but is also

a deformable surface, which means that the training set should include all the pos-

sible and plausible deformation for each point of view. This would lead to a huge

database, whose composition is not immediate, because in some sailing trims, the

sail shape is not stable and difficult to register. A different approach is used by

Salzmann et al. in [Salzmann et al., 2007]: they deformate the triangulated CAD

design shape to obtain the set of training shapes. In every case the construction of

a database related to the application discussed in this work would exceed the goals

of the current thesis, having found an effective, alternative method to obtain the

same result.
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3.4 Data Resampling

Data resamplings are procedures that upsample or downsample the general, or lo-

cal, density of a point cloud, using averaging or interpolation of the original dataset.

The need for resampling an already acquired geometry comes directly from the gen-

eration of the data: they are sampled from a real surface and inevitably prone to

noise inaccuracy. This category of techinques is mostly used for its properties of

noise filtering and surface smoothing. In cases where the target presents a smooth

surface, this feature can easily be lost in the acquisition process, because the pres-

ence of noise could generate spikes or holes. Smoothness has to be recreated through

these post processing techniques. Their main property, as said, is that the overall

density of the filtered cloud is not similar to the original one. Figure 3.44 shows

the effects both in the downsampling and in the upsampling case.

Figure 3.44: Effect of data resampling: original cloud (left) with highlighted acqui-
sition imperfections - downsampled cloud (center) - upsampled cloud (right)

Performing a data resampling can be useful in removing local imperfections.

These defects might occur for different reasons such as variable cloud density (see

section 2.4.3), overlapping areas due to error in registration of pairs of clouds (see

section 3.2.3), surface properties that do not allow for distance measurements, caus-

ing holes in the cloud and sharp edges that result in mixed pixel problems (see

section 2.4.3). Some of these irregularities can not be easily deleted through tra-

ditional filtering, such as radius or statistical outlier removal but have to be taken

into account since they might compromise the data post-processing.

Standard resampling methods made their way into robotics applications from

the computer graphics research community [Levin, 2004], and are usually formu-

lated as Moving Least Squares (MLS) solutions [Alexa et al., 2003]. MLS methods

provide an interpolating surface for a given set of points P by fitting higher order

111



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

bivariate polynomials to each point neighborhood locally. In contrast to other in-

terpolation or resampling techniques, MLS has the advantage that the resultant

fitted surface passes through the original data points. The data resampling effects

are not always immediately visible on the point cloud, as visible in Figure 3.45 that

represents the acquisition of a planar surface. Pre and post filtering clouds do not

seem to be changed, but the analysis of the point normals reveals the differences:

acquisition noise is reduced leading to curvature values constantly around zero, as

expected for this kind of surface. This is the reason why data resampling is not

an elaboration that stands by itself, but it is an important step that is performed

before applying others operations on the cloud, especially triangulation or surface

reconstruction.

Figure 3.45: Effect of data resampling - Normals and curvature pre-filtering (left)
and post-filtering (right)

The approach beyond data resampling is motivated by differential geometry,

which assumes that the surface approximation can be locally expressed as a func-

tion, and aims at minimizing its geometric error. This is done by locally approxi-

mating the surface with polynomials using MLS. Starting from a data set of points

P = {pi}, a smooth surface Sp is defined, representing the input points. The points

P are reduced, defining Sp with a reduced set R = {ri} and introducing another

MLS surface Sr which approximates Sp. The general paradigm is illustrated in 2D

in Figure 3.46: Points pi ∈ P are depicted in purple and define a curve Sp, also

in purple (3.46.a). Sp is then re-sampled with red points ri ∈ Sp(3.46.b). This

typically lighter point set is called the “representation points” and defines the red

curve Sr which approximates Sp. The representation points set is the output of the
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procedure and is the point cloud shown in Figure 3.44, center and right], upsam-

pling or downsampling is determined by the curvilinear sampling distance of the R

set.

Figure 3.46: Resampling paradigm, in a two dimensional space - The original points
pi are approximated through a polynomial line Sp(both in purple), see part (a). Sp

is then resampled with a fixed point-to-point curvilinear distance, generating ri, see
part (b). The polynomial approximation of ri is Sr, which approximates also Sp,
see (c),(d).

The key part of the procedure is creating the approximating surface (lines in

2D) for each point, starting from the data set P or R, and can be divided into two

steps: the identification of a reference domain and the effective computation of the

minimizing surface.

The local reference domain H of a point r is constructed in order to minimize a

local, weighted sum of square distances of the points pi to the plane, where pi are

the neighbors points in the volume considered. It is done similarly to the creation

of a best-fitting plane of the set, although the points are not weighted in the same

way, but weights attached to pi are defined as the function of the distance of pi to

the projection of r on the plane H, rather than the distance to r (see Figure 3.47).

Assuming q is the projection of r onto H, then H is found by locally minimizing:

N∑
i=1

(< n, pi > −D)2 θ (‖pi − q‖) (3.38)

where θ is a smooth, monotone decreasing function, which is positive on the whole
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space. A local reference domain is set up and it is then given by an orthonormal

coordinate system on H so that q is the origin of this system.

In the second step the reference domain H for r is used to compute a local

bivariate polynomial approximation of the surface, in a neighborhood of r. Let qi

be the projection of pi onto H, and fi the height of pi over H (see Figure 3.47), i.e fi

= n ů (pi-q). The polynomial approximation g is created, computing the coefficients

that minimize the weighted least squares error:

N∑
i=1

(g (xi, yi)− fi)2 θ (‖pi − q‖) (3.39)

The projection P of the point r onto Sp, which is the returned output of the

whole procedure, is found evaluating the polynomial value at the origin of the axes,

i.e. P (r) = q + g(0, 0)n.

Figure 3.47: The MLS Projection Procedure - First, a local reference domain H for
the purple point r is generated. The projection of r onto H defines its origin q (the
red point). Then, a local polynomial approximation g to the heights fi of points pi

over H is computed. In both cases, the weight for each of the pi is a function of
the distance to q (the red point). The projection of r onto g (the blue point) is the
result of the MLS projection procedure.

In the procedure, the only user definable term is the radial weight function θ,

which is the parameter that influences the density of the output point cloud, because

it determines the volume (or area in a two dimensional environment) considered for

calculating the neighborhood of each point. The most widely used weight function

was first proposed by [Levin, 2004], as a simple Gaussian function:
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θ(d) = e−
d2

h2 (3.40)

where h is the parameter reflecting the neighborhood size.

The incidence of h is presented in Figure 3.48 too, where smoothing is applied

on a sphere, generated with a percent level of noise comparable to the TOF sensor

as described in section 2.4.3, using different h values.

(a) Original Sphere (b) h = 0.25 [a.u.]

(c) h = 0.5 [a.u.] (d) h = 1 [a.u.]

Figure 3.48: Effect of different values of h on a sphere (r = 4 [a.u.]) with noise -
Noise amplitude = 0.12 [a.u.]

The noise reduction effect as a function of h can be evaluated also in quantitative

terms computing the sum of the quadratic distances between each resampled point

and the surface of the noise-free sphere (see Figure 3.49).
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Figure 3.49: Global quadratic error as a function of h

Values of h smaller than 0.4 could not be included because resulted in a subsam-

pling of the data set, hence the impossibility to compare it with the model through

the quadratic error function. It is however evident that the error decreases rapidly

in the first part of the plot, but increasing h over 0.9 has almost no effect.

(a) Original feature (b) h = 1 [a.u.]

(c) h = 5 [a.u.] (d) h = 10 [a.u.]

Figure 3.50: Elimination of sharp features - The original cone has radius equal to
3 [a.u.] and height equal to 2 [a.u.]

This limit value could not be fixed but has to be adapted considering the data

set density and noise level. In fact, setting a high value for h is not always a good

choice, because it could smooth out surface details (smaller than h) that might be of

interest. More specifically, a small values for h cause the Gaussian weight function

to decay faster, thus the approximation is more local. Conversely, large values for h

116



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

result in a more global approximation, smoothing out sharp elements of the surface,

as demonstrated in Figure 3.50. In Figure 3.50b the neighborhood is smaller than

the feature dimensions, so it is only smoothed, but not deleted. As the value of h

increases the cone is progressively “absorbed” into the planar surface altering the

data acquired. This issue is particularly critical for the application considered in

the present work, as the final purpose is to retrieve a flying sail shape which could

be used for CFD or geometrical measurements. On the other hand, resampling of

the data is required to remove the acquisition noise and achieve better results.

The data resampling affects not only the point spatial position, but also its

normal and curvature. Some tests were performed to analyze this aspects. A

point cloud was generated sampling a CAD design sail surface, which was used

as reference. Normals and curvatures for this model cloud were computed. Then,

a new cloud was created applying a 0.27% noise on each point of the reference

cloud (worst case scenario from section 2.4.3). A second cloud came from the

resampling of the noisy data set, with the minimum neighborhood radius which

avoid subsampling.

Figure 3.51: Data resampling effect: a noisy data set is smoothed and then con-
fronted with a model set

These two sails are compared in terms of point spatial displacements, normal

deviations and curvature differences from the model sail (computed for each point in

the cloud). As visible from all the histograms in Figure 3.51, the smoothing moves

the distributions towards smaller values, which means that the points resampled

are closer, and have closer normal and curvature, to the model points. This is

for sure a positive effect, however, this distributions take in account only local

information from a single point and do not consider changes in the neighborhood.

Global effects on changes of the overall shape of the sail are much more difficult

to assess, especially for real acquisition, when the comparison with a model sail
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is not possible. To investigate the effects of data resampling applied on the sail

scans acquired during wind tunnel tests, resamplings with different neighborhood

value have been performed. Each smoothed cloud is then compared to the original

one in terms of point displacement. Figure 3.52 shows the distribution of these

displacements.

(a) h=60 mm (b) h=80 mm

(c) h=100 mm (d) h=200 mm

Figure 3.52: Histograms of the distributions of the displacement of the sail points
after resampling

h=60 mm is the minimum value to avoid subsampling the data set and increasing

it moves the points far away from their original positions, as highlighted also in

Table 3.30. Points are divided as function of their displacement from the starting

point and three main intervals can be identified. A point is labeled as “good point”

if it is relocated in a position whose distance from the original one is smaller than

the measurement uncertainty (it cloud be considered affected by noise). From

Table 2.16, a point falls in this case if it is moved less than four millimeters. With

greater displacements two situations could happen: the point is moved but still

belongs to the actual sail surface or it is moved so far that it could not belong

118



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

anymore. Again, the limit value is identified from the metrological qualification of

the laser scanner. From Table 2.15 the systematic error at two meters (height of the

sail) from the acquisition device is equal to five millimeters. To reach a confidence

value, over whom the point is not on the sail, also the statistical error is added. The

threshold value is then placed at nine millimeters. Points moving over the threshold

are considered “bad points”, all remaining samples (displacement between four and

nine millimeters) are considered “fair points”. A fair point represent a point which

is moved, but within the limit of alteration of the shape.

h [mm] = 60 80 100 200 400 1000

good points % 46.7 44.2 43.7 42.8 39.3 17.2
fair points % 44.2 44.3 42.5 43 43.4 26.2
bad points % 9.1 11.5 13.8 14.2 17.3 56.6

Table 3.30: Percentages of small (good) or great (bad) displacements in the resam-
pled data set

“Bad” points are not necessarily undesired, but there is the possibility that

they do not belong to the surface acquired. They are the result of the resampling

procedure, which, generally, generates points which belongs to a more smoothed

surface, as visible from Figure 3.53. A data set representing a noisy plane has

been created and then an adequate smoothing has been applied. The surfaces are

generated with the Greedy Projection algorithm, explained in section 3.5.1 , with

the same parameters.

(a) Pre-resampling surface (b) Post-resampling surface

Figure 3.53: Data resampling effect on surface generation from points of a noisy
plane

Point displacement due to the resampling process is more severe for points at

the edge rather than inside the acquired cloud. The reason could be that these

points present an “asymmetrical” neighborhood, because the local neighborhood is

created as a sphere centered in the considered point. It is obvious that points on the
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border (or near) of the sail have neighbors condensed in a unique direction, rather

than all around them. Their movement affects the measures of the edges of the sail,

which is one of the parameters which are used to check for a correct acquisition;

if the measured edges are not close to the design values, than the acquisition is

considered to be faulty. In order to evaluate the position of the points that move

the most after resampling, the data set is plotted and a colormap, which replicate

the displacement of each point, is applied. The result is visible in Figure 3.54,

for two different resamplings,in order to visualize the effective differences from one

operation to the other.

(a) h=60 mm (b) h=200 mm

Figure 3.54: Data sets with displacement colormap: green points are moved less,
red points are greatly moved

In the left figure, red points are more scattered, and concentrate only in the

bottom left corner, while in the other picture, there are different areas of greater

movements, obviously. The edges of the sails seem to be almost untouched in the

first smoothing shown, which is what is required. The lower part of the shape is the

one that is more modified, this happens because it is also where the local density

is higher, so each point has more neighbors and the interpolation is more marked.

The presence of more points however, guarantees that the interpolation is closer to

the real shape.

A critical analysis on the points and their displacements has to be performed

for every shape acquired, since data resampling can’t be applied in a complete
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automatic way. A good result depend not only by the parameter applied , but

also from the input data set. If the input is not well-filtered, in other words the

outliers have not been removed, then the resampling interpolate also these unwanted

points, creating big displacements. In the cloud shown in Figure 3.54, the bottom

left corner is affected by the presence of some points not belonging to the sails, but

probably to the jib sheet, as visible in Figure 3.55. These points influence their

neighbors, generating bigger movements than needed. Note that the high density

of the data set in this area reduces the influence of bad points, since the general

shape is still maintained, due to the presence of good points.

After the analysis of several point clouds, h = 80 [mm] as been selected as

standard value to perform the smoothing. The resulting sails has been approved

by a sail maker, which confirmed that with the chosen parameter value, the overall

shape does not change .

Figure 3.55: Sail corner detail after resampling (h=60 mm), points not belonging
to the sail generates local big displacements on the sail samples

Similar observations can be made on acquisitions of real sails. Of course the

limit for “good” and “bad” points have to be changed, accordingly to the different

size of the sail. In the following test a mainsail is considered; its maximum height

is seven meters. Good points are always defined as samples whose displacement is

smaller than the noise threshold (four millimeters), while the limit for bad points

is moved to 14 mm.
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h [mm] = 175 225 275 350 500 750 1000

good points % 62.3 61.3 61.3 59 54.1 42.5 33.1
fair points % 37.7 38.7 38.68 40.9 45.3 50.5 48.5
bad points % 0 0 0.02 0.1 0.6 7 18.4

Table 3.31: Percentages of small (good) or great (bad) displacements in the resam-
pled data set

Obviously also the neighbors radius has to be adapted to the point cloud, be-

cause greater acquisition distance lead to sparser samples and to the need of a larger

neighborhood, to avoid subsampling. Moreover, during acquisition of real sails, the

main problem encountered has been the loss of data in the higher part, as explained

in section 2.4.3. This issue cause holes in the sampling, and so the neighborhood

has to be even more enlarged to deal with them.

Figure 3.56: Mainsail resampling: the original acquisition (left) is 12 m high, re-
sampling with neighborhood radius equal to 350 mm (center) and 750 mm (right).
Red points are bad points, yellow points are fair points and green are good points.

The starting value for avoiding subsampling, in this case, is 175 mm. Several

resampling has been considered, whose results are showed in Table 3.31. Here

the situation is much different, because the influence of noise decrease with the
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acquisition distance (see Table 2.15) and so a larger neighbor can be used more

with more confidence. The main restriction remains on the correct length of the

sail border, which is influenced by the position of bad points. As visible from Figure

3.56, bad points concentrate on the luff, which could affect the measure of this side.

Here the holed previously mentioned can be seen on the top part of the mainsail,

the procedure can’t fill them. The selection of a standard value for the smoothing

parameter has to adapt to the dimension of sail. After several tests h = 500 [mm]

has been chosen, but in most cases it depends mostly on the quality of the single

acquisition.
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3.5 Surface Modeling

The problem of surface reconstruction from unorganized point clouds has been,

and continues to be, an important topic of research. It allows fitting of scanned

data, filling of surface holes, and remeshing of existing models. The problem can be

states as follows: given a set of points P, which are sampled from a surface in R3,

construct a surface S, so that the points of P lie on S. From this definition follows

that S is an interpolating surface, with respect to P. [Gopi and Krishnan, 2002]

classify reconstructing methods in two categories: the explicit methods attempt to

reconstruct the topology and the geometry of the original surface directly from the

given points (that is interpolating them), whilst the implicit methods approximate

the point cloud (that is they fit the points).

There is a wide range of applications for which surface reconstruction is impor-

tant, from medical imagery, cinema special effects, computer vision, reverse engi-

neering, onto virtual reality. Surface representations are a natural choice because

of their applicability in rendering applications with a surface-based visualization.

Moreover, in the past years, this field has received increasing attention due to the

ever broadening range of geometric 3D sensors, especially the Microsoft Kinect. It

is important to go through the concept of visualization and to understand what

it actually means. Visualization in its broadest terms represents any technique

for creating images to represent abstract data; lots of different definitions may be

given, depending also on the context in which that is used. This thesis deals with

the so-called scientific visualization. It can be intended as any technique involv-

ing the transformation of data into visual information, using a well understood,

reproducible process [Carlson, 2003]. Scientific visualization identifies the field in

computer science that encompasses user interface, data representation and process-

ing algorithms, visual representation and other sensory presentation such as sound

or touch [DeFanti and Brown, 1991]. It is worth noticing the fact that this process

does not serve just to bring existing facts to a visual form, but it can be seen like a

method useful to organize and improve our knowledge about the reality. This field

of research takes advantage of the natural abilities of the human vision system, that

is our most powerful sensory system, on which humans rely in almost everything we

do. With the introduction of computers and the ability to generate enormous quan-

tities of data, visualization has been offering the technology to make the best use

of our highly developed visual senses. Certainly other technologies such as statisti-
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cal analysis, artificial intelligence, mathematical filtering and sampling theory will

play a role in large-scale data processing. However, because visualization directly

engages the vision system and human brain, it remains an unequaled technology

for understanding and communicating data. The goal is to create the model of

an object which best fit the reality. Polygonal meshes are the commonly accepted

graphic representation, with the widest support from existing software and hard-

ware. A two dimensional mesh is defined as a collection of vertices, edges and faces

(see Figure 3.57) that define the shape of an object. Three dimensional meshes have

also cells. The most common choice are triangular meshes, which allow to express

the topological properties of the surface with the best trade-off between numerical

robustness, algorithmic simplicity and efficient display. The underlying, intuitive,

reason is that a surface can be locally approximated as a plane, which, in turn, is

identified by a minimum of three points. The use of triangular meshes is nowadays

a standard in computer graphics applications.

Figure 3.57: Elements of a triangular mesh

In [Mücke, 1993] Mücke stated that, for a set of points T, a surface or volume

representation is possible through a k-simplex, denoted as σvT, where k=|T|-1. For

a set with a single point, the only representation possible is a 0-simplex, which is

the point itself, or vertex; a two-point set can be divided in two vertices and a

1-simplex, which is an edge. A three points set forms a 2-simplex, or triangle and

a four points set forms forms a 3-simplex, which is a tetrahedron, in addition to

the ones said before. The tetrahedron is chosen as the smallest unit to describe

a three-dimensional geometry, while k-simplices with k>3, which represent four-

dimensional units, are not used, due to the significance lack to human visualization.

Mücke also stated that a proper reconstruction is achieved when the set of all the

simplicies, C, satisfy the following properties:
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1. if σvT∈ C then σvT’∈ C for every T’⊆T. In other words, for every simplex σvT,

C contains all the faces of σvT as well.

2. if σvT,σvT’∈ C then either σvT
⋂
σvT’ = 0, or σvT

⋂
σvT’ = σvT⋂

T’= conv(T
⋂

T’).

In other words, the intersection of any two simplicies in C is either empty or

a face of both.

This properties define a set of simplicies as a simplicial complex; as visible from

Figure 3.58 non-simplicial complexes are unable to represent correctly a surface.

Figure 3.58: Simplicial complexes (left) and non-simplicial complexes (right)

A simplicial complex C is called a (geometric) triangulation of a of a set of points

S, if all vertices of C are points of S and |C|=conv(S). In other words, in addition

to the condition of the simplicial complex, the set of vertices of the simplicies

have to coincide with S. The challenge for surface reconstruction algorithms is to

find methods which deal with a wide variety of shape, whose output is, before

all, a simplicial complex, and eventually is a good representation of the object

considered. The geometric notion of “shape” has no associated formal meaning, in

contrast to other geometric notions, such as diameter, volume, convex hull, etc.

From a mathematical point of view, a surface in the Euclidean three-dimensional

space is defined as a two-dimensional manifold that is compact, connected and

contains information about face orientation. In other words, we might say that a

surface is a “continuous” subset of points in R3 which is locally two dimensional.

For a surface, a boundary set of points can be defined as the set of points that

can be approached both from inside the surface and from the outside. A surface

may have a border, when the boundary set is not empty, or it may be closed, when

the boundary is empty. Many attempts at reaching a definition of shape has been

proposed [Edelsbrunner and Mücke, 1994], [Akkiraju et al., 1995], [Mücke, 1993];
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in the current work a shape generically refers to a simplicial complex in the three-

dimensional space. Moreover, the interest is focused only on reconstructing specific

shapes (mainsails, jibs, gennakers), rather than having an algorithm which can deal

with different cases. Several methods are tested on synthetic point sets and then on

real acquisitions. A good algorithm has to deal correctly with noisy, unorganized

point clouds, which are the output of the acquisition procedure exposed in section

2.3.1 and has to produce non-closed, convex surfaces, since the reconstruction is

applied after a successful sail segmentation and, eventually, a smoothing step.

3.5.1 Greedy Projection Algorithm

The Greedy Projection Algorithm, presented by Rusu et al. in [Marton et al., 2009],

starts from large, noisy and possible unorganized data sets, recreating the under-

lying surface as a triangulation of the data set, using an incremental method. It is

based on the surface growing principle [Mencl and Muller, 1997], following a greedy

type approach. This means that the procedure starts creating a triangle and then

keeps on adding new triangles until all points in the cloud have been considered,

or no more valid triangles can be joined to the existing mesh. It is notable that

once a triangle has been written, then it can not be later changed or deleted. The

algorithm works with a three dimensional input, but its output is composed of two

dimensional triangular simplicies, which form at least one surface, when possible.

The creation of the mesh follows Algorithm 3.6 steps.

Algorithm 3.6 Greedy Projection Algorithm
For each point p ∈ P :

1. Nearest Neighbors Search: a k-neighborhood is selected by searching for the
point nearest k neighbors in a sphere with radius r = µ · d0(d0is the distance
from the point p to its closest neighbour and µ is a user specified constant).

2. Neighborhood Projection: the neighborhood is projected on a plane that is
approximately tangential to the surface formed by the neighbors, which are
then ordered around p.

3. Pruning: the neighbours are pruned by distance and visibility criterions.

4. Triangulation: creation of triangles. Each formed triangle has p and two
consecutive neighbours as vertex. Possible additional controls are made on
the angles between the edges and on the edge length.
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Step 2 is the reason why the output is a surface: even though the input are

three dimensional points, the actual triangulation is performed after a projection

on a local plane. The creation of the neighborhood is computed with the help of

a k-d tree structure (see section 3.1.7) to speed up the computation time. Even

though the algorithm requires as input not only the spatial coordinates but also

the normal information for each point, the tangential plane is found performing an

SVD procedure (see section 3.2.1) on a set of near points, instead of simply meaning

all the normals. This last option would make sense only if the underlying surface is

supposed to be smooth. This hypothesis is not accepted, granting greater generality

to the algorithm. Note that the set of points on which the SVD is performed could

be different from neighborhood of p, but a different set. Usually it is larger, to

reduce the impact of noise on the creation of the plane. After the projection on

the tangential plane, points are ordered; this later simplify the creation of the

triangles, which are formed following the point order. To achieve a locally coherent

orientation a new local coordinate system is defined with the reference point as

the origin and the plane projection of the previous step serves as the xy plane.

Ordering around the reference point is based on the angle θ between the x-axis of

the local coordinate system and the vector from origin to the projected candidate

point. Pruning of the points is made with two separate methods, the first, simpler,

is the distance criterion, which is applied at the first step of the algorithm, since

the neighborhood of each point is defined as the set of points inside a sphere. The

remaining points are discarded. Another trimming is eventually performed through

a visibility criterion: it removes all the points that do not have a “direct vision” to

the reference point, as explained in Figure 3.59.

Figure 3.59: Visibility Criterion: before pruning (left), resulting triangles (middle)
and visualization of a real triangulation
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The visibility criterion is applied on the neighborhood SR of the reference point

R, when part of the mesh is already triangulated. All the considered points could

belong, or not, to one or many triangles, but green points have “direct vision” of

the reference point, because the segment connecting them does not cross previously

formed edges. These are the samples that remain after the pruning and that gen-

erate new triangles. The vertices of each new triangle are the reference point and

two consecutive neighbor points. When a triangle is generated, before saving it, a

check is performed against an angle and an edge thresholds; four conditions has to

be verified to confirm a triangle as part of the final mesh:

� Minimum Angle Threshold: the angles between each edge has to be greater

than a user specified value.

� Maximum Angle Threshold: the angles between each edge has to be smaller

than a user specified value.

� Maximum Surface Angle: the deviation between the normals of the vertex of

the triangles has to be smaller than a user specified value.

� Maximum Edge Length: each edge of the triangle has to be smaller than a

user specified value.

The first two conditions are introduced in order to eliminate small triangles, which

could be the result of noisy data, and big triangles, which could be created due to

the greedy approach of the procedure. Small triangles rise the numerical complexity

of the mesh, without adding significant information, while on the other hand big

triangles could lead to a bad approximation of the surface to be reconstructed.

The author identified as good triangles the shapes with angles included between

10 and 120 degrees. The last condition is meant to deal with the cases where

there are sharp edges or corners and where two sides of a surface run very close

to each other. To achieve a correct reconstruction, points are not connected to

the current point if their normals deviate more than the specified angle. Rusu et

al. specified that a 45 degrees threshold works on most data sets. This parameter

does not have influence for the current application, because the input point cloud

represent a smooth surface. However, for a complete analysis of the algorithm, it is

however tested first on synthetic shapes, on model point clouds and finally on real

acquisitions. The considered shapes start from a plane and gradually get closer to
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the sail shape, using a cylinder cut, showing only 1
6

of the original shape, and a

model sail. Evaluating the mesh output is not an easy task, because of its intrinsic

visualization nature it is much easier to judge the quality of a mesh for human beings

rather than for a computer. In this work, one of the simpler criterion for admitting

a mesh as acceptable, is that it does not have holes, since the goal is to reconstruct

a continuous surface. Several check can be made on the geometric composition of

the triangles to evaluate the surface mesh quality [Frey and Borouchaki, 1999]. It

is common practice to avoid building “slim” triangles, which are shapes with the

presence of really small angles (less than 10 degrees). Additionally a mesh can be

defined as regular, meaning that is composed of triangles similar one to the other,

see Figure 3.60 for explanation.

Figure 3.60: Regular Mesh (left) vs. Irregular Mesh (right)

The triangulation created are compared in terms of correctness (lack of holes),

angles between the edges and edge length ratio percentages (a regular triangulation

have similar edge length, so the major percentage of edge length ratio should be

centered around the value one). In the first test performed, a plane created from

a 15x15 grid of point, without any noise, the parameters are relaxed, allowing the

formation of any type of triangle. The parameter µ is set equal to 1.5; this means

that the neighborhood radius is bigger the minimum distance from a point to its

closest points. The choice is adequate because of the grid structure of the cloud,

with this size each point is evaluated on the projection plane with at least three

points (the corner samples). The result of the triangulation is displayed in Figure

3.61.a.

Having a bigger neighborhood for each point does not translate in a more regular

mesh. In fact the comparison between Figure 3.61.a, 3.61.b and 3.61.c displays

that raising the value of µ creates worse triangulation, this is due to the greedy

nature of the algorithms. The first point is connected to every point possible in its

neighborhood, creating the first triangles, then other point are added progressively.

If the first triangles are large then could happen that following points, especially
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(a) Plane triangulation -
µ = 1.5

(b) Plane triangulation -
µ = 2

(c) Plane triangulation -
µ = 3

Figure 3.61: Greedy Projection: plane test results

late points, do not have correspondence to create their triangles. This behavior can

be limited through the maximum edge length parameter, however it is better to

adapt the neighborhood size to the cloud density, if this information is known. In

the next test a real three-dimensional shape is used, which is a cylinder, created via

software. In order to make the data set more representative of a real acquisition,

the cylinder is cut, showing only 60 degrees of the complete object and noise is

added. In this case the radius of the neighbors has to be increased up to µ = 6,

to avoid the presence of holes on the reconstruction, while the angle thresholds

remains relaxed. Figure 3.61.b shows the resulting triangulation.

(a) Cylinder triangulation (b) Sail model triangu-
lation 1

(c) Sail model triangu-
lation 2

Figure 3.62: Greedy Projection: cylinder and sail model triangulations

After the cylinder, a sail model is considered. This shape is formed from a

CAD model of the sail, given by the manufacturer, with a regular sampling. It is
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the most ideal acquisition for a sail, since it is uniformly sampled and without any

noise. A first triangulation is performed, with a minimum neighborhood size that

avoids holes, as visible in Figure 3.62.b. With µ = 1.75, the triangles generated

are mostly regular, but the shape edges are not reconstructed perfectly, as seen at

the top of the sail. This is an issue, because the length of the sail border is an

important parameter that is used to validate a good sail reconstruction. In order

to achieve a mesh with better edges, the neighborhood is expanded until µ = 5.

Even though the maximum edge length is set to Lmax = 0.2 to avoid large triangles,

the resulting triangulation is more chaotic, as visible in Figure 3.62.c. Here, the

imperfection on the border are avoided, to the detriment of a worse visualization.

Their differences can be visualized through a comparison of their edge length and

angles, as explained above. From Figure 3.63, as expected, the first triangulation

have most angles between 45 and 90 degrees (blue data), while the second one have

more scattered values (red data). Also the edge length analysis confirm the better

regularity of the first mesh, in fact its triangles have edges length ratio centered

around one, which means that most triangles are composed by edges with more or

less the same length.

Figure 3.63: Sail model triangulation comparison - blue data refers to Figure 3.62.b,
red data to Figure 3.62.c

The determination of the best result is not absolute, but has to be referred to

the final goal of the reconstruction. In this case the only analysis of the properties

of the mesh is not sufficient. A more regular mesh could be discarded, because it

does not represent well the sail on its border. These considerations have to be made

also for the triangulation of real acquisitions. Real data sets are different from the
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model set for a main issues: the point density is not constant (i.e. points are not

equispaced). This is due both to the presence of noise and, most important, to the

fact that the density varies with the acquisition angle (see section 2.4.3) and lead to

a cloud with high density on the bottom part and sparser points on the top. Loss

of data could also happen in the top, as referred in section 2.4.3.

(a) Gennaker triangulation

(b) Mainsail triangulation

Figure 3.64: Greedy Projection: Real acquisition triangulations

Also the final mesh is affected, because it would be composed of small triangles
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in the bottom and bigger ones on the top. A good mesh is however not retrieved,

since there is a part of the cloud which have less samples than the other. Tests

on real acquisitions are performed on a gennaker acquired in wind tunnel and on

a mainsail acquired on field. Even with low level constraint, the triangulations

created are not acceptable, due to the presence of holes. Missing triangles cannot

be seen in the triangulation visualization, showed in Figure 3.64.a and 3.64.b left,

but are evident in Figure 3.64.a and 3.64.b right, where the area of each triangle

has been filled, to highlight empty spaces. The parameters used for the creation of

the meshes showed in Figure 3.64 are displayed in Table 3.32.

# Neigh. µ Max. Edge
[a.u]

Min.
Angle [°]

Max.
Angle [°]

Max. Surface
Angle [°]

Gennaker 50 7 300 30 150 20
Mainsail 50 8 400 45 150 20

Table 3.32: Greedy Projection: Real acquisition triangulations parameters

Since the absence of holes is the first prerequisite that the triangulation has to

satisfy to be considered and it is violated, these meshes are not acceptable. Chang-

ing the parameters does not lead to any improvement in the triangulations and other

tests on different acquisition showed that it is not possible to fully reconstruct a

real sail acquisition.

3.5.2 Delaunay Triangulation

The Delaunay triangulation is a special case of a regular triangulation, such as

there is no point from the input set P inside the circumcircle of any triangle. The

triangulation is named after Boris Delaunay for his work on this topic in 1934

[Delaunay, 1934]. Delaunay triangulation is born as a two dimensional algorithm,

but the direct three dimensional approach is already been defined [Mücke, 1993],

where triangles are replaced by tetrahedra and circles with spheres. Three dimen-

sional Delaunay triangulation are then defined as a set of tetrahedra where no points

from the input set lays inside the circumsphere created by each tetrahedron.

The other property of these triangulations are that they maximize the smallest

angle between two incident edges and minimize the largest circumference of each

triangle [Sloan, 1993], [Fortune, 1992]. For a set of points on the same line there

is no Delaunay triangulation (in fact, the notion of triangulation is undefined for
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(a) 2D Delaunay Triangula-
tion

(b) 3D Delaunay Triangulations

Figure 3.65: Delaunay Triangulation Visualization

this case). For four points on the same circle (e.g., the vertices of a rectangle)

the Delaunay triangulation is not unique: clearly, the two possible triangulations

that split the quadrangle into two triangles satisfy the Delaunay condition. From

a mathematical point of view the Delaunay triangulation is the dual graph of the

Voronoi tessellation [Mücke, 1993], that is a special kind of decomposition of a

metric space, determined by distances to a specified discrete set of points in the

space. In the simplest and most common case, a set of points S in the plane,

the Voronoi diagram for S is the partition of the plane which associates a region

V(p) with each point p from S in such a way that all points in V(p) are closer

to p than to any other point in S. Lots of works in literature cover the Delaunay

triangulation topic and a large number of algorithms have been proposed, which can

be subdivided in three main categories: Divide and Conquer methods, Incremental

methods and Sweep methods.

Divide and Conquer methods

The divide and conquer algorithms require to know in advance the number and

the values of the data points. Firstly, the point region is recursively divided in

almost equal sub-regions, then, the connectivity information for each sub-region is

produced and finally, these results are merged to get the overall triangulation. An

example is provided by [Guibas and Stolfi, 1985].

Incremental methods

Several incremental algorithms have been implemented: Algorithm 3.7 describes

the one simultaneously developed by [Watson, 1981] and [Bowyer, 1981], because it

is implemented in the CGAL libraries. At first the algorithm constructs a simplex

(triangle in 2D, tetrahedron in 3D) enclosing all the data set points, the so-called
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bounding triangulation. Then each point, one by one, is injected into the cur-

rent triangulation, maintaining the invariant that the triangulation is Delaunay,

following the steps described.

Algorithm 3.7 Incremental method Delaunay triangulation algorithm

1. Creation of the bounding triangulation

2. For each point pi not in the boundary triangulation:

(a) Creation of the basis set (all simplicies enclosing pi) and the cavity set
(all simplices whose circumcicle contains pi) of the point pi

(b) Elimination of the edgs that belong to the basis and the cavity

(c) Connection of pi with all the points belonging to the cavity contour

Figure 3.66 illustrates the steps performed to add a point p in an already formed

Delaunay triangulation. In 3.66.a the basis set is highlighted, while in 3.66.b the

cavity set is shown in blue. It is composed of the simplicies whose circumcircle (in

green) contains p.

(a) Basis Set in red (b) Cavity Set in blue

(c) Edges elimination (d) New edges creation

Figure 3.66: Incremental method Delaunay triangulation visualization

Sweep methods

They are based mainly on the work of [Fortune, 1987] and [Seidel, 1988]: they

construct the Voronoi tessellation in the plane by moving a line on it, called sweep
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line, and the forms the Delaunay triangulation starting from the created diagram.

A very good explanation of these algorithms is provided by [Aurenhammer, 1991]

and it is reported in the following. Let’s consider the construction of the Voronoi

diagram of a set of points, which is performed in several steps. For each step the

Voronoi diagram is created only for the points sites to the left of the sweep line H

and of H itself, considered as an additional site. The first steps for a random set

of 2D samples are showed in Figure 3.67. Because the bisector of a line and a non

incident point is a parabola, the boundary of the Voronoi region of H is a parabola

in the case of a single point (see Figure 3.67.b) or a connected chain of parabola

segments whose top and bottommost edges tend to infinity. This chain is called the

wavefront W (see Figure 3.67.c and following).

(a) First Point (b) Second Point (c) Third Point

(d) Fourth Point (e) Fifth Point (f) Sixth Point

Figure 3.67: Sweep method visualization: creation of the Voronoi diagram

As the sweep line moves on to the right, the waves must follow because the sets

of points added to the diagram grows. On the other hand, each Voronoi edge to

the left of W that currently separates the regions of two point sites pi ,pj will be

(part of) an edge in the final Voronoi diagram V(S). During the sweep, there are

two types of events that cause the structure of the wavefront to change, namely

when a new wave appears in W, or when an old wave disappears. The first happens

each time the sweep line hits a new site. At that very moment of the contact B(H;

p), where B is the bisector operator, is a horizontal line through p (see Figure

3.67.a), a little later its left half-line unfolds into a parabola (see Figure 3.67.b).
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New parabolas must be inserted into the wavefront, if existing, by gluing it onto

the wave of p (see Figure 3.67.c for per-gluing and Figure 3.67.d for post-gluing).

Let p, q be two point sites whose waves are neighbors in W. Their bisector, B(p;

q), gives rise to a Voronoi edge to the left of W. Its prolongation into the region

of H is called a spike. In figure 3.67, spikes are depicted as gray lines; one can

think of them as tracks along which the waves are moving. A wave disappears from

W when it arrives at the point where its two adjacent spikes intersect. Its former

neighbors become now adjacent in the wavefront. As soon as all point sites have

been considered and all spike intersections have been processed, V(S) is obtained

by removing the wavefront and extending all spikes to infinity. Once the Voronoi

diagram has been created, it can easily be converted in the Delaunay triangulation

connecting neighboring cells points.

(a) Final Voronoi diagram from Figure
3.67

(b) Correspondent Delaunay triangulation

Figure 3.68: From Voronoi diagram to Delaunay triangulation

As done for the Greedy Projection algorithm the performances of the Delaunay

Triangulation are tested through a series of shapes, starting from a planar surface

and getting closer to real acquisitions. The data sets used are explained in the

previous section. The native three dimensional Delaunay is applied for all the

following tests. The plane set fails to be reconstructed, because it violates one of

the assumption of the 3D Delaunay, which is exactly that four points do not have

to lie on the same plane. Even without this hypothesis, trying to triangulate a two

dimensional set with a three dimensional algorithm, is not suitable option. Since the

algorithm does not have any parameters, the reconstruction is directly performed

on any shape chosen and the results are displayed in Figure 3.69. The extremely

unclear visualization of every shape is due to the fact that the 3D algorithm creates
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tetrahedra, so there are a many faces to be visualized. The procedure does not

recreate the surface of the sail, but instead the volume occupied by the point in the

space. The geometric object created correspond to the convex hull of the data set.

Mathematically the convex hull of a set of points S in the Euclidean plane/space

defined as the smallest convex set that contains S [De Berg et al., 2000]. A quick

solution consists in eliminating from the mesh all the triangles which have at least

one edge longer then a specified threshold. With this filtering the mesh remains a

triangulation, since remaining triangles are not modified.

(a) Cylinder triangula-
tion

(b) Sail model trian-
gulation

(c) Mainsail tri-
angulation

(d) Gennaker triangula-
tion

Figure 3.69: 3D Delaunay: synthetic shapes triangulations

If the point of the clouds are uniformly distributed on the surface the elimination

should leave all the triangles that correspond to the sail external surface, while
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deleting faces that lie inside the sail. This strategy, however, is absolutely not

robust, because the presence of noise could slightly move the samples inside or

outside the ideal surface. This lead to the possibility of the creation of very small

tetrahedra along the surface, since there are no lower limit to their interior solid

angle. Moreover, since in real acquisitions, the point density is not constant, a value

of the maximum edge threshold that filter well the triangles on the bottom part

of the sail would eliminate triangles, even the ones belonging to the surface, on its

top part. In conclusion, three dimensional Delaunay triangulations are unable to

reconstruct correctly the surface of a sail, because they are formed by tetrahedra,

which are difficult to prune in order to retrieve a surface.

3.5.3 Poisson Surface Reconstruction

The Poisson Surface Reconstruction algorithm expresses the problem or surface

reconstruction, starting from a set of oriented points, as the solution of a Poisson

equation. Poisson’s equation is a partial differential equation of elliptic type; it

has many uses, for example describes the potential energy field caused by a given

charge or mass density distribution. Mathematically it is defined as:

4ϕ = f (3.41)

where 4 is the Laplace operator and ϕ and f are real or complex-valued func-

tions on a manifold. f is a known function and ϕ is the function that need to be

retrieved. In the three dimensional space, the equation takes the form:(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ϕ (x, y, z) = f (x, y, z) (3.42)

The Poisson equation, with f = 0 becomes the Laplace equation. The use of

the Poisson equation to reconstruct three dimensional surfaces has been formulated

and implemented first by Kazhdan et al. in [Kazhdan et al., 2006]. They compute

a 3D indicator function χ, which is defined as 1 for points inside the model and

0 outside and then obtain the reconstructed surface by extracting an appropriate

isosurface. The key step here is the presence of an integral relationship between

oriented points, sampled from the surface to be retrieved, and the indicator function

of the model. Specifically, the gradient of the indicator function is a vector field that

is zero almost everywhere, except near the surface, where is equal to the surface

140



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

normals.

Figure 3.70: Intuitive illustration of Poisson reconstruction in 2D

In their implementation Kazhdan et al. convolute the indicator function with

a smoothing filter and consider the gradient field of the smoothed function, in

order to avoid unbounded values at the surface boundary. Again, the gradient

of the smoothed function is equal to the vector field obtained by smoothing the

surface of the normal field. The demonstration is here omitted, but shown in

[Kazhdan et al., 2006]. The equality can be formalized as:

∇
(
χM ∗ F̃

)
(q0) =

∫
∂M

F̃p(q0)
−−→
N∂M(p)dp (3.43)

where ∂M is the boundary of the solid M (source of the samples), χM is the

indicator function of M ,
−−→
N∂M(p) is the inward surface normal at a point p ∈ ∂M ,

F̃ (q) is a smoothing filter and F̃p(q) = F̃ (q − p) its translation to the point p.

The problem of computing the indicator function is thus reduced to an inversion

of the gradient operator, i.e. finding the scalar function χ whose gradient best

approximates a vector field
−→
V defined by the samples. The surface ∂M can’t be

retrieved from the integral (3.43), because the surface geometry is yet unknown.

The integral is then approximated with a discrete summation, using the point set

to partition ∂M into patches.

∇
(
χM ∗ F̃

)
(q) =

=
∑
s∈S

∫
PS

F̃P (q)
−−→
N∂M(p)dp ∼=

∑
s∈S

|PS| F̃s·p(q)s.
−→
N ≡

−→
V (q) (3.44)

In (3.44) s.p. denote the sample point, s.N its sample normal and PS the patch
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around it. After the determination of a vector field
−→
V , the following step is

finding the solution of the function ∇χ̃ such that ∇χ̃ =
−→
V .
−→
V is generally not

integrable, which means that an exact solution does not exist, so the solution is

a least-squares minimization. To find it, the divergence operator is applied both

terms and thus the Poisson equation 4χ̃ = ∇ ·
−→
V is formed. The vector field

can be defined differently in two situations, depending if the samples are uniformly

distributed or not. For its explicit definition the reference is [Kazhdan et al., 2006],

it is composed starting from an interpolation of the smoothed normals in each

patch. The solution of a Poisson equation is a well studied problem, with optimized

matricial implementation, which is not addressed in this work. Solving the equation

returns the indicator function χ̃, which is evaluated in many points in the Euclidean

space (see Figure 3.70 for a 2D illustration). Its values vary from zero (points far

from the surface) to one (points exactly on the surface), intermediate values reflect

the distance of the point from the surface. The final step is to extract an isosurface,

correspondent to a value, γ. The output surface ˜∂M can be then defined as:

˜∂M =
{
q ∈ R3|χ̃(q) = γ

}
(3.45)

It is evident that ˜∂M is an approximation of ∂M in every case when γ 6= 1. The

implementation of the Poisson Surface reconstruction algorithm is made through the

PCL libraries, with the Poisson template. The input given is a point cloud with its

associated normals, that have to be computed before starting the procedure. Some

parameters can be set to specify the desired accuracy, otherwise the algorithm

works with standard values. During the test, the influence of the main parameters

has been investigated and are explained below, although the results displayed are

the ones with the best output found. The cloud used are the same of the previous

sections tests. An initial test is the creation of a plane from a grid of points, Figure

3.71 shows the resulting surface.

The very first difference from the previous algorithms is that, in this case, the

mesh does not pass through the input points. This happens because the mesh is

extracted as an isosurface from the indicator function; the points (or vertices) of

the mesh thus correspond to the spacial coordinates where this function has been

evaluated. Another visualization difference is that the mesh is no more triangular,

but composed of quadrilateral shape. This is due to the fact that the PCL imple-

mentation divides the Euclidean space with an octree structure (see section 3.1.8)
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Figure 3.71: Poisson Surface reconstruction: plane - blue points are the input data
set

at the beginning of the algorithm, to reduce the computational calculus complexity.

Since the octree is a cube-based space subdivision, the evaluation of the indicator

funcion takes place on the corner of the cubes, creating a surface formed by squares.

The accuracy of the mesh can be manipulated through some parameters:

� Depth of the octree : the maximum depth of the octree. Higher values of this

parameter result in the division of the space in smaller cubes, leading to a

higher resolution of the output mesh.

� Scale : the ratio between the diameter of the cube used for reconstruction

and the diameter of the sample bounding box. The user can choose if the

reconstruction of a patch can take place with a cube that has its same size

or a bigger one. In other words the surface generated can be enlarged by a

multiplying factor.

� Solver Divide : depth of the octree at which the Laplacian equation is solved

(recommended equal to the depth of the octree).

� Iso Divide : depth of the octree at which the isosurface is extracted (recom-

mended equal to the depth of the octree).

For the mesh displayed in Figure 3.71 the parameters are set as visible in Table

3.33.

These parameters are used as standard and are the ones recommended in the

PCL libraries and in [Kazhdan et al., 2006]. The next test is performed with a
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Depth Scale Solver Divide Iso Divide

8 1 8 8

Table 3.33: Poisson Surface reconstruction: plane reconstruction parameters

noisy cylinder, cut to show only 60 degrees of its surface, the reconstructed surface

is showed in Figure 3.72.a.

(a) Cut Shape (b) Full Shape

Figure 3.72: Poisson Surface reconstruction: noisy cylinder - blue points are the
input data set

The resulting mesh is not fully adherent to the input point cloud, but it has

“wings”on its sides. This behavior happens because the indicator function is defined

in the whole Euclidean space, even outside of the shape and in the final step of the

algorithm, the isosurface is extracted from it. The wings creation can be explained

looking at the 2D visualization of the indicator function (Figure 3.70); its value

can space from 0 to 1 depending if a point is inside (1), outside (0) or near the

line/surface. If the data set does not represent a closed set, the isosurface indicator

function does not have a clear distinction between the inside and outside, so the

surface extraction can return a wrong shape. To prove the good behavior of the

Poisson reconstruction with closed data sets, the full cylinder surface is showed in

Figure 3.72.b. However, since sails are not a closed data set, the Poisson surface

reconstruction algorithm returns similar results with the model sails and the real

acquisitions, which are showed in Figure 3.73 and Figure 3.74.
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(a) Model sail

Figure 3.73: Poisson surface reconstruction: model sail - blue points are the input
data set

(a) Mainsail (b) Gennaker

Figure 3.74: Poisson surface reconstruction: real sails - blue points are the input
data set

The surfaces reconstructed have some properties that would fit perfectly for

the sail surface: the smoothness and the adaptability to clouds with variable point

density. In Figure 3.74 faces of different dimensions are visible; on the bottom part
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of the sail, where the density is higher, faces are smaller, but on the top, where

points are sparser, the squares are bigger. Note that, due to the particular structure

of the octree, four little squares fit exactly in a big square. Smoothness come from

having approximated the input data set, instead of interpolating it. As done for

the Delaunay triangulation, a quick attempt at retrieving a correct final mesh has

been tried. In this case, the mesh topology is fine, as there is no need to check its

edges or angles. In order to try to get rid of the unwanted extensions of the mesh,

faces whose vertices are not close to the input data set are deleted. Remember that

the vertices of the mesh do not correspond to the input points, so, to determine if a

face has to be kept, a distance threshold has to be defined. Specifically, a face is not

filtered if all of its vertices have an input point closer than the distance threshold.

The results of the filter on the model sail mesh for two different distance thresholds

are showed in Figure 3.75.

(a) dmax = 0.1 (a.u.) (b) dmax = 0.05 (a.u.)

Figure 3.75: Sail model mesh filtered

In both cases the filter can’t retrieve a correct shape. In the first try (Figure

3.75.a) the threshold is too high and many faces not belonging to the real surface

still remain. On the other try the distance limit is so low that some faces that should

remain are deleted, while at the same time, some external shapes still remain. It

is evident that this simple filter is not able to reconstruct correctly the sail surface

and if it does not work on the model data set it is hardly probable that it would
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work on real acquisitions, which are not uniformly sampled. The filter has been

tested also on the mainsail and gennaker meshes, where it did not work correctly,

as expected.

3.5.4 Trimmed B-spline surfaces

Another common way to represent geometry in computer graphics, CAD and com-

puter vision are B-spline (Basis-spline) curves and surfaces as well as their abstrac-

tion to Non-Uniform Rational B-Splines (NURBS). They are used in a wide field

of applications including entertainment industry, mechanical, electrical and med-

ical engineering, architecture and computer vision. In the NURBS fundamental

book [Piegl and Tiller, 1996], the concept of B-spline curves and surfaces as well

as NURBS are described. B-spline curves are introduced, then their 3D gener-

alization, B-spline surfaces, are explained. The first element to be introduced is

the knot vector Ξ = {ξ1, ξ2, .., ξn+p+1}, which is a non-decreasing set of coordi-

nates in the parameter space Ωc = [ξ1, ξn+p+1] ⊂ R where n is the number of basis

functions used for the B-spline curve and p is the polynomial order. The knots

partition the parameter space into elements. Through the knot vector in hand, the

B-spline functions are defined with the Cox-de Boor recursive formula [Cox, 1972],

[De Boor, 1972]:

Ni,0(ξ) =

1 if ξi ≤ ξ ≤ ξi+1

0 otherwisw
(3.46)

for p=0, while for p=1,2,3,.. they are defined by:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p−1 − ξi+1

Ni+1,p−1(ξ) (3.47)

The basis constitutes a partition of a unity, that is, ∀ξ,

n∑
i=1

Ni,p(ξ) = 1 (3.48)

Also, the basis function is point-wise, non-negative over the entire domain. An-

other important feature is that each p-th order function has p-1 continuous deriva-

tives. A B-spline curve c(ξ) : Ωc → R3 with parametric domain Ωc ⊂ R is con-

structed by linear combination of B-spline basis functions. Given n basis functions
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Ni,pwith i=1,2,..,n, the n vector-valued coefficients of the basis function (called

control vector) bi ∈ R3 defines the curve as:

c(ξ) =
n∑
i=1

Ni,p(ξ)bi (3.49)

The idea is to manipulate the B-spline curve c(ξ) by changing the values of the

control points bi. Fitting a B-spline curve to a set of data points p is the task of

finding values for the control points that minimize the distance between p and c(ξ)

as shown in Figure 3.76.

Figure 3.76: Fitting B-spline curves: the distance (green) between the points and
the closed B-spline curve (red) is minimized by manipulating the position of the
control points

The definition of a B-spline surface follows the one of the B-spline curve. A

B-spline surface S(ξ) : ΩS → R3 with a parametric domain (u, v) ∈ ΩS ⊂ R2 is

constructed by linear combinations of the tensor product of B-splines basis func-

tions. Given n, m basis function Ni,p and Mj,q with i=1,2..,n and j=1,2,..m, the

vector-valued coefficients, called control grid, Bi,j ∈ R3, defines the surface as

S(u, v) =
n∑
i=1

m∑
j=1

Ni,p(u)Mj,p(v)Bi,j (3.50)

The same characteristics as for B-spline curves apply for B-spline surfaces. The

derivatives in given parametric direction may be determined from the respective

one-dimensional basis function. The same concept explained in Figure 3.76 in 2D

applies also for the three dimensional case, as visible in Figure 3.77.

Due to the tensor product leading to an orthogonal parametric domain, the
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Figure 3.77: Fitting B-spline surfaces: the distance (red) between the points and
the B-spline surface (green) is minimized by manipulating the control points

boundaries are four-sided with the properties given by respective basis function of

the surface. This is not desirable if the searched shape does not have four sides,

which is the case for this work. One possibility to get rid of the four-sided shape

of a B-spline surface is to trim away areas that lie outside a certain region. Such a

trimming region Ωt ⊂ Ωs can be defined on the parametric domain using B-spline

curves, the concept idea is displayed in Figure 3.78.

Figure 3.78: B-Spline surface trimming

The code for fitting B-spline curves and surfaces are implemented in the PCL

libraries and the behavior is tested with the data sets presented in the previous sec-

tions. Fitting a curve on a set of points is done iteratively: first a minimum number

of control points is considered and the correspondent B-spline is created. The curve

is initialized on the plane formed by the two biggest eigenvectors, calculated from

the principal-component analysis (PCA) of the data. A distance metric is associ-

ated to the curve, the simplest one is the point-to-line distance, and a threshold

is defined. If the evaluation of the metric for a B-spline does not satisfy the limit,

then the control points are moved in order to minimize the cost function (see Figure
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3.76 and Figure 3.77). Additionally, every k iterations, a limited number of control

points can be added. Adding control points helps in reconstructing complex or

sharp shapes, but increases the computational costs of the procedure. The same

steps are followed to reconstruct a B-spline surface. The creation of the surface

asks for 6 parameters:

� order: the polynomial order of the B-spline surface, for surfaces as the ones

we are interested in, the order is low, less then 3).

� iterations: number of iterations that are performed.

� refinement : maximum number of iterations when additional control points

are inserted. For each refinement iteration the control points number is dou-

bled in each parametric direction.

� mesh resolution: number of vertices in each parametric direction. After that

the surface is created, a triangulation is created for visualization. This value

influences only the visualization of the resulting surface.

� interior smoothness: smoothness of the surface interior.

� interior weight: weight for optimization of the surface interior.

For most application, 10 is a sufficient number of iterations. The surfaces generated

from the B-spline are generally an optimal approximation of the data set, however

they suffer from the same problem of the Poisson Surface reconstruction. Due to

the generation of an approximated surface they have excessive, external parts, not

belonging to the real shape, as seen in Figure 3.79. Also, it is possible to notice the

four side (although stretched) of the B-spline surface, especially in Figure 3.79.d,

that are due to the tensor product used. The parameters used for reconstructing

the surfaces shown in Figure 3.79 are shown in Table 3.34.

Order Iterations Refinement Mesh
Resolu-

tion

Interior
Smooth-

ness

Interior
Weight

3 10 3 50 0.2 1

Table 3.34: B-spline surface reconstruction parameters
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(a) Plane (b) Cut cylinder (c) Model sail

(d) Gennaker (e) Mainsail

Figure 3.79: B-spline surface reconstruction

In this case, differently from Poisson, the trimming of undesired part of the

mesh is already implemented and optimized by the PCL libraries, however its use

is not as intuitive as the surface generation. In fact, there are ten parameters that

needs to be specified:

� control points accuracy: the distance of the supporting region of the curve to

the closest data points has to be lower than this value, otherwise a control

point is inserted.
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� control points iteration: specify the number of iterations without inserting

control points.

� maximum number of control points: set an upper bound for the number of

control points.

� accuracy: average fitting accuracy of the curve, with respect to the supporting

regions.

� iterations: maximum number of iterations performed

� closest point weight: weight for the fitting curve to its closest point (recom-

mended equal to one).

� closest point sigma: threshold for closest points. In other words the algorithm

disregards points that are further away from the curve.

� interior sigma: threshold for interior points. In other words the algorithm

disregards points that lie within the curve.

� smoothness concavity: value that controls the bending of the curve (0=no

bending, <0 inward bending, >0 outward bending).

� smoothness weight: weight of the smoothness term for the curve.

Some parameters are not critical towards the reconstruction of a good trimming

curve. They are the maximum iterations number, set to 200, the control points

iteration value, which is set equal to three, meaning the the procedure double the

number of control points every three iterations and the iterations number, set to

100.

CP accuracy CP iterations max CP Accuracy Iterations

0.001 3 200 0.001 100

Closest
point

weight

Closest
point
sigma

Interior
sigma

Smoothness
concavity

Smoothness
weight

1 0.001 0.00001 1 1

Table 3.35: B-spline surface trimming parameters

The closest point weight, the smoothness concavity and the smoothness weight

are all set to their recommended values, which is always one. Tests in changing
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their values do not lead to changing in the reconstructed surface. The remaining

parameters have to be adapted to the needed accuracy of the trimming and the

density of the point cloud. As said many times, in this work a good reconstruction

of the border of the sail is critical, so the parameters are set in order to achieve the

maximum accuracy possible.

(a) Plane (b) Cylinder

(c) Model sail (d) Gennaker

Figure 3.80: B-spline surface trimming

Searching for higher accuracy lead to use very low parameter values, because

the trimming curve has to be really close to the input points, this is done by setting

small parameter values, which are displayed in Table 3.35. Even smaller values has
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been tested, but the quality of the resulting surfaces would not improve. Actually,

after decreasing them of some magnitude orders, the B-spline curve algorithm failed

to retrieve any curve at all. This happens because imposing the curve to stay too

close to the points neglects the possibility to link close points. Trimming with

the presented parameters has been applied on the surface showed in Figure 3.35

and results are showed in Figure 3.80. The mainsail reconstruction is not showed

because a proper surface trimming has not been retrieved, with any parameters

combination. This is due to the fact the the mainsail acquisition presents holes

in the top part, which changes drastically the density of the point cloud in that

section. The lack of points lead to the problem explained before, using really low

parameters, but happens also for reasonable values (for the other section of the

sail considered) and the failure in retrieving an acceptable trimming curve. On the

opposite case, relaxing the parameters to avoid this situation, lead to trimming too

little of the original surface and thus, the impossibility to use the reconstructed

surface for a good representation. Despite the great results showed by the B-spline

surface reconstruction, the necessity to have a robust algorithm, which works with

many shapes and facing the holes problem, brought to the development of a custom

algorithm for the creation of the sail surface.

3.5.5 Reconstruction of sail surfaces

The Delaunay triangulations, is selected to reconstruct the sail surfaces because it

proved to be the most robust. However, since the 3D implementations failed, for

the reasons explained in section 3.5.2, the key idea is to leave the starting three-

dimensional Euclidean space and perform the triangulation on a plane, through the

2D concept of the Delaunay algorithm. In this way, the resulting mesh corresponds

for sure to a surface, since it is generated on a two-dimensional domain. It also does

not have any problems regarding the creation of tetrahedra that should be trimmed

later. Once the 2D mesh is generated, the goal is to reinstate its vertices, which

in the Delaunay method correspond to the input points, on the original points,

creating a mesh in the three dimensional space. The main steps are described in

Algorithm 3.8. The choice of the projection plane is critical, in fact the points

distribution in each neighbor can’t be altered. This means that, for each sample

p, its neighbors in 3D have to correspond to the same neighbors on the plane. For

the shapes considered, the best fitting plane and the (α, γ) plane are two planes
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that satisfy the criterion. They are, respectively, the plane that minimizes the sum

of the squared distances from all the samples to it and the acquisition spherical

coordinates plane (for details on the acquisition procedure see section 2.3.1). The

cloud projected on the best fit plane is still a three-dimensional data set. In order

to transform it in a n× 2 array, which is the input of 2D Delaunay triangulation, it

is rigidly rotated on the (x,y) plane . All the points have now a null z coordinate,

which can be disregarded.

Algorithm 3.8 Reconstruction of sail surface

1. Project the input points on a plane.

2. Create a new two-dimensional coordinate system (u,v) for the plane and ex-
press the data points in it.

3. Performs a 2D Delaunay triangulation.

4. Points in (u,v) are uniquely associated to points in (x,y,z).

5. Triangles in (x,y,z) are created connecting 3D points whose respective are
connected in (u,v).

6. Trimming of excessive long edges.

The 2D triangulation, as for the three dimensional case of section 3.5.2, is im-

plemented through the CGAL libraries, with the incremental method. At the end

of the algorithm, the resulting object is a triangular mesh, which is an object com-

posed of an array of points and an array of vertices.

Figure 3.81: Reconstruction of sail surface algorithm overview

The vertices array is a m × 3 array, since the mesh is composed of triangles.
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Each entry does not store three points, but three integers, which are the indexes

of the samples in the points array. This storage provides a memory optimization

and helps greatly in the re-building of the 3D mesh. In fact, given the hypothesis

that the i-th point in the 2D cloud correspond to the i-th point in the initial cloud,

the final mesh can be created instantiating an empty polygonal mesh object and

filling its field with the starting point cloud as points array and the array of indexes

retrieved by the 2D Delaunay triangulation as the vertices array. The hypothesis is

satisfied by construction, because the projected point clouds are created iterating

on the initial set of points and adding them one by one to the projected set after

their projection on the considered plane. This procedure works both with the best

fit plane or the spherical coordinates plane as projection plane. As for the three-

dimensional case, there is no parameter needed for this triangulation, the creation

of the mesh is automatic, because user intervention is unnecessary. Unwanted

edges along the shape border are present in some meshes, they are linked to the

shape overall curvature. The twist of the sail shape could lead, for example, to the

connection of the vertices between them. In Figure 3.82.a the vertices of the cut

cylinder were linked horizontally.

(a) Cut cylinder 3D & 2D meshes (b) Model Sail 3D & 2D meshes

Figure 3.82: Synthetic shape surface reconstruction - Best fit plane

However, these edges are much easier to trim respect to the 3D case, because a

single triangle can be checked instead of a whole tetrahedron, which is a combination

of triangles, that have to be all evaluated. The plane test, showed in the previous

sections, is not representative for this procedure. The cylinder and model sail

reconstruction are presented only with the best fitting plane, because their data

sets are not coming from the acquisition device and their projection on the spherical
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coordinates plane does not make sense.

(a) 3D and 2D meshes with best fit plane

(b) 3D and 2D meshes with (α, γ) plane

Figure 3.83: Gennaker surface reconstruction

The surface retrieved for these two object are showed in Figure 3.82, along with

the mesh retrieved on the 2D plane. The more chaotic reconstruction of the cylinder

surface has to be attributed to the presence of noise, but through this procedure

it is ensured that the union of the triangles form a surface and no tetrahedra are

present. For real acquisition the user can choose if triangulating on the best fit

plane or on the spherical coordinates plane, the difference in the output meshes are

minimal, as seen in Figure 3.83 and Figure 3.84.

The long edges, visible in Figure 3.84.a and 3.84.b in the 2D meshes are success-

fully eliminated in the trimming step, in fact they are not visible in the 3D meshes.

The quality of the meshes are compared using the edge length ratio and the triangle
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(a) 3D and 2D meshes with best fit plane (b) 3D and 2D meshes with (α, γ) plane

Figure 3.84: Mainsail surface reconstruction

angles, as explained in section 3.5.2. The comparison is showed in Figure 3.85 for

the gennaker, where blue correspond to the (α, γ) plane 3D mesh and red to the

best fit plane 3D mesh. The same for the mainsail is showed in Figure 3.86.

Figure 3.85: Gennaker mesh comparison - blue stands for data of the mesh created
in the (α, γ) plane, red in the best fit plane

The comparison shows very little differences, these only parameters can not

justify the preference of a method over the other. The choice between using the

best fit plane or the spherical coordinates plane is then arbitrary and at the user’s
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Figure 3.86: Mainsail mesh comparison - blue stands for data of the mesh created
in the (α, γ) plane, red in the best fit plane

discretion. Projection on the best fit plane could lead to overlapping projected

points, when the sail acquired present heavy twisting during the acquisition.
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Chapter 4

Case study

In the present chapter, we report the results of the post process algorithm for two

distinct cases: data acquired during a wind tunnel campaign and data acquired

during some preliminary tests on field.

All the algorithm steps, starting from the data acquisition and ending with the

creation of the mesh, use the techniques selected in the previous chapters. Each

operation is discussed highlighting strengths and criticalities encountered.. The

softwares developed is presented in detailed and its use explained.

4.1 Software Descriptions

In this paragraph, we present the software dedicated to the acquisition of the data

and the one related to the elaboration of the point cloud.

As mentioned in the Introduction, the acquisition of the scans is controlled by

a LABView program. Figure 4.1 shows the graphical interface that appears to the

user.

This software interface can be considered composed by few principal parts:

1. Motor configuration: enables to establish the communication with the brush-

less motor;

2. Connection to the scanner: allows for the communication between a personal

computer and the lase scanner having the IP address set, using Ethernet

connection and TCP-IP protocol;

3. Scanning parameters: where velocity and acceleration of the movement law
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Figure 4.1: Acquisition software main screen

can be set (slow scans lead to a more dense point cloud, but for cases such

as gennaker or spinnaker, flying shapes can be unstable and a quicker scan

is suggested to retrieve a proper sail shape), scanning and start angle can be

set too;

4. External trigger options: allows for receiving a command from another de-

vice to automatically run the scanning (useful for synchronous acquisition of

different devices controlled by a common unit control)

5. Live visualization: displays the images acquired by a webcam mounted on

top of the laser scanner. The webcam is useful to check the field covered by

the scanner, so that the parameters of part 3 can be optimized. Moreover, it

helps in understand possible unclear situations providing a visual support.

After the acquisition of the data, the point cloud are elaborated through another

software developed in the contest of the present work, in Qt environment, using

C++ programming language and including some open source libraries such as Point

Cloud Library (PCL) and Computational Geometry Algorithms Library (CGAL).

Figure 4.2 shows the graphical interface for the elaboration program.

The program is divided in two windows: the main window shown in the figure

above and a tab widget where the user can set the parameters for each operation
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Figure 4.2: Post processing software main screen

implemented.

In the main window the user finds seven main blocks:

1. General operations: open file, save, delete, and exit are self-explanatory. The

possibility of loading different types of file format has been implemented and

thus the program can import Point Cloud Data (.pcd), Polygon File Format

(.ply) and Text format (as the format of the acquisition output files). Color

icon handles the color of the selected point cloud in the visualizer. Information

icon opens a window where the available information (header of file, folder,

number of points in the cloud etc..) are displayed.

2. Viewer: three dimensional viewer supplied by the PCL library. Point clouds,

normals, triangulation can be visualized easily.

3. Treeview: a list of the loaded files is visualized. The name and the color of

each point cloud is showed, additional lines can be showed trough a drop-

down menu, where the number of samples and the normals are shown. The

check button in the main line allows to hide or visualize the data set in the

viewer, the same for normals associated to the data set for the secondary

check button.

4. Transformations on points of a single cloud: outliers filtering (Spherical and
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Statistical filters) and spatial filters (Region Of Interest) are available. Trans-

formations usable are rotations around X, Y and Z axis and translations.

Filters and rigid transformation parameters are adjustable in the secondary

window tabs (see Figure 4.3a, Figure 4.3b and Figure 4.3c).

5. Single point cloud operations:

(a) Normal Computation for the selected data set. Parameters for this op-

eration are adjustable in the Normal tab (Figure 4.3d top).

(b) Segmentation of the selected data set. Parameters for segmentation are

set in the Segmentation tab (Figure 4.3e).

(c) Cluster Extraction. Once segmented, the user can select a single cluster

to extract and use as following data set.

(d) Smoothing of the selected data set. Parameters for smoothing are avail-

able in the Smoothing tab (Figure 4.3d bottom).

(e) Meshing of the selected data set. Parameters for the creation of the mesh

are adjustable from the Mesh tab (Figure 4.3f).

6. Multiple point cloud operations, that requires at least two selected point

clouds to be performed:

(a) Merging of two or more selected point clouds. Merging of multiple data

sets into a unique set. Selected clouds have to present the same proper-

ties.

(b) Iterative Closets Point based Registration.

(c) Point Clouds Registration for wind tunnel tests: a dedicated windows

(see Figure 4.4) guides the user in the process of registering the clouds

acquired in the wind tunnel environment (refer to section 4.4). The user

has to fill the input fields requested, selecting a cloud in the dropdown

menu to keep as a reference and the cloud to register with it, and picking

three points in the reference cloud and three corresponding points in the

other cloud. The first two points must belong to two different planar

surfaces (for example to a wall and to the ceiling of the wind tunnel

chamber) that will be used to calculate the rotation between the clouds;

the last point must be a point visible in both cloud (for example the top
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of the mast) and it will be used to compute the translation. When all

the fields are filled, the user can start the registration procedure, clicking

on the OK button and closing the registration window.

7. Saving Flags: helpful when the user needs to save a data set after having

performed some operations. The standard saving function saves the cloud

as a .pcd file, which is essentially an array of n × 3 floating numbers, with

additional headers. “Use color”and“Use normals”flags add color and normals

information in the .pcd file, while “BinaryMode” save the data set in a binary

file and “TxtFormat” in a .txt file instead of the .pcd file.

(a) ROI Filter Tab (b) Filters Tab

(c) Transform Tab (d) Normals Tab

(e) Segmentation Tab (f) Mesh Tab

Figure 4.3: Tab Widgets
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Figure 4.4: Wind tunnel registration window

4.2 Surface Reconstruction for Gennaker and Main-

sail Acquired During Wind Tunnel Tests

In this paragraph, we report the elaboration results for some tests performed during

a wind tunnel campaign aimed to support the sail inventory development for a

high-performance superyacht. In particular, these tests helped in evaluating the

opportunity to install on the boat a sail designed for furling. A complete 1:21 scale

working yacht model was used, closely matching details of the real boat’s rig and

deck layout, allowing all the sails to be trimmed as in real life. The measurement of

the overall wind loads on the hull and yacht sails is achieved using a six components

force balance, which is placed inside the yacht hull. Over the course of a three-

day wind tunnel campaign, five different gennaker sails were tested, in order to

collect aerodynamic sail coefficients for different sail designs. Sails were trimmed to

achieve maximum driving force by monitoring real-time force data while observing

the sails directly from the control booth and using live video-feed from the cameras

positioned in the wind tunnel. At each trim condition, 30 seconds of force data

were recorded at 100Hz sample frequency and a scan was performed for both the

mainsail and the gennaker simultaneously. Figure 4.5shows a photo taken during

the tests for a so called A4A gennaker with apparent wind angle of 55°.
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Figure 4.5: A4A sail prototype on the wind tunnel - only the gennaker dedicated
acquisition unit is visible in the photo, the mainsail dedicated unit is more distant

(a) Gennaker dedicated acquisition

(b) Mainsail dedicated acquisition

Figure 4.6: Wind tunnel raw acquisitions

The acquisition unit dedicated to the gennaker scan is visible in front of the
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yacht model; the one dedicated to the mainsail is far away. In fact, they have to be

placed the more distant from the yacht as possible to avoid any flow perturbation

and consequently any alteration of the sail shape; but at the same time the entire

sail shape has to be acquired and possible occlusions have to be taken into account.

Each acquisition unit is connected to a personal computer running the LABView

acquisition data program. Acquisitions are triggered by a third computer, placed

outside the wind tunnel chamber, which is connected to others via Ethernet.

Figure 4.7: Wind tunnel raw acquisitions comparison - blue points correspond to
the mainsail acquisition, red points to the gennaker acquisition

Parameters for scanning can be set differently for each unit, depending on the

relative position with the yacht mode and on the sail scanned; however, when the

trigger signal is launched, they start the acquisition simultaneously.

Figure 4.8: Point clouds after registration - blue points correspond to the mainsail
acquisition, red points to the gennaker acquisition

The output of a single test is then a couple of point cloud as the one presented
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in Figure 4.6. Since the clouds are acquired from different acquisition units, placed

in different spatial positions and under different scanning parameters, they do not

match when overlapped as shown in Figure 4.7.

cth θth #neigh Nmin Nmax

Gennaker 0.9 7 50 5000 100000
Mainsail 0.8 7 50 5000 10000

Table 4.1: Case study segmentation parameters

To compose the whole yacht model they need to be registered together following

the dedicated procedure explained in section 4.4. As output of the registration

process the clouds can be merged to form a unique data set (see Figure 4.8). At

this point, we need to extract the points belonging to the sail surfaces to reconstruct

them.

(a) Gennaker (b) Mainsail

Figure 4.9: Point clouds after segmentation

We use the segmentation procedure implemented (refer to section 3.3.3) setting

the threshold values reported in Table 4.1. Sail cluster is extracted from the whole
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point cloud even if some points, clearly not belonging to the sail surface, remain.

Issues behind them are various: points over the top of the gennaker are caused

by mixed pixel problem (see section 2.4.3.8 for details) between the sail and the

chamber ceiling; other points in the sail corners are due to the sail sheets; and finally

sometimes points representing the windexes are enclosed (see Figure 4.9). These

unwanted points presence are tricky to delete because there is no discontinuity

between the sail surface and them, neither in terms of normals distribution. The

cloud also presents a not uniform point density so a stricter segmentation would

remove not only these samples but also samples from the actual shape. For the

reconstruction purpose it is better to keep the most number of points belonging to

the sail possible, so the choice is to use a more lenient segmentation and remove

outliers via filtering or via point picking elimination. Point picking elimination

consist in selecting a point in the viewer and removing them from the data set, this

user intervention has to be introduced because in some dubious cases only the user

can distinguish real outliers.

Figure 4.10: Comparison of mesh for raw (red) and resampled data (gray)

Then, this “clean” data sets are used for further operations. The surface of

the sails could be already reconstructed from these point clouds, however it would

result in an irregular and pointy mesh, due to the influence of acquisition noise. The

data resampling step helps creating a smoother surface, as explained in section 3.4.

Resampling is performed with a neighborhood size that limit the displacement of the

points, such that the features of the sail are not modified and correct measurements
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can be retrieved. Such value is identified in 75 mm for the gennaker and in 80 mm for

the mainsail. The clouds after resampling are not shown, because the small changes

are not visually appreciable while the differences appears after having computed the

meshing step, as shown in Figure 4.10, where the red spikes provided by the mesh

on the raw point cloud arise from the gray mesh realized from resampled data.

Finally, the cloud can be meshed, following the procedure developed in section

3.5.5. As said, triangulation can take place on the best fit plane or on the (α, γ)

spherical coordinates plane at the user discretion, as visible from the Mesh tab, in

Figure 4.3f.

(a) Gennaker (b) Mainsail

Figure 4.11: Sail Reconstruction

Results are similar in terms of mesh quality and the best choice can be selected

only after the creation of both meshes and their comparison. For the A4A sail,

in the considered case, the gennaker has been reconstructed on its best fit plane

and it did not need longest triangle edge trimming, while the mainsail has been

reconstructed on the (α, γ) plane and needed the edge trimming. The maximum

edge length, is fixed at 150 mm, which is the value that eliminate all the unwanted
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triangles. Figure 4.11 shows the above. After the reconstruction, the sail can be

geometrically analyzed, or inserted on a CAD model of the yacht (see Figure 4.12).

These CAD sails can be enclosed into a CFD codes and yacht performances can be

assessed.

Figure 4.12: Final model of the sails
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4.3 Surface Reconstruction for Jib and Mainsail

Acquired During On Field Tests

In this paragraph, we report the results of the elaboration of some point clouds

acquired on the Laboratory Boat of the Lecco Innovation Hub at Colico. The

Laboratory Boat (a 35 meters long Comet) is designed to function as a dynamo-

metric scale that can acquire previously unavailable data on the aerodynamic and

hydrodynamic loads acting on the main components of the yacht. The heart of the

system is a framework inside the hull that allows the entire rig and sail plan to

be connected to a system of load cells to measure the overall forces and moments

transmitted by the sail plan to the boat when under sail. For these tests an acqui-

sition unit was placed at the bottom of the mast (12 meters high) and scanned the

jib while another unit was placed next to the winch to scan the mainsail. Figure

4.13 presents a model of the boat and the positions of the acquisition units are

marked by the red stars.

(a) Mainsail dedicated acquisition device (b) Jib dedicated acquisition device

Figure 4.13: The Laboratory Boat (LIH)

The software described above elaborated the data. Elaboration parameters have

to be adapted to the specific case and the registration step is performed using the

common algorithm available in literature (refer to section 3.2.1), selecting corre-

spondent points such as the top of the mast and the crosstree ends. Differently

from the wind tunnel acquisitions, there is no background, so the custom registra-

tion procedure, developed in section 4.4, is ineffective. To overcome this deficit,

in future on field campaign, the presence of two planar panels will be tested to be
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used as reference for registration. The panels should be large enough, and placed

such as, both laser scanner see them, but without interfering with the wind flow.

Then, the interpretation of the data set starts.

(a) Mainsail (b) Jib

Figure 4.14: Segmentation for on field acquisitions

cth θth #neigh Nmin Nmax

Jib 1 10 20 5000 100000
Mainsail 1.5 4 30 6000 100000

Table 4.2: On field acquisitions segmentation parameters

Point clouds representing on filed acquisition are much more complex then wind

tunnel scenes. Many objects needed on a real yacht are not present on the yacht
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model used in the wind tunnel, such as the handrails (see Figure 4.13), many

shrouds, etc.. Moreover, environmental conditions during navigation can’t be con-

trolled as in the wind tunnel, leading to difficulties in acquiring a correct shape for

the considered trim. The acquisitions used in this chapter correspond to a close-

hauled trim, this means that the wind direction is close to the bow-stern direction,

coming from forward.

(a) Mainsail (b) Jib

Figure 4.15: Surfaces reconstructed for on field acquisitions

With this trim, the bow sail used is the jib instead of the gennaker. The seg-

mented data sets are presented in Figure 4.14 and the parameters used are displayed

in Table 4.2. Photo in Figure4.13 and Figure4.14.b shows that during the acquisi-

tion the jib leans on the handrail, moreover on the top, some points are missed, due
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to problems reported in section 2.4.3; this is an example of possible problems that

can be encountered during on field acquisitions. On the other hand, Figure 4.14.a

shows difficulties in the segmentation, as some points belonging to the boom can’t

be separated from the mainsail. Stricter values for the segmentation parameters do

not improve the overall quality of the interpretation, since they would lead to the

exclusion of points that actually belong to the surface, on top of the mainsail. The

smoothing is applied, with neighbors size equal to h = 150 mm for the mainsail

and h = 275 mm for the jib. Due to the high jib twisting the best fitting plane

triangulation is not applicable because in the projection some points would overlap.

This would cause the creation of a wrong 3D mesh. The main problem of the jib

data set is however the loss of points in the top part of the sail. This issue can’t be

fixed with the post processing techniques presented in this thesis, in fact the final

mesh, although generically good, does not represent a smooth surface at the top,

as visible in Figure 4.15.b.

Figure 4.16: Jib and Mainsail reconstructed and placed onto the yacht CAD model
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The visualization of the jib in Figure 4.15.b is rotated by 180 degrees on its

vertical axes, respect to Figure 4.14.b (i.e. view from outside the yacht instead of

from inside the yacht), to allow a better view of the reconstruction of the sail leant

on the handrail. The good surface reconstruction of this problem demonstrates

that the main problem of the procedure is the loss of points rather than a bad

acquisition due to environmental condition. On the other hand, the mainsail is

reconstructed with good accuracy, the surface showed in Figure 4.15.a is created

with the projection of the points on the spherical coordinates plane, trimming edges

longer than 400 mm. Once more, the sail surface reconstructed are reported onto

the CAD model of the yacht and Figure 4.16 presents the final output.
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Conclusions

The presented work presents an algorithm for the 3D reconstruction of the flying

sail shape acquired by means of a home made innovative device. The main goal

is to capture the sail shape in a specific moment during navigation and to use

it, together with force and moments values, as an input for more reliable CFD

computation or as a reference for fluid structure interaction codes. Different studies

are reported in literature regarding the acquisition of the flying shapes. Most

of them are based on photogrammetry technique that allows for retrieving the

geometry of some colored stripes placed on the sail surface. This technique requires

at least a pair of camera for each sail and assumes that the stripes remain in a

horizontal plane which can be questionable especially for downwind sails. Thus,

after a brief analysis of different non-contact techniques, reported in chapter 2,

we chose to exploit the Time Of Flight methodology and we realized a specific

acquisition unit (currently patent pending) enclosing a SICK LMS 511 laser scanner.

This device allows us to obtain 3D measurements of the entire sail surface, no

matter the sail type neither the flying shape assumed. This kind of sensors were

originally design for security application, thus a detailed metrological qualification

was necessary to assess the unit measurements error. We analyzed the performances

only in the range of interest, as to say one meter up to 15 meters. We could observe

that the systematic error rises with the distance, but remains an acceptable value

for our application, in fact, the maximum percentage error retrieved is 0.27% of

the acquired distance. Moreover, the statistical error remains almost constant,

around the value of 4 mm, within the analyzed range. The presence of a critical

incident angle between the laser ray direction and the normal to the target surface

was worked out: incident angles greater than 70° lead to a significant drop in the

177



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

measurement accuracy. Outdoor tests were performed highlighting the influence

of the ambient light: measurement standard deviation can increase by the 350%

while the sun hits directly the sensor. In addition, different target materials were

tested, proving that the sail tissue presents the widest uncertainty due to its its

transparent nature; and other tests, on the influence of the target color, suggested

the application of a light gray colored film on the the sail. This expedient has

still to be investigate trying to evaluate whether the addition of material might

alteration the flying shape of the sail, due to the load effect. Other details about the

metrological qualification work are reported in section 2.4.3 that is part of the paper

“Characterization of a 2-D Laser Scanner for Outdoor Wide Range Measurement”,

presented at the 2014 AIVELA conference. Abstract is reported in Appendix 6.

Once the raw data are acquired, they are stored as point cloud structure and

consequently elaborated as described in Chapter 3. A dedicated software was en-

tirely developed using all open source libraries such as PCL or CGAL, programming

in C++ language, in Qt environment on a Linux based computer. Each step of the

post processing procedure is discussed and examples of the elaboration on synthetic

data and on real acquisitions are reported to justify the algorithm developed. First

of all, we describe the registration step. Each yacht sail is scanned by a different

acquisition unit. This leads to the need for registering different scans in a com-

mon coordinate system, in order to compose an unique rig for the same yacht. To

perform this operation a specific algorithm has been developed, which relies on in-

formation taken from the acquired overall scene. For wind tunnel acquisitions, we

decided to align all the planar surface easily recognizable such as walls and ceiling.

Registration of on field acquisition is more tricky, since the two scanners acquire

very few common points. In future campaign the use of planar panels, placed such

as they are visible from both devices, will be tested.

Then, registered scenes have to be interpreted, that means recognizing different

objects in the point cloud and organizing them in distinct clusters. Our final goal

is the extraction of the point cluster that represents the sail surface. Proximity to

other points and normal trends are exploited as discriminant criteria. Unwanted

points might remain after the segmentation step due to objects close to the sail

surface, such as the boom, shrouds and spreaders or due to errors in the acquisition

process, like mixed pixels. The sail cluster is then filtered to face this problem.

Sometimes user intervention is required. Lats step is the 3D surface reconstruction.

Surface retrieving from segmented data presents a pointy surface, due to the
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presence of acquisition noise. To reduce its influence a resampling step is applied

before reconstructing the sail, whose main result is the generation of more smooth

surface. Resampling is substantially a local interpolation of the data. A heavy

smoothing would alter the overall sail shape, which is obviously unfair. Evaluating

this resampling effect is not an easy task, as the threshold for smoothing should

be defined by displacements from a reference surface, which is not known as it

is the final object searched in this thesis. For the current work, the smoothness

operation is fixed as for avoiding loss of samples during the implementation. A

custom algorithm was developed. In particular, the sail reconstruction step applies

a change from the 3D space, native of the data, to their 2D projection, where a

mesh is computed. The two dimensional mesh is then reprojected in the [x,y,z]

space, as the 2D points and 3D points are uniquely linked. Good results were

obtained (according to the sail makers’ feedback) and a good level of automation

was achieved. However, several improvements can be undertaken.

5.1 Future work

As said before, some improvements proposed for the acquisition phase has yet to be

tested. Use of adhesive plastic films on the sail tissue and the presence of rigid panels

on the scenes acquired during on-field campaign, has been proposed respectively

to avoid possible data loss and to achieve a more robust cloud registration. This

expedients not only have to prove to help the acquisition accuracy, but, at the same

time, they have to prove not to influence the original shape of the sail.

On the software side, efforts have to be made to improve the robustness of the

program, and to reduce user interaction. The data resampling progress could be

even more investigated, focusing on the possibility of accepting downsampling of

the point cloud, if it does not alter the overall shape of the sail, neither influ-

ence its geometric parameters. Moreover, during the choice of the algorithm for

the reconstruction of the sail surface, some approximating algorithm has been con-

sidered, rather than Delaunay triangulation, which interpolate the samples. This

procedures were the Poisson surface reconstruction and the B-spline surface re-

construction. Both generated surfaces with a better overall quality, but they also

exceeded the border of the actual shape to retrieve. A further study on the prop-

erties of approximated surfaces should be of interest for the further developments

of the considered work. The B-spline method was particularly promising since its
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implementation (through the PCL library) came along with a function to retrieve

the correct edges of the surface. This function was able to reconstruct the gen-

naker edges, but failed in the mainsail case. A similar, custom function, could be

developed to work in the specific context of sail reconstruction.

Many small improvements can still be added to the software, like the possibility

to save the meshes generated in different file formats. The software remains a work

in progress also because the PCL library, which is the main part of the developed

program, continues to evolve, repair errors and add functionalities. Even during

the development of the software application, some bugs were reported to the PCL

community. Fixing of this errors opens new ways to handle the post-processing

operations, simplifying even more the role of the external user.
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Chapter 6

Paper

Characterization of a 2-D laser scanner
for outdoor wide range measurement

Department of Mechanical Engineering, Politecnico di Milano, via La Masa 1,

20156 Milano, Italy

Eugenio Canciani Ambra Vandone Remo Sala

Email: eugenio.canciani@mail.polimi.it Email: ambra.vandone@polimi.it Email: remo.sala@polimi.it

Abstract:
This paper presents a metrological characterization study of SICK LMS 511

laser scanner, with an extended analysis of its main acquisition issues. Various

parameters that could affect the sensor performances, such as warm-up time, target

properties (color and material), and target position (distance and orientation) are

investigated. Moreover, the mixed pixel problem is introduced and, finally, since the

sensor is designed to work in a wide outdoor environment, the effect of direct sun

light is taken into account. Some cases of faulty data are identified and explanations

discussed.
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a fundamental geometric data structure. ACM Computing Surveys (CSUR),

23(3):345–405.

[Bendat and Piersol, 2011] Bendat, J. S. and Piersol, A. G. (2011). Random data:

analysis and measurement procedures, volume 729. John Wiley & Sons.

182



Algorithms for point cloud elaboration and 3D reconstruction of yacht sails during navigation

[Besl and McKay, 1992] Besl, P. J. and McKay, N. D. (1992). Method for regis-

tration of 3-d shapes. In Robotics-DL tentative, pages 586–606. International

Society for Optics and Photonics.

[Bowyer, 1981] Bowyer, A. (1981). Computing dirichlet tessellations. The Com-

puter Journal, 24(2):162–166.

[Carlson, 2003] Carlson, W. (2003). A critical history of computer graphics and

animation. The Ohio State University.

[Chen and Medioni, 1991] Chen, Y. and Medioni, G. (1991). Object modeling by

registration of multiple range images. In Robotics and Automation, 1991. Pro-

ceedings., 1991 IEEE International Conference on, pages 2724–2729. IEEE.

[Clauss and Heisen, 2000] Clauss, G. and Heisen, W. (2000). Cfd analysis on the

flying shape of modern yacht sails. The Quest for the Origins of Life, page 87.

[Cox, 1972] Cox, M. G. (1972). The numerical evaluation of b-splines. IMA Journal

of Applied Mathematics, 10(2):134–149.

[Curless, 1999] Curless, B. (1999). Overview of active vision techniques. SIG-

GRAPH 99 Course on 3D Photography.

[D’Acquisto et al., 2002] D’Acquisto, L., Fratini, L., and Siddiolo, A. (2002). A
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