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Abstract

The aim of this Thesis is to provide a proactive approach to a lot-sizing and
scheduling problem under uncertainty of demand. High demand variability causes
difficulties in developing efficient production schedules. Many authors studied this
problem using deterministic approaches, meaning that they consider demand as
“known”; the main problem related to these models is the so-called system “ner-
vousness” in terms of machines configuration, which determines high scheduling
costs. The actual demand, sometimes very different from the forecasts, induces
planners to modify their schedules, and, as a consequence, a large number of ma-
chine changeovers occur. In this work we develop a deterministic model for the
scheduling problem we are going to consider, and we refer to this as a benchmark.
Our aim is to suggest a stochastic model in which uncertainty is taken into account
in the model, and prove that this approach can be a solution to the problem. We
develop a stochastic model based on a scenario tree representation; the very large
number of variables involved in the model makes the problem too hard to solve
in a complex environment. This forces us to develop an approximate stochastic
model. We consider a textile manufacturing scheduling problem, that is one of
the most difficult fields in which create production plans due to uncertainty of
demand. Good results are obtained from the computational experiments, in terms
of the purpose of this work.

Keywords
Lot-sizing and Scheduling - Parallel Machine - Demand Uncertainty - Rolling

Horizon - Multistage Stochastic Programming
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Sommario

L’obiettivo della Tesi è fornire un approccio proattivo a un problema di dimen-
sionamento dei lotti e scheduling in condizioni di incertezza della domanda di
prodotto finito. L’elevata variabilità della domanda comporta difficoltà nello svi-
luppo dei piani di produzione efficienti ed efficaci. Molti autori hanno studiato
il problema, affrontandolo mediante approcci deterministici, ovvero a domanda
“nota”; il problema principale legato all’utilizzo di questi modelli è il cosiddetto
“nervosismo” in termini di configurazione delle macchine, che determina elevati
costi. La domanda reale infatti, talvolta molto differente dalle previsioni, induce i
planners a modificare i loro piani.
In questo lavoro sviluppiamo un modello deterministico, e lo utilizzeremo come
base per il confronto con la nostra ipotesi di soluzione. Il nostro scopo è quello di
implementare un modello stocastico, in cui l’incertezza è considerata nel modello,
e provare che questo approccio può essere una possibile soluzione al problema. Svi-
luppiamo un modello stocastico basato sulla formulazione matematica di un albero
degli scenari; il fatto di voler descrivere l’incertezza in modo soddisfacente causa
un numero troppo elevato di variabili coinvolte nel modello, che rende il problema
troppo difficile da risolvere. Questo ci impone di sviluppare un modello stocastico
approssimato. Consideriamo un problema di scheduling di un’impresa del setto-
re tessile, caratterizzato da elevata incertezza della domanda. Dagli esperimenti
numerici si ottengono buoni risultati in termini di obiettivi del lavoro.

Keywords
Lot-sizing and Scheduling - Parallel Machine - Demand Uncertainty - Rolling

Horizon - Multistage Stochastic Programming
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Estratto in lingua italiana

Questo lavoro affronta un problema di lot-sizing e scheduling multi-stadio di un
sistema produttivo multi-prodotto a macchine parallele e con capacità limitata, in
un contesto caratterizzato da elevata incertezza della domanda di prodotto finito.
Il sistema produttivo in esame si dice “multi-prodotto” e a “macchine parallele”
in quanto esso comprende un insieme di macchine generiche che possono elabo-
rare indistintamente una serie di prodotti. Inoltre, nel sistema considerato ogni
prodotto si trasforma in prodotto finito con la sola trasformazione ottenuta con la
macchina generica.
Questo tipo di problema richiede una modellizzazione matematica atta a definire
“cosa”, “quando” e “quanto” produrre all’interno di un orizzonte temporale discre-
tizzato in un certo numero di periodi. In questi problemi si pianificano i setup delle
macchine e si dimensionano i lotti per ogni periodo in modo da ottimizzare il costo
totale di setup, costo di inventario ed eventualmente il costo di mancanza/stock-
out nell’orizzonte di pianificazione.
Il comune approccio allo scheduling in condizioni di incertezza è di tipo determini-
stico. L’incertezza della domanda fa sì che esso sia spesso applicato con una logica
di tipo Rolling Horizon.

Approccio deterministico e logica Rolling Horizon

Solitamente si sviluppano piani di produzione per un orizzonte temporale per il
quale si ha a disposizione una previsione piuttosto affidabile della domanda, me-
diante un approccio deterministico, ovvero che prescinde dall’incertezza. Tuttavia,
in contesti caratterizzati da forte incertezza della domanda, lo scostamento tra la
domanda effettiva e quella prevista risulta tale da richiedere un intervento di mo-
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difica dei piani di produzione, poiché essi sono stati ottimizzati sulla base della
domanda prevista.
Con il manifestarsi dell’incertezza nel corso del tempo, l’osservazione della do-
manda reale ci permette di acquisire nuove informazioni in termini di inventario e
commesse non evase; queste informazioni spingono le aziende a effettuare periodi-
camente dei nuovi piani di produzione per rispondere in modo reattivo al proprio
contesto.
Questa logica, che suggerisce di rivedere i propri piani ottimizzati prima che questi
vengano realizzati completamente, è stata studiata ampiamente in letteratura e ha
preso il nome di logica RHP (Rolling Horizon Procedure).
Se ad un tipo di schedulazione con approccio deterministico viene applicata la
logica rolling horizon in un contesto di elevata incertezza, il risultato è quello di
realizzare piani di produzione altamente instabili. In altre parole, il numero di
setup che vengono realizzati in ogni periodo è molto alto, e il sistema si trova ad
essere affetto da una certa forma di nervosismo ([9], [10], [11], [12], [13]). In par-
ticolare, per quanto riguarda i problemi di lotsizing e scheduling, Tiacci propone
un algoritmo semplificato per la schedulazione che sfrutta la logica rolling horizon
con l’obiettivo di ridurre il numero di setup [7], con un approccio deterministico.

Incertezza della domanda

Questo nervosismo del sistema produttivo, ampiamente trattato in letteratura, è
tanto più importante quanto più è grande l’incertezza della domanda. In ogni caso,
le principali soluzioni a questo problema sono due: ridurre l’incertezza e utilizzare
una domanda deterministica o considerare l’incertezza nei modelli.

• Nel primo caso, si potrebbero sviluppare determinati meccanismi di previ-
sione atti a migliorare la qualità delle previsioni della domanda in modo da
ridurre il gap con la domanda reale. In questo caso potrebbe essere giustifi-
cata l’applicazione di programmi di produzione sviluppati con un approccio
deterministico.
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• Nel secondo caso, invece, si potrebbe considerare di tenere conto dell’incer-
tezza della domanda in sede di pianificazione/schedulazione, senza puntare
eccessivamente sulla qualità delle previsioni (a cui molto spesso è associato
anche un costo significativo). In altre parole, in questo caso si tiene conto
dell’aleatorità della domanda all’interno del modello matematico che genera
il piano di produzione (approccio stocastico).

Per quanto riguarda la qualità delle previsioni esistono numerosi metodi statistico-
matematici che, mediante la considerazione di dati storici e/o altri fattori, per-
mettono di produrre delle previsioni della domanda che si avvicinano molto alla
domanda reale. Ad esempio, esistono modelli basati sulle serie storiche che hanno
avuto molta fortuna: il modello di Brown (exponential smoothing) [47], il modello
di Holt-Winters [48], il modello di Box-Jenkins [49], altri modelli di regressione di
serie storiche [50] e ARIMA (AutoRegressive Integrated Moving Average).

Tuttavia, in alcuni campi di applicazione l’incertezza non può essere ridotta in
modo soddisfacente e l’unica strada percorribile sembra quella di considerare la
domanda come una variabile stocastica e incorporarla nei modelli.

Approcci stocastici

Un tipo di programmazione stocastica multi-stadio sembra, quindi, essere la rispo-
sta a questo problema. In letteratura si trovano diversi modelli di programmazione
stocastica multi-stadio basati sulla teoria dell’albero degli scenari. Una formula-
zione matematica utile per seguire questa teoria è stata sviluppata da [16].
Tuttavia, se l’incertezza caratterizza la domanda di ogni singolo prodotto, si do-
vrebbero considerare un elevato numero di scenari per ogni nodo dell’albero. In-
fatti, per ogni prodotto e per ogni periodo, vengono definiti due o più possibili
realizzazioni della domanda; per ogni nodo dell’albero degli scenari perciò devono
essere presenti tutte le possibili combinazioni di incertezza dei singoli prodotti,
come si vede nelle figure (1) e (2).
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Figura 1: Scenari per nodo per ogni singolo prodotto

Figura 2: Scenari per nodo per l’albero degli scenari completo

Risolvere problemi di ottimizzazione con un albero degli scenari “completo”
richiede un onere computazionale troppo elevato che ci permette di risolvere solo
problemi molto semplici (pochi prodotti e pochi scenari per prodotto e per perio-
do).
Infatti il problema fondamentale della programmazione stocastica multi-stadio e
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multi-prodotto è diventato quello di contenere il numero di scenari che si con-
siderano per ogni nodo, in modo da diminuire il numero di variabili che cresce
esponenzialmente con il numero di realizzazioni per nodo. In figura (3) si vede un
esempio di questo.

Figura 3: Esempio di albero degli scenari, con 8 scenari per nodo: 4096 scenari

A questo problema la ricerca ha provato a rispondere fondamentalmente in tre
modi:

1. metodi di generazione di scenari: si creano scenari ad hoc mediante algoritmi
complessi (tra gli altri [17] e [18]).

2. metodi di riduzione di scenari: partendo dal modello “completo” vengono
elaborati algoritmi che riducono il numero di scenari da considerare. Roc-
kafellar propone un metodo di aggregazione degli scenari [39], che viene
applicato con buoni risultati nel caso di scheduling multi-stadio da Kensuke
[6].
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3. sviluppo di modelli approssimati che superano i modelli basati sulla teoria
dell’albero degli scenari (questo non avviene per i primi due metodi, che
invece mantengono la struttura ad albero). In quest’area di ricerca si tro-
vano metodi, che, ad esempio, scompongono in sottoproblemi più semplici il
problema principale posto dall’albero degli scenari “completo” [31].

L’approccio seguito in questo lavoro è quest’ultimo.

Nuovo modello stocastico approssimato

Nel modello basato sull’albero degli scenari le variabili in gioco sono tipicamen-
te di tipo “Wait and See”: ad ogni nodo dell’albero corrispondono variabili che
dipendono dalla realizzazione dell’incertezza. In altre parole, al rivelarsi della do-
manda reale corrisponde un determinato stato del sistema (in termini di inventario,
backlog) e determinate decisioni da prendere (variabili decisionali riguardanti la
configurazione delle macchine).

La prima importante caratteristica che assume il nostro modello per diminuire
il numero delle variabili in gioco è quella di considerare “Wait and See” solo le
variabili riguardanti inventario e backorder, mentre le variabili decisionali diven-
tano variabili di tipo “Here and Now” (non dipendono dalla realizzazione della
domanda, quindi sono uguali per ogni scenario all’interno del medesimo periodo).

La seconda caratteristica, che costituisce la novità principale del nostro model-
lo, è quella di considerare i valori attesi di Inventario e Backorder per ogni periodo
e considerarli come “condizioni inziali” per il periodo successivo.
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Per esempio:

Figura 4: Valori attesi delle variabili Wait and See

E1(I) =
6∑
s=1

I1,s · p1,s

dove s è l’indice dello scenario e p è la probabilità associata a quel determinato
scenario.
E’ interessante notare che questi valori attesi di inventario e backorder non siano
altro che funzioni lineari di variabili relative ai singoli scenari, pertanto non è ne-
cessario creare nuove variabili.

Grazie a questi due aspetti del nostro modello il numero di variabili in gioco
diminuisce drasticamente (come si vede nella tabella), permettendoci di studiare
problemi più complessi rispetto al modello stocastico tradizionale, ovvero con-
siderando un maggior numero di possibili realizzazioni dell’incertezza per ogni
nodo.
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L’introduzione dei valori attesi delle realizzazioni costituisce una significativa
approssimazione del modello “completo”, tuttavia si scoprirà che il modello for-
nisce buoni risultati. Lo scopo della nostra ricerca non è quello di quantificare
l’approssimazione del nostro modello rispetto a quello “completo”, bensì quello
di quantificare i benefici che si hanno rispetto ad un modello deterministico, che
riserva non pochi problemi in ambienti caratterizzati da incertezza.

Questo modello di programmazione stocastica si propone come modello proattivo
per i problemi di lot-sizing e scheduling. Tuttavia, il modello da noi presentato,
viene proposto anch’esso in una logica Rolling Horizon per conservare la dimen-
sione reattiva della schedulazione.

Nella trattazione viene elaborato anche un modello deterministico, che fungerà
da benchmark per misurare i vantaggi del nostro modello.

Caso di studio

Si considera come caso di studio un settore manifatturiero caratterizzato da un’e-
levata incertezza della domanda: il settore tessile.
Anche in questo campo, proprio a causa della variabilità della domanda, utilizzan-
do un approccio a domanda deterministica unito a una logica rolling, si verifica
il problema della modificazione reattiva degli schedules. Nel caso di studio consi-
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derato, dato che la componente principale dei costi di scheduling è costituita dai
costi di setup, si dà maggiore importanza ai risultati in termini di riduzione del
numero dei setup nell’orizzonte di pianificazione.
Come detto prima, le possibili strade sono due:

• miglioramento del sistema di previsione della domanda e utilizzo della do-
manda deterministica;

• considerazione dell’incertezza in un modello stocastico.

Molti metodi di previsione della domanda basati sulle serie storiche citati in pre-
cedenza non risultano efficaci in questo campo. Quindi, la maggior parte delle
imprese utilizza tecniche avanzate per aumentare l’accuratezza delle previsioni di
domanda, ma difficilmente si raggiungono risultati soddisfacenti.
Pertanto, come detto prima, si ritiene che l’applicazione del modello stocastico
descritto precedentemente possa portare benefici.

Esperimenti e risultati

Per il caso di studio in esame vengono definite tutte le grandezze necessarie per
identificare l’ambiente in cui realizzare gli esperimenti, tra cui la capacità dell’im-
pianto, l’orizzonte temporale per lo scheduling, i prodotti e le relative caratteri-
stiche (coefficiente di variazione della domanda, profili di domanda attesi, ...), lo
shift factor (rapporto tra costi di setup e costi di inventario), ecc.
Vengono svolti quindi alcuni esperimenti per mostrare se il nuovo modello stoca-
stico porta a dei benefici in termini di riduzione del numero di setup. Si risolvono
entrambi i modelli con un certo orizzonte di pianificazione su un arco temporale
di un anno, applicando la logica Rolling Horizon. La grandezza fondamentale in
questo caso specifico, come detto in precedenza, è il numero di setup realizzati dai
due modelli nell’anno.
Si ripete questo esperimento 100 volte considerando diverse realizzazioni della
domanda, ma le stesse per entrambi i modelli. L’indice con cui si misura la
prestazione in termini di riduzione di setup è SETUP [%]:

SETUP [%] = Numero totale di macchine con un attrezzaggio pianificato in un anno
Numero di macchine · 52 settimane
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Come si vede dal Box Plot, si può affermare che il numero di setup, a seguito
dell’applicazione di un modello stocastico, si riduce di circa il 50%. Si esegue un
t-test per evidenziare la differenza statistica tra il numero dei setup suggeriti dai
due modelli.

Nel corso degli esperimenti vengono studiati anche altri indici di prestazione
riguardanti backorder, inventario e utilizzazione delle macchine. In particolare,
si notano benefici anche rispetto al backorder e quindi al livello di servizio. Per
quanto riguarda invece inventario e utilizzazione delle macchine non emergono
significative differenze tra i due modelli.

Analisi di sensitività

Si è voluto studiare la variazione del risultato visto in precedenza, al variare di al-
cuni parametri principali (capacità dell’impianto, shift factor e livello di incertezza
della domanda), per studiarne la robustezza.
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Variando il numero di telai si nota che il vantaggio ottenibile dall’applicazione del
modello stocastico proposto presenta un picco per una certa capacità dell’impianto,
mentre:

• nel caso di numero di macchine troppo basso rispetto alla domanda richie-
sta, il sistema di produzione lavora sotto pressione ed entrambi i modelli
suggeriscono un elevato numero di setup. Quindi il vantaggio ottenibile con
il nostro modello stocastico è meno rilevante;

• nel caso di numero di macchine molto elevato rispetto alla domanda richiesta,
anche il modello deterministico suggerisce un modesto numero di setup. Per
questo, un approccio proattivo alla gestione dei setup, sebbene efficace, non
risulterebbe così significativo.
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Variando lo shift factor la soluzione invece rimane piuttosto stabile. Vengono
selezionati shift factor coerenti con il contesto di applicazione scelto.

Infine si può affermare che, all’aumentare dell’incertezza della domanda (e quin-
di dei coefficienti di variazione della domanda dei prodotti), l’applicazione del mo-
dello stocastico risulta più vantaggioso. Al contrario, in un contesto di domanda
sempre meno incerta, il vantaggio si riduce progressivamente. In particolare, il ri-
sultato del modello deterministico rimane stabile al variare dell’incertezza, mentre
quello dello stocastico perde gradualmente la propria efficienza.
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Capitolo 1

Scheduling under uncertainty:
the state of the art

The research problem we are going to study is about lot-sizing and production
scheduling under demand uncertainty. A review of scheduling problems is provided
by Graves [1]; according to his classification, we define the present problem as:

• One-stage, parallel processors. Each task requires a single processing
step which may be performed on any of the parallel processors. It doesn’t
matter which machine a job is assigned to, but it cannot be processed on more
than one machine at the same time. In particular the machines considered
are identical processors, meaning that time required for the task is the same
for all the machines.

• Open shop. An open shop is build to order, and the minimum possible
inventory is stocked. In a closed shop the orders are filled from existing
inventory.

• Schedule cost. The objective of the scheduling process is the minimization
of the costs. In the following chapter we examine in depth the costs included
in our instance.

Other important features of the problem are:

• Multi-item
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• Multi-period

• Limited capacity

• Uncertainty of demand

Given an horizon consisting of a certain number of periods, the objective is to
select a schedule that minimizes the total costs. We consider in the model setup
costs and inventory carrying costs; we assume that setup costs are several times
more important than inventory carrying costs (high shift factor), so that the main
issue in this environment is the limitation of the number of changeovers.
Many authors studied this problem using deterministic approaches.
[2] and [3] are the main comprehensive survey papers on scheduling problems; the
first paper reviewed the literature since the mid-1960s. Since the publication of
that paper, there has been an increasing interest in scheduling problems with setup
times (costs) with an average of more than 40 papers per year being added to the
literature. The objective of the second paper was to provide an extensive review
of the scheduling literature on models with setup times (costs) from then to date,
covering more than 300 papers.

1.1 Deterministic models

Most of the work in this area has been limited to deterministic MILP models, whe-
rein the problem parameters are assumed to be known with certainty. Examples
of similar problem setting with respect to our work, in a single machine instance,
can be seen in [4] and [5] (single machine) or in [6]. In this work we develop a
deterministic Mixed Integer Linear Programming model (MILP) for the conside-
red scheduling problem; this will be the starting point and the benchmark of the
research aim.
The problem of the deterministic approaches, if a RHP (Rolling Horizon Proce-
dure) is applied, is that they include the reactive modification of schedules upon
realization of uncertainty. An application of the RHP method in scheduling pro-
blems can be found in [7].
With the reactive modification strategy there is the concrete possibility that too
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many changes might be made to the schedule (this phenomenon is also present in
other areas, such as MRP, Material Requirement Planning, and it is called system
nervousness: see [9]).
Examples of this problem can be seen in [10], [11], [12] and [13] (all these papers
refer to batch chemical plants scheduling problems).

Generally, planners don’t want to handle a nervous system; therefore, in our
instance, system nervousness causes a great number of changeovers, and, as a
consequence, expensive schedules.
To address system nervousness, there has been increased concern in the develop-
ment of different types of models that explicitly take into account uncertainties.
The most important approach to optimization under uncertainty is stochastic
programming. We refer to [14] and [15] as basic references for the theory and
application of stochastic programming models.

1.2 Stochastic models

The aim of stochastic programming is to give solutions in terms of good decisions
in problems in which there are some uncertain data. Stochastic is opposed to de-
terministic, meaning that some data are random, while programming means that
the problem can be modeled as mathematical program. This field, also known
as optimization under uncertainty, is increasing in interest rapidly in different re-
search areas such as operations research, mathematics, economics, probability and
statistics.
In this section we introduce stochastic programming theoretically (multistage sto-
chastic models) and we discuss about the representation of uncertainty, according
to the scenario tree mathematical formulation suggested by [16].

1.2.1 Multistage stochastic programs with recourse

In the multistage setting, the uncertain data ξ1, ξ2, ..., ξT is revealed gradually
over time, in T periods, and decisions should be adapted to this process. The
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decision process has the form

decision(x1)→ observation(ξ2)→ decision(x2)→ ...→ decision(xT ).

The sequence ξt ∈ Rdt , with t = 1, 2, ..., T , of data vectors as a stochastic process:
it is a sequence of random variables with a specified probability distribution. With
ξ[t] we denote the history of the process up to time t.
The values of the decision vector xt, chosen at stage t, may depend on the informa-
tion (data) ξ[t] up to time t, but not on the results of future observations. This is
the basic requirement of nonanticipativity. As xt may depend on ξ[t], the sequence
of decisions is a stochastic process as well.
We say that the process ξt is stagewise independent if ξt is stochastically inde-
pendent of ξ[t−1], t = 2, ..., T . It is said that the process is Markovian if for every
t = 2, ..., T , the conditional distribution of ξt given ξ[t−1] is the same as the conditio-
nal distribution of ξt given ξt−1. Of course, if the process is stagewise independent,
then it is Markovian.
In a generic form of a T-stage stochastic programming model can be written in
the nested formulation

min
x1∈X1

f1(x1) + E
[

inf
x2∈f2(x1,ξ2)

+E
[
...+ E[ inf

xT∈XT (xT −1,ξT )
fT (XT , ξT )]

]]

driven by the random data process ξ1, ξ2, ..., ξT . Here xt ∈ Rnt , with t = 1, 2, ..., T ,
are decision variables, ft : Rnt × Rdt → R are continuous functions and Xt :
Rnt−1 × Rdt → Rnt , t = 1, 2, ..., T , are measurable closed valued multifunctions.
The first-stage data, i.e., the vector ξ1, the function f1 : Rn1 → R and X1 are
deterministic. It is said that a multistage problem is linear if the objective functions
and the constraint functions are linear. In a typical formulation,

ft(Xt, ξt) = cTt xt, X1 := {x1 : A1x1 = b1, x1 ≥ 0}

X1(xt−1, ξt) := {xt : Btxt−1 + Atxt = bt, xt ≥ 0}, t = 2, ..., T.

Here, ξ1 := (c1, A1, b1) is known at the first-stage (and hence is nonrandom), and
ξt := (ct, Bt, At, bt) ∈ Rdt , t = 2, ..., T are data vectors, some (or all) elements of
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which can be random.

1.2.2 Scenario tree representation

Scenario-based stochastic linear programs optimize under uncertain future con-
ditions by producing contingent decision over a number of future scenarios. A
typical set of scenarios, arranged in a branching, probabilistic tree, is shown in
figure (1.2):

Figura 1.1: Example of branching rate probability tree

Each node in the tree corresponds to a time period with an associated problem
state. At each branch point a random event occurs, and the next time period is
associated with a number of new states based on the realization of the random
variable with the discrete distribution described by the (conditional) branch pro-
babilities. A scenario can be informally defined as a path through the tree from the
root to a leaf; the scenario’s probability is the probability of all its events occurring.
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A scenario tree structure is defined by specifying the number of time periods,
the scenario index set, and parent names, start time values and probabilities for
all additional scenarios (the probabilities can be given as path probabilities or can
be conditional on prior events in the parent scenario). There are five types of
scenario structure:

1. arbitrary scenario structure with fixed horizon. The first type of problem
assumes that random variable distributions are dependent on both the time
period and prior history, which determines the current position in the tree.
This can happen, for example, in planning problems when assumed scenarios
reflect major, unique future events;

2. scenario structure with period to period independence of data value distri-
butions;

3. scenarios with random walk or random walk with period independent drift.
This type of problem uses random variables for changes in scenario data
whose distributions are independent from period to period. Realizations in
each scenario therefore depend on both the time period and prior history,
although the increments can be specified by time period alone, regardless of
scenario.

4. scenario trees in which random variable distributions of increments depend
on prior events;

5. scenario trees in which the number of decision variables depends on the
current scenario.

We focus the attention on the second type of scenario tree structure, sho-
wing what kind of parameters have to be defined. Considering the scenario tree
represented above, the scenario structure can be defined following these steps:

1. definition of the parameter REALIZATIONS, that is the number of realiza-
tions or possible outcomes in the random variable’s distribution;

2. definition of the parameter CONDPROB, indexed over time periods and rea-
lizations: the conditional probability of each outcome in the distribution;
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Figura 1.2: Scenario tree structure definition

3. definition of the parameter BRANCHES, indexed over time periods: the
number of branches in the tree below a given time period;

4. definition of the index set SCENARIOS, calculated as all integers between
1 and the number of branches below time period 1;

5. definition of the parameter STARTTIME, indexed over scenarios, that is the
start time of a certain scenario j;

6. definition of the parameter PARENT indexed over scenarios. The parent of
a scenario j, is 0 for the base scenario and otherwise is the largest integer
multiple of branches below the period prior to the start time of scenario j
less than or equal to the scenario number;

7. definition of the set EVENTNODES and the parameter PREVIOUS, indexed
over event nodes;

8. definition of the parameter RVADDRESS, indexed over event nodes, which
associates with each node in the tree the number of the realization from the
relevant distribution;

9. definition of the parameter PATHPROB, indexed over event nodes: it is com-
puted as the product of the conditional probability of each node of the
path.
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Considering the previous scenario tree we can compute some parameters, as an
example:

Parameter Stage 1 Stage 2 Stage 3 Stage 4
REALIZATIONS 1 2 3 2

CONDPROB 1 0.5 0.3333 0.5
BRANCHES 12 6 2 1

Parameter Scenario 1 Scenario 3 Scenario 6 Scenario 10
STARTTIME 4 4 2 3
PARENT 0 2 0 6
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1.3 Approximation of multistage stochastic mo-
dels

In this paragraph we explain in a brief summary the approximation methodologies
of multistage problems that authors used in the past.
Since we are going to consider a multistage stochastic model, the major issue in
any application of multistage stochastic programming is the representation of un-
certainty. [16], as we said in the previous paragraph, suggested a way to represent
uncertainty using a scenario tree, but a key difficulty arising following this ap-
proach is in dealing with a very large number of scenarios (large-scale stochastic
models), as reported in [8].
In our case, for example, a scenario-tree based stochastic model according to [16]
is not possible because of the complexity of the environment we want to study (see
chapter 3).
Many authors, even if in different research areas, suggested different ways to cope
with this situation. We provide a short review about the different possible solu-
tions for this problem, that can be found in the literature. All these solutions are
about a reduction in the complexity of the model; this reduction can be reached
with different approximation procedures:

1. reduction in the number of scenarios considered in the model using scenario
generation methods;

2. reduction in the number of scenarios considered in the model using scenario
reduction methods;

3. modification to the structure of the complete stochastic model (scenario tree
based, [16]).

1.3.1 Scenario generation methods

One common solution is to apply a scenario generation method, consisting on ge-
nerating a certain set of scenarios following some criteria. Many other researchers
worked on this problem.
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Dupocova et al. [17] recognized that a major issue in any application of multista-
ge stochastic programming is the representation of the underlying random data
process. They discussed the notion of representative scenarios (or representative
scenario tree).
Kaut et al. [18] discussed the evaluation of quality/suitability of scenario genera-
tion methods for a given stochastic programming model. They formulated minimal
requirements that should be imposed on a scenario generation method before it
can be used for solving the stochastic programming model and they showed how
to these requirements can be tested.
Mitra [20] tried to provide an overview of the main scenario generation methods.
The main four scenario generation methods for multistage stochastic models are:

1. Statistical Approaches. The general idea behind applying statistical me-
thods is to determine the values of particular statistical properties of some
given (distribution of) data. Values of statistical properties can then in turn
be used to determine the best fit theoretical distribution to data and so the
theoretical distribution can be used for generating scenarios.

2. Sampling. This method takes sample from a given probability density
function, thus providing scenario values. Sampling methods are a common
approach for multistage stochastic programs, just as they are for two-stage
models. Due to the exponential increase of the number of possible scenarios
as the horizon length increases, multistage scenario generation approaches
place a greater emphasis on reducing the number of required samples. The
result is that the sampling procedure often involves considerable effort to
ensure that the samples provide similar solution characteristics to a true un-
derlying model. Main concerns are that the sample distribution has similar
moments to the underlying distribution, that the sample distribution is not
too distant from the underlying in terms of the probability of any event, and
that the solution of the model using the sample distribution is consistent
with practical limitations, such as the absense of arbitrage. Under mild con-
ditions, these criteria can ensure that the sampling model solution converges
asymptotically to a solution of the model with the underlying distribution.
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3. Simulation. This involves the simulating of a process by inputting ran-
dom numbers into its equation. The results give us the random variable’s
realizations, thus providing scenario values.

4. Other methods (e.g. hybrid methods). These include a variety of me-
thods e.g. mixing scenario generation of sampling with moments matching.

1.3.2 Scenario reduction methods

A second solution to the problem is related to scenario reduction methods:

• Scenario reduction. This is a method for decreasing the size of a given tree.
This method tries to find a scenario subset of prescribed cardinality, and a
probability measure based on this set, that is closest to the initial distribution
in terms of some probability metrics. The method is described in [21] and
[22]. Furthermore, Kensu in [6] applies an interesting method of scenarios
aggregation in a scheduling problem, proposed by [39].

• Internal sampling methods. Instead of using a pre-generated scenario tree,
some methods for solving stochastic programming problems sample the sce-
narios during the solution procedure. The most important methods of this
type are: stochastic decomposition [23], importance sampling with Benders’
(L-shaped) decomposition ([24], [25] and [26]) and stochastic quasigradient
methods ([27], [28]).

In addition, there are methods that proceed iteratively: they solve the problem
with the current scenario tree, add or remove some scenarios and solve the problem
again. Hence, at least in principle, the scenarios are added exactly where needed.
The methods differ in the way decide where to add/remove scenarios: [29] uses
dual variables from the current solution, while [30] measures the importance of
scenarios by EVPI.

1.3.3 Stochastic model approximations

The first two solutions presented above basically keep the scenario tree structure
and simply reduce the size of the scenario tree with different criteria. Another
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possible idea consists on modifying the structure of the multistage stochastic mo-
del, in different approaches. The aim is to create an approximate stochastic model
that takes into account demand uncertainty and that overcomes the computational
expense associated with the solution of the large-scale stochastic multistage MILP
model without losing too much information. This kind of solution that takes its
basis not in the scenario tree representation does not have so many references in
the literature.
Balasubramanian et al. [31] considered a problem of scheduling under demand
uncertainty of a multiproduct batch plant. They presented a multistage stochastic
MILP model, wherein certain decisions are made irrespective of the realization of
the uncertain parameters (here and now variables) and some decisions are ma-
de upon realization of the uncertainty (wait and see variables). To cope with
the computational issue associated with the solution of the large-scale stochastic
multistage MILP for large problems, they examined an approximation strategy
that relies on solving a number of smaller models, in particular it is based on the
solution of a series of a two stage models within a shrinking horizon approach.
Computational results indicate that the proposed approximation strategy provi-
des an objective function within a few percent of the multistage stochastic MILP
result in a fraction of the computation time and provides significant improvement
in the expected profit over similar deterministic approaches.
The approximation of the stochastic model proposed by [31] consists on aggrega-
ting time periods in the horizon, so that the model that is going to be solved is a
two-stage stochastic model. Another example of this kind of approximation is in
[32]: the approach they studied consists of solving a sequence of two-stage stocha-
stic programs with simple recourse, which can be viewed as an approximation to a
multistage stochastic programming formulation of airplane revenue management
problem.

The aim of this work is to present a proactive approach to setup management
in the problem setting explained before, not reducing the multistage problem in a
two-stage one as seen before. The idea is to perform an approximation strategy to
solve a multistage stochastic model. In each stage some decisions have to be made
according to demand forecasts of the products minimizing costs. A new feature
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is about how uncertainty is represented in the model. In scenarios the demand
for each product is not represent by a point but by an interval. A scenario is
thus a particular combination of demand intervals given by all the products. We
choose to consider all the possibles scenarios (all the possible combinations of in-
tervals) in each period and we compute wait and see variables for each scenario.
Our approximation strategy consists on computing the expected value of these va-
riables and consider them as an input (connection link with) for the following week.

A rolling horizon procedure is then applied at the end of each week: with the
observation of the real value of the demand we can compute the real value of the
wait and see variables (inventory and backorder). Thus, at the end of each period
we make a new schedule for a certain number of periods (schedule horizon).
The idea of the expected values applied to wait and see variables has not ever
been used in order to approximate the basic scenario tree described by Gassman,
according to [15], [14].

In literature an example of expected values used in a scheduling problem, but
in a two stage model, can be found in [35]. Baker used a stochastic model to solve
a single machine scheduling problem, with processing times that follow normal
distributions.

The objective is to use these expected values in a multistage model: the advan-
tage we want to get is a better organization of the changeovers in the scheduling
horizon, that leads into less expensive schedules, even in a rolling horizon approach.
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Capitolo 2

Deterministic Model

The first scheduling method that we consider is a deterministic model that doesn’t
take into account the uncertainty of the demand. In this chapter we are going to
describe in detail the mathematical model.
These are the main characteristics of the model:

• Mixed-Integer Linear Programming (MILP);

• Multi-product;

• Parallel machines. Every product can be processed on a general machine;

• Limited capacity;

• Costs included: setup costs and inventory carrying costs;

• Setup times are negligible: we assume that changeovers are made outside of
working time;

• Demand uncertainty.

2.1 Description of the model

In the first part of this section we are going to describe the terms involved in the
model while in the second part we explain the objective function and his relative
constraints.
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2.1.1 Terms of the model

The terms of the model are described in the table below.

Term Description
P Number of types of product: j ∈ {1, 2, ..., P}
T Number of periods of the production schedule: t ∈ {1, 2, ..., T}
L Number of parallel machines (capacity of the plant)

Y [j, t] Number of machines that are configured to process product j in period t
Z[j, t] Number of machines that process product j in period t
δ[j, t] Number of changeovers to process product j in period t
I[j, t] Inventory amount for product j in period t
B[j, t] Backorder amount for product j in period t
d[j, t] Expected demand for product j in period t
Y [j, 0] Machines configured to process product j in period t = 0
I[j, 0] Inventory amount for product j in period t = 0
B[j, 0] Backlog amount for product j in period t = 0
cY [j] Setup costs for product j
cI [j] Inventory carrying costs for product j
BF Backorder Factor

Some clarifications need to be done regarding the terms table above.
First of all, demand is expressed as the number of machines that need to produce
for product j in period t. We can explain the demand as:

d[j, t] = Quantity of product requested in period t
Production rate

[ Unit
Period
Unit

Machine·Period

]
(2.1)

= Machines to run in period t for product j [Machine] ∀j ∈ 1, ..., T

We simply assume that we have the demand already expressed as number of ma-
chines to run, not starting from the quantity of product requested. This way to
express the demand simplifies significatively the description so that we don’t need
to make any considerations about production rates of the machines (also because
this is not the aim of our research topic).
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As a consequence of this, all the other variables are expressed in this way. For
example, the Z variable doesn’t represent a quantity of product, but the number
of machines that need to run for a certain product in a specific period.
The same applies to the inventory and backorder, that are expressed as the num-
ber of looms that need to run in a given period to produce certain amounts for a
specific product.

Regarding the variables type we can make some considerations:

• Z variables are allowed to be continuous in order to help softwares in finding
the optimal solution during the optimization. Z variables doesn’t need to
be integer because, for example, Z = 15.5 means that we have to run 15
machines for a whole period and one machine has to run for a half period.

• Both I and B variables are continuous too, for the reason just explained
above.

• Of course, Y and δ can’t be allowed to be continuous variables, because
it’s not possible to make a number of changeovers different from an integer
number.

As a recap, the variable type are shown in the following table:

Variable Type
Y Integer
Z Continuous
δ Integer
I Continuous
B Continuous

Before describing the objective function and constraints we show the variables
involved in the model in a simple case (2 SKUs, 4 weeks).

2.1.2 Objective function and constraints

The model is characterized by two objective functions:
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Figura 2.1: Example of variables involved in the model

1. minimization of backorder amount. The output of this part is the minimum
backorder amount possible (BMIN), considering the capacity, the demand of
the products and the initial conditions of inventory and backorder.

2. minimization of total costs, taking into account the minimum backorder
amount that is possible to reach.

The model involves two objective functions because the first one provides the
second with important information about feasibility in terms of backorder.
Thus, the purpose of the first objective function is to find the minimal possible
backorder amount:

minimize:
P∑
j=1

B[j, T ] (2.2)

It’s interesting to notice that this minimization is about the total backorder amount
of all the products at the end of the scheduling horizon.

There are four constraints related to the first objective function, and they are
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explained below.
Constraints (2.3) impose the total machines availability limits. Constraints (2.4)
measure the positive changes in the number of machines dedicated to a product
from one period to the next. This, together with (2.3) ensures that changeovers
are measured correctly.

P∑
j=1

Y [j, t] = L ∀t ∈ {1, 2, ..., T} (2.3)

Y [j, t]− Y [j, t− 1]− δ[j, t] ≤ 0 ∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, ..., T} (2.4)

Constraints (2.5) are inventory balance equations for each product.

Z[j, t−1]+I[j, t−1]−B[j, t−1]−I[j, t]+B[j, t] = d[j, t] ∀j ∈ {1, 2, ..., P}, ∀t ∈ {1, 2, ..., T}
(2.5)

The total number of machines that are configured for product j limits the total
number of machines that can be operated to produce it. This is ensured by:

Z[j, t] ≤ Y [j, t] ∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, ..., T} (2.6)

From this first minimization we get some important values that we use in one
of the constraints of the second objective function. We define

BMIN[j, T ] = B[j, T ] ∀j ∈ {1, 2, ..., P}

where B[j, T ] comes from the solution of the first optimization.

In the second part of the model we find the second objective function:

minimize:
P∑
j=1

T∑
t=1

cY · δ[j, t] +
P∑
j=1

T∑
t=1

cI · I[j, t] (2.7)

This second objective function is about minimizing the total of changeover costs
and inventory carrying costs over the scheduling horizon. Backorders are not con-
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sidered as a cost in the objective function because we assume that it’s not possible
to assign a monetary value to them. However, backorder is handled as a constraint
in terms of quantities.
The constraints for this objective function are the same of the first one. Therefore,
there is one additional contraint about a limitation of the backorder amount. Be-
fore showing this constraint we need to introduce the “Backorder factor” (BF), an
input parameter that represents how much backorder is allowed for each product
with respect to the total demand over the periods of the horizon, with:

0 < BF < 1.

The percentage of demand satisfaction can be defined as “Service Factor” (SF):

SF = 1−BF.

Now we can introduce the last constraint, that is:

B[j, T ] ≤ BMIN[j, T ] + BF ·
(

T∑
t=1

d[j, t]
)
∀j ∈ {1, 2, ..., P} (2.8)

Setting BF = 0 (corresponding to SF = 1) we are asking the model to provide
the best schedule in terms of service performance. On the contrary, increasing BF
means that we are relaxing this service constraint decreasing the value of SF. In
other words, we are giving to the objective function more freedom to minimize the
costs (and we are consequently moving towards a cost performance). The behavior
of the model on varying BF is qualitatively described in figure (2.2).

Figura 2.2: Cost and service performance
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In conclusion, we propose a recapitulatory scheme of the model in figure (2.3).

Figura 2.3: Scheme of the deterministic model
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Capitolo 3

Stochastic model

In this chapter we present a stochastic model, in which demand uncertainty is
taken into account within the optimizing model through the implementation a
scenario tree, according to [16]. We start from the mathematical formulation of
the model (terms of the model, objective function and constraints), we present the
main problems of this approach and we suggest, as an answer, an approximated
stochastic model.
These are the main characteristics of the model:

• Mixed-Integer Linear Programming (MILP);

• Multi-product;

• Parallel machines. Every product can be processed on a general machine;

• Limited capacity;

• Costs included: setup costs and inventory carrying costs;

• Setup times are negligible: we assume that changeovers are made outside of
working time;

• Demand uncertainty.
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3.1 Description of the model

In the first part of this section we are going to describe the terms involved in the
model while in the second part we explain the objective function and his relative
constraints.

3.1.1 Terms of the model
Term Description
P Number of types of product: j ∈ {1, 2, ..., P}
T Number of periods of the production schedule: t ∈ {1, 2, ..., T}
L Number of parallel machines (capacity of the plant)
S Number of scenarios: s ∈ {1, 2, ..., S}

Y [j, s, t] Number of machines that are configured to process product j
under scenario s in period t

Z[j, s, t] Number of machines that process product j
under scenario s in period t

δ[j, s, t] Number of changeovers to process product j
under scenario s in period t

I[j, s, t] Inventory amount for product j under scenario s in period t
B[j, s, t] Backorder amount for product j under scenario s in period t
d[j, s, t] Expected demand for product j under scenario s in period t
Y [j, 0] Machines configured to process product j in period t = 0
I[j, 0] Inventory amount for the product j in period t = 0
B[j, 0] Backlog amount for the product j in period t = 0
cY [j] Setup costs for product j
cI [j] Inventory carrying costs for product j
N1 Set of all the nodes except the leaf nodes
N2 Set of all the nodes except the root node
p[s, t] Conditional probability of the path from root to (s, t)
BF Backorder Factor

Some observations need to be done regarding the terms of the table above, as
we did in chapter 2 for the deterministic model.
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Variables Y and Z are related to the configuration of the machines: we introduce Z
variable because it’s possible to configure a machine to produce a certain product
without running it if it’s not necessary.
Demand is expressed as the number of machines that need to produce for product
j in period t. We can explain the demand as:

d[j, s, t] = Quantity of product requested in period t under scenario s
Production rate

[ Unit
Period
Unit

Machine·Period

]
(3.1)

= Machines to run in period t for product j under scenario s [Machine] ∀j ∈ 1, ..., T

We simply assume that we have the demand already expressed as number of ma-
chines to run, not starting from the quantity of product requested. This way to
express the demand simplifies significatively the description so that we don’t need
to make any considerations about production rates of the machines (also because
this is not the aim of our research topic).

As a consequence of this, all the other variables are expressed in this way. For
example, the Z variable doesn’t represent a quantity of product, but the number
of machines that need to run for a certain product in a specific period.
The same applies to the inventory and backorder, that are expressed as the num-
ber of looms that need to run in a given period to produce certain amounts for a
specific product.

Regarding the variables type we can make some considerations:

• Z variables are allowed to be continuous in order to help softwares in finding
the optimal solution during the optimization. Z variables doesn’t need to
be integer because, for example, Z = 15.5 means that we have to run 15
machines for a whole period and one machine has to run for a half period.

• Both I and B variables are continuous too, for the reason just explained
above.

• Of course, Y and δ can’t be allowed to be continuous variables, because
it’s not possible to make a number of changeovers different from an integer

42



number.

As a recap, the variable type are shown in the following table:

Variable Type
Y Integer
Z Continuous
δ Integer
I Continuous
B Continuous

3.1.2 Objective function and constraints

The model is characterized by two objective functions:

1. minimization of backorder amount. The output of this part is the minimum
backorder amount possible (BMIN), considering the capacity, the demand of
the products and the initial conditions of inventory and backorder.

2. minimization of total costs, taking into account the minimum backorder
amount that is possible to reach.

The model involves two objective functions because the first one provides the
second with important information about feasibility in terms of backorder.
Thus, the purpose of the first objective function is to find the minimal possible
backorder amount:

minimize:
P∑
j=1

B[j, s, T ] (3.2)

It’s interesting to notice that this minimization is about the total backorder amount
of all the products at the end of the scheduling horizon.

There are four constraints related to the first objective function, and they are
explained below.
Constraints (3.3) impose the total machines availability limit. Constraints (3.4)
measure the positive changes in the number of machines dedicated to a product
from one period to the next. This, together with (3.3) ensures that changeovers
are measured correctly.
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P∑
j=1

Y [j, s, t] = L ∀(s, t) ∈ N1 (3.3)

Y [j, s, t]− Y [j,PREV(s, t), t− 1]− δ[j, s, t] ≤ 0 ∀j ∈ {1, 2, ..., P},∀(s, t) ∈ N1

(3.4)
Constraints (3.5) are inventory balance equations for each product.

Z[j,PREV(s, t), t− 1] + I[j,PREV(s, t), t− 1]− I[j, s, t]+ (3.5)

−B[j,PREV(s, t), t− 1] +B[j, s, t] = d[j, s, t] ∀j ∈ {1, 2, ..., P},∀(s, t) ∈ N2

The total number of machines that are configured for product j limits the total
number of machines that can be operated to produce it. This is ensured by:

Z[j, s, t] ≤ Y [j, s, t] ∀j ∈ {1, 2, ..., P},∀(s, t) ∈ N1 (3.6)

From this first minimization we get some important values that we use in one
of the constraints of the second objective function. We define

BMIN[j, s, T ] = B[j, s, T ] ∀j ∈ {1, 2, . . . P} ∀(s, t) ∈ N2

where B[j, s, T ] comes from the solution of the first optimization.

In the second part of the model we find the second objective function:

minimize:
∑

(s,t)∈N1

p[s, t]
(∑
j∈P

cY · δ[j, s, t]
)

+
∑

(s,t)∈N2

p[s, t]
(∑
j∈P

cI · I[j, s, t]
)

(3.7)

This second objective function is about minimizing the total of changeover costs
and inventory carrying costs over the scheduling horizon. Backorders are not
considered as a cost in the objective function because we assume that it’s not
possible to assign a monetary value to them. However, backorder is handled as a
constraint in terms of quantities.
The constraints for this objective function are the same of the first one. Therefore,
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there is one additional contraint about a limitation of the backorder amount, based
on backorder factor (BF) previously defined in chapter 2.

B[j, s, T ] ≤ BMIN[j, s, T ] + BF ·
(

T∑
t=1

d[j, s, t]
)
∀j ∈ {1, 2, ..., P} ∀(s, t) ∈ N2

(3.8)

3.2 Limitations for the scenario tree based sto-
chastic model

The main issue for the stochastic model is the representation of the uncertainty.
As we said in chapter 1, the most used approach is the one suggested by [16], the
scenario tree based stochastic model.
We try to define this scenario tree structure in a general way according to the
scheduling problem considered in this work, considering the following hypothesis:

• We assume that stages are independent from one period to another. In other
words, events that modify the demand of the products are not related to the
previous events.

• We also assume that we know (for example, from historical data) the va-
riability of the demand for each product: demand of a single product can
be described by an expected value function E(t) and by a definition of its
standard deviation σ.

3.2.1 Scenario tree for the single products

For each product we identified a possible discrete function for the expected de-
mand over time. We assume that in each period the demand for the product is
characterized by an expected value and a standard deviation, for example (3.1):
We can generate two or more scenarios discretizing the probability distribution,
identifying some demand values (points) and certain probabilities. In the simple
case of two scenarios (in period t = 1), the discretization can be done identifying
two demand values with the same probability at a certain distance (for example,
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Figura 3.1: Expected demand and standard deviation for a single product

0.7σ) from the expected demand value, as we can see in figure (3.2):

Figura 3.2: Discretization of a single product demand probability distribution
function

Since we are going to prepare schedules for a certain number of periods, we have
to consider more periods and more scenarios. See figure (3.3) for an example of a
single product, with two outcomes for each period and with t = 4 periods.

For a T periods model and considering S scenarios for each product and for each
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Figura 3.3: Scenario tree for a single product, considering t = 4 and two outcomes
for each period

period, the total number of scenarios at the end of the periods is:

Number of scenarios = ST (3.9)

Indeed, in this case (3.3) there are 16 scenarios. Computing the number of nodes
of the tree is possible to compute the total number of variables involved in the
model.

Number of nodes =
T∑
t=0

St (3.10)

This means that in our case there are 31 nodes.

3.2.2 Scenario tree for all the products

For each product can be defined a scenario tree like in figure (3.3), but the complete
scenario tree is a combination of all the single trees. Thus, it’s important to
choose in a proper way the number of products to be considered and the number
of scenarios for each product and for each period.
For example, considering three products (A, B and C) and two scenarios for each

47



product and for each period, for each node of the tree there will be a situation like
in the following figure (3.4). In the same figure we can see the complete scenario
tree, with T = 4 periods; only some of the involved nodes are underlined.

Figura 3.4: Scenarios for each node and complete scenario tree (four periods) with
three products and two outcomes for each product and for each period.
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In figure (3.4) the total number of nodes is 4680. Now we are going to compute
how many variables are involved in a problem with these data (T = 4, two outco-
mes per period and per product). All the variables in the models are wait and see
(they depend on the scenario): this means that every single term in the model has
3 products · 4680 nodes = 14040 variables. Since there are 5 terms involved in the
model (Y, Z, delta, I, B) the total number of variables is 14040 · 5 = 70200. This
causes computational problems, since the model operates with a large number of
integer variables.
In the following table we compute the total number of variables that the model
has to handle with, considering a certain number of scenarios per node.

Scenarios per node # Nodes Total number of variables
8 4680 70200
9 7380 110700
10 11110 166650
11 16104 241560
12 22620 339300

We underline the fact that this large number of scenarios (nodes of the tree) has
been reached with only 3 products and with only 2 scenarios for each product and
for each period. It’s our aim to consider more scenarios in the models, because we
don’t want to omit too many instances of demand; this fact doesn’t let us to use
a complete scenario tree based stochastic model, but it’s necessary to make some
changes. The authors suggest not to reduce the number of scenarios for each pe-
riod, but to create an approximate stochastic model without omitting information
in the representation of the uncertainty.

3.3 Stochastic approximated model

Since the number of variables for the scenario tree-based stochastic model is cri-
tical, it’s necessary to develop a model that takes in account the computational
issues. The model we are going to present, which we can call approximated sto-
chastic model, tries to cope with this situation.
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3.3.1 Introduction to the new model

In this section we focus on the new elements introduced in the stochastic model.

In the scenario tree based stochastic model all the variables are Wait and See
(WS), meaning that their value is defined for each node in the scenario tree, or,
in other words, that they depend on the realization of the uncertainty. Our ap-
proximation consists on considering Wait and See variables only I and B. This
means that Y, Z and δ are Here and Now (HN), that is to say that they don’t
depend on the observation of the actual demand. This is the first new element of
the approximated stochastic model.
The second new element is about the structure of the multistage problem. Instead

Figura 3.5: Here and Now and Wait and See variables

of developing every single node, like a scenario tree, we compute the expected va-
lues of the Wait and See variables (inventory and backorder), that they become
the initial conditions for the following week. In this way the number of scenarios
doesn’t grow exponentially. In figure (3.6) we show better this concept.
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Figura 3.6: Expected value of the Wait and See variables

The number of variables, in this new model, is significatively reduced. Conside-
ring the same example of paragraph (3.2.2) (3 products, 4 periods and 2 outcomes
for each period and for each product):

Stochastic Model Scenarios per node Total number of variables
Complete 8 70200 (WS)

Approximated 8 192 (WS) + 36 (HN) = 228

Since the number of variables is very low, it is possible to define more scenarios
for each period and consider more instances of demand realization. To do this,
we consider the probability distribution function of the products and, assuming to
know (for example, from historical data) their mean and standard deviation, we
follow these steps:

• we consider the interval [µ − 2.5σ;µ + 2.5σ]. The probability to obtain
an actual demand for this product in the interval (−∞;−2.5σ) is equal
to 0.0062. Similarly, the probability to obtain a demand in the interval
(+2.5σ; +∞) is the same. This means that the interval chosen covers the
98.76% of all the instances;

• we divide this interval in a certain number of equal sub-intervals (for example,
5);

• we compute the probability of each sub-interval;
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Figura 3.7: Demand partition

• we re-do the first three steps for all the products;

• we generate all the scenarios, that are all the possible combinations of the
sub-intervals previously defined.

In figure (3.8) an example of scenario is shown. In this case (3 products, 5 outcomes
for each product for each period, 4 periods) the number of variables becomes), the
number of variables becomes:

Stochastic Model Scenarios per node HN variables WS variables
Complete 125 0 ≈ 3.7 · 109

Approximated 125 36 3000

Even if we compare the number of variables of the approximated model just
showed (3 products, 5 outcomes for each product for each period, 4 periods) with
the complete model described before (3 products, 2 outcomes for each product
for each period, 4 periods) the number of the variables is still smaller for the
approximated.

Stochastic Model Scenarios per node HN variables WS variables
Complete 8 0 70200

Approximated 125 36 3000
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Figura 3.8: Example of scenario

It seems that the computational problem has been overcome with our new mo-
del.

Note that in this approximated stochastic model demand is not as a point va-
lue, but an interval with associated a certain probability. This is the third and
last new element of this model.
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3.3.2 Terms of the model
Term Description
P Number of types of product: j ∈ {1, 2, ..., P}
T Number of periods of the production schedule: t ∈ {1, 2, ..., T}
L Number of parallel machines (capacity of the plant)
O Set of the o outcomes (scenarios): o ∈ O

Y [t, j] Machines, in period t, that are configured to process product j
Z[t, j] Machines, in period t, that produce product j
δ[t, j] Number of changeovers, in period t, to produce product j
I[t, j, o] Inventory amount in period t for product j under outcome o
B[t, j, o] Backlog amount in period t for product j under outcome o
LB[t, j, o] Lower bound of the demand interval
d[t, j] Demand forecast for period t for product j

UB[t, j, o] Upper bound of the demand interval
Y [0, j] Machines configured to process product j in period t = 0
I[0, j] Inventory amount for product j in period t = 0
B[0, j] Backlog amount for product j in period t = 0
cY [j] Setup costs
cI [j] Inventory carrying costs for product j
p[o] Probability of the outcomes
BF Backorder Factor

Some clarifications need to be done regarding the terms table above.
First of all, demand is expressed as the number of machines that need to produce
for product j in period t. We can explain the demand as:

d[j, t] = Quantity of product requested in period t
Production rate

[ Unit
Period
Unit

Machine·Period

]
(3.11)

= Machines to run in period t for product j [Machine] ∀j ∈ 1, ..., T

We simply assume that we have the demand already expressed as number of ma-
chines to run, not starting from the quantity of product requested. This way to
express the demand simplifies significatively the description so that we don’t need
to make any considerations about production rates of the machines (also because
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this is not the aim of our research topic).

As a consequence of this, all the other variables are expressed in this way. For
example, the Z variable doesn’t represent a quantity of product, but the number
of machines that need to run for a certain product in a specific period.
The same applies to the inventory and backorder, that are expressed as the num-
ber of looms that need to run in a given period to produce certain amounts for a
specific product.

Regarding the variables type we can make some considerations:

• Z variables are allowed to be continuous in order to help softwares in finding
the optimal solution during the optimization. Z variables doesn’t need to
be integer because, for example, Z = 15.5 means that we have to run 15
machines for a whole period and one machine has to run for a half period.

• Both I and B variables are continuous too, for the reason just explained
above.

• Of course, Y and δ can’t be allowed to be continuous variables, because
it’s not possible to make a number of changeovers different from an integer
number.

As a recap, the variable type are shown in the following table:

Variable Type
Y Integer
Z Continuous
δ Integer
I Continuous
B Continuous

3.3.3 Objective function and constraints

The model is characterized by two objective functions:
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1. minimization of backorder amount. The output of this part is the minimum
backorder amount possible (E[BMIN]), considering the capacity, the demand
of the products and the initial conditions of inventory and backorder.

2. minimization of total costs, taking into account the minimum backorder
amount that is possible to reach.

The model involves two objective functions because the first one provides the
second with important information about feasibility in terms of backorder.
Thus, the purpose of the first objective function is to find the minimal possible
backorder amount:

minimize:
P∑
j=1

E[B[T, j]] (3.12)

It’s interesting to notice that this minimization is about the total backorder amount
of all the products at the end of the scheduling horizon.

There are four constraints related to the first objective function, and they are
explained below.
Constraints (3.13) impose the total machines availability limits. Constraints (3.14)
measure the positive changes in the number of machines dedicated to a product
from one period to the next. This, together with (3.13) ensures that changeovers
are measured correctly.

P∑
j=1

Y [t, j] = L ∀t ∈ 1, ..., T (3.13)

Y [t, j]− Y [t− 1, j]− δ[t, j] ≤ 0 ∀j ∈ {1, 2, ..., P},∀t ∈ 1, ..., T (3.14)

Constraints (3.15) and (3.16) are inventory balance equations for each SKU.

Z[t, j] + E[I[t− 1, j]]− E[B[t− 1, j]]− I[t, j, o] +B[t, j, o] ≥ UB[t, j, o] (3.15)

∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, ..., T}
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Z[t, j] + E[I[t− 1, j]]− E[B[t− 1, j]]− I[t, j, o] +B[t, j, o] ≤ LB[t, j, o] (3.16)

∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, ..., T}

The total number of machines that are configured for product j limits the total
number of machines that can be operated to produce it. This is ensured by:

Z[t, j] ≤ Y [t, j] ∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, ..., T} (3.17)

From this first minimization we get some important values that we use in one
of the constraints of the second objective function. We define

E[BMIN[T, j]] = E[B[T, j]] ∀j ∈ {1, 2, . . . P}

where E[B[T, j]] comes from the solution of the first optimization.

In the second part of the model we find the second objective function:

minimize:
P∑
j=1

∑
t∈T

cY · δ[t, j] + ·
P∑
j=1

∑
t∈T

cI · p[o] · I[t, j, o] (3.18)

This second objective function is about minimizing the total of changeover costs
and inventory carrying costs over the scheduling horizon. Backorders are not
considered as a cost in the objective function because we assume that it’s not
possible to assign a monetary value to them. However, backorder is handled as a
constraint in terms of quantities.
The constraints for this objective function are the same of the first one. Therefore,
there is one additional contraint about a limitation of the backorder amount.

E[B[t, j]] ≤ E[BMIN[T, j]] + BF ·
(

T∑
t=1

d[t, j]
)
∀j ∈ {1, 2, ..., P} (3.19)
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In conclusion, we propose a recapitulatory scheme of the model in figure (3.9).

Figura 3.9: Scheme of the stochastic model
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Capitolo 4

Textile manufacturing scheduling
problem

In this chapter we present the particular instance in which we want to check how
the models presented in the previous chapters work; we want to see if a stocha-
stic model is a good answer to the reactive (nervous) modification of production
schedules due to the uncertainty of demand, that is obtained if a deterministic
approach is used together with a rolling horizon procedure.
We consider a textile manufacturing scheduling problem, because textile field is
highly unstable due to long manufacturing lead time, change in consumer prefe-
rences, cyclic demand, fashion changes and sensitivity to general economic climate
[19]. During manufacturing lead time, demand for a product can increase or de-
crease unexpectedly,
This chapter is organized as follows: in the first section a description of the pro-
cess is presented, followed by a focus on the demand uncertainty in the textile
environment. In the third section we specify what are the products we are going
to consider and in the last section we provide the two models adapted to the new
context.
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4.1 Textile manufacturing process

Textile manufacturing process consists of three stages: yarn manufacturing (1),
fabric formation (2) and finishing and dyeing processes (3), as we can see in the
figure (4.1). Yarn is produced by blending, combing, carding, roving and spinning

Figura 4.1: Textile manufacturing process

of natural or man-made fibres. Fibres first go through a blending and cleaning
machine. This process cleans impurities, mixes fibres of different kinds and feeds
to combing, where short fibres strands start to become aligned. At this point the
material is called slyver. The next process, called carding, combs and twists slyver
to increase its strenght and to reduce its thickness. Some blends directly go through
a group of roving machines. The roving process further twists and strenghtens yarn
to a certain volume and thus it is ready for the spinning process. Through spinning,
yarn is differentiated one step further with respect to its thickness. Spinning is
performed on spinning machines (frame), which twist the yarn at high speeds and
give to it its final strength.
The following steps in the supply chain after yarn production are fabric formation
(object of our research) and finishing and dyeing processes.
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We focus on the fabric formation context, and we are going to apply our scheduling
models within this field. In fabric formation plants the length/size of the period
is usually the week. Changeovers occur outside the working time, generally on the
weekend. In this kind of production system setup management is really important,
because changeovers are generally very expensive compared to inventory carrying
costs. In addition to that, they partially affect what and how much is going to be
produced in the following period, becoming important also in terms of backorder.
The real challenge is to produce minimizing the total number of changeovers,
providing the customer with a high service level.

4.2 Demand uncertainty in textile industry

Textile industry is a very complex field as regards demand uncertainty, due to
the long time-to-market which contrasts with the short life cycle of the products,
due to seasonal sales, exogenous variables, high variety of products and volatile
consumer demands (fashion effect). This leads to very challenging and difficult
forecasting processes.
The complexity associated with the sales forecasting in textile industry induced
many authors to work on this topic.
According to [36], the main characteristics which should be taken into account to
design a sales forecasting system for the textile industry are:

1. Forecasting horizon. Higher is the horizon, better is the anticipation but
higher are the errors of forecasts, so the definition of the horizon becomes
very important.

2. Product Life Cycle. The life cycle, for most the products, consists of 4
phases (launch, rise, maturation and decline). Life cycle in textile industry
is quite short [46].

3. Product aggregation. The product variety is an important characteristic
to take into account: thus, the SKU (Stock Keeping Unit) management is
very hard. One of the biggest issues is to determine the level and the right
criteria for the aggregation.
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4. Seasonality. Most of the products, especially in the apparel market, present
a seasonal trend within the year. Therefore, weather causes modifications
on the sales during the year.

5. Exogenous variables (end-of-season sale, promotions, ...).

The most used techniques for sales forecasting in textile industry are time series
forecasting methods, for example: exponential smoothing [47], Holt Winters model
[48], Box & Jenkins model [49], regression models [50] or ARIMA (AutoRegressive
Integrated Moving Average). Commercial softwares have been implemented to
apply these techniques; the results (in some instances) are satisfactory, according
to [51]. Despite the existence of these softwares, they are seldom used in textile-
apparel field. If they are used, companies use them only as a basis for their
forecasting systems.
Most of textile companies use more advanced techniques to increase the accuracy
of sales forecast. These advanced techniques can be divided in two groups:

1. forecasting methods with historical data. Among these techniques,
NN (Neural Networks) are the most used, especially for short-term forecast,
where the main problem is to be reactive to the last known sales [52]. If
the demand of the products is not seasonal and non variable this method
performs well. Thus, it’s not suitable for the textile environment. Other
techniques for sales forecasting have been implemented successfully in textile
industry, such as Fuzzy logic and Fuzzy Inference Systems (FIS), that are
commonly used to model uncertain data.

2. forecasting methods without historical data., that is the case when
the products are sold during only one season and it’s not possible to have
historical data, since it’s a new product. New product forecasting is one of
the most difficult forecasting problem, according to [54]. Some methods have
been used to cope with this situation; the most used consists of a two-step
method:

(a) Cluster and classify new products to forecast their sales profile (mid-
term forecast);
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(b) Adapt and readjust this profile according to the first periods of sales
(short-term forecast).

If no historical data are available, similar products information sold in pre-
vious seasons can be used. So it’s important to take into account some
descriptive attributes (price, life span, sales period, style, ...) of historical
and new products, with the aim to model a relationship between these attri-
butes and the sales, so that it’s possible to use these relationships to forecast
future sales for new products with some of the same attributes of old pro-
ducts. This methodology has been implemented with good results for the
fashion industry in [55] and [56].

The aim of this research is to provide a solution for the reactive modification
of production schedules. To do this, two ways of solution can be taken:

1. improvement of the forecasting methodology, in order to reduce the uncer-
tainty, so that deterministic demand (known) is considered in the models;

2. consideration of the uncertainty of demand in the model. Demand in this
context is not deterministic but stochastic, meaning that statistical parame-
ters (such as mean, standard deviation , ...) are associated to demand. In
other words, statistical dimension is within the programming model, and it
is strictly related to scheduling decisions.

In our work we are not interested in finding the best accurate forecasting method
for the textile environment we are considering. We simply assume that textile
environment is such uncertain that this uncertainty cannot be overcome by optimal
forecasting systems. Thus, in this work we take into account uncertanty, using a
stochastic model.

4.3 Definition of SKUs

The SKU (Stock Keeping Unit) for our instance is the fabric. In this paragraph
we describe how the SKUs in the models have been divided and classified.
End-products in textile field can be analyzed according to different classifications
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[53]. From the point of view of their permanence in the collections (business
classification) we can distinguish:

• fashion items: items sold in a particular season, with a very short life cycle.
They are temporary items, related to haute couture.

• basic items (Carry Over or Never Out of Stock items): items sold in mo-
re seasons; their availability in stocks has to be guaranteed with frequent
replenishments and the preparation of proper safety stocks.

According to the traditional classification of revenue based on the ABC Pareto
chart, items can be divided in:

• A class (high sales)

• B class (medium sales)

• C class (low sales)

From the point of view of the ease of forecasting from the planners, products can
be divided in:

• regular items (multi-season). Historical data are available. They can present
seasonalities or trends;

• sporadic items (multi-season). Sales are not frequent and they are variable
in terms of quantity (for example: luxury items);

• periodic items (multi-season). Items with sales concentrated in a small
number of weeks, periodically over the years.

• mono-season.

We choose to handle with four types of SKUs of different material (we could
choose also different blends of fabric: in the figures (4.2) and (4.3) a classification
of the fibres from which the fabrics are produced is presented) and we consider for
them four different demand patterns, which represent the expected value function
of the demand. The products are basic multi-season items; two of them have
stationary demand, while the other two present a periodic pattern.
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Figura 4.2: Natural textile fibres

Figura 4.3: Manufactured textile fibers

SKU Type Demand Material and use
SKU1 Regular item Stationary Cotton for home furnishing
SKU2 Regular item Stationary Silk for multi-season clothing
SKU3 Periodic item Seasonal Linen for summer clothing
SKU4 Periodic item Seasonal Polyesther for winter clothing

Comments:

• The looms we are going to consider can process each type of SKU chosen.

• A changeover occurs each time that a loom needs to produce a different SKU,
because it has a different material.

• In the real context a certain fabric can have two or more different demand
patterns due to the fact that it has different uses (for example: cotton for
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sheets has a stationary demand pattern, while cotton for summer clothing
has a seasonal demand pattern). In this case all the patterns of the same
type of fabric have to be summed together.

4.4 Deterministic model for the fabric formation
scheduling problem

In this section we present the deterministic model, developed in a general way in
the previous chapters, for this particular instance. The schedule suggested by this
model will be compared with the one suggested by the stochastic model.

4.4.1 Terms of the model

The terms of the model are described in the table below.

Term Description
P Number of types of SKU: j ∈ {1, 2, ..., P}
T Number of weeks of the production schedule: t ∈ {1, 2, ..., T}
L Number of looms (capacity of the plant)

Y [j, t] Number of looms that are configured to process SKU j in period t
Z[j, t] Number of looms that process product j in week t
δ[j, t] Number of changeovers to process SKU j in week t
I[j, t] Inventory amount for SKU j in week t
B[j, t] Backorder amount for SKU j in week t
d[j, t] Expected demand for SKU j in week t
Y [j, 0] Machines configured to process SKU j in week t = 0
I[j, 0] Inventory amount for the SKU j in period t = 0
B[j, 0] Backlog amount for the SKU j in period t = 0
cY [j] Setup costs for SKU j

cI [j] Inventory carrying costs for SKU j

BF Backorder Factor
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Also here the values of the demand are expressed as the number of looms that
need to run for SKU j in week t. Regarding to this, some considerations are made
in chapter 2.

Indeed we assume that we can turn the demand values (expressed in quantity
of product j requested in week t) into number of machines to run in week t for
SKU j. As we said in chapter 2, this way to express the demand simplifies signi-
ficatively the description so that we don’t need to make any considerations about
production rates of the machines.

As a consequence of this, all the other variables are expressed in this way. For
example, the Z variable doesn’t represent a quantity of product, but the number
of looms that need to run for a certain product in a specific period.
The same applies to the inventory and backorder, that are expressed as the num-
ber of looms that need to run in a given period to produce certain amounts for a
specific product.

Regarding the variables type, all the considerations made in chapter 2 are valid.
Thus we have also in this case:

Variable Type
Y Integer
Z Continuous
δ Integer
I Continuous
B Continuous

4.4.2 Objective function and constraints

The model involves two objective functions. As we well described in chapter 2,
the first one provides the second with important information about feasibility in
terms of backorder.
Thus, the purpose of the first objective function is to find the minimal possible
backorder amount:

minimize:
P∑
j=1

B[j, 4] (4.1)
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The first minimization is about the total backorder amount of all the SKU at the
end of the fourth week.

There are four constraints related to the first objective function, and they are
explained below.
Constraints (4.2) impose the total looms availability limits. Constraints (4.3) mea-
sure the positive changes in the number of looms dedicated to a SKU from one
week to the following one. This, together with (4.2) ensures that changeovers are
measured correctly.

P∑
j=1

Y [j, t] = L ∀t ∈ 1, ..., {1, 2, 3, 4} (4.2)

Y [j, t]− Y [j, t− 1]− δ[j, t] ≤ 0 ∀j ∈ {1, 2, 3, 4},∀t ∈ {1, 2, 3, 4} (4.3)

Constraints (4.4) are inventory balance equations for each SKU.

Z[j, t−1]+I[j, t−1]−B[j, t−1]−I[j, t]+B[j, t] = d[j, t] ∀j ∈ {1, 2, 3, 4}, ∀t ∈ {1, 2, 3, 4}
(4.4)

The total number of looms that are configured for SKU j limits the total
number of looms that can be processed to produce it. This is ensured by:

Z[j, t] ≤ Y [j, t] ∀j ∈ {1, 2, 3, 4},∀t ∈ {1, 2, 3, 4} (4.5)

From this first minimization we get some important values that we use in one
of the constraints of the second objective function. We define

BMIN[j, T ] = B[j, 4] ∀j ∈ {1, 2, 3, 4}

where B[j, T ] comes from the solution of the first optimization.
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In the second part of the model we find the second objective function:

minimize:
P∑
j=1

4∑
t=1

cY · δ[j, t] +
P∑
j=1

4∑
t=1

cI · I[j, t] (4.6)

This second objective function is about minimizing the total of changeover costs
and inventory carrying costs over the scheduling horizon. Backorders are not con-
sidered as a cost in the objective function because we assume that it’s not possible
to assign a monetary value to them. However, backorder is allowed and it is hand-
led as a constraint in terms of quantities.
The constraints for this objective function are the same of the first one. Therefo-
re, there is one additional contraint about a limitation of the backorder amount.
Before showing this constraint we recall the Backorder factor (BF), described intro-
duced in chapter 2. It is an input parameter that represents how much backorder
is allowed for each product with respect to the total demand over the periods of
the horizon, with:

0 < BF < 1.

The percentage of demand satisfaction can be defined as Service Factor (SF):

SF = 1−BF.

Now we can introduce the last constraint, that is:

B[j, 4] ≤ BMIN[j, T ] + BF ·
( 4∑
t=1

d[j, t]
)
∀j ∈ {1, 2, 3, 4} (4.7)
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4.5 Stochastic approximated model for the fa-
bric formation scheduling problem

In this section we present the stochastic approximated model, developed in a
general way in the final section of chapter 3, for this particular instance.

4.5.1 Terms of the model
Term Description
P Number of types of SKU: j ∈ {1, 2, ..., P}
T Number of weeks of the production schedule: t ∈ {1, 2, 3, 4}
L Number of looms (capacity of the plant)
O Set of the o outcomes (scenarios): o ∈ O

Y [t, j] Looms, in week t, that are configured to process SKU j

Z[t, j] Looms, in week t, that produce SKU j

δ[t, j] Number of changeovers, in week t, to produce SKU j

I[t, j, o] Inventory amount in week t for SKU j under outcome o
B[t, j, o] Backlog amount in week t for SKU j under outcome o
LB[t, j, o] Lower bound of the demand interval
d[t, j] Demand forecast for week t for SKU j

UB[t, j, o] Upper bound of the demand interval
Y [0, j] Machines configured to process SKU j in week t = 0
I[0, j] Inventory amount for SKU j in week t = 0
B[0, j] Backlog amount for SKU j in week t = 0
cY [j] Setup costs
cI [j] Inventory carrying costs for SKU j

p[o] Probability of the outcomes
BF Backorder Factor

Demand values are expressed as the numbers of machines that need to produ-
ce for SKU j in week t. With regard to this, all the considerations are made in
chapter 3 where we describe the generalized stochastic approximated model.
As a consequence of this, all the other variables are expressed in this way. For
example, the Z variable doesn’t represent a quantity of product, but the number
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of machines that need to run for a certain SKU in a specific week.
The same applies to the inventory and backorder, that are expressed as the num-
ber of looms that need to run in a given week to produce certain amounts for a
specific product.

The type of the variables involved in this model are the same of the generalized
model described in chapter 3. The table below recalls the variables type:

Variable Type
Y Integer
Z Continuous
δ Integer
I Continuous
B Continuous

4.5.2 Objective function and constraints

The objective functions and the constraints are the same of those one involved in
the generalized model described in chapter 3.

The purpose of the first objective function is to find the minimal possible
backorder amount:

minimize:
P∑
j=1

E[B[4, j]] (4.8)

It’s interesting to notice that this minimization is about the expected value of the
total backorder amount of all the products at the end of the fourth period.

There are four constraints related to the first objective function, and they are
explained below.
Constraints (4.9) impose the total looms availability limits. Constraints (4.10)
measure the positive changes in the number of looms dedicated to a SKUt from
one week to the following one. This, together with (4.9) ensures that changeovers
are measured correctly.

P∑
j=1

Y [t, j] = L ∀t ∈ {1, 2, 3, 4} (4.9)
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Y [t, j]− Y [t− 1, j]− δ[t, j] ≤ 0 ∀j ∈ {1, 2, 3, 4},∀t ∈ {1, 2, 3, 4} (4.10)

Constraints (4.11) and (4.12) are inventory balance equations for each SKU.

Z[t, j] + E[I[t− 1, j]]− E[B[t− 1, j]]− I[t, j, o] +B[t, j, o] ≥ UB[t, j, o] (4.11)

∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, 3, 4}

Z[t, j] + E[I[t− 1, j]]− E[B[t− 1, j]]− I[t, j, o] +B[t, j, o] ≤ LB[t, j, o] (4.12)

∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, 3, 4}

The total number of looms that are configured for product j limits the total number
of looms that can be operated to produce it. This is ensured by:

Z[t, j] ≤ Y [t, j] ∀j ∈ {1, 2, ..., P},∀t ∈ {1, 2, 3, 4} (4.13)

From this first minimization we get some important values that we use in one
of the constraints of the second objective function. We define

E[BMIN[T, j]] = E[B[T, j]] ∀j ∈ {1, 2, 3, 4}

where E[B[T, j]] comes from the solution of the first optimization.

In the second part of the model we find the second objective function:

minimize:
P∑
j=1

∑
t∈4

cY · δ[t, j] + ·
P∑
j=1

∑
t∈4

cI · p[o] · I[t, j, o] (4.14)

This second objective function is about minimizing the total of changeover costs
and inventory carrying costs over the four weeks. Backorders are not considered as
a cost in the objective function because we assume that it’s not possible to assign
a monetary value to them. However, backorder is allowed and it is handled as a
constraint in terms of quantities.
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The constraints for this objective function are the same of the first one. Therefore,
there is one additional contraint about a limitation of the backorder amount.

E[B[t, j]] ≤ E[BMIN[4, j]] + BF ·
( 4∑
t=1

d[t, j]
)
∀j ∈ {1, 2, ..., P} (4.15)

where BF is the Backorder Factor introduced previously in the deterministic model.

4.6 Rolling Horizon approach: scheduling story-
line

In our specific context we can describe a storyline of what happens into the reali-
ty. On friday the planner has the information about conditions of inventory and
backorders, and we assume that he has available forecasts for the following four
weeks. He has to decide which and how many changeovers to make on the wee-
kend (outside of the working time), and how much to produce for each product
the following week. He realizes an optimal plan minimizing the total cost func-
tion over the following four weeks considering the forecasts. In many lot-sizing
and scheduling problems, production is planned using the rolling horizon procedu-
re. Essentially companies realize plans based on unreliable forecasts for a certain
number of periods, but they make new plans after one or more periods without
realizing completely the original plan.
They normally use this procedure making new plans every period in order to be
reactive to the market as much as possible, using new information, when available.
In other words, they realize plans for a certain number of periods, but only the
decisions related to the first one are implemented. In (4.4) an example of how the
rolling horizon procedure can be applied to our fabric formation problem is shown.
In this particular case we have three plans generated within an horizon of two
weeks, and every week a new plan is made. Starting on friday, the planner decides
changeovers and quantities to be produced for both the following periods. On
following friday he observes I0 and B0 (actual values of inventory and backorder)
and makes a new plan, and so on.
The rolling horizon procedure applied to our case can be sketched like in (4.5).
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Figura 4.4: Rolling Horizon approach: variables involved
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Figura 4.5: Rolling Horizon approach: application in the case of study
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Capitolo 5

Preliminary experiments

Using the models developed in the previous chapter about the fabric formation
scheduling problem, we conduct a series of preliminary experiments in order to get
a general idea of how these models work, and try to understand the main features
of the experiments we want to perform later in the dissertation.

These preliminary experiments are called static setting experiments; in these expe-
riments we compare the behavior of the production schedules of the deterministic
and the stochastic model in a certain period of time (one month, characterized by
the same demand forecasts), without modifying the schedules when new informa-
tion about the actual observation of demand is available, meaning not applying a
rolling horizon approach. The models will produce different configurations of the
looms and different number and timing of changeovers within the month.
Considering a set of a very large number of scenarios of the actual demand for each
week of the month and for each SKU (same scenarios for both models), we can
compute how much inventory and backorder would be produced with the schedules
suggested by the models that cannot be changed over time. From this set of expe-
riments we want to get some general idea of the difference between the models we
are testing: the main variables we are interested in are the number of changeovers,
inventory and backorder amount, number of looms running every week.

This chapter is organized as follows: the first paragraph is about the input da-
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ta considered in the experiments (both preliminary experiments and the ones in
chapter 6), while the second is about the static setting experiments (description
of the experiments, additional input data for static experiments and results).

5.1 Data setting

In this section we describe the input data of the experiments. Previously we descri-
bed our models but we didn’t set the necessary parameters. Of course, experiments
results will be affected by the parameters setting of the simulation environment.
Indeed, it’s necessary to proceed with an accurate and precise discussion about all
the parameters involved in our models.

First of all, we decide the length of the scheduling horizon. Textile business uncer-
tainty let us know demand forecasts not for a long horizon, that we assume to be
one month; since, as we said in chapter 4, scheduling decisions have to be made wee-
kly, the models we are going to consider become four-stages models (T = 4 weeks).

As we said before in chapter 4, we decided to study a products mix composed
by 4 SKUs:

SKU Type Demand Material and use
SKU1 Regular item Stationary Cotton for home furnishing
SKU2 Regular item Stationary Silk for multi-season clothing
SKU3 Periodic item Seasonal Linen for summer clothing
SKU4 Periodic item Seasonal Polyesther for winter clothing

In order to describe these SKUs we need to assign a definite expected value function
of the demand forecast and a level of uncertainty for each SKU, expressed by the
parameter CV (Coefficient of Variation), defined as:

CV [j] = σ[j]
µ[j]

with j ∈ P .
We assume that a stationary demand and a seasonal demand can be described
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respectively by a constant function and a sine function. It’s not our aim to handle
with the closest to reality demand patterns, we just want to create a simple envi-
ronment in which we have different types of demand pattern. We chose for each
SKU a mean value of the expected demand function and a coefficient of variation,
as we can see in the table below:

SKU Expected demand function CV
SKU1 E1(t) = 100 CV1 = 0.1
SKU2 E2(t) = 30 CV2 = 0.2
SKU3 E3(t) = 50[1 + sin(ωt+ φ3)] CV3 = 0.4
SKU4 E4(t) = 35[1 + sin(ωt+ φ4)] CV4 = 0.3

As regards SKU3 and SKU4 we have to define the angular frequencies and the
phases. We assume that both the SKUs have the same period of 52 weeks (one
year).

ω = 2π
T

= 2π
52

[
1

week

]

Considering the phases:
φ3 = 3

2π + 2π
52 · (IP + ξ)

φ4 = 3
2π + 2π

52 · IP

The term ξ represents the phase shift (in weeks) between SKU3 and SKU4, that
are seasonal SKUs (respectively summer and winter clothing). We assume that
this phase shift is 15 weeks, so ξ = 15. IP (Initial Position) is a parameter that
moves the sine functions over time and it is expressed in number of weeks. For
example, with IP = 0 and ξ = 15, the expected demand functions for the SKUs
are:

As regards costs, the cost of a single changeover doesn’t depend on the sequence
of the SKUs; this data has been provided by Milliken & Co. About inventory
carrying costs, it is reasonable to compute an inventory carrying cost on the basis
of the production cost and the IRR (Internal Rate of Return) as follows:

cI = Production Cost · IRR
52

[
$

looms · week

]
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Figura 5.1: Expected demand functions for the single SKUs

where production cost is assumed to be equal to 150 $
looms week and it doesn’t depend

from the SKU type (this data has been provided by Milliken & Co.), while IRR is
supposed to be equal to 20%. IRR is set quite high in order to give more weight
to the inventory cost in the objective function.

cI = 150 · 0.2
52 = 0.5769

[
$

looms · week

]

In summary:

Setup costs cY = 500 $
setup

Inventory carrying costs cI = 0.5769 $
looms ·week
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5.2 Static setting experiments

5.2.1 Description of the experiments

As we said before, the first set of experiments are called static setting experiments.
Static means that the production schedules realized by the models for one month
(T = 4) don’t change when new information about actual demand is available; in
other words, a rolling horizon approach is not applied. The models develop their
schedules according to the same demand forecasts d[j, t]. The models we want to
analyze are:

• deterministic model;

• stochastic model 3 intervals (with three intervals of demand for each SKU);

• stochastic model 5 intervals (with five intervals of demand for each SKU).

The main steps followed to perform these experiments are:

1. Solution of the models according to the forecasts. The information
we want to get are Y [j, t] (looms configured for SKU j in week t), Z[j, t]
(looms working for each SKU and for each week) and δ[j, t] (changeovers
due for SKU j in week t). We want to discover especially if a stochastic
approach suggests a reduced number of changeovers.
The other variables (I[j, t] and B[j, t]) are computed too, but we are not
interested in them, because they represent inventory and backorder amount
only if the actual demand is equal to the forecasts;

2. Generation of a large number of scenarios (outcomes). A scenario
is a set of values of actual demand for each SKU and for each of the four
weeks of the month. Actual demand values are generated randomly starting
from a normal distribution with the value of the forecast as mean, and a
standard deviation evaluated on the basis of the CV that we previously set.
In the figure below (5.2) we can see an example of scenario of actual demand,
with values that sometimes are very different from forecasts because of the
CVs. These information, as we said before, don’t interfere with the schedules
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Figura 5.2: Forecast and actual demand values for the considered periods

provided by the models (the schedule is freezed in terms of configuration of
the looms). This large number of outcomes is stored in a database and
contains 100000 scenarios. One at a time will be used for all the models (see
the following step).

3. Computation of the actual values of I[j, t] and B[j, t]. We compute the
real values of these variables, considering the schedule suggested by each mo-
del, so that we can see what are the differences among the models regarding
inventory and backorder amount.

From this set of experiments we want to get some general idea of the difference
between the models we are testing.

In these experiments we are going to see the difference between the models in dif-
ferent conditions of demand with respect to capacity of the plant. The conditions
we are going to study are:

• average demand forecast lower than capacity

• average demand forecast equal to capacity
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• average demand forecast higher than capacity

5.2.2 Additional input data for the static experiments

In order to perform these experiments, we still need to define the number of looms
for each instance (and so the percentage of the average demand with respect to
capacity):

• in the instance of average demand forecast lower than capacity [85%], the
number of the looms is 225.

• in the instance of average demand forecast equal to capacity [100%], the
number of the looms is 265.

• in the instance of average demand forecast higher than capacity [115%], the
number of the looms is 305.

We decide to change the number of the looms (capacity of the plant) and not the
demand, so that we use the same scenario database in every run. Since sinusoidal

Figura 5.3: Different conditions analyzed

demand functions are involved in the environment, we need to choose, within the
year, a particular period we want to study in this set of experiments. We choose
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a certain period of four weeks, underlined in the figure, setting the parameter
IP = 12, explained above.
In this period we note that the SKU3 expected demand function is decreasing,
while the SKU4 is increasing. The other two SKUs have stationary demand.

Figura 5.4: Period considered for the static setting experiments
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5.2.3 Results

Average demand forecast lower than capacity [85%]

Figura 5.5: Demand lower than capacity: setup

We compute SETUP [%] varying BF (Backorder Factor) or, in other words,
relaxing the service level constraint previously defined. In figure (5.5) are repre-
sented:

• on the x-axis → ABF [%] (Actual Backorder Factor), defined as:

ABF = Cumulated actual backorder in 4th week
Total demand of the 4 weeks

• on the y-axis → SETUP [%], defined as:

SETUP [%] = Number of changeovers
4 weeks · Number of looms

The information that can be discovered from this plot are:
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• for each ABF we see that the stochastic models suggest a smaller number
of changeovers with respect to the deterministic one (this fact leads to a
significative reduction of costs). For example, with ABF = 4%:

DET : Number of changeovers = 1.15
100 · 265 · 4 ∼ 13 Changeovers

STOC : Number of changeovers = 0.2
100 · 265 · 4 ∼ 3 Changeovers

• the minimum ABF [%] is obtainable with the stochastic models. This means
that with a deterministic approach we reach a lower service level;

• there is no a big difference between the two different partitions of the demand.
This fact, since computational time is higher in the stochastic model with 5
intervals, let us to consider just the 3 intervals partition for the dynamic set-
ting experiments, without losing a lot of advantages in cost reduction (from
now cost performance) and service level (from now service performance).

In this condition, we show other two plots (5.6) and (5.7). The first one is about
inventory:

• x-axis → ABF [%] (Actual Backorder Factor), defined as before.

• y-axis → INVENTORY [%], defined as:

INVENTORY [%] = Total inventory amount in the 4 weeks
Total demand of the 4 weeks

In the first plot we can see that, for each ABF, the average weekly inventory is
lower in the stochastic case. With a stochastic approach (either 3 or 5 intervals of
demand for each SKU in each week) it’s possible to reach higher performances in
terms of service level.
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Figura 5.6: Demand lower than capacity: inventory

Consider the figure (5.7):

• x-axis → ABF [%] (Actual Backorder Factor), defined as before.

• y-axis → PRODUCTION [%], defined as:

PRODUCTION [%] = Looms running in the 4 weeks
4 weeks · Number of looms

As we can see, the number of looms that run in average is lower using a stochastic
approach.
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Figura 5.7: Demand lower than capacity: production
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Average demand forecast equal to capacity [100%]

We report the same plots in this condition. We can get the same information of
the first instance, where the average demand forecast was lower than the capacity.

Figura 5.8: Demand equal to capacity: setup and inventory
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Figura 5.9: Demand equal to capacity: inventory and production
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Average demand forecast higher than capacity [115%]

We also report the plots related to the last instance, making the same conclusions
as before.

Figura 5.10: Demand higher than capacity: setup and inventory
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Figura 5.11: Demand higher than capacity: production
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In conclusion, we can say that:

• stochastic models provide better results with respect to the deterministic mo-
del in terms of objective function (cost reduction) and performance (service
level);

• there is no a big difference of results between the 3 intervals and 5 intervals
stochastic models;

• the advantages obtained from stochastic models are obtainable in every
condition of demand with respect to capacity;

• as we can see in (5.12) and (5.13), when we consider a demand over capacity
condition the deterministic model gives very bad results comparing to the
other two conditions, while the stochastic model doesn’t lose so much in
terms of quality of results.

Figura 5.12: Comparison among different conditions: DET
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Figura 5.13: Comparison among different conditions: STOC

93



Capitolo 6

Computational experiments

In this chapter we are going to analyze in detail experiments in a dynamic setting,
followed by a sensitivity analysis. Indeed, in the first part of the chapter an
introduction to the dynamic setting is presented together with the results of a
particular case of study. Later, in the second part, we analyze what happens if we
change some of the factors involved. In particular, we show a sensitivity analysis
focused on three parameters:

• Capacity of the manufacturing plant (with demand fixed);

• Shift factor (ratio between setup and inventory costs);

• Uncertainty level of the demand.

6.1 Dynamic setting experiments

6.1.1 Description of the experiments

With the static experiments we wanted to get some general ideas about how the
implemented models perform. Now we want to compare the deterministic and the
stochastic model (from now we consider only the three intervals model) using a
Rolling Horizon approach, to prove that the stochastic model is a good approach
to follow in order to solve the problem of the reactive modification of production
schedules.
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We consider one year of expected demand pattern for each SKU, the same ones
described in the previous chapter. We solve both the models for a period of one
year, approximated to 52 weeks. Indeed, what we do is to solve both models as
we did in the static setting (with a four weeks horizon), but now with the appli-
cation of the rolling horizon procedure. At the end of each week we compute the
actual inventory and backorder values using the actual demand realized in that
week (equal for the two models) and we solve again the models for the following
four weeks starting from these values. We repeat this procedure as long as we
complete the year.
Then, for each model, we compute the total costs on the basis of the storyline of
realized changeovers and actual inventory values.
Every experiment we show is solved for one year 100 times for each set of condi-
tions we want to investigate.
Forecasts don’t change year by year, while every year has its actual demand hi-
story. In particular, for each year a demand storyline for each product is defined
based on the uncertainty that characterizes the product. We generate 100 actual
demand sets and we store these in a database, that we use as a simulation envi-
ronment in order to compare the two models considering the same actual demand
history. Every set contains the demand values for each product, for each week
within the year.

6.1.2 Additional input data for the dynamic experiments

All the data considered as an input for the experiments have been explained in
detail in paragraph (5.1). For the dynamic experiments we have to set these
particular parameters:

• L = 240. We decide to set the number of looms (capacity of the plant) equal
to 90% the expected pick of demand; in this way, the total number of weeks
in which demand is higher than capacity is equal to 18. In figure (6.1) there
is a representation of the capacity chosen, compared to the total expected
demand.
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• BF = 0, meaning that we ask the models to provide the best results in terms
of service performance.

Figura 6.1: L = 240
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6.1.3 Results

For every simulated year we get the results from both models in terms of:

• Total costs (changeover costs and inventory carrying costs);

• Number of changeovers;

• Backorder amount (sum of backorder values registered every week within the
year) ;

• Inventory amount (sum of inventory values registered every week within the
year);

• Number of looms running per week (utilization of the machines)

Before showing the results, we need to define some important indexes. We are
going to consider the behaviors of both the stochastic and the deterministic models
on the basis of service and cost performance. The cost performance is represented
by the SETUP [%] value because it is the main cost element in our scheduling
problem. On the other hand, service performance is described by the AVERAGE
BACKORDER [%], that is the weekly average backorder (actual).

SETUP [%] = Total number of looms with a scheduled changeover in the year
Number of looms · 52 weeks

AVERAGE BACKORDER [%] = Total backorder amount in the year
Total demand of the year

Other important indexes we define are:

d [Weekly average demand] = Total demand of the year
52 weeks

IR [Inventory Rotation] = d

Weekly average inventory

UTILIZATION [%] = Looms running in the year
Number of looms · 52 weeks

We start the analysis of the results from figure (6.2). Every point represents
the sum of the total costs for one year. Since we performed 100 years, in the chart
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we have 100 values for each model. As the weekly average demand increases (the
values of demand, as we said before, are random and the same for both the models),
also the total costs increase, because because the system work under stress and
more changeovers are needed to follow the demand. We can also observe that total
costs are always lower using the stochastic model.

Figura 6.2: TOTAL COSTS [$] VS d

Consider the service performance index, figure (6.3): as the weekly average
demand increases also the actual weekly average backorder amount increases, be-
cause there aren’t enough looms to follow the demand properly. From this graph
we can clearly see that the backorder amount values are considerably high: this
is due to the fact that we assume that it’s not available a forecast of the demand
for a horizon longer than 4 weeks. This causes the so called myopia of the sy-
stem, meaning that the planner can’t organize the production taking into account
medium and long-term forecasts.
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Figura 6.3: AVERAGE BACKORDER [%]VS d

In figure (6.4) the total costs are represented with respect to the AVERAGE
BACKORDER [%], as a summary.

It seems, according to (6.2), that the stochastic model is better from the cost
performance point of view. We perform a two-sample t-test with unequal varian-
ces, where the two samples are the total costs values of the deterministic and the
stochastic models. The difference of the means is significative (α = 0.05) with a
p-value < 0.0001.
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Figura 6.4: Total costs

Figura 6.5: Box Plot of total costs
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Figura 6.6: Two sample t-test with unequal variances: difference between total
costs

We report in figure (6.7) a similar plot with respect to (6.4), but considering
only changeovers on the y-axis. We see that the number of changeovers [%] sug-
gested by a stochastic model is lower than the ones suggested by the deterministic
model. Plots (6.7) and (6.4) are very similar: this is due to the fact that setup
costs represent the main term of the total costs. A t-test is performed also in this
case, obtaining a p-value < 0.0001.

101



Figura 6.7: SETUP [%]

It also seems, according to (6.3), that the service performance given by the sto-
chastic model is better than the deterministic one. In order to ensure statistical
evidence to that, we perform a t-test in figure (6.8). The results shows that there
is statistical evidence between the means.

The last results are ensured by two t-test we report in (6.9) and (6.10). We observe
that there is not statistical evidence of the difference between the two models as
regards the inventory level (represented by the Inventory Rotation parameter) and
machines utilization.
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Figura 6.8: Box Plot and t-test: service performance
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Figura 6.9: Box Plot and t-test: Inventory Rotation
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Figura 6.10: Box Plot and t-test: machines utilization
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6.2 Sensitivity analysis

In this part of the chapter we are going to see how the results change on varying
these three different factors:

• Capacity of the manufacturing plant (with demand fixed);

• Shift Factor (ratio between setup and inventory costs);

• Uncertainty level of the demand.

We decide to show the results in terms of SETUP [%] (defined in 6.1.3) and
∆SETUP [%], to focus the attention on the topic of the work. We define ∆SETUP
[%] as:

∆SETUP [%] = SETUP[%]DET − SETUP[%]STOC
SETUP[%]DET

It represents the reduction percentage of the number of changeovers obtained using
a stochastic model with respect to a deterministic one.

6.2.1 Capacity of the manufacturing plant

In this section we analyze the results of the same experiment studied in 6.1.3
modifying only the capacity of the plant. Indeed, the demand is kept constant
while the number of looms L changes. we are going to consider 6 different cases of
capacity (L = 210, L = 225, L = 240, L = 250, L = 268, L = 280). All the other
input data remain the same.
In figure (6.11) we show the different cases considered in the experiments. For

example, the instance L = 210 is not so realistic, because the number of looms is
too much small. This means that for more than 6 months in the year the expected
demand is higher than capacity. The other instance L = 280 is not realistic too,
because the number of looms is too high. In a real environment it’s difficult to
find a capacity that is equal to the maximum expected demand. However, it’s
interesting to study the results of the models in these instances to get an idea
of the conditions in which the models (especially the stochastic model) perform
better.
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Figura 6.11: Different number of looms

Figura 6.12: [Looms] SETUP [%]

In all the instances there is statistical evidence of the difference between the
stochastic and the deterministic models.
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Figura 6.13: [Looms] ∆SETUP [%]

Considering the advantage of using a stochastic model, we see in figure (6.13)
that it’s possible to find an optimal value for a certain number of looms. It’s
interesting to note that either with a very large or very small number of looms
with respect to demand the advantage of using a stochastic model decreases.
When the number of looms is too small, the system works in a stressed condition
in which both the models suggest a lot of changeovers. The advantage offered by
the stochastic model can’t be so much.
On the other hand, when we have too many looms, the number of changeovers is
very small also for the deterministic model. In this way the stochastic model can’t
perform so much better than the deterministic one.
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6.2.2 Shift factor

The shift factor is an interesting ratio that we are going to study. It’s defined as:

SF = Setup cost
Inventory carrying cost

In a similar way as we did in the previous section, we analyze the results of
experiments with same data of section 6.1.3 on varying only the shift factor value.
To do that, we change the setup cost keeping fixed the inventory cost. The three
cases we are going to analyze are:

Setup cost Shift Factor
500 $ 866
400 $ 693
300 $ 520

We decided to decrease the changeover costs because we started our dissertation
with a high setup cost. Thus, we want to study what happens in the comparison
between the models if the changeovers were cheaper than the starting condition.
In (6.14) we can see that for both the models the number of changeovers doesn’t
change very much on varying the shift factor, and the gap between the two models
is confirmed among the three cases, (6.15). Of course, the results don’t change
because all the considered shift factors are very high. The objective function gives
more importance to the setup reduction instead of the inventory one.
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Figura 6.14: [Shift Factor] SETUP [%]

Figura 6.15: [Shift Factor] ∆SETUP [%]
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6.2.3 Uncertainty level of demand

In this paragraph we study the cost performance obtained considering different
set of CVs for the SKUs. In the following table we report the values used for the
coefficients of variation.

SKU CVHIGH CVMEDIUM CVLOW

SKU1 0.1 0.05 0.005
SKU2 0.2 0.1 0.01
SKU3 0.4 0.2 0.02
SKU4 0.3 0.15 0.015

The behavior of the stochastic model doesn’t change on varying the uncertainty
level, while the stochastic one lose performances decreasing the uncertainty grade
(6.16). In figure (6.17) we can see that, decreasing the uncertainty of demand
(CV ↓) the advantage in using a stochastic model decreases as well. This means
that a stochastic approach is more useful the higher is the uncertainty of demand.

Figura 6.16: [CV] SETUP [%]
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Figura 6.17: [CV] ∆SETUP [%]
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Capitolo 7

Conclusions

The aim of the Thesis was to find a proactive approach for a lot-sizing and sche-
duling problem under uncertainty of demand.
The objective of the scheduling was the optimization of total costs, including se-
tup costs and inventory carrying costs. Backorders are allowed, but they are not
considered in the objective function. We assume it’s not possible to assign a cost
to backorder, so it is considered in terms of quantity as a constraint. Another
hypothesis was that setup times were negligible.
We developed a deterministic model and we used together with a rolling horizon
approach, the most used method to follow the evolution of an uncertain demand
over time. According to the literature, this model presents the problem we wanted
to study: the reactive modification of schedules, that leads into a large number of
changeovers.
We developed a stochastic approximated model based on the expected value of the
wait and see variables (see chapter 3), since the complexity of the problem and so
high computational times, didn’t let us using the complete scenario tree.
We considered a textile manufacturing scheduling problem as environment in which
we want to test the models, because of the high uncertainty of the demand in that
field. Another feature of this field is the high setup cost with respect to the inven-
tory carrying cost.
Before performing the computational experiments related to the main topic of the
research we considered a set of preliminary experiments. With these first experi-
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ments we wanted to get a general idea of how the developed models worked.
We performed the so called static setting experiments, in which we compared the
deterministic and the stochastic models generating the schedules for the same pe-
riod of four weeks and observing the difference in terms of setup, number of looms
running (utilization), inventory and backorder amount. In particular, we gene-
rated a database of actual demand values for each SKU and for each week and
we observed how much inventory and backorder they produced according to the
schedules suggested (without the possibility to change them when new information
about the actual demand was available). As we can see in chapter 5, a stochastic
approach provided a reduced number of changeovers (and a significative reduction
of the costs in the objective function). Therefore, we saw that also performances
in terms of service level increased and that inventory levels and number of looms
running (on equal actual backorder amounts) were respectively lower and a little
bit lower than using a deterministic approach. We tested this differences under
different conditions (demand higher than capacity, demand equal to capacity and
demand lower than capacity) and the same conclusions can be drown in every
instance.
Thus, in experiments without the application of the rolling horizon procedure, we
discovered that the stochastic models provide better results under all the perfor-
mance indexes considered. Therefore, we saw that the performance of the stocha-
stic models doesn’t change very much as we increase the number of outcomes (for
each product, for each period) from three to five.
However, the main objective of the work was to see in a rolling horizon envi-
ronment (“dynamic setting”) if a stochastic approach could be useful to reduce
schedule nervousness.
From the results in a particular case (L = 240, high CV, BF = 0, SF = 866) we
can conclude that there are good results in terms of total costs: there is statistical
evidence of the (positive) difference between total costs obtained from the deter-
ministic model and the stochastic model. There is also statistical evidence that
the service performance is better with a stochastic approach. It’s interesting to
note that, for this instance, both the inventory level and machines utilization are
the same for both the models. This means that machines are used in a better way.
After that, we wanted to see if, varying the values of some factors, the results in
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terms of setup reduction were confirmed. We decided to focus our attention only
on this performance index because this is the main problem related to the case of
study, due to high setup costs.
We performed what we call a “sensitivity analysis” on three factors:

1. number of looms (capacity);

2. shift factor (setup and inventory carrying costs ratio);

3. coefficient of variations (uncertainty level of demand).

Varying the number of looms we saw that the advantage in terms of setup
reduction is obtainable in each condition, but this advantage is lower with either
a very small or a very large number of looms (respectively a condition in which
capacity is very low or very high with respect to demand). Thus, there is a parti-
cular capacity condition in which this advantage is optimal.
The second factor we wanted to study is the shift factor: in the environment consi-
dered for the experiments, shift factors are very high. We observed, with the three
shift factors used, that the results remained almost the same, as regards advantage
in terms of setup reduction.
It’s interesting to report the results on varying the uncertainty level of demand:
the more uncertain is the demand the greater advantage can be obtained using
a stochastic model. Even if the uncertainty of the context is very low, the sto-
chastic model performs better than the deterministic one. If the context is not
characterized by uncertainty of demand, the two models perform in the same way.

Limits and suggestions for a future work

In this section we write the main limits of this work, and suggestions for a future
work:

• As we said in chapter 4, we chose a simple set of SKUs and we assigned
to them an expected demand function. Results are obtained with these
demand functions and solving the models 100 times considering a single year
of demand pattern for each SKU. It should be interesting to solve more times

115



the models as we did, but changing randomly the expected demand functions
year by year, in order to assess the advantages of a stochastic model also in
different products mix with different parameters.

• Other work can be done by changing the input data regarding costs, to
study different environments (we studied only the instance in which setup
costs are several times higher than inventory carrying costs). Since our model
also includes inventory costs in the objective function, it should be useful to
solve problems that are different from the case we studied.

• Therefore, it should be interesting to compare the deterministic model solved
every week to a stochastic model solved not every week as we have done in
this dissertation, but every two or more weeks. This strategy can be useful
to improve the solution of the problem of the research.

• It’s interesting to quantify the difference between the model suggested in this
dissertation and a “complete” stochastic model, to verify how much do we
loose in the approximation.

• We created a model that reduces the computational issue related to this
multi-stage stochastic scheduling problem. Some of the features introduced
by our model could be applied to other multi-stage stochastic problems.
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