

POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in

Ingegneria Biomedica

Recognition of Intentional Violations of Active Constraints in

Cooperative Manipulation Tasks

Relatore: Elena DE MOMI, PhD

Correlatori: Ferdinando RODRIGUEZ Y BAENA, PhD

 Stuart BOWYER, PhD

Prof. Stefano PASTORELLI

Tesi di Laurea di:

Mario ARICÒ Matr. 801270

Anno Accademico 2013 - 2014

2

Table of Contents

SOMMARIO ·· 7

ABSTRACT··· 10

1 INTRODUCTION ··· 13

 Robotics in Surgery: a general Overview ·· 13

 History and applications ··· 16

1.2.1 Neurosurgery ··· 20

1.2.2 Cardiac and thoracic surgery ·· 23

1.2.3 Orthopedic surgery ·· 26

 Surgical Robot Taxonomy ··· 28

 Active Constraints ·· 30

1.4.1 Generalized Active Constraint Framework ·· 33

1.4.1.1 Constraint Definition Methods ·· 34

1.4.1.2 Constraint Evaluation Methods ··· 36

1.4.1.3 Constraint Enforcement Methods·· 37

 Research problem ·· 39

1.5.1 Adaptive Active Constraints ··· 39

1.5.2 Research Question ··· 42

2 MATERIALS AND METHODS ··· 44

 Active Constraints ·· 44

2.1.1 Guidance Constraints ··· 46

2.1.2 Regional Constraints ·· 49

4

 Experimental Design ·· 50

2.2.1 Software Setup ··· 50

2.2.1.1 Settings GUI ·· 51

2.2.1.1.1 “Workspace settings” GUI ··· 52

2.2.1.1.2 “Path-Following settings” GUI ··· 52

2.2.1.1.3 Target-Reaching settings GUI ·· 55

2.2.1.2 Control System ··· 57

2.2.1.2.1 FOAW algorithm for velocity calculation ··· 58

2.2.1.2.2 Closest-point algorithm ··· 61

2.2.1.2.3 1st Order Dynamic Model ··· 63

2.2.1.2.4 Jacobian Matrix ·· 65

2.2.1.2.5 Real Time Block ·· 68

2.2.2 Hardware setup ·· 69

2.2.2.1 Haptic Interface: Phantom OMNI® haptic device. ··· 71

2.2.3 Experimental Protocol ·· 72

2.2.3.1 Task Design ··· 72

2.2.3.2 Task execution ·· 73

 Classification Methods ··· 76

2.3.1 Markov Models ·· 77

2.3.1.1 Markov Chains ·· 78

2.3.1.2 Hidden Markov Models (HMMs) ·· 80

2.3.1.3 Continuous HMMs ··· 81

2.3.2 Neural Networks ·· 82

2.3.2.1 Perceptron Units ·· 85

2.3.2.2 Neural Network Input Spaces ·· 88

2.3.2.2.1 Statistical Input Space ·· 88

2.3.2.2.2 Frequency Input Space ·· 91

 Data Analysis ·· 100

3 RESULTS··· 112

5

 Path-following task ·· 112

3.1.1 HMM-based classifier ···115

3.1.2 NN-based classifier ···119

3.1.2.1 Statistical Classifier - StNN model ··119

3.1.2.2 Spectral Classifier – SpNN ··122

 Reaching task ··· 124

3.2.1 HMM-based classifier ···126

3.2.2 NN-based classifier ···130

3.2.2.1 Statistical Classifier – StNN ···130

3.2.2.2 Spectral Classifier – SpNN ··133

DISCUSSIONS AND FUTURE WORKS ··· 136

REFERENCES ··· 142

6

7

Sommario

Gli “Active Constraints” (vincoli attivi) sono algoritmi di controllo ad alto livello,

utilizzati per assistere un operatore umano, durante la cooperazione uomo-robot.

Gli Active Constraint sono definiti nel piano preoperatorio e il loro scopo è quello

di delimitare regioni dello spazio di lavoro in cui il manipolatore può muoversi e

incidere i tessuti in modo sicuro. Per migliorare le performance del chirurgo

durante la cooperazione, sono stati introdotti vincoli virtuali di tipo adattativo, che

adattano il livello di assistenza sulla base di informazioni sul task eseguito,

sull’hardware o riguardanti l’utente che esegue il task. In letteratura, un primo

esempio di impiego di vincoli adattivi è stato implementato sulla base di un

modello di Markov continuo, utilizzato per il riconoscimento online

dell’intenzione di un utente di allontanarsi da una traiettoria predefinita e evitare

una serie di ostacoli circolari. In questo lavoro vengono presentati due metodi di

classificazione per il riconoscimento di violazioni intenzionali e violazioni non

intenzionali degli Active Constraint, sfruttando segnali di forza misurati in

corrispondenza dell’end-effector dell’interfaccia aptica: un modello di Markov

(HMM) continuo, and un modello basato su reti neurali di tipo feedforward.

Entrambi gli approcci sono stati valutati su prove che prevedono il

raggiungimento di un target o inseguimento di una traiettoria.

Durante la cooperazione, le violazioni di tipo intenzionale sono dovute ad un

momentaneo disaccordo tra l’azione che l’utente esegue e la finalità del vincolo

stesso. In genere, ciò è dovuto a limitazioni intrinseche del manipolatore, che non

è in grado di adattarsi all’azione corrente dell’utente. Il vincolo è quindi percepito

come un ostacolo per l’esecuzione della prova. Al contrario, le violazioni

intenzionali sono causate da errori accidentali che l’utente commette durante il

task, nonostante il vicolo sia correttamente applicato. In genere, gli Active

Constraint sono classificabili in base alla loro finalità come: Guidance Constraint,

8

cioè vincoli impiegati per guidare il movimento del manipolatore lungo

determinate traiettorie; Regional Constraint, cioè vincoli impiegati per delimitare

i movimenti del robot all’interno di regioni sicure. In questo lavoro sono stati

considerati entrambe le tipologie, che sono state implementate sulla base di una

geometria planare, secondo un modello viscoelastico.

I segnali di forza misurati, sono stati impiegati per l’addestramento e la

validazione di tre classificatori: un modello di Markov continuo basato sul

modulo della forza di interazione; una rete neurale basata su variabili statistiche

estratte dai segnali di forza; una rete neurale basata sulla distribuzione di energia

del segnale di forza su differenti livelli di una decomposizione Wavelet. Per

l’esecuzione delle prove, è stata impiegata l’interfaccia aptica “Phantom Omni”

(Sensable Technologies, Inc.). Il sistema di controllo è stato implementato

utilizzando librarie compatibili con la piattaforma di calcolo Matlab/Simulink

R2014b. Il feedback visivo è stato fornito tramite uno schermo. Per valutare le

performance di classificazione sono stati considerati due blocchi di prove:

- “Inseguimento di una traiettoria”. All’utente viene chiesto di muovere

l’interfaccia lungo una traiettoria 2D in modo più accurato possibile,

aiutato da un vincolo di tipo “guidance”. L’utente deve, inoltre, superare

alcuni ostacoli circolari posti lungo il percorso;

- “Raggiungimento di un target”. All’utente viene chiesto di posizionare il

cursore in modo accurato sui punti target visualizzati che, con probabilità

del 50%, giacciono all’interno di una regione proibita

È stato chiesto a 12 soggetti di effettuare 10 prove per blocco. Il segnale di forza

è stato misurato per estrarre i diversi segmenti di interazione (𝒇 > 0), che sono

stati successivamente etichettati come “intenzionali” o “non intenzionali” a

seconda di dati di posizione di ostacoli/limiti regionali. Dalle prove di tutti gli

utenti, sono stati costruiti due set di dati distinti per l’addestramento

supervisionato. Ciascun set è stato ulteriormente diviso in un set per

9

l’addestramento (50%) ed un set per la validazione (50%). I tre classificatori sono

stati applicati ad entrambi i set di dati. Le performance dei modelli sono state

valutate in termini di sensitività (𝑆𝑒) e specificità (𝑆𝑝), ottenendo l’andamento

delle curve ROC nel tempo. Poiché abbiamo ritenuto che, in uno scenario

applicativo reale, sarebbe più affidabile in termini di sicurezza un classificatore

con alta specificità, è stato scelto di discretizzare l’output continuo dei modelli

sulla base di una specificità impostata dall’operatore. L’indice di sensitività è stato

conseguentemente ricavato.

I risultati hanno mostrato come, in generale, le prestazione dei classificatori

migliorino all’aumentare dell’intervallo di tempo considerato dopo l’inizio della

violazione, in quanto le curve ROC tendono asintoticamente al classificatore

ideale. Ciò nonostante, il tempo minimo richiesto per raggiungere determinate

prestazioni è differente. In generale, il modello StNN è risultato il più veloce

rispetto al modello HMM, che a sua volta è più veloce del modello SpNN. Per

prove di inseguimento di una traiettoria, tutti i modelli sono in grado di

identificare violazioni intenzionali con una sensitività che supera il 90%, in un

intervallo di tempo minore di un 1s. Per prove di raggiungimento di un target, i

modelli StNN e HMM raggiungono prestazioni simili entro 1s dall’inizio della

violazione, mentre il modello SpNN richiede un tempo maggiore di 2s. Possibili

sviluppi futuri includono la valutazione di metodi per sfruttare l’output continuo

del classificatore per modulare il livello di assistenza in base alla probabilità

associata alle diverse intenzioni dell’utente durante cooperazione chirurgica.

10

Abstract

Active Constraints (ACs) are high-level control algorithms that are deployed to

assist a human operator in man-machine cooperative tasks. Active constraints are

preoperatively computed to define regions of the workspace within which it is

safe for the robot to move and cut. To enhance the performance in cooperative

surgical tasks, adaptive constraints have been investigated as a tool to optimally

adjust the provided level of assistance, according to some knowledge of the task,

hardware or user. In the literature, Hidden Markov Models have been deployed

for run-time identification of whether the user wanted to intentionally leave a

guidance constraint to circumvent circular obstacles placed along the path. In this

work we present the evaluation of two classification methodologies for the

runtime recognition of intentional and unintentional violations of ACs, exploiting

interaction force signals measured at the tool tip of a haptic manipulator:

continuous Hidden Markov Models (HMM) and feedforward Neural Networks

(NN). Both approaches have been deployed for path-following and target-

reaching tasks.

During cooperative assistance, intentional violation of ACs takes place whenever

the current action of the user is in disagreement with the purpose of the constraint,

typically resulting from environmental sensing limitations of the robotic system.

In this case, the constraint is felt as a hindrance, resulting in disturbing interaction

forces at the tool tip. Unintentional violations occur when the user shares the

purpose of the constraint and accidental errors in the task execution are made

anyway. Active constraints can have one of two purposes: Guidance constraints

are enforced to guide the motion of the tool along a specified trajectory. Regional

constraints are enforced to bound the motion of the tool into certain safe regions.

Both types of constraints were considered in this work and modeled with a planar

geometry, according to a conventional viscoelastic constraint model.

11

The measured force signals were deployed to train and validate three different

classifiers: a continuous HMM, based on the magnitude of the force signal; a

feedforward NN (StNN) based on seven statistical features (e.g. mean, variance,

energy) extracted from the measured force signal; a feedforward NN (SpNN)

based on spectral features, yielding the energy distribution of the force signal

across different levels of its Wavelet decomposition.

The Phantom Omni (Sensable Technologies, Inc.) haptic device was used during

assisted cooperative tasks. The active constraint controller was implemented on

Matlab/Simulink R2014b platform. Visual feedback of the task execution was

provided through a screen. To evaluate task-independent properties of the

classification methods proposed, two sets of tasks were considered:

- Following task. The user was asked to move as accurately as possible

along different 2D spline-based paths, assisted by a guidance constraint.

He/she was asked to overcome any circular obstacle placed along the path

by acting against the constraint;

- Reaching task. The user had to place the pointer as accurately as possible

on several equally spaced targets, which lay within a forbidden region

bounded by a regional constraint with 50% probability.

We asked 12 subjects to perform 10 trials for each of the two tasks. The interaction

force between the tool tip and the constraint was recorded, segmented to extract

non-null interactions (𝒇 > 0), and automatically labeled as “intentional” or

“unintentional” violations according to the known positions of obstacles/region

boundaries. Two distinct datasets were built from all users across all trials for

supervised learning, each furtherly split into a training dataset (50%) and a

validation dataset (50%). The three classifiers were applied to each task dataset.

The performance of the classification methods were computed in terms of

sensitivity (𝑆𝑒) and specificity (𝑆𝑝), yielding the Receiver Operating

Characteristics (ROC) curves over time for each classifier. A classification

12

threshold was applied on the continuous output of the models. As we believed

that, for safety reasons, it would be desirable to have a classifier characterized by

a high specificity level, with high capability of detecting and rejecting

unintentional violations, the discretization threshold was computed on the basis

of a specificity level set by the operator. The sensitivity profile was consequently

calculated.

Results showed that, in general, the classification performances of each

methodology increased as the violation time widened: the ROC curves

asymptotically tend to the ideal classifier. However, the minimum interval time

necessary to reach a required performance was different. In general, StNN

methods are faster than HMM, that, in turn are faster than SpNN. For path-

following tasks, each classifier is able to detect intentional violations with a

sensitivity level exceeding 90% within 1s after the violation has started. For

target-reaching tasks, similar performances was achieved for StNN and HMM,

while SpNN reaches similar performances after 2s. Future work will investigate

methods to exploit the continuous output feature of the classification methods

proposed in order to optimally modulate the provided assistance according to the

probability of the user’s intention classification within surgical cooperative tasks.

13

1 Introduction

 Robotics in Surgery: a general Overview

Over the last few years, robotic manipulators have been appearing in operating

rooms as a valuable help to assist the surgeon during surgical interventions by

enhancing the performances in terms of precision, accuracy and speed of

execution. The reasons as to why this phenomenon is taking place is to be sought

in the rapid development of new technologies and knowledge base in the

industrial robotic field. Surgical applications of robotic devices have become

feasible and safe thanks to the constant improvements in mechanical design,

kinematics, control algorithms and programming that, consequently, enhanced the

overall robot-assisted performances in comparison to the classic approach (Howe,

1999). Moreover, robotic researchers have worked to enhance the capabilities of

the robot to deal with evolving environments, through the introduction of the

concepts of adaptability and autonomy. The first characteristics refers to the

capability of the robot to properly respond to dynamic workspace conditions, on

the basis of sensory information; the second characteristics refers to the ability of

the manipulator to carry out a given task without human supervision. With respect

to surgical applications, these added features have been deployed for image

processing, spatial reasoning, path planning, real-time sensing and real-time

control. The State-of-the-Art provides two meaningful definitions of both

“industrial robot” and “surgical robot”. According to the Robot Institute of

America, a robot is a “reprogrammable multifunctional manipulator, designed to

move material, parts, tools or specialized devices through variable programmed

motions for the performance of a variety of tasks. In (Davies, 2000) a robot is

defined as a “reprogrammable computer-controlled mechanical device equipped

14

with sensors and actuators”. Conversely, surgical robots are defined as “powered

computer-controlled manipulators with artificial sensing that can be programmed

to move and position tools in order to carry out a range of surgical tasks” (Davies,

2000).

The introduction of robotic assistants into the operating theatre does not imply the

complete replacement of the human operator, but rather the establishment of a

man-machine synergy, in which the manipulator is meant to “assist” the surgeon

during the execution of complex tasks, thus “extending and enhancing human

capabilities and dexterity” (Howe, 1999). This approach, based on the

establishment of a close “cooperation” between the surgeon and the robotic

device, was preferred to the classic approach used in industrial fields, where “fully

autonomous” robots were used in many varied applications. Even though

autonomous devices might offer many advantages over humans, such as

resistance to harmful conditions, untiring strength and superior accuracy and

precision (Bowyer, 2014), there exist some major bottlenecks that make them

unsuitable for surgical applications:

- Autonomous systems are not able to deal with “highly unstructured”

environments, where objects within the robot’s workspace are partially

unknown due to sensing or data processing limitations. Any decision-

making process will be based on incomplete or inaccurate information

(Bowyer, 2014);

- Autonomous robots have a limited knowledge base concerning the task

that they are executing. A robot may be programmed to perform one set

of motions very accurately, but without a comprehensive understanding

of the task’s purpose and environment. They are, thus, less likely to

respond correctly to unusual or unexpected events (Bowyer, 2014);

- Autonomous robots are unsuitable for some applications where the

culpability for damage or harm is unclear: there often needs to be a

15

distinction regarding who is responsible for the safety of people and

objects within the robot’s workspace (Bowyer, 2014).

The introduction of cooperative approaches has been the best solution the tackle

the three underlined drawbacks, which are unavoidable when using fully

autonomous devices into the surgical framework. It is important to highlight how

the success of the human-robot cooperation is based on the fact that both the

robotic assistant and the human operator provide complementary advantages and

tend to make up for each other weaknesses. On one hand, the manipulator

provides enhanced precision, accuracy, dexterity and, in general, is able to use

 SURGEON ROBOT

PROS

1. Task versatility;

2. Judgement experience;

3. Hand-eye coordination;

4. Dexterity at mm/cm scale;

5. Integrate qualitative data;

6. Flexible and adaptable.

1. Good geometric accuracy;

2. Stable and untiring;

3. Can use diverse sensors;

4. May be sterilized;

5. Can be designed for a wide

range of scales;

6. Optimized for particular

 environments.

CONS

1. Tremors;

2. Fatigue;

3. Limited geometric accuracy;

4. Limited sterility;

5. Low dexterity outside natural

scale;

6.Susceptible to radiation and

 infections.

1. Poor judgement;

2. Expensive;

3. Cumbersome and large;

4. Not versatile;

5. Inability to process qualitative

 information;

6. Technology in flux.

Table 1.1 Strengths and weaknesses of the surgeon and the robotic manipulator during

cooperative tasks.

16

detailed quantitative information (Howe, 1999), like 3D imaging data and intra-

surgical sensory data. On the other hand, humans are superior at integrating

different sources of qualitative information and consequently exercise judgement.

They are characterized by excellent hand-eye spatial coordination and have a

finely developed sense of touch. Table 1.1 summarizes the advantages and

disadvantages of human and robot capabilities.

 History and applications

Fully autonomous robotic manipulators first appeared in the industrial field in the

early 1960s. However, the first attempts to introduce these devices into the

surgical scenario are much more recent, as they are dated back to the mid-1980s.

In 1985, Y. S. Kwoh used a standard industrial device to hold a fixture next to the

patient’s head, in order to locate a biopsy probe for neurosurgery applications

(Kwoh, 1988). The robot deployed was a “Puma 560”, a serial manipulator

characterized by 6 DoF (Figure 1.1). This manipulator was chosen after a careful

evaluation of the industrial devices

available on the market, and was

driven by three main criteria:

dexterity, accuracy and reliability

while operating in surgical

environments. The 3D coordinates

of the target points on the brain

surface were computed by means

of a stereotactic frame coupled with

a CT scanner and then they were

located in the manipulator’s

reference frame. Once the Puma had

Figure 1.1 Industrial Robotic Manipulator "Puma

560"

17

reached the target position, the power was removed, while the surgeon used the

fixtures to orientate the drills and the biopsy probes, inserted manually into the

skull. An overview of the system is shown in Figure 1.2.

In parallel with the researches carried out by Y. S. Kwoh, R. H. Taylor was

implementing a surgical scenario that involved an industrial robot system for hip

replacement surgery in dogs (Taylor, 1989). A “Scara” robotic manipulator

(Figure 1.3) was used to hold in place a rotating cutter, which reamed out the

proximal femur to take the femoral stem of a prosthetic implant for a total hip

replacement. After a number of studies, the robotic system was deployed as a

“veterinarian robot” for replacing hips of pet dogs under the supervision of

veterinarian surgeons (Davies, 2000).

In the early 1990s, after a number of studies focused on the introduction of

industrial robots into the surgical scenario, a new trend in research was elicited

by the shared concerns about the low safety standards that characterized the use

Figure 1.2 Overview of the surgical system deployed for brain biopsies. The CT scanner provides

the correct spatial relationship between the imaging reference frame and the reference frame of

the robotic manipulator (Kwoh, 1988).

18

of industrial manipulators close of human operators. In general, industrial robots

were designed to be deployed in general-purpose tasks, and were thus

characterized by wide ranges of motion, that made them inherently less safe than

special-purpose mechanisms, whose ranges of motion and forces were set

specifically for a given task. “Special-purpose” manipulators have gained

credibility thanks to the fact that they can be safely applied and controlled with

limited ranges of force and position; in addition, a dedicated system has the

possibility to run customized software (Davies, 1991). The first special-purpose

device was conceived in the late 1980s and was clinically tested in April 1991.

The robot was characterized by a tailored kinematic system, designed to remove

prostatic adenomas: this was the very first time that a manipulator had been used

automatically to remove tissue from patients (Davies, 2000). Since that time, a

second-generation prostate robot, called “Probot” has been developed at Imperial

College (Ng, 1993).

As from the mid-1990s, trends in surgical robotics have been devoted towards

two main goals:

Figure 1.3 Selective Compliance Assembly Robot Arm (SCARA). SCARA is an industrial robot

with four parallel rotational axes and four degrees of freedom.

19

- From the technology points of view, cooperative robots have been

preferred over autonomous manipulators: instead of the complete

replacement of the surgeon, the robot becomes an extension on his/her

hand (Dogangil, 2010), making up for the limitations of human

performances such as tremor, fatigue and limited dexterity at sub

millimeter scales (Table 1.1).

- On the application point of view, the trend flows toward “Minimally

Invasive Surgery” (MIS). This approach represents one of the newest

trends in surgical robotics and is characterized by far less invasive

procedures compared to the open ones: laparoscopic devices are inserted

through small incisions in the tissue and the operation is externally

supervised by means of image guidance, provided by endoscopic cameras.

MIS approaches results in fewer post-operative complications, shorter

recovery times and, sometimes, outpatient treatments for previously

longer procedures (Dogangil, 2010).

Figure 1.4 Building blocks of a general surgical robotic system. The surgeon supervises the robot's

activity by means of the haptic feedback and the visual feedback provided by the imaging system.

20

Any successful surgical robotic system consists of some fundamental building

blocks that operate in synergy (Figure 1.4): the surgical manipulator, the imaging

system, the visualization equipment, the high-level controllers, the end-effector

tools, the haptic controller devices and, most importantly, the surgeon (Dogangil,

2010). It is important to note how the surgeon is kept within the control loop:

he/she supervises the robot’s actions with the help of augmented reality provided

by the haptic and visual feedbacks. The growing acceptance of these surgical

robotic systems into the operating rooms is witnessed by the many commercial

devices that are currently available on the market and that apply to a wide range

of clinical scenarios:

- Neurosurgery (Varma, 2006), (Coste-Manière, 2005), (Sutherland, 2003);

- Eye surgery (Jensen, 1997), (Ergeneman, 2008);

- Thoracic and cardiac surgery (Häcker, 2005), (Boehm, 2000);

- Orthopedic surgery (Kazanzides, 1995), (Lavallee, 1995);

- Urologic surgery (Krieger, 2005), (Salcudean, 2008);

- Tumors radiation (Adler, 1997).

Extensive reviews of currently available medical robotic system are reported in

(Howe, 1990), (Dogangil, 2010), (Camarillo, 2004) and (Curley, 2005). The

following sections are devoted to the description of some meaningful examples

of surgical robotic applications.

1.2.1 Neurosurgery

Neurosurgery was one of the first surgical specialties that deployed “image-

guided” techniques to perform the operation. In the preoperative phase, the

imaging system computes a 3D model of the patient’s brain, obtained through the

processing of multiple CT or MRI images. The target points (e.g., intra-cortical

lesions or stimulation points) are then identified within the volumetric model and

their coordinates are computed with respect to the image reference frame.

21

A stereotactic head frame (Figure

1.5) attached to the patient’s skull

provides the correct registration

matrix to obtain the coordinates of the

target points in the reference frame of

the robotic system. The location of

the target points is consequently used

to compute the optimal operation plan

in terms of degree of alignment,

orientation and insertion of the end-

effector tool to the desired point in the

brain (Dogangil, 2010).

One of the major drawbacks of

image-guided neurosurgery is the so-

called “brain shift” phenomenon, that alters the relationship between the

preoperative image data and the current anatomy of the patient. To overcome

these problems two solution have been proposed (Dogangil, 2010):

- Integrate deformable templates for

nonrigid registration, based on

biomechanical models of the soft

tissue;

- Integrate intra-operative imaging for a

continuous monitoring of the patient’s

anatomy and instrumentation; this

requires that the manipulator be

compatible with the imaging modality

and space constraints;

Figure 1.5 Stereotactic frame for the mapping

procedures of the target points within the skull.

Figure 1.6 NeuroArm surgical robot.

22

Two commercially available neuro-robotic systems are the “NeuroArm” and

“CyberKnife” systems. The “NeuroArm” (Figure 1.6) (Figure 1.7) is a MRI-

compatible system designed for stereotaxy and microsurgery, including

manipulation and cutting of soft tissues, dissection of tissue planes, suturing,

electro-cauterize, aspirate and irrigate (Dogangil, 2010). The working principle is

based on teleoperation, in which two remote slave manipulators replicate the hand

movements of the master manipulator directly controlled by the operator. In turn,

the surgeon supervises the execution of the task by means of stereoscopic visual

feedback, 3D MRI displays and haptic force feedback provided by multi-axial

force sensors mounted on the end-effector.

The “CyberKnife” system (Figure 1.8) is a non-invasive robotic manipulator

designed for radiosurgery. It consists of a compact linear accelerator mounted on

a 6-DOF robotic arm that can be used to radiate a variety of tumors. During the

preoperative phase, CT images are used for the path-planning of the system.

During the intra-operative phase a set of X-ray cameras, coupled with flat panel

Figure 1.7 Overview the of NeuroArm robotic system.

23

image detectors, monitors the movements of the patient and consequently, unlike

stereotactic systems, compensates for them. Recently, the accuracy of the

treatment has been enhanced with the introduction of a respiratory tracking

system, which allows the “CyberKnife” to track lesions that move with breathing

and follow them in real time for more precise treatments (Dogangil, 2010).

1.2.2 Cardiac and thoracic surgery

Thoracic and cardiac surgery, and in general abdominal surgery, is one of the

fastest growing arenas of use for robotic telemanipulation (Curley, 2005). Over

the last decade, the trend in the design and implementation of these robotic

systems has flowed toward a laparoscopic methodology, that meets the

requirements of “Minimally Invasive Surgery” (MIS) approach. The use of

laparoscopes, as opposed to the classic open procedure, provides benefits such as

Figure 1.8 “CyberKnife” System for tumor radiation.

24

fewer post-operative complications, shorter recovery times and reduced tissue

scars. The execution of the surgical intervention is performed through small

incisions in the abdominal or thoracic walls (Figure 1.9). The surgical tools are

inserted through such incisions toward the target point within the abdomen, along

Figure 1.10 Cross-sectional view of gynecological laparoscopic procedure.

Figure 1.9 Laparoscopic tools inserted through skin incisions in the abdomen.

25

with an endoscopic camera for visual feedback to the surgeon (Figure 1.10). The

development of laparoscopic manipulators, despite its benefits for the patients,

has introduced a number of significant challenges to the surgeon (Curley, 2005):

- Loss of haptic feedback. The operator is, thus, unable to perceive the

interaction forces between the tool tip and the tissue;

- Limitation in the range of motion of the instrumentation (generally four

degrees of freedom against the hand and wrist’s seven) ;

- The rise of the so-called “fulcrum effect”, that forces the operator to make

counterintuitive movements with the end effectors;

- Amplification of the physiological tremor at the end effectors;

- Limited dexterity;

- Impaired depth and field of vision without using dual-camera 3D systems;

- Steep learning curve.

One of the most successful robotic manipulator for minimally invasive

laparoscopic surgery is the “da Vinci” system. It is a master-slave robotic system

that was initially designed for

closed chest cardiac surgery

(Boehm, 2000), although many

more application have been

explored, like visceral surgery,

gynecology and urology surgery.

The “Da Vinci” system is

composed of two elements: the

surgeon and patient sides. The

surgeon side (Figure 1.11)

component is the control console

that consists of a binocular viewer

for stereoscopic vision, finger-
Figure 1.11 "Da Vinci" System: control console of the

surgeon

26

Figure 1.13 "Da Vinci" System: examples of

laparoscopic tools for tissue manipulation

held controllers through which the operator remotely manipulates the robotic

arms, foot control pedals for camera focus and orientation, clutch and diathermy,

and the central computer. The patient side component (Figure 1.12) (Figure 1.13)

is composed of four articulated arms, one dedicated to the camera, which provide

image magnification from 2X to 10X, and three for instruments. The surgeon

controls any two arms at a time. The system is designed to merge the advantages

of freehand movements, used in open surgery, the benefits of a minimally invasive

approach and the increased precision and accuracy that arise from motion scaling,

whereby large motions of the master device are scaled down proportionally to

produce small motions of the slave.

1.2.3 Orthopedic surgery

Along with neurosurgical applications, orthopedics was one of the first areas in

which robot applications were developed (Howe, 1999). The fundamental

difference existing between orthopedics and other type of surgery (e.g.,

Figure 1.12 "Da Vinci" System: Slave manipulator with three robotic

arms for surgical tools and one robotic arm for the endoscopic camera.

27

neuorosurgey, thoracic surgery, eye surgery) is the profound diversity of the

biomehcanics behavior of the target tissues. While soft tissue requires complex

biomechanics model to implement reliable robotic navigation, bones are

relatevely easy to manipulate, as the amount of deformation is negligigle during

surgical procedures. This property results

in simpler image-guided techniques to

implement the problems arising from

mismatches between the preoperative and

intraoperative plans are overcome.

Orthopedics application that have received

the greatest attention are hip and knee

replacement, and spinal fusion (Howe,

1999).

An example of orthopedic manipulator for

hip surgery replacement (Kazanzides,

1995) is the “Robodoc” system (Figure

1.14), that was developed to improve the

performances while forming the femural

cavity to host the hip prosthesis. In

comparison to the manual procedure, in

which the surgeon cuts the cavity by forcing hand-help broaches and reamers into

the femur, the robotic system provided a less rough and uneven internal surface.

The tip of the manipulator is equipped with a high-speed rotary cutter that

precisely reams out the femoral cavity, adjusting its dimesions according to the

stem of the implant. In addition to increased accuracy in the formation of the

cavity, the implant size and placement can be chosen on the basis of preoperative

CT images. A separate 3D planning workstation, called “Orthodoc” (Figure 1.15),

computes a 3-dimensional model of the patient hip and the surgeon can manually

Figure 1.14 "Robodoc" System.

28

adjusts the position and orientation of

the prosthesis until satified. The

resulting femoral cavity is then dislayed

and the sequence of robot motions are

automatically planned (Howe, 1999).

 Surgical Robot Taxonomy

Over the past 200 years, a wide variety of robots for surgical applications have

been designed, developed and clinically used. Several authors (Camarillo, 2004)

have proposed to organize the different varieties of surgical manipulators into a

taxonomies. Among others, the most widely shared classification is based on the

role that each device has within the operating room. Three discrete categories

have been identified:

- Passive role manipulators. The role of the robot is limited and its

involvement is related to only low risk tasks. An example of passive

manipulator has been discussed in section 1.2.1, in which an industrial

Puma 560 (Figure 1.1), was deployed to firmly hold in position a fixture

newt to the head of the patient, in order to allow for the surgeon safely

insert needles for brain biopsy. Further applications are endoscopic

Figure 1.15 "Orthodoc"system for path-

planning of the orthopedic surgical procedure.

29

holders (e.g., AESOP (Sackier, 1994)), whose role is to maintain

endoscopic tools in a steady position during laparoscopic procedures.

- Restricted role manipulators. In this case, the robot is involved in higher-

risk tasks, but its role is still restricted to essential portions of the

procedure. Examples are cooperative manipulators and mechanical

stabilizers that filter out the noise due to hand tremor.

- Active role manipulators. The robot is intimately involved in the task

procedure and carries high responsibility and risk (Camarillo, 2004).

Usually, autonomous robots compute preoperative plans without human

intervention. Examples of autonomous manipulators include the

“CyberKnife” system for radiosurgery (Section 1.2.1) and the “Robodoc”

system for hip replacement surgery (Seciont 1.2.3).

Although autonomous robots might appear superior, it should be noted that their

deployment requires significant human supervision, often resulting in an

Figure 1.16 Tradeoff between the procedural role and autonomy. Procedural role indicates the

level of responsibility and involvement the robot has with the patient during a procedure. Robot

role scales up with greater duration, scope, invasiveness, and risk, which decreases the level of

autonomy in current systems (Camarillo, 2004).

30

increased burden on the surgeon. This is an important trade-off (Figure 1.16) to

evaluate when choosing the proper surgical system for a given application.

 Active Constraints

The introduction of robotic manipulators into the surgical field, despite all the

advantages deriving from enhanced precision, accuracy and dexterity, has raised

high concerns about the safety of the human operators and the patients, that,

during surgical procedures, share their workspace with the robot. Before the first

studies by Y. S. Kwoh in 1985 (Kwoh, 1988), who used a “PUMA 560” industrial

manipulator as a fixture holder to improve the accuracy during probes insertion

for brain biopsies, fully autonomous systems were designed to be deployed in the

industrial field, at different stages of the manufacturing processes. Their main

application included welding, painting, assembly, pick and place, and testing. All

tasks were accomplished with high precision, accuracy and speed. The human

operator was in charge of the supervision of the process, but did not share the

workspace of the manipulator. The success of autonomous robots in the industrial

field relies on the fact that the manufacturing process is the sum of repetitive

simple tasks. Hence, the robot can be programmed to execute each task very

precisely, accurately, and with higher ranges of speed with respect to the human

performance. Conversely, a surgical scenario involves inherently many degrees

of variability, both with respect to the types of task to be executed, and with

respect to their execution time and sequence. Despite all the advantages, there

exists a limit in the capability of autonomous manipulators to perceive and

evaluate their environment, making them unsuitable to deal with highly

unstructured processes. These processes involve incomplete or inaccurate sensory

information about the surrounding objects and thus, put some limitations in the

reliability of any decision-making process of the autonomous device (Bowyer,

31

2014). To overcome these limitations, the concept of “human-robot cooperation”

was introduced, in which the robotic assistant intelligently regulates the motion

of the human user (Bowyer, 2014), making up for each other weaknesses (Table

1.1) This shared control concept was first envisaged by Rosenberg in the early

1990s: “virtual fixtures”, as he conceived them, are defined as “abstract sensory

information overlaid on top of reflected sensory feedback from a remote

environment” (Rosenberg, December 1993). The function of virtual fixtures is to

enhance operator performances by allowing precision to exceed natural human

abilities, while reducing mental and physical workload associated to the task

(Rosenberg, September 1993). Rosenberg conceived these virtual tools as a

“ruler” (Rosenberg, September 1993), which can greatly improve the

performances of a straight line-drawing task. The use of the ruler reduces the

mental processing, speeds up the execution of the task and allows for a much

better outcome. Without this tool, the drawing is a manual task that requires

constant visual supervision and hand-eye coordination (Rosenberg, September

1993). Similarly to “virtual fixtures”, “active constraints” (ACs), are high-level

control algorithms that can be used to assist a human in man-machine cooperative

tasks. In (Abbott, 2007), ACs are defined as “software-generated force and

position signals applied to a human operator in order to improve the safety,

accuracy and speed of the robot-assisted task. They capitalize on both the

accuracy of the robotic system and the intelligence of the human operator”. In

(Bowyer, 2014), ACs are defined as “collaborative control strategies which can

be used in human manipulation tasks to improve or assist by anisotropically

regulating the motion. Throughout operation, the robot controller monitors tool

motion, and analyzes it with respect to preplanned trajectories and known

restricted regions. The active constraint controller then attenuates or nullifies any

user command that will cause the manipulator to digress from a plan, or enter a

forbidden region” (Bowyer, 2014).

32

One of the first research systems that led to the design and implementation of a

robotic device, with an additional active constraints controller, is the “Acrobot”

system (Figure 1.17), developed at Imperial College London as from the late

1990s for unicondylar knee arthroplasty (Davies, 2006). Such a system is a

“hands-on manipulator in which the surgeon holds a force-controlled handle that

is located near the tip of the robot” (Davies, 2006). The hands-on approach, which

results in a direct physical human-robot interaction, provides reliable haptic

feedback without the need for force sensors: the surgeon is then able to feel the

difference when cutting either hard or soft tissues. The pre-operative CT-based

planner defines the regions of the workspace within which the robot can move

and cut without causing damages or harm. If the operator tries to enter any

Figure 1.17 "Acrobot" System developed at Imperail College, for Unicodylar Knee

Arthroplasty (UKA).

33

forbidden regions of the robot workspace, the controller actively constraints the

motion within safe positions, ensuring that complex cut surfaces are accurately

achieved, and that critical features are preserved. The performances of the

“Acrobot” system was tested in a randomized, double-blind (patient and

evaluator) trial, and the results were compared to the conventional surgery. The

evaluation criteria were based on the absolute values of alignment error in valgus

and varus directions. Such errors were computed for both the femoral and the

tibial components. Results showed that the “Acrobot” system reduces the risk of

inaccurate outcomes in arthroplasty. Moreover, a significant enhancement in the

post-operative improvement was observed (Davies, 2006).

1.4.1 Generalized Active Constraint Framework

A correct and extensive discussion about active constraints, their use and

application requires the establishment of a generalized framework. As discussed

in (Bowyer, 2014), this framework is composed of three main processes (Figure

1.18):

- Constraint definition;

- Constraint evaluation;

- Constraint enforcement.

Figure 1.18 Generalized Active Constraints Framework (Bowyer, 2014).

34

The definition of an active constraint refers to the geometry that describes the

constraint itself. This first process can be carried out either via human supervision

or by using automatic algorithms. Once the geometry has been defined, it has to

be evaluated: the constraint geometry is compared to the pose of the manipulator

to assess the reciprocal compatibility. The last step is the constraint enforcement,

namely the conversion of the relative robot-constraint configuration into input

commands, which in turn will regulate the motion of the human user.

1.4.1.1 Constraint Definition Methods

The definition step is carried out by computing the spatial geometry that describes

the features of the constraint. Although in literature there are some methodologies

to automatically generate constraint geometries on the basis of medical images,

the most widely used approach is the apriori definition of such geometries, via a

separate process that is often supervised by a human operator (Bowyer, 2014).

Constraint definition methods span from simple points and lines, to complex

surfaces and volumes and will be briefly described and discussed. A

comprehensive review can be found in (Bowyer, 2014).

Point Constraints.

A point-like geometry (Figure 1.19) is

a rather simple constraint definition

method based on a closed-form

solution that efficiently represents

either 3D Cartesian points, or

configuration and orientation poses.

This approach has been widely used in

literature for tasks requiring accurate

and precise tool positioning.

Figure 1.19 Point Constraint representation

(Bowyer, 2014)

35

Linear Constraints.

Linear constraints define paths in

the 3D space with a variable

degree of complexity, ranging

from straight lines, to sinusoids,

to spline-based curves. Straight

lines represent the simplest

geometry, have a closed-form

solution, but are not suitable to

describe complex trajectories.

On the contrary, spline-based

geometries are suitable to deal

with a higher degree of complexity, but typically suffer from the absence of any

closed-form solution, which results in an increased memory demand.

Surface Constraints.

Surface constraints are used to divide the robot’s workspace into separate

subspaces. Like linear constraints, there exist different methodologies to

Figure 1.20 Linear Constraint representation

(Bowyer, 2014)

Figure 1.21 Surface Constraint representation. On the right, is it shown a surface defined as a

cloud of points. On the left, it is shown a surface defined by a polygonal mesh (Bowyer, 2014).

36

implement the relative geometries of such surfaces. The simplest approach,

limited to a low range of complexity is the segmentation of the surface into a

subset of hyperplanes. Higher degrees of complexity require the adoption of more

sophisticated methods, such as “polygonal mesh” and “point cloud” constraints

(Figure 1.21). Thanks to their great flexibility, polygonal meshes are useful when

the application requires the precise reconstruction of real-world surfaces.

Unfortunately, despite their advantage, this type of constraint is difficult to

construct, evaluate and store. On the other hand, “point cloud” constraints, being

defined by sampling a set of Cartesian points from the surface are more easily

constructed and stored.

Volumetric constraints.

Volumetric constraints (Figure 1.22)

are defined by means of analytical

geometric primitives, like spheres,

cylinders, cones and cubes. Thanks to

their closed-form solution that provide

efficient computation, volumetric

constraint have been proposed as an

alternative to describe complex spaces

as a combination of primitives.

1.4.1.2 Constraint Evaluation Methods

The constraint evaluation phase is required to assess to relative configuration

between the robot pose and the geometry of the constraint previously defined. In

particular, we are interested in the proximity function between the end-effector

and the constraint, in order to decide on the necessity and direction of the

anisotropy. The majority of the evaluation methods are based on simple closed-

Figure 1.22 Constraints represented by

volumetric primitives (Bowyer, 2014).

37

form representations of the constraint. In a few other applications two key

methods are deployed: spatial partitioning and bounding volume hierarchies;

feature-tracking algorithms (Bowyer, 2014).

1.4.1.3 Constraint Enforcement Methods

In the constraint enforcement phase,

the evaluated constraint geometry is

converted into proper motion/force

commands to give as input to the

manipulator. In literature, a wide

range of enforcement methods is

proposed, each one having different

features that makes it suitable for

some applications over others. In

the following, a brief overview of

such methodologies is discussed. A

comprehensive review can be

found in (Bowyer, 2014).

Simple Functions of Constraint Proximity.

The simplest method described in the literature in based on a distance function

(e.g., closest-point) between the constraint geometry and the robot’s end-effector.

The constraint force vector is modeled as a dynamic model, usually truncated to

the first order. The mechanical behavior is equal to a spring-damper system (1st

order, Figure 1.23), described by the following equation:

𝒇 = 𝐾(𝒙𝑝 − 𝒙𝑒𝑞) + 𝐷(𝒙̇𝑝 − 𝒙̇𝑒𝑞) (Eq. 1.1)

Figure 1.23 Enforcement method: simple function

of constraint proximity.

38

where 𝐾,𝐷 are the stiffness and damping parameters of the system, 𝒙𝑝is the 3D

tool tip position and 𝒙𝑒𝑞 is the closest point on the constraint geometry.

Proxy and Linkage Simulation.

Proxies are virtual objects characterized by a given dynamic behavior. During the

execution of the task, the proxy is virtually attached to the tool tip of the

manipulator and the linkage is

usually modeled as an elastic

or viscoelastic model. When

the robot enters forbidden

regions, the proxy is blocked

by the constraint surface,

giving rise to a haptic force

that encourages the user to

leave such restricted region.

Nonenergy Storing Constraints.

The main drawback of the previously discussed enforcement methods is that the

effect of potential energy storing during the violation of forbidden regions. A

sudden release of such stored energy may cause unwanted outcomes, like system

instability and thus, harmful conditions for the operator. To overcome this

problem in (Kikuuwe, 2008) a “simulated plasticity” model, based on Coulomb

friction, was proposed as a way to dissipate energy during the tip-constraint

interaction.

Potential fields.

Potential fields are one of the most widely used methodologies for real-time

collision avoidance in robotic systems. Each point of the robot’s workspace s

Figure 1.24 Proxy-based constraint. The linkage model is

modeled as a spring (Bowyer, 2014).

39

assigned a potential value, on the basis of the spatial distribution of both targets

and obstacles. Each target is characterized by a low potential value, representing

potential wells; obstacles are characterized by high potential values, representing

a maximum of the potential function. The force acting on the end effector is

proportional to the negative gradient of the potential field and encourages the

manipulator to move toward minimum points (e.g., targets), while avoiding

obstacles.

 Research problem

1.5.1 Adaptive Active Constraints

In the vast majority of robotic applications, active constraints geometries are

computed via a separate process that precedes the actual execution of the task. In

surgical applications, constraints are computed during the preoperative phase and

are subsequently enforced during the intraoperative phase. The reliability and the

exactness of the spatial distribution of such constraints relies on the hypothesis

that the intraoperative scenario can be modeled via its preoperative counterpart:

the environment is, thus, considered enough stable to deploy “static” active

constraints. On the other hand, there is a number of applications, documented on

literature (Ren, 2008), (Ryden, 2012), (Kwoh, 2013), that require the use of

“dynamic” fixture as a consequence of the time evolution of the geometry that

Figure 1.25 Constraints enforces as potential fields. The target acts as an attraction point, while

the obstacle acts as a repulsion point (Bowyer, 2014).

40

describes the surgical environment. Dynamic virtual fixture are currently used in

“beating heart” surgery, where the natural contraction of the heart is tracked

through the use of MRI-based imaging systems and the shape of the constraint is

consequently updated. Minimally Invasive Surgery (MIS) applications involve

the use of snake robot as endoscopic probe (Figure 1.26). In (Kwoh, 2013) a

methodology is proposed to optimize the manipulator joint configuration on the

basis of the actual anatomical constraints that are computed using real-time

proximity queries. In other applications, it might be useful to adapt the geometry

of the constraint, or the assistance level provided by the haptic feedback, on the

basis of the classification and interpretation of user commands. During the

execution of a task, the presence of unwanted obstacles or unplanned target points

might induce the human operator to intentionally move the end-effector against

the constraint, as a result of changed environmental conditions. In this case, it

would be beneficial to detect such intentional action and, consequently, update

either the geometry or the stiffness of the constraint, in order to adapt to the new,

unpredictable scenario. In (Passenberg, 2011), the authors investigate whether

Figure 1.26 Snake robot deployed as endoscopic probe. The joint configuration is

optimized on the basis of the evolution of soft tissues geometry (Kwoh, 2013).

41

interaction forces can be used to distinguish between scenarios where human and

assistant agree and where they disagree. A simple experimental design was

implemented, consisting of two scenarios: a maze without obstacles (SC1) and a

maze with obstacles (SC2) (Figure 1.27).

Each user was asked to avoid contact with walls and obstacles while moving as

quickly as possible. The haptic feedback helped the user to move the virtual object

along the desired path, from “start” to “end”. However, in the second scenario,

the presence of obstacles induced the user to act perpendicularly against the

constraint to circumvent the obstacles. Results showed that the interaction force

is a good estimator of the agreement level between the user and the assistant. In

SC1, subjects did not act strongly against the constraint, as it was helpful. On the

contrary, in SC2, higher forces were recorded, as the subject had to intentionally

violate the constraint to avoid obstacles.

In (Li, 2003), authors propose a real-time method, based on Hidden Markov

models, to detect and classify any change in the user intention, on the basis of the

measured interaction forces between the constraint and the tool tip. The model

was trained to recognize three actions: idling, following a path, and avoiding an

Figure 1.27 Virtual scenarios deployed for the experiments. On the left, it is shown a virtual maze

without obstacles. On the right, it is shown a virtual maze with obstacles (Passenberg, 2011).

42

obstacle. Results showed that the average accuracy of real-time recognition

continuous among all subjects exceeded 90%.

1.5.2 Research Question

As discussed in the previous section, in a number of surgical applications, it might

be beneficial to detect and interpret the user’s commands in order to provide some

kind of adaptation in the assistance level provided by the active constraints. In

general, active constraints help the operator in the execution of cooperative tasks

by anisotropically regulating the tool motion, and enhancing the precision and

accuracy of movements. However, when dealing with unstructured and/or

dynamic environments, some events might occur that the robot controller is not

able to properly interpret. For example, the user might want to depart from a

constraint to circumvent unpredicted obstacles or to reach unplanned targets that

lie within forbidden regions. In these cases, the constraint is perceived as a

hindrance for the execution of the task and, consequently, its geometry and/or

haptic strength should be modified accordingly. In order to modulate the

assistance level, it is necessary to correctly detect and identify the current user’s

intention on the basis of some kind of information (e.g. sensory information).

In this work, we decided to identify two rather general types of user’s actions:

- Intentional Violation of active constraints;

- Unintentional Violation of active constraint.

Intentional violations take place whenever the current action of the user is in

disagreement with the purpose of the constraint, typically resulting from

environmental sensing limitations of the robotic system. In this case, the

constraint is felt as a hindrance, resulting in disturbing interaction forces at the

tool tip. On the other hand, unintentional violations occur when the user shares

the purpose of the constraint and accidental errors in the task execution are made.

If we were able to reliably detect the occurrence of intentional violations, it would

43

consequently possible to adapt the assistance level provided by the constraint (e.g.

remove the constraint or weaken its magnitude).

In this project, we decided to investigate whether it is possible to distinguish

between intentional and unintentional violations of active constraints, on the basis

of the interaction force signals. To answer this question we trained and validated

three different binary classifiers:

1. A classifier based on a continuous Hidden Markov Model with Gaussian

output;

2. A classifier based on a feedforward Neural Network trained on the basis

of statistical parameters describing the force signals;

3. A classifier based on a feedforward Neural Network trained on the basis

of the energy distribution of the force signal across the different levels of

the Wavelet decomposition.

As the classification should provide real-time adaptation of the assistance level,

each model was evaluated in terms of:

- Minimum interval time required, after the violation has started, to obtain

reliable classification of the intentions. In other words, we wonder which

is the minimum amount of information, in terms of force signal, to

correctly distinguish intentional violations from unintentional violations.

- Penetration depth into the constraint;

- Evolution of the classification performances over time.

44

2 Materials and Methods

In this chapter, we present the methodology and the experimental design adopted

to research methods for the classification of “intentional” and “unintentional”

violations of active constraints. The performance of Hidden Markov Models,

taken from the literature, and Neural Networks, first proposed in this work, are

investigated within this experimental framework. The chapter will be organized

in four sections:

1. Active Constraints. In this section we discuss the definition, the evaluation

and the enforcement methods we chose for the core active constraint

formulation upon which the classifier was built.

2. Experimental Design. In this section we discuss the methodologies

adopted to perform the experiments from which classifiable data was

generated, describing the hardware and software setups, and the

experimental protocol.

3. Classification Methods. In this section we discuss how we implemented

Neural Network (NN)-based classifiers, and Hidden Markov Models

(HMM)-based classifiers that operated in the experimentally produced

active constraint violation data;

4. Data Analysis. In this section we discuss the performance indices chosen

to evaluate the classification capabilities of each classifier.

 Active Constraints

Active constraints are high-level control algorithms that are deployed in man-

machine cooperative tasks to improve the performance of the task execution in

45

terms of accuracy, precision and speed, while relying upon the constant

supervision of the operator. As explained in the previous chapter, and widely

discussed in (Bowyer, 2014), a generalized framework is introduced, composed

of three main step: constraint definition, in which the geometry is described;

constraint evaluation, in which the relative constraint-robot position are assessed;

constraint enforcement, in which the geometry is transformed into position/force

commands. Although constraints can be classified on the basis of their geometry

and/or enforcement law, we chose to follow an alternative classification, proposed

in (Bowyer, 2014) and (Abbott, 2007), that is based on the purpose of the

constraint, namely which is its function with respect to the task to be executed.

Two main classes have been identified:

- Guidance Constraints;

- Regional Constraints.

Guidance constraint help the operator to move along a preplanned trajectory,

while regional constraints prevent the user from entering forbidden region of the

workspace. We chose an enforcement methodology, based on a simple proximity

function and a 1st order dynamic model (e.g., spring-damper model, Figure 2.1):

Figure 2.1 First order dynamic model for the

calculation of the haptic force provided by

the active constraint.

46

𝒇(𝑡) = 𝐾 (𝒙(𝑡) − 𝒙𝑒𝑞(𝑡)) − 𝐷 (𝒙̇(𝑡) − 𝒙̇𝑒𝑞(𝑡)) (Eq. 2.1)

where 𝒇 is the feedback force, 𝒙(𝑡) is the Cartesian position of the end-effector,

𝒙𝑒𝑞(𝑡) is the closest point on the constraint geometry to the end-effector, and 𝐾,𝐷

are the stiffness and damping parameters of the active constraint, respectively.

The computation of the 𝒙𝑒𝑞(𝑡) is carried out through a real-time closest-point

algorithm, based on the Euclidean norm. This approach has been discussed in

section 1.4.1.1.

2.1.1 Guidance Constraints

Guidance constraints assist the user in moving the robot manipulator along

desired paths or surfaces in the workspace (Abbott, 2007). The enforcement of

guidance constraints requires the definition of a set of reference directions that are

used to describe the assistance level provided by the haptic feedback. In general,

such directions are computed with respect to the local reference frame on the

trajectory, yielding a perpendicular (𝝅) and a tangential (𝝉) direction of motion

(Figure 2.2). The corresponding amount of perpendicular haptic force

Figure 2.2 Local reference frame located onto the trajectory, yielding a perpendicular 𝝅

and a tangential 𝝉 direction.

47

compensates for any deviation of the robot from the path. The tangential

component of the haptic force encourages the operator to move along the path and

thus it identifies the preferred direction of motion. The assistance level provided

is proportional to the magnitude of the force. The perpendicular component of the

force 𝒇𝝅 can be defined such that a percentage of perpendicular deviation is

admitted; namely, the constraint actively helps the operator when a certain

threshold is overcome. The value that sets this degree of deviation error, defines

a tube-shaped region, whose longitudinal axis corresponds to the desired path

(Figure 2.3). The mathematical relationship that describes the guidance constraint

enforcement is the following:

𝒇 = 𝒇𝝉 + 𝒇𝝅 (Eq. 2.2)

Where 𝒇𝜏 and 𝒇𝜋 are the tangential and perpendicular components of the haptic

force. These components are defined as:

Figure 2.3 Guidance Constraints define a tube-shaped region (dotted lines), whose longitudinal

axis is the correct path (black line). Within this region, the haptic force is zero, as a certain degree

of perpendicular error is permitted.

48

𝒇𝜋(𝑡) = 𝐾π(𝒙(𝑡) − 𝒙𝑒𝑞(𝑡) − 𝑟𝝅) + 𝐷π (𝒙̇(𝑡) − 𝒙̇𝑒𝑞(𝑡)) (Eq. 2.3)

𝒇𝜏(𝑡) = 𝐾τ(𝒙(𝑡) − 𝒙𝑒𝑞(𝑡) − 𝑟𝝉) + 𝐷τ (𝒙̇(𝑡) − 𝒙̇𝑒𝑞(𝑡)) (Eq. 2.4)

If |𝒙(𝑡) − 𝒙𝑒𝑞(𝑡)| < 𝑟.

𝒙(𝑡) is the Cartesian position of the end-effector; 𝒙𝑒𝑞(𝑡) is the closest point on

the constraint geometry to the end-effector; 𝑟 is the variable that represent degree

of perpendicular error allowed; 𝝅 is the unit vector that identifies the orthogonal

direction; 𝐾π, 𝐷π and 𝐾τ, 𝐷τ are the stiffness and damping parameters of the

system in both directions, respectively.

An example of guidance constraints enforcement can be found in (Burghart,

1999). In this study, guidance constraints are used to improve the outcomes of

craniofacial surgical intervention, by restricting the surgeon’s hands motion while

guiding a surgical saw attached to the manipulator. In the planning step, the path

is split into segments, around which, two concentric cylinders are constructed.

Within the inner cylinder the surgeon is allowed to guide the saw without

constraints. As soon as he/she moves the tool into the outer cylinder, an increasing

force has to be applied to continue into the desired direction. Finally, if the

surgeon tries to push the tool further beyond the outer cylinder, the robot prohibits

any further movement of the surgical saw into the forbidden zone.

Figure 2.4 Guidance constraint enforcement for enhanced craniofacial surgery.

49

2.1.2 Regional Constraints

Regional constraints, also called “forbidden-region” constraints, prevent the robot

form entering into restricted regions of the workspace. They have an on/off nature,

such that they have no effect on the robot when it is outside of the forbidden region

(Abbott, 2007). In general, the haptic force generated by the presence of the

constraint acts perpendicularly to the surface (Figure 2.5). Unlike guidance

constraints, there is not a tangential component of the force, because no preferred

directions of motion are defined. Similarly to guidance constraints, we chose a 1st

order dynamic model as enforcement method:

𝒇(𝑡) = 𝐾 (𝒙(𝑡) − 𝒙𝑒𝑞(𝑡)) − 𝐷(𝒙̇(𝑡) − 𝒙̇𝑒𝑞(𝑡)) (Eq. 2.5)

𝒙(𝑡) is the Cartesian position of the end-effector, 𝒙𝑒𝑞(𝑡) is the closest point on

the constraint geometry to the end-effector, and 𝐾,𝐷 are the stiffness and damping

parameters of the system, respectively.

Figure 2.5 Forbidden-region constraints enforcement. The haptic force acts perpendicularly

to the constraint surface, encouraging the human operator to place the tool tip safely into

the safe region.

50

An example of regional constraint deployment is discussed in (Park, 2001):

medical images were used to align virtual planes between an artery that requires

dissection and the chest wall to which it was attached. The tool was constrained

within a safe region, enabling the surgeon was assisted in accurate resection of

the artery, for sternotomies or bypass graft procedures (Park, 2001).

 Experimental Design

In this section, we discuss the architecture of the overall system that composes the

experimental design used to generate classifiable constraint violation data:

- The software setup, that is composed of several Graphical User Interfaces

(GUIs) to set, control, and visualize the tasks;

- The hardware setup, that is composed of a control console, a display to

provide visual feedback during the execution of the task, and the haptic

interface;

- The experimental protocol, that describes the guidelines followed to

create two subsets of ten path-following and target-reaching tasks, and the

instructions for the execution of the tasks, customized to obtain reliable

and reproducible results;

2.2.1 Software Setup

The software setup is composed of three main sections: the “settings” interface,

the control system and the “task” interface. In the first section it is possible to

choose and customize the task to be executed, according to the goal of the project;

in the second section a closed-loop system is implemented for the runtime control

of the haptic interface; the last section is characterized by a graphical interface

that is shown to the subjects while executing the task.

51

2.2.1.1 Settings GUI
The creation of customized tasks is accomplished by means of dedicated

Graphical User Interfaces (GUIs), which allow the operator to set all the

meaningful parameters according to the goal of the project. Three interfaces were

programmed:

1. “Workspace settings” GUI. This interface is designed to set the

workspace boundaries and the required safety limitations;

2. “Path-following setting” GUI. This interface is designed to customize the

“path-following” tasks to produce data for the evaluation of classification

performance in the case of “guidance” constraints;

3. “Target-reaching setting” GUI. This interface is designed to customize

the “target-reaching” tasks to produce data for the evaluation of the

classification performances in the case of “forbidden region” constraints.

Figure 2.6 "Workspace settings" GUI.

52

2.2.1.1.1 “Workspace settings” GUI

The “Workspace Settings” GUI (Figure 2.6) is designed to set the workspace

boundaries and the safety limits. Workspace boundaries prevent the haptic

interface from assuming any joint configuration close to singularities, while safety

limitations represent the maximum torque that can be applied to the joints of the

manipulator. The user can set up to nine parameters:

- Six parameters set the position boundaries along the three Cartesian

directions(𝑋, 𝑌, 𝑍). These limitation are chosen in order to avoid

singularities that occur when the configuration is close to the physical

limits of the haptic interface;

- The maximum torques that can be safely enforced to each actuator of the

haptic master.

2.2.1.1.2 “Path-Following settings” GUI

The “Path-following settings” Graphical User Interface (Figure 2.7) is designed

to set the geometrical parameters that characterize the “path-following” tasks, for

the evaluation of guidance constraints.

The interface is composed of several subpanels, by which it is possible to set

different parameters:

- Update the coordinates (𝑋, 𝑌, 𝑍) of the boundary points of the trajectory,

labelled in Figure 2.7 as “Start point” and “End point”;

- Set two parameters, “number of middle points” and “scale”, which allow

for the introduction of some degree of variability in the definition of the

trajectory. The first variable is related to the number of intermediate,

equally spaced points that are sampled along the straight line linking the

“Start” and the “End” points. The second variable introduces a degree of

variability in the positioning of these points by scattering them around,

53

F
ig

u
re

 2
.7

 "
P

at
h
-f

o
ll

o
w

in
g
 s

et
ti

n
g
s"

 G
U

I
fo

r
th

e
cu

st
o

m
iz

at
io

n
 o

f
"p

at
h

-f
o

ll
o

w
in

g
"

ta
sk

s.
 I

n
 f

ig
u
re

 t
h
e

tr
aj

ec
to

ry
,

it
s

b
o

u
n
d

ar
y
 p

o
in

ts
 “

st
ar

t”
 a

n
d

“E
n
d

”,
 a

n
d

 t
h
e

ci
rc

u
la

r
o

b
st

ac
le

s
th

at
 a

re
 p

la
ce

d
 a

lo
n
g
 t

h
e

p
at

h
.

T
h
e

fe
at

u
re

s
o

f
th

e
ta

sk
 c

an
 b

e
u
p

d
at

ed
 t

h
ro

u
g
h
 t

h
e

tw
o

 s
u

b
p

an
el

s
o

n
 t

h
e

ri
g

h
t

h
a
n
d

si
d

e.
 T

h
e

re
d

-f
ra

m
ed

 p
an

el
 a

ll
o

w
s

fo
r

th
e

m
o

d
if

ic
at

io
n
 o

f
th

e
ra

d
iu

s
an

d
 n

u
m

b
er

 o
f

o
b

st
ac

le
s.

 T
h
e

g
re

en
-f

ra
m

ed
 p

an
el

 a
ll

o
w

s
fo

r
th

e
m

o
d

if
ic

at
io

n

o
f

th
e

tr
aj

ec
to

ry
 c

h
ar

ac
te

ri
st

ic
s.

54

according to a 2D uniform statistical distribution. These points are then

used to calculate the trajectory according to a spline-based interpolation

(Figure 2.8);

- Set the number and radius of obstacles to lay along the path. Obstacles are

depicted in (Figure 2.7) as circles;

- Set the radius 𝑟 (Eq. 2.3) of the guidance constraint, namely the distance

to exceed when leaving the path to feel the effect of the constraint;

- “Plot” window, in which the effects of the intermediate updates of the

parameters are displayed.

Figure 2.8 Trajectory computation. A number of intermediate points is sampled along the straight

line linking the boundary points (red points, A). These points are scattered around according to a

uniform statistical distribution (green points, B). The trajectory is the result of a spline-based

interpolation (red line, C).

55

- “Plot” and “Update” buttons to control the setting process.

2.2.1.1.3 Target-Reaching settings GUI

The second Graphical User Interface allows the user to customize the “target-

reaching” task. Figure 2.9 shows an overview of the window through which it is

possible to modify the following elements:

- The coordinates (𝑋, 𝑌) of the center point. The updated values are typed

in the “X center” and “Y center” editable textboxes;

- The number of targets, that characterizes the task, can be updated in the

“number of targets” editable textbox;

- The dispersion radius of the targets is the measure of the distance between

the center point and each target. Its value is typed in the “radius” editable

textbox and identifies a circumference from which the coordinates of the

targets are sampled. The targets are equally spaced from each other, i.e.

∆𝛼 =
2𝜋

𝑛
 (Eq. 2.6)

where ∆𝛼 is the angular distance and 𝑛 is the total number of targets.

- The distance of the regional constraints enforced. Each target is associated

with one regional constraint. Each fixture can either be helpful or

unhelpful: in the first case, the fixture is placed beyond the target,

effectively helping the user accomplishing the task without hindering it.

In the second case, the fixture lies before its associated target, hindering

the reaching goal. For any number 𝑛 of targets, the nature of the constraint

is statistically distributed with probability of 50%. Both parameters can be

set in the “Helpful Wall” and “Not Helpful Wall” editable textboxes;

- “Plot”, “Update” and “Save” buttons to manage the setting process.

56

F
ig

u
re

 2
.9

 "
T

ar
g
et

-r
ea

ch
in

g
 s

et
ti

n
g
s"

 G
U

I.
 T

h
is

 G
U

I
al

lo
w

s
fo

r
th

e
c
u
st

o
m

iz
at

io
n
 o

f
th

e
ta

rg
et

-r
ea

c
h
in

g
 t

as
k
 f

o
r

th
e

e
v

al
u
at

io
n

 o
f

fo
rb

ie
n

-r
eg

io
n

57

2.2.1.2 Control System

The system that supports the execution of the tasks implements a Cartesian control

that, based on position data of the tool tip of the manipulator, calculates the

amount of haptic force required to help the user to accomplish the task. A scheme

of the control system is shown in Figure 2.10.

The Cartesian control system is composed by the following blocks:

- The haptic interface;

- A derivative step that calculates the Cartesian velocity of the tool tip by

applying a First Order Adaptive Windowing on the raw position data.

Such an approach, though introducing a time delay, provides an intrinsic

reduction of the noise affecting the position measurement and an improved

controller stability;

- A block that embeds a closest-point algorithm to calculate the value of the

parameter 𝒙𝑒𝑞(𝑡) (Eq. 2.1), necessary to modulate the direction and

Figure 2.10 Overview of the control system.

58

magnitude of the feedback force. Its value is computed by applying a

runtime proximity function based on the Euclidean norm between the

current position of the tool tip, and the closest point lying on the constraint.

- A block that calculates the modulus and the direction of the Cartesian

feedback force that has to be applied to the tool tip of the manipulator;

- A block that implements the runtime calculation of the Jacobian matrix

𝐽𝑇, based on the current values of the joints position, read out from the

encoders of the master. The matrix is used to calculate the values of the

torques commands to feed back to the haptic interface;

- A real time block that computes the relationship between the simulation

clock and the CPU clock.

2.2.1.2.1 FOAW algorithm for velocity calculation

The calculation of the Cartesian velocity at the end-effector of the haptic interface

was carried out by implementing a First Order Adaptive Windowing on raw

position data (Janabi-Sharifi, 2000). The choice to implement such a methodology

is due to the fact that the haptic device was characterized by a noisy velocity signal

that caused high frequency vibration, influencing the stability of the system.

Let 𝑥(𝑡) be a position signal that is sampled with period T. The measurement of

the position 𝑥(𝑡) is corrupted by noise due to quantization (encoders, digital

converters), or to other sources. The measurement model is the sum of the real

position value 𝑥(𝑡) and some uncorrelated noise, i.e.

𝑦(𝑡) = 𝑥(𝑡) + 𝑐(𝑡) (Eq. 2.7)

where 𝑦(𝑡) is the measured position, 𝑥(𝑡) is the true position, and 𝑐(𝑡) is the noise

that corrupts the signal. In the absence of additional information, the error can be

59

considered to have a zero mean bounded uniform distribution (e.g. the case of

pure quantization).

The problem is to find a good estimator 𝑣(𝑡) of the true velocity 𝑣(𝑡),

𝑣(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
 (Eq. 2.8)

A good estimator should be able to both reject the noise and minimize calculation

delay that could compromise the stability of the closed-loop system.

One of the classical approaches is the Finite Difference Method (FDM), based on

the Euler approximation of the derivative operator, yielding the following

estimate:

𝑣(𝑡) =
𝑦𝑘 − 𝑦𝑘−1

𝑇
=

𝑥𝑘 − 𝑥𝑘−1

𝑇
+

𝑐𝑘 − 𝑐𝑘−1

𝑇
 (Eq. 2.9)

Where 𝑘 is the current time instant and 𝑇 is the sample time. This method

asymptotically breaks down at high sampling rates, when high time resolution is

needed for feedback control. As the sampling time 𝑇 becomes smaller, the

position increments decrease, but the noise component does not and is

correspondingly amplified. The First Order Adaptive Window algorithm

introduces an implicit down-sampling step, by online adjusting the length 𝑛 of the

window within which to apply the Finite Difference method. This operation is

equivalent to averaging the last 𝑛 velocity estimates,𝑣𝑘, 𝑣𝑘−1,…, 𝑣𝑘−𝑛, with 𝑣𝑖

obtained from the FD method, i.e.

𝑣𝑘 =
1

𝑛
∑ 𝑣𝑘−𝑗 =

𝑦𝑘 − 𝑦𝑘−𝑛

𝑛𝑇

𝑛−1

𝑗=0

 (Eq. 2.10)

60

As the application of large windows introduces time delay that might compromise

the stability of the system, the width of the window should be properly adjusted

according to the characteristics of the measured position signal 𝑦(𝑡): large

windows should be applied at slow velocities and short windows should be

applied at faster velocities. Noise reduction and precision put a lower bound on

the window size, while reliability provides an upper limit for the window length.

In other words, a criterion should be established to determine whether the slope

of a straight line reliably approximates the derivative of a signal between two

samples 𝑥𝑘, 𝑥𝑘−𝑛. The selected criterion is then used to find the longest window

which satisfies the accuracy requirement, solving a min–max problem.

The FOAW method is based on finding a window of length 𝑛, where 𝑛 =

max {1, 2, 3, … }, such that

|𝑦𝑘−𝑖 − 𝑦̅𝑘−𝑖| ≤ 𝑑, ∀𝑖 ∈ {1, 2, … , 𝑛} (Eq. 2.11)

where 𝑦𝑘−𝑖 is the measured signal at time instant (𝑘 − 𝑖); 𝑦̅𝑘−𝑖 is the

approximation of 𝑦𝑘−𝑖 calculated by means of the straight line that linearly

interpolates the boundary points of the window 𝑦𝑘 and 𝑦𝑘−𝑛; 𝑑 is the peak of the

noise superimposed to the signal, i.e.

𝑑 = ||𝑐𝑘||∞ ∀𝑘 (Eq. 2.12)

The steps of the algorithm are the following (Janabi-Sharifi, 2000):

1. Set 𝑖 = 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑;

2. Calculate the straight line that interpolates the points 𝑦𝑘, 𝑦𝑘−𝑖;

3. Check whether the line passes through all the points inside the window,

within the uncertainty band of each point.

61

4. If so, and if 𝑖 < 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, set 𝑖 = 𝑖 + 1 and GOTO step 3. Else return

the last estimate 𝑛 = 𝑖.

After the optimal window size has been found, the slope of the straight line gives

the estimation of the velocity 𝑣𝑘. To improve the robustness of the estimation a

Least Squares approximation was use instead of the slope value of the

interpolating straight line, giving the following estimate:

𝑣̅𝑘 =
𝑛 ∑ 𝑦𝑘−𝑖 − 2𝑛

𝑖=0 ∑ 𝑖 𝑦𝑘−𝑖
𝑛
𝑖=0

𝑇𝑛(𝑛 + 1)(𝑛 + 2)/6
 (Eq. 2.13)

The application of the Least Squares provides additional smoothing, preventing

undesired overshoots due t fast changes in the window size.

For the control system implemented the length of the window was bounded within

the interval [50, 100] samples, while the noise norm of the position data was set

to 𝑑 = 0.6𝑚𝑚.

2.2.1.2.2 Closest-point algorithm

The computation of the haptic force to help the user enhancing the task

performances requires some knowledge about the relative geometry between the

current position of the tool tip 𝒙(𝑡) and the constraint geometry. Such

computation is carried out by means of a proximity function based on the runtime

calculation of the Euclidean norm:

𝑑(𝑡) = √[𝑥𝑝(𝑡) − 𝑥𝑐(𝑡)]
2 + [𝑦𝑝(𝑡) − 𝑦𝑐(𝑡)]

2 (Eq. 2.14)

where 𝑑 is the Euclidean norm, (𝑥𝑝, 𝑦𝑝) are the 2D Cartesian coordinates of the

tool tip and (𝑥𝑐, 𝑦𝑐) are the Cartesian coordinates of the generic point belonging

62

to the enforced constraint. The closest-point algorithm computes the coordinates

(𝑥𝑒𝑞 , 𝑦𝑒𝑞) that minimize the value of the Euclidean norm:

(𝒙𝑒𝑞(𝑡), 𝒚𝑒𝑞(𝑡)) = argmin
𝑥𝑐,𝑦𝑐

(𝑑(𝑡)) (Eq. 2.15)

At each time step, 𝒙𝑒𝑞(𝑡), 𝒚𝑒𝑞(𝑡) are computed by comparing the current tip

position (𝑥𝑐, 𝑦𝑐) to the discretized points that describe the constraint geometry,

and used to provide the right amount of feedback force.

As shown in Figure 2.11, the point that satisfies (Eq. 2.14) identifies a tangent to

the constraint profile that is perpendicular to the straight line passing through such

point and the point that marks the current position of the tool tip.

Figure 2.11 Closest-Point algorithm for the calculation of the magnitude of the feedback force:

𝒙𝒆𝒒 (𝒕) is the point that belongs to the constraint geometry, that minimizes the distance 𝒅(𝒕).

63

2.2.1.2.3 1st Order Dynamic Model

The computation of the magnitude and direction of the feedback force to apply to

the haptic master is based on the choice of a “constraint enforcement” method. As

described in section 1.4.1.3, there is a wide variety of methods described in

literature for enforcing active constraints, each one having attributes that lend

themselves to certain applications over others (Bowyer, 2014). According to the

goal of this project, a “Simple Function of Constraint Proximity” was selected, as

it met all the requirements of the system, such as the permission of small

magnitude penetration while relying on a simple representation of the constraint

itself. The behavior of the active constraint is a linear model with derivative terms,

that yields a 1st order differential equation that represents a mechanical spring-

damper system.

The mechanical behavior of guidance constraints is described by equations (Eq.

2.2) (Eq. 2.3) (Eq. 2.4): the total haptic force is given by the sum of a

perpendicular component 𝒇𝝅 that corrects for any deviations from the path, and

the parallel component 𝒇𝜏 that encourages the user to move along the path. In our

application, the parallel component was set equal to zero:

𝒇𝜏 = 0 (Eq. 2.16)

𝒙̇𝑒𝑞(𝑡) = 0 (Eq. 2.17)

The total haptic force is thus defined as:

𝒇(𝑡) = 𝐾(𝒙(𝑡) − 𝒙𝑒𝑞(𝑡) − 𝑟𝝅) + 𝐷𝒙̇(𝑡) (Eq. 2.18)

64

where 𝒙(𝑡) is the position of the tool tip, 𝒙𝑒𝑞(𝑡) is its closest point that belongs

to the constraint geometry, 𝐾 and 𝐷 are the stiffness and the damping parameters

of the system.

Regional Constraints are described by equation (Eq. 2.5). By applying (Eq. 2.20),

the mechanical behavior of this type of constraint is defined as:

𝒇(𝑡) = 𝐾 (𝒙(𝑡) − 𝒙𝑒𝑞(𝑡)) + 𝐷𝒙̇(𝑡) (Eq. 2.19)

where 𝒙(𝑡) is the position of the tool tip, 𝒙𝑒𝑞(𝑡) is its closest point that belongs

to the constraint geometry, 𝐾 and 𝐷 are the stiffness and the damping parameters

of the system.

The value and sign of the stiffness 𝐾 are important to determine the dynamic

behavior of the system: any change in the magnitude of the stiffness affects how

Figure 2.12 Spring-damper mechanical model used to represent the behavior

of the constraint.

65

strongly the constraint acts upon the haptic master: an increase in its value

requires exerting a higher force to reach the same penetration depth. The sign of

the stiffness determines whether the behavior of the fixture is “attractive” or

“repulsive”: in the first case, motion toward the constraint is encouraged, while in

the second case the tool tip is pushed away from it. A representation of both

scenarios is shown in Figure 2.13.

In our system, a positive value of stiffness was set, yielding a compound attractive

behavior.

2.2.1.2.4 Jacobian Matrix

The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-

valued function. Suppose that:

𝐹 ∶ ℝ𝑛 → ℝ𝑚 (Eq. 2.20)

is a function which takes as input the vector 𝒙 ∈ ℝ𝒏 and produces as output the

vector 𝑭(𝒙) ∈ ℝ𝒎. Then the Jacobian matrix J of F is a 𝑚𝑥𝑛 matrix defined as:

𝐽 =
𝑑𝑭

𝑑𝑥
 (Eq. 2.21)

Its matrix representation is the following:

Figure 2.13 Attractive (left) and repulsive (right) constraints.

66

𝐽 =

[

𝜕𝐹1

𝜕𝑥1
⋯

𝜕𝐹1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝑥1
⋯

𝜕𝐹𝑚

𝜕𝑥𝑛]

 (Eq. 2.22)

In the field of robotics the Jacobian matrix relates joint velocities to Cartesian

velocities of the end effector of a generic robotic manipulator (Craig, 2005). Its

value is dependent on the current angular position of the joints, yielding at each

time step the geometrical relationship between the joint and Cartesian spaces.

Thus, the dimensionality of the Jacobian matrix is related to the geometrical

characteristics of the robotic manipulator: the number of rows equals the number

of degrees of freedom in the Cartesian space being considered; the number of

columns is equal to the number of joints of the device. In the general case in which

the robot is characterized by six Degrees of Freedom and 𝑘 joints, the Jacobian

matrix has (6 × 𝑘) dimension, yielding the following relationship:

[

𝑣𝑥

𝑣𝑦

𝑣𝑧
𝜔𝑥

𝜔𝑦

𝜔𝑧]

= 𝐽 [
𝑞̇1

⋮
𝑞̇𝑘

] (Eq. 2.23)

where 𝑣𝑥, 𝑣𝑦 and 𝑣𝑧 are the Cartesian components of the linear velocity of the tool

tip, 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 are the Cartesian components of the angular velocity, and

𝑞̇1,…, 𝑞̇𝑘 are the joint velocities, either linear or angular, depending on the nature

of the joint, prismatic or rotational, respectively. The Jacobian matrix is not only

an important parameter for kinematic transformations, but also when dealing with

dynamic variables. As shown in Figure 2.14, it is possible to establish a direct

67

proportionality relationship between the Cartesian force acting on the end effector

and the torque acting on each joint whose compound action results in such a force.

The relationship is the following:

𝝉 = 𝐽𝑇𝑭 (Eq. 2.24)

where 𝝉 is the torque applied at joints level, 𝑱 is the Jacobian matrix and 𝑭 is the

resulting Cartesian force felt at the tip of the haptic device. In our system, a custom

block calculates the runtime value of 𝑱, that is then used to obtain the torques

vector corresponding to the Cartesian force provided by the active constraint.

Figure 2.14 Representation of the relationship of the Cartesian force felt

at the end-effector of the manipulator and the torques applied to its joints.

68

2.2.1.2.5 Real Time Block

The real time block is the element of the control system that gives as output the

relationship between the simulation clock and the CPU clock. According to this

relationship, it is possible to calculate the real sampling interval of the signals

recorded. As shown in Figure 2.15, such relationship is characterized by a highly

linear behavior. The estimation of the linear transform is carried out by using a

linear Least Squares approach that aims at computing the equation of the straight

line that best approximates the data. Given a linear overdetermined system:

𝐴𝒙 = 𝑏 (Eq. 2.25)

where 𝐴 is the system matrix, 𝒙 is the vector of the unknown parameters and 𝑏 is

the vector of constant values, the linear Least Squares solution is the following:

𝒙̅ = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (Eq. 2.26)

Figure 2.15 Linear relationship between the simulation time and the CPU time.

69

In our specific case, the application of this method provides the estimation of the

angular coefficient 𝑚 and offset 𝑞 of the generic straight line:

𝑦𝑟𝑒𝑎𝑙 = 𝑚𝑥𝑠𝑖𝑚 + 𝑞 (Eq. 2.27)

where 𝑥𝑠𝑖𝑚 is the vector containing the simulation time and 𝑦𝑟𝑒𝑎𝑙 is the vector

containing the CPU time. By arranging all the known and unknown parameters

into the system, we obtain:

[
𝑥𝑠𝑖𝑚(1) 1

⋮ ⋮
𝑥𝑠𝑖𝑚(𝑛) 1

] [
𝑚
𝑞] = [

𝑦𝑟𝑒𝑎𝑙(1)
⋮

𝑦𝑟𝑒𝑎𝑙(𝑛)
] (Eq. 2.28)

The output of the algorithm are the unknown 𝑚 and 𝑞. The value of the angular

coefficient is further exploited to compute the value of the real sample time, given

the simulation sample time:

∆𝑇𝑟𝑒𝑎𝑙 = 𝑚∆𝑇𝑠𝑖𝑚 (Eq. 2.29)

2.2.2 Hardware setup

The hardware setup is composed of three main elements:

- The control console, by which the operator supervises the execution of the

trials (Figure 2.17);

- The display, that provides visual feedback while the subject is either

following a trajectory or reaching a target (Figure 2.17);

- The haptic interface Phantom OMNI® (Sensable Technologies).

An overview of the system is shown in Figure 2.17. and Figure 2.16

70

Figure 2.17 The Hardware Setup is composed of three blocks: the control console, the display

and the haptic interface.

Figure 2.16 Scheme of the Hardware Setup.

71

2.2.2.1 Haptic Interface: Phantom OMNI® haptic device.

The Phantom OMNI® device, by SensAble Technologies, was chosen as haptic

device.

The device is characterized by the following technical specifications:

- Dexterous Serial manipulator design;

- Portable design and compact footprint for workplace flexibility;

- Compact workspace for ease-of-use;

- Stylus-docking inkwell for automatic calibration;

- Six degree-of-freedom positional sensing;

- Nominal position resolution 𝑟𝑒𝑠 < 0.055𝑚𝑚.

Figure 2.18 Phantom OMNI® haptic device. It is characterized by six degrees of freedom

positional sensing and three torque actuators that control the angular position of the body, the

shoulder and the elbow of the device.

72

2.2.3 Experimental Protocol

The goal of this project is the investigation of the constraint violation

classification performance of two different algorithms: Hidden Markov Models

and Neural Networks. Both classifiers are trained to distinguish between

“intentional” and “unintentional” violation of active constraints. Intentional

violations occur when the enforced constraint does not share the purpose of the

human operator and thus the constraint is felt as a hindrance, resulting in

disturbing forces at the tool tip. On the other hand, unintentional violations are

unavoidable due to intrinsic “biological” errors in the positioning of the tool tip.

We set up a simple experimental protocol, composed of two sections:

- Task Design. In this section will be presented the strategies adopted for

the conception of the tasks and their virtual enforcement;

- Task Execution. In this section will be discussed the guidelines followed

when participants were asked to execute the tasks;

2.2.3.1 Task Design

We decided to separately assess the classification performances for tasks

characterized by either “guidance constraints” or “forbidden-region” constraints.

Hence, it was decided to implement two sets of tasks:

- One subset composed of 10 “path-following” tasks;

- One subset composed of 10 “target-reaching” tasks.

It was decided to introduce a degree of variability across tasks of the same type

to evaluate how the performances of both HMM-based and NN-based classifiers

were affected.

In the first set of “path-following” tasks, the variability was introduced by

changing three factors:

- the number and size of obstacles;

- the length and shape of the trajectory;

73

- the width of the tube-shaped region within which a deviation error is

permitted without any corrective force.

In the second set of “target-reaching” tasks, a degree of variability was introduced

by changing:

- the number of target points;

- the distance between the center point and each target;

- the strength of the “forbidden region” constraint.

2.2.3.2 Task execution

We asked 12 subject, aged between 20 and 30, to perform the total set of 20 tasks

each, ten path-following tasks and ten target-reaching tasks. To guarantee

reliability and reproducibility of the experiments the following guidelines were

followed:

1. The subject is asked which hand he/she prefers using to grasp the stylus

of the Phantom Omni; the relative position between the display and the

haptic interface is consequently adjusted;

2. The subject sits and adjusts the height of the chair such that his/her elbow

can be positioned comfortably on the table;

3. The subject is asked to line up his/her elbow with the centerline of the

haptic manipulator;

4. The robot workspace is defined as follows:

i. 𝑥 ∈ (−90;+90)𝑚𝑚;

ii. 𝑦 ∈ (−70;+05)𝑚𝑚;

5. The subject is asked, pivoting on the elbow, to freely move the stylus,

and set the elbow-robot distance such that he/she can reach the

workspace boundaries without shift the elbow;

74

Path-following protocol. Once the subject is set into the correct position he/she is

asked to execute the first set of following-tasks:

1. The trajectory is visualized on the screen, together with the circular

obstacles (Figure 2.19); a pointer identifies the real-time position of the

tool-tip of the end-effector with respect to the path and obstacles;

2. For each task, the subject is instructed to “follow the displayed trajectory

as accurately as possible, relying both on the visual and haptic feedback.

The circular obstacles must be externally circumvented, either sides, as

accurately as possible, trying not to violate the inner area. The execution

time is not important”.

Figure 2.19 Example of "path-following" task. It is displayed the trajectory (blue

line), and the circular obstacles (red circles) placed along the path.

75

3. The subject is free to choose one of the two boundary points of the path as

“Start point”. The pointer is located onto this point and consequently the

constraints are enforced;

4. The execution is stopped when the opposite point, the “End point”, is

reached.

Target-reaching protocol. After the subject has performed all ten path-following

tasks, he/she can rest to recover from muscular fatigue. After a period of about

five minutes, the target-reaching tasks are executed:

1. The targets are visualized on the screen, marked as red points. The subject

is asked to position the pointer that identifies the tool tip, on the center

point, marked with a blue point.

Figure 2.20 Example of "target-reaching" task. The subject is asked to position the tool

tip, as accurately as possible, onto the current target point, marked with a green point.

76

2. The constraints are enforced, and one of the target become green. The

subject is asked to reach the target and stop the pointer on the green marker

as accurately as possible (Figure 2.20). Once the target is reached, he/she

waits for about three seconds and then returns to the center point;

3. The target point is updated and the user repeats the reaching action toward

the new target.

4. The task finishes once all the targets have been reached.

 Classification Methods

In machine learning theory, classification refers to the problem of identifying to

which set of categories the actual observation belongs. The observation is a vector

of measured/computed features describing the “object” (e.g. a signal) that we

want to place into the correct class or category. In general, classification methods

are built upon two main steps: the training phase and the validation phase. The

training phase is the first step of the procedure, during which the classifier learns

to recognize and distinguish the variety of classes that compose the training set.

According to classification theory, three main training approaches exist (Hertz,

1991):

- Supervised learning, in which the training process is done by comparing

the actual output of the network with known correct answers (learning

with a teacher).

- Reinforcement learning, in which the network knows whether the output

is correct or not;

- Unsupervised learning, in which the training process is carried out

without any teacher: the network is expected to create categories on the

basis of the correlations of the input data, and to produce output signals

corresponding to the input categories.

77

The second step is the validation phase, during which the classifier is used to

categorize new observations, different from those used for the training phase.

In the following sections, two classification approaches are discussed: Hidden

Markov Models (Li, 2006) and Neural Networks. The first approach is an

unsupervised method based upon a probabilistic model of the observation data,

which computes the likelihood that the current observation vector belongs to a

given statistical distribution. The second approach is a supervised methodology

based on a nonlinear mapping function 𝑔 between a 𝑛-dimensional input space

and a 𝑚-dimensional output space. The input space is composed of the

observation vectors, while the output space dimension is equal to the number of

classes we want the input data be sorted.

2.3.1 Markov Models

Markov Models (MM) were first introduced and studied in the late 1960s and

early 1970s as a statistical method to study and model real-world processes. The

reason as to why Markov Models have become increasingly popular in the last

several years is mainly due to the fact that MM are based on a strong mathematical

structure. Hence, they can form the theoretical basis for use in a wide range of

applications, such as on-line handwriting recognition, speech and gesture

recognition, language modeling, motion video analysis and tracking, protein/gene

sequence alignment, stock price prediction.

The conception of Markov models was inspired by the fact that real-world

processes generally produce observable outputs, which can be characterized as

signals. These signals can either be discrete (e.g., characters from a finite

alphabet), or continuous (e.g., temperature measurement). The goal of Markov

Models is to characterize such signals in terms of signal models, namely to build

a mathematical structure that is able to explain the time evolution of the

78

observed/measured phenomenon. The advantages that arise from having a reliable

model are the following:

- A model provides the basis for a theoretical description of a signal

processing system that can be used to process the signal to obtain a desired

output;

- The model can provide a description of the signal source without directly

observing it;

- Models are generally powerful tools in practical applications, like

prediction, recognition and identification systems.

MMs are based on a statistical approach, which is built on the hypothesis that the

observable signal is the result of a parametric random process. The process

parameters can be estimated/determined in a well-defined manner.

2.3.1.1 Markov Chains

The simplest implementation of Markov Models are Markov Chains (Rabiner,

1989). A Markov Chain is a discrete system that is described at any time as being

in one of the set of 𝑁 distinct states 𝑆1, 𝑆2, … , 𝑆𝑁. At each time increment 𝑡 =

1, 2, 3…, the system undergoes a change of state, according to a set of

probabilities associated with each state. In Figure 2.12 is shown a 3-state Markov

Chain with transition probabilities associated to states A, B and C. Markov Chains

are characterized by the following probabilistic description:

𝑃(𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖, 𝑞𝑡−2 = 𝑆𝑘 …) = 𝑃(𝑞𝑡 = 𝑗|𝑞𝑡−1 = 𝑆𝑖) (Eq. 2.30)

where 𝑞𝑡 is the state at time 𝑡 and 𝑆𝑗 identifies the actual state. This probabilistic

description implies that the state at time 𝑡 is a function of only the state at time

𝑡 − 1, yielding a first-order MM.

The transition probabilities matrix 𝐴 is defined as:

79

𝑎𝑖𝑗 = 𝑃(𝑞𝑡 = 𝑗|𝑞𝑡−1 = 𝑆𝑖) 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (Eq. 2.31)

The elements of the matrix 𝐴 obey the following stochastic constraints:

𝑎𝑖𝑗 ≥ 0 (Eq. 2.32)

∑𝑎𝑖𝑗 = 1

𝑁

𝑗=1

 (Eq. 2.33)

If the measured output is the set of states 𝑞𝑡, the model is called “observable”.

Otherwise, if the observation is the result of a probabilistic function of the state,

the model is called “Hidden MM” (HMM).

Figure 2.21 Example of Markov Chain characterized by three states A, B and C.

80

2.3.1.2 Hidden Markov Models (HMMs)

HMMs are discrete models where the current state 𝑞𝑡 is not directly observable,

because the state is “hidden”: what we measure as output is a sequence of

observations produced by a stochastic function of the state, i.e.

𝑶 = 𝑶𝟏 𝑶𝟐 𝑶𝟑 …𝑶𝑻 (Eq. 2.34)

HHMs are described by five parameters (Rabiner, 1989):

- 𝑁 is the number of states of the model;

- 𝑀 is the number of distinct observation symbols (the discrete alphabet

size);

- The state transition probability distribution 𝐴 = {𝑎𝑖𝑗};

- The observation symbol probability distribution in state 𝑗, 𝐵 = {𝑏𝑗(𝑘)},

where

𝑶 = 𝑶𝟏 𝑶𝟐 𝑶𝟑 …𝑶𝑻 (Eq. 2.35)

𝑏𝑗(𝑘) = 𝑃(𝑣𝑘 𝑎𝑡 𝑡|𝑞𝑡 = 𝑆𝑗) 1 ≤ 𝑗 ≤ 𝑁 (Eq. 2.36)

 1 ≤ 𝑘 ≤ 𝑀

- The initial state distribution 𝜋 = {𝜋𝑖}, where

𝜋𝑗 = 𝑃(𝑞1 = 𝑆𝑖) 1 ≤ 𝑖 ≤ 𝑁 (Eq. 2.37)

HMMs are generally associated with three basic problems (Rabiner, 1989):

- Given an observation sequence and a model 𝜆 = (𝐴, 𝐵, 𝜋), how do we

compute 𝑃(𝑂|𝜆), the probability of the observation sequence given the

81

model? Such problem is solved by using the “forward-backward”

algorithm (Rabiner, 1989), (Devijer, 1985);

- Given an observation sequence and a model 𝜆 = (𝐴, 𝐵, 𝜋), how do we

compute the corresponding state sequence that best explains the

observations? Such problem is solved by using the “Viterbi” algorithm

(Rabiner, 1989) (Forney Jr, 1973);

- How do we adjust the model parameters 𝜆 = (𝐴, 𝐵, 𝜋) to maximize

𝑃(𝑂|𝜆)? To solve this problem an iterative procedure is necessary, that

locally maximizes the quantity 𝑃(𝑂|𝜆), such as “Baum-Welch” method

and gradient techniques (Rabiner, 1989).

2.3.1.3 Continuous HMMs

The HMM described so far is suitable when dealing with discrete observations,

for which an observation probability 𝐵 to infer some knowledge about the

process. However, for some applications the measured system output is

continuous signal. Although this problem can be overcome by discretizing the

signal, it is preferred to introduce a probability density function (pdf) to model the

state-observation relationship. The most general representation of the pdf is a

finite mixture if the form:

𝑏𝑗(𝑶) = ∑ 𝑐𝑗𝑚

𝑀

𝑚=1

𝔑[𝑶, 𝜇𝑗𝑚, 𝑈𝑗𝑚] 1 ≤ 𝑗 ≤ 𝑁 (Eq. 2.38)

where 𝑶 is the vector being modeled, 𝑐𝑗𝑚 is the mixture coefficient for the 𝑚th

mixture in state 𝑗 and 𝔑 is any log-concave or elliptically symmetric density, (e.g.,

Gaussian density) with mean vector 𝝁𝑗𝑚 and covariance matrix 𝑼𝑗𝑚 for the 𝑚th

mixture component in state 𝑗. This relationship can be used to approximate,

82

arbitrarily closely, any finite, continuous density function. The mixture gains

satisfy the stochastic constraint:

∑ 𝑐𝑗𝑚

𝑀

𝑚=1

= 1 1 ≥ 𝑗 ≥ 𝑁 (Eq. 2.39)

𝑐𝑚𝑗 ≥ 0 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑀 (Eq. 2.40)

According to these constraints, the pdf is properly normalized such that

∫ 𝑏𝑗(𝑥)𝑑𝑥
+∞

−∞

= 1 1 ≤ 𝑗 ≤ 𝑁 (Eq. 2.41)

The re-estimation process yield the updated values of the mixture coefficients,

the mean vector and the covariance matrix for each mixture (Liporace, 1982).

2.3.2 Neural Networks

Neural Networks (NN) were first introduced as an alternative computational

paradigm to the usual one (based on programmed instruction sequences) which

was introduce by Von Neumann and has been used as the basis of almost all

machine computation to date. NNs studies were inspired by knowledge from

neuroscience and by the wide range possibility of making artificial computing

networks (Hertz, 1991). In particular, the structure and functioning of a general

Neural Network is inspired to the structure and functions of a biological neuron,

shown in Figure 2.22.

83

The general neuron structure is characterized by the following elements:

- A tree-like network of fibers called “dendrites”, that gather in incoming

information;

- A “cell body” or “soma”, where the nucleus is located and where the

dendrites convey the information which is then processed;

- A single long fiber originating from the soma, called “axon”, which

eventually branches into strands and sub-strands. The axon outputs the

processed information to further neurons by means of the synaptic

junctions.

The transmission of the signal from one cell to another is a complex chemical

process whose effect is to raise or lower the electrical potential inside the body of

the receiving cell. If this potential reaches a threshold, an action potential is sent

down the axon: the cell has fired. In 1943, McCulloch and Pitts proposed a simple

model of a neuron as a binary threshold unit that computes a weighted sum of its

inputs and outputs “1” or “0” according to whether this sum is above or below a

given threshold:

Figure 2.22 Scheme of a biological neuron.

84

𝑦𝑖(𝑡 + 1) = φ(∑𝑤𝑖𝑗𝑥𝑗((𝑡) − 𝜇𝑖

𝑗

)) (Eq. 2.42)

or in vector notation,

𝒚 = φ(𝑤𝒙 − 𝝁) (Eq. 2.43)

Where 𝑦𝑖 represents the state of neuron 𝑖 as firing (𝑦 = 1) or not firing (𝑦 = 0), 𝑡

is the discrete time and Θ(𝑥) is the Heaviside function defined as:

φ(𝒙) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 ≤ 0

 (Eq. 2.44)

The weights 𝑤𝑖𝑗 represent the strength of the synaptic junction that connects

neuron 𝑗 to neuron 𝑖. Depending on the nature of such connection, weights might

assume either positive or negative values, corresponding to “excitatory” or

“inhibitory” synapse, respectively. The cell-specific parameter 𝜇𝑖 is the threshold

Figure 2.23 McCulloch Pitts unit.

85

value for unit 𝑖, that sets the value that has to be overcome to have an input signal

𝑦𝑖(𝑡) ≠ 0. An overview of the McCulloch-Pitts structure is shown in Figure 2.23.

Though a McCulloch-Pitts unit is a computationally powerful device, its structure

is much simpler in comparison to the biological neurons that are characterized by

the following features:

- They are not threshold entities, but respond in a continuous way (graded

response);

- They might perform nonlinear summation of inputs;

- They produce a train of impulses, not a simple output level;

- The firing delay is not fixed, but varies stochastically;

- Multiple neurons acts asynchronously with respect to each other;

- The amount of transmitter may vary unpredictably.

A generalization of the McCulloch-Pitts equation that can embed some of these

features is the following:

𝑦𝑖(𝑡 + 1) = 𝑔 (∑𝑤𝑖𝑗𝑥𝑗(𝑡) − 𝜇𝑖

𝑗

) (Eq. 2.45)

where 𝑔(∙) is a more general nonlinear continuous function, called “activation”

or “state” function.

2.3.2.1 Perceptron Units

The fundamental McCulloch-Pitts unit is the building block of the so-called

“Rosenblatt Perceptron”. A perceptron is defined as a layered feed-forward

structure, composed by a set of input terminals, one or more intermediate layers

of units, and a final output layer where the result of the computation is read off

(Hertz, 1991). The structure of a feed-forward network is defined such that each

neuron belonging to the layer 𝑘 can only convey the information to any of the

86

neurons belonging to the next layer 𝑘 + 1. No backward propagation nor

communication with neurons belonging to the same layer is permitted. An

overview of the structure of the perceptron is shown in Figure 2.24.

The structure of a perceptron is defined by the following elements:

- Number of inputs 𝑁;

- Number of outputs 𝑀;

- Number of Hidden layers and number of neurons to locate in each layer;

- Topology of connections among different layers;

- Activation functions that characterize each neuron.

The choice of the proper activation function has to be defined on the basis of the

specific goal of the network. In general, perceptron is required to execute an

association task, that can be cast in the form of asking for a particular output

pattern 𝜉𝑖
𝜇

 in response to a given input pattern 𝜉𝑘
𝜇

. Hence, we want that the actual

output pattern 𝑂𝑘
𝜇

 has to be equal to the target (desired) pattern 𝜉𝑖
𝜇

Figure 2.24 Scheme of the Perceptron Unit.

87

𝑂𝑘
𝜇

= 𝜉𝑖
𝜇
 ∀𝑘, 𝑖 (Eq. 2.46)

Such association between the input and the output spaces requires that the network

learn which is the optimal mapping function between these spaces. The mapping

function can either perform a “linear” or “nonlinear” transformation, depending

on the characteristics of the input data.

The most common activation functions 𝑔(∙) are shown in Figure 2.25

- 𝑦 = 𝑠𝑔𝑛(𝑥);

- 𝑦 = 𝑥;

- 𝑦 = tanh(𝑥) ;

- 𝑦 = 1/(1 + 𝑒−𝑥);

Figure 2.25 Common activation functions: sgn function (A), linear function (B), sigmoidal

function (C) and hyperbolic tangent (D).

88

2.3.2.2 Neural Network Input Spaces

The training process of neural networks is aimed at finding the “local” optimal

mapping function between the input and output spaces:

𝑓:ℝ𝑚 → ℝ𝑛 (Eq. 2.47)

Where 𝑚 is the dimension of the input space and 𝑛 is the dimension of the output

space. The dimensionality of both spaces represents the number of input and

output neurons, respectively. In general 𝑛 < 𝑚. The choice of the dimension of

the output space depends on the particular mapping function that the network has

to perform. For example, in a binary classification function, the output space is

characterized by a dimension 𝑛 = 1, yielding one single neuron that outputs the

result of the classification 𝑦 = ±1. In prototyping tasks, the dimension 𝑛 matches

the number of prototypes that the network should learn to detect and classify. On

the other hand, the input space is composed of the variables deemed meaningful

for the optimal training of the network.

2.3.2.2.1 Statistical Input Space

A statistical parameter is a numerical characteristics of a population or a statistical

model. In statistical inference, parameters are often unknown and have to be

inferred on the basis of the observation of a random sample taken from the

population of interest. Given a continuous time signal 𝑠(𝑡), a general discrete

sequence of 𝑁 samples, that represents a random observation of such signal, can

be expressed as:

𝑝 = {𝑝𝑛} 𝑛 = 1,… ,𝑁 (Eq. 2.48)

89

Starting from a finite sequence of samples, some statistical parameters are defined

to describe the characteristics of the continuous signal (Phinyomark, 2012):

- Arithmetic mean 𝜇;

- Variance 𝜎2;

- Integral Value 𝐼𝑉;

- Energy 𝐸;

- Maximum Value 𝑀𝑉;

- Waveform Length WL;

- Average Amplitude Change AAC.

Arithmetic mean 𝜇. The arithmetic mean 𝜇 is an index of central tendency that

represents the center value of a given random variable. The statistical estimator is

defined as follows:

𝜇 =
1

𝑁
∑𝑝𝑛

𝑁

𝑖=1

 (Eq. 2.49)

where 𝑁 is the number of samples of the observation vector. This statistical

estimator is an “unbiased estimator” of the population mean.

Variance 𝜎2. The variance 𝜎2 is an index of dispersion that represents how far a

set of numbers is spread out. A little value means that the observations tend to be

very close to the mean value. The statistical estimator of the variance is defined:

𝜎2 =
1

𝑁 − 1
∑(𝑝𝑛 − 𝜇)2

𝑁

𝑖=1

 (Eq. 2.50)

where 𝜇 is the mean value, and 𝑁 is the number of samples. This statistical

estimator is an “unbiased estimator” of the population variance.

90

Integral Value 𝐼𝑉. The integral value is defined as the sum of the samples of the

observation vector, i.e.

𝐼𝑉 = ∑𝑝𝑛

𝑁

𝑖=1

 (Eq. 2.51)

Energy 𝐸. The energy of a finite sequence of data is defined as the sum of the

square value of the observation vector, i.e.

𝐸 = ∑(𝑝𝑛)2

𝑁

𝑖=1

 (Eq. 2.52)

Maximum Value 𝑀𝑉. The maximum value is the sample with the absolute highest

value, i.e.

𝑀𝐿 = argmax
𝑛

(𝑝𝑛) (Eq. 2.53)

Waveform Length 𝑊𝐿. The waveform length is the index that estimates the length

of the time profile of the finite sequence. Hence, it is defined as:

𝑊𝐿 = ∑ |𝑝𝑛+1 − 𝑝𝑛|

𝑁−1

𝑖=1

 (Eq. 2.54)

Average Amplitude Change 𝐴𝐴𝐶. The average amplitude change is an estimator

proportional to the derivative of the signal, defined as:

𝐴𝐴𝐶 =
1

𝑁 − 1
 ∑ |𝑝𝑛+1 − 𝑝𝑛|

𝑁−1

𝑖=1

 (Eq. 2.55)

91

The seven parameters above mentioned are the descriptors of a general

observation vector constituted by finite sequence of data withdrawn from a

continuous signal. These parameters are computed from the time evolution of the

signal. In the next section, a frequency-domain approach will be discussed.

2.3.2.2.2 Frequency Input Space

Frequency analysis is an alternative methodology to time analysis when studying

the characteristics of stochastic and deterministic signals. Frequency analysis,

called also “spectral” analysis, performs the decomposition of a given signal into

its basic frequency components. Given a continuous time signal 𝑠(𝑡), the simplest

mapping operator from time domain to frequency domain is the Fourier

Transform (FT), that yields the decomposition of the signal 𝑠(𝑡) into an

orthonormal space constituted by sine and cosine functions given as (Nayak,

2011):

𝑆(𝑓) = ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

 (Eq. 2.56)

where 𝑠(𝑡) is the time signal, 𝑓 is the frequency variable and 𝑆(𝑓) is the Fourier

Transform of the signal. The FT is a complex-valued function of the frequency,

whose absolute value represents the amount of that frequency present in the

original function and whose complex argument is the phase offset of the basic

sinusoid in that frequency. The main drawback of the Fourier Transform is that

the time information is lost, as the quantity 𝑆(𝑡) does not depend on 𝑡 (Nayak,

2011). For this reason, FT is a powerful technique for stationary signals, where

the characteristics do not change with time. For non-stationary signals, the

spectral content changes with time and hence time-averaged amplitude spectrum

found by using Fourier Transform is inadequate to track the changes in the signal

92

magnitude, frequency or phase. The first attempt to introduce an explicit time-

dependence is the Short Time Fourier Transform (STFT), the result of repeatedly

multiplying the signal with shifted short time windows and performing the FT on

it. The STFT of a signal 𝑠(𝑡) is defined as:

𝑆(𝜏, 𝑓) = ∫ 𝑠(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

 (Eq. 2.57)

Where 𝑤(𝑡) is the windowing function, whose purpose is to dissect the signal to

smaller segments, where the segments of the signal are assumed to be stationary.

The resulting spectrum of this window is the “local spectrum”. Figure 2.26 shows

a scheme of the STFT method. The STFT represent a compromise between time

and frequency views of a given signal. It provides some information about both

when and at what frequency a signal event occurs. However, the reliability of the

Figure 2.26 Application of Short Time Fourier Transform. The original signal is windowed and

the local spectrum is calculated.

93

information is strictly linked to the size of the window. Due to the fact that

constant a window is used in STFT approach, all parts of the signal are analyzed

with the same resolution. This constitutes the main drawback of the method,

because at high frequencies good time resolution is needed, while at low

frequencies a good frequency resolution is essential. The frequency resolution is

proportional to the bandwidth of the windowing function, while time resolution

is proportional to the length of the window. Consequently, a short window is

needed for good time resolution, and a long window is needed for good frequency

resolution. This limitation is due to the Heisenberg-Gabor inequality (Nayak,

2011):

Δt ∙ Δf ≥ 𝑐𝑤 (Eq. 2.58)

where Δ𝑡 and Δ𝑓 are the time and frequency resolution, respectively. 𝑐𝑤 is a

constant that is dependent on the type of windowing function used. To overcome

all the problems associated with Fourier analysis, a new mapping function based

on Wavelets Transform is introduced. Like the Fourier Transform, the Continuous

Wavelet Transform (CWT) uses inner products to measure the similarity between

a signal 𝑠(𝑡) and an analyzing function. Unlike, the FT and STFT, that exploit

sine and cosine functions to decompose the signal, this approach deploys wavelets

𝜓, that are waveforms with limited duration in time, average value of zero and

nonzero norm. Table 2.1 shows a comparison of the three analyzing functions

used in Fourier Transform, Short Time Fourier Transform and Wavelet

Transform, respectively.

The principle of CWT is to compare the signal to shifted and scaled (compressed

or stretched) versions of a “mother” wavelet. This operation yields a

transformation 𝑊(𝑡, 𝑓) that embeds both time and frequency information, which

are related to shifting and scaling operations, respectively.

94

Given a mother Wavelet 𝜓, the Continuous Wavelet Transform is defined as:

𝑊(𝑎, 𝑏) = ∫ 𝑠(𝑡)𝑊𝑎.𝑏
∗ (𝑡)𝑑𝑡

+∞

−∞

 (Eq. 2.59)

Analyzing

function
Plot

FOURIER

TRASFORM

Complex

Exponential

𝑒−𝑗2𝜋𝑓𝑡

SHORT TIME

FOURIER

TRANSFORM

Windowed

complex

Exponential

𝑤(𝑡)𝑒−𝑗2𝜋𝑓𝑡

WAVELET

TRANSFORM

Wavelet

function

𝜓(𝑡, 𝑓)

Table 2.1. Comparison of the different mother functions used for spectral analysis, in the case of

Fourier Transform, Short Time Fourier Transform and Wavelet Transform.

95

where 𝑠(𝑡) is the time signal, 𝑎 is the scaling parameter, 𝑏 is the translation

parameter and 𝑊𝑎.𝑏
∗ (𝑡) is the dilation and translation of the mother Wavelet:

𝑊(𝑎, 𝑏) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
) (Eq. 2.60)

As aforementioned, the parameters

𝑎 and 𝑏 control the amount of

scaling and shifting of the mother

wavelet 𝑊(𝑎, 𝑏), respectively.

Hence, the parameter 𝑎 is related

to the frequency content of the

signal, while the parameter 𝑏 is

related to its time information. In

Figure 2.27 is shown the effect of

changing the value of the

parameter 𝑎. The smaller the scale

factor, the more compressed the

wavelet. Conversely, the larger the

scale factor, the more stretched the

wavelet. Therefore, the frequency

support of each wavelet is

modulated accordingly. Stretching

the wavelet in time causes its

support in the frequency domain to

shrink. In addition to shrinking the

frequency support, the center

frequency of the wavelet shifts toward lower frequencies. The effect of the

modulation of the parameter 𝑏 is shown in Figure 2.28. By changing the value of

Figure 2.27 Effect of the scaling factor on the

mother Wavelet.

96

𝑏, the analyzing wavelet undergoes a shift along the time axis, yielding.

Consequently, it is superimposed onto different segments of the signal 𝑠(𝑡),

yielding the time information. In the CWT, both parameters assume continuous

values. In particular:

𝑎𝜖ℝ+, 𝑏𝜖ℝ (Eq. 2.61)

In (Burrus, 1998) it was

demonstrated that the Continuous

Wavelet Transform provides a

redundant representation of the

signal in the sense that the entire

support of 𝑊(𝑎, 𝑏) need not be

used to correctly recover the

original signal 𝑠(𝑡). The

minimum amount of information

that is required to correctly

reconstruct the original signal

𝑠(𝑡) is obtained by down-

sampling the CWT at “dyadic”

intervals. This corresponds to the

evaluation of the CWT at discrete

values of the scaling and shifting

parameters 𝑎, 𝑏, such that:

Figure 2.28 Effect of the shifting factor on the mother

Wavelet.

97

𝑎𝑗 = 2𝑗 𝑗 = 1, 2, …∞ (Eq. 2.62)

𝑏𝑗,𝑘 = 2𝑗𝑘 𝑘 = −∞,…− 1,−2, 0, 1, 2, …∞ (Eq. 2.63)

This operation corresponds to applying a down-sampling procedure to the CWT

yielding the Discrete Wavelet Transform (DTW) of the signal 𝑠(𝑡), defined as:

𝑊(𝑎, 𝑏) = ∫ 𝑠(𝑡)
1

√2𝑗
𝜓 (

𝑡 − 2𝑗𝑘

2𝑗
)𝑑𝑡

+∞

−∞

 (Eq. 2.64)

Graphically, the down-sampling effect corresponds to the superimposition of a

dyadic grid to the CWT.

The Discrete Wavelet Transform has the necessary information for the correct

reconstruction of the original signal by means of the Inverse Discrete Wavelet

Transform (IDWT), defined as:

Figure 2.29 2D representation of the dyadic grid that yields the optimal sampling of the

CWT to preserve all the information of the original signal.

98

𝑠(𝑡) = ∑ ∑ 𝑑𝑗(𝑘)

+∞

𝑗=−∞

2
𝑗

2⁄ 𝜓(2𝑗𝑡 − 𝑘)

+∞

𝑘=−∞

 (Eq. 2.65)

where 𝑑𝑗(𝑡) are the Wavelet coefficients, that can be interpreted as the degree of

correlation between the 𝑠(𝑡) and the mother Wavelet for a fixed pair (𝑎̅, 𝑏̅).

The Discrete Wavelet Transform can be interpreted as an iterative filtering

technique (Burrus, 1998): the computation of the wavelet coefficients 𝑑𝑗(𝑘) at a

fixed scale 𝑎 is the result of the following filtering operation

𝑊(𝑎, 𝑏) = 𝑠(𝑡) ∗ 𝜓(−𝑏/𝑎) (Eq. 2.66)

where 𝜓 has a band-limited spectrum, so the filtering operation is a band-pass

filter. This is the fundamental property that characterizes the Fast Wavelet

Transform (FWT) algorithm, which was first developed by Mallat in 1988. The

algorithm yields the discrete coefficients by recursively applying a band-pass

filter with halved frequency support. The output of the Mallat algorithm is the

Wavelet decomposition tree of the original signal 𝑠(𝑡). At each iterative step, the

band-pass filtering operation splits up the input signal into a low-frequency

component and a high-frequency component, that are usually referred to as

“approximation” (cAn) and “detail” (cDn) coefficients, respectively. The scheme

of the algorithm is shown in FIG. The first step of the algorithm is to apply a band-

pass filter corresponding to the mother wavelet with scale factor 𝑎 = 0 to the

signal 𝑠(𝑡), thus obtaining the 1st level Wavelet decomposition coefficients cA1

and cD1. At each successive step, the frequency support of the actual band-pass

filter is halved, due to the increase in the scale factor with the power of 2. This

filter is then applied to the approximation coefficients obtained at the previous

iteration. The maximum number of iterations that outputs a correct Wavelet

99

decomposition tree is linked to the length of the signal 𝑠(𝑡) and to its sampling

frequency (Burrus, 1998).

An important property of the DWT is that the energy of the signal 𝑠(𝑡) is

distributed across the decomposition tree without loss of information (Pittner,

1999). Let 𝑁 represent the decomposition level be applied to a finite sequence of

data 𝑝 = {𝑝𝑛}. The energy of the sequence of data 𝐸0 is defined as:

𝐸0 = ∑(𝑝𝑛)2

𝑁

𝑖=1

 (Eq. 2.67)

𝑐𝐴𝑘 and 𝑐𝐷𝑘 represent the “approximation” and “detail” sequences at level 𝑘 of

the Wavelet tree. The distribution of energy is formalized as follows:

𝐸0 = 𝐸𝑁
𝑐𝐴 + ∑ 𝐸𝑘

𝑐𝐷

𝑁

𝑘=1

 (Eq. 2.68)

Figure 2.30 Graphical representation of the Wavelet Decomposition algorithm.

100

where 𝐸𝑁
𝑐𝐴 is the energy content of the approximation sequence of level 𝑁, and

𝐸𝑘
𝑐𝐷 is the energy content of the detail sequences of level 𝑘 = 1,… , 𝑁. For each

decomposition level 𝑘, the amount of energy is given by:

𝐸𝑘(%) = 100 ∙
𝐸𝑘

𝐸0
 (Eq. 2.69)

 Data Analysis

The Data Analysis steps are related to signal processing and training phase of the

HMM-based and NN-based algorithms. The main steps are the following:

1. Recording of the Cartesian Force f(t) that describes the evolution of the

interaction between the tool tip of the haptic device and the active

constraint;

2. Segmentation of the force signal on the basis of the existence of interaction

force 𝒇 > 0.

3. Labelling. The segments obtained are automatically labeled as

“intentional ” or “”unintentional violations;

4. Dataset creation. The segments are sorted into different datasets;

5. Training Phase. Both HHM-based and NN-based classifiers are trained to

distinguish between “intentional” and “unintentional” violations;

6. Validation Phase. The trained classifiers are used to classify the

observations of the validation sets;

7. Evaluation. The performance of each method is assessed on the basis of

the associated confusion matrixes and ROC curves.

101

Recording. During the execution of the task, the Cartesian components of the

force vector f(t) are recorded. The z-component of the force is set to zero as the

task is performed on a 2D plane:

𝒇(𝑡) = [
𝑓𝑥(𝑡)
𝑓𝑦(𝑡)

0

] (Eq. 2.70)

The modulus of the force is computed as:

𝑓(̅𝑡) = √𝑓𝑥
2(𝑡) + 𝑓𝑦

2(𝑡) (Eq. 2.71)

Segmentation. For each task, the modulus of the force 𝑓(̅𝑡) is split into segments

(Figure 2.31): Each segment represents one single interaction between the tip and

the constraint. The segments are represented by a nonzero value of the interaction

force:

Figure 2.31 Example of two consecutive force segments, separated by a row of zero samples.

102

𝑓(̅𝑡) > 0 (Eq. 2.72)

Segments are interspersed by force samples equal to zero, meaning that, in that

time interval, the subject, has not violated the constraint. The condition that sets

the boundaries of each segment are the following:

𝑓(̅𝑡) {

= 0, 𝑡𝑠𝑡𝑎𝑟𝑡 − 50𝑚𝑠 < 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡

> 0, 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑

= 0, 𝑡𝑒𝑛𝑑 < 𝑡 < 𝑡𝑒𝑛𝑑 + 50𝑚𝑠
 (Eq. 2.73)

where 𝑡𝑠𝑡𝑎𝑟𝑡 is the time instant in which the interaction begins, 𝑡𝑒𝑛𝑑 is the time

instant where the interaction ends, 50ms is the time required separate two

consecutive segments.

Automatic labelling. To build up a proper classifier, it is necessary to train and

validate the model. During the training phase, the model learns to correctly

classify the input observations of the training set. In particular, Neural networks

are characterized by a “supervised” learning process: the weights and biases of

the network are updated on the basis of the error between the desired output and

the current output (Eq. 2.46). Hence, supervised learning requires the

classification results to be known a-priori. Moreover, this information is

important during the validation phase, as the assessment of the classifier

performance is based on the comparison between the output result and the true

value of the classification. To obtain such apriori knowledge, an automatic

labelling algorithm was set up, thus avoiding either manual labelling of each

interaction or asking the subject to explicitly tell his/her will to act against the

constraint. The automatic labelling algorithm was based on the Cartesian position

of the tool tip of the haptic interface. For the “path-following” task, the position

𝑝(𝑡) of the end effector is compared to the Cartesian coordinates of the center of

103

each circular obstacles placed along the trajectory. For the “target-reaching” task,

the position 𝑝(𝑡) is compared to the Cartesian position of each target point. The

values were assigned such that

𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 → +1

𝑈𝑛𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 → −1

Dataset creation. To separately assess the classification performances in the case

of both “guidance” and “forbidden-region” constraints, two different datasets

were created. Each dataset was furtherly split into a training set and a validation

set: the segments were randomly split and the observations were uniformly

distributed such that the number of “intentional” and “unintentional” violations

was evenly split between the training and the validation phases. Hence, a total of

four datasets was obtained.

Training phase. During the training phase, the algorithm learns to distinguish

between “intentional” and “unintentional” violations. Three training processes

were carried out:

1. HMM-based classifier (Section 2.3.1.3);

2. NN-based classifier with statistical inputs (StNN) (Section 2.3.2.2.1);

3. NN-based classifier with spectral inputs (SpNN) (Section 2.3.2.2.2);

The HMM-based classifier is composed of two parallel Hidden Markov Models,

each one separately trained either on “intentional” or on “unintentional” violations

(Figure 2.32). The training set is constituted by observation vectors extracted from

the modulus of the interaction force signal 𝑓(̅𝑡). To train the model it was

hypothesized that the observations could be explained as a random realization of

a mixture of Gaussian distributions, characterized by different mean 𝜇 and

104

standard deviation 𝜎. The best number of Gaussian distributions was computed

by means of an optimization algorithm: it was found that nine Gaussians bells

provided the best interpolation of the input data. Consequently, the number of

states was set equal to the number of Gaussian bells of the mixture, and the

training process was executed.

The Neural Network classifiers were trained on the basis of two different input

features: statistical features (Section 2.3.2.2.1) and spectral features (Section

2.3.2.2.2), both extracted from the segments of the interaction force signal 𝑓(̅𝑡).

Two classifier were obtained: a statistical-based NN (StNN), and a spectral-based

NN (SpNN).

The structure of the StNN is the following:

- 7 input neurons. As discussed in section 2.3.2.2.1, seven statistical features

have been taken into account: mean, variance, maximum point, energy,

integral value, waveform length and average amplitude change. Each

statistical parameter was computed for each segment;

- 1 hidden layer, composed of 15 neurons;

- 1 output neuron, that yields the classification results (±1).

The structure of the SpNN is the following:

- 10 input neurons. As discussed in section 2.3.2.2.2, the Wavelet

decomposition algorithm, down to level 𝑁, is applied to each force

Figure 2.32 HMM-based model.

105

segment, and the distribution of the signal energy across the different

Wavelet levels (Eq. 2.69) is computed (a Daubechies ‘db1’ was chosen) .

- 1 hidden layer, composed by 30 neurons;

- 1 output neuron, that yields the results of the classification (±1).

For both networks “hyperbolic tangent” (tanh) activation functions were chosen

to bound the ouput in the interval [−1,+1], and the training phase was performed

on the basis of the “Levenberg-Marquardt” algorithm.

Validation phase. During the validation phase, the models are deployed to classify

the observations of the validation set. In both HMM and NN methods, we want to

assess which is the minimum time required, after the violation has started, to

obtain reliable classification results. The fundamental hypothesis is that, during

the very first phase of the interaction, the information extracted is not sufficient

to detect intentional violations, as the magnitude range of the force signal 𝑓(̅𝑡) is

equal to the one characterizing unintentional violations. However, after a certain

amount of time, the magnitude of the interaction force increases as the operator

wants to either circumvent an obstacle or reach a target. The minimum time

SEGMENT

Figure 2.33 Application of the HMM-based classifier on a force segment. The

observation buffers (#1, #2, …) are shifted in time to simulate the real-time application.

106

required to yield a reliable detection of intentional events is the research question.

Both models were applied separately on each segment.

The HMM-based model (Figure 2.32) was validated by giving as observation

vector a series of buffers (50 samples) shifted in time, to simulate the real-time

application (Figure 2.33). The model outputs two likelihood functions, 𝜙𝑖𝑛𝑡 and

𝜙𝑢𝑛𝑖𝑛𝑡, related to both the intentional-HMM and unintentional-HMM. The

likelihood score represents the probability that the current buffer, which

constitutes the observation vector, belongs either to the first or the second model.

We expect that, for intentional violations, the likelihood related to the intentional-

HMM will be significantly higher than the likelihood associated to the

unintentional-HMM.

The NN-based models were validated by feeding the network with the time

evolution of either statistical or spectral features. For the StNN, statistical features

were computed iteratively over time, following the general relationship:

𝛼(𝑡) = 𝑓(𝛽(𝑡 − 1), 𝑠(𝑡), 𝑁) (Eq. 2.74)

With 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑

𝛼(𝑡) is any statistical parameter at the current time instant, 𝛽(𝑡 − 1) is any

statistical parameter computed at the previous step, 𝑠(𝑡) is the current value

sampled from the force segment, 𝑁 is the actual number of samples since the

violation has started. The definition of the seven statistical parameters in section

2.3.2.2.1 is modified as follows.

Arithmetic Mean μ(t).

μ(t) =
(N − 1)μ(t − 1) + s(t)

N
 (Eq. 2.75)

Integral Value IV(t).

107

IV(t) = IV(t − 1) + s(t); (Eq. 2.76)

Energy E(t)

E(t) = E(t − 1) + s2(t) (Eq. 2.77)

Variance σ2(𝑡)

σ2(t) =
E(t) − Nμ2(t)

N − 1
 (Eq. 2.78)

Maximum Value 𝑀𝑉(𝑡)

MV(t) = max(MV(t − 1), s(t)) (Eq. 2.79)

Waveform Length 𝑊𝐿(𝑡)

WL(t) = WL(t − 1) + |s(t) − s(t − 1)| (Eq. 2.80)

Average Amplitude Change 𝐴𝐴𝐶(𝑡)

𝐴𝐴𝐶(𝑡) =
𝑊𝐿(𝑡)

𝑁
 (Eq. 2.81)

The SpNN model was validated by feeding the network with the time evolution

of the amount energy of distributed across different frequency bands. As

108

discussed in section 2.3.2.2.2, the Wavelet decomposition is a linear operator with

respect to the energy of the signal to decompose, i.e.:

𝐸0 = 𝐸𝑁
𝑐𝐴 + ∑ 𝐸𝑘

𝑐𝐷

𝑁

𝑘=1

 (Eq. 2.82)

Where 𝐸0 is the energy of the force segment, 𝐸𝑁
𝑐𝐴 is the energy content of the

approximation sequence of level 𝑁, and 𝐸𝑘
𝑐𝐷 is the energy content of the detail

sequences of level 𝑘 = 1,… ,𝑁. The energy distribution was calculated by

extracting from each force segment a buffer of samples of increasing length

(Figure 2.34). The Wavelet decomposition was computed, yielding the energy

distribution;

𝐸𝑘(%) = 100 ∙
𝐸𝑘

𝐸0
 (Eq. 2.83)

For 𝑘 = 1,…𝑁 + 1.

Figure 2.34 Extraction of buffers of increasing length from a force segment.

109

Evaluation Phase. We chose to evaluate the performances of the classifiers at

each time step in the discrete time evolution, through the construction of the

confusion matrix (Vercellis, 2006), which yields the amount of correctly

classified and misclassified observations. The confusion matrix is characterized

by four parameters:

1. True Positive TP, is the amount of intentional violations correctly

classified;

2. True Negative 𝑇𝑁, is the amount of unintentional violations correctly

classified;

3. False Negative 𝐹𝑃, is the amount of misclassified intentional violations;

4. False Positive 𝐹𝑃, is the amount of misclassified unintentional violations;

The confusion matrix is the following:

 -1 +1

-1 TN FP

+1 FN TP

These four values that constitute the confusion matrix are used to define two

indexes of performance: Sensitivity and Specificity. The sensitivity is the

percentage of intentional violations correctly classified:

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Eq. 2.84)

PREDICTIONS

O
B

S
E

R
V

A
T

IO
N

S

Table 2.2 Scheme of a general Confusion Matrix.

110

The specificity is the percentage of unintentional violations correctly classified:

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (Eq. 2.85)

Both in the case of HMM-based and NN-based model, the output function is not

a binary classification, but a continuous function. In the first case, the likelihood

function can assume values in ℝ. The neural network output values are bounded

in the interval [−1, +1], as a consequence to the choice of “tanh” as activation

functions. To fill the confusion matrix, a further discretization step must be

introduced, by applying a threshold to the continuous output. By tuning this

threshold, the values of specificity and sensitivity will vary accordingly: an

increase in the sensitivity of the model leads to a decrease in the sensitivity and

vice versa.

We judged that, in surgical applications, it would be advisable to have a higher

specificity level and accept a lower degree of sensitivity. This choice has been

done on the basis of safety reasons: in a real surgical scenario, the detection of

intentional violations should trigger the adaptation and/or removal of the

assistance level provided by the active constraint. Thus, a high percentage of

“false positives”, namely a high number of misclassified unintentional violations,

would mean that, in many cases, the adaption is triggered even though the surgeon

is not acting against the constraint. On the other hand, a high specificity level

ensures that a high percentage of unintentional violations is reliably detected and

rejected. Consequently, the sensitivity level decreases and the detection of

intentional violations is less reliable. However, the system is safer as any

misclassification of intentional actions has no effects on the adaptation level.

This reason lead us to compute the discretization threshold on the basis of a given

specificity level: the sensitivity index is consequently computed.

111

For the HMM-based model, the threshold is compared with the absolute

difference Δ𝜙 in the likelihood scores:

 Δ𝜙 = |𝜙𝑖𝑛𝑡 − 𝜙𝑢𝑛𝑖𝑛𝑡| (Eq. 2.86)

If this difference overcomes a threshold Γ, the current observation is classified as

intentional.

For the NN-based the threshold Γ is compared to the current output. If the output

value overcomes the threshold, the observation is classified as intentional.

Once the sensitivity and specificity levels, for each classifier the ROC (Receiver

Operating Characteristics) curves (Vercellis, 2006) are obtained. The ROC curve

is a graphical plot that illustrates the performance of a binary classifier system as

its discrimination threshold is varied. The curve is created by plotting the true

positive rate (𝑆𝑒) against the false positive rate (1 − 𝑆𝑝) at various threshold

settings (Figure 2.35).

Figure 2.35 ROC curves. The curve

“C” represents the casual classifier,

“B” is the general classifier, “A” is

the ideal classifier, represented by

the point A(0, 1).

112

3 Results

In this chapter, the experimental results are presented. Separate discussions are

carried out for both “path-following” and “target-reaching” cases. For each set of

tasks, three classification models have been applied and discussed:

1. Hidden Markov Model;

2. Neural network based on statistical features (StNN);

3. Neural network based on spectral features (SpNN);

For each classification model, we show:

1. The time evolution of the ROC curves, to assess how the performance of

the classifier evolves over time;

2. A hypothetical surgical application in which some specificity levels are

set, and the corresponding sensitivity profiles over time are obtained. As

discussed in section 2.4, for safety reasons it would be preferable to deploy

a classifier characterized by high specificity levels. For this reason, we

have decided to evaluate each model for five specificity levels: 80, 90, 95,

97.5 and 99%. The sensitivity profiles over time are subsequently plotted

and evaluated in terms of minimum time interval required to exceed a

sensitivity threshold of 90% and the corresponding penetration depth

value, that indicates how deeply the tool tip has been pushed into the

constraint.

 Path-following task

A total of 120 “path-following” tasks were executed by 12 subjects. In Figure 3.1

is shown an example of the task execution. The red dotted line represents the

113

Cartesian trajectory described by the tool tip. In correspondence to the circular

obstacles, the subject voluntarily acts against the constraint, thus departing from

Figure 3.1 Example of "path-following" task execution. The blue line represents the path that the

subject is asked to follow. The dotted red line represents the actual trajectory followed by the tip

of the haptic device.

Figure 3.2 Modulus of the interaction force.

114

the path (blue line). In Figure 3.2 is shown the time profile of the interaction force

corresponding to the task shown in Figure 3.1. In Figure 3.3 are displayed the

Cartesian components of the force signal. In both plots, five force peaks are

clearly distinguishable: these peaks represent the intentional violations due to the

will to circumvent the obstacles.

For each subset of 120 tasks, either “path-following” or “target-reaching”, we

defined two compound parameters describing the average performance across

subjects, both in terms of penetration depth and time:

- The average penetration peak, 𝐴𝑃𝑃. It indicates the average maximum

penetration depth of the tool tip into the constraint;

- The average time peak, 𝐴𝑇𝑃. It indicates the average time required to

reach the maximum penetration depth 𝐴𝑃𝑃.

For “path-following” tasks 𝐴𝑃𝑃 = 1.28𝑚𝑚, while 𝐴𝑇𝑃 = 1.1𝑠 (Table 3.1). It

means that each subject, on average, pushes into the constraint up a penetration

deepness of 1.28𝑚𝑚. The average time required to reach this penetration level is

1.1𝑠.

Figure 3.3 Cartesian components of the interaction force.

115

The average penetration peak and the average time peak represent a

discriminatory point between two distinct phases of the violation: the rising and

descending phases of the force signal (Figure 3.2). In the first phase, the user

actively pushes against the constraint to circumvent an obstacle. During the

second phase, after the penetration peak has been overcome, the user passively

goes back to the path under the action of the feedback force. A good classifier

should be able to detect intentional violations during the rising phase of the force

signal, such that the assistance level is adjusted according to the current will of

the user. High sensitivity levels provided during the descending phase might not

be useful, as the assistance level is provided too late with respect to the user’s

current action.

3.1.1 HMM-based classifier

The HMM-based classifier yields a classification output every 35ms. For each

segment, the model outputs two likelihood functions 𝜙𝑖𝑛𝑡 and 𝜙𝑢𝑛𝑖𝑛𝑡, related to

the probability that the current observation belongs either to the intentional-HMM

or unintentional-HHM. In Figure is shown a comparison between the likelihood

functions both is case of intentional and unintentional violations. For

unintentional violations, there is not a significant distinction between the

likelihood functions 𝜙𝑖𝑛𝑡 and 𝜙𝑢𝑛𝑖𝑛𝑡: this is due to the fact that the distribution of

the force signal can either be interpreted as an unintentional violation or the tail

of an intentional violation. On the other hand, for intentional violations, the

Path-following task

Average Penetration Peak 𝑨𝑷𝑷 1.28𝑚𝑚

Average Time Peak 𝑨𝑻𝑷 1.1𝑠

Table 3.1 Average penetration peak and average time peak, for "path-following" tasks.

116

difference in the likelihood functions reaches significant values after 500ms: after

this time, the likelihood of the unintentional model decreases, reaching a

minimum point as the force signal reaches its maximum point. Conversely, the

likelihood function of the intentional model is high, meaning that the violation

has been correctly detected. The performance of the HMM-based classifier is

visualized by means of the ROC curves, shown in Figure 3.6.

The Receiver Operating Characteristics (ROC) curves evolve over time: in the

interval [100, 1000]𝑚𝑠, the area under the curves increases, yielding better

classification performance: during the first time instants of the violation, the

100𝑚𝑠-ROC (red curve) is near the bisector, indicating poor classification

results. However, as the time interval increases, the ROC curves tend to the ideal

classifier, represented by the point 𝑃(0, 1).

Figure 3.4 Likelihood functions both in cases of intentional and unintentional violations. In the

case of intentional violations, the likelihood of the unintentional HMM (red line) decrease after

the violation has started, reaching its minimum after 0.5s.

117

In Figure 3.5 are shown five sensitivity profiles over time, corresponding to five

specificity levels: 80%, 90%, 95%, 97.5% and 99%. In general, an increase in the

required specificity level corresponds to a shift in time of the coupled sensitivity

Figure 3.6 Evolution of the ROC curves over time.

Figure 3.5 Sensitivity profiles over time, given five specificity levels.

118

profile: the minimum interval time necessary to overcome a sensitivity level 𝑆𝑝 =

90% widens, meaning that the classifier has slower detection times. Conversely,

a decrease in the specificity level, down to 𝑆𝑝 = 80%, yields a faster model,

which is able to detect 90% of intentional violations within 250𝑚𝑠 after the

interaction has started.

In Table 3.2 the time-sensitivity values corresponding to Figure 3.5 are displayed.

It is clear how, requiring higher performances in terms of specificity, has a delay

effect on the corresponding sensitivity profiles. However, the HMM-based

classifier is characterized by sensitivity levels exceeding 90% within 1𝑠 after the

violation has started, for all the five specificity level set. The time information is

associated with of amount of penetration depth into the constraint. By comparing

the values in Table 3.2 with the “average penetration peak” and “average time

peak” values, from Table 3.1, it is clear how, in all five cases, the required

sensitivity level is reached before either the average penetration peak or average

time peak are overcome. This means that the HMM-based classifier is able to

detect intentional violations during the rising profile of the force, while the subject

is actively pushing against the constraint to circumvent the obstacle.

Table 3.2 Time and penetration depth values associated with different specificity levels.

SPECIFICITY
TIME [s]

(𝑺𝒑 > 𝟗𝟎%)
VIOLATION [mm]

80% 0.284 0.48

90% 0.604 0.94

95% 0.747 1.01

97,5% 0.854 1.18

99% 0.924 1.23

119

3.1.2 NN-based classifier

3.1.2.1 Statistical Classifier - StNN model

The StNN model, is a Neural Network-based classifier trained on the basis of

seven statistical features, extracted from the force segments (section 2.3.2.2.1) of

the interaction force. In Figure 3.7 are shown two examples of the output profile

of the neural network, both in case of unintentional and intentional violations. In

the first case (Figure 3.7, left panels), the output of the network asymptotically

tends to −1: hence, the unintentional violation is correctly detected. In the second

case (Figure 3.7, right panels), the network output shows a sigmoidal profile

ranging from −1 to +1. This means that, during the first milliseconds of

interaction, the network is not able to distinguish the intention. However, as the

violation goes on, the output level increases, reaching +1 within 1s after the

Figure 3.7 Example of the neural network output, both in case of intentional and unintentional

violations.

120

violation has started. The performances of the StNN model is visualized in Figure

3.8. The ROC curves show a similar time profile with respect to the HMM-based

classifier. As the violation time widens, the area under the ROC curves increases,

yielding better classification results. Unlike for HMM model, the 100ms-ROC

curve is significantly distinguishable from the bisector, meaning that the StNN

classifier provides a good classification performance within the first 100𝑚𝑠 of

interaction.

Figure 3.9 shows the five sensitivity profiles over time, computed for five

specificity levels of 80, 90, 95, 97.5 and 99%. Each curve is characterized by a

sigmoidal profile with a rising slope that depends on the specificity level set. For

specificity levels up to 97.5%, the sensitivity index exceeds 90% value within

900𝑚𝑠 after the intentional violation has started. On the contrary, a specificity of

99% decreases the slope of the sensitivity that exceeds the threshold after1.1𝑠.

Figure 3.8 Time evolution of the ROC curves for the StNN model.

121

In Table 3.3 are displayed the time-sensitivity pairs associated with the curves

displayed in Figure 3.9. Similarly to the HMM-based classifier, the sensitivity

profiles exceed 90% before either the average penetration peak or average time

peak are overcome (Table 3.3), meaning that the classifier detects intentional

events during the rising phase of the force, when the user is pushing to go past the

obstacle.

SPECIFICITY
TIME [s]

(𝑺𝒑 > 𝟗𝟎%)
VIOLATION [mm]

80% 0.172 0.31

90% 0.346 0.57

95% 0.599 0.93

97,5% 0.893 1.21

99% 1.197 1.27

Table 3.3 Time and penetration depth values associated with different specificity levels.

Figure 3.9 Sensitivity profiles over time for the StNN classifier.

122

3.1.2.2 Spectral Classifier – SpNN

The SpNN model was trained on the basis of the energy distribution across

different frequency bands of each force segments, decomposed through the

Discrete Wavelet transform algorithm. The time performances of the classifier are

displayed in Figure 3.10. The ROC curves of the model have a similar time

evolution with respect to both the HMM-based and StNN methods: the

classification performance improves as the violation time increases. However, by

analyzing the 100𝑚𝑠-ROC curve (red curve), it is possible to note that, by setting

a high specificity level (𝑆𝑝 > 85%), we obtain poor performances in terms of

sensitivity level (below 20%). This means that, during the first milliseconds of

violation, the model is able to detect less than 20% of intentional interactions.

This behavior characterizes all the ROC curves of the time interval considered,

up to 1𝑠 (yellow curve), meaning that the classifier has a stricter trade-off at high

specificity values. On the contrary, low specificity levels (𝑆𝑝 < 50%) yield

Figure 3.10 Evolution of the ROC curves for SpNN classifier.

123

corresponding sensitivity indexes exceeding 90%, across all the time span taken

into account [0.1, 1]𝑠.

In Figure 3.11 are plotted the time profiles of the sensitivity index. In Table 3.4

the relative time-penetration values are listed.

By comparing the performances of the SpNN model, both with respect to the

HMM and StNN models, we notice that the spectral classifier is characterized by

worse classification performances. As displayed in Table 3.4, for specificity

levels 𝑆𝑝 = 95, 97.5 and 99%, the minimum time required to reach a sensitivity

level exceeding 𝑆𝑒 = 90% is higher than the average time peak value, 𝐴𝑇𝑃 =

1100𝑚𝑠 (values flagged with *). This means that the model detects intentional

violations during the descending phase of the force signal, after the violation peak

has occurred and the user is almost past the obstacle. In particular, by setting a

specificity level 𝑆𝑝 = 99%, the corresponding sensitivity never exceed 90%,

asymptotically tending to 𝑆𝑒 = 86.6%, after a time of 𝑡 = 3.5𝑠.

Figure 3.11 Sensitivity profiles over time for the SpNN model.

124

 Reaching task

12 subjects executed 120 “target-reaching” tasks. As in the previous section 3.1,

we define two compound parameters that describe the average behavior of the

subjects, in terms of maximum average penetration peak 𝐴𝑃𝑃, and average time

peak 𝐴𝑇𝑃. For “target-reaching” tasks, the value are listed in Table 3.5.

SPECIFICITY
TIME [s]

(𝑺𝒑 > 𝟗𝟎%)
VIOLATION [mm]

80% 0.582 0.91

90% 0.895 1.21

95% 1.420* 1.194*

97,5% 2.049* 0.73*

99%
3.580*

(𝑆𝑒 = 86.6%)
0.11*

Table 3.4 Time-penetration values corresponding to sensitivity level of 90%. The values marked

with *, correspond to specificity levels that have not met the requirements.

Target-reaching task

Average Penetration Peak 𝑨𝑷𝑷 0.75𝑚𝑚

Average Time Peak 𝑨𝑻𝑷 2.03𝑠

Table 3.5 Average penetration peak and average penetration time for "target-reaching" tasks.

125

In Figure 3.12 is shown an example of the execution of the task. The dashed red

line represents the position of the tool tip of the manipulator, while the green

markers represent the equally distributed target points that each user is meant to

reach.

In Figure 3.13 is plotted the corresponding magnitude of the interaction force

while the user performs the reaching movements to position the tool tip onto each

green point.

Figure 3.12 Execution of a target-reaching task. The dotted red line represents the path of the

tool tip of the haptic device, while the green points represent the targets that the user is asked

to reach.

126

3.2.1 HMM-based classifier

The HMM-based classifier yields a classification output every 35ms. An example

of the two likelihood functions 𝜙𝑖𝑛𝑡 and 𝜙𝑢𝑛𝑖𝑛𝑡, is shown in Figure 3.15, both in

the case of intentional and unintentional violation. Similarly to the path-following

case, the HMM model outputs two very similar likelihood functions when

analyzing unintentional segments (left panels). This is due to the fact that

observation vectors extracted from unintentional segments might be misidentified

as the tails of intentional segments, yielding a very poor distinction of likelihood

functions associated to the HMM models. Conversely, a significant distinction of

the likelihood levels is detected in the case of intentional violation, (right panels)

after a time 𝑡 > 500𝑚𝑠. The distinction become clearer as the modulus of the

interaction force reaches a minimum level that of magnitude, which allows for the

correct detection of the event.

Figure 3.13 Modulus of the interaction force for the reaching task.

127

Figure 3.15 Likelihood functions read off from the model, both for intentional (right panels) and

unintentional (left panels) violations.

Figure 3.14 Time evolution of the ROC curve associated to the HMM classifier.

128

The classification performance of the HMM-based model is shown in Figure 3.14.

The time evolution of the different ROC curves is evaluated within the time

interval [0.1, 2]𝑠. During the first milliseconds of violation (red curve), the

classifier is characterized by poor performances: the 100𝑚𝑠-ROC curve lies

closely to the bisector: hence, high sensitivity levels are obtained by accepting

low specificity values, 𝑆𝑝 < 40%. By setting the specificity index 𝑆𝑝 > 80%,

the corresponding sensitivity index decreases down to 𝑆𝑒 < 40%. By widening

the interaction time, better performance are achieved at the expenses of slower

classification results. Around 2𝑠 (yellow curve) after the violation has started, the

ROC curve asymptotically tend to the ideal classifier, yielding sensitivity levels

exceeding 90%, on top of specificity levels 𝑆𝑝 > 90%.

In Figure 3.16 are plotted the sensitivity profile of the HMM-based classifier,

corresponding the set specificity values of 80, 90, 95, 97.5, 99%.

Figure 3.16 Sensitivity profiles over time, given five specificity levels.

129

In Table 3.6 are displayed the corresponding time-violation parameters.

By comparing the time-penetration values with the “average penetration peak”

and the “average time peak” values, listed in Table 3.5, we can see how the HMM-

based classifier is able, in four cases, to reliably detect intentional violations with

a sensitivity exceeding 90%, before maximum penetration depth 𝐴𝑃𝑃 = 0.75𝑚𝑚

is reached. On the other hand, if we set a specificity level 𝑆𝑝 = 99%, the

sensitivity exceed the threshold during the descending phase of the force, after the

penetration peak has occurred. This event is clear also by comparing the time

instant in which 𝑆𝑒 > 90%, 𝑡 = 2.068𝑠, with the average time peak value 𝐴𝑇𝑃 =

2.03𝑠.

SPECIFICITY
TIME [s]

(𝑺𝒑 > 𝟗𝟎%)
VIOLATION [mm]

80% 0.682 0.47

90% 0.968 0.55

95% 1.253 0.62

97,5% 1.788 0.67

99%
2.068*

(𝑆𝑒 = 86.2%)
0.71*

Table 3.6 Time-penetration values corresponding to five specificity levels.

130

3.2.2 NN-based classifier

3.2.2.1 Statistical Classifier – StNN

The statistical classifier has been applied to classify the interaction segments

extracted from the target-reaching task. An example of the network output is

displayed in Figure 3.17.

Like in the “path-following” case (Figure 3.7), the StNN model has a similar

behavior: for unintentional interactions (left panels), the output asymptotically

tends to -1; on the contrary, for intentional violations (right panels), the output

asymptotically tends to +1 with a sigmodal profile.

The ROC curves associated to the StNN classifier are visualized in Figure 3.18.

During the first instants of the violation, the classifier is characterized by a poor

performance, as the 100𝑚𝑠-ROC curve lies closely to the bisector. In addition,

Figure 3.17 Classification outputs for the statistical classifier. On the left panels is shown an example

of unintentional violation, while in the right panel is shown an example of intentional violation

131

unlike the HMM model (Figure 3.14), for low specificity levels 𝑆𝑝 < 30% the

curve is almost superimposed to the bisector meaning that, the deployment of the

classifier after 100𝑚𝑠 time after the violation has started provides unreliable

results for any specificity level. By widening the time interval, the ROC curve

tends to the ideal classifier: after 2𝑠 the classifier is able to detect intentional

violations with a sensitivity exceeding 95%, on top of a specificity level 𝑆𝑝 >

90%.

In Figure 3.19 are plotted he sensitivity profiles over time, corresponding to five

specificity levels 𝑆𝑝 = 90, 80, 95, 97.5 and 99%. Like in the previous models, the

different profiles of the sensitivity undergo a shift in time, resulting from an

increase in the specificity required. In general, all the five profiles analyzed

asymptotically reach a sensitivity level exceeding 97% after a time 𝑡 = 2𝑠. In

particular, the 99%-curve (green curve) is characterized by a much lower slope,

meaning that the classifier has been slowed down, due to the strict requirements

we put on the specificity index: hence, the curve exceeds the 90% level after 1.7𝑠.

Figure 3.18 ROC curve of the statistical classifier, for target-reaching tasks.

132

In Table 3.7 are listed the associated time-penetration values for different

specificity levels. By comparing these values with the average penetration and

time peaks (Table 3.5), we see how, in all cases analyzed, the sensitivity exceeds

90% value before the penetration peak value is reached. Hence, intentional

interactions are detected during the rising phase of the force.

Table 3.7 Time-penetration values related to the five sensitivity profiles.

SPECIFICITY
TIME [s]

(𝑺𝒑 > 𝟗𝟎%)
VIOLATION [mm]

80% 0.699 0.47

90% 0.837 0.52

95% 0.946 0.55

97,5% 1.040 0.57

99% 1.778 0.67

Figure 3.19 Sensitivity profiles corresponding to five specificity levels

133

3.2.2.2 Spectral Classifier – SpNN

The spectral classifier has been trained on the basis of the energy distribution

across the different levels of the Wavelet decomposition. In general the SpNN

model is characterized by a worse performance, both compared to the HMM and

StNN classifies. The ROC curves of the spectral classifier are plotted in Figure

3.20.

During the first instants of interaction, the classifier is not able to output reliable

results: the 100𝑚𝑠-ROC curve (red curve) is almost superimposed to the bisector

(black dotted line), meaning that the model performances are comparable to those

of a random classifier. However, similarly to the other cases, the classification

performances improve as the time interval widens. Within two seconds of

interaction (yellow line), the classifier is characterized by a sensitivity index

exceeding 90%, coupled with a specificity level around 𝑆𝑝 = 90%.

Figure 3.20 ROC curves describing the performances of the SpNN classifier.

134

In Figure 3.21 are shown the sensitivity profiles corresponding to specificity

levels of 80, 90, 95, 97.5 and 99%.

SPECIFICITY
TIME [s]

(𝑺𝒑 > 𝟗𝟎%)
VIOLATION [mm]

80% 2.051 0.68*

90% 2.426 0.64*

95%
3.220*

𝑆𝑒 = 89%
0.40*

97,5%
3.942*

𝑆𝑒 = 75%
0.14*

99%
4.115*

𝑆𝑒 = 53%
0.10*

Table 3.8 Time-penetration values corresponding to different sensitivity profiles.

Figure 3.21 Sensitivity profiles for different specificity levels.

135

Correspondingly, the time-violation pairs are listed in Table. By comparing these

values with the average penetration peak and average time peak values (Tabe 3.5),

it is clear how the SpNN method applied to target-reaching tasks is not able to

meet the requirements we desire. For all the five specificity levels analyzed, the

sensitivity exceeds the 90% threshold after the penetration has occurred. This

means that the method is not capable of yielding reliable detection of intentional

events during the rising phase of the force signal. A specificity level 𝑆𝑝 = 80%,

yields a correspondent sensitivity profile that overcomes the threshold 30𝑚𝑠 after

the peak has occurred. A further increase in the specificity index slows down the

classifier. In addition, if we require a specificity level 𝑆𝑝 > 95%, the

corresponding sensitivity level never overcomes the threshold, asymptotically

tending to lower values.

136

Discussions and future works

The objective of this work is framed within the context of adaptive active

constraints for cooperative tasks. As discussed in section 1.5.1, there is a number

of surgical applications, like beating heart surgery and endoscopic procedures,

which require that the geometry of the constraint will be constantly updated over

time, in order to adapt to the geometry of the soft tissue. In other cases, it might

be useful to update the constraint definition on the basis of the interpretation of

the user’s commands and adjust the assistance level provided, accordingly. The

latter case is the one we chose to investigate. Our work focused on the

investigation of whether intentional and unintentional violations of active

constraints might be distinguished on the basis of the interaction force signal.

Intentional violations occur whenever the current action of the human operator is

in contrast with the purpose of the constraint. This conflicting situation results in

significant interaction forces at the tool tip of the robotic manipulator, as the

constraint hinders the execution of the task. On the other hand, unintentional

violations occur whenever the constraint shares the purpose of the human

operator, bur inherent errors are made anyway. We believed that, the detection of

intentional violations should, in turn, be used to trigger the modulation the

assistance level provided by the constraint, which might be removed, allowing for

a complete free motion around the workspace, or its stiffness might be

proportionally reduced. We proposed several detection methods based on the

definition of three binary classifiers:

- A continuous HMM-based classifier, whose training set is composed by

observation vectors extracted directly from the interaction force signal;

- A NN-based classifier, trained on the basis of statistical features that

represent the time evolution of the force signal;

137

- A NN-based classifier, trained on the basis of spectral features, extracted

from the Wavelet decomposition of the force segments.

We decided to investigate the classification performance of each methodology in

two different cases:

- “Path-following” tasks. In this case, the subject is asked to manipulate the

haptic device to follow a 2D trajectory displayed on a screen. Along the

path, a number of circular obstacles is placed, such that the subject is

forced to intentionally depart from the “guidance constraint”, to externally

circumvent them.

- “Target-reaching” tasks. In this case, the subject is asked to manipulate

the haptic device to place the pointer onto a number of equally spaced

target points. For some of these points, the “regional constraint” is

wrongly enforced and the target lies a forbidden region, forcing the subject

to intentionally act against the constraint to accomplish the reaching task.

We built a set of 20 experimental tasks, from which classifiable data was

generated: 10 “path-following” and 10 “target-reaching” tasks. We asked 12

subjects, aged between 20 and 30, to perform 20 trails each. The experimental

setup was composed of three main elements: the haptic interface “Phantom

Omni”, a display to provide visual feedback, and the control console, from which

the operator supervised the execution of the trials. 240 tasks were executed and

two distinct dataset were built, in order to separately evaluate the classification

results in case of both “guidance” and “forbidden region” constraints. Both dataset

were composed of force signals measured at the tool tip of the haptic device, thus

describing the magnitude of the interaction with the constraint. The recorded

signals were split into segments, according to the existence of the interaction (𝒇 >

0) and were automatically labelled as “intentional” (+1) or “unintentional” (-1)

on the basis of the current position of the tool tip with respect to the geometry of

the constraints and/or the obstacles. The labelling process was necessary for the

138

subsequent supervised learning of the NN-based classifiers and for the validation

phases.

The classification performance of each methodology was evaluated in terms of:

- Time evolution of the Receiver Operating Characteristics (ROC) curve;

- Minimum amount of time 𝑡𝑚𝑖𝑛 required, after the violation has started, to

reliably apply the classifier and detect intentional violations with a

sensitivity level exceeding 𝑆𝑒 = 90%;

- Penetration depth associated to the time 𝑡𝑚𝑖𝑛.

In general, it was observed that the time evolution of the ROC curves has a similar

profile across the different classifiers: as expected, during the first instants of the

interaction (within 200𝑚𝑠), the amount of information recorded is not sufficient

to distinguish between the two kinds of interaction with high sensitivity.

However, as we widen the interval time, the ROC curves asymptotically tend to

the ideal classifier, that is represented by the point (0, 1). The proper time instant

in which to apply the classifier has to be chosen on the basis of the specific

requirements of the application. As discussed in section 2.4, we believe that, for

surgical procedures, it might be advisable to deploy classification methods

characterized by a high specificity level. This choice is inherently safer, as the

classifier is able to detect and reject unintentional violations, whose

misclassification might lead to unwanted adaptation of the assistance level. On

the contrary, misclassification of intentional violations, hence a low sensitivity

index, has no effect on the nature of the constraints. It is clear how, for runtime

identification of intentional violations, the value of the sensitivity index is

dependent on the time window we choose in order to apply the classifier: we

expect that, given a certain specificity level, if we increase the observation

window, we will consequently obtain a significant increase in the corresponding

sensitivity level. This is due to the fact that the amount of input information

becomes more meaningful as the intentional violation is taking place.

139

These considerations lead us to the evaluation of the sensitivity profiles over time,

for each classification methodology. We set five different specificity indexes

𝑆𝑝 = 80, 90, 95, 97.5 and 99%. Consequently, we computed the time evolution

of the sensitivity and evaluated the time instant in which this index exceeded a

threshold of 90%. Results showed that, for all the classification methodologies

investigated, there exists a trade-off between the specificity level we require, and

the slope of the associated sensitivity profile. Higher specificity requirements lead

to a decrease in the slope of the associated sensitivity profile. Consequently, the

overall classification process is slowed down, because a wider time window is

necessary to exceed the 90% threshold. Vice versa, a decrease in the specificity

level has the effect of speeding up the classification process, as the slope of the

sensitivity is increased and the threshold is overcome within a narrower time

interval. As discussed in section 2.4, separate evaluations were carried out for

“guidance” and “forbidden region” constraints and in both cases, the performance

of the three classifiers were investigated. A comparison across different

methodologies showed that in general, for a given specificity level, the statistical

classifier (StNN) is characterized by a faster increase in the sensitivity profile with

respect to HMM-based method, while the spectral (SpNN) classifier yields the

slowest performances. This means that, during the first time instants after the

interaction has started, the statistical classifier, on average, is able to detect

intentional violations with higher sensitivity with respect to the other methods.

An additional feature that we investigated is whether the classification methods

are able to correctly distinguish the intentions during the rising phase of the force

signal, when the user is actively pushing against the constraint to either

circumvent an obstacle or to reach a target. The identification of the intention after

the penetration peak has occurred might not be useful, as the adaptation of the

assistance level is provided too late. In general, for 𝑆𝑝 < 97.5%, the StNN and

the HMM classifiers are able to detect intentional violations before the occurrence

140

of the penetration peak. On the contrary, the spectral classifier shows poor

performance when high specificity levels are required. For “path-following”

tasks, the SpNN classifier is able to detect intentional violations during the rising

phase of the force for specificity levels 𝑆𝑝 < 95%. Conversely, for “target-

reaching” tasks, the classifier yields reliable results after the penetration peak has

occurred, for all the specificity levels investigated.

In general, the results of our work showed that the deployment of the interaction

force signal (or features extracted from it) for the training phase of different

classification methods is a good choice if we want to detect the current user’s

intention to violate an active constraint. However, we propose some

improvements in the experimental that overcome the current limitations of the

work:

- It should be advisable to investigate how the classification outcomes are

affected when the experimental trails are defined in a 3-dimensional

environment;

- Consequently, the hardware setup should be upgraded to provide

stereoscopic vision to the subject;

- The software setup, including the control system and the classification

algorithms should be implemented in C++ language, to obtain improved

stability of the control system and decreased computation time for the

classification methods;

- As in this work we chose to test non-expert subject, it should be advisable

to investigate whether an experimental protocol including expert subjects

(e.g., surgeons) might affect the results of the classification.

Moreover, future work might be aimed at investigating possible methods to

exploit the continuous output feature of the classification methods proposed, in

order to optimally modulate the provided assistance according to the probability

of the user’s intention classification within surgical manipulation tasks.

141

142

References

Abbott, J. J., Marayong, P., & Okamura, A. M. (2007). Haptic virtual fixtures for

robot-assisted manipulation. In Robotics research (pp. 49-64). Springer Berlin

Heidelberg.

Adler Jr, J. R., Chang, S. D., Murphy, M. J., Doty, J., Geis, P., & Hancock, S. L.

(1997). The Cyberknife: a frameless robotic system for radiosurgery. Stereotactic

and functional neurosurgery, 69(1-4), 124-128.

Boehm, D. H., Reichenspurner, H., Detter, C., Arnold, M., Gulbins, H., Meiser,

B., & Reichart, B. (2000). Clinical use of a computer-enhanced surgical robotic

system for endoscopic coronary artery bypass grafting on the beating heart. The

Thoracic and cardiovascular surgeon, 48(4), 198-202.

Bowyer, S. A., Davies, B. L., & Rodriguez y Baena, F. (2014). Active

constraints/virtual fixtures: A survey. Robotics, IEEE Transactions on, 30(1),

138-157.

Burghart, C., Keitel, J., Hassfeld, S., Rembold, U., & Woern, H. (1999, June).

Robot controlled osteotomy in craniofacial surgery. In Proc. of the 1st Internat.

Workshop on Haptic Devices in Medical Applications.

Burrus, C. S., Gopinath, R. A., & Guo, H. (1998). Introduction to wavelets and

wavelet transforms (Vol. 998). New Jersey: Prentice hall.

Camarillo, D. B., Krummel, T. M., & Salisbury, J. K. (2004). Robotic technology

in surgery: past, present, and future. The American Journal of Surgery, 188(4), 2-

15.

143

Coste‐Manière, È., Olender, D., Kilby, W., & Schulz, R. A. (2005). Robotic

whole body stereotactic radiosurgery: clinical advantages of the CyberKnife®

integrated system. The International Journal of Medical Robotics and Computer

Assisted Surgery, 1(2), 28-39.

Craig, J. J. (2005). Introduction to robotics: mechanics and control (Vol. 3). Upper

Saddle River: Pearson Prentice Hall.

Curley, K. C. (2005). An overview of the current state and uses of surgical robots.

Operative Techniques in General Surgery, 7(4), 155-164.

Davies, B. (2000). A review of robotics in surgery. Proceedings of the Institution

of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 214(1),

129-140.

Davies, B. L., Hibberd, R. D., Ng, W. S., Timoney, A. G., & Wickham, J. E. A.

(1991, June). A surgeon robot for prostatectomies. In Advanced Robotics,

1991.'Robots in Unstructured Environments', 91 ICAR., Fifth International

Conference on (pp. 871-875). IEEE.

Davies, B., Jakopec, M., Harris, S. J., Rodriguez y Baena, F., Barrett, A.,

Evangelidis, A., ... & Cobb, J. (2006). Active-constraint robotics for surgery.

Proceedings of the IEEE, 94(9), 1696-1704.

Devijver, P. A. (1985). Baum's forward-backward algorithm revisited. Pattern

Recognition Letters, 3(6), 369-373.

Dogangil, G., Davies, B. L., & y Baena, F. R. (2010). A review of medical

robotics for minimally invasive soft tissue surgery. Proceedings of the Institution

of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(5),

653-679.

144

Ergeneman, O., Dogangil, G., Kummer, M. P., Abbott, J. J., Nazeeruddin, M. K.,

& Nelson, B. J. (2008). A magnetically controlled wireless optical oxygen sensor

for intraocular measurements. Sensors Journal, IEEE, 8(1), 29-37.

Forney Jr, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3),

268-278.

Häcker, A., Chauhan, S., Peters, K., Hildenbrand, R., Marlinghaus, E., Alken, P.,

& Michel, M. S. (2005). Multiple high-intensity focused ultrasound probes for

kidney-tissue ablation. Journal of Endourology, 19(8), 1036-1040.

Hertz, J. (1991). Introduction to the theory of neural computation (Vol. 1). Basic

Books.

Howe, R. D., & Matsuoka, Y. (1999). Robotics for surgery. Annual Review of

Biomedical Engineering, 1(1), 211-240.

Janabi-Sharifi, F., Hayward, V., & Chen, C. S. (2000). Discrete-time adaptive

windowing for velocity estimation. Control Systems Technology, IEEE

Transactions on, 8(6), 1003-1009.

Jensen, P. S., Grace, K. W., Attariwala, R., Colgate, J. E., & Glucksberg, M. R.

(1997). Toward robot-assisted vascular microsurgery in the retina. Graefe's

archive for clinical and experimental ophthalmology, 235(11), 696-701.

Kazanzides, P., Mittelstadt, B. D., Musits, B. L., Bargar, W. L., Zuhars, J. F.,

Williamson, B., ... & Carbone, E. J. (1995). An integrated system for cementless

hip replacement. Engineering in Medicine and Biology Magazine, IEEE, 14(3),

307-313.

145

Kikuuwe, R., Takesue, N., & Fujimoto, H. (2008). A control framework to

generate nonenergy-storing virtual fixtures: use of simulated plasticity. Robotics,

IEEE Transactions on, 24(4), 781-793.

Krieger, A., Susil, R. C., Ménard, C., Coleman, J. A., Fichtinger, G., Atalar, E.,

& Whitcomb, L. L. (2005). Design of a novel MRI compatible manipulator for

image guided prostate interventions. Biomedical Engineering, IEEE Transactions

on, 52(2), 306-313.

Kwoh, Y. S., Hou, J., Jonckheere, E. A., & Hayati, S. (1988). A robot with

improved absolute positioning accuracy for CT guided stereotactic brain surgery.

Biomedical Engineering, IEEE Transactions on, 35(2), 153-160.

Kwok, K. W., Tsoi, K. H., Vitiello, V., Clark, J., Chow, G. C., Luk, W., & Yang,

G. Z. (2013). Dimensionality reduction in controlling articulated snake robot for

endoscopy under dynamic active constraints. Robotics, IEEE Transactions on,

29(1), 15-31.

Lavallee, S., Sautot, P., Troccaz, J., Cinquin, P. H., & Merloz, P. H. (1995).

Computer-assisted spine surgery: a technique for accurate transpedicular screw

fixation using CT data and a 3-D optical localizer. Computer Aided Surgery, 1(1),

65-73.

Li, M., & Okamura, A. M. (2003, March). Recognition of operator motions for

real-time assistance using virtual fixtures. In Haptic Interfaces for Virtual

Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings.

11th Symposium on (pp. 125-131). IEEE.

Liporace, L. (1982). Maximum likelihood estimation for multivariate

observations of Markov sources. Information Theory, IEEE Transactions on,

28(5), 729-734.

146

Nayak, M., & Panigrahi, B. S. (2011). Advanced Signal Processing Techniques

for Feature Extraction in Data Mining. International Journal of Computer

Applications, 19(9), 30-37.

Ng, W. S., Davies, B. L., Hibberd, R. D., & Timoney, A. G. (1993). A first hand

experience in transurethral resection of the prostate. IEEE Med Bio Soc

Magazine, 120-125.

Park, S., Howe, R. D., & Torchiana, D. F. (2001, January). Virtual fixtures for

robotic cardiac surgery. In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2001 (pp. 1419-1420). Springer Berlin Heidelberg.

Passenberg, C., Groten, R., Peer, A., & Buss, M. (2011, June). Towards real-time

haptic assistance adaptation optimizing task performance and human effort. In

World Haptics Conference (WHC), 2011 IEEE (pp. 155-160). IEEE.

Phinyomark, A., Nuidod, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature

extraction and reduction of wavelet transform coefficients for EMG pattern

classification. Elektronika ir Elektrotechnika, 122(6), 27-32.

Pittner, S., & Kamarthi, S. V. (1999). Feature extraction from wavelet coefficients

for pattern recognition tasks. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 21(1), 83-88.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Ren, J., Patel, R. V., McIsaac, K. A., Guiraudon, G., & Peters, T. M. (2008).

Dynamic 3-D virtual fixtures for minimally invasive beating heart procedures.

Medical Imaging, IEEE Transactions on, 27(8), 1061-1070.

147

Rosenberg, L. B. (1993, September). Virtual fixtures: Perceptual tools for

telerobotic manipulation. In Virtual Reality Annual International Symposium,

1993., 1993 IEEE (pp. 76-82). IEEE.

Rosenberg, L. B. (1993, December). Virtual fixtures as tools to enhance operator

performance in telepresence environments. In Optical Tools for Manufacturing

and Advanced Automation (pp. 10-21). International Society for Optics and

Photonics.

Ryden, F., & Chizeck, H. J. (2012, October). Forbidden-region virtual fixtures

from streaming point clouds: Remotely touching and protecting a beating heart.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International

Conference on (pp. 3308-3313). IEEE.

Sackier, J. M., & Wang, Y. (1994). Robotically assisted laparoscopic surgery.

Surgical endoscopy, 8(1), 63-66.

Salcudean, S. E., Prananta, T. D., Morris, W. J., & Spadinger, I. (2008, May). A

robotic needle guide for prostate brachytherapy. In Robotics and Automation,

2008. ICRA 2008. IEEE International Conference on (pp. 2975-2981). IEEE.

Sutherland, G. R., McBeth, P. B., & Louw, D. F. (2003, June). NeuroArm: an MR

compatible robot for microsurgery. In International congress series (Vol. 1256,

pp. 504-508). Elsevier.

Taylor, R. H., Paul, H. A., Mittelstadt, B. D., Glassman, E., Musits, B. L., &

Bargar, W. L. (1989, November). Robotic total hip replacement surgery in dogs.

In Engineering in Medicine and Biology Society, 1989. Images of the Twenty-

First Century., Proceedings of the Annual International Conference of the IEEE

Engineering in (pp. 887-889). IEEE.

148

Varma, T. R. K., & Eldridge, P. (2006). Use of the NeuroMate stereotactic robot

in a frameless mode for functional neurosurgery. The International Journal of

Medical Robotics and Computer Assisted Surgery, 2(2), 107-113.

Vercellis, C. (2006). Business Intelligence: modelli matematici e sistemi per le

decisioni. McGraw-Hill.

