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Abstract

This thesis provides a study of risk–averse reinforcement learning in general

sequential decision–making problems. It focuses on likelihood ratio methods

based on variance related criteria such as the Sharpe Ratio and the mean–

variance criterion, which are the most common risk measures in economics

and operations research.

Many real financial problems are too complex to describe the underlying

model in terms of small finite sets of states and actions. Moreover a learning

agent can be mostly trained with historical data collected by other agents,

because, in the general case, it is not convenient, or even possible, to ex-

plore a risky environment and extract enough data to perform an on–policy

learning.

For these reasons the main contribution of this work is to present risk–

aware algorithms devised to both operate in an off–line batch context and

solve problems with continuous state and/or action spaces.
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Estratto in Lingua Italiana

In molti settori, come ad esempio nel campo dell’automazione, della ricerca

operativa o della robotica, esistono compiti complessi che non possono essere

risolti tramite formule matematiche giá pronte all’uso, ma la soluzione deve

essere appresa sfruttando l’esperienza che l’individuo ha del problema speci-

fico. L’apprendimento per rinforzo ha come obiettivo quello di fornire ad

un agente artificiale tecniche per scegliere in maniera automatica il compor-

tamento migliore da utilizzare per eseguire efficacemente un certo compito

di controllo. Nello specifico l’agente non ha una conoscenza completa del

problema e non necessita di un modello per rappresentarne le dinamiche

interne poiché é in grado di interagire e modificare l’ambiente attraverso un

certo numero di azioni e di ricevere da esso segnali di rinforzo che sono indici

della bontá delle sue scelte.

L’agente deve decidere quale azione sia meglio utilizzare in ogni possibile

situazione, o stato, per massimizzare il valore dei rinforzi accumulati, cioé

quello che é chiamato ritorno totale. Questo paradigma é molto interessante

in quanto sufficientemente astratto e generale per modellare in modo effi-

ciente l’interazione tra agenti e ambienti di svariate tipologie.

Questa tesi presenta uno studio delle tecniche di apprendimento per rin-

forzo nell’ambito dell’avversione al rischio per generici processi decision-

ali. Qui l’agente é guidato nelle sue decisioni dalla volontá di massimiz-

zare il profitto medio, ma é anche nel suo interesse mantenere basso il

rischio di incorrere in perdite inattese aumentando la stabilitá dei suoi

guadagni. In molti problemi questo é possibile solo rinunciando a com-

portamenti troppo avventati e sacrificando una parte del profitto totale per

ottenere un guadagno piú basso ma piú certo.

Tra tutte le tecniche di apprendimento per rinforzo, in questa tesi sono presi

in considerazione i metodi basati sull’indice di verosimiglianza (likelihood ra-

tio methods) che sfruttano la tecnica di ascesa dei gradienti di criteri in cui

puó essere presente o meno la nozione di rischio. L’indice di Sharpe o il crite-
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rio media–varianza sono le misure di rischio più diffuse in economia e ricerca

operativa e sono caratterizzate da funzioni obiettivo in cui il criterio stan-

dard di massimizzazione del valore atteso del ritorno totale viene penalizzato

in base alla sua stessa varianza. A differenza di altri metodi che sfruttano

la nozione di funzione di utilitá, qui il processo di apprendimento consiste

nel continuo aggiornamento dei soli parametri della politica dell’agente che

avviene seguendo la direzione lungo la quale il guadagno stimato cresce.

Molti problemi nell’ambito finanziario o medico sono troppo complessi

per poterne descrivere il sottostante modello tramite insiemi di stati e azioni

che siano di piccole dimensioni. Inoltre un agente può utilizzare nel suo

processo di apprendimento prevalentemente dati storici collezionati da altri

agenti (apprendimento off–policy), perchè, in generale, non è conveniente,

o addirittura possibile, esplorare un ambiente rischioso ed estrarre dati a

sufficienza per eseguire un apprendimento in linea. Per queste ragioni il

principale contributo di questo lavoro è quello di presentare algoritmi di

avversione al rischio ideati sia per operare con dati cosiddetti off–line, sia

per risolvere problemi con spazi di stato e azione continui.

Apprendere non potendo decidere in prima persona quanti campioni

raccogliere e con quale criterio farlo é un arduo compito e, nell’ambito

dell’apprendimento artificiale, questa difficoltá si concretizza in una stima

molto variabile del gradiente che guida gli aggiornamenti della politica. Per

ovviare a questo problema sono formalizzate, e inserite all’interno degli al-

goritmi, le nozioni di baseline e le formulazioni REINFORCE e GPOMDP

del gradiente. Aggiungere una baseline alla stima del gradiente contribuisce

a ridurne drasticamente la variabilitá senza alterare il suo valore atteso, il

che permette di apprendere piú velocemente, con maggiore precisione e uti-

lizzando meno campioni come dimostrano gli esperimenti eseguiti sia sugli

algoritmi on–policy sia su quelli off–policy.

In ambito off–policy si é analizzato come le prestazioni degli algoritmi

dipendano dalla distanza tra la politica target e quella behavior nello spazio

dei loro parametri. In particolare i risultati evidenziano che piú le due

politiche sono diverse piú é elevata la varianza del gradiente indipendente-

mente dalla funzione obiettivo che si sta ottimizzando.

In conclusione si analizzano le due misure di rischio che contengono un

parametro di penalizzazione, cioé il criterio media–varianza e il gradiente

modificato. In questi test é ben visibile che agendo sul parametro é possibile

gestire il livello di rischio a piacimento ottenendo tutti i comportamenti

compresi tra la neutralitá e la totale avversione.
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Chapter 1

Introduction

Many real sequential decision–making problems can be approximately solved

using Reinforcement Learning (RL) techniques. Regardless of the specific

contexts in which these problems arise, there are some common aspects

which must be taken into account in order to identify which learning method

is more suitable for the task.

For example, when the problem is too complex to describe the underlying

model in terms of small finite sets of states and actions, the algorithm must

be able to exploit function approximations to represent the information in

a compact way. These approaches employ an approximator to learn some

mappings among state, action and reward spaces. However introducing these

elements in the algorithm structure can lead to biased results or oscillation

phenomena, that do not allow to converge to good solutions.

In this thesis we have restricted our attention to policy gradient algo-

rithms, in particular to the likelihood ratio methods, which are able to learn

optimal parameters for a certain family of policies without need to estimate

value functions as instead happens in critic–only and actor–critic algorithms.

Given that the performance of these algorithms drastically depends on the

accuracy of the gradient evaluations, most of the efforts must be dedicated

to devise methods capable of reducing the variability of these estimations.

The baseline technique and the GPOMDP formulation of the gradient are

two of the most effective tools exploitable in this context.

Another important aspect of the learning methods is the frequency at

which the agent can interact with the environment in order to draw sam-

ples. In fact if the environment is not able to react quickly to the decisions

taken by the agent then the sole sample collection may take a very long
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time, slowing down the entire learning process. In finance, medicine or

robotic applications the agent can be mostly trained with historical data

collected by other agents, because, in the general case, it is not convenient,

or even possible, to explore a whole environment starting with no experience

and extracting enough data to perform an on–line learning. Therefore it is

necessary to switch the context from on–line on–policy scenario to off–line

off–policy learning, where the key idea is that the actor updates are guided

by the performance of a target policy evaluated using samples drawn from

another probability distribution. Unfortunately learning in this new setting

with policy gradient methods may lead to very unreliable results because:

1. The variance of the gradient estimated becomes higher due to the neg-

ative effect of the importance weights introduced in off–policy learning.

2. From fixed batch data the performance of policies very different from

the behavior policy, that has generated them, cannot be well esti-

mated, hence this is a further source of uncertainty to be controlled.

A large part of this work is devoted to describe how it is possible to overcome

these issues, studying and formally deriving the off–policy formulations of

baselines for both REINFORCE and GPOMDP–like gradients.

After all these considerations a further analysis is performed within the

risk–averse framework. This choice is due to the fact that some of the most

complex problems of practical interest cannot be solved with standard RL

techniques, because the concept of optimal policy is no more connected only

to the pure expected total return, but it also involved a risk sensitivity. In

terms of optimization problem the risk management implies to minimize the

variability of returns in addition to the maximization of the standard RL

criterion, i.e., the expected sum of discounted rewards. This can be done

using as objective function the Sharpe ratio or the mean–variance criterion,

which are the most common risk measures in economics and operations re-

search. Off–line learning and risk–sensitive optimization are two concepts

deeply related, because nobody is willing to explore by himself a risky en-

vironment in order to learn from his own mistakes. A better solution is to

extract from a batch dataset useful information and develop a policy which

is able to guarantee the desired risk tolerance, even if this means to sacrifice

some of the expected profit in order to increase the stability of the gain.

As a conclusion, a new objective function called Modified Gradient is

introduced. This measure is a concept which involves elements from both
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off–line learning and risk–sensitive RL, because it penalizes the improvement

towards policies for which it is not possible to verify the performance gain

from the batch dataset because too different from the behavior policy. Now

the agent takes into account the trade–off between remaining close to the

well estimated performance of a non–optimal behavior and moving toward

potentially improved policy whose effects on the system are more uncertain.

For all the motivations presented in this brief introduction the overall

goal of this thesis is to present risk–aware algorithms devised to both operate

in an off–line batch context and solve problems with continuous state and/or

action spaces. An important contribution is given by the experiments, that

empirically support the theoretical analysis showing the effects of the im-

plemented techniques in all the several scenarios previously described.

1.1 Overview

This thesis is structured as follows.

Chapter 2 presents the fundamental concepts related to the proposed

theme, such as Reinforcement Learning, policy gradient methods, off–line

learning and risk–sensitive optimization. Moreover it includes a brief analy-

sis of the previous works in the literature and the definition of the notation

used in the rest of this document.

In Chapter 3 the standard on–policy formulations are redefined in order

to operate in off–policy scenarios. It is also explained how different baseline

techniques can be used to enhance the performance of the algorithms.

In Chapter 4 are defined three risk measures and the new elements

needed in off-line risk–sensitive algorithms.

Chapter 5 describes the model used to perform the tests, the analysis

of the results and empirical evaluations and comparisons of the proposed

algorithms. The experiments are organized according to the structure of

the theoretical part of this thesis. In fact first the risk–neutral methods are

presented, secondly the notions of risk are introduced in the objective func-

tions in order to create risk–aware algorithms. Most of the algorithms are

tested both in on–policy and off–policy scenarios, and in both REINFORCE

and GPOMDP–like formulations.

Finally, Chapter 6 presents the reached conclusions from the analysis,

and includes some suggestions for future work.
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Chapter 2

State of the Art

In this chapter we describe the theories and the concepts that constitute a

necessary prerequisite to understand the problem and developed the solu-

tion proposed in this thesis.

The chapter is organized as follows. In Section 2.1 Reinforcement Learn-

ing is contextualized in the area of machine learning, presenting also its most

important elements. In Section 2.2 is introduced the MDP framework and

the notation that will be used in this text. In Section 2.3 is presented a gen-

eral classification of RL methods, pointing out the features useful to easily

understand this thesis. Special attention is reserved here to the description

of policy gradient methods. Section 2.4 explains how RL is used to deal

with risk–averse optimization, identifying the already developed solutions

and the diversification of the several techniques adopted so far.

2.1 Reinforcement Learning

Machine learning (ML) is the field of artificial intelligence that studies how

algorithms can learn from data. One class of techniques used to achieve this

purpose is Reinforcement Learning (RL) [81].

In general the learning problem is a complex and difficult task because

the available data (training data) represent only a subset of the whole knowl-

edge of the problem, therefore each method must have a generalization pro-

cedure to be also able to face all the cases not covered by the data.
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Figure 2.1: The RL framework. Figure represents the interaction between the agent

and the environment.

ML can be mainly divided into three subclasses: supervised learning,

unsupervised learning and, the already mentioned, RL. Each of these cate-

gories has its own competence area and it can use only data with a specific

structure. For example, RL can deal with optimal sequential decision prob-

lems in which an agent has to learn how to behave in uncertain environment

in order to attain a certain goal (e.g., win a game or maintain balance).

The goal is formalized in terms of numerical signals (i.e., rewards) that

the agent receives from the system as result of their interactions through

actions. Each reward indicates the intrinsic desirability of being in the

current situation, in particular it is the way of communicating to the agent

what is the goal to achieve, but not how the goal can be achieved.

If the rewards respect these requirements then reaching the goal and

maximize the total amount of reward (i.e., return) are the same concept.

In RL, differently from supervised learning [58], the training data cannot

be provided by an external supervisor who already knows how to label the

behaviors, otherwise the learning problem would be already trivially solved

and the environment could no longer be described as uncertain. For this

reason each RL agent must be able to interact with the environment to

collect its own experience as shown in Figure 2.1.

At each time step t the agent perceives as input the state st of the system

and automatically she chooses and executes a control action at. As a result

of this state-action pair the environment changes producing a transition to

a new state st+1 and providing a reward rt+1 to the agent.

RL algorithms have to learn how map states to actions, i.e., a policy, to

improve the long–term future utility relying only on data samples formed

by state observations, actions and immediate reward signals.
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The key features of the problem previously described can be formalized

using the Markov Decision Process (MDP) framework [72]. This general and

abstract formulation allows RL techniques to be useful in several disciplines,

such as automation control, operational research, game theory, economy and

medicine.

Instead, if the agent wanted to approach the same problem from a super-

vised learning point of view then it would need different structured data, in

particular each sample should associate a state with the return accumulated

from that state on, following a certain sequence of states and actions.

RL and optimal control theory share the aim to find an optimal control

law exploiting the Dynamic Programming (DP) [81] approach to solving

complex problems: dividing the problem in simpler parts (subproblems)

it is possible to combine easily their optimal solutions to reach an overall

optimal solution. However RL and DP start from different assumptions

because the former needs to know neither the environment dynamics nor

the mapping function between state-action pairs and rewards, while in the

latter all the characteristics of the system must be perfectly specified.

This deep knowledge of the system makes DP methods not computa-

tionally feasible for most problems of practical interest due to two distinct

reasons. First, the real model of the environment may not be known even

to the system experts, secondly, assuming that the model is fully defined,

trying to solve exactly the problem in all the states of the model requires

amount of time and space exponential in the number of state variables.

On the other hand, as direct consequence of the weaker requirements,

in the general case RL can only find an approximate solution to a complex

problem, but it can be a good compromise between spending a lot of time

and effort to obtain the real optimal solution using DP algorithms and not

being able to compute it at all.

2.2 Markov Decision Process

An MDP is described by a tuple 〈S,A, T,P,R, D, γ〉 where S and A are the

state and action spaces, T ∈ N+ is the learning horizon that can be either

finite or infinite, P : S × A × S → [0, 1] is the Markovian transition model,

R : S × A → R is the reward function, D is the distribution of the initial

state and γ ∈ [0, 1) is the discount factor for future rewards.
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State and action spaces may be arbitrary sets either discrete or continu-

ous (S ⊆ R
n and A ⊆ R

m). The control policy is characterized by a density

distribution π(·|s) that specifies for each state s the density distribution over

the action space A.
At each time step t ∈ 0, . . . , T , given the state st, the agent selects an

action at ∼ π(·|st) and a new state st+1 ∼ P(·|st, at) is reached. The function
P(st+1|st, at) defines the transition density between state st+1 and st under

action at. Upon a transition the agent receives a scalar signal rt+1 ∼ R(zt)

that represents the immediate reward for the state–action pair zt := (st, at).

For each state s the utility of following a stationary policy π is defined as:

V π(s) = E
aj∼π
sj∼P









T∑

j=0

γjR(zj)





∣
∣
∣
∣
∣
∣

s0 = s



 . (2.1)

Policies can be ranked by their expected discounted return starting from

the state distribution D:

J (π) =

∫

S
D(s)V π(s) ds. (2.2)

Solving an MDP means finding a policy π∗ that maximizes the expected

long-term reward: π∗ ∈ argmaxπ∈Π J (π). This work considers the problem

of finding a policy that maximizes the expected discounted reward over a

class of parametrized policies Πθ = {πθ : θ ∈ Θ}, where Θ ⊆ R
K (K ∈ N+),

is the parameter space.

There are different models of optimal behavior [39, 81] which result in

different versions of the expected return (Equation 2.2). A finite-horizon

model only attempts to maximize the expected reward for the horizon T

V π(s) = E
aj∼π
sj∼P









T∑

j=0

R(zj)





∣
∣
∣
∣
∣
∣

s0 = s





while, in the limit, when γ = 1 the metric approaches what is known as the

average–reward criterion

V π(s) = lim
T→∞

E
aj∼π
sj∼P








1

T

T∑

j=0

R(zj)





∣
∣
∣
∣
∣
∣

s0 = s



 .

Relevant analyses about the fundamental aspects of MDPs can be found in

[10, 11, 23, 72, 81].
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2.3 RL algorithm classification

RL methods can be classified considering several dimensions, the ones useful

to introduce this work are presented in the next sections.

2.3.1 Tabular and Function approximation

If the states S of the environment and the actions A available to the agent

are small discrete sets then all the informations processed by a RL algorithm

can be stored in a compact memory space as a table with one entry for each

state or for each state-action pair.

Unfortunately many real problems are defined in continuous (or large dis-

crete) state space and/or action space. This is a severe issue not just for

the memory needed for larger tables and the time taken to read from them,

but also because with continuous spaces most of the states and actions will

never be sampled, so the only way to learn anything at all on them is to

generalize from the most similar examples in data.

Function approximation is an instance of supervised learning which con-

sists in representing each state and/or action as a small number of features,

thus any of the methods studied in this field can also be combined with RL

algorithms (e.g., parametric linear/non–linear function, neural networks, de-

cision trees, coarse/tile coding, radial basis function).

2.3.2 Value–based, Policy–based, and Actor-critic

Value–based (or Critic–only) algorithms such as Q-learning (QL) [92] and

SARSA [74] use an indirect approach: they search for an optimal value

function from which derive the optimal policy. The value function represents

a solution to the credit assignment problem, namely determines how the

success of a system’s overall performance is due to the various contributions

of the system’s components.

This concept is very abstract when referred to animal learning, but in RL

it is implemented storing in memory entries or parameters of a critic (i.e.,

look-up table or a function approximator), which will be updated propagat-

ing the influence of delayed reward to all states and actions that have an

effect on that reward according to a RL formulation of the Bellman equation

(TD methods [80] and eligibility traces [45]).
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Figure 2.2: Example of value function used in a critic–only method for a discrete model

and the derived optimal policy (arrows).

Policy–based (Policy search or Actor–only) algorithms work directly in the

actor (i.e., policy) space without the help of value functions [65, 71, 82]. The

two approaches available are gradient-free methods and gradient-based.

Gradient-free methods is a large class of methods avoids relying on gradi-

ent information. These include simulated annealing, cross-entropy search or

methods of evolutionary computation, such as genetic algorithms [18, 76, 89].

When the possible behaviors are represented by a parametrized family

of policies policy search methods can be based on approximating gradient

ascent in which the gradient of the performance J , w.r.t. the actor parame-

ters θ, is directly estimated by simulation and the parameters are updated

in a direction of improvement.

θh+1 = θh + αh∇θJ |θ=θh
(2.3)

where αh ∈ (0, 1) denotes a learning rate and h ∈ {0, 1, 2, . . .} the current

update number.

Policy gradient methods have received a lot of attention thanks to REIN-

FORCE [93] and GPOMDP [9, 43] algorithms, but also to the more recent

POWER [46] used in the field of dynamic motor primitives. In particular,

the already mentioned, GPOMDP can be seen as a more efficient implemen-

tation of the REINFORCE algorithm. In fact the latter does not perform

an optimal credit assignment, since it ignores that the reward at time t does

not depend on the action performed after time t. GPOMDP overcomes this

issue taking into account the causality of rewards in the REINFORCE def-

inition of policy gradient.
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Figure 2.3: Visual representation of gradient ascent methods.

Actor–critic methods explicitly represent both the policy and the value func-

tion with two independent function approximations. The critic must learn

about and critique whatever policy is currently being followed by the actor.

In particular, after each action selection, the critic evaluates the new state to

determine whether the results are improving or not. As consequence of this

analysis the action will be recommended again in the future or discarded by

the actor.

Using a critic to help the actor update leads to better results when the

real value function of the problem is contained in the parametrized family

of functions chosen, in this case actor–critic methods can converge to the

optimal policy faster than other techniques.

Figure 2.4: The actor-critic architecture.
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On the other hand, if the parametric value function is either too general

or it cannot well represent the real utility, then the critic estimations can be

an obstacle to the learning process. In fact in the first case the total vari-

ance of the gradient estimation increases and in the second case the result

obtained is biased. Therefore working with actor–only methods can be a

smarter solution when the dynamics of the problem are very uncertain, as

it is supposed in this work.

2.3.3 Policy Gradient methods

The main problem in policy–based algorithms is to obtain a good estimator

of the policy gradient ∇θJ (π), the most significant approaches in RL are

finite–difference and likelihood ratio methods [68].

Finite–difference methods

Finite–difference techniques [79] estimate gradient direction by resolving a

regression problem based on the performance evaluation of policies associ-

ated to different small perturbations of the current parametrization. These

methods have some advantages: they are easy to implement, do not need

assumptions on the differentiability of the policy w.r.t. the policy param-

eters, and are efficient in deterministic settings. On the other hand, when

used on real systems, the choice of parameter perturbations may be difficult

and critical for system safeness. Furthermore, the presence of uncertainties

may significantly slow down the convergence rate.

Likelihood Ratio methods

The second class of policy search approaches is called likelihood ratio meth-

ods [3, 27, 28] and the intensive study of them is the foundation of this

work. They evaluate policies using an alternative formulation of the ex-

pected return definition (see Equation 2.2), which uses the essential con-

cept of trajectory space T. A trajectory τ ∈ T is the ordered set of all

states st and actions at that the agent experiences in a certain simula-

tion started at time t = 0 till reaching the learning horizon T . Formally

τ = {st, at}Tt=0 = {zt}Tt=0 = z0:T is a trajectory of length T + 1 and its

discounted return is R(τ) =∑T
j=0 γ

jR(zj).
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Given that τ depends on the distribution of the initial state D, the tran-

sition model P and the actual policy π used by the agent, the trajectory is

said drawn from density distribution p (τ |π) simply described by the follow-

ing equation:

p (τ |π) = D(s0)π(z0)

T∏

k=1

P(sk|zk−1)π(zk).

These considerations allow to redefine the policies evaluation criterion as

J (π) =

∫

S
D(s)V π(s) ds =

∫

T

p (τ |π)R(τ) dτ = E
τ∼p(·|π)

[R(τ)] . (2.4)

As shown in [68, 93] the equation above is used to derive ∇θJ (π) for the

actor update rule (Equation 2.3), in particular the gradient expression in a

REINFORCE–like fashion is:

∇θJ (π) = E
τ∼p(·|π)

[R(τ)∇θ log p(τ |π)]

= E
τ∼p(·|π)





T∑

j=0

γjR(zj)
T∑

i=0

∇θ log π(zi)



 .
(2.5)

Now we present a quick overview on pros and cons of policy gradient meth-

ods.

The advantages of policy gradient methods for real world applications

are numerous. Compared to several traditional reinforcement learning ap-

proaches, policy gradients scale well to high–dimensional continuous state

and action problems, in particular they can deal with continuous actions

in the exactly same way as discrete ones. If the gradient estimate is un-

biased and learning rates fulfill
∑∞

h=0 ah > 0 and
∑∞

h=0 a
2
h = const (see

Equation 2.3), the learning process is guaranteed to converge at least to a

local maximum. The problem of finding the global maximum instead of a

local one can be relieved using multiple different starting parameters as any

gradient ascent technique.



16 CHAPTER 2. STATE OF THE ART

Furthermore, policy representation can be properly designed for the

given task, thus allowing to:

1. Incorporate domain knowledge into the algorithm useful to speed up

the learning process.

2. Manage fewer parameters than in value–based approaches.

3. Prevent the unexpected execution of dangerous policies that may harm

the system or the agent.

4. Be used either model–free or model–based.

A possible drawback of policy search algorithms is that the gradient es-

timators may have a large variance and in addition, as the policy changes,

a new gradient is computed independently of past estimates making the

use of on–line sampled data not very efficient. Finally, they always have

an open parameter, the learning rate, whose choice decides over the order

of magnitude of the speed of convergence or it can bring to oscillations or

even divergence in the policy parameters updates. To overcome this issue

new approaches have been designed as the ones inspired by expectation–

maximization [46, 91] or automatic selection techniques [69, 70].

Baseline

The variance of the gradient estimator is a significant practical problem in

gradient ascent methods (actor–only or actor–critic).

The technique of discounting future rewards was introduced in [44], and

it exploits the trade off bias–variance, i.e., variance in the gradient estimates

can be reduced increasing the estimation bias [55].

A much better way to solve this problem is to add to the gradient esti-

mation formula a new term, called baseline b ∈ R
K . The baseline technique

affects the estimation variance without adding bias to the final result. In

particular among the all possible terms that can be added, the optimal base-

line can guarantee to obtain policy gradients with minimum variance, thus

the best performance improvement possible. This topic is well studied in

[8, 29, 66, 87].
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2.3.4 On–policy and Off–policy

As pointed out in Section 2.1 and in Section 2.2 the purpose of RL is to

find the optimal policy π∗, i.e., the solution to the MDP which describes the

environment of the problem. RL algorithms achieve this goal mainly in two

different ways: on–policy and off–policy. This choice depends on how the

agent can interact with the system.

On–Policy

On–policy algorithms are related to the most common idea of learning:

evaluating and improving the same policy π that the agent uses to make

decisions. The agent starts from an initial policy (e.g., randomly selected

or using a default parametrization), observing the agent from an external

point of view it is possible to notice, update by update, the gradual changes

in its behavior which, at the end, converges to the optimal policy.

This technique wants to imitate the animal learning, in fact it is designed

to learn from the mistakes made by the agent itself applying the necessary

corrections while the samples are collected. Analyzing the sequences of in-

teraction from the starting time until the conclusion of the learning process,

it can be noticed a progressive increment in the accumulated total return

per sequence.

Off–Policy

In off–policy algorithms two policies, called behavior πB and target πT , are

involved. As their names suggest the first is used to select the action for

the interaction with the system and collect the samples, while the second is

used to evaluate the agent performance and it is improved in each update.

This technique is very useful in several contexts, for example, while the

agent is following a behavior policy to explore the environment it can ap-

ply the learned information only to the target policy without affecting its

exploratory behavior, in this way the agent may end up learning strategies

not necessarily exhibited during the learning phase.

Another common use of off-policy methods is in the off–line batch con-

text, i.e., when the training samples are collected before the agent starts

its learning process (e.g., historical data or experiments performed in safety

conditions). In this settings the agent has no control on the behavior policy,

so the data cannot be chosen, modified or extended and the learning process

must reuse iteratively the same samples to determine the optimal policy.
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Importance Sampling

Importance sampling is an essential component of off–policy learning [40, 48,

52, 73], this technique allows to compute an expectation value of a random

variable f(x) under a probability distribution P (x) given samples x from a

different distribution Q(x). On–policy methods can be seen as particular

cases of off-policy learning where P (x) and Q(x) are the same distribution,

in fact at each step the agent wants to estimate the performance of the same

policy used to collect samples.

The desired goal is to evaluate

E
x∼P (·)

[f(x)] =

∫

P (x)f(x) dx

starting from samples drawn from the proposal distribution Q.

This can be achieved observing that

E
x∼P (·)

[f(x)] =

∫

P (x)f(x) dx =

∫

Q(x)
P (x)

Q(x)
f(x) dx = E

x∼Q(·)

[
P (x)

Q(x)
f(x)

]

which is a simple adjustment of the original values of the samples with the

importance weight ω(x) = P (x)
Q(x) .

Importance Sampling in RL

Referring to the formalization introduced in Section 2.3.3 besides to the

concept of trajectory, the corresponding off–policy RL scenario involves:

• trajectory τ as the basic sample x;

• total discounted return R(τ) as the random variable f(x);

• J
(
πT
)
as the expectation value of the random variable (see Equa-

tion 2.4);

• the trajectory probability under the target policy p
(
τ |πT

)
as P (x);

• the trajectory probability under the behavior policy p
(
τ |πB

)
as Q(x).

As a consequence, the importance weight correction along the whole trajec-

tory is

J
(
πT
)
= E

τ∼p(·|πT )
[R(τ)] = E

τ∼p(·|πB)
[ω(τ)R(τ)] (2.6)

where ω(τ) =
p(·|πT )
p(·|πB)

= ω(z0:T ) =
∏T

w=0 ω(zw) and ω(zw) =
πT (aw|sw)
πB(aw|sw)

.
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The derivation of the off–policy gradient from Equation 2.6 can be found

in [38], here is presented its final formulation:

∇θJ
(
πT
)
= E

τ∼p(·|πB)





T∑

j=0

γjR(zj)ω(τ)
T∑

i=0

∇θ log π
T (zi)



 . (2.7)

In order to well define ω(τ) the behavior policy can be any arbitrary policy

as long as it has non zero probability of selecting any action in every state,

formally πB(a|s) > 0, ∀ s ∈ S, a ∈ A.

Unfortunately the importance sampling technique can lead to unreliable

estimates when the two policies, πB and πT , are too different. This scenario

can happen only in off-policy setting, because in on–policy learning the

two distributions are always identical. Let us consider a batch dataset in

which most of the samples have probabilities to be drawn from the target

distribution πT very different from the ones to be drawn from the behavior

policy πB. The corresponding importance weights
p(·|πT )
p(·|πB)

are either too

high or too small, therefore the final estimation takes into account only the

contributions of the samples with the highest importance weights without

even consider the presence of the other samples in the dataset.

This concept is formalized in the effective sample size (ESS) [49, 88],

which is a measure of the quality of the importance sampled estimate.

ESS =
m

1 + V ar(ωi)

where m is the number of samples and ωi are the importance weights. In off-

policy learning the distance between the parameters of the behavior policy

and the ones of the target policy may increase after each update. As a direct

consequences of this the ESS decreases and the variance of the gradient

estimation increases.
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2.4 Risk–Sensitive Reinforcement Learning

Risk–sensitive problems have been studied in various fields besides machine

learning, e.g., optimal control [33], operations research [14, 21, 34], finance

[50, 75, 90], as well as neuroscience [31, 63].

In order to introduce the general risk–averse concepts within the RL

framework it is useful to notice that all the definitions of policy utility V π

presented in Section 2.2 have in common the straightforward idea of a strong

connection between the maximization of the expected return and utility. A

rational agent must do whatever is possible to obtain more and more re-

ward. Denying in part this key component of standard RL is one of the

main features of risk–sensitive optimization.

As a matter of fact in many real sequential decision–making problems

people are willing even to sacrifice part of the profit in order to decrease

the probability of losses and/or increase the stability of the return. As a

consequence an agent may want to manage risk by trade off the minimiza-

tion of some measure of variability in rewards and the maximization of the

expected reward (see Equation 2.2).

The variability in a problem can be due to two types of uncertainties:

1. Uncertainties in the model parameters, which are related to the im-

perfect knowledge of the problem parameters, they are the topic of

robust MDPs [12, 26, 36, 64, 95].

2. The inherent uncertainty related to the stochastic nature of the sys-

tem (random reward and transition function) which makes the conse-

quences of actions unpredictable at the time when a decision is made,

this is the topic of risk-sensitive RL.

The first attempts [16, 53] to incorporate a measure of risk in optimal

control problem suggested the variance of the return as secondary criteria

to chose among policies which offer the same expected return maximizing

the standard J objective function.

In [56] is analyzed the process of selecting a portfolio, in particular the

rational rules that the investor should use. One of these rules considers

the expected return a desirable property while its variance is an unwanted

feature. There is a rate at which the investor can gain expected return by

increasing variance, or reduce variance by giving up expected return.
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To show this intuitive concept [56] introduces the notion of the (E,V)–space

in which each portfolio can be represented as one point by its Expected re-

turn and its Variance under certain probability beliefs. Plotting these E,V

pairs in this space allows to identify the Pareto frontier, in this way an agent

can choose among the efficient portfolios.

A linear programming approach is used in [22] to solve problems in which

an agent with k limited consumable resources needs policies that attempt

to achieve good performance while respecting these limitations. This is

possible using a constrained MDP (CMDP) [4] which is a standard MDP

(see Section 2.2) where the resources are not explicitly modeled, but rather

are treated as constraints that are imposed on the space of feasible solutions.

Besides the reward functionR(st, at), the agent obtains also informations

from the environment through the cost function C : S × A → R
k, which

defines a vector of consumed units per resource when the action at ∈ A is

executed in state st ∈ S. The risk lies in the probability of violating the

resource constrains.

In worst case control [19, 32] the α–value is the main concept: it denotes

a lower bound for the return that can be reached at least with probability

α. The minimax criterion is a special case of α–value criterion useful to

optimize the worst possible outcome of the return or to guarantee that the

return will not exceed a given threshold with probability 1.

When risk sensitive control is based on the usage of exponential utility

[35, 47] the objective is to maximize an exponential function of the return

which depends on a parameter used to penalize or enforce policies with a

high variance:

U(V ) = −sign(c) e−cV

where U is the utility function, V is the expected return and c is the risk

aversion coefficient of the agent. In [59] is used the Chernoff functional as

risk–aware objective in which the total return appears as an exponential

utility.

In [25] the risk is represented by special states in the MDP which are

considered dangerous. The objective is to find a policy that maximizes

the return while maintains the probability of entering a risky state below

a certain threshold. This goal is achieved first introducing a risk function

R̄(z), similar to the standard reward function, which has the purpose of
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pointing out to the agent what are the undesirable states, then a “risk–

utility” function is estimate as the normal utility V π(s) (see Equation 2.1):

ρπ(s) = E
aj∼π
sj∼P









T∑

j=0

γ̄jR̄(zj)





∣
∣
∣
∣
∣
∣

s0 = s



 .

Another possible implementation of a risk–averse algorithm is proposed

in [51] by penalizing each reward R(zt) with its standard deviation obtain-

ing the adjusted reward Rc(zt) = R(zt)−c σ(R(zt)), where c is a risk averse

coefficient.

In [57] the temporal difference error δ is transformed with a parametric

function that allows to choose between high and low variance policies. By

tuning a scalar parameter κ ∈ (−1, 1) is possible to specify the desired

risk–sensitivity:

δ =

{

(1− κ) δ if δ ≥ 0,

(1 + κ) δ otherwise.

After this transformation [57] applies the standard critic–only update to the

estimated value function

V̂ π
h+1(s) = V̂ π

h (s) + αhδ.

2.4.1 Variance related measures

As previously described, many different risk metrics have been considered

over time, but for sure the most common approach is to use, as general

objective, a risk–averse criterion such as the expected exponential utility

[35], a variance related measure or the percentile performance [94].

When a measure of risk is included in an optimality criterion, the cor-

responding optimal policy is usually no longer Markovian stationary and

even when the MDP’s parameters are known, many of these problems are

computationally intractable, and some are not even approximable [24]. For

example both mean–variance optimization and percentile optimization for

MDPs have been shown to be NP–hard in general. It seems to be difficult to

find an optimization objective which correctly models our intuition of risk

awareness. Even though expectation, variance and percentile levels relate to

risk awareness, optimizing them directly can lead to counterintuitive policies

as illustrated in [20, 54, 59].

In the last years the percentile performance or the CVaR (Conditional

Value at Risk) criterion has taken a prominent place in many studies [1, 7,
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15, 42, 61, 62, 85]. Here the main idea is to optimize the distribution of the

random variable using estimation of its percentiles.

However this thesis is based to another common measure of risk which is

the variance of the return, introduced by Sobel in [37].

Considering the total return as the random variable x with cumulative

distribution F (x), its m–moment is defined as V(m) =
∫∞
−∞ xmdF (x). In

this way the standard evaluation measure V (see Equation 2.1) is the first

moment V(1) of the return and its variance is V(2) − V 2
(1).

In order to simplify the rest of the text the following notation will be

used:

W π(s) = E
aj∼π
sj∼P









T∑

j=0

γjR(zj)





2∣∣
∣
∣
∣
∣

s0 = s





is the second moment V(2) of the total return and the corresponding policy

evaluation measure is

M (π) =

∫

S
D(s)W π(s) ds =

∫

T

p (τ |π)R(τ)2 dτ. (2.8)

The same is done for the variance, where

Λπ(s) = V AR





T∑

j=0

γjR(zj)

∣
∣
∣
∣
∣
∣

s0 = s





and

V ar(π) = M (π)− (J (π))2 .

Note that V AR[·] denotes the statistical measure of the variance of a random

variable, while V ar(π) indicates the estimate of the variance of the total

return induced by the policy π and the distribution D.

Typical performance criteria that include the variance as risk penaliza-

tion are:

1. Maximize J(π) s.t. V ar(π) ≤ b (Variance constrained return)

2. Minimize V a(π)r s.t. J(π) ≥ b

3. Maximize J(π)√
V ar(π)

(Sharpe Ratio)

4. Maximize J(π)− c
√

V ar(π) or J(π)− c V ar(π) (mean–variance)
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Sobel proposed a Bellman equation of Λπ, but being a non linear func-

tion it lacks of the monotonicity property of dynamic programming and thus

it cannot be optimize using standard DP methods. However, in order to use

the variance in a risk averse criterion, there is no need to compute its exact

value, but is sufficient to have just an accurate estimation. This is a task

suitable for RL techniques, in particular Actor–only [17, 60] or Actor–Critic

[2, 86, 84] methods (see Section 2.3). Critic–Only algorithms [77, 83] were

proposed only for the policy evaluation phase since it is not yet clear how

to develop also the policy improvement step.

In [17] is presented an on–policy actor–only algorithm which updates the

policy parameters w.r.t. variance related criteria such as the Sharpe Ratio

or Variance constrained return. This method estimates the expected values

of J(π) and V ar(π) using exponential moving averages of the total undis-

counted returns of each trajectories R(τ). It also computes the gradient

∇θJ(π) with the likelihood ratio technique as illustrated in the following

pseudocode.

Algorithm 1: Pseudocode of the Actor–only algorithm used in [17]

output: θ∗

initialize θ0, J0, V ar0;

for h← 0 to θh converges do

perform a trial and obtain τh := {st, at}Tt=0;

set R(τh)← 0;

for t← 0 to T do

R(τh)← R(τh) +R(st, at);
end

Jh+1 ← Jh + αh(R(τh)− Jh);

V arh+1 ← V arh + αh

(

(R(τh))2 − J2
h − V arh

)

;

∇θJ ← Equation 2.5;

∇J R ← function (Jh, V arh,∇θJh,R(τh));
θh+1 ← θh + βh∇θJ R;

end

return θ;



Chapter 3

Off–Policy Gradients

All the measures involved in actor–only methods have been presented in

Sections 2.2 and 2.3.3 in on–policy fashion. The main goals of this chapter

are to redefine them in the off–policy context and to formalize the differences

between REINFORCE and GPOMDP approaches.

Furthermore, three types of baselines are introduced (one for REIN-

FORCE and two for GPOMDP method) in order to improve the perfor-

mance of the algorithms. All these concepts are the starting point for the

considerations presented in the next chapter.

3.1 Expected return J

In this section we investigate the formulation of the expected return. We pro-

vide the connection between the trajectory–based definition and the step–

based one. In particular we show that the Markov chain induced by the

policy can be expressed by the repeated application of a kernel.

The derivation is shown in the on–policy and off–policy scenario.
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Expected return J(π) in on–policy settings: from expectation over trajecto-

ries to expectation over state–action pairs.

J(π) = E
τ∼p(·|θ)

[R(τ)] (see Equation 2.4)

=

∫

s0

D (s0)

∫

a0

π(a0|s0;θ)
∫

s1

P (s1|s0, a0)
∫

a1

π(a1|s1;θ) · . . . ·

·
∫

s2

P (s2|s1, a1)
∫

sT

P (sT |sT−1, aT−1)

∫

aT

π(aT |sT ;θ) R(z0:T )

(daT , dsT , . . . , ds2, da1, ds1, da0, ds0)

=

∫

s0

D (s0)

∫

a0

π(z0;θ)







T∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

π(zk;θ)

︸ ︷︷ ︸

on–policy kernel







R(z0:T )

(daT , dsT , . . . , da0, ds0) .

Expected return J(π) in off–policy settings (π ← πT ): from expectation

over trajectories to expectation over state–action pairs.

J
(
πT
)
= E

τ∼p(·|πT )
[R(τ)] =

= E
τ∼p(·|πB)

[

p
(
·|πT

)

p (·|πB)
R(τ)

]

= E
τ∼p(·|πB)

[ω(τ)R(τ)] (see Equation 2.6)

=

∫

s0

D (s0)

∫

a0

πB(a0|s0)
πT (a0|s0)
πB(a0|s0)

·

·
∫

s1

P (s1|s0, a0)
∫

a1

πB(a1|s1)
πT (a1|s1)
πB(a1|s1)

· . . . ·

·
∫

sT

P (sT |sT−1, aT−1)

∫

aT

πB(aT |sT )
πT (aT |sT )
πB(aT |sT )

·

· R(z0:T ) (daT , dsT , . . . , da1, ds1, da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)







T∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

︸ ︷︷ ︸

off–policy kernel







·

· R(z0:T ) (daT , dsT , . . . , da0, ds0) .
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3.2 REINFORCE

Given the formulation of the expected return in off policy settings, it easy

to derive the REINFORCE formulation of the gradient (see Equation 2.7).

For the sake of simplicity we report the formulation here:

Definition 1.

∇θJ
(
πT
)
= E

τ∼p(·|πB)

[
R(τ)ω(τ)∇θ log p(τ |πT )

]

= E
τ∼p(·|πB)





T∑

j=0

γjR(zj)ω(τ)
T∑

i=0

∇θ log π
T (zi)



 .

3.2.1 Component-dependent Baseline

As mentioned in 2.3.3 the policy gradient is a K–dimensional vector and

for each component k it is possible to compute the baseline bk which min-

imizes the variance of the estimation. This concept can be applied both

in on–policy and off–policy learning, for this reason the performance of the

previous gradient estimate can be improved as follows.

∇θk
J
(
πT
)
= E

τ∼p(·|πB)









T∑

j=0

γjR(zj)− bk



ω(τ)
T∑

i=0

∇θk
log πT (zi)



 .

Let

F (τ) = R(τ) =
T∑

j=0

γjR(zj)

G
(τ)
k = ω(τ)

T∑

i=0

∇θk
log πT (zi).

Then the variance of the k–th component of the gradient is

Var

(
∇θk

J
(
πT
))

=

= E
τ∼p(·|πB)

[{(

F (τ) − bk

)

G
(τ)
k

}2
]

−
{

E
τ∼p(·|πB)

[(

F (τ) − bk

)

G
(τ)
k

]}2

= E
τ∼p(·|πB)

[{(

F (τ) − bk

)

G
(τ)
k

}2
]

−
{

E
τ∼p(·|πB)

[

F (τ)G
(τ)
k

]}2

,

because E
τ∼p(·|πB)

[

bkG
(τ)
k

]

= 0.
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Var

(
∇θk

J
(
πT
))

= E
τ∼p(·|πB)

[{

F (τ)G
(τ)
k − bkG

(τ)
k

}2
]

−
{

E
τ∼p(·|πB)

[

F (τ)G
(τ)
k

]}2

= E
τ∼p(·|πB)

[(

F (τ)
)2 (

G
(τ)
k

)2
− 2bkF

(τ)
(

G
(τ)
k

)2
+ (bk)

2
(

G
(τ)
k

)2
]

−
{

E
τ∼p(·|πB)

[

F (τ)G
(τ)
k

]}2

.

Minimizing previous equation w.r.t. bk we get

2bk E
τ∼p(·|πB)

[(

G
(τ)
k

)2
]

− 2 E
τ∼p(·|πB)

[

F (τ)
(

G
(τ)
k

)2
]

= 0

bk =

E
τ∼p(·|πB)

[

F (τ)
(

G
(τ)
k

)2
]

E
τ∼p(·|πB)

[(

G
(τ)
k

)2
]

=

E
τ∼p(·|πB)





T∑

j=0

γjR(zj)

(

ω(τ)
T∑

i=0

∇θk
log πT (zi)

)2




E
τ∼p(·|πB)





(

ω(τ)
T∑

i=0

∇θk
log πT (zi)

)2




.
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3.3 GPOMDP

The GPOMDP algorithm (see Section 2.3.2) distributes the utility of the

reward obtained at time t to only the actions performed before time t. This

reward causality can be expressed modifying the REINFORCE gradient ex-

pression (see Equation 2.5).

The off–policy gradient estimate in GPOMDP–like settings is given by

Definition 2.

∇θJ
(
πT
)
= E

τ∼p(·|πB)

[
T∑

t=0

γtR(zt)ω(z0:t)
t∑

i=0

∇θ log π
T (zi)

]

.

Let

A0:T =

(
T∑

i=0

∇θ log π
T (zi)

)



T∑

j=0

γjR(zj)





=

(
T−1∑

i=0

∇θ log π
T (zi) +∇θ log π

T (zT )

)



T−1∑

j=0

γjR(zj) + γTR(zT )





= A0:T−1 +∇θ log π
T (zT )

T−1∑

j=0

γjR(zj) + γTR(zT )
T∑

i=0

∇θ log π
T (zi)

= A0:T−1 +AT =
T∑

t=0

At

then, with an abuse of notation, the gradient without baseline is given by

∇θJ
(
πT
)
= E

τ∼p(·|πB)

[

ω(τ)
T∑

t=0

At

]

=
T∑

t=0

E
τ∼p(·|πB)

[ω(τ)At] .
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Split the expectation and consider the single term:

E
τ∼p(·|πB)

[ω(τ)At] =

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
T∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

At (daT , dsT , . . . , da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}



∇θ log π
T (zt)

t−1∑

j=0

γjR(zj) + γtR(zt)
t∑

i=0

∇θ log π
T (zi)





{
T∏

k=t+1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

(daT , dsT , . . . , da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}



∇θ log π
T (zt)

t−1∑

j=0

γjR(zj) + γtR(zt)

t∑

i=0

∇θ log π
T (zi)





(dat, dst, . . . , da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

γtR(zt)
t∑

i=0

∇θ log π
T (zi) (dat, dst, . . . , da0, ds0)

= E
τ0:t∼p(·|πB)

[

ω(τ0:t)γ
tR(zt)

t∑

i=0

∇θ log π
T (zi)

]

= E
τ0:t∼p(·|πB)

[(
t∏

w=0

πT (zw)

πB(zw)

)

γtR(zt)
t∑

i=0

∇θ log π
T (zi)

]
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given that in

E
τ∼p(·|πB)



ω(τ)∇θ log π
T (zt)

t−1∑

j=0

γjR(zj)



 =

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t−1∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

·
t−1∑

j=0

γjR(zj)

∫

st

P (st|zt−1)

∫

at

πB(zt)ω(zt)∇θ log π
T (zt)

(dat, dst, . . . , da0, ds0)

the term
∫

at

πB(zt)ω(zt)∇θ log π
T (zt) dat =

∫

at

πT (zt)∇θ log π
T (zt) dat

=

∫

at

∇θπ
T (zt) dat = ∇θ

∫

at

πT (zt) dat = ∇θ1 = 0.

The rest of the section is devoted to the derivation of the baseline terms.

3.3.1 Component–dependent Baseline (step baseline)

The first formulation we analyze is the (step,component)–based version of

the baseline [68].

∇θk
J
(
πT
)
= E

τ∼p(·|πB)

[
T∑

t=0

(

γtR(zt)− b
(t)
k

)

ω(z0:t)

t∑

i=0

∇θk
log πT (zi)

]

=
T∑

t=0

E
τ∼p(·|πB)

[
(

γtR(zt)− b
(t)
k

)

ω(z0:t)
t∑

i=0

∇θk
log πT (zi)

]

.

The aim is to minimize the variance (Var
t
) of each t–th term of this sum.

Let

F (t) = γtR(zt)

G
(t)
k = ω(z0:t)

t∑

i=0

∇θk
log πT (zi).
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Then the variance of the k–th component of the gradient is

Var
t

(
∇θk

J
(
πT
))

=

= E
τ∼p(·|πB)

[{(

F (t) − b
(t)
k

)

G
(t)
k

}2
]

−
{

E
τ∼p(·|πB)

[(

F (t) − b
(t)
k

)

G
(t)
k

]}2

= E
τ∼p(·|πB)

[{(

F (t) − b
(t)
k

)

G
(t)
k

}2
]

−
{

E
τ∼p(·|πB)

[

F (t)G
(t)
k

]}2

,

because E
τ∼p(·|πB)

[

b
(t)
k G

(t)
k

]

= 0.

Var
t

(
∇θk

J
(
πT
))

= E
τ∼p(·|πB)

[{

F (t)G
(t)
k − b

(t)
k G

(t)
k

}2
]

−
{

E
τ∼p(·|πB)

[

F (t)G
(t)
k

]}2

= E
τ∼p(·|πB)

[(

F (t)
)2 (

G
(t)
k

)2
− 2b

(t)
k F (t)

(

G
(t)
k

)2
+
(

b
(t)
k

)2 (

G
(t)
k

)2
]

−
{

E
τ∼p(·|πB)

[

F (t)G
(t)
k

]}2

.

Minimizing previous equation w.r.t. b
(t)
k we get

2b
(t)
k E

τ∼p(·|πB)

[(

G
(t)
k

)2
]

− 2 E
τ∼p(·|πB)

[

F (t)
(

G
(t)
k

)2
]

= 0

b
(t)
k =

E
τ∼p(·|πB)

[

F (t)
(

G
(t)
k

)2
]

E
τ∼p(·|πB)

[(

G
(t)
k

)2
]

=

E
τ∼p(·|πB)



γtR(zt)

(

ω(z0:t)
t∑

i=0

∇θk
log πT (zi)

)2




E
τ∼p(·|πB)





(

ω(z0:t)
t∑

i=0

∇θk
log πT (zi)

)2




.
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3.3.2 Component–dependent Baseline (single baseline)

A simpler baseline can be obtained by considering a single baseline for each

component of the gradient, as done for REINFORCE. As a consequence the

gradient is given by

∇θk
J
(
πT
)
= E

τ∼p(·|πB)

[
T∑

t=0

(
γtR(zt)− bk

)
ω(z0:t)

t∑

i=0

∇θk
log πT (zi)

]

.

Let

F (t) = γtR(zt)

G
(t)
k = ω(z0:t)

t∑

i=0

∇θk
log πT (zi).

Then the variance of the k–th component of the gradient is

Var

(
∇θk

J
(
πT
))

=

= E
τ∼p(·|πB)





{
T∑

t=0

(

F (t) − bk

)

G
(t)
k

}2


−
{

E
τ∼p(·|πB)

[
T∑

t=0

(

F (t) − bk

)

G
(t)
k

]}2

= E
τ∼p(·|πB)





{
T∑

t=0

(

F (t) − bk

)

G
(t)
k

}2


−
{

E
τ∼p(·|πB)

[
T∑

t=0

F (t)G
(t)
k

]}2

,

because E
τ∼p(·|πB)

[

bk

T∑

t=0

G
(t)
k

]

= 0.

Var

(
∇θk

J
(
πT
))

=

= E
τ∼p(·|πB)





{
T∑

t=0

F (t)G
(t)
k − bk

T∑

t=0

G
(t)
k

}2


−
{

E
τ∼p(·|πB)

[
T∑

t=0

F (t)G
(t)
k

]}2

.

Minimizing previous equation w.r.t. bk we get

2bk E
τ∼p(·|πB)





(
T∑

t=0

G
(t)
k

)2


− 2 E
τ∼p(·|πB)

[(
T∑

t=0

F (t)G
(t)
k

)(
T∑

t=0

G
(t)
k

)]

= 0

bk =

E
τ∼p(·|πB)

[(
T∑

t=0

F (t)G
(t)
k

)(
T∑

t=0

G
(t)
k

)]

E
τ∼p(·|πB)





(
T∑

t=0

G
(t)
k

)2




.
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Chapter 4

Off–line risk–sensitive RL

The previous chapter has presented all the modifications needed to adapt the

standard policy–based methods to the off–policy context. Now the scenario

becomes more complex: besides the off–policy component , we will show how

an actor–only algorithm can optimize a risk measure, which can juxtapose,

or even replace, the standard RL criterion.

In many real problems an agent cannot explore a risky environment

trying all the possible behaviors in order to well–estimate their outcomes.

The main reasons are two:

1. The state and action spaces are not finite sets.

2. Many policies may damage the agent itself or waste limited goods

associated to some kind of utility (e.g., money, reputation, consumable

resources).

At the same time in many scenarios, e.g., in finance or medical field, the

agent can rely on a huge historical dataset which collects past interactions

between the system and other agents.

These two aspects ask for to devise an off-line learning technique able to

face risk in complex problems. Experience of both good and poor strategies

helps the agent to learn its own policy, which respects the desired risk–

aversion level.

Given J R, a criterion that is related to some risk measure R, the gra-

dient ascent update (see Equation 2.3) is modified to take into account

the new risk function: θh+1 = θh + αh∇θJ R|θ=θh
. In particular the

structure of an off-line actor-only algorithm is reported in Algorithm 2.
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Algorithm 2: General structure of off–line Actor–only algorithm

input : nbUpdates, BatchData

output: θ∗

initialize θ0;

for h← 0 to nbUpdates do

∇θJ R ← 0;

for Ep← 1 to |BatchData| do
extract the Ep–th episode from BatchData;

for t← 0 to T do

use the sample 〈st, at, rt+1, s
′
t+1〉Ep in ∇θJ R estimation;

end

end

θh+1 ← θh + αh∇θJ R;

end

return θ;

4.1 Variance related criteria

Here are derived two policy gradients for the most common measures used

in risk–averse application, i.e. the Sharpe Ratio and the mean–variance cri-

terion. The common idea of these two indexes is using the variance as an

active penalty term in the objective function. Not only if two investments

have the same expected return and different variances, the one with the

lower variance is the better choice, but they compare in different ways these

two variables.

An abbreviated notation is used to referring to the statistical variables

presented in the previous chapters.

In order to well–define these optimization problems ∀θ ∈ Θ the values

of J(πθ),M(πθ) and V ar(πθ) must be bounded.
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4.1.1 Sharpe Ratio

In finance, the Sharpe ratio measures the excess return per unit of deviation

in an investment asset or a trading strategy [78]. In the general case the

Sharpe ratio is defined as:

SR =
µ− rf

σ
,

where µ is the mean portfolio return, rf is the risk–free rate, σ is the stan-

dard deviation of portfolio return. One intuition of this calculation is that a

portfolio engaging in “zero risk” investment, such as the purchase of T–bills

(for which the expected return µ is the risk-free rate), has a Sharpe ratio of

exactly zero.

However in this thesis we use a simpler version of this index, where the

risk–free rate is 0, µ = J(π) and σ =
√

V ar(π) :

J SR =
J√
V ar

.

The associated gradient w.r.t. the policy parameters is

∇θJ SR =
1√
V ar

(

∇θJ −
J

2V ar
∇θV ar

)

(4.1)

=
1√

M − J2

(

∇θJ −
J

2(M − J2)
(∇θM − 2J∇θJ)

)

(4.2)

=
M∇θJ − 1

2J∇θM

(M − J2)
3
2

. (4.3)

Another assumption needed for the Sharpe ratio is that ∀θ ∈ Θ V ar(πθ) > 0.

4.1.2 Mean Variance

The mean variance criterion uses the variance of the return V ar(π) as a

penalty term against the expected return J(π) [56]. By looking at the ex-

pected return and variance of an asset, investors attempt to make more

efficient investment choices–seeking the lowest variance for a given expected

return, or seeking the highest expected return for a given variance level.

The objective function is

JMV = J − c V ar,

and the associated gradient w.r.t. the policy parameters is

∇θJMV = ∇θJ − c ∇θ

(
M − J2)

)

= ∇θJ − c (∇θM − 2J∇θJ) .
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It is important to notice that in this simple family of variance related

criteria only four variables (J, ∇θJ, M and ∇θM) are enough to define any

possible gradient. The formalization of J in off–policy settings is proposed

in the second part of Section 3.1, while for ∇θJ the REINFORCE and

GPOMDP alternatives are available in Sections 3.2 and 3.3, respectively.

In the next section the other two elements, M and ∇θM , involved in the

gradient expressions are derived.

Obtaining an unbiased estimate of the term J∇θJ from a single trajec-

tory is impossible. To overcome this issue two alternative approaches can

be exploited:

1. Use a two timescale algorithm, where estimates of J are calculated on

the fast time scale and the gradient ∇θJ and the parameters θ are

respectively computed and updated at the end of each episode on a

slower time scale.

2. Divide the data in two disjoined sets and compute J independently

from ∇θJ .

The algorithms used for the experiments in Chapter 5 adopt the second op-

tion. In each test the number of trajectories used for estimate the gradients

∇θJ and ∇θM is indicated as grad trajectories/update, while the number of

trajectories used to estimate J and M is eval trajectories/update.

4.2 Second moment M

In this section we provide a deep analysis of the second moment of the

policy performance J. We start reporting the definition in off-policy settings

and we derive the REINFORCE- and GPOMDP–like gradient formulations.

For sake of clarity we restate the formulation of the second moment (see

Equation 2.8):

M (π) =

∫

S
D(s)W π(s) ds =

∫

T

p (τ |π)R(τ)2 dτ

The corresponding off–policy formulation is derived applying the importance

sampling technique described in Section 2.3.4, with the only difference that

now the random variable is R(τ)2 and no more R(τ).

M
(
πT
)
= E

τ∼p(·|πT )

[

R(τ)2
]

= E
τ∼p(·|πB)

[

p
(
·|πT

)

p (·|πB)
R(τ)2

]

= E
τ∼p(·|πB)

[

ω(τ)R(τ)2
]

.
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4.2.1 REINFORCE

By following the same derivation used for the off–policy gradient, it is easy

to obtain the following off–policy formulation of the second moment REIN-

FORCE estimate:

Definition 3.

∇θM
(
πT
)
= E

τ∼p(·|πB)

[

R(τ)2ω(τ)∇θ log p(τ |πT )
]

= E
τ∼p(·|πB)









T∑

j=0

γjR(zj)





2

ω(τ)
T∑

i=0

∇θ log π
T (zi)



 .

Component–dependent Baseline

As we have seen in the previous chapter the formulation of the REINFORCE

gradient estimate allows to introduce a component-dependent baseline:

∇θk
M
(
πT
)
= E

τ∼p(·|πB)













T∑

j=0

γjR(zj)





2

− bk



ω(τ)
T∑

i=0

∇θk
log πT (zi)



 .

Let

F (τ) = R(τ)2 =





T∑

j=0

γjR(zj)





2

G
(τ)
k = ω(τ)

T∑

i=0

∇θk
log πT (zi).

Then the baseline is obtained as explained for ∇θk
J
(
πT
)
in Section 3.2.1.

The final expression differs only in the definition of F (τ):

bk =

E
τ∼p(·|πB)









T∑

j=0

γjR(zj)





2(

ω(τ)
T∑

i=0

∇θk
log πT (zi)

)2




E
τ∼p(·|πB)





(

ω(τ)
T∑

i=0

∇θk
log πT (zi)

)2




.
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4.2.2 GPOMDP

By considering the causality relationship between actions and rewards it

is possible to provide a better estimate of the gradient also for the second

moment of the policy performance J:

Definition 4.

∇θM
(
πT
)
=

= E
τ∼p(·|πB)

[
T∑

t=0

γtR(zt) Ht ω(τ0:t)
t∑

i=0

∇θ log π
T (zi)

]

.

Let

B0:T =

(
T∑

i=0

∇θ log π
T (zi)

)



T∑

j=0

γjR(zj)





2

=

(
T−1∑

i=0

∇θ log π
T (zi) +∇θ log π

T (zT )

)

·

·





T−1∑

j=0

γjR(zj) + γTR(zT )





2

=

(
T−1∑

i=0

∇θ log π
T (zi) +∇θ log π

T (zT )

)

·

·









T−1∑

j=0

γjR(zj)





2

+
(
γTR(zT )

)2
+ 2γTR(zT )

T−1∑

j=0

γjR(zj)





= B0:T−1 +∇θ log π
T (zT )





T−1∑

j=0

γjR(zj)





2

+

+
T∑

i=0

∇θ log π
T (zi)




(
γTR(zT )

)2
+ 2γTR(zT )

T−1∑

j=0

γjR(zj)





= B0:T−1 +∇θ log π
T (zT )





T−1∑

j=0

γjR(zj)





2

+

+ γTR(zT )
T∑

i=0

∇θ log π
T (zi)



2
T∑

j=0

γjR(zj)− γTR(zT )





= B0:T−1 +BT =
T∑

t=0

Bt
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then, with an abuse of notation, the gradient without baseline is given by

∇θM
(
πT
)
= E

τ∼p(·|πB)

[

ω(τ)
T∑

t=0

Bt

]

=
T∑

t=0

E
τ∼p(·|πB)

[ω(τ)Bt]

Split the expectation and consider the single term

E
τ∼p(·|πB)

[ω(τ)Bt] =

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
T∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

Bt (daT , dsT , . . . , da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

Bt

{
T∏

k=t+1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

(daT , dsT , . . . , da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

Bt (dat, dst, . . . , da0, ds0)

=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

γtR(zt)
t∑

i=0

∇θ log π
T (zi)



2
t∑

j=0

γjR(zj)− γtR(zt)





(dat, dst, . . . , da0, ds0)

= E
τ0:t∼p(·|πB)

[

ω(τ0:t) γ
tR(zt)

t∑

i=0

Ht∇θ log π
T (zi)

]

where Ht =
(

2
∑t

j=0 γ
jR(zj)− γtR(zt)

)

,
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given that in

E
τ∼p(·|πB)



ω(τ)∇θ log π
T (zt)





t−1∑

j=0

γjR(zj)





2



=

∫

s0

D (s0)

∫

a0

πB(z0)ω(z0)

{
t−1∏

k=1

∫

sk

P (sk|zk−1)

∫

ak

πB(zk)ω(zk)

}

·

·





t−1∑

j=0

γjR(zj)





2
∫

st

P (st|zt−1)

∫

at

πB(zt)ω(zt)∇θ log π
T (zt)

(dat, dst, . . . , da0, ds0)

the term
∫

at

πB(zt)ω(zt)∇θ log π
T (zt) dat =

∫

at

πT (zt)∇θ log π
T (zt) dat

=

∫

at

∇θπ
T (zt) dat = ∇θ

∫

at

πT (zt) dat = ∇θ1 = 0

Component–dependent Baseline (step baseline)

As done for the first moment, the first formulation we analyze is the (step,component)–

based version of the baseline:

∇θk
M
(
πT
)
=

= E
τ∼p(·|πB)

[
T∑

t=0

(

γtR(zt)Ht − b
(t)
k

)

ω(τ0:t)

t∑

i=0

∇θk
log πT (zi)

]

=
T∑

t=0

E
τ∼p(·|πB)

[
(

γtR(zt)Ht − b
(t)
k

)

ω(τ0:t)
t∑

i=0

∇θk
log πT (zi)

]

.

The aim is to minimize the variance (Var
t
) of each t–th term of this sum.

Let

F (t) = γtR(zt)Ht = γtR(zt)



2

t∑

j=0

γjR(zj)− γtR(zt)





G
(t)
k = ω(z0:t)

t∑

i=0

∇θk
log πT (zi).

Then the baseline is obtained as explained for ∇θk
J
(
πT
)
in Section 3.3.1.
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The final expression differs only in the definition of F (t):

b
(t)
k =

E
τ∼p(·|πB)



γtR(zt)Ht

(

ω(z0:t)
t∑

i=0

∇θ log π
T (zi)

)2




E
τ∼p(·|πB)





(

ω(z0:t)
t∑

i=0

∇θ log π
T (zi)

)2




.

Component–dependent Baseline (single baseline)

As done for the first moment, we also consider a baseline that does not

depend on the specific time step. We exploit the complete derivation re-

ported in Section 3.3.2 by reporting here only the differences. The gradient

estimate with baseline is given by:

∇θk
M
(
πT
)
=

= E
τ∼p(·|πB)

[
T∑

t=0

(
γtR(zt)Ht − bk

)
ω(τ0:t)

t∑

i=0

∇θk
log πT (zi)

]

.

Let

F (t) = γtR(zt)Ht = γtR(zt)



2
t∑

j=0

γjR(zj)− γtR(zt)





G
(t)
k = ω(z0:t)

t∑

i=0

∇θk
log πT (zi).

Then the baseline is obtained as explained for ∇θk
J
(
πT
)
in Section 3.3.2.

The final expression differs only in the definition of F (t):

bk =

E
τ∼p(·|πB)

[(
T∑

t=0

F (t)G
(t)
k

)(
T∑

t=0

G
(t)
k

)]

E
τ∼p(·|πB)





(
T∑

t=0

G
(t)
k

)2




.
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4.3 Modified Gradient

To conclude this chapter we present another source of risk, originated from

the use of off-line batch data as training dataset.

In on–line learning the number of available samples increases as the learn-

ing process goes on. Unfortunately only the most recently extracted trajec-

tories are evaluated to estimate the gradient for the next update, because

they are representative of the current policy performance. All the samples

already used in older updates can be either memorized in the dataset or dis-

carded, since they do not contain useful informations to improve the actual

policy and no other update will take them into account.

Although this is a waste of resources and time, it is a good property ex-

ploited in on–policy algorithms for gradually improving the policy parametriza-

tion towards the optimal one.

When the experience comes from a fixed off-line dataset, the further the

agent moves its target policy away from the behavior one, the less reliable

information can be extracted. This is a form of risk caused by the difficult

choice between staying close to the behavior policy in order to have a good

estimation of the expected performance and trying to reach a new policy

without knowing its real effect on the system. In this context it seems clear

that not necessarily an “improved” policy performs better than the previous

ones, simply because in the evaluation dataset there are not enough samples

similar to the ones that are likely to be generated from the new policy.

The agent cannot blindly trust the learning process as described so far,

so the risk–sensitive criterion must be redesigned to penalize policies very

different from the one used to interact with the environment.

In other words the gradient ∇θJ must be followed only if the future

performance can be estimated from the batch dataset with enough precision,

otherwise the wisest choice would be not moving from the current policy.
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This goal can be achieved considering as measure of variability the sam-

ple variance of the off–policy return Var

(
J
(
πT
))
, defined as follows.

Given a batch dataset D with |D| = n trajectories, the sample variance is

Var

(
J
(
πT
))

=
1

n
V AR [w(τ)R(τ)]

=
1

n

(

E
τ∈D

[
w2(τ)R2(τ)

]
−
(

E
τ∈D

[w(τ)R(τ)]
)2
)

=
1

n








E
τ∈D

[
w2(τ)R2(τ)

]

︸ ︷︷ ︸

M(J(τ))

−
(
J
(
πT
))2








.

The risk–averse criterion is given by J R(πT ) = J
(
πT
)
− p Var

(
J
(
πT
))
,

and the associated gradient w.r.t. the policy parameters is

∇θJ R(πT ) = ∇θJ
(
πT
)
− p∇θ Var

(
J
(
πT
))

= ∇θJ
(
πT
)
− p

n

(
∇θM (J (τ))− 2J

(
πT
)
∇θJ

(
πT
))

,

where p ∈ R≥0 is the penalty coefficient.

The only elements to define are ∇θM (J (τ)) and the associated baseline

used to reduce the variability of the estimation.

In the following section we present the derivation of the gradient in

REINFORCE–scenario. Unfortunately, the quadratic dependence on the

importance sampling terms prevents the definition of a GPOMDP–like ver-

sion.

4.3.1 REINFORCE

The REINFORCE–like estimation is obtained as follows:

∇θM (J (τ)) = ∇θ

∫

p
(
τ |πB

)

(

p
(
τ |πT

)

p (τ |πB)

)2

R(τ)2dτ

= 2

∫

p
(
τ |πB

) p
(
τ |πT

)

p (τ |πB)

∇θp
(
τ |πT

)

p (τ |πB)
R(τ)2dτ

= 2 E
τ∼p(·|πB)

[

R(τ)2ω2(τ)∇θ log p(τ |πT )
]

= 2 E
τ∼p(·|πB)









T∑

j=0

γjR(zj)





2



T∏

j=0

ω2(zj)





T∑

i=0

∇θ log π
T (zi)



 .
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Component–dependent Baseline

The formulation of the REINFORCE gradient estimate allows to introduce

a component-dependent baseline:

∇θk
M
(
πT
)
=

= E
τ∼p(·|πB)













T∑

j=0

γjR(zj)





2

− bk

ω(τ)



ω2(τ)
T∑

i=0

∇θk
log πT (zi)



 .

Let

F (τ) = R2(τ) =





T∑

j=0

γjR(zj)





2

G
(τ)
k = ω2(τ)

T∑

i=0

∇θk
log πT (zi).

Then the variance of the k–th component of the gradient is

Var

(
∇θk

J
(
πT
))

=

= E
τ∼p(·|πB)

[{(

F (τ) − bk

ω(τ)

)

G
(τ)
k

}2
]

−
{

E
τ∼p(·|πB)

[(

F (τ) − bk

ω(τ)

)

G
(τ)
k

]}2

= E
τ∼p(·|πB)

[{(

F (τ) − bk

ω(τ)

)

G
(τ)
k

}2
]

−
{

E
τ∼p(·|πB)

[

F (τ)G
(τ)
k

]}2

,

because E
τ∼p(·|πB)

[
bk

ω(τ)
G

(τ)
k

]

= 0.

Var

(
∇θk

J
(
πT
))

=

= E
τ∼p(·|πB)

[{

F (τ)G
(τ)
k −

bk

ω(τ)
G

(τ)
k

}2
]

−
{

E
τ∼p(·|πB)

[

F (τ)G
(τ)
k

]}2

.
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Minimizing previous equation w.r.t. bk we get

2bk E
τ∼p(·|πB)





(

G
(τ)
k

ω(τ)

)2


− 2 E
τ∼p(·|πB)

[

F (τ)

ω(τ)

(

G
(τ)
k

)2
]

= 0

bk =

E
τ∼p(·|πB)

[

F (τ)

ω(τ)

(

G
(τ)
k

)2
]

E
τ∼p(·|πB)





(

G
(τ)
k

ω(τ)

)2




=

E
τ∼p(·|πB)




1

ω(τ)





T∑

j=0

γjR(zj)





2(

ω2(τ)
T∑

i=0

∇θk
log πT (zi)

)2




E
τ∼p(·|πB)





(

ω(τ)
T∑

i=0

∇θk
log πT (zi)

)2




.
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Chapter 5

Experiments

This chapter is dedicated to the analysis of the performance of several actor–

only algorithms. The aim is to show the different levels of effectiveness of

gradient ascent/descent methods which follow gradients composed by the

four main elements (J,∇θJ, M and ∇θM) presented in Chapters 3 and 4.

The analysis takes into account several dimensions that characterize the

algorithms:

• On/off–policy learning;

• Number of samples used;

• Objective function to optimize;

• Risk neutral/averse objective function;

• REINFORCE/GPOMDP–like gradient estimation;

• Gradient estimation with/without baseline.

Each graph is the result of 20 simulations, which are represented by their

mean value and the 95% confidence interval as error bars. The simulations

are performed with a fixed learning rate tuned by hand and they start from

the same initial policy parameterization θ(0) = [0, 0, 0, 0, 0, 0]T .
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5.1 Portfolio Domain

The environment used to perform the tests is very similar to the one de-

scribed in [17]. Although it is a rather simplistic model, it is an interesting

financial problem where the agent’s actions can influence the variance of

the return. Moreover the state transitions are stochastic and the actions

produce both immediate and delayed rewards. For these reasons it is a good

test case, suitable for the evaluation of our off–line algorithms.

We use a portfolio management problem (shown in Figure 5.1) where

the investment assets can be either liquid or non–liquid and in each state

the available actions are:

1. Maintain unchanged the liquid asset

(action 0: do not invest).

2. Invest a fixed fraction α of liquid asset in one non–liquid asset

(action 1: invest).

The chosen action is determined by a stochastic policy, in particular the

action “invest” is performed with probability

π(a = 1|s;θ) = ǫ+ (1− 2ǫ)e−
(θ·s−10)2

100 , (5.1)

while π(a = 0|s;θ) = 1− π(a = 1|s;θ).
The dot product θ ·s of the two vectors θ, s ∈ R

n is defined as
∑n

i=1 θisi

and ǫ ∈ R+ is a parameter that guarantees ∀θ ∈ Θ and ∀s ∈ S non zero

probability of choose each the action.

Besides the behavior of the agent, the system has its own dynamics, in

fact at each time step t (0 ≤ t ≤ T where T is the time horizon):

• The liquid asset guarantees a fixed interest rate rl to the agent.

• The non–liquid assets have a time dependent interest rate rnl(t), earned

by the agent only after a maturity period of N steps from the time of

investment.

• The interest rate rnl(t) has some risk probability prisk of not being

paid once it has reached the maturity. Furthermore it can take one of

the two values rlownl or r
high
nl and the transition between these values

occur stochastically with switching probability pswitch.

• The reward given to the agent is the sum of the reward from the liquid

investment and the one from the non–liquid investment (the latter is

0 when there is not any mature non–liquid asset or if it is lost).
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Figure 5.1: The Portfolio Model. Figure represents the environment used to test the

algorithms. The circles are the N + 2 states, the dashed lines are the two actions and

the solid lines are the maturity period of the non–liquid assets. The arrows indicate the

direction in which the fixed fractions of investment are moved according to the actions

and the system dynamics.

The state of the model is represented by a vector s(t) ∈ R
N+2, where

the first state variable s1(t) ∈ [0, 1] is the fraction of investment in liquid

assets and the last variable sN+2(t) is the difference between the current

non–liquid interest rate rnl(t) and its mean value computed from the start-

ing time E
0≤i≤t

[rnl(i)].

The other N state variables s2(t), · · · , sN+1(t) ∈ [0, 1] represent the frac-

tion of investments in the non–liquid assets. More precisely s2(t) is the non–

liquid asset that will be ready in the next step t+1 and it will contribute in

the reward R(st+1, at+1), while sN+1(t) is the fraction moved from liquid to

non–liquid in the previous step t and it needs N steps to become mature.

The initial state s(0) is deterministic and assumes that all the invest-

ments are in liquid assets, thus s(0) =



1, 0, · · · , 0
︸ ︷︷ ︸

N+1



.

Despite the policy used in these tests differs from the one presented in

[17], they have the same range of probability values for each action, in fact

∀θ ∈ Θ, ǫ ≤ π(a|s;θ) ≤ 1 − ǫ, thus for ǫ > 0 the agent can never act

with a deterministic behavior and the variance of the total return is always

positive.
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The parameters used in the experiments are:

T = 50

N = 4

α = 0.2

prisk = 0.05

pswitch = 0.1

rl = 1

r
high
nl = 2

rlownl = 1.1

ǫ = 0.05

With these parameters the mean values of J(π) and V ar(π) are bounded

as follows: 50.8 ≤ J(π) ≤ 65.15 and 0.96 ≤ V ar(π) ≤ 43.34.

Moreover the optimal policy parameterization w.r.t. the standard RL crite-

rion is θ∗ = [10, 10, 10, 10, 10, 0]T , which defines the upper bounds for J(π)

and V ar(π) just presented.

In order to simplify the analysis descriptions in the rest of the text, here are

defined some relevant parameterizations and their labels:

Beh0: θ = θ(0) = [0, 0, 0, 0, 0, 0]T

Beh2: θ = [2, 2, 2, 2, 2, 0]T

Beh4: θ = [4, 4, 4, 4, 4, 0]T

Beh6: θ = [6, 6, 6, 6, 6, 0]T

Beh8: θ = [8, 8, 8, 8, 8, 0]T

Beh10: θ = θ
∗ = [10, 10, 10, 10, 10, 0]T

Two interesting properties of these policies are:

• The expected return J(πθ) increases going from Beh0 to Beh10.

• Given that in all the following off–policy tests the target policy is

always initialized with Beh0, the initial distance between πT and πB

increases going from Beh0 to Beh10.
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5.2 On–Policy Risk-neutral

The first tests (Figures 5.2 and 5.3) are performed on on–policy algorithms

with standard objective function maxθ J(πθ). This means that, at each

update h, new samples are collected using the current policy πθh
in order

to estimate the gradient ∇θJ |θ=θh
.

Here the context is risk neutral, thus the agent wants to maximize its

utility without taking care of the variability of the returns. It is recalled

that all the off–policy gradients discussed in the previous chapters can be

translated in the on–policy settings imposing that each importance weight

ω(zt) = 1, 0 ≤ t ≤ T .

The aim is to show that:

• GPOMDP estimations of the gradient have less variance than the ones

based on the REINFORCE formulation.

• The baseline can drastically reduce the variance of the estimation in

both REINFORCE and GPOMDP methods.

Figure 5.2: Max J On–Policy comparative graph (x axis: samples, y axis: J)

updates: 2 000, trajectories/update: 50, steps/trajectory: 50, learning rate: 6E − 2

total samples: 5 000 000

(The mean values of REINFORCE baseline, GPOMDP baseline and GPOMD single

baseline are overlapped)
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(a) REINFORCE (b) REINFORCE baseline

(c) GPOMDP (d) GPOMDP baseline

(e) GPOMDP single–baseline

Figure 5.3: Max J On–Policy (x axis: samples, y axis: J)

updates: 2 000, trajectories/update: 50, steps/trajectory: 50, learning rate: 6E − 2

total samples: 5 000 000
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5.2.1 Number of samples

The variance reduction attributed to the introduction of the baseline tech-

nique can be exploited also in a different dimension: the total number of

samples needed in the learning process.

In the previous test 5 000 000 samples were used in order to restrict

the variance of the two algorithms without baseline. In fact the variance

increases very fast as the number of trajectories or updates is lowered.

In the next graphs (Figure 5.4) the samples drawn are only 52 500 and

the learning rate increases from 6E−2 to 8E−1, but these modifications do

not substantially alter the performance of the three algorithms with base-

line, which maintain the performance very close to the previous tests. The

GPOMDP–like formulations (Figures 5.4b and 5.4c) succeed to estimate

the gradients more precisely than the REINFORCE–like one (Figure 5.4a),

which has higher variance.

Even if this consideration seems to have a minor importance in on–line

context, because the agent can, in some cases, interact with the environment

as long as it wants, this is a fundamental aspect in off–line learning. Actually

when the experience is limited using algorithms that can learn faster, with

less variance and with few samples is a great advantage.
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(a) REINFORCE baseline (b) GPOMDP baseline

(c) GPOMDP single–baseline

Figure 5.4: Max J On–Policy (x axis: samples, y axis: J)

updates: 350, trajectories/update: 3, steps/trajectory: 50, learning rate: 8E − 1

total samples: 52 500
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5.3 Off–Policy Risk–neutral

As done in the theoretical part of this thesis, the topic is now switched to

off–policy off–line learning without taking into account any risk factor yet.

In off–policy scenarios the data are fixed and the agent must reuse the same

experience each time to update the target policy πT parameters.

The importance weight technique discussed in Section 2.3.4 adds further

variability in the gradient estimations, for this reason the use of baselines is

even more important respect to the on–policy case. Figure 5.5 shows that

the performance of the algorithms with baseline are much higher than the

ones of methods without baseline, so this useful tool allows to extract more

precise information from the batch dataset achieving better results.

From this first test it is already possible to identify one of the limitations

of the off–line learning. In general, a batch dataset does not contain enough

information to learn the optimal policy reachable with an on–line algorithm,

but a good sub–optimal result can be achieved with a few samples. This

may happen if the training dataset contains very few samples or when the

behavior policy allows to visit only part of the environment.

Figure 5.5: Max J Off–Policy Beh0 comparative graph (x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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5.3.1 Baseline and Importance weights

Other important aspects of off–policy algorithms are:

• The behavior policy used to collect the batch data.

• The gradual improvement of the target policy.

In the previous graph (Figure 5.5) the behavior policy parameterization

is “Beh0” (see last part of Section 5.1). This particular case is useful to

explain how the baseline affects the variance of the gradients in the different

phases of the learning process.

Beh0 is also used as the initial parameterization for the target policy,

therefore the importance weight computed in the first updates are very

closed to 1, which makes the initial phase similar to an on–policy learn-

ing. Here the variability introduced by the importance weights is minimal

and the baseline can maximize its effect.

In order to better appreciate the differences between REINFORCE and

GPOMDP methods with/without baseline in the off–policy scenario and

provide a deep analysis of them, it is convenient to split Figure 5.5 into 5

distinct graphs (Figure 5.6), one for each algorithm showing the learning

curves for each run.

As mentioned before, the initial distance between the target policy and

the behavior is 0 and it remains small until the 100–th update. In this part of

the graphs it can be noticed how both GPOMDP methods and the baseline

techniques are very effective in reducing the variance, especially when they

work at the same time in graphs 5.6d and 5.6e.

A “breaking point” can be observed in each graph around the 100-th up-

date. After this point the 20 trajectories follow different directions, because

the distance between the improving target policy and the fixed behavior pol-

icy increases the variability of the importance weights. From this point on,

the beneficial effect of the baseline on the gradient estimation is inevitably

dominated by the importance weight component.

Focusing on the rightmost part of the graphs, it can be noticed that the

three algorithms with baseline have much more variability than the ones

without it. This is not a fault of the baseline techniques, but it is due to

the fact that, using the baseline, the performance of the algorithm increases,

thus the target policy becomes further more different respect to the behavior

one, strengthening also the negative effect due to high–variant importance

weights.
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(a) REINFORCE (b) REINFORCE baseline

(c) GPOMDP (d) GPOMDP baseline

(e) GPOMDP single–baseline

Figure 5.6: Max J Off–Policy Beh0 single algorithms (x axis: updates, y axis: J)

each graph contains 20 learning curves in order to show the different shapes of their

breaking points

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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5.3.2 Behavior policies

In the following tests it is studied how the off–policy learning process reacts

when the distance between the initial target parameterization and the be-

havior policy is increased, moving the latter from Beh0 to Beh10.

As conclusion, it will be established that using the baseline technique

and starting from a target policy close to the behavior policy, which has

generated the dataset, are both profitable choices.

Beginning the analysis from the two algorithms without baseline it is

immediately clear that moving the behavior policy away from the target

of a single step is sufficient to strongly degrade their performance in terms

of lower expected values and higher variances. In Figures 5.7, 5.8 and 5.9

are compared the performance when using Beh0 (leftmost graphs, already

presented before) and Beh2 (rightmost graphs).

The “breaking points” visible in Figures 5.9a and 5.9c are moved to the

left when the Beh2 is used (Figure 5.9b and 5.9d). This means that, for the

basic algorithms without baseline, the distance between the target (Beh0)

and the behavior (Beh2) produces importance weights with high variances

even from the beginning of the learning process. The misleading estimations

bring the gradient ascent algorithms to perform optimization steps in wrong

directions obtaining poor results.

(a) Performance with Beh0 (b) Performance with Beh2

Figure 5.7: Max J Off–Policy comparative graph (x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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(a) REINFORCE Beh0 (b) REINFORCE Beh2

(c) GPOMDP Beh0 (d) GPOMDP Beh2

Figure 5.8: Max J Off–Policy algorithms without baseline average values

(x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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(a) REINFORCE Beh0 (b) REINFORCE Beh2

(c) GPOMDP Beh0 (d) GPOMDP Beh2

Figure 5.9: Max J Off–Policy algorithms without baseline trajectories

(x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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The baseline successfully reduces the initial importance weight penalty and

shifts the “breaking points” toward the 200–th update (see Figures 5.10b,

5.10d and 5.10f). The extra updates kept under the control by the baseline

allow to enhance the performance of the algorithms, compared to both the

Beh0 tests and the Beh2 algorithms without baseline (see Figure 5.7).

(a) REINFORCE baseline Beh0 (b) REINFORCE baseline Beh2

(c) GPOMDP baseline Beh0 (d) GPOMDP baseline Beh2

(e) GPOMDP single baseline Beh0 (f) GPOMDP single baseline Beh2

Figure 5.10: Max J Off–Policy algorithms with baseline (x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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The tests presented in the last part of this section (Figures 5.11, 5.12 and

5.13) emphasize that further increasing the distance between the target and

the behavior policies necessarily deteriorates also the performance of the

baseline algorithms.

This is the empirical proof that confirms the advantage obtained starting

with a target policy similar to the behavior which has generated the batch

dataset.

In Section 5.4.4 is analyzed the Modified Gradient technique, which is a

possible solution to this problem. The standard RL gradient used in these

off–policy tests is revised in order to reduce the variance of the importance

weights when the target and the behavior policy are very different.

(a) REINFORCE baseline Beh2 (b) REINFORCE baseline Beh4

(c) REINFORCE baseline Beh6 (d) REINFORCE baseline Beh10

Figure 5.11: Max J Off–Policy REINFORCE baseline (x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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(a) GPOMDP baseline Beh2 (b) GPOMDP baseline Beh4

(c) GPOMDP baseline Beh6 (d) GPOMDP baseline Beh10

Figure 5.12: Max J Off–Policy GPOMDP baseline (x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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(a) GPOMDP single baseline Beh2 (b) GPOMDP single baseline Beh4

(c) GPOMDP single baseline Beh6 (d) GPOMDP single baseline Beh10

Figure 5.13: Max J Off–Policy GPOMDP single baseline (x axis: updates, y axis: J)

updates: 1 000, batch trajectories: 20 000, steps/trajectory: 50, learning rate: 5E − 2

total samples: 1 000 000
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5.4 Risk–related

In this section are presented both the on–policy and off–policy tests, without

repeating all the conclusions already drawn in the Sections 5.2 and 5.3.

5.4.1 Variance

The preliminary risk–related test aims at proving that the portfolio problem

admits an optimal policy π∗ which leads to returns with both the maximum

expected value J(π∗) and the maximum variance V ar(π∗).

The model presents the same property of many real problems in which

it is not possible to increase the expected gain without affecting also its

variance. Therefore it can be stated that this simple problem is suitable for

to a risk–sensitive analysis.

Following the gradient ∇θV ar(π) = ∇θM(π) − 2J(π)∇θJ(π) all the

algorithms converge to the same θ
∗ defined in Section 5.1. Figure 5.14

shows this result only in the cases of on–policy GPOMDP and GPOMDP

with single–baseline algorithms, just to avoid proposing all the same results

many times. The baseline reduces also in these cases the variance of the

estimated gradients.

When the objective function aims to maximize or minimize the pure

variance of the return the algorithms need much more samples in order to

achieve good performance. This is due to the fact that the estimation of

∇θV ar(π) is computed as ∇θM(π) − 2J(π)∇θJ , that is the difference of

two terms with the same order of magnitude. Most of the time the gradients

are small values close to 0, therefore a bigger number of samples is needed

to ensure the estimation of the right direction to follow.

The next step is to show that the policy–gradient algorithms can also

find a parameterization for which the variance is minimal (Figures 5.15 and

5.16 for on–policy tests, Figure 5.17 for off–policy tests). This is an extreme

case of risk aversion, in which the agent is satisfied with getting any return

provided that the variance is the lowest possible.
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(a) GPOMDP (b) GPOMDP single baseline

Figure 5.14: Max Var On–Policy (x axis: samples, y axis: V ar)

updates: 2 000, grad trajectories/update: 10 000, eval trajectories/update 5 000,

steps/trajectory: 50, learning rate: 1E − 2

total samples: 1 500 000 000

(a) REINFORCE (b) GPOMDP

Figure 5.15: min Var On–Policy without baseline (x axis: samples, y axis: V ar)

updates: 2 000, grad trajectories/update: 10 000, eval trajectories/update 5 000,

steps/trajectory: 50, learning rate: 1E − 2

total samples: 1 500 000 000
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(a) REINFORCE baseline (b) GPOMDP baseline

(c) GPOMDP single baseline

Figure 5.16: min Var On–Policy with baseline (x axis: updates, y axis: V ar)

updates: 250, grad trajectories/update: 100, eval trajectories/update 50,

steps/trajectory: 50, learning rate: 1E − 1

total samples: 1 875 000
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(a) REINFORCE baseline

(b) GPOMDP baseline (c) GPOMDP single baseline

Figure 5.17: min Var Off–Policy Beh0 (x axis: updates, y axis: V ar)

updates: 500, grad trajectories/update: 10 000, eval trajectories/update 2 500,

steps/trajectory: 50, learning rate: 5E − 2

total samples: 625 000

Unfortunately, from our tests it is not yet clear why risk–sensitive algorithms

with baseline have higher variance when the gradient has a GPOMDP–

like formulation respect to the REINFORCE–like formulation. In order to

avoid misunderstandings and mistakes, from now on in this document we

will report only the results of the tests performed on REINFORCE–like

algorithms.
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5.4.2 Sharpe Ratio

As introduced in Section 4.1 the Sharpe Ratio is a measure of risk used in

finance, defined as SR(π) = J(π)√
V ar(π)

. An important aspect of this index is

the absence of control parameters, in fact it cannot be tuned using the risk

aversion level of the agent.

The policy chosen for this model (see Expression 5.1) always guarantees

a positive variance of the return (see 5.1), thus the Sharpe Ratio is limited

for each parameterization θ and the maximization problem is well defined.

In Figures 5.18 and 5.19 are shown the performance of the REINFORCE

with baseline algorithm in both on–policy and off–policy scenarios. Each test

is explained using 3 graphs:

• Graphs 5.18a and 5.19a report the learning curves for the maximiza-

tion of the Sharpe Ratio value.

• Graphs 5.18b and 5.19b show how the expected return changes during

the learning process.

• Graphs 5.18c and 5.19c are the equivalent of the previous graphs in

terms of the variance of the return instead of its expectation.

Although this risk measure has the most complex gradient expression

among the ones presented in this thesis (see Expression 4.1), the results

obtained are remarkably good both in on–line and off–line tests, where the

performance of the algorithms are quite similar.

Since the policy admits some parameterizations for which the variance of

the return is less than 1 and its expected value is not too low, the Sharpe ra-

tio assumes the highest value just in correspondence of one of these policies.

Therefore the optimal solution for this specific risk–averse objective func-

tion is the one already found in the experiments described in Section 5.4.1,

where the aim was simply minimizing the variance.
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(a) Sharpe Ratio

(b) J (c) Var

Figure 5.18: Max Sharpe Ratio On–Policy REINFORCE baseline

(x axis: samples, y axis: SR (a), J (b), V ar (c) )

updates: 50, grad trajectories/update: 100, eval trajectories/update 50,

steps/trajectory: 50, learning rate: 3E − 1

total samples: 375 000
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(a) Sharpe Ratio

(b) J (c) Var

Figure 5.19: Max Sharpe Ratio Off–Policy REINFORCE baseline Beh0

(x axis: updates, y axis: SR (a), J (b), V ar (c) )

updates: 500, grad trajectories/update: 10 000, eval trajectories/update 2 500,

steps/trajectory: 50, learning rate: 5E − 2

total samples: 625 000
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5.4.3 Mean–Variance criterion

The mean–variance (MV) criterion uses the variance of the return V ar(π)

as penalty to prevent the uncontrolled growth of J(π). Differently from the

Sharpe Ratio it takes advantage of a penalty coefficient c which the agent

can modify in order to vary its risk–aversion.

In Figure 5.20 are shown the different values that the objective function

J − c V ar can assume in the proposed model. For c = 0 the optimiza-

tion problem trivially degenerates into the already discussed risk–neutral

maximization of the expected return. On the other hand for c ≥ 0.7 mini-

mizing the variance becomes much more important than obtaining any gain.

In this scenario the agent can choose the appropriate penalty coefficient

to achieve the desired performance as presented in Figures 5.21 and 5.22.

Both in the on–policy and off–policy learning the expected return can be

sacrificed (5.21a and 5.22a) in order to also decrease the variability (5.21b

and 5.22b).

(a) Mean Variance

Figure 5.20: Max Mean Variance On–Policy REINFORCE baseline

(x axis: samples, y axis: J − c V ar)

updates: 3 000, grad trajectories/update: 3 000, eval trajectories/update 1 500,

steps/trajectory: 50, learning rate: 5E − 1

total samples: 675 000 000
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(a) J projection of the MV criterion

(b) Var projection of the MV criterion

Figure 5.21: Max Mean Variance On–Policy REINFORCE baseline

(x axis: samples, y axis: J (a), V ar (b) )

updates: 3 000, grad trajectories/update: 3 000, eval trajectories/update 1 500,

steps/trajectory: 50, learning rate: 5E − 1

total samples: 675 000 000



76 CHAPTER 5. EXPERIMENTS

(a) J projection of the MV criterion

(b) Var projection of the MV criterion

Figure 5.22: Max Mean Variance Off–Policy REINFORCE baseline Beh2

(x axis: samples, y axis: J (a), V ar (b) )

updates: 500, grad trajectories/update: 10 000, eval trajectories/update 2 500,

steps/trajectory: 50, learning rate: 5E − 2

total samples: 625 000
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The penalty coefficient allows to transform the problem in a multi–

criteria decision analysis, in which the maximization of J and the mini-

mization of V ar are two conflicting criteria that need to be evaluated in

making decisions.

Typically some solutions perform well in some criteria and some per-

form well in others. Therefore it does not exist a unique optimal solution

for such problems and it is necessary to use decision maker’s preferences to

differentiate between solutions. In order to do this in the portfolio model

it is possible to show the Pareto–optimal frontier plotting the J–V ar pairs

selected varying the penalty coefficient.

In Figure 5.23 the blue line represents the Pareto frontier, while the

red line identifies how J and V ar change during a standard risk–neutral

learning process (see Section 5.2). It can be noticed that incorporating

the risk measure into the objective function allows the algorithms to find

policies which, in correspondence of the same expected return value, have

less variance.

Figure 5.23: Max Mean Variance On–Policy Pareto frontier

(x axis: J , y axis: V ar)
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5.4.4 Modified Gradient

The last risk–sensitive analysis is about the criterion described in Section 4.3.

Here the notion of risk is not the one used in the previous tests in Sec-

tions 5.4.1, 5.4.2 and 5.4.3, in fact the main difference is that it is meaning-

ful only in off–line scenarios. The main purpose of the objection function

J−p V ar(J) is to obtain the best possible gain from a batch dataset without

speculate too much on policy performance which cannot be well estimated

from the fixed available experience. Identifying the maximum amount of

exploitable informations contained in the current dataset, avoids that the

learning process becomes more similar to a random guess.

Before testing this risk–sensitive measure, we first repeat the experiments

conducted in Section 5.3, where the objective function is the standard max-

imization of J(π) in the off–line context. The only difference between these

tests and the ones presented before is the number of samples used. Here,

in order to make evident the desired effects, are used only 10 000 samples

against the previous 1 000 000.

Figures 5.24 and 5.25 show very interesting aspects of the off–line learn-

ing. The 6 graphs on the left are the new risk–neutral tests in which the

batch dataset is created using different behavior policies. As already men-

tioned in Section 5.1, moving from Beh0 to Beh10 increases the expected

return of the trajectories in the training data, but also it increases the dis-

tance between the initial target parameterization and the behavior policy

which influences the variance of the importance weights. When the updates

exceed the breaking point the good effect of the baseline vanishes, leaving

the variance of the gradient under the control of the importance weights

noise.

The problem is that using few samples the breaking point moves very

quickly towards the starting point, leading to some phases in which the opti-

mization follows the right direction and other phases in which the expected

return is minimized. The main advantage of the modified gradient measure,

shown in Figures 5.24 and 5.25 (graphs on the right), is that the expected

return increases until the effects of the importance weights becomes too

variable. At this point the gain is maintained over time while the standard

algorithm continues the “optimization” process, which however brings to

poor performance. To emphasize the drastic change in the behavior of the

algorithm are also shown the same previous graphs revealing all the single

learning curves (see Figures 5.26 and 5.27).
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(a) Max J Beh0 (b) Modified Gradient Beh0

(c) Max J Beh2 (d) Modified Gradient Beh2

(e) Max J Beh4 (f) Modified Gradient Beh4

Figure 5.24: Max J Off–Policy (left) and ModifiedGradient (right)

REINFORCE baseline (x axis: updates, y axis: J)

Behavior policies from Beh0 to Beh4

updates: 1 500, total samples: 10 000, learning rate: 5E − 2, penalty coefficient: 0.01
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(a) Max J Beh6 (b) Modified Gradient Beh6

(c) Max J Beh8 (d) Modified Gradient Beh8

(e) Max J Beh10 (f) Modified Gradient Beh10

Figure 5.25: Max J Off–Policy (left) and ModifiedGradient (right)

REINFORCE baseline (x axis: updates, y axis: J)

Behavior policies from Beh6 to Beh10

updates: 1 500, total samples: 10 000, learning rate: 5E − 2, penalty coefficient: 0.01
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(a) Max J Beh0 (b) Modified Gradient Beh0

(c) Max J Beh2 (d) Modified Gradient Beh2

(e) Max J Beh4 (f) Modified Gradient Beh4

Figure 5.26: Max J Off–Policy (left) and ModifiedGradient (right)

REINFORCE baseline (x axis: updates, y axis: J)

Behavior policies from Beh0 to Beh4

updates: 1 500, total samples: 10 000, learning rate: 5E − 2, penalty coefficient: 0.01
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(a) Max J Beh6 (b) Modified Gradient Beh6

(c) Max J Beh8 (d) Modified Gradient Beh8

(e) Max J Beh10 (f) Modified Gradient Beh10

Figure 5.27: Max J Off–Policy (left) and ModifiedGradient (right)

REINFORCE baseline (x axis: updates, y axis: J)

Behavior policies from Beh6 to Beh10

updates: 1 500, total samples: 10 000, learning rate: 5E − 2, penalty coefficient: 0.01
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Figure 5.28 summarizes the previous graphs pointing out the main bene-

fits of the modified gradient technique (Figure 5.28b) respect to the standard

optimization of the expected return (Figure 5.28a).

The modified gradient succeeds in increasing the performance when the

distance between target and behavior policies is high. This is due to the

fact that those behavior policies are actually better than the others (see

Section 5.1), but the importance weights variance hides this truth when the

standard algorithms are used. Another important achievement is that the

learning curves are now sorted according to the expected return of each be-

havior policy, while without the penalty term there is not any particular

order.

When the behavior policies are close to the initial target parameteriza-

tions (e.g., Beh0 in Figure 5.24b and Beh2 in Figure 5.24d) the modified

gradient seems to perform worst then the standard maximization of the ex-

pected return. This is due to the fact that in all the previous experiments

the penalty coefficient p is fixed, thus the learning process stops when the

target policy is quite distant from the behavior policy and not because the

training dataset does not contain further information to exploit. To solve

this problem is enough to gradually decrease the penalty term as shown if

Figure 5.29.

The orange lines are the learning curves of the modified gradient algo-

rithm version in which after every 1 000 updates the coefficient p is multiplied

by 0.9 (decaying factor). It can be noticed that the performance are higher

respect to both the risk–neutral J maximization and the Modified Gradient

algorithm with fixed penalty coefficient.

The last consideration is related to tests made using penalty coefficients

p too high. Here the algorithm interrupts the learning process since the

first updates and its expected performance are represented with flat lines in

Figure 5.30. here even a small step toward a new policy is perceived as a

significant risk.
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(a) Max J Off–Policy

(b) Modified Gradient p = 0.01

Figure 5.28: Performance with different behavior policies

REINFORCE baseline (x axis: updates, y axis: J)

updates: 1 500, total samples: 10 000, learning rate: 5E − 2



5.4. RISK–RELATED 85

(a) Beh0

(b) Beh2

Figure 5.29: Decaying penalty parameter in Modified Gradient

REINFORCE baseline (x axis: updates, y axis: J)

Behavior policies from Beh6 to Beh10

updates: 1 500, total samples: 10 000, learning rate: 5E − 2, penalty coefficient: 0.01,

coefficient decaying: 0.9 every 1 000 updates



86 CHAPTER 5. EXPERIMENTS

Figure 5.30: ModifiedGradient Beh0 with high penalty coefficient

REINFORCE baseline (x axis: updates, y axis: J)

updates: 1 500, grad trajectories/update: 100, eval trajectories/update 100,

steps/trajectory: 50, learning rate: 5E − 2, penalty coefficient: 100

total samples: 10 000



Chapter 6

Conclusions

This chapter provides a broad overview of the entire work presented in this

thesis. The final part suggests the direction of future research and develop-

ment which could be taken on the basis of this work.

This thesis has provided theoretical and empirical contributions in the

field of risk–sensitive Reinforcement Learning, moreover we have pointed

out the need of operating in off–line context in order to not directly expose

the agent to a risky environment. The transition to off–policy scenarios

introduces new limitations in the learning process, in fact the agent may

have insufficient experience to well estimate the performance of some policies

due to the fixed batch dataset.

We have empirically proved that GPOMDP–like gradient formulation

and the baseline technique are useful tools in decreasing the variance of

gradient estimations. In off–line scenarios this is a huge advantage because

with the same dataset it can happen that only the optimized algorithms can

lead to a good solution while the other ones are not able to learn.

Although we have derived all the formulations in off–policy context, all

the benefits of the methods presented can be exploited also in on–policy

learning as we have shown in the tests in Chapter 5. Moreover the off–

policy algorithms have reached a performance very similar to the one of the

corresponding on–policy versions and the risk averse techniques have proved

to be effective. In particular when a penalty parameter can be tuned in the

objective function (e.g., the mean–variance and the modified gradient crite-

ria) both on–policy and off–policy algorithms are able to produce different

results, which vary from the risk neutral behavior to the extreme risk aver-

sion.
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Future works proposed in this topic have two main purposes:

1. enhance the performance of off–line off–policy learning;

2. use other definitions of risk as penalty term in the objective function.

Natural policy gradient techniques [5, 6, 13, 30, 38, 41, 67] use the Fisher-

information matrix Fθ to define the actor update step as ∆θ ∝ F−1
θ
∇θJ ,

where ∇θJ is the “vanilla” policy gradient used in this thesis. A learning

process based on natural policy gradients often converges significantly faster

for most practical cases, thus it is a good idea to devise natural policy gra-

dient algorithms able to operate in off–policy risk–averse scenarios.

Each algorithm implementation can be improved in order to take advan-

tage both of on–policy and off–policy learning techniques. Hybrid versions

can be developed to handle both batch data and on–line samples. In this

way the training data can be slowly enlarged over time thanks to new in-

teractions with the system, which are used in on–line learning during the

current policy update while they will be treated as off–line batch data in all

the future off–policy gradient estimations.

The Sharpe ratio and the mean–variance criterion are not complex risk

measures, as we mention in Section 2.4 in the last years the percentile perfor-

mance or the CVaR criterion has taken a prominent place in many studies.

These measures allow to perform more accurate estimations of the risk, but

they start from theoretical bases different from the ones presented in this

thesis. Thus future work can be aimed to unify these families of approaches

under a common structure or to exploit some percentile information also in

variance related measures presented so far.
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