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Abstract 

The problem of access to energy, in recent years, has become increasingly important in 

the eyes of the international community. The link between access to energy, particularly 

electricity, and human development is clear, but the problem is far to be solved. This is especially 

true for the poorest countries, where the lack of access to electricity is often one of the main 

obstacles to development. The rate of electrification in developing countries is even lower when 

looking at rural areas: in sub-Saharan Africa, for example, only 14.1% of the rural population 

have access to electricity. For this reason, the electrification of rural areas in developing 

countries is an actual issue for NGOs. 

There are two main possible solutions to provide access to electric energy in rural areas: (i) the 

traditional approach is to extend the national electricity grid to the rural areas, nevertheless 

large parts of these areas have low accessibility, low values of load demand and load factor. For 

these reasons, grid extension often results to be economically unfeasible; (ii) the alternative 

solution is to rely on decentralized and distributed generation, which often results to be the 

most appropriate technology option since power plants are installed close to the load, they can 

be sized in order to best fit with local load demand, and they can be fuelled by local resources 

(i.e. renewables sources). In recent years, for a variety of reasons, the second solution has been 

often preferred for rural electrification.  

In order to dimension these off-grid systems, there are many advanced software based on 

numerical and analytical methods; however, all require as input the electrical load to be met, in 

the form of load profile (usually daily load profiles). A research on articles about projects on 

system sizing for off-grid electrification of rural areas has shown that often it is not given enough 

importance to the estimation phase of the load, and that there is not a clear and definite 

procedure to be followed for this phase. 

At the light of the issue about lack of appropriate methods to estimate load profiles for 

supporting the off-grid system design process, in my thesis I worked for the improvement and 

application of an existing model, coded in MATLAB, for the estimation of load profiles. The aim 

of this model is to provide an appropriate method of estimation of the load to support the 

optimization and sizing process of off-grid systems for rural electrification. The algorithm is 

designed to work with few input data commonly required by even the simplest approaches for 

the estimation of energy requirements in rural areas currently used (installed equipment, times 
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of use, etc.). The main features of the model are: (i) the bottom-up approach; (ii) stochastic 

sampling of switching-on instants of electrical appliances; (iii) the implementation of parameters 

related to the load profiles, and of empirical correlations between these parameters; (iv) the 

possibility of considering the uncertainty of the input data by introducing randomization 

parameters. 

The model has been finally applied in two cases. In the first application, it has been used to 

estimate load profiles of a un-electrified peripheral-urban area of Uganda; the estimated load 

profiles has been used as input data for a specific software which carried out the sizing of a 

photovoltaic system associated with batteries. In the second application, it has been possible to 

test the model, comparing the metered load profiles of an electrical load of a college in Bali, 

Cameroon, and the load profiles estimated by the algorithm for the same context. 

Keywords: Access to energy, Rural electrification, Off-grid power systems, Rural power systems, 

Electrical Load profiles, Load profile estimation, Stochastic Model for Load profile estimation, 

Bottom-up Model for Load profile estimation, Power systems sizing 
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Sommario 

Il problema dell'accesso all'energia, negli ultimi anni, è diventato sempre più importante 

agli occhi della comunità internazionale. Il nesso tra accesso all'energia, in particolare energia 

elettrica, e sviluppo umano è chiaro, ma il problema è lungi dall'essere risolto. Questo è vero 

soprattutto per i paesi più poveri, dove la mancanza di accesso all'energia elettrica è spesso uno 

dei principali ostacoli allo sviluppo. Il tasso di elettrificazione nei paesi in via di sviluppo è ancor 

più basso se si guarda alle zone rurali lontane dai grandi centri abitati: nell'area dell'Africa Sub-

Sahariana, per fare un esempio, solo il 14,1% delle popolazioni rurali hanno accesso 

all'elettricità. Per questo motivo, l’elettrificazione delle zone rurali dei paesi in via di sviluppo è 

un tema di grande attualità per le ONG. 

Le possibili soluzioni per fornire accesso all’energia elettrica a zone rurali sono due: (i) 

l’approccio tradizionale è quello di estendere la rete elettrica nazionale fino alle aree rurali, 

tuttavia molte di queste aree sono molto distanti dai centri urbani e hanno scarsa accessibilità, 

oltre che richieste energetiche modeste. Per queste ragioni, questa soluzione risulta raramente 

percorribile. (ii) La soluzione alternativa è quella di affidarsi alla generazione decentralizzata e 

distribuita, che spesso risulta essere l’opzione installando impianti locali non collegati alla rete 

elettrica principale. Negli ultimi anni, per una serie di motivi, questa seconda alternativa sta 

guadagnando consensi rispetto al passato, soprattutto con l’installazione di impianti off-main-

grid basati totalmente o parzialmente su fonti rinnovabili disponibili localmente (fotovoltaico, 

eolico, idroelettrico, biocombustibili). 

Al fine di dimensionare questi impianti off-grid, esistono molti software avanzati basati su 

metodi numerici e analitici, tuttavia tutti richiedono come dato di input il carico elettrico da 

soddisfare, sotto forma di curva di carico (solitamente giornaliera). Una ricerca tra gli articoli 

riguardanti progetti di dimensionamento di sistemi off-grid per l'elettrificazione di aree rurali, 

ha evidenziato che spesso non viene data sufficiente importanza alla fase di stima del carico, e 

che non esiste una procedura chiara e definita da seguire in questo ambito. 

Per questo, nella mia tesi, mi sono occupato del miglioramento e della applicazione di un 

modello (preesistente), codificato in MATLAB, per la stima di curve di carico. L'obiettivo di tale 

modello è quello di fornire un metodo appropriato di stima del carico per supportare il processo 

di ottimizzazione e dimensionamento di impianti off-grid per l'elettrificazione di aree rurali. 

L'algoritmo è progettato per funzionare con dati di input comunemente richiesti anche dai più 

semplici approcci per la stima dei fabbisogni energetici nelle aree rurali attualmente utilizzati 
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(apparecchi installati, orari di utilizzo, ecc.). Le principali caratteristiche del modello sono: (i) 

l'approccio bottom-up; (ii) il campionamento stocastico degli istanti di accensione degli 

apparecchi; (iii) l'implementazione di parametri relativi alla teoria delle curve di carico, tramite 

correlazioni empiriche tra di essi; (iv) la possibilità di considerare l'incertezza dei dati di input 

tramite l'introduzione di parametri di randomizzazione. 

Il modello è stato infine applicato in due casi. Nel primo caso, è stato utilizzato per fornire curve 

di carico relative all'utenza di una zona periferica di un contesto urbano in Uganda, sulle quali 

basarsi per effettuare il dimensionamento di un impianto fotovoltaico associato a batterie per 

l'accumulo. Nel secondo caso, è stato possibile testare il modello, comparando le misurazioni 

effettuate sul carico elettrico di un college a Bali, in Camerun, e le curve costruite con l'algoritmo 

per lo stesso contesto. 

Parole chiave: Accesso all’energia; Elettrificazione rurale; Sistemi energetici Off-Grid; Sistemi 

energetici rurali; Curve di carico elettrico; Stima di curve di carico; Modello stocastico per stima 

di curve di carico; Modello Bottom-up per stima di curve di carico; Dimensionamento di sistemi 

energetici. 
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1 Introduction, motivations and problem formulation 

This thesis copes with a stochastic method for the estimation of load profiles of un-

electrified rural areas. This theme is specifically developed within the frame of rural electrification 

in developing countries (DCs), and in particular the model is proposed as a support tool for off-grid 

system sizing projects. 

1.1 Rural electrification and off-grid systems 

The development of human society has been marked all throughout history by the role of 

energy resources. In the last decades, the importance of energy in the global scenario and the 

interconnections with the environment and society have become more evident. The need to fight 

both poverty through eradication of energy insufficiency and to increase access to modern energy 

service is actually recognized worldwide. The nexus between energy and development has been 

widely discussed ([1], [2]), and some indicators as HDI and EDI can help to clarify this correlation. 

Human Development Index (HDI), created by Indian economist Amartya Sen and published by 

UNDP in 1990, is a composite statistic of life expectancy, education, and income indices used to 

rank countries into four tiers of human development. Energy Development Index (EDI), recently 

developed by IEA, is a combination of four indicators, mainly related to electricity and modern fuels, 

which take in account different aspects of energy poverty, created specifically in order to better 

understand the role that energy plays in human development. The correlation between EDI and 

HDI indexes is evident (Figure 1.1), confirming that when access to energy improves in terms of 

quality and quantity (EDI raises), human development improves (HDI also raises). 

 

Figure 1.1: Comparison between HDI and EDI for 80 developing countries in 2012 [1] 
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Access to modern energy is today considered a necessary condition for human development: it is a 

requirement for achieving the status of essential and fundamental human rights, such as the 

protection of life, health, liberty, security, etc. Therefore, access to energy is essential to encourage 

development and to fight poverty, which is intended as a lack of opportunities and rights [3]. 

Dealing with the problem of access to energy means to study a dual problem: that of access to 

electricity (i.e. electrification) and that of access to modern fuels and efficient use of traditional 

biomass. In order to identify the dimension of the issue in the world, it is helpful to mention some 

statistics about it: today 1.3 billion people have no access to electricity, a further billion do not have 

access to a reliable electricity grid, and 2.6 billion people rely on traditional biomass (often 

inefficient and polluting appliances are used) for cooking and lighting. This situation is mainly 

localized in developing countries (DCs) characterized by low-income economies and low energy 

consumption per capita, and it becomes more evident in rural areas.  

 

Figure 1.2: Share of population with access to electricity (total and rural) and to solid fuel in countries grouped by Income 
level (High Income, Medium Income and Low Income Countries) 

In 2010, approximately 83% of the world population has access to electricity, but in Sub-Saharan 

Africa, which is one of the most critical regions in terms of electrification, only about 31.8% of the 

population has access to electricity, and this rate drops to 14.1% if we consider only the rural areas 

[4]. Although these countries are often rich in primary energy resources, these are rarely exploited 

at local level, moreover current energy systems are weak and characterized by low reliability. To 
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solve the problem of access to energy, it is necessary to study and implement appropriate energy 

strategies that are not only effective in the short term, but that are sustainable in the long term, in 

the three main dimensions of sustainability: economic, environmental and social [1]. 

It is recognized that access to electricity is the main leverage for development. The World Energy 

Outlook 2012 foresees an increase in the electrification rate of developing countries from 76 % in 

2010 to 85 % in 2030. The IEA projection states that in 2030 1 billion people will still be without 

electricity: Latin America will achieve universal access; developing Asia will halve the number of 

people affected while sub-Saharan Africa will keep a negative trend at least until 2025. Access will 

increase mainly in urban areas, where providing services is easier and more profitable for public 

utilities and private suppliers. Instead, people in rural areas continue to have poor access to 

electricity, because providing electric energy to small and scattered settlements is more complex. 

 

Figure 1.3: Share of people without access to electricity for developing countries (2008). Based on UNDP's classification of 
developing countries and the UN's classification of Developing Countries. 

Concerning the electrification for rural areas, we can identify two main types of intervention:  

 Increase access to national electric grids, extending the transmission and distribution grids 

to rural areas and raising the generation capacity of the centralized power systems. 

 Invest on off-main-grid decentralized and distributed generation (DDG) systems, based on 

renewable energy technologies, which can provide cheaper electricity to rural 

communities, even though they require high investment costs. Off-main-grid refers to 

systems that operate detached from the main centralized grid. Decentralized Generation 
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refers to systems that are made by autonomous units where production, conversion and 

distribution have no interaction with other units. Distributed Generation refers to systems 

based on decentralized production and conversion units which interact through a 

distribution grid [1]. 

The traditional approach for increasing electricity access in rural areas is grid extension, in which 

cost of energy may be cheaper, but the cost of extending the grid to sparsely populated areas can 

be very high and long distance transmission systems may have high technical losses. Moreover, the 

customers living in these areas often have low accessibility, low values of load demand and load 

factor. For these reasons, grid extension often results to be economically unfeasible. In these cases 

Distributed Generation (DG) systems become the most appropriate technology option since they 

can be installed near the load, they can be sized in order to best satisfy load demand, and they can 

be fuelled by local renewable sources [5].  

Additional reasons for which in recent years DG systems have been receiving a growing 

consideration are: 

a) Technological improvement 

 increased performance of the small power technologies 

 development of electronic metering and control equipment 

 increased consumer demands for highly reliable power supply 

b) Environmental concerns 

 growing concern as for the greenhouse gases emissions 

 public awareness of the impacts of the electric industry 

 opposition to building new transmission lines 

c) Economic opportunities 

 to avoid transmission and distribution related costs 

 To tackle the current risky nature of large scale plant investments 

 to reduce power plants costs with combined heat and power generation 

 to better exploit profit margins within the competitive market 

d) Political asset 

 to decrease dependence from fossil fuels 

 to increase primary source diversification 

 to reduce vulnerability of the supply chain in centralized systems 

e) Social issues 
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 increasing public desire to promote “green technologies” 

 growing interest towards energy autonomy communities and sustainability 

1.2 Motivation: estimating load profiles 

Today, also in the developed countries is occurring a slow shift from centralized systems to 

distributed systems and smart grids, with a preference for renewable resources. Consequently, in 

countries where electrification is still in its early stages, it would be smart to consider small scale 

decentralized systems mainly based on renewable energy as an alternative to the traditional 

centralized electric system based on fossil fuels. However it is also true that “Off-Main-Grid” 

decentralized technologies, in particular those partially or fully based on renewable energy, require 

high investment costs. Hence, the need to correctly design and size these systems, in order to 

optimize them to best meet the needs of users and to minimize capital costs.  

Performing optimum design of off-grid plants reflects in looking for the system that best matches, 

at local level, energy resources with electric demand given certain technologies and context 

features. A common classification of the simulation and sizing techniques may be recognized, for 

which the techniques can be grouped in three categories [6]: 

 Intuitive methods: simplified calculation of the system components size carried out without 

establishing any relationship between the different subsystem or taking into account the 

random nature of solar radiation and loads. They are mostly chosen for their simplicity in 

calculations, which makes them more intelligible and replicable by non-expert designer. 

The negative point of this approach is the results’ approximation which can lead to an over 

or an under sizing problem. ([7]–[10]). 

 Numerical methods: several combinations of system components sizes are simulated 

typically on yearly basis and one or more objective functions are used to choose the best 

combination that addresses the load. For each time period considered, usually an hour, the 

energy balance of the system is calculated. Generally, they are preferred when more 

accurate results are required in order to optimize the energy and economic cost of the 

system. Numerical methods have also the advantage of allowing additional aspects of sizing 

to be analyzed such as the different models for the systems components. Unfortunately, 

these methods require long calculation time and need long and accurate data sequences. 

([11]–[14]). 

 Analytical methods: functional relationships between the variables of interest lead to solve 

the sizing problem (i.e. usually developed as a mathematical optimization problem with an 
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objective function subjected to one or more conditions). One of the main drawbacks of 

these methods is that either they are not accurate enough or they require the 

determination of specific coefficients for the functional relationship. On the other side, 

their strongest advantage is that the simulation of the different subsystem sizes is simple 

and relatively fast. ([15]–[17]). 

 Regarding the electric demand, the simplest approaches for DDG design (i.e. intuitive methods) 

rely on monthly or daily electricity requirements [10], while the most advanced methodologies 

(numerical and analytical methods) and available software (i.e. HOMER, H2RES, etc.) rely on electric 

load profiles [18]–[21], which display the electric consumption as a function of time (Figure 1.4). 

 

Figure 1.4: Typical electric load profile, which displays the electric consumption as a function of time. 

An example of advanced software which perform a sophisticated numerical analysis is HOMER: this 

software is a micro-power design tool that can simulate and optimize stand-alone and grid 

connected power systems with any combination of technologies. Energy sources data are inputs to 

HOMER, as well as data on the electricity consumption of customers, in the form of annual electric 

load profile. In addition, the size, cost and lifetime of wind turbine, PV module, converter, battery 

and diesel generator are defined. Furthermore, the installation cost, design flow rate and head of 

hydropower source are all input to the software. HOMER performs a simulation process, which 
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operates through the year one on a 1-hour basis, for each possible combination of technologies 

available. Identified the feasible systems (i.e. that can adequately serve the loads and satisfies any 

other constraints imposed by the user), it estimates their net present cost, and presents the feasible 

one with the lowest total net present cost as the optimal system configuration. Finally, a sensitivity 

analysis reveals how sensitive the outputs are to changes in the inputs. In the sensitivity analysis, 

the HOMER user enters a range of values for a single input variable. One of the primary uses of 

sensitivity analysis is in dealing with uncertainty.  

Regardless of the methodology used to design and size the system - intuitive, numerical or analytical 

method - each of them requires data about the electric load as input. This means that, in order to 

perform an off-grid system design for an un-electrified rural area, electric demand must be 

estimated. The existing software, such as HOMER, perform accurate and detailed simulations on 

the operation of the plant in an entire year with time step up to a minute. Anyhow, since they 

require as input the load profile, the risk in performing the analysis in un-electrified areas, where 

electricity consumption are not known and must somehow be estimated, is to have an optimization 

software extremely precise and detailed, but which operates with input data related to the 

consumption profile drawn inadequately to the complexity of the optimization. Indeed, the drawing 

of load profile is a key point in the search of the optimal plant, because the final results of the 

optimization are strongly influenced by the demand to satisfy. 

In order to understand what are the approaches used today for estimating user’s load of non-

electrified areas, a research into the literature has been performed. The research has been carried 

out between articles regarding the designing and dimensioning of off-grid plants for electrification 

of rural villages, or more generally, areas isolated from the main electricity grid. From the 

observations, it can be assumed that typically the problem is faced in these ways: 

 A measured load profile relative to another rural area previously electrified, possibly in a 

similar context, is used as input load data. This method can give satisfactory results if load 

profiles of contexts effectively similar are chosen, but make sure this is not always easy, so 

there is the risk to use profiles inappropriate to the case study. 

 The load profile is drawn manually, through estimations based on simple assumptions 

about electric appliances and user habits. Such assumptions and the related estimation 

methods provide adequately accuracy for intuitive methods, but not for load profile 

computation. Indeed they usually do not implement main features of load profiles (e.g. load 

factors, coincidence factors, etc.), and do not take into account the power-on random 
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nature of electrical appliances. Besides, when load profiles are computed according to 

these simple assumptions, the uncertainty given by the fact that several load profiles can 

occur within the same set of assumptions is not considered. 

 In some few cases, even no reference is made to how the load profile is built. 

Moreover, it’s important to note that none of the existing system sizing software (such as HOMER) 

integrates a tool for estimating the load curves, and not even suggest any written procedure to 

perform the estimation. In the light of the findings of the research performed, it can be concluded 

that actually the choice of load profile is often overlooked in an off-grid plant design for un-

electrified rural areas, and certainly a greater attention to this aspect could bring benefits in plant 

design. 

1.3 Problem formulation: the LoadProGen tool 

To give greater emphasis to the phase of load estimation, in my thesis I worked for the 

improvement and validation of a model, which estimates daily load profiles of customers in rural 

areas. The aim of this model is to provide a general pattern for the construction of load profiles as 

realistic as possible where measured data cannot be obtained, and therefore improve the designing 

accuracy of off-grid systems in this kind of contexts. 

The model for load profile estimation is designed to work with few input data that are commonly 

considered in the simplest approaches for energy need estimations in rural areas (installed 

appliances, appliances nominal power, duration and time of functioning), also allowing to set the 

degree of uncertainty of the input data, coherently with the data that may be available in the 

context under study.  

The principal features of the model are: 

 It is based on a bottom-up stochastic approach [22]: the system load profile is obtained by 

a bottom-up hierarchic aggregation of coincident load profiles obtained for each end-use 

appliances employed by each class of user [23], in which the coincident load profiles are 

built through a stochastic simulation (weighted sampling without replacement). The 

sampling simulation set the instants of peak power time and appliances switching-on 

employing a probability density function made up with a uniform distribution coupled with 

a normal distribution (located in the peak power period). 

 It takes into account the relationship between coincidence factor and the number of 

consumers: empirical evidence shows a relationship between group coincidence factor and 
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the number of consumers in a group, hence the coincidence factor of each class of user is 

corrected as for the number of consumers in that class by employing empirical coincidence 

curves [24], [25]. 

 It takes into account the relationship between coincidence factor and load factor: empirical 

evidence shows a relationship between group coincident factors and average load factors, 

hence the coincidence factor for each user class is computed given the average user load 

factor (computed from the input assumption) employing the empirical curve [24], [25]. 

In this way, the model accounts for the high load profile uncertainty of un-electrified areas, because 

each simulation generates a different possible load profile. 

1.4 Thesis objective and structure 

This thesis contributed to the research activities of the UNESCO Chair in Energy for 

Sustainable Development at Politecnico di Milano [26].   

 

In this thesis I worked for the improvement and the application of an existing software, 

LoadProGen, coded in MATLAB, for the estimation of load profiles of rural areas. The aim of this 

software is to provide an appropriate method of estimation of the load to support the optimization 

and sizing process of off-grid systems for rural electrification. 

In Chapter 2, initially the main definitions and parameters typically used to characterize 

load profiles are introduced. Then, theoretical concepts regarding the effects of the operation of 

electrical appliances and energy habits of consumers on the electrical load are explained. Finally 

empirical correlations, implemented in the model, that link some of the described parameters are 

presented. 

In Chapter 3, an overview of the loads profile estimate methodologies today available is 

presented. Initially models used for LF and RECM, in particular used in developed countries. It is 

then placed greater focus on applications for off-grid rural electrification: after verification, through 

research in modern scientific literature, that actually do not exist models for load estimation 

specifically developed for use in rural areas of developing countries, the main solutions actually 
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adopted are described. However, the research carried out has shown that the step of load 

estimating, in the projects of energy system sizing for electrification of un-electrified rural areas, is 

often overlooked. 

In Chapter 4, LoadProGen, which is a software for estimating load profiles of un-electrified 

areas developed by the group of the UNESCO Chair in Energy for Sustainable Development of 

Politecnico di Milano, is introduced as regards: the general features, the required input data, and 

the mathematical formulation. 

In Chapter 5, the main improvements developed in the software LoadProGen are shown: 

initially the main weaknesses of the early version of the model are summarized, and subsequently 

the solutions adopted in order to improve the algorithm are explained in detail. Then, the 

computational framework of the algorithm is presented. At the end, some examples of load profiles 

generated through LoadProGen are presented and compared with the results obtained using one 

of the simplest methods founded in literature, explained in Load profiles estimated. 

In Chapter 6, two applications of the LoadProGen software tool are described. The first one 

aims at introducing an application of the model to perform sizing procedure of an off-grid 

photovoltaic system in a peripheral urban area of Uganda. The second one aims at introducing the 

application of the model as a load profile forecast tool, i.e. to show the capability of the model in 

matching metered real daily load profiles. In this case the application refers to the load profile of a 

college in a peri-urban area of Cameroon. 

In Chapter 7, a summary of thesis contributions is given and future research directions are 

discussed. 
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2 Characteristics of consumer loads 

Load profiles (or load curves) represent the electric consumption trends as a function of 

time. In the following chapter, initially the main definitions and parameters typically used to 

characterize load profiles are introduced. Then, theoretical concepts regarding the effects of the 

operation of electrical appliances and energy habits of consumers on the electrical load are 

explained. Finally empirical correlations, implemented in the model, that link some of the described 

parameters are presented. 

2.1 Electrical loads 

Consumers always purchase electricity as an intermediate step towards some final, non-

electrical product. No one wants electric energy itself, they want the products it can provide: a cool 

home in summer, a warm one in winter, hot water on demand, cold beverages in the refrigerator, 

a lighted house in the evening, and 48 inches of dazzling colors with stereo commentary during 

Sunday-night soccer match. Different types of consumers purchase electricity for different reasons, 

and have different requirements for the amount and quality of the power they buy, but all purchase 

electricity as a way to provide the end-products they want. These various products are called end-

uses, and they span a wide range, as shown in Table 2.1 

Agricultural Residential Commercial Industrial 

Lighting Lighting Lighting Lighting 

Water heating Water heating Water heating Water heating 

Computer Computer Computer Computer 

Cooking Cooking Cooking Filtration 

Grain dryers Clothes dryers Inventory system Finishing dryers 

Table 2.1: Customer classes and end-use categories 

Some end-uses are satisfied only by electric power (televisions, computers). In others, such as water 

heating, home heating or cooking, electricity is one of several possible, competing energy sources.  

Each end-use is satisfied through the application of appliances or devices that convert electricity 

into the desired end product. The total electrical load of any group of users is the result of a 

simultaneous use of various electric appliances. The amount of electric load created on a power 

system within any end-use category depends on many factors, such as class of user, or the type of 

equipment installed. Let’s consider for example residential lighting: people or businesses who need 

more lighting will tend to buy more electricity for that purpose. Also important are the types of 

appliances used to convert electricity to the end-use. Consumers using incandescent lighting rather 

than fluorescent lighting will use appreciably more electric power for otherwise similar end-uses. 

The schedule of demand for most end-uses varies as a function of time. In most households, 
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demand for lighting is lowest during mid-day and highest in mid-evening, after dusk but before 

most of the residents have gone to bed. The demand varies not only during the hours of the day, 

but also during the months of the year, due to seasonal variations: the daily schedule of lighting 

demand usually varies slightly throughout the year, due to changes in the daily cycle of sunrise and 

sunset. Again, some end-uses are only seasonal: demand for space heating occurs typically only 

during winter, while air conditioners are turned on in summer. 

2.2 Load profiles: fundamental concepts and definitions 

Load behavior is dominated by individual appliance characteristics and coincidence – the 

fact that not all customers demand their peak use of electricity at precisely same time. For this 

reason, accurate load studies require considerable care. The following section provides the 

theoretical basis regarding the analysis of load profiles: fundamental concepts and main definitions 

are introduced. 

Connected load 

The connected load is the sum of the loads of all electrical devices connected to the 

composite system, i.e. the power value resulting from the sum of all nominal electric powers [W]. 

An household in a developed country might have a 500 watt refrigerator, a 2500 watt electric boiler, 

a 2500 watt washing machine, a 2000 watt dishwasher, a 1300 watt air conditioner, a 1500 watt 

vacuum cleaner, 30 lamps with an average load of 40 watts each, and 2500 watts of miscellaneous 

home entertainment, personal grooming, and other small appliances, for a total of 14000 

connected watts of load. This power value corresponds to the maximum possible energy demand 

from this user, which could happen in the case all the devices connected are operating at the same 

time. Obviously, it is rare that the entire connected load in a system or at any one customer’s 

location would be operational at one time (for example, air conditioning and heating would not be 

running simultaneously). 

Electric load profiles 

Use of the electrical devices varies as a function of time of day, day of week, and season of 

year. As a result, also electric load varies. A load profile is a graphic representation of electric load 

consumption as a function of time. 
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Figure 2.1: Typical summer (solid line) and winter (shaded line) peak day load profiles for a metropolitan power system in 
the southern US (left) and a rural system in New England (right). 

Figure 2.1 shows seasonal peak day (i.e. the day of the season with the highest peak) load profiles 

for residential loads from two electric systems in the United States. In the first one, demand is 

highest in summer, during early evening, when probably a combination of air conditioning demand 

and residential activity is at a peak. In the other, peak demand occurs on winter mornings, when 

the electric heating demand is highest. Load profile shape - when peak load occurs and how load 

varies as a function of time - depends both on the connected load (appliances) and on the consumer 

habits in an area. 

Demand and demand factor 

The demand is the average load over a defined period (i.e. demand interval); it is calculated 

by dividing the energy consumed during the interval to the number of hours in the interval. 

2.1 

𝐷𝑒𝑚𝑎𝑛𝑑 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑊ℎ]

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑟𝑎𝑛𝑔𝑒 [ℎ]
 

Usually, demand is measured on an hourly or quarter-hour basis, but it can be measured on any 

interval. As the demand is a mean value of power, it does not allow to observe the load changes 

within the interval on which it is calculated. In this sense, the lower demand interval, the greater 

the accuracy with which the load profile describes the real behavior of the load, because it will lose 

less information relating to the maxima and minima that occur within the demand interval. 

The peak demand (or peak load) is the maximum value of demand over a measurement 

period. For example, a period of an year contains 35040 fifteen-minute demand intervals. The 

maximum among these readings is the peak fifteen-minute demand. 
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The demand factor (Df) is expressed as the ratio between the peak demand and the 

connected load, i.e. between really measured peak and maximum theoretical peak; this ratio is 

usually considerably less than 1. 

2.2 

𝐷𝑓 =
𝑃𝑒𝑎𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 [𝑊]

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑎𝑑 [𝑊]
 

Load factor 

The load factor (Lf) is the ratio between average demand and peak load in a given period. 

It is an indicator of which peak value level is maintained during the period under study (usually a 

day, a season or a year). 

2.3 

𝐿𝑓 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 [𝑊]

𝑃𝑒𝑎𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 [𝑊]
 

Or: 

2.4 

𝐿𝑓 =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 [𝑊ℎ]

𝑃𝑒𝑎𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 [𝑊] ∗ 𝑝𝑒𝑟𝑖𝑜𝑑[ℎ]
 

The value of Lf ranges between 0 and 1: the case of Lf equal to 1 corresponds to a constant load 

profile, in which the load demand does not vary during the day; the case of Lf tending to zero 

corresponds to a null load throughout the day, but with a exception of a peak demand for an 

instant. 

Customer classes 

To improve the effectiveness of the analysis of the load, electric consumers are grouped 

into classes of similar demand behavior. A user class is any subset of customers whose distinction 

as a separate group helps identify or track load behavior in a way that improves the effectiveness 

of the analysis being performed. Examples of user classes can be: small apartments, family villas, 

supermarkets, schools, hospitals, etc. Usually all users belonging to the same group have load 

profiles with similar shapes, as they generally have similar habits, needs and types of equipment. 
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Figure 2.2: Customer classes typically display different daily load profiles. Shown here are the class summer peak-day loads 
from a metropolitan utility system in the southern United States. 

Generally, to different classes of users correspond load profiles with different shapes 

(Figure 2.2), thus they do not demand their peak energy at the same time. As a result, the system 

peak load can be significantly less than the sum of the peaks of the various classes; this is called 

inter-class coincidence of loads. The percentage of the peak load attributable to a class is its peak 

responsibility factor. 

Coincident and non-coincident load profiles 

A common practice is representing the load of consumers on a class by class basis, using 

smooth, daily load profiles like those shown in Figure 2.3. These curves represent the average 

behavior or demand characteristics of customers in each class. For example, the system whose data 

are shown in Figure 2.3 has approximately 44000 residential customers. Its analysts will take the 

total residential customer class load (peaking about 290 MW) and divide it by 44000 to obtain a 

typical residential load profile for use in planning and engineering studies, a curve with a 24-hour 

shape identical to the total, but with a peak of 6.59 kW (1/44000 of 290 MW).  
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Figure 2.3: Top, summer and winter demand of the entire residential class in a southern US utility with 44000 residential 
consumers. Bottom, representation of individual consumer load profiles. Each is 1/44000 of the total class demand. 

Actually, no residential customer in any utility’s service territory has a load profile that looks 

anything like this averaged representation. Few concepts are important to understand why this is 

so, what actual load behavior looks like, and why the smooth representation is correct in some 

cases but not in others. 

 

Figure 2.4: Example of actual daily load profile for an individual household, dominated by high 'needle peaks' causes by 
the on-off behavior of major appliances. 

The load profile shown in Figure 2.4 is actually typical of what most of residential customer 

load looks like over a 24-hour period. Every residential customer’s daily load behavior looks 
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something like this, with sharp ‘needle peaks’ and erratic shifts in load as major appliances such as 

central heating, water heaters, washer-dryers, electric ranges and other devices switch on and off. 

Appliances’ duty cycle 

To comprehend the reason for the erratic load behavior of a single consumer shown in 

Figure 2.4, we need to study the turning on-off behavior of the electric appliances connected to the 

system. Only a minority of electrical devices vary their load as a function of the end-use demand 

placed upon them. For most of them the load varies as a function of time with the form of a Boolean 

function, i.e. the appliance operates according to an on-off cycle in which electric load does an up 

and down variation between the nominal power when the device is on, and 0 when it is off. There 

is no curve in the sense of having a smooth variation in demand. Refrigerators, freezers, air 

conditioners, electric heaters, ovens, or irons all are examples of devices that vary their output as 

a function of time by changing their duty cycle, i.e. the fraction of time the device spends operating 

during any period.  

 

Figure 2.5: Daily load profiles for different sized groups of residential water heaters 
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Figure 2.5 A shows a daily load profile related to an electric boiler for domestic hot water: 

during most of the day, the unit does not produce any electrical load, it turns on at regular intervals 

for a few minutes so as to maintain the water temperature in a determined range. Only when user 

activity requires a greater use of hot water, the unit remains turned on for longer, increasing its 

duty cycle. Figure 2.5 B and C show respectively the load of another water heater in a house close 

to the first the same day and the day after, showing random differences and slight shifts in usage 

that occur from day to day. The remaining curves in Figure 2.5 D, E, F and G respectively represent 

the combined load profiles of 2, 5, 50 and 1000 electric water heaters. All water heaters considered 

exhibit the same overall on-off behavior, similar to that of Figure 2.5 A B or C, but differ slightly as 

to the timing of cycles. However, as an increasingly large number of water heaters are considered 

as a group, the erratic needle-peak behavior of the individual water heater load profile gradually 

disappears. The load profile representing a group’s load becomes smoother as the size of the group 

is increased, the peak load per water heater drops, and the duration lengthens.  

Coincident load behavior  

Most of the loads in any home or business behave in a manner similar to the on-off, needle-

peak behavior shown in Figure 2.5 A. Refrigerators and freezers, air conditioners, space heaters, 

water heaters, and electric ovens in homes; and pressurizers, water heaters, process and other 

finish heaters, and other equipment in industry; all turn on and off in a performance-regulated duty 

cycle manner. As a result, individual household load profiles, and many commercial and industrial 

site load profiles, display the blocky, on-off load behavior shown in Figure 2.6 B. As with the water 

heaters, when a group of similar loads (homes in this case) is considered as a single load, the load 

profile becomes smoother, the peak load per customer drops, and the minimum load per customer 

rises.  
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Figure 2.6: Coincident (A) and non-coincident (B) winter peak day load profiles for home in a suburban area in Florida. 
Curves B through F shows the gradual transformation from non-coincident to coincident behavior as group size increases. 
Note that the vertical scale of all six load profiles is in “load per customer” for each group. 

While no single customer within the group depicted in Figure 2.6 would have an individual 

load profile that looked anything like Figure 2.6 A (every customer’s load profile looks something 

like Figure 2.6 B), the smooth coincident load profile for the group has two legitimate 

interpretations: 

 The curve is an individual customer’s contribution to system load. On the average, each 

customer of this class adds this load to the system. 

 The curve is the expectation of an individual customer's load. Every customer has a load 

that looks something like the on-off behavior shown in Figure 2.6 B. Figure 2.6 A gives the 

expectation, the probability-weighed value of daily load that one could expect from a 

customer of this class, selected at random.  

Coincidence factor and coincidence curve 

The tendency of observed peak load per customer to drop as the size of the customer group 

being observed is called coincidence. Usually, coincident load behavior is summarized for 

application to power distribution system engineering by the coincidence factor and the coincidence 

curve. Coincidence factor is defined as “the ratio of the maximum coincident total power demand 
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of a group of consumers to the sum of the maximum power demands of the individual consumers 

comprising the group, both taken at the same point of supply and for the same period of time” [24].  

2.5 

𝐶𝑓(𝑛) =  
𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑎𝑘 𝑓𝑜𝑟 𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 [𝑊]

∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑒𝑎𝑘𝑠) [𝑊]
 

Figure 2.7 shows a coincidence curve, a plot of how Cf varies as a function of customers’ group size. 

Typically, for residential and small commercial load classes, Cf tends toward an asymptotic value of 

between 0.25 and 0.50 for large values of n (number of customers in the group), while for larger 

commercial and industrial customers, which have more stable energy consumption during the day, 

the value is usually higher, between 0.75 and 0.85. Coincidence behavior varies greatly from one 

utility to another, and among customer classes. However, the relationship between Cf and number 

of customers in a group will be discussed in greater detail in paragraph Relationship between 

coincidence factor and number of consumers. 

 

Figure 2.7: Coincidence factor (right scale) and Peak load per customer (left scale) as a function of the number of customers 
in a group for a residential class, from a power system in the central US. 

The evaluation of the coincidence of a load has a key role in the power system design, 

because such equipment sizes are often determined by using coincidence curves to convert load 

data to estimate group peaks. For example, the “coincident peak” for a group of K customers can 

be estimated from individual peak load data, in this way: 

2.6 

𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑎𝑘 𝑓𝑜𝑟 𝐾 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 [𝑊] =  𝐶𝑓(𝐾) ∗ 𝐾 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑒𝑎𝑘 𝑙𝑜𝑎𝑑 [𝑊] 



Characteristics of consumer loads 

21 

The peak load for a transformer serving eight houses, each with an estimated individual peak load 

of 22 kW would be: 

2.7 

𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑎𝑘 𝑓𝑜𝑟 8 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 [𝑘𝑊] =  𝐶𝑓(8) ∗ 8 ∗ 22 [𝑘𝑊] 

A typical value of Cf(8) in a residential class is about 0.6, which returns 105.6 kW as the estimated 

group peak load. 

2.8 

𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑎𝑘 𝑓𝑜𝑟 8 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 [𝑘𝑊] =  0.6 ∗ 8 ∗ 22 [𝑘𝑊] = 105.6 [𝑘𝑊] 

Load duration curves 

A convenient way to study load behavior for some engineering purposes is to order the 

demand samples from greatest to smallest, rather than as a function of time, as shown in Figure 

2.8. The two diagrams shown in Figure 2.8 consist of the same data samples, in a different order. 

Peak load, minimum load, and energy (area under the curve) are the same for both. 

 

Figure 2.8: The hourly demand samples in a load profile are re-ordered from greatest to smallest values, to form a load 
duration curve. 

Load duration curve behavior vary as a function of the system type. For example, load duration 

curves for small groups of customers will have a greater ratio of peak to minimum than similar 

curves for larger groups. Usually, load duration curves are produced on an annual basis. 

2.3 Measuring load profile data 

The manner in which load profile data are collected, analyzed and represented can produce 

a heavy effect on what the resulting load profiles look like, and can influence the perceived value 

of peak load and coincidence. The load profile shape can change on how the load data are measured 

(sampling method) and how periodically these measurements are recorded (sampling rate). 
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Sampling method 

Sampling method refers to what quantity is measured – instantaneous load or total energy 

used during each period. We can distinguish two methods to sample data: 

 Demand sampling, also called period integration, measures and records the total energy 

used during each period. At the beginning of each measurement interval, the energy meter 

is re-set to zero and begins counting the energy used. At the end of the period, the reading 

is recorded, and the counter is re-set to zero. Demand sampling always produces results 

that are valid within its context of measurement: hourly load data gathered by period 

integration for a customer will accurately reflect that customer’s average energy usage on 

an hour-by-hour basis. Whether that sampling rate is sufficient for the study purposes is 

another matter.  

 Discrete sampling (or instantaneous sampling) measures and records the load’s value at 

specific periodic instances. For example, if the time-step is 15 minutes, every quarter hour 

the load recorder “open its eyes” to sample the instantaneous load, and then begin a 

waiting period of 15 minutes until the next sampling instant. This type of sampling often 

results in erratically data that dramatically misrepresent load profile behavior, because the 

recorder does not see what the load does during the waiting period: the measurement 

could be recorded during a short duration load peak, or during a moment when energy 

usage is particularly low. This type of sampling gives a good representation of the load 

behavior only if the sampling is more rapid then the rapid shifts in the load profile. Sampling 

at 15-minute interval is too much slow, because the real load can shoot back and forth from 

maximum to minimum several times in 15 minutes.  

Summarizing, instantaneous sampling records the actual load value at specific instants every 

interval, while period integration averages its load measurements over the entire sample interval. 

There can be substantial difference in the recorded data, hence in how load profile looks like, 

depending on which of these two different sampling methods is used (Figure 2.9). 
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Figure 2.9: Two different load sampling methods (centre, right) applied on an hourly basis to the residential load profile 
from Figure 2.4 (left), produce different data. 

Sampling rate 

Sampling rate refers to the frequency of measurements – the number of times per hour 

that load data are recorded; Figure 2.10 shows Figure 2.4 load profile sampled with period 

integration on a 5, 15, 60 and 120-minute basis. Note that the resulting data displays significantly 

different behavior, depending on sampling rate.  

 

Figure 2.10: The same household load seen in Figure 2.4 sampled by period integration on a 5, 30, 60, 120-minute basis. 

As the sampling is done faster, the curve shape displays more of its blocky, on-off nature: the 

recorded data comes closer to representing the true load profile shape peak value. But as shown, 

if a load is sampled by period integration applied at a slow rate, the resulting load data may look 

smooth, when, in fact, actual behavior is erratic, with high needle peaks.  
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Figure 2.11: Measured peak demand of a single residential customer varies greatly depending on the intervals used to 
sample its load 

Figure 2.11 shows peak demand for the data in Figure 2.4, plotted as a function of period integration 

sampling rate. The measured peak load decreases as the sampling period increases. The reason is 

that the sampling rate, or demand interval, defines the meaning of “peak”. Sampled at one-minute 

intervals, the peak is the maximum 60-second demand. Sampling on an hourly basis smoothes the 

needle peaks, and generates a curve whose peak is the maximum one-hour demand. A non-

coincident curve (top of Fig. 20) can look like it was smoother and very “coincident” simply because 

it was demand-sampled at too low a sampling rate. 

For what concerning the instantaneous sampling, it has a far different interaction with sampling 

rate and recording accuracy than the period integration method discussed above. Figure 2.12 shows 

the load for a single household (Figure 2.4) measured by instantaneous sampling on an hourly basis. 

One profile is the result of sampling instantaneously every hour, on the hour. The other is still 

sampled hourly, but a quarter past the hour. The apparent load profile shape, and peak load of 

these two curves are deeply different. Neither is an accurate representation of the actual load 

profile behavior.  

 

Figure 2.12: Single household load profile sampled with hourly discrete sampling. At the left, the load profile sampled 
discretely every hour at the beginning of the hour; at the right, the load profile sampled discretely every hour 15 minutes 
after the hour. 
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In this case, the problem is that the sampling rate is too much slow to correctly study the load, 

which presents the erratic on-off behavior typical for non-coincident loads. Both curves in Figure 

2.12 are affected by aliasing, a “beat frequency” generated by interference between sampling rate 

and duty cycle rate of appliances. In order to avoid aliasing and to be entirely valid, this method 

should have a minimum sampling rate equal to the Nyquist rate, which requires that the load is 

sampled and recorded at least twice as often as the fastest load shift occurring in the measured 

load. 

2.4 Coincidence factor relationships 

Bary [24] demonstrated the existence in practice of two fundamental relationships 

between coincidence factor and:  

 A change in the number of consumers in a group 

 A change in their individual load factor 

These relationships are of fundamental significance, as they can find applications in engineering 

and economic studies dealing with load forecasting for system planning, design of distribution 

systems, or provision of service facilities. 

Major factors affecting coincidence 

The degree of coincidence in the use of electric appliances by individual consumers or group 

of consumers is determined by many factors. Population habits and community and business 

practices exert a powerful influence upon the degree of coincidence on use of electric appliances: 

when people go to bed, when they get up, when and what they eat, where and how they live, where 

and when they work, are all aspects that condition the degree of coincidence. Weather and climatic 

conditions also have a strong influence on the coincidence in the consumers’ use of electric 

appliances: for example, the advent of darkness because of a storm during light-day hours may 

create a full coincidence of the lightings loads, or a cold spell may cause an increase of utilization 

of heating plants. The design of utilization equipment has a considerable influence upon the degree 

of coincidence: devices designed for full automatic operation under intermittent cycles usually have 

lower coincidence factors than those designed to accomplish the same purpose under manual 

operation. 

Relationship between coincidence factor and number of consumers 

“For consumers of equal size, with no artificial restrictions placed in the way of their service 

use, and with all other things equal, the degree of coincidence of the maximum power requirements 
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of a group of consumers decreases along a path resembling that of a rectangular hyperbola from 

unity for one consumer in a group to values approaching the asymptote of the rectangular 

hyperbola for an infinite number of consumers in a group” [24].  

The equation of the rectangular hyperbola is reported below: 

2.9 

𝐶𝑓(𝑁) = 𝐶𝑓(∞) + (1 − 𝐶𝑓(∞))
1

𝑁
 

in which Cf(N) represents the coincidence factor for N customers, and Cf(∞) represents  the 

coincidence factor for infinite customers. The results of the observations performed by Bary are 

shown in Figure 2.13: the observations for various type of consumers generally follow the path of 

the rectangular hyperbola reasonably well. Moreover, the convergence of the relationship towards 

the asymptote is rapid for all the cases analyzed, indicating that beyond 100 customers in a group 

the change in coincidence factor is relatively small, and results of sufficient engineering stability can 

be obtained from groups of only 30 consumers. 

 

Figure 2.13: Trend of group coincidence factor as function of number of consumers in a group. Data refers to 
measurements recorded by period integration based on 30-minute basis, in December 1938 in Philadelphia, for various 
user classes. (A, B, C are relative to domestic users without electric stoves, respectively having 12%, 23%, 31% load factor; 
D, E are relative to domestic users with electric stoves, respectively having 10%, 16% load factor; F is relative to industrial 
users having 17% load factor; G, H are relative to commercial users respectively having 10%, 16% load factor) 
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Relationship between coincidence factor and load factor 

It is obvious that a group of consumers, each having a 100% load factor, has a coincidence 

factor equal to unity. Furthermore, it can be demonstrated that a group of many consumers, each 

having a load factor approaching to zero1, will have a coincidence factor which approach the value 

of one divided by the number of consumers in a group. Fixed these two extreme values, it may be 

expected that there will exist a relation which connect these two points. Finally, it may be 

demonstrated that the coincidence factor of a group of customers, each having the same load 

factor, can’t drop below the load factor value, and obviously by definition it can’t exceed the value 

of unity. Once set these limits, we can conclude that the relationships should lie between these 

limits marked AB and CB in Figure 2.14. Lines BD, whose points are equidistant from the limits, BD’ 

and BD” descript possible different paths of the relationship.   

 

Figure 2.14: Illustration of some guidelines on chart of Cf vs Lf 

Any straight line traced from the origin upward and above the lower limit line AB, such as AE, 

represent the path of the relationship for the theoretical condition in which the predominant use 

of service for a large group of consumers is confined in a limited portion of the period considered 

(called high load probability period), so that the major changes in the consumers’ load factors are 

accomplished through changes in energy use in that specific period. The shorter this period, the 

steeper the slope of the line representing this case. Line AC represents the shortest period or the 

                                                           
1 A consumer having a load factor approaching to zero is for example a consumer which energy 

demand is always null, except for a peak demand for a very brief instant of time. 
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full coincidence of peak demands for all customers in the group, while line AB, called “best possible 

line”, in addition to being the lower limit of relationship, also represents the longest period of high 

load probability, when the loads of all customers have the same probability to occur throughout 

the entire period considered. A horizontal line, such as FG, drawn from the ordinate towards the 

line AB represents the path of Cf-Lf relationship when the change in customers’ load factor is 

accomplished completely outside the high load probability period.  

Bary conducted the research over a period of many years in establishing the general path 

of the relationship between Cf and Lf. The observations were obtained for the month of December 

over a period between 1936 and 1943, using period integration on a 30-minute basis, and are 

relative to an electric utility system which served metropolitan, suburban and rural territories in 

the eastern part of US (near Philadelphia). Consumers studied were arranged into groups, each 

falling into specified narrow load-factor limits, and each consisting of 30 customers, a sufficient 

number to produce significant results of coincidence factors. The results of the research are shown 

in Figure 2.15. 

 

Figure 2.15: Empirical trend in the relation between coincidence factor and load factor, resulting from research conducted 
by C. Bary over a period of many years, for different user classes. 
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As the observations were available for the entire range of load factors, a complete trend of the 

relationship for the industrial and commercial customers could be traced. The trend of the 

relationship can be divided into three distinct regions. The first in which Cf increases rapidly from a 

value close to zero2 with increasing load factor, the second in which contrariwise Cf remains almost 

constant, and the last phase in which turns up sharply to reach the “best possible line” in the 

ultrahigh load factor range.  

 Phase one, relative to the low load factor range, indicates that the predominant energy use 

is confined to a certain well-defined portion of the entire period under consideration, and 

changes in the load factors are accomplished through changes in the energy use almost 

entirely in that period (as in the theoretical line AE in Figure 2.14). Hence, in this load factor 

region the coincidence factor rises rapidly with the increasing of load factor.  

 Phase two, obtained in the medium load factor range, indicates that beyond individual 

consumers’ monthly load factors of 30%, a further improvement in their load factors is 

accomplished almost entirely outside the period of the high load probability of the group. 

Thus in this region the coincidence factor remain substantially constant, and its behavior 

with respect to load factor approximates that depicted by line FG in Figure 2.14.  

 Phase three, related to the ultrahigh load factor range, appears to indicate that over an 

80% monthly load factor occurs a “saturation” of time left, as the entire period under 

consideration becomes the period of high load probability. 

Basing on the foregoing discussion it is now possible to formulate qualitatively the coincidence 

factor vs load factor relationship as follows:  

“For a large number of consumers, of equal size, with no artificial restrictions placed in the way of 

their service use, and with all other things equal, the degree of coincidence of the maximum power 

requirements of individual consumers in a group changes with the change in their individual factors. 

In the low-load-factor range the coincidence factor increases rapidly with the increase of the 

individual consumers’ load factors. Its rate of change is substantially constant and is inversely 

proportional to the relative length of the high load probability of the class. In the medium range of 

load factors the magnitude of the group coincidence factor remains substantially fixed, until very 

                                                           
2 As each group consisted of 30 consumers, the starting point of coincidence factor at load factor 

approaching to zero is 1/30 = 0.0333. 
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high load factor values are reached, when the relation between load factor and coincidence factor 

approaches the lower limit of the possible relationship” [24]. 

A mathematical formulation of the relationship seen above has been proposed by C. Bary, in which 

the coincidence factor has been expressed as a function of both load factor and number of 

consumers in the group. From theoretical studies by R.F. Hamilton [13] [14] has been found that:  

2.10 

𝐿𝑓𝑄 = [𝑎 + (
1

𝐿𝑓
− 𝑎) 𝑄−

1
2]

−1

 

In which LfQ is the load factor for the sum of Q loads of load factor Lf each, and a is the asymptote 

of the curve 1 𝐿𝑓𝑄
⁄  vs Q shown in Figure 2.16. 

 

Figure 2.16: Curve of 1/Lf(Q) as a function of Q (number of consumers for which the load factor is calculated). The load 
factor of a group of consumers decreases as the number of consumers in the group increases in the same way that happens 
to the coincidence factor. 

 

In addition, since the coincidence factor CfQ is the ratio of the peak for Q loads to Q times the peak 

of one single load, we can write, taking the peak for one load as unity: 

2.11 

𝐶𝑓𝑄 =
𝑃𝑒𝑎𝑘𝑄

𝑃𝑒𝑎𝑘1
=

𝑴𝒆𝒂𝒏

𝑃𝑒𝑎𝑘1
∗

𝑃𝑒𝑎𝑘𝑄

𝑴𝒆𝒂𝒏
=

𝑀𝑒𝑎𝑛
𝑃𝑒𝑎𝑘1

𝑀𝑒𝑎𝑛
𝑃𝑒𝑎𝑘𝑄

=  
𝐿𝑓

𝐿𝑓𝑄
 

where Peak1 is the peak demand of a single consumer, PeakQ is the peak demand of a group of Q 

consumers, and Mean is the average demand. Substituting the value of LfQ with the one of Eq. 2.10: 
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2.12 

𝐶𝑓𝑄 = 𝑎 ∗ 𝐿𝑓 + (1 − 𝑎 ∗ 𝐿𝑓) ∗ 𝑄−
1
2 

where a is the value of the asymptote of the curve 1 𝐿𝑓𝑄
⁄  vs Q previously introduced (Figure 2.16), 

and Lf is the load factor of a single user. The formulation used to obtain the correct value of a is the 

following: 

2.13 

𝑎 =
1

𝑝
[1 − (1 − 𝑝)

1
𝐿𝑓] 

where p is the ratio between the time in which peaks of the users may occur and the period 

considered, i.e. it is a parameter that gives an idea of the amplitude of the range in which peaks can 

occur. It seems logical to presume that the more energy the users consume the more likely is the 

time of his peak-load to vary. Stated in another form, when a substantial number of customers with 

about the same load factor have been considered, it is found that the time in which the peaks occur 

can be correlated with the load factor. According to empirical results from the study of Bary [28], 

such a correlation may be expressed:  

2.14 

𝑝 = 0,187 + 0,813 ∗ 𝑒−4[(1−𝐿𝑓)2+(1−𝐿𝑓)16] 

The empirical relationship presented cannot properly fit any context, because its shape is 

determined largely by specific factors as population habits, community and business practices, 

weather and other climatic conditions, types of appliances installed, and others. It is the result of 

observations made in a specific context (residential and commercial users in Philadelphia between 

1936 and 1943), when surely consumers’ habits were different and electrical equipment installed 

were different both in number and in type than the present. Therefore, applying this relationship 

to the present day is definitely a very strong assumption. However, due to the absence of 

alternative solutions and of similar studies on the load profiles in the literature, this relationship 

has been implemented in the model developed in this work. In addition, if this empirical 

relationship may not be adequate to fully electrified developed countries where users have access 

to various and modern electric facilities, perhaps could better adapt to consumers of just electrified 

rural areas, where the electrical equipment installed is likely to be more limited. 
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3 Approaches for load profile estimate in off-grid systems: state of 

the art 

Load profile estimation falls within the research field of energy needs estimation. This topic 

can be divided into two main themes each one having a different purpose: 

 Power system engineering refers to Load Forecasting (LF) as the domain of models able to 

provide data for setting the best operating and planning of power systems ([29], [30],[31]). 

 Energy planning research refers to Residential Energy Consumption Modeling (RECM) with 

those models able to support energy-related policy decisions ([32]). 

In this chapter an overview of the loads profile estimate methodologies available is presented. 

Initially models used for LF and RECM, in particular used in developed countries. It is then placed 

greater focus on applications for off-grid rural electrification: after verification, through research in 

modern scientific literature, that actually do not exist models for load estimation specifically 

developed for use in rural areas of developing countries, the main solutions actually adopted are 

described. 

3.1 Load Forecasting  

Electrical load forecasting is an important tool used to ensure that the energy supplied to 

users meets the load, including the energy lost in the system. Load forecasting is defined as the 

science of predicting the future load on a given system, for a specified period ahead, which can 

range from a quarter of an hour up to 50 years. Load forecasting can be classified according to the 

forecast period: 

 Short-term load forecasting, which is used to predicts loads up to a week ahead. 

 Medium-term load forecasting, which is used to predict weekly, monthly, and yearly peak 

loads up to 5 years ahead. 

 Long-term load forecasting, which is used to predict loads as distant as 50 years ahead.  

Load forecasting is not only important to provide accurate estimates for the operating of the power 

system but also as a basis for energy transactions and decision making in energy markets, load 

switching, and infrastructure development. Load forecasts are extremely important for electric 

utilities, energy suppliers, financial institutions, and other players of energy generation, 

transmission, distribution and markets. However, a more specific analysis of each category of load 

forecasting will allow to better understand the purposes for which such models are used. 
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Short-term load forecasting 

Short-term load forecasting (STLF) have become increasingly important since the rise of the 

competitive energy markets. Many countries have recently privatized and deregulated their power 

systems, and electricity has been turned into a commodity to be sold and bought at market prices. 

STLF plays a key role in the formulation of economic, reliable, and secure operating strategies for 

the power system: short-term forecasts are used for unit commitment, energy transfer scheduling 

and load dispatch. 

In STLF, the future load on a power system is predicted by extrapolating a predetermined 

relationship between the load and its influential variables. Determining this relationship consists in 

a two-stage process that requires (a) identifying the relationship between the load and the related 

variables, and (b) quantifying this relationship using a suitable parameter estimation technique. A 

prerequisite to the development of an accurate load forecasting model is understanding the 

characteristics of the load to be modelled [2-6]. The load supplied by a power system can be divided 

into three components: a base load, a weather dependent load, and a residual load.   

The base load, which results from the business and economic conditions of the service area, 

accounts approximately 90% of total load. It is composed by a long-term component which reflects 

the economic growth of the considered area, a seasonal component that results from changes in 

electric demand between different seasons, a weekly load cycle which considers the consumption 

pattern of one day being characteristically different from the others, and finally a daily load cycle 

that results from the basic daily similarity of consumer activities. 

The weather contributes significantly to the dynamics of a load, and so much effort has been spent 

to understand the relationships between weather conditions and load behavior. The effects of the 

weather on the load are modelled by expressing the load as a linear regression of meteorological 

factors such as temperature, wind speed, humidity, and daylight illumination. 

The residual load component occurs in load modeling and usually accounts for a small percentage 

of total load, and results from irregularities in the load behavior. These abnormal demands, though 

quite frequent in occurrence, are very difficult to predict, as they range from public response to 

major television events, strikes, storms, disasters, time changes, etc. 

STLF methods indicates that the most important modeling techniques used can be classified in five 

main categories: 

 Multiple Linear Regression (e.g. [33], [34]). 
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 Stochastic Time Series (e.g. [35], [36]). 

 General Exponential Smoothing (e.g. [37]). 

 State Space Method. 

 Expert Systems (i.e. Artificial Intelligence) Approach (e.g. [38], [39]). 

These models are classified according to the mathematical technique used to estimate the 

parameters of the models, and a detailed explanation of each model category can be found here 

[30]. 

Medium-Term load forecasting 

Medium-Term Load Forecasting (MTLF) is used to predict weekly, monthly and yearly peak 

loads up to 5 years ahead, which provides utilities information to better plan power generation 

expansion (or purchase), schedule maintenance activities, perform system improvements, 

negotiate forward contracts and develop cost efficient fuel purchasing strategies. Unfortunately, it 

is difficult to forecast load demand accurately over a planning period of this length. This fact is due 

to the uncertain nature of the forecasting process. There are a large number of influential factors 

that characterize and directly or indirectly affect the underlying forecasting process: all of them are 

uncertain and uncontrollable.  

Long-Term load forecasting 

To study facilities or other options in detail over a period from few years up to fifty years 

ahead, the utility’s planners must have a good idea of the conditions under which that equipment 

will function. They need a long-range plan to provide a backdrop against which they can evaluate 

the value of their short-range projects. Long-term load forecasting plays an important role for 

system planning, scheduling construction of new generating capacity and purchasing of generating 

units. Because it takes several years and requires a great amount of money to construct power 

generation capacity and transmission facilities, accurate forecasting is necessary for an electric 

company. An extensive overestimation of load demand will result in substantial investment for the 

construction of excess power facilities, while underestimation will result in customer 

discontentment. 

By nature, Long-term electric load forecasting is a complex problem. Among other factors, its 

accuracy is extremely influenced by the weather as well as social behavior of the community of that 

load. These factors are difficult to predict for long-term load forecasting time horizon. Conversely, 

short-term forecasting, though affected by weather and daily social habits, the weather and social 
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habits fluctuation for the short-term time horizon is small enough to predict load with high 

accuracy. However, during the last two decades many techniques have been developed to improve 

the long-/mid-term forecasting accuracy. They can be generally divided into two broad categories: 

parametric methods and artificial intelligence-based methods [31]. The parametric methods 

(examples are [40]–[42]) construct a mathematical or statistical model of load by examining 

qualitative relationships between the load and the load-affecting factors, and the assumed model 

parameters are estimated from historical data. However, because of being designed to capture the 

nonlinear relationships between inputs (historical load, affecting factors) and outputs (forecasted 

load) through an explicit formula, the mathematical complexity does not offer to the user an 

intuitive understanding. Recently, the artificial intelligence-based methods have been proposed as 

a valid substitute: the advantages of these methods over statistical methods include the 

consideration of robustness of load prediction system, the ability to classify in the presence of 

nonlinear relationships. Some examples of application of AI-based methods are [43]–[47] 

3.2 Residential Energy Consumption Modeling  

The world energy consumption of the residential sector accounts for approximately 30% of 

that consumed by all sectors. In response to climate change, high energy prices, and energy 

supply/demand, there is interest in understanding the detailed consumption characteristics of the 

residential sector in an effort to promote conservation, efficiency, technology implementation and 

energy source switching, such as to renewable energy. Energy consumption of other major sectors 

such as commercial, industrial, agriculture and transportation are better understood than the 

residential sector due to their more interest and expertise in reducing energy consumption, and 

high levels of regulation and documentation. Contrariwise, the residential sector is largely an 

undefined energy sink, because it includes a wide variety of users, structures, appliances.  

Energy consumption models seeks to quantify residential energy requirements, as a 

function of input parameters, for a country, a region or a sector. Models of this nature are useful 

as they can guide decisions on energy policies: by quantifying the consumption and predicting the 

impact due to retrofits and new materials and technology, decisions can be made to support energy 

supply, technology incentives, new building code, or even demolition and re-construction.  

Techniques used to model residential energy consumption can broadly be grouped into two 

categories, top-down and bottom up, with reference to the hierarchal position of data inputs (Figure 

3.1). Top down models utilize the estimate of total residential sector energy consumption and other 

pertinent variables to attribute the energy consumption to characteristics of the entire housing 
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sector. In contrast, bottom-up models calculate the energy consumption of individual or groups of 

houses and then extrapolate these results to represent the region or nation. 

 

Figure 3.1: Bottom-up VS Top-down models 

Top-down approach 

The top down approach treats the residential sector as an energy sink and does not 

distinguish the energy consumption by individual end-uses. These models determine the effect on 

residential energy consumption due to long-term changes or transitions, for determining supply 

requirements. Top-down models bases their estimations on both historical energy consumption 

and input variables which include macroeconomic indicators, such as GDP or employment rates, 

technology component, such as technology development pace, housing component, such as 

housing contraction/demolition rates, and even climatic conditions.  

Top-down models are relatively easy to develop due to their need for only aggregate data, which 

are widely available, and rely on historical data, but they falter when discontinuity is encountered, 

for example in situations of technological breakthrough: they provide good prediction capability for 

small deviations from the status quo. The reliance on historical data is another weak point of these 

model, because they cannot take into account discontinuous advances related to eventual new 

technologies. Furthermore, the lack of detail regarding the energy consumption of individual end-

uses eliminates the capability of identifying areas for improvements, making the development of 

policy or incentives impossible. 
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Bottom-up approach 

The bottom-up approach is developed to identify the contribution of each end-use over the 

aggregate residential energy consumption. These models compute electric demand for a few 

modelled households which are representative of a larger scale, and the unitary results are then 

extrapolated to obtain the electricity demand for the entire studied geographical scale, or the entire 

residential sector. The required input data may concern individual consumption of appliances and 

their technical properties, climate properties, dwelling geometry and characteristics, occupancy 

schedule and human behavior. Bottom-up models can be grouped in 2 main categories: statistical 

methods (SM) and engineering methods (EM).  

Statistical methods 

SM rely on historical dwelling energy consumption from a sample of houses and types of 

regression analysis, which are used to attribute the energy consumption to particular end-uses. SM 

models can utilize macroeconomic, energy price and income, and other regional or nation 

indicators, thereby gaining the strengths of simplicity of the top-down approach. Typically, the 

primary information source of the bottom-up SM is energy supplier billing data and other data 

collected by simple surveys; by disaggregating measured energy consumption among end-uses, 

occupant behavior can be accounted for. The reliance on historical consumption information is the 

principal weakness of these models, because it does not allows to consider the impact of new 

technologies. 

Engineering methods 

EM rely on information of the dwelling characteristics and end-uses themselves to calculate 

the energy consumption based on power ratings, use of equipment, heat transfer and 

thermodynamic principles, and request more detailed information compared to the SM. The high 

level of detail of input data requested gives the ability to model technological options, allowing 

taking into account even new technologies. These models explicitly calculate or simulate the energy 

consumption and do not rely on historical values. One of the most critical point of the EM is the 

assumption of occupant behavior, because it can significantly affect the estimated energy 

consumption. Another drawback is the high level of expertise required in the development and use 

of these models. 

In conclusion, each approach meets a specific need for energy modeling which corresponds 

to its strongest attribute:  
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 Top-down approaches are used for supply analysis based on long-term projections of 

energy demand by accounting for historic response. 

 Bottom-up statistical techniques are used to determine the energy demand contribution of 

end-uses inclusive of behavioral aspects based on data obtained from energy bills and 

simple surveys. 

 Bottom-up engineering techniques are used to explicitly calculate energy consumption of 

end-uses based on detailed descriptions of a representative set of houses, and these 

techniques have the capability of determining the impact of new technologies. 

A recent review of models to perform estimates of daily load profiles within the residential sector, 

has been published by Grandjean et al. [23], in which 12 domestic load profiles models are revised 

and described. 

 

3.3 Load estimation for off-grid power design 

The research field of the estimate of energy consumption and the forecast of load profiles 

is a topic of great interest. However, despite the large number of scientific papers that have 

addressed these themes, most of them deal with the particular case of domestic electric 

consumptions in Developed Countries and they are mainly devoted to support decisions on load 

dispatch, unit commitment, maintenance scheduling, system planning (i.e. short, medium, long-

term LF methods previously introduced), or decisions as regards energy policies (i.e. RECM 

methods). Despite estimation of the electricity demand is absolutely necessary in the design 

process of off-grid power systems for rural electrification, to the author knowledge a dedicated 

section within the scientific literature is not present. This is even true when looking at the literature 

which poses focus on specific sizing methods and models rather than on their applications, but also 

when looking at feasibility or prefeasibility analyses. Only Celik [48] brought about the issue of load 

profiles in systems sizing. 

In order to understand how the problem of estimating the electrical load is tackled in electrification 

projects of un-electrified areas, it has been performed a research into the literature for articles in 

which were presented case studies related to sizing and installation of off-grid systems for the 

electrification of such areas, which typically consist of villages or groups of houses away from the 

main grid (if present), and for which the grid extension would not be a cost-effective solution. In 
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most of the projects considered, advanced sizing and simulation methods were used to design the 

off-grid system, and often optimizations were performed by specific software such as HOMER. 

The results of my research underlined that generally the problem of estimation of load profiles in 

off-grid systems projects is faced in three manners: 

 adapting load profiles from similar contexts (e.g. [19], [49]–[55]); 

 computing the load profiles without any defined procedure, employing assumptions on 

electric device power rates and use behavior, or from surveys, in order to build up a load 

profile (e.g. [56]–[65]). 

 load profiles are defined without any explanations about the origin (e.g. [66], [67]); 

Load profiles taken from similar contexts 

References on similar experiences are useful, although local factors have a deep influence. 

Basing on experiences of similar contexts means use load profiles measured in rural villages 

previously electrified similar to that of the case study. Usually, in these cases are chosen measured 

data of users or buildings that are considered representative for the case analyzed. Nfah et al. [49] 

considered data of 19 grid-connected households in a village in Uganda located near the capital city 

Kampala for their study of rural electrification for remote villages in Cameroon. Shaahid et al. [52] 

used the measured annual average electric energy consumption of a typical remote village 

(unspecified source) as yearly load for their study of rural electrification in Saudi Arabia. It is difficult 

to state whether the data used in these cases were appropriate: the profile of the electrical load is 

influenced by many factors, some exogenous, such as temperature and climate, and other closely 

related to the population, as their habits, their way of life, their social conditions, their economic 

level, etc. Hence, using load profiles of a rural village previously electrified in similar climatic 

conditions, and with the same number of users, not necessarily lead to satisfactory results in terms 

of estimated load. Remote rural villages may have very different energy demands compared to 

villages near cities, even if the living conditions and the economic level of the populations are very 

similar. In conclusion, it is necessary a detailed analysis of the context to be electrified. In 

conclusion, careful analysis of area to electrify and users to satisfy are required, because a general 

load profile of the "typical rural village" that can be adapted to all contexts does not exist. 

Load profiles estimated 

Frequently the designers of the projects, starting from the input data that include 

information about the applications and their use, draw the load profiles. 



Approaches for load profile estimate in off-grid systems: state of the art 

41 

Sometimes, input data are compiled making assumptions about which devices will be installed, 

about their power rates, and about their usage pattern. For example, Kanase et al. [57] in their 

project of rural electrification of a remote area including a cluster of villages, classified the electrical 

energy demands as domestic (which includes electrical appliances such as TV, radio, fan, 

fluorescent lamp, etc.), agricultural (fodder cutting and threshing machines), community (schools 

and panchayat offices) and rural industries (small milk processing plants and milk storage), and 

finally the total energy demand has been somehow (unspecified) estimated. Mahmoud et al. [65] 

performed a techno-economic feasibility study of energy supply of a remote village in Palestine, in 

which they assumed the main electrical loads necessary for improving living conditions in the 

village: household appliances (lighting, TV, refrigerator, radio, washing machine and fan), street 

lighting (sodium lamps), school appliances (lighting, educational TV and lab equipment), clinic 

appliances (lighting, refrigerator and lab devices).  

 

Figure 3.2: Example of estimated load profile of a health clinic in a rural area [58], with the assumption that the majority 
of the load occurs at the day time. 

Other times energy demand is calculated on the basis of data collected from surveys proposed to 

the population ([60], [63]): these cases highlight a greater attention, as data from surveys will be 

more accurate than simple estimates of designers. Camblong et al. ([59] [60]) presented a project 

which aim was to promote the electrification of rural regions of Senegal by the installation of micro-

grids with high content of renewable energies. Surveys have been carried out in three regions of 

Senegal to study the needs of electrical energy of non-electrified rural villages’ households. These 

surveys have led to the estimation of electricity needs of the concerned households. 

Not always are present indications on how data (estimated or from surveys) are used to compute 

load profiles. It is not rare to find statements like this: “It was assumed that the remote residential 

area consisted of a total of 40 houses. Each house required loads of 2 kW peak. Therefore, 40 houses 
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would require a maximum of 80 kW peak” [68]. In reality due to the coincidence of loads, the peak 

for a group of similar utilities can be calculated in this way: 

𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑎𝑘 𝑓𝑜𝑟 𝑁 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 [𝑊] =  𝐶𝑓(𝑁) ∗ 𝑁 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑒𝑎𝑘 𝑙𝑜𝑎𝑑 [𝑊] 

Applying it to the case cited above, estimating a value of Cf for 40 residential houses of 0.5: 

3.1 

𝑔𝑟𝑜𝑢𝑝 𝑝𝑒𝑎𝑘 𝑓𝑜𝑟 40 ℎ𝑜𝑢𝑠𝑒𝑠 =  0.5 ∗ 40 ∗ 2 [𝑘𝑊] = 40 [𝑘𝑊] 

a value much lower than the value estimated by the designers (80 kW). 

Despite no formal specific procedures are defined in literature, two main approaches that are 

unintentionally employed can be formalized. They are briefly described in the following. 

In order to develop the load profile, the definition of some input parameters is required:  

 j refers to the type of electrical appliances (e.g. light, mobile charger, radio, TV); 

 k refers to the specific user class (e.g. household, school, stand shop, clinics); 

 Nk refers to the number of users within class k; 

 njk refers to the number of appliances i within class k; 

 Ftjk refers to the duration of the period the appliance i within user class k is on [h] (i.e. 

functioning time); 

 Pjk refers to the nominal power rate [W] of appliance j within class k; 

 Fwjk refers to the functioning window(s) of a consumer class appliance (WF,jk), which 

represent the period(s) during the day when an appliance j of the user class k can be on 

Figure 3.3). 

 

Figure 3.3: Graphical representation of functioning windows for a single appliance. 
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To compare the results obtained by the two different approaches, they were applied to the same 

set of input data, related to a peripheral urban area of Uganda (detailed data available in Appendix 

A). These data have been obtained from a thesis of the same research group (group of the UNESCO 

Chair in Energy for Sustainable Development at Politecnico di Milano) of this work [69].  

The first approach (named setting on-off approach) that can be formalized is to set directly 

the periods of operation of electrical appliances installed. According to the previous definition of 

input parameters, it is based on the following condition: 

3.2 

∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝑤𝑗𝑘) = 𝐹𝑡𝑗𝑘 

i.e. the sum of the assumed functioning windows is equal to the functioning time hjk.. Accordingly, 

all the njk appliances result to be on at the same time. Figure 3.4 shows the load profile resulting 

from this approach for the assumed load data of a peripheral urban area of Uganda (detailed data 

available in Appendix A). 

 

Figure 3.4: Estimated load profile for Uganda case according to the assumption of functioning windows matching the 

functioning time (first approach) 

In the second approach (named medium power approach) analyzed, the energy consumed 

by appliances is “spread” over the entire duration of the functioning windows, through the 

definition of an average power of each appliance. In this case, firstly the energy consumption 

associated to each appliance j within each user class k (Ejk) is computed (Eq. 3.3), then the average 

power associated to each appliance jk (Pav,jk) which contributes to build up the load profile is 



Chapter 3 

44 

evaluated (Eq. 3.4). Figure 3.5 shows the load profile resulting from this approach for the same case 

study of Uganda (detailed data available in Appendix A). 

3.3 

𝐸𝑗𝑘 = ℎ𝑗𝑘[ℎ] 𝑥 𝑃𝑗𝑘[𝑊] 

3.4 

𝑃𝑎𝑣,𝑗𝑘 =
𝐸𝑗𝑘

∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝑤𝑗𝑘)
 

 

Figure 3.5: Estimated load profile for Uganda case according to the assumptions of load factors and functioning windows 
(second approach) 

Considering the two approaches and looking at the resulting load profiles for the specific 

case, some considerations can be made: 

 Despite both profiles account for the same daily energy consumption, the shapes are quite 

different. Looking at the peak loads the values as well as the time are different; 

 In the first approach, it is defined how long and when the appliances are on without 

considering any coincidence behavior. Indeed, according to the leading equation (3.2), all 

appliances jk are on at the same time and hence the coincidence of such devices is equal 

to one. Thus the peak power is overestimated, and in general the profiles are not flat, but 

have high values and low values; 

 In the second approach, input load factors are found in literature or more often are 

assumed. Then, the power contribution of each appliance jk to the load profile refers to the 

average power computed by “spreading” the consumed energy on the total duration of the 

functioning windows. In this way the coincidence factor assumes the minimum value 
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possible given by the input load factors and functioning windows. Hence, the power peaks 

are underestimated, and in general the profiles are flat. 

As a consequence the two approaches are not satisfactory to perform a proper off-grid system 

sizing, indeed: 

 No attention is devoted to appropriately compute the coincidence factor values whose 

results do not relate to the number of consumer considered and to the load factors. 

Overestimates and underestimates of power peaks can deeply affect the system sizing; 

 To assume values of load factors (in the second approach) is not the most proper approach. 

Indeed: literature values mostly refer to developed countries context and in any case, 

assuming load factor values, is an harder task than assuming functioning time; 

 They do not embrace uncertainty of load demand which is typical in particular for 

Developing Countries and rural electrification actions. In both approaches, the input data 

allow computing only a single load profiles, but not different stochastic profiles within the 

same input parameters. A random noise may be considered to add uncertainty, but the 

coincidence appliances behavior is not considered as well. 
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4 LoadProGen: a tool to perform load profile estimates for off-grid 

systems 

At the light of the issue about lack of appropriate methods to estimate load profiles for 

supporting the off-grid system design process, one of the activities of the group of the UNESCO 

Chair in Energy for Sustainable Development of Politecnico di Milano has been the development of 

an algorithm for estimating the load profiles of un-electrified areas. The software, named 

LoadProGen (Load Profile Generator) has been implemented in Matlab. One of the tasks of this 

thesis was to improve the Matlab code and make substantial changes to the algorithm, in order to 

introduce additional functionalities and increase the execution efficiency. However, the main 

changes I performed on the code are summarized in the next chapter. In the following, LoadProGen 

is introduced as regards: the general features, the required input data, and the mathematical 

formulation. 

4.1 General features 

In setting the frame to develop the new procedure, the characteristics of an ideal method for load 

profiles estimate, as introduced by Grandjean et al. [23], have been taken as a reference. In their 

opinion, an ideal model should present the following features: 

 it has to be parametric in order to simulate various scenarios; 

 it has to be technically explicit, i.e. the different specificities of the simulated appliances 

must impact the load profile results; 

 it has to be evolutive, i.e. new elements can be introduced so as to be simulated; 

 it has to be aggregative so that results can be obtained at different levels (household, area, 

city, region, etc.); 

 all end-uses can be considered in the load profile calculations. 

At the light of this reference, the model has been developed in order to embrace the following 

features: 

 it has to be based on input data that can be assessed or assumed by looking at the typical 

conditions of rural areas; 

 it has to be based on a rigorous mathematical formulation which allows developing the load 

profile shape, i.e. apart input data, the designer judgments should not affect the profile 

shape; 
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 it has to be bottom-up, i.e. the load profile computation has to rely on microscopic input 

data referring to each appliances features within a specific type of user class; 

 it has to build up the coincidence behavior of the appliances and the power peak value with 

regards to the existing correlation between number of users, load factor and coincidence 

factor; 

 it has to be stochastic in order to embrace uncertainty, i.e. given the input data, the 

procedure output has not to be unique, but it should embrace the uncertainty given by the 

fact that a single correct load profile does not exist in rural areas. 

Therefore, according to the classification made by Grandjean et al. [23], the LoadProGen falls within 

the Bottom-up Statistical Random models. 

4.2 Input data 

The model for load profile estimation is designed to work with few input data that are 

commonly considered in the simplest approaches for energy need estimations in rural areas, 

coherently with the data that may be available in the contexts under study. The first requisite 

required by the model is the identification of different user classes within the population to study. 

The data required by the model are listed below. k refers to the specific user class (e.g. small 

apartment, big house, school, hospital, etc.), j refers to the type of electrical appliances (e.g. 

fluorescent lamps, television, radio, fridge, etc.), and i refers to the individual device  

 Nk refers to the number of users within user class k (e.g. number of schools, number of 

households, etc.). 

 njk refers to the number of appliances of type j present in each user which belongs to user 

class k (e.g. number of televisions in each school). 

 Pjk refers to nominal power rate [W] of the appliance jk (e.g. nominal power of TV). 

 Ftjk refers to the daily functioning time [min, h], i.e. the duration of the period the 

appliances jk are on, in a day. Ftjk is set for each type of appliance j, not for each single 

device i: this means that, for example, all TVs (type of appliance: TV) present in all the 

schools (user class: school) will have the same daily functioning time. 

 Fwjk refers to the functioning window(s), i.e. period(s) during the day when the appliances 

jk can be on (Figure 3.3). Defined by a starting window time and an ending window time, 

which are set for each type of appliance, similarly to the Ftjk. Each type of appliance can 

have up to three functioning windows in a day. 
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 djk refers to the functioning cycle [min], i.e. minimum continuous functioning time once 

appliance jk turns on. 

 RFtjk refers to the percentage random variation of the functioning time of the appliance jk. 

 RFwjk refers to the percentage random variation of functioning window(s) of the appliance 

jk. 

As regards the input data, some considerations can be made:  

 All the appliances are modelled with on-off functioning cycle and considering a minimum 

continuous functioning time djk. The functioning behavior of each appliance is considered 

by setting different djk values: for example, a functioning cycle d of 30 min can be assumed 

for the electric oven, while a functioning cycle of 3 hours can be considered for the phone 

charger. According to this operating cycle, if the Ft of the oven has been assumed to be 1 

hour per day, it will be switched on 2 times a day for 30 minutes each. In addition, the Ftjk 

has to be a multiple of the functioning cycle djk. 

 Particular focus needs to be done for those applications where the operating cycle is not 

controlled directly by the user: an iron, for example, may be used for an hour per day, 

however it does not consume electricity for all the time during which it is used, but it will 

work intermittently for short instants required to keep the water in a given temperature 

range. Similarly operate refrigerators, electric water heater, and many other electrical 

appliances. According to this fact, for better results it is important that the right value of 

functioning cycle d is set for these applications: the input value of d for an iron should be 

something like 1 or 2 minutes, while its functioning time may be set to 15 minutes 

(assuming the iron is used 1 hour per day, so that it is on for a quarter of the time which it 

is used). 

 In order to consider a degree of uncertainty in the values of Ftjk and Fwjk, which are usually 

inputs assumed by the designer, random parameters Rftjk and Rfwjk are introduced 

respectively. They set the maximum percentage of random variation to apply to Ftjk and 

Fwjk. 

 Obviously, the sum of the duration of the functioning windows for an appliance Fwjk is 

higher then its functioning time Ftjk.  

 Given all the input data, the total required daily energy of each user class is defined: indeed, 

the daily energy demand depends only on the functioning times and on the power ratings 

of appliances, which are all input data.  
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𝐸𝑘[𝑊ℎ] = ∑(𝑁𝑘 ∗ 𝑛𝑗𝑘 ∗ 𝑃𝑗𝑘[𝑊] ∗ 𝐹𝑡𝑗𝑘[ℎ])

𝑗

 

 Given all the input data, a possible maximum power peak of each user class is defined. In 

order to identify the maximum power peak of a user-class, consider all devices of all 

appliances of the user-class turned-on for the entire duration of their functioning windows. 

The peak demand of the resulting load profile, which is the theoretical maximum peak 

according to the functioning windows defined, is the maximum power peak. The daily 

window in which, in the resulting load profile, the maximum power peak is contained is the 

peak window (example in Figure 4.1). 

An example of set of input data, relative to an un-electrified peripheral-urban area of Uganda, is 

shown in Appendix A. 

 

Figure 4.1: Graphical example in which is displayed a load profile of a consumer having three appliances, each represented 
by a color. These appliances have a single functioning window during the day (indicated by thin lines), and two of them 
intersect: this means that during this period (the “peak window”) is possible that both devices operate in the same instant, 
then peak occurs (black line).  

4.3 Mathematical formulation 

The procedure can be formulated according to the following objective function and 

constraints: 

Objective function 

The load profile of each appliance of type j which belongs to user class k is computed by 

defining, in a stochastic manner, the moments t the appliance is switched on. These switching-on 

instants t are sampled from the vector of the daily minutes [1:1440]. Hence, having the moments t 
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and the input djk, the load profile of each appliance is defined. Aggregating the daily load profiles of 

all the appliances of each type present in a user class, the user class daily load profile is obtained. 

Finally, aggregating the load profiles of all user classes we obtain the total electric load profile of 

the users, on a one-minute basis. 

Constraints 

 The functioning time Ftjk is randomized and computed as follows: 

4.1 

𝐹𝑡𝑗𝑘 = 𝐹𝑡𝑗𝑘 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝐹𝑡𝑗𝑘 ∗ 𝑅𝐹𝑡𝑗𝑘) 

in which random(Ftjk * RFtjk) refers to the computation of a random value defined in the 

range: [-(Ftjk * RFtjk); +( Ftjk * RFtjk)]. 

 The number of switching-on moments nt of each appliance jk is defined as follows: 

4.2 

𝑛𝑡,𝑗𝑘 =
𝐹𝑡𝑗𝑘

𝑑𝑗𝑘
 

 Starting from each instant t, the appliance is on for the following djk minutes. 

 The functioning window(s) Fwjk, which define the periods when moments t can occur, is 

defined as follows: 

4.3 

𝐹𝑤𝑗𝑘 = 𝐹𝑤𝑗𝑘 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝐹𝑤𝑗𝑘 ∗ 𝑅𝐹𝑤𝑗𝑘) 

where random(Fwjk * RFwjk) refers to the computation of random values defined in the 

range: [-(Fwjk * RFwjk); +(Fwjk * RFwjk)]. According to this, the starting and ending instants 

of the functioning windows are modified to extend or shorten the windows length.  

 A power peak instant is randomly chosen with uniform probability distribution within the 

peak window. 

 The switching-on instants t are defined by random sampling within the functioning 

windows with two possible probability distributions: (i) for appliances which do not 

contribute to the peak (e.g. appliance 1 in Figure 4.1) sampling is carried out with uniform 

probability distribution, (ii) for appliances which contribute to the peak (e.g. appliance 2, 3 

in Figure 4.1) sampling is carried out with normal probability distribution having mean value 

on the peak time.  
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 The parameters of the normal probability distribution for appliances contributing to the 

peak are defined in order to obtain, within each user class, a power peak value that matches 

with the peak power obtained via the correlation between coincidence factor, load factor 

and number of user. The employed correlation refers to the one presented by Bary in [24], 

which I introduced in Coincidence factor relationships. The coincidence factor is calculated 

by iteration on the load factor from Eq. 2.12, where the factors a and p are computed from 

Eq. 2.13 and 2.14. 
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5 LoadProGen improvement: developments and implementation 

In this thesis, the software LoadProGen has been deeply improved and applied in two case 

studies. The algorithm, in its early version, had some limitations and some steps could be developed 

in a better way: for example, the sampling of switching-on instants of the appliances was rigid, the 

Load Curve Computation block was slow and inefficient and it operated in unintuitive manner, and 

the management of the parameters of the normal distribution could be improved. In the following 

chapter, the main improvements developed in the software are shown: initially the main 

weaknesses of the early version of the model are summarized, and subsequently the solutions 

adopted in order to improve the algorithm are explained in detail. Finally, some examples of load 

profiles generated through LoadProGen are presented and compared with the results obtained 

using one of the simplest methods founded in literature, explained in Load profiles estimated. 

5.1 Improvements identification 

A division of the model in macro blocks has been previously presented (Figure 5.7). 

According to this, one can distinguish a first step which refers to the processing of input data, a 

second step which refers to the Peak Value Computation, and a third step which refers to the Load 

Curve Computation. The weaknesses of the early version of the model mainly concerned the first 

and the third step.  

Weaknesses of input data management  
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In the early version of the algorithm, the introduction of correction factors RFtjk and RFwjk, 

in order to consider a degree of uncertainty in the values of Ftjk and Fwjk had been already 

implemented, but the software only worked if those parameters were set to null values. To 

understand the reason, let’s have a look on how the correction factors RFtjk and RFwjk operates on 

functioning time and functioning windows of each appliance: 

5.1 

𝐹𝑡𝑗𝑘 = 𝐹𝑡𝑗𝑘 ∗ [1 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝑅𝐹𝑡𝑗𝑘)] 

in which random(RFtjk) is a random factor which value is defined between -RFtjk/100 and +RFtjk/100 

(RFtjk is in percentage). In the same way: 

5.2 

𝐹𝑤𝑗𝑘 = 𝐹𝑤𝑗𝑘 ∗ [1 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝑅𝐹𝑤𝑗𝑘)] 

According to this, the functioning time and the functioning windows of each appliance are randomly 

extended or shortened; this caused problems that concerned: 

 The definition of the number of app starts nt,jk. Since the number of starts of each appliance 

nt,jk is calculated as the ratio between Ftjk and djk (Eq. 4.2), in order to have an integer 

number Ftjk had to be a multiple of functioning cycle djk, which was not subject to 

randomization. 

 The possibility that, after the computation of the new values of Ftjk and Fwjk, the duration 

of the functioning time was greater than the total duration of the functioning windows. 

This would not allow the algorithm, in the Load Curve Computation phase, to sample all the 

switching-on instants for all the devices of the appliance jk.  

 The possibility that the functioning windows (if more than one) of an appliance jk 

overlapped. 

For these reasons, the uncertainty of input data could not be accounted. 
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Weaknesses of Load Curve Computation 

 

The algorithm, even in its early version, was bottom-up. It performed a simulation of daily 

operation of each device of each appliance for each user class, and aggregating all these load 

profiles obtained the total load profile. However, three main aspects in the Load Curve 

Computation presented some limitations: the first is the manner in which random selection of 

switching-on instants t was performed, the second is the manner in which the switching-on instants 

were handled at the peak time, and the last regarded the management of the Gaussian distribution 

parameters by which the samples of switching-on instants were weighted around the peak instant.  

Selection of switching-on instants 

The algorithm, operating on a one-minute basis, considered the daily time as a vector 

[1:1440]. However, for each appliance (and thus for each device i corresponding to that appliance 

j), could be defined up to three daily functioning windows within the vector of daily minutes, in 

which the switching-on of each device could occur. According to this, all the nt,jk switching-on 

instants for each single device i could be sampled within the vectors corresponding to the 

functioning windows of the appliance jk. However, this sampling was not performed in completely 

random manner: a vector of possible switching-on instants (VPS) was defined for each appliance. 

To comprehend how this vector was built, suppose to have an appliance whose functioning cycle d 

is 12 minutes, and which present two functioning windows: the first window starts at the minute 
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360 of the day (i.e. at 6:00 AM) and ends at the minute 480 (i.e. at 8:00 AM), and the second ranging 

from minute 780 (1:00 PM) to 840 (2:00 PM). In this case, the VPS would have been composed in 

this way:  

𝑉𝑃𝑆 = [360  372  384  396  408  420  432  444  456  468  780  792  804  816  828] 

The possible switching-on instants are not all those within the functioning windows, but only those 

spaced by a period equal to the functioning cycle d, starting with the first of each functioning 

window. Note that, in the example, the minute 480 is not considered as a possible switching-on 

instant: this is due to the fact that if a device was turned on at minute 480, it would stay on until 

minute 492, breaching the functioning window, which ends at the minute 480. The same 

considerations can be done for the minute 840. 

The choice made by the author was due the fact that, if the algorithm had been left to perform a 

random sampling of the switching-on instants directly within the functioning windows, it could have 

run into two main problems: 

 The possibility that instants too close together were sampled: since a device, after is 

switched on, stay on for a time equal to the functioning cycle d, the minimum amount of 

time that must elapse between two switching-on instants is d. 

 The possibility that, despite the functioning time Ft had lower amplitude than the 

functioning windows Fw, the algorithm could not correctly perform a random sampling of 

all the nt switching-on instants. To comprehend the reason, refers to Figure 5.1, which is a 

graphical representation of switching-on instants sampling. Let's consider an appliance j, 

which has a single functioning window (starting at minute 1 and ending at minute 20), a 

functioning time of 15 minutes and a functioning cycle of 3 minutes. This means that each 

device i of the appliance j should turn on 5 times within its functioning window. Above is 

represented the switching-on behavior according to the solution adopted in the early 

version of the software: since the possible switching-on instants are rigidly defined 

(highlighted in yellow), the algorithm can perform the sampling of 5 switching-on instants 

within these values. Below is represented instead what could happen if the algorithm could 

perform a random sampling of the switching-on instants within the functioning window: 

despite the functioning time has lower amplitude than the functioning window, the 

algorithm in this case cannot simulate the fifth switching-on, because after it has performed 

4 samplings there are no more blocks of 3 free minutes inside the window. 
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Fw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                     
                     

Fw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                     
Figure 5.1: Graphical representation of switching-on instants sampling. Above is represented the switching-on behavior 
according to the rigid solution adopted in the early version of the software. Below is represented what could happen if the 
algorithm could perform a random sampling of the switching-on instants randomly within the functioning window: the 
algorithm in this case cannot simulate the fifth switching-on, because after it has performed 4 samplings there are no 
more blocks of 3 free minutes inside the window.  

In this way, however, the selection of the switching-on instants results rigid, because the devices 

which belong to the same appliance will start always in the same instants, spaced by the functioning 

cycle d. 

Construction of the user-class load profile 

The old model built the load profile of each user-class within two steps:  

a) Initially, the switching-on behavior at the peak time was simulated. Among the applications 

that could have been on the peak time (i.e. the peak time was within their functioning 

windows, henceforth peak appliances), was performed a random selection of devices that 

would have instantly turned on exactly at the peak time, until obtain a user-class peak load 

value equal to that calculated into the peak load computation phase. Essentially, the load 

value at the peak time was fixed. 

b) After the construction of the load profile at the peak time, the algorithm proceeded with 

the simulation of the switching-on of all the devices in the rest of the day, to complete the 

load profile. Obviously, the devices already turned on at the peak time, would be switched 

on once in less during the rest of the day. The management of switching-on during the rest 

of the day differed depending on whether the device was a peak appliance or not. 

 For the devices of not-peak appliances (i.e. the appliances which cannot be on at 

the peak time), the simulation was carried out through a simple sampling of 

switching-on instants, according to the technique explained in the previous 

paragraph Selection of switching-on instants. 

 For the devices of peak appliances, the simulation was carried out by changing the 

probability of sampling around the peak time. Initially, the VPS was filled  omitting 

the peak time instant. Then, a vector of the same length containing the probabilistic 

weights with which to perform the sampling was associated to the VPS. This 

allowed to assign a specific probabilistic weight of sampling to each possible 
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switching-on instant, in accordance with a normal distribution mediated on the 

peak time: in this way, the probability that the devices switch on near the peak time 

increased. Initially the weights were calculated according to a normal distribution 

having a very high bell (i.e. having low variance). This often meant to obtain a load 

profile in which the load just before and after the peak time was greater than the 

peak load calculated in the a), because the majority of the devices turned on 

around the peak time. If this occurred, the bell of the normal distribution was 

relaxed by increasing the variance (+2 at each attempt), and the simulation was 

executed again (57). This until the peak of the load profile computed was equal to 

the peak value calculated in a). For reasons of computation speed, the algorithm 

could perform up to 30 attempts, after which the load profile obtained would be 

accepted. 

A serious problem that frequently occurred was that the algorithm exhausted the limit of 30 

attempts without reaching the goal. Indeed, it was sufficient that even a single device turned on 

just after the peak to result an electrical load higher than the load value at the peak time. In 

addition, the management of peak starts was unrealistic: all the devices that were selected to work 

at the peak time, switched on instantly exactly at the peak instant, creating a discontinuity due to 

a sudden increase in demand. In conclusion, the procedure appeared slow and unintuitive.  

5.2 Development of the improvements 

In the following section the main solutions I adopted to improve the weaknesses of the 

algorithm are described. In particular, major changes regards: the proper implementation of 

uncertainty related to Ft and Fw; the sampling of devices’ switching-on instants; the construction 

of user-class load profile. The solutions presented are implemented in the actual version of the 

software. 

Input data management  

In order to correctly implement the option for consider the uncertainty of the input data, it 

was necessary to solve the problems related to the extension or shortening of functioning time and 

functioning windows, discussed previously. The introduction of parameters RFt and RFw should be 

accompanied by some adjustments without which the algorithm could not function properly.  
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The first critical point that requires attention is the definition of the number of starts. Consider the 

appliance j in the user-class k: nt,jk, which represents the number of daily switching-on of that 

appliance, is calculated as follows:  

5.3 

𝑛𝑡,𝑗𝑘 =
𝐹𝑡𝑗𝑘

𝑑𝑗𝑘
 

In order to have an integer number of app starts, Ftjk has to be a multiple of functioning cycle djk, 

which is not subject to randomization. For this reason, after the randomization Ftjk is rounded to 

the nearest multiple of djk. 

Another possible problem was the case in which, after randomization, the Ftjk was higher than the 

duration of the summation of the Fw(s)jk: in this case, in the phase of load profiles computation, 

the software would not be able to simulate all the starts of the device. Actually, the condition of 

having a Ftjk shorter then the Fw(s)jk is not sufficient to ensure that all the starts can be simulated, 

but you must ensure that in the Fw(s)jk there are a number of "blocks" of duration djk greater than 

or equal to nt,jk. If this occurs, it means that there is at least a configuration of switching-on instants 

that allows to simulate all the nt,jk starts within Fw(s)jk. Otherwise, the Fw(s)jk are progressively 

extended, as long as the condition becomes true. Moreover, if after randomization two functioning 

windows of appliance j partially overlap, these are deferred and delayed up to join in a single 

window (Figure 5.2). 

 

 

 

 



Chapter 5 

60 

 

 

Figure 5.2: Graphs showing three different functioning windows of an appliance. In the case shown above, after 
randomization two functioning windows overlap (the blue and red windows). If this occurs, the algorithm anticipates and 
retards the two overlapping windows up to merge them into a single window, whose duration is the sum of the starting 
two windows. 

Load Curve Computation 

The Load Curve Computation block has been significantly changed. First, it was changed the 

way in which the switching-on instants are sampled, making it the most random possible. Also, 

actually the load profile of each user-class k is no longer built separating the management of peak 

time from the rest of the day, but it is the result of a simulation on the entire day of each device i 

of each appliance j. Finally, the variance of the normal distribution that drives the sampling of 

switching-on instants varies adaptively to the error on the peak value. 

Selection of switching-on instants 

The reasons that led the author of the first version of the model to develop a selection of 

switching-on instants in a rigid manner have already been discussed. In order to decrease the 

rigidity with which these instants were sampled, I had to focus in solving these problems. Consider 

the Figure 5.1: it represents the cases in which the sampling switching-on instants is carried out in 

a rigid way (above) or free way (below). In the old software, which performed the sampling always 

in a rigid manner, if occurred the condition that VPS contained more than nt,jk elements (i.e. the 
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possible switching-on instants were more of the starting instants to be sampled) did not occur 

problems, because the possible switching-on instants were spaced cycle d, then all nt,jk starts could 

be simulated for all devices. Instead, if the sampling was made directly within the functioning 

windows, it was possible that the algorithm was not able to complete the simulation of all nt,jk starts, 

because some minutes were "wasted" in windows between a switch and the other, too short to 

accommodate a functioning cycle d. However, it appears evident that, for appliances with very long 

functioning windows, would not occur problems of this type.  

Fw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

                           

Figure 5.3: Graphical representation of switching-on instants sampling performed in random manner within a functioning 
window. This is the same case represented in Figure 5.1 (Ft=15 min; d=3 min), but in which the unique Fw has a duration 
of 26 minutes instead of 20 minutes. In this case, even if the algorithm has performed a sampling which is the worst 
possible combination in terms of minutes “wasted” (for each starts which occupies a period equal to the functioning time 
d, follows a window of duration (d-1) which can accommodate no functioning cycles), it has been able to simulate all the 
daily starts of the device.  

Consider for example Figure 5.3: for applications with functioning windows long enough, with a 

random selection of switching-on instants directly within the Fw, the algorithm has no problems to 

perform the simulation even in the most unlucky combination, which corresponds to intersperse 

each functioning cycle with a window of duration (d-1). In light of this, it is possible to express a 

mathematical condition for the duration of Fw that allow random sampling of switching-on instants 

directly by the vector of Fw, in this way:  

5.4 

(𝑑𝑗𝑘 − 1) ∗ 𝑛𝑡,𝑗𝑘 + 𝑑𝑗𝑘 ∗ 𝑛𝑡,𝑗𝑘 ≤ 𝑠𝑖𝑧𝑒(𝑉𝑃𝑆𝑗𝑘) ∗ 𝑑𝑗𝑘 

where size(VPSjk) refers to the number of elements of the vector of possible switching-on instants 

constructed in the rigid way (i.e. the number of blocks of duration d present within the vector of 

Fw); the term at the left side of the disequation represents the time requested by the most unlucky 

combination of instants sampling, while the term at the right side represents the duration of 

functioning windows (excluding the blocks of minutes not able to contain d, as minutes 19 and 20 

in Figure 5.1). If an appliance j respect the condition in Eq. 5.4, then it is possible to carry out random 

sampling of switching-on instants directly from the vector representing the Fwjk, because the 

algorithm is always able to simulate all the nt,jk starts for each device i. This allows to perform for 

each device random switching-on instants sampling. 

As regards the appliances that do not meet the condition 5.4, the task is a bit more 

complicated. A possible way would be to accept to perform the sampling in a rigid way for these 



Chapter 5 

62 

appliances. However, the solution adopted is to perform the simulation of switching-on instants 

initially in a rigid manner, until the condition in Eq. 5.5 is respected, and then complete the 

remaining simulations in a free manner. Indeed, after each sample, the term on the left side of the 

disequation decreases by d+(d-1), while the term on the right side decreases by d: then, as the 

switching-on instants of each device are sampled, the term on the left side will tend to decline 

faster than that to the right side, as long as the condition is met. After that, the algorithm can 

complete the simulation of remaining starts in free manner, by sampling directly the switching-on 

instants within the Fw. 

5.5 

(𝑑𝑗𝑘 − 1) ∗ 𝑛𝑡,𝑗𝑘 + 𝑑𝑗𝑘 ∗ 𝑛𝑡,𝑗𝑘 ≤ 𝑠𝑖𝑧𝑒(𝑉𝑃𝑆𝑗𝑘) ∗ 𝑑𝑗𝑘 

 

Construction of the user-class load profile 

The new algorithm, to build the curve of each user-class, does not handle the peak starts 

separately with respect to the starts in the rest of the day. Indeed, for each device i of the appliance 

j belonging to the user-class k, the sampling of nt,jk starting instants is performed compatibly with 

its functioning windows. The sampling is carried out as explained Selection of switching-on instants, 

distinguishing between appliances that meet or do not meet the condition 5.4, and then between 

peak or not-peak appliances. 

For appliances meeting condition 5.4, free sampling of switching-on instants of each device 

is carried out within the vector representing the functioning windows: in this way the device can 

turn on in every minute included in the functioning windows.  

 For the not-peak appliances, sampling is performed according to a uniform distribution, i.e. 

every minute included functioning windows has the same probability of being sampled as 

switching-on instant. 

 For peak appliances, sampling is performed by assigning a specific probabilistic weight to 

every minute of functioning windows. To the instants of functioning windows between 150 

minutes before and after the peak time are assigned weights according to a normal 

distribution centered on the peak time, while the weight assigned to all the others instants 

is equal to that of the 150th element. The values of the weights are calculated according to 

the probability density function of a normal distribution: the values of this function for x in 
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the range [-2; +2] are discretized into 300 elements, and assigned to each minute within 

the range [peak time - 150 min; peak time + 150 min].  

  

Figure 5.4: Examples of probability density function on Normal distribution. The values of the function for x ranging 
from -2 to +2 are discretized and applied as probability weights of sampling for Fw instants between 150 minutes 
before and after the peak time. 

 

Figure 5.5: Graphical representation of the weights associated to the minutes of the functioning windows. The red 
dotted lines indicates the limits of the 2 daily functioning windows. The probabilistic weights of sampling within the 
range [peak time - 150; peak time + 150], that is between 14:00 and 19:00, are in accordance with the probability 
density function of a normal distribution (in this case the one having variance=2 in Figure 5.4), while to the remaining 
instants of the functioning windows the lowest weight is associated. 

Var=2 

Var=4 
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The resulting peak from the user-class load profile obtained after the simulations of all the 

devices of each appliance is compared with the estimated peak in the block Peak Value 

Computation: if the peak obtained is greater than that estimated through Bary’s 

correlation, then the variance of the normal is increased in order to decrease the 

probability of sampling around the peak time, vice versa the variance is decreased. 

For appliances that do not meet the condition 5.4, the algorithm operates in the same way, 

with the only difference that initially the switching-on instants are sampled in a rigid manner, as in 

the old version of the software. In any case, the simulation of the peak appliances is guided by the 

same normal distribution that is applied to the peak appliances that meet the condition 5.4. 

Efficiency improvements 

The software allows the user to choose, upon execution, how much load profiles generate. 

Indeed, since the model is stochastic, it would be of little significance to generate a single load 

profile. For this, it is important the execution speed of the algorithm, i.e. the time required to 

generate load profiles: software improvements have been performed from this point of view, 

thanks to a Matlab code more efficient. Although the switching-on instants sampling is performed 

randomly within the functioning windows of appliances, and for each simulation is required a check 

to verify if the condition 5.5 is respected (for appliances that do not meet the condition 5.4), the 

execution time is about the same as the primitive version of LoadProGen, which performed the 

switching-on instants sampling in a rigid way. Obviously, the execution time depends from the 

connected load, the number of appliances, the number of devices, and in general from the input 

data. To get an idea, however, the total execution time of the peripheral-urban area in Uganda 

(shown in Appendix A), which has a daily demand estimated about 140 kWh and an estimated peak 

of 70 kW, is approximately 20 seconds for reading the Excel file containing the input data, 1 minute 

for generation of each load profile, and 10 seconds for writing output to a new Excel file. 

5.3 Computational framework 

The LoadProGen software has been implemented in MATLAB, while input data and output 

results of the algorithm are managed through Microsoft Excel. The model follows a bottom-up 

approach, and operates on a single user-class: it simulates all the devices of the appliances of a 

user-class, and obtains the load profile for the user-class considered. If the total load is composed 

by more user-classes, the user-class load profiles are developed independently from each other by 

the algorithm, and are then aggregated to form the total load profile.  
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Figure 5.6: Flow chart of the bottom-up behavior of the model LoadProGen: from the load profile of the individual device, 
to the total load profile. 

 

In Figure 5.7 a simplified flow chart of LoadProGen is presented. 
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Figure 5.7: Flow chart of LoadProGen. 

The algorithm LoadProGen can be divided in three sections:  

 Input data highlights different groups of required input. 

 Operation elements considers the different computational steps performed within the 

algorithm. 

 Output data highlights different groups of outputs computed by the algorithm. 

However, a more intuitive subdivision might be to divide the algorithm into sections related to the 

task performed. By this way, once processed the input data with their randomizations, two main 

blocks can be distinguished: (i) the Peak Value Computation and (ii) the Load Curve Computation. 

Input data 

The input data have already been discussed in Input data. In any case, it is worth 

remembering that some of them (Ft and Fw) are subject to a randomization according to designer 
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parameters (Rft and Rfw), allowing to consider the uncertainty of these input data, which are often 

the result of estimates by the designers. The operator which use the model has to enter the input 

data required into an Excel file. That Excel input file is composed of many sheets as number of user-

classes identified in the customers' group. In each sheet data about the respective user-class are 

recorded. The structure of a sheet of input file is shown in Table 5.1. 

Operational elements and Output data 

a) The algorithm elaborates the input data set by the designers in order to obtain them in the 

proper form to compute the load profile. The randomization process is quite complex, and 

the sequence requires to be described:  

 Initially, the functioning time (Ft) of each type of appliance is randomized as 

described in Eq. 4.1. The input value of functioning time of each type of appliance 

is shortened or extended through a random value defined in the range: [-(Ftjk * 

Rftjk); +( Ftjk * Rftjk)]. 

 After that, Ft is corrected in order to have an integer number of app starts. As the 

number of starts nt of each type of appliance is defined as in Eq. 4.2, the Ft is 

rounded to the nearest multiple of the functioning cycle djk. 

 The functioning window(s) (Fw) of each type of appliance is randomized as 

described in Eq. 4.3. The input value of Fwjk is modified through a  random value 

defined in the range: [-(Fwjk * RFwjk); +(Fwjk * RFwjk)]. According to this, the starting 

and ending instants of the functioning windows are modified to extend or shorten 

the windows length. 

 After the randomization of Ft and Fw has been performed, there is the need to 

check that, for each type of appliance jk, the functioning window(s) are able to 

App User Class NUsers P [W] Napp d [min] Ft [min] RFt [%] RFw [%] w1_s w1_e w2_s w2_e w3_s w3_e 

Bulb light Family 3 15 3 8 10 360 30 30 0 120 1020 1440   

Phone Charger Family 3 15 5 2 30 180 30 30 0 540 780 900 1020 1440 

Radio Family 3 15 5 1 15 240 30 30 360 540 1020 1440   

Security Light Family 3 15 5 2 30 720 30 30 0 420 1020 1440   

TV (small) Family 3 15 100 1 30 300 30 30 660 900 1020 1440   

Fridge (small) Family 3 15 250 1 10 300 30 30 0 1440     

Table 5.1: Example of input file structure. The table refers to a single sheet, corresponding to the user-class "Family 3" 
from Uganda's data (Appendix A). In the table are listed all the types of appliances present in the typical customer of user-
class “Family 3”, and for each of them is specified the number per customer Napp, the nominal power P, the functioning 
time Ft and functioning cycle d, the random parameters RFt and RFw, and finally the start-end daily instants (in minutes, 
from 0 to 1440) for the functioning windows (up to three).  
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“contain” all the daily starts. Otherwise, the functioning window(s) are gradually 

expanded until they are able to contain all the starts.  

b) Peak Value Computation: in this block the total required energy, the peak window(s), the 

maximum possible power peak, and the peak time are firstly computed. Then with an 

iterative process the load factor and the coincidence factors are computed according with 

Eq. 2.12 until convergence is reached for their values. Hence the reference value of the 

power peak for the considered user class can be computed. Follows a more detailed 

description of this block: 

 

Figure 5.8: Flow chart of the block related to the "Peak Value Computation" 

 Overlapping the functioning windows Fw of the different appliances within a class 

k, a peak window will result to be embraced by a number of appliances, hence 

defining a possible maximum power peak (max_peakk) (Figure 4.1).  

 The peak time is sampled from the vector of the peak window, which is the period 

during which the maximum power peak can occur.  

 The daily energy demand (per user-class k) is calculated as follows:  

5.6 

𝐸𝑘[𝑊ℎ] = ∑(𝑁𝑘 ∗ 𝑛𝑗𝑘 ∗ 𝑃𝑗𝑘[𝑊] ∗ 𝐹𝑡𝑗𝑘[ℎ])

𝑗
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in which (Nk * njk) refers to the total number of units of type j for all the users which 

belongs to user class k, and (Pjk * Ftjk) represent the daily energy demand for each 

unit. 

 A starting value for the load factor Lf(0) is calculated in this way:  

5.7 

𝐿𝑓𝑘(0) =
𝐸𝑘[𝑊ℎ]

𝑚𝑎𝑥_𝑝𝑒𝑎𝑘𝑘[𝑊] ∗ 24 [ℎ]
 

 Hence, a first value of coincidence factor Cf(0) can be computed using the 

correlation by Bary (Eq. 2.12, 2.13 and 2.14). 

5.8 

𝐶𝑓𝑘(0) = 𝑎 ∗ 𝐿𝑓𝑘(0) + (1 − 𝑎 ∗ 𝐿𝑓 𝑘(0))𝑁𝑘

−
1
2 

 The peak value can be calculated: 

5.9 

𝑝𝑒𝑎𝑘𝑘(0) = 𝐶𝑓𝑘
(0) ∗ 𝑚𝑎𝑥_𝑝𝑒𝑎𝑘𝑗[𝑊] 

 At this point, the iterative process begins: first the Lf is recalculated using the peak 

demand obtained by the previous iteration, then the Cf is computed using the 

correlation by Bary with the new Lf, and finally the new peak is calculated using the 

Cf. The process continues until the error between the peak value and that of the 

previous iteration drops below a tolerance value (set to 0.1%). 

 

c) Load Curve Computation: In this block, for each device of each type of appliance j, the 

switching-on instants t are randomly sampled from the vector of the functioning window(s), 

through the Matlab function “datasample”, which execute a random selection of a defined 

number of elements within a vector. Accordingly, the load profile for the user class k can 

be computed. However, the resulting user-class peak may not match with which calculated 

in the step b). Therefore iterations are performed by operating on the variance of the 

normal probability distribution which guides the random sampling of starting instants t of 

the peak appliances.  
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Figure 5.9: Flow chart of the block related to the "Load Curve Computation" 

 For the appliances not contributing to the peak, the sampling of the switching-on 

instants t is carried out, using datasample function, with a uniform probability 

distribution from the vector representing the functioning window(s) Fwjk of each 

appliance. 

 For the appliances contributing to the peak (i.e. the peak time is included in their 

functioning windows) the sampling of the switching-on instants t is still carried out 

with a uniform probability distribution, but, in the neighborhood of the peak time 

(in the range around peak time between [-150 min; +150 min]), a sampling with a 

normal probability distribution is performed (Figure 5.10). At each iteration, the 

variance of the normal distribution that dominates the probability of sampling of 

switching-on instants t around the peak time is increased or decreased, depending 

on whether the resulting peak is respectively greater or smaller than that estimated 

using the correlation of Bary (in the Peak Value Computation block). Indeed, 

increasing the variance, the bell that represents the normal distribution relaxes, 

reducing the probability of switching-on around the peak time, and vice versa 

decreasing the variance. The iteration continues until the resulting user-class peak 

load value matches (within some tolerance) with the estimated peak value by the 

Bary’s correlation. 
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Figure 5.10: Graphical representation of the weights associated to the minutes of the functioning windows. The red dotted 
lines indicates the limits of the 2 daily functioning windows (6:00-9:00 and 12:00-19.30). The normal distribution affects a 
period that includes 150 minutes before and after the peak time of the user-class in question (16.30). The greater the 
variance, the lower the bell, until reaching a uniform distribution.  

d) Repeating steps b) and c) for each user-class k and aggregating the different user-class load 

profiles allows computing the total load profile. 

 

5.4 LoadProGen Vs state-of-the art approaches 

In the light of the changes and improvements applied to the software, it is possible to show 

a sample output of LoadProGen, and make some considerations about them. Figure 5.11 and Figure 

5.12 show four load profiles estimated through LoadProGen for the case study of Uganda (complete 

input data available in Appendix A), obtained with values of uncertainty parameters of input data 

(i.e. RFt and RFw) respectively equal to 0% and 30%. It can be noted as in the first case, the load 

profiles have a more squared shape: this is because the functioning windows are not subject to 

randomization, so the load may experience a discontinuity at the beginning and at the end of the 

windows. Obviously, the higher the value of the parameter RFw, the greater is the variability of the 

windows, the smoother are the load profiles. 
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Figure 5.11: Four load profiles relative to Uganda’s input data (Appendix A) estimated by LoadProGen, setting RFt=0% and 
RFw=0%  

 

Figure 5.12: Four load profiles relative to Uganda’s input data (Appendix A) estimated by LoadProGen, setting RFt=30% 
and RFw=30% 

It can be interesting to make a comparison between the results obtained using the model and the 

load estimation performed with the simplest methods founded in literature, in particular the setting 

on-off approach (Figure 5.13) and the medium power approach (Figure 5.14) introduced in Load 

profiles estimated. As can be noticed, the peak value obtained with the setting on-off approach is 

higher than the peak value obtained using LoadProGen, because the appliances are switched on 
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within rigid windows. Instead, the peak value obtained with the medium power approach is lower, 

because not defining the functioning cycles d of each appliance, this approach "spreads" the energy 

demand of each devices over the entire duration of the functioning windows. For example, if an 

appliance has a nominal power rate equal to 90 W, a daily functioning time of 30 minutes, and the 

duration of functioning windows is 1 hour, the simple approach considers a mean power of 45 W 

during the entire functioning windows. 

 

Figure 5.13: Load profile relative to Uganda’s input data (Appendix A) estimated through the setting on-off approach  

 

Figure 5.14: Load profile relative to Uganda’s input data (Appendix A) estimated through the medium power approach 
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6 Applications of the software tool 

In the following two applications of the LoadProGen software tool are described. The first 

one aims at introducing an application of the model to perform sizing procedure of an off-grid 

photovoltaic system in a peripheral urban area of Uganda. The second one aims at introducing the 

application of the model as a load profile forecast tool, i.e. to show the capability of the model in 

matching metered real daily load profiles. In this case the application refers to the load profile of a 

college in a peri-urban area of Cameroon. 

6.1 Application for sizing of an off-grid PV system  

The principal aim the model has been designed and developed for is to provide a defined 

and rigorous approach for the estimation of the electrical load profiles of unelectrified areas, in 

order to improve the effectiveness of off-grid power systems sizing process for the electrification. 

Load profiles are an input data required by many methods and software that deal with sizing of 

power systems, and they can deeply affect the results of the optimization and sizing process. 

Moreover, given a targeted context for off-grid system implementation, the expected electrical 

load profile is not unique, because uncertainty can be associated to the load profile. This is even 

truer when dealing with rural electrification, due to the lack of detailed information. Therefore the 

possible different load profiles related to a context can lead to different system sizing. A possible 

approach to this issue is to look for the system sizing which fits with the majority of the possible 

load profiles. 

This application of the model developed aims at a first step off-grid power system sizing, which 

address the issue of uncertainty of load profiles. Indeed, as already highlighted, the model is based 

on a stochastic approach, which allows, given a set of input data, to compute different load profiles 

which all match with the imposed constraints, i.e. the uncertainty of load profiles for off-grid 

systems sizing is considered. Beside the uncertainty embraced by the model in developing different 

profiles for a given set of input data, further degree of uncertainty of load input data has been 

introduced by considering different scenarios based on different values of RFt and RFw. 

This case study has been applied to the sizing of the main components of a PV Micro-Grid in a 

peripheral urban area of Uganda according to the following features: 

 10 scenarios of load input data have been identified. Appendix A shows the main input data 

which have remained constant for each scenario. The different scenarios are based on 

different values of RFt and RFw (Table 6.1) 
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Table 6.1: Definition of the 10 load profile scenarios 

 RFtjk [%] RFwjk [%] 

Scenario 1 0 0 
Scenario 2 0 10 
Scenario 3 0 20 
Scenario 4 0 30 
Scenario 5 10 0 
Scenario 6 20 0 
Scenario 7 30 0 
Scenario 8 10 10 
Scenario 9 20 20 
Scenario 10 30 30 

 

 For each scenario, 100 load profiles have been computed using the model developed. 

Obviously, since the model is stochastic, curves of the same scenario will be different each 

other.  

 For each load profile within a scenario, the main system components sizes of the PV Micro-

Grid (i.e. photovoltaic nominal power and battery storage capacity) have been defined by 

mean of a numerical optimization approach based on life-cycle Net Present Cost and 

minimum Loss of Load parameter [70].  

 Since for each estimated load profile within a scenario, different optimum system sizes may 

result, the optimum system configuration for each scenario (i.e. the optimum sizes of the 

PV panels and the storage) is identified as the one that fits with the majority of the 

employed load profiles. 

 An overall best system configuration can be recognized by overlapping the results of each 

single scenario.  

Figure 6.1 and Figure 6.2 show graphical representations for the sizing results of the Scenario 1. In 

particular, Figure 6.1 highlights the distribution on the search plane of the optimum system 

configurations: going from black to red, to yellow and white, the configurations have resulted the 

best ones more often. In Figure 6.2, which is the 3D representation of the previous graph, it is 

possible to appreciate the frequencies of different optimum systems configurations. Scenario 1 is 

particularly significant, because it can be noticed that even if RFt and RFw are zero (i.e. there is no 

uncertainty related to the load input data) both PV and storage sizes changes over a sensible range: 

this is due exclusively to the variable nature of the load, i.e. to the randomness of functioning 

pattern of electrical devices. In this scenario the best system configuration (which has been the 

optimal configuration for 20 load profiles on the 100 computed) has 216 kW PV array and 864 kWh 

storage capacity. 
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Figure 6.1: Search space and ranges of the resulting optimum PV array and storage sizes for Scenario 1 

 

Figure 6.2: Frequency of the different optimum system configuration for Scenario 1 

The same analysis has been performed for the other considered scenarios. In Scenario 10 the 

uncertainty in the input data has been set to the maximum value (30%), both for the functioning 

time either for the functioning windows. It’s interesting notice that, compared to scenario 1, the 

range of optimal solutions in Scenario 10 is much wider (Figure 6.3). In Table 6.2 is compared the 

range of variation of the optimal plants in Scenario 1 and 10. 
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Figure 6.3: Search space and ranges of the resulting optimum PV array and storage sizes for Scenario 10 

  

Figure 6.4: Frequency of the different optimum system configuration for Scenario 10 

 

Table 6.2: Variation range of PV and storage of optimal configurations for Scenario 1 and 10 

 Optimal configuration Variation Range 
PV 

[kW] 
Storage 
[kWh] 

Max PV 
[kW] 

Min PV 
[kW] 

Max Stor. 
[kWh] 

Min Stor. 
[kWh] 

Scenario 1 216 864 216 222 808 880 
Scenario 10 222 832 195 240 760 904 
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It is also interesting to compare the results obtained for Scenarios 4 and 7: in the first case the 

uncertainty is zero for the functioning time and 30% for the functioning windows, conversely in the 

second the uncertainty is equal to 30% for Ft time and zero for Fw. This means that in Scenario 4 

the daily electrical demand is always constant, but the daily windows of equipment operation vary, 

while in Scenario 7 the daily electrical demand can vary (because functioning time of appliances 

vary) but not functioning windows. 

 

Figure 6.5: Optimum system configurations for Scenario 4 and 7 

The Figure 6.5 shows the comparison of results for these opposite scenarios. In Scenario 4 the 

resulting optimum plants are more balanced: there are optimal configurations having less 

photovoltaic and more batteries, and vice versa, but generally the trend is to obtain power plants 

with similar sizes. This is due to the fact that the daily energy demand does not vary, because not 

subject to uncertainty. The resulting optimum plants for Scenario 7 shows greater variability in 

absolute terms, and also can be noticed that the variability regards systems with different sizes: the 

optimal configurations range from small plants (with little generation capacity and energy storage), 

to greater systems having both major photovoltaic power and more batteries: in the first case 

evidently the estimated profile had a lower daily energy demand, vice versa in the second case. 

The resulting optimal plants for each scenario are reported in Table 6.3. 
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Table 6.3: Resulting best plant configurations 

 Optimal configuration 
PV 

[kW] 
Storage 
[kWh] 

Frequency 
[%] 

Scenario 1 216 864 20 
Scenario 2 216 848 22 
Scenario 3 216 832 11 
Scenario 4 216 840 14 
Scenario 5 213 856 9 
Scenario 6 213 864 8 
Scenario 7 216 824 7 
Scenario 8 219 824 6 
Scenario 9 222 816 7 
Scenario 10 222 832 5 

Overall 216 848 7,2 
 

Finally, by aggregating the results of the 10 scenarios the same analysis can be carried out. This was 

done simply to show all the optimal solutions obtained for all the 1000 simulations performed, 

while for a realistic utilization of the software designers should set the proper values of RFt and 

RFw (eventually for each appliance). In Figure 6.6 and Figure 6.7 graphical representations for the 

sizing results of the aggregated scenarios are shown, while Table 6.3 also reports the resulting 

overall best system configuration, which has been the optimal system for 72 load profiles on the 

1000 generated.  

 

Figure 6.6: Search space and ranges of the resulting optimum PV array and storage sizes by aggregating all the scenarios 
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Figure 6.7: Frequency of the different optimum system configuration by aggregating all the scenarios 

 

6.2 Load profile forecast application 

In addition to the improvement of the software for the estimation of load profiles, a 

possible target of the thesis was the validation of this model. However, a proper validation requires 

to have a number of contexts for which specific data are available: (i) the input data needed by the 

model and (ii) a good amount of measured load profiles to check if the model’s estimates are 

realistic. In conclusion, due to the difficulty in obtaining the necessary data, it was not possible to 

perform the validation. 

However, with regard to a college in a peripheral urban area of Cameroon, it has been possible to 

obtain both the input data required by the model, either measured load profiles relative to eight 

days. Obviously, the metered profiles of only eight days are not enough to formalize the validation 

of the model, but it has been possible to show the ability of the model in matching metered daily 

load profiles. Furthermore, a possible procedure for a future validation of the model has been 

identified and applied to this case study. 

Metered load profiles 

The reference context is the Cameroon Presbyterian College in Bali, in Cameroon. At the 

moment the power supply of the college is provided by the national grid, but also backup diesel 

generators are locally available. As part of a study to perform an energy planning of the school 

aiming at identifying possible solution towards the college energy self-sufficiency, actual load 
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profiles have been metered. In particular, eight days have been monitored by considering the local 

meter installed at the connection of the electric system of the school with the local distribution 

grid. The load was measured by Sampling method on a 10-minutes basis. 

The load profiles relative to the eight days measured are reported in Figure 6.8. A general trend of 

the load can be clearly distinguished: the main peak always manifests in the evening hours, while a 

secondary peak occurs constantly in the early hours of the morning, when probably the customers 

wake up. The measured peak demand ranges between 11.5 kW and 15.4 kW, while the consumed 

daily energy ranges between 139.5 kWh and 161.2 kWh. 

 

Figure 6.8: Metered load profiles for Cameroon Presbyterian College in Bali, relative to eight days between September and 
October 2104 

The profile to be employed for the comparison with the results of the model is the average of the 

metered ones (Figure 6.9). The power peak is 12.6 kW, while the consumed daily energy is 151.3 

kWh. Obviously, the average profile tends to lose some of the typical fluctuating trend that 

characterize the daily profiles. 
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Figure 6.9: Average metered load profile for Cameroon Presbyterian College in Bali 

Estimated load profiles 

The collection of information was made by two students of Politecnico di Milano, who have 

proposed to the local population a questionnaire (shown in Appendix C), in which general 

information and energy habits were required. In this way, along with an analysis of the buildings of 

the territory, some different user-classes have been identified, the number of elements per class, 

and the electrical appliances installed and used. The detailed input data required by the procedure 

are shown in Appendix B 

Table 6.4 shows the list of the defined user-classes and a summary of the input data in terms of 

consumed energy are reported (calculated on the basis of input data). However, in order to 

consider a certain degree of uncertainty related to the input data, both RFt and RFw have been set 

to 30% for each appliance of each user-class. 

Table 6.4: Summary of energy consumptions for the defined user-classes (without considering the effects of RFt and RFw) 

 

 
User-class Nusers 

Eclass,day 

[kWh/day] 

Euser,day 

[kWh/day] 

1 Family_1 18 51.9 2.9 

2 Family_2 14 20.0 1.4 

3 Family_3 11 7.6 0.7 

4 Students' Dormitories 1 10.4 10.4 

5 Classrooms 1 13.8 13.8 

6 Kitchen 1 4.4 4.4 

7 Bakery 1 1.0 1.0 

8 Dining hall 1 0.7 0.7 
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9 Canteen 1 1.3 1.3 

10 Workshop 1 0.7 0.7 

11 Dispensary 1 0.4 0.4 

12 Church 1 1.7 1.7 

13 Administration Office 1 7.9 7.9 

14 Library 1 3.8 3.6 

15 CCU 1 13.2 13.2 

 Total Load  138.8 64.3 

 

The curves estimated by the model are daily curves on a 1-minute basis. In the light of what has 

been explained in Sampling rate, however, it would not be correct to directly compare these curves 

with those measured on a 10-minute basis, because the higher the sampling period, the smoother 

the load profile, and the lower the peak (Figure 2.11). For this reason, the power values of each 

minute estimated by the algorithm have been averaged every 10 minutes, to obtain the equivalent 

of curves on a 10-minute basis. An example of three daily estimated load profiles for the context is 

shown in Figure 6.10. 

 

Figure 6.10: Three daily load profiles computed by the model for the Cameroon context 

Due to the stochastic nature of the model, the estimated load profile to be compared with the 

metered one has to refer to an average profile given by the model. As a matter of fact this should 

represent the profile to which the model converges. Therefore, the considered profile is the 

average of N estimated profiles, when N is identified when both the following conditions are met: 

6.1 
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�̅�(𝑘)𝑁

≤ 0.5%  𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 80% 𝑜𝑓 𝑡𝑖𝑚𝑒 
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and 

6.2 

𝑠𝑡𝑑̅̅̅̅̅[𝑦(𝑘)𝑁] − 𝑠𝑡𝑑̅̅̅̅̅[𝑦(𝑘)𝑁+1]

𝑠𝑡𝑑̅̅̅̅̅[𝑦(𝑘)𝑁]
≤ 0.5%  𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 80% 𝑜𝑓 𝑡𝑖𝑚𝑒 

where: 

 k refers to the profile daily instant, in this case the load profiles are build up according to 

10min time steps, i.e. a full day is composed by 144 values. 

𝑘 = [00: 00   00: 10   00: 20  …   …   …    23.30   23: 40   23: 50] 

 �̅�(𝑘)𝑁 refers to the average load value of N generated profiles at the instant k. 

 𝑠𝑡𝑑̅̅̅̅̅[𝑦(𝑘)𝑁] refers to the average standard deviation of the load value of N generated 

profiles at the instant k. 

According to this approach, the procedure converges by generating at least 99 profiles. The 

resulting average profile based on 100 profiles is shown in Figure 6.11. The power peak is 16.3 kW, 

while the consumed daily energy is 138.1 kWh. 

 

Figure 6.11: Average daily load profile based on 100 load profiles estimated by the model 

Comparison (validation procedure) 

Figure 6.12 shows the comparison between average metered profile and average estimated 

load profile. Some considerations can be made: 
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 The estimated profile generally tends to overestimate power peaks, and underestimate the 

flat part of the profile (in particular during the night). 

 Power peaks occur at the same time. 

 Considering the values of the estimated profile at the end of the day and at the beginning, 

they do not exactly match. 

 The “bell” which embraces the power peak of the estimated profile, clearly remind the 

normal distribution profile. 

Moreover, it is worthwhile to mention that the metered profile does not exactly represent the 

average profile of the college since it is based on only eight metered daily profiles. Nevertheless, 

despite this limitation, and despite the above mentioned considerations, in the author’s opinion 

the comparison shows that the model is based on a sound approach: the input data have been 

easily collected or assumed at local level by survey and observation of the consumption habits, the 

coincidence behavior of the appliances simulated by the procedure fairly matches with the metered 

one, and the peak power computation is appropriately addressed both in term time and value. 

 

Figure 6.12: Comparison between average metered profile (black line) and average estimated load profile (red line) 

Clearly further developments are required in order to improve the procedure. This can only be 

addressed by a number of comparisons between metered and estimated data. Moreover, although 

the graphical comparison is an effective tool to understand the goodness of the model, a more 

rigorous approach is required in order to assess the “match” between metered and estimated 

profiles. In this regards a set of indicators have been identified: 
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 Relative error of the daily energy consumption 

6.3 

𝜀𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 =
𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑[𝑊ℎ] − 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑[𝑊ℎ]

𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑[𝑊ℎ]
 

 Relative error of the power peak value: 

6.4 

𝜀𝑝𝑒𝑎𝑘 𝑝𝑜𝑤𝑒𝑟 =
𝑃𝑒𝑎𝑘𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑[𝑊] − 𝑃𝑒𝑎𝑘𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑[𝑊]

𝑃𝑒𝑎𝑘𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑[𝑊]
 

 Error, in minutes, of the peak time. 

 Shape Indicator. It is an indicator on “how much” the curve estimated is similar to the 

measured one: the ratio between the area subtended between the difference of the two 

load profiles (measured and estimated) and the area under the measured load profile, i.e. 

the energy difference between measured and estimated and the energy measured, for 

each time step k:  

6.5 

𝐼𝑠 = ∑
|�̅�(𝑘)𝑚𝑒𝑡𝑒𝑟𝑒𝑑 − 𝑦(𝑘)𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

�̅�(𝑘)𝑚𝑒𝑡𝑒𝑟𝑒𝑑
𝑘

 

In Table 6.5 the indicators have been evaluated for the application to the college in Cameroon. 

Table 6.5: Values of the proposed indicators for the considered application 

 Value 
Error 

 Metered Estimated 

Daily energy [kWh] 151.3 138.1 -8.7% 
Power peak value [kW] 12.6 16.3 +29.3% 
Power peak time [hh:mm] 18:50 19:20 +30 min 
Shape indicator 0.32  

 

The average estimated daily energy is slightly lower than the average measured daily energy, but 

this depends exclusively on the input data: evidently the functioning time have been slightly 

underestimated, or maybe some appliances have been forgotten, probably appliances working at 

night when the estimated electrical consumption is slightly more than half of the metered one. 

Conversely, the estimated peak demand is higher than that measured by almost 30%, while there 

is a good match in time in which the peak occurs, with a discrepancy of only 30 minutes. 
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7 Conclusions and future work  

7.1 Conclusions 

In this work, an existing software for estimating the electrical load profiles of customers 

living in un-electrified rural areas, developed in MATLAB, has been improved and applied. The aim 

of this model is to provide a general pattern for the construction of load profiles as realistic as 

possible where measured data cannot be obtained, and therefore improve the designing accuracy 

of off-grid systems in this kind of contexts. 

Performing optimum design of off-grid power systems reflects in looking for the system that best 

matches, at local level, energy resources with electric demand given certain technologies and 

context features. Considering the electric demand, the simplest approaches for system design 

(intuitive methods) rely on monthly or daily electricity requirement, while the most advanced 

methodologies (numerical and analytical) and available software (as HOMER) rely on electric load 

profiles. However, for un-electrified rural areas electric load profiles are not available, so they must 

be estimated. After a research of articles on projects dealing with sizing of power systems for off-

grid electrification of rural areas, I have concluded that there is not a definite procedure for 

estimation of load profiles, and this phase is often overlooked. Usually estimations are based on 

simple assumptions about electric appliances and user practices. Such assumptions and the related 

estimation methods provide adequately accuracy for intuitive methods, but not for Load Curve 

Computation. Indeed they usually do not implement main features of load profiles (e.g. load 

factors, coincidence factors, etc.). Furthermore when load profiles are computed according to these 

simple assumptions, the uncertainty given by the fact that several load profiles can occur within 

the same set of assumptions is not considered 

The model for load profile estimation is designed  to work with few input data that are commonly 

considered in the simplest approaches for energy need estimations in rural areas (appliances 

nominal power, duration and time of functioning) and this is coherent with the data that may be 

available in the context under study. Electric load profile(s) are then computed by mean of the new 

model that combines the input data employing approaches and parameters of advanced energy 

needs estimation models, coupling: 

 Bottom-up approach: the system load profile is obtained by a bottom-up hierarchic 

aggregation of coincident load profiles obtained for each end-use appliances employed by 

each class of user. 
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 Stochastic approach: the core feature of the model is the computation of the coincident 

load profile through a stochastic simulation (i.e. weighted sampling without replacement). 

The sampling simulation set the instants of peak power time and appliances switching on 

employing a probability density function made up with a uniform distribution coupled with 

a normal distribution (located in the peak power period). 

 Relation between coincidence factor and load factor: empirical evidence shows a 

relationship between group coincident factors and average load factors, hence the 

coincidence factor for each user class is computed given the average user load factor 

(computed from the input assumption) employing the empirical curve. 

 Coincidence curves (i.e. coincidence factor as a function of number of users): empirical 

evidence shows a relationship between group coincidence factor and the number of 

consumers in a group, hence the coincidence factor of each class of user is corrected as for 

the number of consumers in that class by employing empirical coincidence curves. 

Such a model aims to provide a tool which is valid as a support for input data generation for the 

actual off-grid system design approaches and software. Furthermore, the model accounts for the 

high load profile uncertainty of un-electrified areas (under the given conditions several possible 

load profiles are indeed possible) because each simulation generates a different possible load 

profile. 

The improvements made to the existing model have (i) introduced the possibility of considering the 

uncertainty of the input data, (ii) reduced the rigidity of switching-on instants sampling, increased 

the efficiency and execution speed of simulation, (iii) improved the management of variance of the 

normal distribution that leads the peak’s switching-on, which now vary adaptively with respect to 

error.  

The model has been applied for a first step sizing of the main components of a PV Micro-Grid in a 

peripheral urban area of Uganda. The software has provided the input load profiles requested by a 

sizing method based on life-cycle Net Present Cost and minimum Loss of Load parameter. In order 

to address the issue of input data uncertainty, many combinations of uncertainty parameters (i.e. 

RFt and RFw) have been considered.  

Finally, it has been possible to show the ability of the model in matching metered daily load profiles 

related to a college in a peripheral urban area of Cameroon. The load profiles estimated by the 

model have been compared to the metered ones, and good match has been observed. 
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Furthermore, a possible procedure for a future validation of the model has been identified and 

applied to this case study, through the definition and calculation of some indicators. 

7.2 Future works 

The model for the estimation of load profiles in this work has been improved in many 

aspects with respect to the previous version. However, some problems are still present, and 

certainly further improvements can be implemented to make the model even more functional. In 

the following I have proposed a list of possible improvements for the model, which could be used 

as a starting point for future work. 

 The first critical aspect of the model is the empirical relationship used in phase of Peak 

Value Computation, which relates the coincidence factor as a function of the load factor 

and the number of users, and with which the peak demand for each user-class is estimated. 

Indeed, the coefficients of the empirical correlation have been obtained from a study of 

Constantine Bary in the period of World War II, carried out on residential and commercial 

users in urban and rural areas in Philadelphia. Certainly, given the remoteness of the 

historical period and energy habits compared to the utilization context for which the model 

has been designed, it is hard to imagine that such empirical coefficients are ideal for their 

application load estimation of un-electrified rural areas. Obviously, in order to find new 

correlations that better suit to the context would require numerous measurements of 

electrical loads of rural areas recently electrified, but this would require the 

implementation of a wide project. 

 Another critical point is still about the Peak Value Computation phase. In fact, in the 

iterative procedure that leads to the calculation of the peak, the nth attempt’s peak value 

is computed in this way: 

7.1 

𝑝𝑒𝑎𝑘 𝑘(𝑛) = 𝐶𝑓𝑘
(𝑛) ∗ 𝑚𝑎𝑥_𝑝𝑒𝑎𝑘𝑗[𝑊] 

where peakk(n) is the nth attempt’s peak value of user-class k, Cfk(n) is the nth attempt’s 

coincidence factor calculated through Bary’s correlation and max_peakj is the theoretical 

maximum peak value (obtained turning on all the devices of all the appliances within their 

functioning windows). The implementation of this formula is not properly correct: in fact, 

the Cf is defined as the ratio between the peak (per customer) of a group of users and the 

peak of a single user (Coincidence factor and coincidence curve). In the model, therefore, 

assumes that the peak of a single user is the peak theoretical maximum (per customer). A 
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viable choice would be to perform a pre-simulation of a single user for each user-class, in 

order to apply the correct definition of Cf. This would also lead to a reduction of the 

estimated peak, and this maybe could benefit in the light of the results obtained in the 

application of the model illustrated in 6.2. 

 Currently, the correction of the probabilistic weights with which perform the sampling of 

switching-on instants can only be changed upwards: in fact, the probability of sampling 

around the instant of the peak (for peak appliances) follows a normal distribution, which 

with low variance increase the probability of appliances’ switching-on around the peak, 

while with very high variance tends to flatten and becomes a uniform distribution, not 

increasing the probability of switching-on around the peak. This solution works well if the 

user-class peak estimated in the Peak Load Computation is greater than the peak resulting 

from a simulation performed with uniform distribution (or normal distribution having high 

variance). Instead, if the estimated peak is lower, the current model does not provide the 

possibility to decrease the probability of switching-on of the devices around the peak, so 

struggles to generate a load profile having the estimated peak.  

 The model considers the uncertainty on the input data with the two factors RFt and RFw. 

These are the two maximum variation values for Ft and Fw(s) of appliances. Currently, for 

each appliance is randomly selected a value between  -RFt and +RFt (in percentage) with 

which modify the value of Ft, and the same is done for the Fw(s). This means that the 

randomly chosen factors with which correct Ft and Fw is the same for all the devices of the 

same appliance. A possible improvement of the model would be to introduce 

randomization of Ft and the Fw(s) for each device, not only for each appliance. 

 It would be necessary to develop a new management of those appliances that run all day, 

but they consume electricity usually at regular intervals and for short periods during the 

day. A typical appliance which operates in this manner is the fridge: it is on during all the 

day, but consumes electricity for brief moments at intervals approximately constant 

(except when it is opened many times in a short period). Assume that the fridge turns on 

24 times a day for 10 minutes each. In the current model, if a single functioning window 

lasts all day was set, and the random selection of switching-on instants was performed, it 

could happen that the majority of switching-on instants were concentrated within a certain 

period of the day. This would not be realistic, because the refrigerator distributes in a 

substantially homogeneous manner its switching-on during the day. 
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 Finally, it might be useful to reorganize the “for” loops in Matlab code in order to activate 

the “Parallel pool”, which is a Matlab function that allows to use all the computer's 

processor cores, and thus drastically reduce the execution time. 
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Appendix A 

Load data assumptions for the Micro-Grid area in Soroti (Uganda) 

 

User class Nus App Name P [W] Napp Ft [h] 
Fw1  

hstart   hstop 
Fw2 Fw3 Tot_Fw 

Family_1 50 
Lights 3 4 6 0 2 17 24 - - 9 
Phone Charger 5 2 3 0 9 13 15 17 24 18 
Security Light 5 1 12 0 7 17 24 - - 14 

Family_2 15 

Lights 3 4 6 0 2 17 24 - - 9 
Phone Charger 5 2 3 0 9 13 15 17 24 18 
Security Light 5 1 12 0 7 17 24 - - 14 
Radio 5 1 4 6 9 17 24 - - 10 
AC-TV (small) 100 1 5 11 15 17 24 - - 11 

Family_3 15 

Lights 3 8 6 0 2 17 24 - - 9 
Phone Charger 5 2 3 0 9 13 15 17 24 18 
Radio 5 1 4 6 9 17 24 - - 10 
Security Light 5 2 12 0 7 17 24 - - 14 
AC-TV (small) 100 1 5 11 15 17 24 - - 11 
Fridge (small) 250 1 5 0 24 - - - - 24 

Family_4 10 

Lights 3 12 6 0 2 17 24 - - 9 
Phone Charger 5 4 3 0 9 13 15 17 24 18 
Radio 5 1 4 6 9 17 24 - - 10 
Security Light 5 4 12 0 7 17 24 - - 14 
AC-TV (small) 100 1 5 11 15 17 24 - - 11 
Standing Fan 55 1 6 8 24 - - - - 16 
Decoder 15 1 5 11 15 17 24 - - 11 
Fridge (small) 250 1 5 0 24 - - - - 24 
Internet Router 20 1 6 0 24 - - - - 24 
Laptop (small) 55 1 6 0 2 11 15 17 24 13 

Family_5 5 

Lights 3 16 6 0 2 17 24 - - 9 
Phone Charger 5 4 3 0 9 13 15 17 24 18 
Radio 5 2 4 6 9 17 24 - - 10 
Security Light 5 6 12 0 7 17 24 - - 14 
AC-TV (big) 200 1 6 11 15 17 24 - - 11 
Standing Fan 55 2 6 8 24 - - - - 16 
Decoder 15 1 6 11 15 17 24 - - 11 
Fridge (big) 400 1 5 0 24 - - - - 24 
Internet Router 20 1 8 0 24 - - - - 24 
Laptop (big) 80 2 8 0 2 11 15 17 24 13 

Family_6 5 

Lights 3 16 6 0 2 17 24 - - 9 
Phone Charger 5 4 3 0 9 13 15 17 24 18 
Radio 5 2 4 6 9 17 24 - - 10 
Security Light 5 6 12 0 7 17 24 - - 14 
AC-TV (big) 200 1 6 11 15 17 24 - - 11 
Standing Fan 55 2 6 8 24 - - - - 16 
Decoder 15 1 6 11 15 17 24 - - 11 
Fridge (big) 400 1 5 0 24 - - - - 24 
Internet Router 20 1 8 0 24 - - - - 24 
Laptop (big) 80 2 8 0 2 11 15 17 24 13 
Hair Dryer  1000 1 0.5 17 24 - - - - 7 
Printer 50 1 0.5 17 24 - - - - 7 
Stereo 100 1 3 17 24 - - - - 7 
Water Heater 660 1 2 0 2 18 24 - - 8 

Enterprise_1 15 

Fluor. Tube (small) 36 10 6 7 11 16 20 - - 8 
Phone Charger 5 4 3 7 13 15 20 - - 11 
Security Light 5 4 12 0 7 17 24 - - 14 
Internet Router 20 1 10 7 20 - - - - 13 
Laptop (big) 80 1 8 7 13 15 20 - - 11 
Laptop (small) 55 5 8 7 13 15 20 - - 11 
Printer 50 2 2 7 13 15 20 - - 11 
Standing Fan 55 2 8 7 13 15 20 - - 11 

Enterprise_2 5 Fluor. Tube (big) 47 20 6 7 11 16 20 - - 8 



 

 

Phone Charger 5 15 3 7 13 15 20 - - 11 
Security Light 5 10 12 0 7 17 24 - - 14 
Internet Router 20 1 10 7 20 - - - - 13 
Laptop (big) 80 5 8 7 13 15 20 - - 11 
Laptop (small) 55 10 8 7 13 15 20 - - 11 
Standing Fan 55 5 8 7 13 15 20 - - 11 
Water dispenser 550 1 3 7 13 15 20 - - 11 
Photocopier 750 1 1 7 13 15 20 - - 11 
Ceiling Fan 75 5 8 7 13 15 20 - - 11 
PC 400 1 10 7 20 - - - - 13 

Mobile Money 5 
Lights 3 2 3 8 11 16 20 - - 7 
Phone Charger 5 3 3 8 18 - - - - 10 
Standing Fan 55 1 6 10 18 - - - - 8 

Kiosk 10 

Lights 3 2 3 8 11 16 20 - - 7 
Phone Charger 5 1 3 8 18 - - - - 10 
Standing Fan 55 1 6 10 18 - - - - 8 
Fridge (small) 300 1 8 0 24 - - - - 24 
Fridge (big) 500 1 8 0 24 - - - - 24 

Barber 2 

Lights 3 5 8 8 13 15 20 - - 10 
12V shaver 10 5 6 8 13 15 20 - - 10 
Ceiling Fan 75 3 8 8 13 15 20 - - 10 
UV sterilizer 50 1 2 8 13 15 20 - - 10 

Tailor 3 
Lights 5 3 8 8 13 15 20 - - 10 
Sewing machine 50 1 3 8 13 15 20 - - 10 
Ceiling Fan 75 1 8 8 13 15 20 - - 10 

Market Place 1 

Lights 3 25 3 8 11 16 20 - - 7 
Security Light 5 25 12 0 7 17 24 - - 14 
Fridge (small) 300 3 8 0 24 - - - - 24 
Fridge (big) 500 3 8 0 24 - - - - 24 
Standing Fan 55 10 8 8 13 15 20 - - 10 
Radio 5 10 4 10 13 15 18 - - 6 

Club 3 

Fluor. Tube (small) 36 10 8 0 4 17 24 - - 11 
Fluor. Tube (big) 47 5 8 0 4 17 24 - - 11 
Security Light 5 5 12 0 7 17 24 - - 14 
Phone charger 5 10 8 15 24 - - - - 9 
AC-TV (small) 130 2 9 0 4 15 24 - - 13 
AC-TV (big) 200 1 9 0 4 15 24 - - 13 
PC 400 1 9 0 4 15 24 - - 13 
Laptop (big) 80 10 6 15 24 - - - - 9 
Printer 50 1 1 15 20 - - - - 5 
Pico Projector 18 1 4 0 2 20 24 - - 6 
Amplifier 6 1 4 0 2 20 24 - - 6 
Ceiling Fan 75 3 8 0 4 15 24 - - 13 
Music System 178 1 8 0 4 15 24 - - 13 
Internet Router 20 1 9 0 4 15 24 - - 13 
Fridge (small) 300 2 8 0 24 - - - - 24 
Fridge (big) 500 1 8 0 24 - - - - 24 

Street Lights 1 
Lights (Street) 50 100 12 0 7 17 24 - - 14 
Led strips 8 100 12 0 7 17 24 - - 14 

Primary School 1 
Fluor. Tube (small) 36 10 4 8 17 - - - - 9 
Phone Charger 5 7 3 8 17 - - - - 9 
Security Light 5 4 12 0 7 17 24 - - 14 

Pharmacy 1 

Lights 3 10 3 8 11 16 20 - - 7 
Security Light 5 4 12 0 7 17 24 - - 14 
Fridge (small) 300 3 8 0 24 - - - - 24 
Fridge (big) 500 2 8 0 24 - - - - 24 
Standing Fan 55 3 8 8 13 15 20 - - 10 

 

  



 

 

Appendix B 

Load data assumptions for the Cameroon Presbyterian College in Bali 

 

User class NUS App Name P [W] NApp Ft [min] 
Fw1 

hstart     hstop 
Fw2 Fw3 Tot_Fw 

Family_1 18 

TV 80 1 360 16:00 22:30 - - - - 6:30 
Stereo SET 36 1 420 5:30 7:30 14:00 20:00 - - 8:00 
Phone charger 5 3 240 0:00 6:00 22:00 24:00 - - 8:00 
Indoor bulb 26 5 300 5:00 7:00 18:00 22:00 - - 6:00 
Outdoor light 26 1 120 18:00 22:00 - - - - 4:00 
Security light 5 1 720 0:00 6:00 18:00 24:00 - - 12:00 
Fridge 40 1 1440 0:00 24:00 - - - - 24:00 
PC 50 1 120 17:00 21:00 - - - - 4:00 
Iron 800 1 6 5:30 6:00 19:00 20:30 - - 2:00 
DVD 15 1 360 16:00 22:30 - - - - 6:30 
Flask 700 1 30 5:00 5:30 - - - - 0:30 
Blender 350 1 45 11:00 11:20 13:00 14:00 - - 1:20 

Family_2 14 

TV 80 1 300 6:00 7:00 16:00 23:00 - - 8:00 
Radio 5 1 240 5:00 6:30 17:00 22:00 - - 6:30 
Stereo SET 36 1 90 20:00 22:00 - - - - 2:00 
Phone charger 5 2 240 0:00 6:00 22:00 24:00 - - 8:00 
Indoor bulb 26 4 300 5:00 8:00 17:30 23:30 - - 9:00 
Outdoor bulb 26 1 240 18:00 22:00 - - - - 4:00 
Security Light 26 1 720 0:00 6:00 18:00 24:00 - - 12:00 
Iron 800 1 6 5:30 6:30 19:30 21:00 - - 2:30 
DVD 15 1 300 6:00 7:00 16:00 23:00 - - 8:00 

Family_3 11 

Ph. charger 5 2 180 0:00 6:00 22:00 24:00 - - 8:00 
TV 85 1 240 16:00 22:30 - - - - 6:30 
Bulb 26 3 300 5:00 6:30 18:00 22:30 - - 6:00 
Iron 800 1 15 19:00 20:00 - - - - 1:00 

Dormitories 1 
Bulb 26 32 120 5:00 6:30 18:00 19:00 - - 2:30 
Tube 36 31 120 5:00 6:30 18:00 19:00 - - 2:30 
Security light 26 21 720 0:00 6:00 18:00 24:00 - - 12:00 

Classrooms 1 

Bulb 26 49 300 5:00 7:00 18:30 21:30 - - 5:00 
Tube 36 8 300 5:00 7:00 18:30 21:30 - - 5:00 
Safety bulbs 30 14 720 0:00 6:00 18:00 24:00 - - 12:00 
Safety tubes 40 2 720 0:00 6:00 18:00 24:00 - - 12:00 

Kitchen 1 

Bulb 26 6 690 5:30 11:00 12:00 15:00 17:00 20:00 11:30 
Radio 5 1 690 5:30 11:00 12:00 15:00 17:00 20:00 11:30 
Sharpener 50 1 1 5:30 11:00 - - - - 5:30 
Fridge 53 2 1440 0:00 24:00 - - - - 24:00 

Bakery 1 Bulb 26 4 600 6:00 16:00 - - - - 10:00 

Refactory 1 
Bulb 26 5 90 18:30 19:30 - - - - 1:00 
Tube 36 9 90 18:30 19:30 - - - - 1:00 

Canteen 1 

Bulb 26 1 270 8:00 9:00 14:00 15:00 17:00 19:30 4:30 
Tube 10 1 270 8:00 9:00 14:00 15:00 17:00 19:30 4:30 
Incandescent L. 40 1 270 8:00 9:00 14:00 15:00 17:00 19:30 4:30 
Fridge 40 1 1440 0:00 24:00 - - - - 24:00 

Workshop 1 
Bulb 26 1 1440 0:00 24:00 - - - - 24:00 
Radio 5 1 1440 0:00 24:00 - - - - 24:00 

Dispensary 1 
Bulb 26 1 390 8:00 12:00 16:00 18:00 19:00 21:30 10:30 
Tube 36 1 390 8:00 12:00 16:00 18:00 19:00 21:30 10:30 

Church 1 
Bulb 26 8 210 6:00 7:00 19:00 21:30 - - 3:30 
Tube 36 8 210 6:00 7:00 19:00 21:30 - - 3:30 

Ad. office 1 

Bulb 26 4 540 7:30 16:30 - - - - 9:00 
Tube 40 7 540 7:30 16:30 - - - - 9:00 
Mini tube 18 1 420 7:30 14:30 - - - - 7:00 
Electronics 32 19 402 7:30 14:30 - - - - 7:00 

Library 1 
Tubes 40 12 420 7:00 14:00 - - - - 7:00 
Photocopier 32 1 420 7:00 14:00 - - - - 7:00 

CCU 1 
Bulb 26 4 480 8:00 16:00 - - - - 8:00 
Tube 36 11 480 8:00 16:00 - - - - 8:00 



 

 

Laptop 55 18 480 8:00 16:00 - - - - 8:00 
Printer_1 550 4 10 8:00 16:00 - - - - 8:00 
Printer_2 510 1 30 8:00 16:00 - - - - 8:00 
Photocopy1 1280 1 10 8:00 16:00 - - - - 8:00 
Photocopy2 1300 2 5 8:00 16:00 - - - - 8:00 
Standby 35 1 480 8:00 16:00 - - - - 8:00 

  



 

 

Appendix C 

Questionnaire for households at CPC Bali about energy consumption and supply 

Instructions 

• Tick the right answer □ with a X 
• Fill in the space ……….. when is needed 
• Please specify if your answer is not listed 
• Complete the empty cells where the answer is in form of a table 

1. General information 

House number: ………                                             Date: …../..… /….…  

Sex:   □ M   □ F                                                Age: … 

1.1 Position in the family: 

□ Head of the family 
□ Family member 
□ Other (please specify: ………………………………) 
 

1.2 Number and sex of household members:    Female …   Male … 

1.3 Age of household members: 

 Infant (< 6) 6 - 16 16 - 30 30 - 65 above 65 

female      

male      

total      
 

1.4 Which are the roles of the family members in CPC Bali? 

□ CPC Administration (principal, vice-principal, pastor, finance clerk) 
□ Teaching staff 
□ Non-teaching staff 
□ Student 
□ Other (please specify: ……………………………………….) 

 

2. Electricity use and supply  

2.1 Is your house connected to the national electric grid (AES-SONEL)?      □ Yes     □ No 

2.2 Which are the devices using electricity in the house? 



 

 

Items Number Average daily use [h] 

TV   

radio   

phone charger   

indoor lights (lamp, bulb)   

outdoor lights (lamp, bulb)   

fridge   

laptop   

electric iron   

others (please specify………………………………………………)   

 

2.3 Do you have a meter installed in your household?      □ Yes     □ No 

2.4 Does someone in the household check the electricity consumption?      □ Yes     □ No 

2.5 Which is the average consumption per month? ……... kWh 

2.6 Which is the average bill for electricity for this household? ……. FCFA 

2.7 Could you estimate how many shortages occur per month? 

 

2.8 Have you ever had any devices damaged or broken due to voltage fluctuations of the 
grid? 
 

……………………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………………… 

2.9 Do you have any comments about the electricity supply? 
 
……………………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………………… 

3. Firewood use and supply  

Which are the main purposes of using firewood? 

□ Cooking 
□ Space heating 
□ Water heating (hot bath, tea, laundry, etc.) 
□ Others (specify: …………………………………………………………………) 

 n° of shortages per month 

below 10 minute  

10 minutes – 1 hour  

above 1 hour  



 

 

□ Firewood is not used 

3.1        Firewood for cooking  

3.1.1. Which are the cooking systems used? 

□ 3 stones fire 
□ saw dust stove 
□ improved stove 
□ other (please specify ………………………) 
 

3.1.2. Where is the kitchen placed in your household? 

□ inside the house 
□ outside the house 
□ common kitchen with other households 
 
3.1.3. On a daily basis, how many meals do you cook using firewood?  …… 

3.2         Firewood for space heating  

3.2.1. How often is firewood used for space heating: 

□ daily 
□ weekly 
□ monthly 
□ only during the rainy season 
□ yearly 

3.3        Firewood for water heating 

3.3.1.   How many days per week do you heat water by burning firewood? 

□ 1-3 
□ 3-5 
□ 5-7 
□ 7 

3.3.2.   On average, can you estimate how much water do you boil every time? ….. 

3.4        Firewood supply  

3.4.1.    Where do you take the firewood? 

□ inside the campus for free 
□ inside the campus by purchasing it 
□ outside the campus for free (e.g. your farm) 
□ outside the campus by purchasing it 
□ other (please specify ……………………………………………………………………) 

3.4.2.    How is the firewood transported to your household? 



 

 

□ by hands 
□ by motorbike 
□ by car 
□ by pick-up 
□ by truck 
□ other (please specify ……………………………………………………………………) 

3.4.3.    How often do you provide firewood to your household?   Once every …………………… 

3.4.4.    H o w  much do you purchase?  

 (Use the mean of transportation above as unit of measure) …………………………………… 

3.4.5.   How much do you pay for it? ……………………… FCFA 

3.4.6.   In your opinion, do you think the use of wood as fuel increases the ongoing 
deforestation (in Cameroon)? 

□ Definitely yes 
□ Yes, but only in the future if no other sources will replace firewood 
□ I don’t think so 
□ I’ve no idea 

4. Gas use and supply 

4.1. Do you use gas in your household?      □ Yes     □ No (if No skip to section 5) 

4.2. Which is the main purpose of using gas? 

□ Cooking 
□ Water heating 
□ Others (please specify …………………………………………………………………) 

4.3. Which type of gas bottle do you have? 

□ SCTM (orange) 
□ CAM GAS 
□ TOTAL GAS 
□ GLOCALGAZ 
□ OILYBYA 

4.4. Which is the size of your gas bottle? 

□ Extra large (35 kg) 
□ Medium (12.5 kg) 
□ Small (6 kg) 

4.5. How often do you refill it on average?    Every …………… 

4.6. How much do you pay?    ……………….. FCFA 



 

 

4.7. On a weekly basis, how many meals do you cook using firewood or gas? 

……… meals cooked with gas                     ……… meals cooked with firewood 

4.8. Is there any other reason, aside the type of meal, of using firewood instead of gas? 

 □  Yes …………………………………………………………………………… 

 □  No 

5. Other sources of energy  

5.1. Do you use any other source of energy? 

 Main purpose How much Cost 

 □  Charcoal    

 □  Kerosene    

 □  Candles    

 □  Others (specify…………………………)    

 

6. Domestic waste production 

6.1. Do you have a farm?      □ Yes     □ No 

6.2. Which kinds of crops do you have? 

 

 

6.3. Do you consume the products of your farm? 

□ Yes, we consume all of the products 
□ Only part is consumed, the rest is sold away 
□ All is sold 

6.4. Which animals do you have (if any)? 

 Which is approximately the extension? 

 □  Corn  

 □  Banana/plantain  

 □  Beans  

 □  Cereals  

 □  Tuber (potatoes, yam, carrots, etc.)  

 □  Pineapple  

 □  Vegetables  

 □  Other fruit trees (mango, papaya, etc.)  



 

 

 N° How do you feed them? (choose among: animal feed, grass/bush, organic 
waste, mixture of animal feed and cereals) 

pigs   

goats   

cows   

rabbits   

agrifowl   

countryfowl   
 

 

Thanks for your time and for the great collaboration!!! 
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