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Abstract

In recent years, much interest has been focused on various problems that arise
in the area of network design. We consider the Optimum Communication Span-
ning Tree Problem (OCSTP), which is defined as follows. Given a complete
undirected graph with a cost associated to each edge and a communication
requirement between each pair of nodes, find a spanning tree connecting all
the nodes which minimizes the total communication cost, i.e. the sum of the
communication costs over all pairs of nodes. This classic problem has been
extensively studied in the literature and it is not applied only in the network
design area for transportation planning and communication system planning,
but also, for example, in the alignment of genomic sequences and in hub allo-
cation.

In this work we investigate two variants of the OCSTP, with a different ob-
jective function. In the Minimum Path Optimum Communication Spanning
Tree Problem (MP-OCSTP) the objective is to find a spanning tree where the
cost of most expensive path between a pair of nodes is minimum. In the Min-
imum Edge Optimum Communication Spanning Tree Problem (ME-OCSTP)
the objective is to find a spanning tree where the cost of the most expensive
edge is minimum. These problems are relevant in some applications.

First, we study some special cases of MP-OCSTP in which the optimal solu-
tions have a known structure. In particular, we show that, if the costs and the
requirements are all equal, any optimal solution is a star-tree.

Then, we propose three Mixed Integer Linear Programming models for these
problems. The main feature that distinguishes the formulations is the number
of indeces of the considered variables: 4-index, 3-index and 2-index. The com-
putational results obtained on benchmark instances from the literature show
that a large computing time is required to solve the ME-OCSTP to optimality.
Instead, to solve the MP-OCSTP the computational times are quite reasonable.
After evaluating the quality of the linear relaxation bounds, we also propose
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some valid inequalities for the different formulations. When necessary, the
valid inequalities are generated by solving the corresponding separation prob-
lem. The computational results indicate that for MP-OCSTP all the formula-
tions provide good solutions with an equivalent objective function value for all
the instances satisfying the triangular inequality, while the 4-index formula-
tion outperforms the other two formulation on randomized instances. For the
ME-OCSTP the linear relaxation of 2-index formulation is more competitive
than the other two, but this problem turn out to be very challenging. In most
of the cases the valid inequalities do not lead to substantial improvements.

Finally, we present some heuristic algorithms. Greedy algorithms are based on
the minimum spanning tree, or on the star-trees or on the Gomory-Hu tree.
The local-search algorithm for the MP-OCSTP tries to connect directly the
end-nodes of the most expensive path and to delete one of the edges in the
generated cycle. Instead, for the ME-OCSTP the local-search algorithm tries
to delete the most expensive edge and to add one of the edges that connects
the two disconnected components. The results show that the heuristic combin-
ing the greedy algorithm based on the Gomory-Hu tree and the local-search
algorithm, provides the best upper bound on many instances for both prob-
lems. We also develop a randomized version of the algorithm based on the
Gomory-Hu tree, which yields improved solutions.
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Sommario

Negli ultimi anni, un crescente interesse è stato rivolto a problemi apparte-
nenti all’area del network design. Considereremo l’Optimum Communication
Spanning Tree Problem (OCSTP), che è definito come segue. Dato un gra-
fo completo non direzionato con una funzione Costo definita per ogni arco e
una funzione Domanda definita per ogni coppia di nodi, si vuole costruire lo
spanning tree che minimizza il costo totale di comunicazione, ottenuto come
la somma di tutti i costi dell’albero. Questo problema è stato ampiamente
studiato e trova applicazione non solo nell’area del network design per la pia-
nificazione di trasporti o di sistemi di comunicazione, ma anche, per esempio,
nell’allineamento di sequenze di DNA e nell’allocazione di Hub.

In questa tesi presentiamo due possibili varianti dell’OCSTP. Nel Minimum
Path Optimum Communication Spanning Tree Problem (MP-OCSTP) si vuole
minimizzare il costo del cammino più costoso per connettere una coppia di nodi.
Invece, l’obiettivo del Minimum Edge Optimum Communication Spanning Tree
Problem (ME-OCSTP) è quello di minimizzare il costo dell’arco più costoso.
Queste due varianti hanno rilevanza in alcune applicazioni.

Innanzitutto, proporremo uno studio della struttura che la soluzione assu-
merebbe sotto alcune ipotesi particoli. Per quanto riguarda il MP-OCSTP
mostreremo che quando i costi e le domande sono tutti uguali tra loro ogni
soluzione ottima assume la forma di una stella.

Poi, presenteremo tre modelli di programmazione mista intera. Ogni modello
si distingue dagli altri per il numero di indici delle variabili scelte: 4-indici,
3-indici e 2-indici. Per quanto riguarda il ME-OCSTP con istanze note in
letturatura si vede che ottenere la soluzione ottima richiede un tempo compu-
tazionale elevato, mentre il MP-OCSTP è risolvibile in tempi più ragionevoli.
Dopo aver valutato la qualità dei bound ottenuti con il rilassamento lineare,
proporremo alcune disuguaglianze valide. Aggiungeremo quest’ultime risolven-
do, quando necessario, un problema di separazione. I risultati computazionali

v



indicano che per il MP-OCSTP tutte le formulazioni portano a buoni risulati
con un equivalente valore della funzione obiettivo quando le istanze soddisfa-
no la disuguaglianza triangolare; mentre con istanze che non la soddisfano la
formulazione con variabili a 4 indici risulta migliore. Per il ME-OCSTP la
formulazione con variabili a 2 indice è più competitiva delle altre, nonostante i
risultati siano meno soddisfacenti rispetto a quelli ottenuti per l’altro proble-
ma. Vedremo anche che in alcuni casi le disuguaglianze valide non migliorano
i risultati ottenuti senza di esse.

Infine introdurremo alcune euristiche: le greedy saranno basate sul Minimum
Spanning Tree, sulle stelle o sull’albero di Gomory-Hu, la ricerca-locale per il
MP-OCSTP proverà a collegare i due nodi con il cammino più costoso in modo
diretto, andando poi ad eliminare un arco nel ciclo che si genera e la ricerca
locale per il ME-OCSTP proverà ad eliminare l’arco più costoso sostituendolo
con un’altro che connetta le due componenti sconnesse. I risultati ottenuti
mostrano che l’euristica basata sull’albero di Gomory-Hu, vista come il greedy
più la ricerca locale, è la migliore per entrambi i problemi con molte istanze. A
conclusione proveremo ad applicare proprio all’euristica basata sull’albero di
Gomory-Hu una procedura randomizzata (GRASP), con la quale si otterrano
soluzioni migliori.
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Chapter 1

Introduction

In recent years, considerable interest has been focused on various problems
that arise in the area of network design. Such problems find applications in
planning of transportation, communication system, water resource, distribu-
tion and computer networks.
One of such network design problems is known as the Optimum Communica-
tion Spanning Tree Problem. This problem was originally introduced by Hu
in 1974 and in these years was studied by different authors. It is characterized
by a set of users which need to communicate with each other, because there
is a demand of communication between each pairs of them. Every link that
connects a pair of users has a cost for every unit of communication that uses
this link. This cost can be interpreted for instance as the distance between
the users. The objective of this problem is to build a spanning tree connecting
these users such that the Total Cost of Communication of the spanning tree
is minimum among all spanning trees. Remember that a spanning tree is a
network that connects all the nodes and contains no cycles. Figure 1.1 shows
an example of the situation explained above.

1.1 Objectives

In this work we study two possible variants of the Optimum Communication
Spanning Tree Problem. Suppose, for example, that users correspond to cities
and communication to telephone calls between pairs of cities. Then, when the
telephone calls of each pair of cities are supervised by different phone com-
panies, each company wants to minimize its costs. In this case, the objective
of the problem becomes to build the spanning tree such that the cost of the
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CHAPTER 1. INTRODUCTION

Figure 1.1: A Spanning Tree to connect some American cities.

most expensive path between a pair of cities is minimum. Moreover, we can
interpret the cost of a direct link between two cities in a different way: it is
the money loss for every call which cannot be taken place in the event that
the connection is broken. Then, the total cost of a connection represents the
money loss due to the total calls failed and in this case we want to build the
spanning tree with the minimum cost of the most expensive connection.
To solve these two variations of the problem we propose Mixed Integer Linear
Programming (MILP) formulations and some heuristic algorithms. Thanks to
that we can compute lower bounds and upper bounds of the optimal value.
We run computational experiments using Euclidean and randomly generated
distances/costs.
First, we dedicate the following Section to understand more clearly these prob-
lems through a mathematical description.

1.2 Definition of the Problems

Optimum Communication Spanning Tree Problems are formally defined as
follows. Let G=(V, E) be a complete undirected graph with

• n = |V | nodes and m = |E| edges (as G is complete m = n(n− 1)/2).

• A Cost function over the edges (normally associated with the length the
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1.2. DEFINITION OF THE PROBLEMS

of edges),

c : E →R+

e 7→ce.

The costs will be represented with a Cost Matrix:
c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn


We make the following three assumptions: all the costs are non-negative
(cij ≥ 0), symmetric (cij = cji) and cii = 0 for all i ∈ V .

• A Communication Requirement function between pairs of nodes:

r : V × V →R+ ∪ {0}

(i, j) 7→rij ,

that is represented with the Communication Requests Matrix:
r11 r12 . . . r1n

r21 r22 . . . r2n

...
...

. . .
...

rn1 rn2 . . . rnn

 ,

where rij ≥ 0. In particular rij is equal to 0 if i = j. Since the cost
function is symmetric, for the sake of simplicity, we consider this matrix
upper triangular:

r11 r12 . . . r1n

r21 r22 . . . r2n

...
...

. . .
...

rn1 rn2 . . . rnn

 −→


0 r12 + r21 . . . r1n + rn1

0 0 . . . r2n + rn2

...
...

. . .
...

0 0 . . . 0


Henceforward, we redefine rij as rij + rji for all i, j ∈ V, i < j.

The Total Communication Cost of T is the sum of the communication
costs over T of all pairs of nodes.

CC(T ) =
∑

(i,j)∈V×V :i<j

CCij =
∑

(i,j)∈V×V :i<j

rijc
T (i, j).

The OCSTP is to find a spanning tree of G of minimum total communication
cost.

3



CHAPTER 1. INTRODUCTION

The Communication Cost over a tree T of a pair of nodes i, j ∈ V, i 6= j

is defined as the communication requirement between the pair multiplied by
the cost of the (unique) path in T that connects them:

CCTij = rijc
T (i, j).

The Minimum Path Optimum Communication Spanning Tree Problem (MP-
OCSTP) is to find a spanning tree of G where the maximum communication
cost between all pairs of nodes is minimum.
For a given tree T, let fTij denote the total amount of flow that circulates
through any of two directions of (i, j). fTij is the sum of the communication
requirements of all pairs that use or (i, j) or (j, i) in their path.
Then, the Communication Cost over T of an edge of T is given by the
flow multiplied by the cost of the edge:

FF Tij = cij · fTij .

The Minimum Edge Optimum Communication Spanning Tree Problem (ME-
OCSTP) is to find a spanning tree of G where the maximum communication
cost of any edge is minimum.

Now, we present an example in order to clarify how calculate all types of com-
munication costs defined above.

Consider the following spanning tree T with requirement matrix R. So,
we can compute in the tree the costs cT of each path which connect a pair
of nodes.

𝑅 =

0 3 5
0 0 8

7 2
1 4

0 0 0
0 0 0
0 0 0

2 3
0 6
0 0

𝑐𝑇 =

0 5 7
5 0 6

3 4
2 3

7 6 0
3 2 4
4 3 3

4 3
0 1
1 0

 

First, we calculate Communication Cost over the tree T of all pair of
nodes:
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1.3. THESIS STRUCTURE

CCT12 = r12 · cT12 = 3 · 5 = 15 CCT24 = r24 · cT24 = 1 · 2 = 2

CCT13 = r13 · cT13 = 5 · 7 = 35 CCT25 = r25 · cT25 = 4 · 3 = 12

CCT14 = r23 · cT14 = 7 · 3 = 21 CCT34 = r34 · cT34 = 2 · 4 = 8

CCT15 = r23 · cT15 = 2 · 4 = 8 CCT35 = r35 · cT35 = 3 · 3 = 9

CCT23 = r23 · cT23 = 8 · 6 = 48 CCT45 = r45 · cT45 = 6 · 1 = 6︸ ︷︷ ︸
Objective function value of MP-OCSTP = 48

Then, we can calculate the Total Communication Cost of T, which is also
the objective function value of the OCSTP:

CC(T ) = 15 + 35 + 21 + 8 + 48 + 2 + 12 + 8 + 9 + 6 = 164.

Finally, to calculate the Communication Cost over T of all edges of T, we
consider:

Flow through (1, 4) = r14 + r12 + r13 + r15 = 17

Flow through (2, 4) = r24 + r12 + r23 + r25 = 16

Flow through (3, 5) = r35 + r13 + r12 + r34 = 18

Flow through (4, 5) = r45 + r34 + r13 + r23 + r25 + r15 = 27

=⇒

FFT
14 = 3 · 17 = 51

FFT
24 = 2 · 16 = 32

FFT
35 = 3 · 18 = 54

FFT
45 = 1 · 27 = 27︸ ︷︷ ︸

Objective function value of ME-OCSTP = 54

1.3 Thesis Structure

In Chapter 2 we review the Optimum Communication Spanning Tree Prob-
lem literature. Moreover we present two specific applications of this problem.
The first is one in the field of the computational biology, since this problem
can be exploited to produce a heuristic algorithm to solve the alignment of
genomic sequences. The second one is an application in the hub location area.
In Chapter 3 we introduce some notations and preliminary kwll-known re-
sults, that we use during this work.
In Chapter 4 we study the solution properties of two particular cases. In
fact, we initially suppose that all the communication requirements are the
same, then we suppose that all costs are the same.
In Chapter 5 we propose three different formulations to solve the MP-OCSTP
and the ME-OCSTP. These formulations differ from each others in the number
of variables that they use. Moreover, we present some valid inequalities which
can reinforce the formulations.

5



CHAPTER 1. INTRODUCTION

In Chapter 6 we present some heuristic algorithms. In particular, we intro-
duce greedy algorithms which produce a spanning tree that is an admissible
solution for both problems. Then, for each problem we propose a local-search
algorithm to improve the results obtained with the previous algorithm.
In Chapter 7 we explain how the formulations have been implemented using
a specific program; and we present the computational results obtained trying
to find out the formulation which produces the best results. We conclude this
chapter presenting the outcome produced by all the heuristic algorithms.
Finally, in Chapter 8 we summarize this thesis.

6



Chapter 2

The Optimum Communication
Spanning Tree Problem

Most previous works in literature are focused on the original problem where
the total communication costs must be minimized. Thus, we dedicate this
Chapter to recall some works and results. Then, we present in Section 2.2 two
specific applications of the problem.

2.1 Literature Review

The OCSTP was originally introduced in 1974 by Hu [11]. The difficulty of the
general case of the OCSTP motivated that he focused on two particular cases
that can be solved in polynomial time. The first one is the Optimum Distance
Spanning Tree (ODSTP), where communication requirement between all pairs
of nodes is the same. In this case, there is an optimal solution which has a
star topology, under some additional condition. The second particular case is
the Optimum Requirement Spanning Tree Problem (ORSTP) where all pairs
of nodes have the same cost/distance. Now, an optimal solution is given by a
Gomory-Hu Tree.
A few year later, Johnson, Lenstra and Rinnooy Kan [12] showed that the
OCSTP is NP-hard.
In 1987 Ahuja and Murty [1] developed an exact algorithm based on Branch
and Bound (B&B) and a heuristic algorithm for solving the problem. The B&B
algorithm uses the lower plane to find a valid lower bound at a every vertex
of the enumeration tree. A lower plane is a linear lower approximation of the
value of objective function, obtained considering all the nodes of the graph, but

7
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PROBLEM

only a subset of the arcs. The complexity of this procedure is O(n4) and the
performance of the whole algorithm depends on the type of data. Nevertheless,
the authors were able to prove the optimality of the solutions for instances with
up to 40 nodes. The heuristic algorithm consists of two phases: tree-building
and tree-improvement. The idea for the construction of the tree is derived from
the well-known Minimum Spanning Tree (MST), while the improvement phase
examines each arc in the current tree and its possible exchange with another
one outside the current tree. Despite its complexity (O(n3)), this algorithm
produces excellent solutions. For example, it was capable of finding optimal
solutions with 100 nodes and 1000 arc in very short times.
Later, in [14] the author compares the features of optimal solutions for OCSTP
and the features of trees generated randomly. He showed that, on average, the
difference between optimal solutions and minimum spanning trees is smaller
than the difference between optimal solutions and randomly trees. Moreover,
if the distances/costs of the graph are randomly generated, the MST pro-
duces values closer to the optimal solution than if the problem has Euclidean
distances/costs. Thus, this similarity between MSTs and optimal values sug-
gested that the performance of some heuristics for the OCSTP could improve
by starting with an MST. this strategy allowed to obtain the same solutions
but 10 times faster than when a random tree was used initially. To the best
of our knowledge, there is no exact algorithm which solves size OCSTP in-
stances. Therefore line of research is to find a successful formulation using lin-
ear programming (LP). Contreras [2] proposed an integer linear programming
formulation which, with some valid inequalities, produced optimal solution for
instances with up to 25 nodes in reasonable time. Then Contreras, Fernández,
Marin [3] presented a Lagrangian relaxation which produced a good lower and
upper bound for instances with up to 50 nodes. In this formulation, they used
variable with 4 index. The disadvantage of such formulation is the impossi-
bility to solve instances with up to 30 nodes with a general solver. On the
other hand, it is possible to formulate this problem using variables with only
2 index [7]. Although it is compact, it produced very weak lower bounds so it
required too much computing time, even for very small instances.
In [8] the authors proposed a compromise with a formulation where the vari-
ables have 3 indeces. This formulation could not solve instances of moderated
sizes, but the authors reinforced it with some valid inequalities. Depending
on the instance, the obtained lower bound was a 80-95% of the optimal value.
Thus, a promising avenue of research is to develop a new families of valid
inequalities and new mathematical formulations for the OCSTP.
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Year Author Purpose&Result
1974 T.C.Hu Study of two special cases.
1978 Johnson, Lenstra and

Rinnooy Kan
Proven NP-Hard.

1987 Ahuya and Murty Exact method and some heuristics.
2009 Rothlauf Comparison between optimal solutions

and the features of tree generated
randomly.

2009 Contreras Integer linear programming
formulation.

2010 Contreras, Fernandez and
Marin

Lagrangian relaxation (4-index
variables).

2012 Fernández, Luna-Mota
and Reinelt

Formulation and valid inequalities
with 2-index variables.

2013 Fernández, Luna-Mota,
Hildenbrandt, Reinelt
and Weisberg

Formulation and valid inequalities
with 3-index variables.

Table 2.1: Summary of some precedence works.

2.2 Applications

Besides classical applications in telecommunications, we have already men-
tioned, the OCSTP can also be applied to other fields. Now, we see in detail
two types of applications, one in the field of the computational biology, the
second one in hub location.

2.2.1 Alignment Problem in Computational Molecular Biol-
ogy

A broadly studied problem in molecular biology is called multiple sequence
alignment. For recognizing evolutionary relationships, for identifying regions
of preserved DNA and for finding fatal mutations, the biologists compare ge-
nomic sequences drawn by individuals of the same or different species. In
recent years they have focused on the search of a mathematical formulation
and its resolution. In particular, it is known that the above problem can be
formalized as an optimization problem. In [9] the authors exploit the Optimum
Communication Spanning Tree to produce a heuristic for this problem. First

9
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of all, to understand the connection between these two problems it is necessary
analyze the multiple sequence alignment problem.
A genomic sequence consists of a string composed of 4 alphabetical symbols
of nucleotides or 20 alphabetical symbols of amino acids. The sequences are
inserted in a matrix, each row of which is occupied by a sequence. With the
addition of gaps all the sequences have the same length and, in every column,
the same character always appears. The alignment corresponding to the se-
quences ATTCGAC, TTCCGTC, and ATCGTC is depicted in Figure 2.1. The
purpose is to identify some common patterns.
Typically, the objective function in the multiple alignment problem is a gen-

A T T - CGA - C

- T T C CG - T C

A - T - CG - T C

Figure 2.1: Example of the alignment of three genomic sequences.

eralization of the alignment of two sequences (pairwise alignment). Then, c(a,
b) denotes the cost for replacing the character a with the character b and vicev-
ersa, and c(−, a) the cost for deleting/inserting of character a. The problem
is to find minimum cost operations that allow to transform the sequence S′ in
S′′. The optimal value is called edit distance and it is denoted by d(S′, S′′).
An alignment A of two or more sequences is an array having the (gapped)
sequences as rows, and it can be seen as a path of replacements and/or inser-
tions. The value dA(S′, S′′), where S′ and S′′ are two sequences, is obtained
adding up the cost to align S′ and S′′ and d(S′, S′′) = minA dA(S′, S′′). There-
fore an alignment of n sequences (SP-alignment) is obtained by adding the
costs of the pairs of the symbols matched up at the same positions, that is
SP (T ) =

∑
(S′,S′′) dA(S′, S′′).

Obtaining a solution with dynamic programming to solve the above problem
takes a time proportional to 2nln, where l is the maximum length that a se-
quence can assume. Considering that in real life problems n is a small number
and l is of the order of several hundreds, dynamic programming is able to pro-
duce solutions for small instances. In [16] the authors say that some bound
criteria have been introduced in order to reduce the time and the space re-
quirements of dynamic programming and make solvable problems for n ≤ 6

and l ≤ 200. In every case, constructing optimal alignment is computational
expensive, since the problem has been shown to be NP-complete (Wang and
Jiang, [15]).

10
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In the same article the authors explain for the SP-alignment the Gusfiled’algorithm
which uses an approach to multiple alignment guided by a tree, due to Feng and
Dolittle [6]. Other algorithms and heuristics based on the Feng and Dolittle
progressive approach have been proposed: an alignment is built by considering
one sequence at a time. This develops in two phases:

1. Find a heuristic tree;

2. Use the tree as a guide for aligning sequences iteratively, as described
after.

Given a tree T , where every sequence is a node, then exists a multiple align-
ment A(T ) such that dA(T )(S

′, S′′) = d(S′, S′′) is verified for all the pairs
(S′, S′′) connected from an edge of T . We can obtain a final alignment as
follows (as the Figure 2.2): (i) Pick an edge (the cut) and align recursively
the sequences on both sides of the cut; (ii) align optimally the two sequences
to the endpoints of the edge, whose cost coincides with the edit distance; and
(iii) use this alignment to merge all the sub-alignments in one only (columns
of gaps are inserted where the pairwise alignment sets a gap in one of the two
sequence).

Figure 2.2: Example of the progressive alignment of genomic sequences.

A tree that can be used to minimize the total pairwise distance in the multi-
ple alignment is the Minimum Optimum Communication Spanning Tree. In [9]
they propose a heuristic for multiple alignment based on the Optimum Commu-
nication Spanning Tree built on the graph, where the nodes are the sequences
and the edges are weighed using the edit distance. This heuristic has been
tested on several families of proteins, and the results show a reduction of the
10% of the costs in comparison to other algorithms previously used. Moreover
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the heuristic leads to a value that is within 8% of the optimum, on average.

2.2.2 Tree of Hub Location Problem

This application shows that the OCSTP is a sub-problem of the tree of hub
location problem. It is known that hub location is a very challenging area due
to the economic impact of potential applications. Hub location problems stem
from transportation and telecommunication systems, where several origin/des-
tination points send and receive some product. Normally, there are hubs, set
of points which are used to redistribute the flow and to reduce transportation
costs. In may hub location models there is an optimal solution in which hubs
are fully interconnected, namely there is a link connecting any pair of hubs.
There exist, however many application in which this is not true. An example
of this is the tree hub location problem (THLP), where the hubs are connected
by a tree.
The THLP is defined on a directed graph, where a flow must be send though
the network between each couple of nodes. For this, p hubs have to be located
and connected by a tree. Each node will be allocated to only one hub and all
the flow from/to the node has to pass through its allocated hub. There is a
unit transportation cost associated with each arc. The objective is to minimize
the operation cost of the system.
This is a problem where location, design and routing decisions have to be

(a) Example of one possible instance. (b) A possible solution for the instance.

Figure 2.3: Example of the Tree of Hubs Problem.

taken: where to locate the hubs, how to interconnect the selected hubs, how to
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allocate each node to a single hub and how to route the flows between vertices
of the network. If the location of the hubs and the allocation of non-hubs to
hubs are given, this problem becomes an OCSTP (Figure 2.3). For this rea-
son, a procedure to solve efficiently the OSCTP may also serve as a routine for
solution procedures for the THLP.
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Chapter 3

Notation and Preliminaries

In this chapter, we introduce the notation which is used in this work. Then,
in Section 3.2 we present some preliminary concepts that we use during all the
work.

3.1 Notation

Let S be a subset of V . We define:

• E(S) = {e = (i, j) ∈ E : i, j ∈ S)}, all the edges with its two end-nodes
in S.

• δ(S) = {e = (i, j) ∈ E : (i ∈ S, j /∈ S) or (i /∈ S, j ∈ S)}, all the edges
with one end-node in S and the other one outside S.

When S is a singleton, i.e. S = i:

• δ(i) = {e ∈ E : e = (i, j) or e = (j, i)}, all the edges where one end-node
is i. δ(i) is called degree of node i.

If we consider G′ = (V,A), the directed graph obtained by defining, for each
edge in E, two arcs, one in each direction, we can define:

• A(S) = {a = (i, j ∈ E : i, j ∈ S)}, all the arcs with both end-nodes in S.

• δ−(S) = {a = (i, j) ∈ A|i /∈ S, j ∈ S}, all the arcs outgoing from S.

• δ+(S) = {a = (i, j) ∈ A|i /∈ S, j ∈ S}, all the arcs incoming in S.

• δ−(i) = {a = (i, j) ∈ A}, all the arcs outgoing from i.

• δ+(i) = {a = (j, i) ∈ A}, all the arcs incoming i.

15
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3.2 Preliminaries

3.2.1 The Gomory-Hu Tree

Before presenting the Gomory-Hu Tree, we give some definitions.

Consider an undirected graph G′ = (V ′, E′) with edges capacities bij for all
(i, j) ∈ E′.

Figure 3.1: Graph example.

Definition 3.1. A cut, denoted by (X, X̄), where X is a subset of V and X̄
is its complement, is the set of edges with one end-node in X and the other on
in X̄.

Figure 3.2: Cut definition example.

The capacity of a cut, denoted by b(X, X̄), is the sum of the capacities of all
edges in the cut, i.e.

b(X, X̄) =
∑

(i,j):i∈X,j∈X̄

bij

Moreover, let flpq be the value of the maximum flow from p to q in G′.
By the max-flow min-cut theorem, there always exists a cut (X, X̄), with p ∈ X

16



3.2. PRELIMINARIES

and q ∈ X̄ such that b(X, X̄) = flpq. The cut (X, X̄) is called minimum cut.

To compute the capacity of the minimum cut for a pair of nodes (s, t), we can
use the well-known Algorithm of Ford and Fulkerson. Since the complexity of
this algorithm is proportional to m, to compute the value of minimum cut of
all pairs of nodes of the graph it is better to find out the Gomory-Hu Tree
([10]).
It is a tree with the following properties:

(i) Each edge of the spanning tree has a value vij associated with it. If
we delete the edge with value vij , the network is disconnected into two
components, X and X̄. Then, vij = b(X, X̄) and (X, X̄) is a minimum
cut of G′.

(ii) The maximum flow fpq between two nodes p and q is

fpq = min(vpu, ..., vij , ..., vuq),

where vpu, ..., vij , ..., vvq are values associated with edges which form the
unique path connecting p and q in the tree.

To find the Gomory-Hu Tree we use the Gusfield’s Algorithm ([10]) which
builds a rooted directed tree.
Let p be a vector with length n, where we save in position i the predecessor of
i. It is initialized to 1. The edges of T are the final pairs (i, p[i]) for all i from
2 to n, and edge (i, p[i]) has value fl(i). If each edge is thought as a directed
edge from i to p[i], then T forms a directed tree rooted to node 1.

Algorithm 3.1: Gusfield’s Algorithm
1 input : G=(V, E)
2 begin
3 p=1;
4 for s :=2 to n
5 t :=p [ s ]
6 (X X̄ , f ( s , t ))= Ford&Forkerson (G, s , t )
7 l e t X be the s e t o f nodes on the s s i d e o f the cut
8 f l [ s ] := f ( s , t ) ;
9 for i :=1 to n

10 i f i 6= and i i s in X and p [ i ]= t then p [ i ] := s ;
11 end
12 i f p [ t ] i s in X
13 then
14 p [ s ] :=p [ t ] ;
15 p [ t ] := s ;
16 f l [ s ] := f l [ t ] ;
17 f l [ t ] := f [ s , t ] ;
18 end
19 end
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20 return (p , f l ) ;
21 end

3.2.2 Linear Relaxation

In general, to solve a linear programming relaxation of a minimization problem
the integrality constraints on the variables are removed, as shown in Figure 3.3,
and the domain of integer variables becomes the whole continuous interval.

Figure 3.3: General idea of the Linear Programming Relaxation.

This means that a linear integer program (LIP) becomes linear programming
(LP) problem. Since we have removed the integrality constraints, we have
extended the domain of the problem and the optimal value Z(T ′) is such that

Z(T ′) ≤ Z(T ∗),

where Z(T ∗) is the optimal value of the original (unrelaxed) problem. There-
fore the optimal value obtained solving the continuous relaxation represents a
lower bound of Z(T ∗).
When we will present the results, to evaluate the quality of the lower bounds
we will calculate:

Z(T ′)

Z(T ∗)
.

This is a percentage value. In fact, if the relaxation produces the optimal
value, we can say that the lower bound is the 100% of the optimal value. For
this reason, the quality of a lower bound increases with this value.

3.2.3 Separation Problem

Now, we present the general idea of the algorithm used for adding exponential
family of inequalities, which is also showed in Figure 3.4. At each iteration the
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following steps are performed:

Step 1 Solving a relaxation of the problem.

Step 2 Solving the separation problem for finding inequalities violated by the
optimal solution of the current relaxation.

Step 3 Adding the violated inequalities to the current system.

This procedure can be used to add valid inequalities to reinforce a formulation
or to add a constraint. In both cases, it is used only if the number of inequalities
is exponential.

optimal 

exist 

OUTPUT 

Figure 3.4: Flowchart of algorithm used to add cut-set inequalities.
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Chapter 4

Special Cases

In this chapter , we focus ourselves on two special cases of MP-OCSTP and
we discuss some results about their solution.

case A The costs cij are arbitrary, while the requirements rij are all equal.
This case is referred to as the min-max path optimum distance spanning
tree problem (MP-ODSTP).

case B The costs cij are all equal, while the requirements rij are arbitrary.
This case is referred to as the min-max path optimum requirement span-
ning tree problem (MP-ORSTP).

4.1 Min-Max Path Optimum Distance Spanning Trees

Without loss of generality, we can assume that in this case rij ≡ 1 and cij

arbitrary. Throughout this section, we assume that there n ≥ 4. First we give
some definitions and notions. Given a tree T , we define:
Definition 4.1. A node of T is an outer node if its degree is one.
Definition 4.2. A node of T is a inner node if its degree is two or more.
Definition 4.3. A tree is called a star-tree if there is only one inner node in
the tree.
Definition 4.4. A inner node of a tree is called extreme if, in the case we
erase all outer nodes from the tree, it becomes an outer node.

Whether the goal is to minimize the total cost or to minimize the cost of
the more expensive path, in general an optimum spanning tree may not to
be a star-tree. For this reason, we want to define a sufficient condition hat
guarantees that there is an optimal solution that is a star-tree.
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Lemma 4.1. If all the cij are equal, then there is an optimal solution to the
MP-ODSTP which is a star-tree.

Proof. Suppose cij = c 6= 0 for all (i, j) ∈ E. Let T denote a given spanning
tree. If T is a star-tree, let s the only inner node of T . Then there are two
possible types of paths:

• s is or the origin or the destination of the path. In this case, the cost is
c;

• The path connects two nodes, i and j, different from s. In this case, the
cost of the path is cis + csj = 2c.

Therefore the cost of the most expensive path is 2c.
If the spanning tree is not a star-tree, then there are at least two inner nodes: s
and s′. If we consider i and j, two outer nodes that are respectively connected
to s and s′, the cost of the path i − j is equal to cis + css′ + cs′j = 3s. Since
3c ≥ 2c, the optimum distance spanning tree is a star-tree.

What we would want to find is a sufficient condition to conclude that there is a
solution for MP-ODSTP that is a star-tree for the case when all costs are not
necessarily the same. For the Optimum Distance Spanning Tree, where the
total cost is minimized, the sufficient condition requires that all the costs of
the edges “do not differ too much”, as stated formally in the following theorem:

Theorem 4.1. [11] Consider the MDSTP. Let a, b and c be the costs of three
sides of any triangles in the n-node network (n ≥ 4), where

a ≤ b ≤ c. (4.1)

If there exists a positive t not larger than (n− 2)/(2n− 2) such that

a+ tb ≥ c (4.2)

for all triangles in the network, then there exists an optimum distance spanning
tree which is a star-tree.

In [11] Hu gives a proof for this theorem, which we do not reproduce here. We
will exploit, however, his proof to show that the theorem is not valid for the
MP-ODSTP.

If we consider the simple example in Figure 4.1, we show that this affirmation
is not true for MP-ODSTP. A spanning tree T with at least two inner nodes
is considered. Let q be an extreme inner node in T linked with p, which is an
inner node.
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Figure 4.1: Example for MDSTP

In the example we have that a ≤ b ≤ c for each of the 2 triangles. Moreover
n ≥ 5 implies (n−2)/(2n−2) ≥ 3/8. If we take t=3/8, the condition a+tb ≥ c
holds for both triangles. We have shown that the hypothesis of Theorem 4.1
hold. The cost of the path 1− 2 is 10, but if we erase the edge p− q to convert
the tree in a star-tree, the cost becomes 7 + 7 = 14, which is greater than
the most expensive path in the solution drawn. So we have shown that this
theorem is not valid for our problem.

4.2 Min-Max Path Optimum Requirement Spanning
Tree

In this section, we assume the costs cij all equal to c 6= 0, while the requirements
rij are arbitrary.
For this second case, Hu shows that for Optimum Requirement Spanning Tree,
where the total cost is minimized, the following theorem holds:

Theorem 4.2. The cut-tree is an optimum requirement spanning tree.

In the theorem cut-tree refers to the tree of minimum-cuts taking the require-
ments as capacities. It is well-known that this tree can be obtained with the
algorithm of Gomory-Hu. It is easy to see that in our case, the theorem is not
valid. This is illustrated by the example of Figure 4.2, which depicts the data
of an instance for the MP-ORSTP. An edge connecting two vertices i and j

indicates that that requirement between i and j, rij , is strictly positive. In
this case, the value rij is written next to the edge. Therefore the edges not
represented have a requirement equal to zero.

In Figure 4.3 two spanning trees are represented. Figure 4.3a represents the
tree obtained with the algorithm of Gomory-Hu (T1), while Figure 4.3b shows
the optimal solution for the instance (T2), with a value of the objective function
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Figure 4.2: Example of min-max requirement spanning tree

(a) T1: Cut-tree for the example. (b) T2:Optimal solution for the example.

Figure 4.3: Two solutions for the example

equal to 10. For example, if we compute CCT123 , it is equal to 4 (the requirement)
multiplied by 3 (the number of edges that connects them). Thus in T1 a path
with cost 24 exists, which is greater than the optimal value. With this simple
example we have shown that, with a different objective function, the theorem
does not remain valid.

From Lemma 4.1, we already know that if the requirements are all equal,
then the solution is a star-tree. As we see below, it is not necessary that
all requirements are equal, but the statement remains true imposing a less
restricting condition.
First of all we observe that when all edge costs are equal, the cost of a path
reduces to the requirement multiplied for the number of edges in the path
multiplied by the cost c of the edges. Therefore, roughly speaking, to guarantee
that there is an optimal solution which is a star tree, it is enough that all
requirements are similar except one which is much larger.

Lemma 4.2. In the min-max requirement spanning tree problem, let R the
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largest requirement and suppose that for all rij 6= R it holds that

rij ≤
R

2
.

Then, there exists an optimum requirement spanning tree which is a star-tree.

Proof. Firstly, we observe that the value cR is a lower bound of the solution.
In fact, connecting the two nodes having requirement equal to R costs at least
cR.
Let T denote a star-tree, where s is the only inner node and is one of the two
nodes, i or j, which have R as requirement. The cost of the path (i, j) is cR.
Moreover, there are another two possible types of paths:

• s is or the origin or the destination of the path. In this case, the cost is
lesser than cR2 ;

• The path connects two nodes, u and v, different from s. In this case, the
cost of the path is cris + crsj < cR.

Therefore the cost of the most expensive path is equal to cR, which is also a
lower bound of the problem. So, there is a solution of the MP-ORSTP that is
a star-tree.

We observe that it is not necessary that only one pair of nodes has a “big”
requirement. In fact, there may be other pairs with “big” requirement; but, all
of them must have the same node in common.
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Chapter 5

Mixed Integer Linear
Formulations

In this chapter, we propose three different formulations for MP-OCSTP and for
ME-OCSTP. These formulations differ from each other in the number of index
on the variables chosen. In particular, in Section 5.1 we present a formulation
with 4-index variables, in Section 5.2 with 3-index variables and in Section 5.3
with 2-index variables. For each of these formulations we propose some families
valid inequalities.

5.1 Formulation I with 4-Index Variables

In the first formulation for MP-OCSTP and ME-OCSTP we use four index
variables, using for routing flows in the solution tree, which are related to 2-
index design variables.
For every edge in the graph, we define the following:

• xij , a binary decision variable which is equal to 1 if and only if edge (i, j)

is in the tree. It is defined for all i, j ∈ V, i < j.

In addition, associated with each origin/destination pair, we define the follow-
ing set of continuous variables to represent the arcs of a path connecting the
origin/destination pair:

• yuvij , a binary decision variable which indicates if the directed arc (i, j) is
on the path from u to v. It is defined for all i, j, u, v ∈ V, u < v.
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Then, a valid formulation is:
Set of constraints and variable domains.∑

j∈V \{u}

yuvuj = 1 ∀u, v ∈ V, u < v,∀ruv > 0

(5.1)∑
i∈V \{j,v}

yuvij −
∑

k∈V \{j,u}

yuvjk = 0 ∀u, v, j ∈ V, u < v; ∀j 6= u, v, ∀ruv > 0

(5.2)

yuvij + yuvji ≤ xij ∀u, v, i, j ∈ V, i < j, u < v, ∀ruv > 0

(5.3)∑
i,j∈V ;i<j

xij = n− 1 (5.4)

xij ∈ {0, 1} ∀i, j ∈ V, i < j

(5.5)

yuvij ∈ {0, 1} ∀u, v, i, j ∈ V, u < v

(5.6)

Constraints (5.1)-(5.2) guarantee that there is a path connecting the endnodes
of each origin/destination pair. The family of constraints (5.1) guarantees
that, in the path connecting u and v, there is only one active arc outgoing
from node u. For each u, v ∈ V , constraints (5.2) ensure that each node j ∈ V
has the same number of incoming and outgoing arcs. Constraints (5.3) relate
the y and x variables by activating the edges that are used for at least one
path (u, v). Constraint (5.4) guarantees that the solution is a spanning tree,
by limiting the total number of edges to n− 1. Finally, variable domains (5.5)
and (5.6) complete the model.
In this model, there are mn(n − 1) = O(mn2) variables and 1 + m + m2 +

m(n− 1) = O(m2) constraints.

Objective function for MP-OCSTP.

min max
u,v∈V ;ruv>0

ruv
∑

i,j∈V ;i 6=j
cijy

uv
ij (5.7)

Multiplying the requirement by the cost of the unique path connecting two
nodes, we have the total communication cost for that pair of nodes. Thus, we
want to minimize the cost of the more expensive path.
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Objective function for ME-OCSTP.

min max
i,j∈V ;i<j

cij
∑
u,v∈V ;

ruv(y
uv
ij + yuvji ) (5.8)

Multiplying the cost of the edge by the requirements of all pairs of node that
use the edge for transporting the flow, we have the total communication cost
for that edge. Thus, we want to minimize the cost of the more expensive edge.

5.2 Formulation II with 3-index Variables

In this section we propose a formulation where we use three index variables.
Before presenting the selected variables, we define:

Ou :=
∑

v∈V ;v>u

ru,v ∀u ∈ V, (5.9)

which represents the amount of requirement that must go out from a node u.

We use the following decision variables:

• xij , a binary decision variable which indicates if the edge (i, j) is in the
tree. It is defined for all i, j ∈ V, i < j.

• fuij , amount of flow with origin in u that circulates through the directed
arc (i, j). It is defined for all u, i, j ∈ V, i 6= j.

• yuij , a binary decision variable which is equal to 1 if the directed arc
(i, j) is used to send flow originated in u. It is defined for all u, i, j ∈ V .

Then, a valid formulation is:

Set of constraints and variable domains.∑
j∈V \{u}

fuuj = Ou ∀u ∈ V (5.10)

∑
j∈V \{i,u}

fuji −
∑

j∈V \{i,u}

fuij = rui ∀u, i ∈ V (5.11)

fuij ≤Myuij ∀u, i, j ∈ V, j 6= i (5.12)∑
i,j∈V ;j 6=i,j 6=u

yuij = n− 1 ∀u ∈ V (5.13)

yuij + yuji ≤ xij ∀u, i, j ∈ V, i < j (5.14)∑
i,j∈V ;i<j

xij = n− 1 (5.15)
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xij ∈ {0, 1} ∀i, j ∈ V, i < j (5.16)

yuij ∈ {0, 1} ∀u, i, j ∈ V (5.17)

fuij ≥ 0 ∀u, i, j ∈ V (5.18)

For each u ∈ V , constraints (5.10) require that the total flow which leaves node
u is equal to the value Ou, while (5.11) guarantee that the flow with origin at
u and arrives to i is at least the requirement rui. We relate the f and the y
variables with (5.12), by activating only the arcs used to send the flows. (5.13)
are cardinality constraints and, together (5.10)-(5.12), guarantee that, for each
u ∈ V , the flow Ou is sent through arcs that define a spanning tree. Constraints
(5.14) connect x with y variables by forcing that if an arc is used to send some
flow, then the associated edge is in the tree and impose that every edge can be
used only in one direction. Constraint (5.15) ensures that the total number of
the edges in the tree is n− 1, namely the solution represents a spanning tree.
Finally, we complete the model with variable domains (5.16)-(5.18).
In constraints (5.12) M is a sufficiently large constant and its value is very
important because it can affect the effectiveness of the constraints in solution
algorithms. Thus, we have chosen a value for M that represents the maximum
value that the flow may take.

M = Ou.

There are m+ 2n2(n− 1) = O(n3) variables and O(n3) constraints.

Objective function for ME-OCSTP.

min max
i,j∈V :i 6=j

cij
∑
u∈V

(fuij + fuji) (5.19)

Now, the total communication cost of an edge is its cost multiplying by the
total flow circulating through it. We want to minimize the cost of the more
expensive edge.

For using formulation II for MP-OCSTP, we have to define a new decision
variable:

• dij , distance in the tree between i and j. It is defined for all i, j ∈ V, i 6= j.

Objective function for MP-OCSTP.

min max
i,j∈V :i 6=j

rijdij (5.20)

Now, the cost for sending one unit of flow from i to j is represented by the
variable dij . Thus, multiplying it by the requirement, we find the cost of the
path. We want to minimize the cost of the more expensive path.
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Moreover, we have to add to 5.10-5.18, the following constraints, which relate
the new variables with the others:

dij ≥ cijxij ∀i, j ∈ V, i < j (5.21)

dij ≥ dik + ckj−M2(1− yikj) ∀i, j, k ∈ V, i 6= j 6= k (5.22)

dij = dji ≥ 0 ∀i, j ∈ V, i 6= j (5.23)

Constraints (5.21) and (5.22) control the d variables. In particular, (5.21)
guarantee that the distance between i and j is at least equal to the cost of the
associated edge if it is activated, and (5.22) relate d and y variables imposing
that if the arc (k, j) is used for sending some flow from i to j, then the distance
between i and j is larger then the sum of the distance between i and k and the
cost of the edge (k, j). Finally, we complete the model with variable d domains
(5.23).
We observe that if the instance satisfy the triangular inequality, then the con-
straints (5.21) can be transform in

dij ≥ cij . (5.24)

In fact also if the edge (i, j) is not in the tree, surely the path that connects i
and j is at least long/expensive as the direct link.
In constraints (5.22)M2 is a sufficiently large constant and its value is very im-
portant. It must be such that the corresponding constraint becomes redundant
when yikj 6= 1. The value we have use is:

M2 = ckj −
∑

u∈V \{1}

max
v:v 6=u

cuv.

There are m+ 2n2(n− 1) +n(n− 1) = O(n3) variables and O(n3) constraints.

5.2.1 Valid Inequalities

In this section we propose some families of valid inequalities that can be used
to reinforce formulation II.

(a) Vertex cutset inequalities. Each node u ∈ V must have at least one
arc that comes out from it, i.e.∑

i∈V \{u}

yuui ≥ 1. (5.25)
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Moreover, for all pairs u, i ∈ V with u 6= j, exactly one arc emanating
from u, must enter in i, i.e. ∑

j∈V \{i}

yuji = 1. (5.26)

(b) Set cutset inequalities. As all nodes must be visited, for all S ⊂ V ,
there must be at least one arc that connects a node belonging to S with
one in its complement,

x(δ(S)) ≥ 1, (5.27)

which can be rewritten as∑
i∈S,j /∈S:i<j

xij +
∑

i∈S,j /∈S:i>j

xji ≥ 1.

(c) Min-Cut inequalities Let be mij the value of the min-cut separating i
and j in the original graph, relative to a capacity vector given by r. For
all i, j ∈ V, i < j, the following inequalities are valid:

mijxij ≤
∑

u∈V \{j}

fuij +
∑

u∈V \{i}

fuji (5.28)

∑
u∈V \{j}

rujyuij +
∑

u∈V \{i}

ruiyuji ≤
∑

u∈V \{j}

fuij +
∑

u∈V \{i}

fuji (5.29)

Inequality (5.28) is non-redundant when the edge (i, j) is active. In
particular, if the edge is active, it imposes that the total flow through
(i, j) in both the directions, must be at least equal to the value of the
min-cut which separates i and j.
On the other hand, with (5.29), we impose that the same flow is also at
least equal to the sum of the all requests involving i or j, if the arc (i, j)

is used for sending the flow originated at u.

(d) Minimum flows trough arcs. For all u, i, j ∈ V, i < j, if the edge (i, j)

is used for sending flow originated in u, then the associated flow must
be greater than or equal to the request between u and i and the request
between u and j, i.e.

rujyuij + ruiyuji ≤ fuij + fuji. (5.30)

Let k1 = max{muj ,mij} and k2 = max{miu,mij}. The following in-
equality is true:

k1yuij + k2yuji ≤
∑

v∈V \{j}

fvij +
∑

v∈V \{i}

fvji. (5.31)
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5.3 Formulation III with 2-index Variables

For this formulation, we assume that the solution is a directed tree rooted at
a selected vertex. We choose vertex 1, without loss of generality.

We use the following variables:

• xij , a binary decision variable which indicate if the (directed) arc (i, j)

is in the tree. It is defined for all i, j ∈ V, i 6= j.

• pij , a binary decision variable which is equal to 1 if the tree contains
a (directed) path from i to j. It is defined for all i, j ∈ V, i 6= j. In
particular, when pij is equal to one, we can say that i precedes j in the
tree.

• dij , distance in the tree between i and j. It is defined for all i, j ∈ V, i 6= j.

Then, a valid formulation is:

Set of constraints and variable domains.∑
i∈V \{j}

xij = 1 ∀j ∈ V \{1} (5.32)

xij ≤ pij ∀i, j ∈ V, i 6= j (5.33)

pij + pji ≤ 1 ∀i, j ∈ V, i < j (5.34)

pij + pjk + xkj ≤ 1 + pik ∀i, j, k ∈ V, i 6= j 6= k (5.35)

dij ≥ cijxij ∀i, j ∈ V, i 6= j (5.36)

dij ≥ dik + ckj −M(1− xkj + pji) ∀i, j, k ∈ V, i 6= j 6= k (5.37)∑
i,j∈V ;i<j

xij = n− 1 (5.38)

xi1 = 0 ∀i ∈ V, i 6= 1 (5.39)

xij ∈ {0, 1} ∀i, j ∈ V, i 6= j (5.40)

pij ≥ 0 ∀i, j ∈ V, i 6= j (5.41)

dij = dji ≥ 0 ∀i, j ∈ V, i 6= j (5.42)

Constraints (5.32) guarantee that each node, except the root, has only and
only one arc which enters in it. We relate the x and the p variables with
(5.33). In fact if arc (i, j) is used, then there is a path that connects i with j.
Constraints (5.34) ensure, for each pair of nodes (i, j), that either there is a
directed path connecting j and i or i and j are not linked. Constraints (5.35)
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ensure that the following two relations hold:

pij + xjk ≤ 1 + pik ∀i, j, k ∈ V, i 6= j 6= k (5.43)

pik + xjk ≤ 1 + pij ∀i, j, k ∈ V, i 6= j 6= k (5.44)

The first one ensures what we show in Figure 5.1a: if there is a directed path
connecting i with j and the arc (j, k) is active, then a path from i to k must
exist. Figure 5.1b, on other hand, shows that if the arc (j, k) is active and
there is a path from i to k, then the node j is located in the path.

(a) Explanation of (5.43). (b) Explanation of (5.44).

Figure 5.1: Explanation of relation (5.43)-(5.44)

Variable d is controlled by constraints (5.36) and (5.37). In particular, (5.36)
ensure that the distance between i and j is at least equal to the cost of the
associated edge, when it is active; and (5.37) relate d to x and p by imposing
that if j does not precede i and arc (j, k) is active, the distance between i and
j is equal to the distance between i and k plus the cost of the edge (k, j), as
shown in Figure 5.2. In all other cases this constraint is redundant. In (5.38)

Figure 5.2: Meaning of constraints (5.37)

and (5.39) we impose that the solution is a spanning tree rooted at vertex
1. Finally, we complete the model with spanning tree constraint and variable
domains (5.40)-(5.42).
We observe that if the instance satisfy the triangular inequality, then the con-
straints (5.21) can be transform in

dij ≥ cij . (5.45)
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In fact also if the edge (i, j) is not in the tree, surely the path that connects i
and j is at least long/expensive as the direct link.
In constraints (5.37) M is a sufficiently large constant. The value we have
chosen is:

M = ckj −
∑

u∈V \{1}

max
v:v 6=u

cuv

In this model, there are 3n(n− 1) = O(n2) variables and 1 + 2m+ n(n− 1) +

2n(n− 1)(n− 2) + 2(n− 1) = O(n3) constraints.

Objective function.

min max
i,j∈V :i 6=j

rijdij (5.46)

The variable dij represent the cost for sending one unit of flow from i to j.
Thus, multiplying it by the requirement, we find the cost of the path. We want
to minimize the cost of the more expensive path.

For using formulation III for ME-OCSTP, we have to define a new decision
variable:

• fij , amount of flow that circulates between i and j. It is defined for all
i, j ∈ V .

Objective function for ME-OCSTP.

min max
i,j∈V :i 6=j

cij(fij + fji) (5.47)

The total communication cost of an edge is its cost multiplying by the total flow
circulating through it. We want to minimize the cost of the more expensive
edge.

Moreover, we have to add to 5.32-5.42, the following constraints:

fij ≥ R(S)

xij − ∑
u∈S,v∈Sc,
(u,v)6=(j,i)

xuv + xvu

 ∀S⊂V,∀i,j∈V :
1,i∈Sc,j∈S (5.48)

fij ≥ 0 ∀i, j ∈ V (5.49)

Constraints (5.48) guarantee that if arc (i, j) is active and it is the unique arc
that connects Sc with S, the flow circulating through it is at least equal to
R(S). R(S) is the total requirements that have to go from a node in Sc to a
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node in S and it is:

R(S) =
∑

u∈Sc,v∈S
(ruv + rvu)

Finally, we complete the model with variable d domains (5.49). We observe
that the number of constraints (5.48) is exponential in n.
There are 4n(n − 1) = O(n2) variables and an exponential number of con-
straints.

5.3.1 Valid Inequalities

In this section we propose some families of valid inequalities that can be used
to reinforce formulation III.

(A) The first one is a reinforcement of constraints (5.36) since this includes
it. For all i, j ∈ V, i < j, we can impose that if there is not a direct
connection between i and j, they are connected through at least one
other node. Then, their distance is at least the minimum sum of costs
between two arcs which have i or j as extremity.

dij ≥ cij(xij + xji) +M2
ij(1− xij − xji), (5.50)

where M2
ij = mink 6=i,j{cik + ckj}.

(B) All nodes must have as predecessor the root, thus it holds that:

d1j ≥
∑
i 6=j

Cmipij +
∑
i 6=j

(cij − Cmi)xij , (5.51)

where Cmi = mink 6=i cik. If we consider a node j, directly connected
to 1, their distance must be at least equal to minimum cost of the arcs
outgoing from 1. Instead, if j is not a node directly connected to 1, its
distance from 1 must be at least equal to the sum of the minimum cost
arc incident to the nodes in the path from 1 to j plus the cost of the
unique arc incoming j.

(C) For the instances that satisfy the triangular inequality, for every 3-vertex
set {i, j, k} ∑

{u,v}⊂{i,j,k}

ruvduv ≥ T 3
ijk, (5.52)

where T 3
ijk = min {

∑
u,v∈T ruvcuv +

∑
u,v /∈T rijM

2
ij |T spanning tree on{i, j, k}}.
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(D) Cut-set inequalities. Since all nodes must be visited, for all S ⊂ V \{1},
there must be at least one arc that connects a node not belonging to S
with one that belongs to S,

x(δ−(S)) =
∑

i/∈S,j∈S

xij ≥ 1. (5.53)

(E) Minimum distance inequalities. This inequality is valid only for in-
stances that satisfy the triangular inequality. To use it we have to re-
solve iteratively the relaxation of the problem. Called G∗ = (V,E∗) with
E∗ ⊂ E, the solution tree of an iteration we can add:

dij ≥ cij +
(
dG
∗

ij − cij
)(∑

e∈E∗
xe − (n− 2)

)
. (5.54)

5.4 Addition of Valid Inequalities

The families (b) and (D) have exponential size and thus they have to be sep-
arated (see Section 3.2.3). As explained in 3.2.1 this can be done by finding
the Gomory-Hu tree and then by identifying the minimum cut separating each
pair of nodes.
In our problems, first in the initial formulation we add the subset of these
inequalities associated with singletons, S = {i} for all i ∈ V . Let (x0, y0, T0)

be the current solution with an objective value Z(T0).
Then, we control if T0 violates some of inequalities building for the current
solution the Gomory-Hu Tree relative to a capacity vector given by x0. Then,
we find the Gomory-Hu Tree relative to the capacity vector x0. If there is
a min-cut (S, Sc) with value smaller than 1, then the inequality of this type
associated with S is violated by (x0, y0, T0).
The algorithm repeats this procedure until it finds no violated constraints. If
the last solution Tl is generated by a vector with xl and yl integer, then Z(Tl)

is the optimal solution. Otherwise, Z(Tl) is only a lower bound of the optimal
solution.

Instead, to add the family (E), we have to solve iteratively the relaxation of
the problem. At each iteration we find a current solution Gk = (V,Ek), which
is generated by the vectors xk, pk and dk. Since this is a solution of the relaxed
problem, dk is not really the vector with the distances between each pair of
nodes in Gk. Thus, we have to calculate the really distance in Gk of each pair
of nodes.
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Moreover in the case of formulation III for ME-OCSTP, the family of con-
straints 5.48 has an exponential number of inequalities. For this reason, we
cannot solve the instances with all the constraints. Hence, our goal is to find
a relatively small subset of these constraints that determine the optimal so-
lution. In particular, we solve it iteratively. In this case we are not relaxing
the integrality constraints; at each iteration we are solving an integer linear
program.
First, we only include those inequalities associated with sets S such that:

• |Sc| = 1;

• |Sc| = 2;

• |S| = 1.

Note that we are adding only (n − 1) + 2(n − 1)(n − 2) + (n − 1)2 ≈ O(n2)

constraints.
Moreover we add two families of constraints that are true:

fi1 = 0 ∀i ∈ V (5.55)

fij ≥
∑
u∈V

(ruj + rju)puj +
∑
v∈V :
v 6=j

(riv + rvi)piv −MF (1− xij) ∀i,j∈V :
i 6=j;i 6=1 (5.56)

Since the vertex one is the root of the tree, (5.55) guarantee that no flow enters
in in the root. If the arc (i, j) is active, the constraint (5.56) imposes that a
minimum amount of flow circulates through it. When (i, j) is not active, the
constraint is redundant and for this we have chosen a value for MF such that:

MFij =
∑

u∈V :u6=i
(rui + riu) +

∑
v∈V :v 6=i,v 6=j

(rvj + rjv).

Thus, we are adding other (n− 1) + n(n− 1) = O(n2) constraints.

The general idea of the algorithm used for adding only a “small” number of
these constraints is the same presented in Section 3.2.3. Note that in this
case if there are constraints violated, these are added to the current system.
Otherwise the current solution is optimal. Since with some instances the com-
putational time is long, we have chosen that after an hour the system returns
the current solution. In this case the current solution represents a lower bound
of the optimal solution.
We observe that we find the violated constraints only for the edges in the
current solution because for the edges which are not in the solution these con-
straints are redundant.

38



Chapter 6

Heuristics

In this chapter we present some heuristic algorithms which can be used to find
upper bounds of the optimal value of MP-OCSTP and ME-OCSTP.
In Section 6.1, we explain what a heuristic algorithm is, then in Section 6.2
and 6.3 we illustrate all the algorithms we have implemented.

6.1 Heuristic Algorithm

A heuristic algorithm is any method that produces a feasible solution of a given
problem. Generally, a heuristic algorithm solves an instance in polynomial
time on the size of the instance, but in complex problems this constraint can
be relaxed with the request that the algorithm is “fast”.
When a problem is NP-hard, there is not the certainty that the algorithm can
determinate a feasible solution.
In our cases, a feasible solution is represented by any spanning tree; since we
have a complete graph, it is always possible to find a spanning tree.
In general, given an instance I of a minimization problem (as the MP-OCSTP
and ME-OCSTP are) a heuristic algorithm H produces a solution with a value
zH(I) such that:

zH(I) ≥ z∗(I), (6.1)

where z∗(I) is the optimal value of I. Thus, the algorithm determines an upper
bound of the optimal value.
Broadly speaking, there exist two types of heuristic algorithms:

1. Greedy: a type of algorithm that produces a solution through a sequence
of partial decisions (locally optimal), without going back to modify the
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made decisions.

2. Local-search: it examines a feasible solution and iteratively tries to im-
prove it by making simple moves.

6.2 Greedy Algorithms

In this section we propose some greedy algorithms for the problem that we
study.
Since each algorithm determines a spanning tree, it is a feasible solution for
both problems, MP-OCSTP and ME-OCSTP. Obviously, if an algorithm is
conceived for one specific problem, it may produce an upper bound of poor
quality for the other problem.

6.2.1 Minimum Spanning Tree

Since in [14] the author suggested that some heuristics for the OCSTP could
improve by starting with an Minimum Spanning Tree (MST), the first greedy
algorithms that we propose are based on this observation. Thus, we present a
simple description of the MST.
In the MST, there is a graph G′ = (V ′, E′) and each edge has an associated
weight we. The algorithm we are presenting builds a solution iteratively start-
ing from the empty one and, at each iteration, adds a new edge to the current
partial solution. To guarantee the algorithm correctness two criteria must be
established:

i) The order according to which edge should be considered to be added to
the partial solution.

ii) How to decide if an edge can be added to the current partial solution.

With respect to the order, we select the edge with the smallest weight among
the edges not yet chosen. An edge is added to the current solution only if the
new set of edges can be part of a feasible solution, namely the edge added to the
solution must not form any cycle with those edges already chosen. Thus, this
algorithm, which is the well-known Kruskal’s algorithm ([13]), is the following:

Algorithm 6.1: Kruskal’s Algorithm
1 input : G’=(V’ , E ’ )
2 begin
3 T:= ∅ , S:=E
4 while T 6= ∅
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5 e∈argmin (we, e ∈ S ) ;
6 S:=S\{e } ;
7 i f T ∪{e} does not conta in c y c l e s then T:= T∪{e}
8 end
9 return T;

10 end

To find the MST, the well-known Prim’s algorithm is more efficient than the
Kruskal’s algorithm; but, because the instances that we use have a small size,
what algorithm we use is irrelevant.

Now, we propose some heuristic algorithms based on the idea of finding an
MST relative some modified cost function.

Heuristic I

In the first heuristic that we propose, the spanning tree is built with Kruskal’s
algorithm using as weights the original costs. So, we refer to (HE-I) to indi-
cate:

(HE-I): The heuristic where edges are considered by increasing values of their
costs, and an edge is added only if it does not generate a cycle with other
edges already chosen.

The complexity of (HE-I) is O(mlog(n) +m2log(n)).

Heuristic II

The rationale for this heuristic is that in the MP-OCSTP if a pair has a big
communication requirement, the nodes of this pair should be directly con-
nected. In fact, in the MP-OCSTP if the path that connects two nodes with
a big requirement is long (thus, more expensive), it is probably that the value
of the most expensive path of the tree increases. For this reason, we propose
the following heuristic, which is a minor variation of the Kruskal’s algorithm:

(HE-II): In this heuristic, the weights of the graph are given by the communi-
cation requirement. So, we consider the edges ordered from the greatest
requirement to the smallest one, and an edge is added only if it does not
generate a cycle with other edges already chosen.

The complexity of (HE-II) is O(mlog(n) +m2log(n)).
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Heuristic III

The following heuristic has been conceived for the MP-OCSTP. First of all, we
assume that the cost function satisfies the triangle inequality:

cij ≤ cik + ckj ∀i, j, k ∈ V (6.2)

Therefore if in the tree T two nodes i and j are not directly connected, the
communication cost over T of (i, j) is greater than cij · rij . Consequently, a
lower bound on the optimal value is:

lb := max
i,j∈V :i<j

cijrij (6.3)

Let (̄i, j̄) denote the pair of nodes that produces the maximum in (6.3). Conse-
quently, if we do not connect directly ī and j̄, the optimal value will be greater
than lb.
For this reason, we propose a heuristic based on Kruskal’s algorithm, where
the weight of the edge (i, j) is equal to cij · rij .

(HE-III): In this heuristic, we consider the edges ordered from the greatest
weight to the smallest one, and an edge is added only if it does not gen-
erate a cycle with other edges already chosen.

The complexity of (HE-III) is O(mlog(n) +m2log(n)).

6.2.2 Heuristic with Costs Update

Now, we propose another heuristic (HE-IV) for the MP-OCSTP.

This heuristic is based on the following idea.

Figure 6.1: Main idea of HE-IV.
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Suppose n = 3 and we have already decided that the first edge that takes part
of the tree is that which gives lb in (6.3). Then we have to choose what edge
add. This situation is shown in Figure 6.1. Here we assume that the initial
edge is (2, 3).
If we decide to add the edge (1, 3), then implicitly the communication cost over
T of the pair (1, 2) is established. The same holds true for the edge (1, 2).

We want to add the edge that increases less the current value of the objective
function taking into account the above comment. First, we create an auxiliary
matrix W :

W = R · C =



0 r12c12 r13c13 . . . r1nc1n

0 0 r23c23 . . . r2nc2n

0 0 0 . . . r3nc3n

...
...

...
. . .

...
0 0 0 . . . 0


.

Then, we choose the edge with maximum rijcij :

W =



0 r12c12 r13c13 . . . r1nc1n

0 0 r23c23 . . . r2nc2n

0 0 0 . . . r3nc3n

...
...

...
. . .

...
0 0 0 . . . 0


.

Now, we update M taking into account what we have said before. Thus, we
change an entry value in the matrix if the related edge is connected with the
edge already chosen and the path, which is generated by adding it, is greater
than the current value.

W =



0 max(r12c12,
r23(c12+c13)) r13c13 . . . max(r1nc1n,

rn3(c1n+c13))

0 0 max(r23c23,
r12(c23+c13)) . . . r2nc2n

0 0 0 . . . r3nc3n

...
...

...
. . .

...
0 0 0 . . . 0


.

In the solution we insert the edge, connected to the edge already chosen with
the smallest value in the matrix.
Then, we repeat the matrix update and the choice of thr edge to add (obviously,
it must not create a cycle) until the solution has n− 1 edges.

The complexity of (HE-IV) is O(n2 +m2log(n)).
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6.2.3 Star-Tree Heuristic

In Chapter 4 we have said that there exist particular situations where the
optimal solution for MP-OCSTP is a star-tree. For this reason, we propose a
simple heuristic (HE-V) which produces a star-tree.
This algorithm builds all the star-trees of the graph changing the unique inner
node of the tree and for each of them computes:

• For the MP-OCSTP, the cost of the most expensive path in the current
tree.

• For the ME-OCSTP, the cost of the most expensive edge in the current
tree.

The output is the star-tree where the cost of the most expensive path/edge is
minimum. Moreover, the complexity of (HE-V) is O(n3).

6.2.4 Heuristics based on Gomory-Hu Tree

Now, we consider the ME-OCSTP. We observe that if we choose to put in the
tree the edge (i, j), the amount of flow circulating through it could be at least
the capacity b of the minimum cut which separates i and j with respect to the
requirements.
Based on this observation, we propose a heuristic based on Kruskal’s algorithm
6.1, where the weight of the edge (i, j) is equal to cij · bij .

(HE-VI): In this heuristic, we consider the edges ordered from the smallest
weight to the greatest one, and an edge is added only if it does not generate
a loop with other edges already chosen.

As we said in 3.2.1, to compute the capacity of the minimum cut for all pairs
of nodes of the graph, it is better to find out the Gomory-Hu Tree. Therefore,
the complexity of (HE-VI) is O(nmC + n2 +m2log(n)).

Moreover, we observe that the Gomory-Hu tree is a spanning tree. Thus, it
defines a feasible solution of MP-OCSTP and ME-OCSTP.

(HE-VII): In this heuristic, we find out the Gomory-Hu Tree and compute
its objective function value.

The complexity of (HE-VII) is O(nmC +m2log(n)).
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6.3 Local-Search

In this section, we present two local-search algorithms, one for MP-OCSTP and
the second one for ME-OCSTP. Both algorithms perform edge interchanges,
in which an edge in the current solution is substituted by an edge outside it.

6.3.1 Local-Search for MP-OCSTP

Given a feasible solution, this algorithm tries to improve it iteratively. Consider
the feasible solution in Figure 6.2, where the red path is the most expensive.
Let z(T0) denote its cost.

Figure 6.2: Example of feasible solution for MP-OCSTP

We want to modify the solution so that:

• The cost of new path connecting i with j is reduced;

• The cost of the new most expensive path is smaller than z(T0).

At each iteration we try to put in the tree the direct edge (i, j), as shown
in Figure 6.3. If G satisfies the triangle inequality, we know that the first
condition above is satisfied.

Now, we have to delete one of edges in the cycle that has appeared.

The algorithm tries to delete the edges of the cycle, at a time. If, deleting an
edge, reduces the cost of the new most expensive path z(T1), i.e.

z(T1) ≤ z(T0),

then the new feasible solution is T1 and the algorithm restarts. Otherwise, the
algorithm tries to delete another edge of the cycle.
When no other edge can be deleted, the algorithm returns the value z(Tk),
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Figure 6.3: Example of the edge that the Local-Search algorithm for MP-
OCSTP tries to add.

(a) . (b) . (c) .

Figure 6.4: Example of the edges that the Local-Search algorithm for MP-
OCSTP tries to delete.

namely the cost of the most expensive path of the solution Tk obtained at kth

iteration.

6.3.2 Local-Search for ME-OCSTP

Given a feasible solution, this algorithm tries to improve it iteratively.

Figure 6.5: Example of feasible solution for ME-OCSTP
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Consider the feasible solution in Figure 6.5, where the red edge is the most
expensive. Let z(T0) denote its cost. We observe that z(T0) is equal to the cost
cij multiplied by the sum of all requirements between a node of the subset S
and a node in its complement Sc. Thus, to improve z(T0), we try to substitute
the edge (i, j) with another edge of the cut (S, Sc) as shown in Figure 6.6.

Figure 6.6: Example of the edges in the cut which separates i and j.

Since the amount of flow that would circulate through the new edge is the
same as that circulating in T through (i, j), it can be substitute only with an
edge with a smaller cost (Figure 6.7).

Figure 6.7: Example of the edges that the Local-Search algorithm for MP-
OCSTP tries to add.

The algorithm tries to insert one edge at a time. If, inserting an edge, the cost
of the new most expensive edge z(T1) is such that

z(T1) ≤ z(T0),

then the new feasible solution is T1 and the algorithm restarts. Otherwise the
algorithm tries to insert another edge.
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When no other edge can be inserted, the algorithm returns the value z(Tk),
namely the cost of the most expensive edge of the solution Tk obtained at kth

iteration.
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Chapter 7

Implementation and Results

In this chapter, we will describe the computational experiments that have been
run, and will summarize the obtained numerical results.
Firstly, in Section 7.1 we describe the instances which we have used to solve the
MP-OCSTP and the ME-OCSTP and in Section 7.2 introduce the programs
used to implement the formulations and the heuristic algorithms.
Then, in Sections 7.3-7.5 we explain how we have implemented the three for-
mulations and the results they produce and in Section 7.6 we compare them.
Finally, in Sections 7.7-7.8 we present the results obtained applying all the
Heuristic Algorithms to solve these problems.

7.1 Analysis of existing Problems Instances

Several sets of instances for the OCSTP have been proposed in literature by
various authors (benchmark instances). We have used some of these and new
ones to analyze the results of the three formulations, which have presented in
Chapter 5, and of the heuristics proposed in Chapter 6. To the best of our
knowledge, the optimal solutions to the MP-OCSTP and ME-OCSTP are not
known. Since the computational time to solve instances with more of 16 nodes
is great, the results which we present in this Chapter are obtained using small
instances.
The first set of instances we have used was described by Palmer. In his thesis
he described instances with 6 (palm06), 12 (palm12), 24, 47 and 98 nodes.
The communication requirements are inversely proportional to the distances
between the nodes. The nodes correspond to cities in the United States and
the distance between the nodes are obtained from a tariff database. We have
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used only palm06 and palm12, but we have created also palm09, palm10

and palm16 deleting nodes from instances of larger sizes.
In 2001, Raidl proposed several test instances. The costs and the communi-
cation requirements were generated randomly. They are uniformly distributed
in the interval [0, 100]. Moreover, we have generated the following sets of
benchmark instances:

• EuclUn06, EuclUn09, EuclUn12 and EuclUn15: in these instances
the x and y coordinates are generated randomly in the xy plane. The
cost matrix respects the distances of the nodes in the plane.

• EuclInvProp06, EuclInvProp09, EuclInvProp12 and EuclIn-

vProp15 are instances where the x and y coordinates of nodes are gen-
erated randomly in the xy plane. The cost matrix respects the distances
of the nodes in the plane. Moreover the communication requirements are
inversely proportional to the costs.

In all our experiments we have set the maximum computing time to 60 minutes.

7.2 Implementation

The formulations and the families of valid inequalities presented in the previous
sections have been solved using IBM ILOG CPLEX Optimization Studio

12.5. It consists of the CPLEX Optimizer for mathematical programming,
the IBM ILOG CPLEX CP Optimizer for constraint programming, the
Optimization Programming Language (OPL), and a tightly integrated
IDE.
The heuristic algorithms have been implemented using Microsoft Visual

Studio 2013. It supports different programming languages, but we have
implemented all the algorithms in C++.
All experiments have been run on an Intel Core i7-3517 2.4 GHz with 4 GB
Ram and operating system Windows 8.1 Pro, 64 bit.

7.3 Formulation I

In this section we present how the Formulation I has been implemented and the
results we have obtained using it and its linear programming (LP) relaxation.
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7.3.1 Implementation

CPLEX Optimization Studio is organized in projects. Each project contains
the files .dat, where there are the data of the current instance, and a file .mod
with the code of the formulation.
Here, we present the code for this formulation. First we declare the data of
the problem that the program reads in the file .dat.

//DATA
2 int N= ...;

range Nodes= 1..N;
4 float c[Nodes , Nodes]= ...;

float r[Nodes , Nodes]= ...;

Since we have to work with Edges and Arcs, we define the appropriate struc-
tures for them and the decision variables of this formulation.

6 tuple edge {int ini; int fin;}
{edge} Edge={<ini , fin > | ini , fin in Nodes: ini <fin};

8 {edge} Arcs={<ini , fin > | ini , fin in Nodes: ini!=fin};

10 // VARIABLES
dvar boolean X[Edge];

12 dvar boolean Y[Edge][Arcs]; //Edge: path , Arcs: edge
dvar float+ z;

Now, we have to declare the objective function of the problem.
Since MP-OCSTP and ME-OCSTP have a MIN-MAX objective function, we
have defined a variable z, which will be minimized. Then, among the con-
straints for the MP-OCSTP we have to impose that z is greater than the cost
of each path in the solution, while for the ME-OCSTP z has to be greater than
the cost of each edge in the solution.

// OBJECTIVE
16 minimize z;

18 // CONSTRAINTS
subject to{

20

forall(e in Edge:r[e.ini , e.fin]>0) //for MP-OCSTP
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22 z >= (r[e.ini , e.fin]* sum(e1 in Arcs) c[e1.ini , e1.
fin]*Y[e][a1]);

24 // forall(a in Edge) //for ME -OCSTP
// z>= c[e.ini , e.fin]* sum(e1 in Edge) (r[e1.ini , e1.

fin ]*(Y[e1][e]+Y[e1][<e.fin ,e.ini >]));
26

forall(e in Edge: r[e.ini , e.fin]>0)
28 sum(j in Nodes: j!=e.ini) Y[e][<e.ini , j>] ==1;

30 forall(e in Edge: r[e.ini , e.fin]>0, j in Nodes: j!=e.
ini && j!=e.fin)

sum(i in Nodes: i!=j && i!=e.fin) Y[e][<i,j>] - sum(k
in Nodes: k!=j && k!=e.ini) Y[a][<j,k>] ==0;

32

forall(e, e1 in Edge)
34 Y[e][e1]+ Y[e][<e1.fin , e1.ini >] <= X[e1];

36 sum(e in Edge) X[e]==N-1;
}

7.3.2 Computational Results

Now, we show the results that we have obtained with the code presented above.
Moreover we have solved the linear relaxation presented in 3.2.2 of this formu-
lation.

In Tables 7.1-7.2, we present the results obtained solving both the problems and
their relaxations. The meaning of the columns in the tables is the following.
Column Optimal contains the optimal values of the instances; Column Time
(sec), the computing times needed to obtain the optimal values (in seconds),
and column Relaxation the objective function values of the LP relaxation.
The percentage of the LP values with respect to the optimal values are given
in column %.

First, we note that the time to solve the instances increases very rapidly with
the size of the instances. For the MP-OCSTP the computing times are still ac-
ceptable while for the ME-OCSTP they increase too faster and for this reason
it is impossible to solve instances with more than 10 nodes in reasonable times.
The times needed to solve the LP relaxations are negligible as compared to the
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Table 7.1: Results of formulation I for MP-OCSTP.

Formulation I: MP-OCSTP

Instance Optimal Time (sec) Relaxation %

palm06 133300 0.765 133300.00 100.00%

palm09 141900 9.828 141900.00 100.00%

palm10 141900 54.297 141900.00 100.00%

palm12 141900 951.515 141900.00 100.00%

palm16 106800 3600 106800.00 100.00%

EuclInvProp06 21312 1.063 17078.98 80.14%

EuclInvProp09 24992 16.953 18307.39 73.25%

EuclInvProp12 28458 763.734 19086.47 67.07%

EuclInvProp15 27248 3600 19224.68 70.55%

EuclUn06 622500 1.234 560101.00 89.98%

EuclUn09 994788 221.609 987540.00 99.27%

EuclUn12 994788 3600.000 987540.00 99.27%

EuclUn15 1091200 3600 1018160.00 93.31%

Raidl06 530483 0.484 530483.00 100.00%

Raidl09 598186 60.578 530483.00 88.68%

Raidl12 451005 123.532 387364.00 85.89%

Raidl15 381220 3600 282240.00 74.04%

overall times, so they are not shown.

In Table 7.1 we see that for the MP-OCSTP the the LP relaxation produces the
optimal value with the Palmer series. With the other instances (EuclUn and
Raidl) the percentages decrease, but they are still good (85−90%). Unfortu-
nately the results obtained with EucInvProp are worst and the percentages
are around the 70%, on average.

For the ME-OCSTP (Table 7.2) since the time to solve a medium size instances
is high, we do not have all the optimal values with which to compare the results
of the relaxation. For this reason, when we do not know the optimal value,
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we put in the Table the value of the best-known solution and we indicate
them with an “*”. Nevertheless, the percentages presented are very low and it
indicates that this formulation does not work well if we want to minimize the
cost of the most expensive edge.

Table 7.2: Results with formulation I for ME-OCSTP.

Formulation I: ME-OCSTP

Instance Optimal/ Relaxation %
Best-known*

palm06 180600 74200.51 41.09%

palm09 320342 84834.41 26.48%

palm10 326502 79388.71 24.31%

palm12 820301* 74504.93 9.08%

palm16 56700* 30175.74 53.22%

EuclInvProp06 75542 16426.95 21.75%

EuclInvProp09 134846 16659.01 12.35%

EuclInvProp12 272025* 17274.05 6.35%

EuclInvProp15 424402* 17750.09 4.18%

EuclUn06 1149358 327779.57 28.52%

EuclUn09 2382568 430522.39 18.07%

EuclUn12 3854732* 414776.20 10.76%

EuclUn15 13427700* 414550.62 3.09%

Raidl06 1572645 385427.39 24.51%

Raidl09 2117302* 330449.66 15.61%

Raidl12 4251531* 275727.84 6.49%

Raidl15 15799296* 239537.41 1.52%
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7.4 Formulation II

We next present the results obtained with Formulation II and its relaxation.
Moreover for this formulation, we have four families of valid inequalities (see
Section 5.2.1) we can add to the LP relaxation to obtain a tighter lower bound.

The families (a), (c) and (d) can be added as a normal constraint, but family
(b) is of exponential size and thus have to be added as explained in Section
5.4.

In the Tables 7.3-7.4, we present the results obtained for both problems and
the values of their LP relaxations after adding the separated valid inequalities.

For the MP-OCSTP (Table 7.3), the LP relaxation applied to Palmer series
reaches the optimal values; consequently it is unnecessary reinforce it with the
valid inequalities.
This formulation returns different results depending on whether or not the
instance satisfies the triangular inequality. In the first case, no inequality
produces improvements. Therefore the LP bound of this formulation lies within
70 − 90% of the optimal value (with the EucInvProop the results are less
good). We note that when we say that the valid inequality does not reinforce
the lower bound, it does not mean that the spanning tree found will be the
same, but only that the cost of the most expensive path does not change. When
the instances do not satisfy the triangular inequality, even if the inequalities
(a) and (b) reinforce the lower bound, no relaxation value overcomes 8% of the
optimal value. Thus we can conclude that this formulation is not appropriate
to solve randomly generated instances.
Analyzing Table 7.4 we note that the family of valid inequality (c) reinforces
the lower bound also with the instances which satisfy the triangular inequality;
but the few obtained percentages do not overcome 50% of the optimal value.
On the contrary, there are instances where the percentages are smaller than
25%.
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7.5 Formulation III

For this formulation, we have solved the MP-OCSTP and ME-OCSTP with
different methods. For this reason, we present their implementation and results
separately.

7.5.1 MP-OCSTP

Next, we present the results obtained with Formulation III and its LP relax-
ation for solving MP-OCSTP.
For this formulation, we have five families of valid inequalities (Section 5.3.1)
we can add to the LP relaxation to obtain a stricter lower bound.
The families (A), (B) and (C) can be added as constraints in the initial for-
mulation, whereas (D) and (E) can be added as presented in Section 5.4.
In particular, to add the family (E) at each iteration we have to calculate the
really distance in Gk of each pair of nodes.

For this reason, we have applied the algorithm of Dijkstra for each node of Gk.
This algorithm permits to calculate the distance dist between a node s and
the others.

Algorithm 7.1: Dijkstra’s Algorithm
1 input : Gk , d i s t , s
2 begin
3 Q=∅ ;
4 fora l l v∈V
5 d i s t [ v]=+∞ ;
6 end
7 d i s t [ s ]=0;
8 Q=Q∪{ s } ;
9 while Q6= ∅

10 select u from Q such that d [ i ]=min{d [ h ] : h∈ Q} ;
11 Q=Q\{u } ;
12 fora l l v∈ δ ( i )
13 i f d i s t [ v]> d i s t [ u]+c [ u , v ]
14 then d [ v]=d [ u]+c [ u , v ] ;
15 i f v/∈ Q then Q=Q∪{V} ;
16 end
17 end
18 end
19 return d i s t ;
20 end

The complexity of this algorithm depends on the data structures used to im-
plement the set Q. Since, in IBM ILOG CPLEX Optimization Studio
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7.5. FORMULATION III

12.5 is not possible create a priority queue, which reduces the complexity, our
implementation of Dijkstra’s Algorithm performs in O(n2 +m) operations.

After computing the true distances d in Gk, we compare them with dk and we
add the inequalities for an edge (i, j) if dkij and dij differs at least ε. The value
of ε depends on the instance. Since with some instances the inequality does
not reinforce the lower bound, we have add all the inequalities for which the
distances are different.
If there are no inequalities to add, the program returns the objective function
value of current iteration. Otherwise the program solves again the instance
with the inequalities added. In any case, after a prearranged number of itera-
tions (nmax), the program returns the current solution. nmax is the number
of iterations that the system can solve in a hour.

In the Table 7.5, we present the results obtained solving the MP-OCSTP and
its relaxation with valid inequalities.

With this formulation, the computation times to solve the instances increase
with the size of the graph, but less rapidly than with the other formulations.
Now, we analyze the results obtained relaxing the integrality constraints of the
variables. The relaxation applied to the Palmer series is optimal (100%) and
for this reason it is unnecessary to add the valid inequalities. With EucIn-

vProp and EucUn series no inequalities reinforce the lower bound obtained
with the basic relaxation. In the case of inequalities (E) this is due to the fact
that they increase the number of non-zero x variables, although they do not
affect the objective function value for MP-OCSTP. Moreover the percentages
of EucInvProp differ from those of EucUn in around 10%.
With the Raidl series we can not apply all the valid inequalities because this
series does not satisfy the triangular inequality. In this case the family of in-
equalities (B) reinforce the lower bound, but it is not sufficient to conclude that
this formulation works well with this type of instances. In fact the percentages
do not overcome the 40%.
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7.5.2 ME-OCSTP

In the case of formulation III for ME-OCSTP, the family of constraints 5.48
has an exponential number of inequalities because for all S ⊂ V and for all
i, j ∈ V : 1, i ∈ Sc, j ∈ S it requires:

fij ≥ R(S)

xij − ∑
u∈S,v∈Sc,
(u,v)6=(j,i)

xuv + xvu


For this reason, we can not solve the instances with all the constraints. Hence,
our goal is to find a relatively small subset of these constraints that determine
the optimal solution, as we have already explained in Section 5.4.

Table 7.6: Results obtained using formulation III for ME-OCSTP.

Formulation III: ME-OCSTP

Instance Optimal/ Value % Time (sec) Num Iter
Best-known*

palm06 180600 180600 100.00% 10 12

palm09 320342 320342 100.00% 726.984 82

palm10 326502 270900 82.97% >3600 75

palm12 820301* 192554 23.47% >3600 2

palm16 56700* 0 0.00% >3600 20

EuclInvProp06 75542 75542 100.00% 18.36 18

EuclInvProp09 134846 95634 70.92% >3600 175

EuclInvProp12 272025* 52950 19.47% >3600 14

EuclInvProp15 424402* 0 0.00% >3600 0

EuclUn06 1149358 1149358 100.00% 19.875 22

EuclUn09 2382568 2232598 93.71% >3600 137

EuclUn12 3854732* 1357827 35.22% >3600 24

EuclUn15 13427700* 896724 6.68% >3600 3

Raidl06 1572645 1572645 100.00% 17.813 28

Raidl09 2117302* 1375828 64.98% >3600 58

Raidl12 4251531* 971516 22.85% >3600 42

Raidl15 15799296* 567978 3.59% >3600 11

Table 7.6 presents the results obtained with this algorithm to solve the in-
stances. We can see that the number of iterations in a hour decreases very
rapidly as the size of the instances increases. Moreover with instances of small
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sizes the relaxation produces a good lower bound of the optimal value, while for
instances of medium sizes we can not conclude anything on its quality because
the optimal value is not available.

7.6 Comparison between the Three Formulations

In this section we compare the results obtained with the three formulations.

7.6.1 MP-OCSTP

6 9 10 12 16

2-index 0.032 0.039 0.052 0.228 60.000

3-index 0.022 0.432 1.547 43.575 60.000

4-index 0.013 0.164 0.905 15.859 60.000
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(a) Computational times Palmer series.
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3-index 0.024 0.363 18.008 60.000

4-index 0.018 0.283 12.729 60.000
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(b) Computational times EucInvProp series.

6 9 12 15
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3-index 0.021 2.586 39.065 60.000
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(c) Computational times EuclUn series .

6 9 12 15

2-index 0.008 0.208 4.427 60.000

3-index 0.016 7.404 32.768 60.000

4-index 0.008 1.010 2.059 60.000
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(d) Computational times Raidl series.

Figure 7.1: Comparison of computational times to solve MP-OCSTP
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First, in Figure 7.1 we show the computational times to solve exactly the MP-
OCSTP.
Each graphic corresponds to a single series and it shows the behavior of the
computational times for the different formulations with instances with increas-
ing number of nodes. Note that the time limit of 60 minutes is just a censured
value which does not necessarily correspond to real computing times.
At a glance, it is evident that with all the formulations the computational
times increase with the size of the instances. Moreover with all the instances
which satisfy the triangular inequality, the formulation III with 2-index vari-
ables is the fastest. In fact, this formulation has a number of variables (O(n2))
smaller than the other two formulations. Regarding the computational times
for the formulations with 3-index and 4-index, non of them systematically out-
performs the other one.
Something different happens if we consider the Raidl series (Figure 7.1d). In
fact, in this case the formulations with 2-index and 4-index show a similar
behavior, while the computational time using formulation with 3-index vari-
ables are worse. Moreover in this case the times increase more rapidly than
with other benchmark instances: already with 9 nodes it requires more than 5
minutes.
In Table 7.7 we show for each instance the best result obtained from the

relaxation of each of three formulations (in some case adding also a valid in-
equality) for the MP-OCSTP.
With the Palmer benchmark instances all the relaxations find as a lower
bound the optimal value, while with the instances which satisfy the triangular
inequality the formulations with 2-index and 3-index are equivalent; in fact the
variable that defines the objective function value is the same in both the for-
mulations. Moreover with EuclUn benchmark instances also the formulation
with 4-index is equivalent and the percentage are excellent (around 90−95%).
Instead the results obtained with EucInvProp are inferior and the percent-
ages are around the 70%, although the formulation with 4-index produces a
lower bound better than the other two formulations.
When the triangular inequality is not satisfied, the results change considerably.
In fact, the results obtained with the formulation with 3-index are not good
at all. The formulation with 2-index improves them a little but not enough.
Thus, in this case the only formulation that produces good results (80− 85%)
uses 4-index variables.
In conclusion, to find a good lower bound for MP-OCSTP all three formula-
tions formulations are good. In particular, for solving instances that satisfy
the triangular inequality it is recommendable to use the formulation with 2-
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Table 7.7: Comparison LP relaxations of the three formulations for the MP-
OCSTP.

MP-OCSTP

Instance 2-index 3-index 4-index

palm06 100.00% 100.00% 100.00%

palm09 100.00% 100.00% 100.00%

palm10 100.00% 100.00% 100.00%

palm12 100.00% 100.00% 100.00%

palm16 100.00% 100.00% 100.00%

EuclInvProp06 76.61% 76.61% 80.14%

EuclInvProp09 65.33% 65.33% 73.25%

EuclInvProp12 65.45% 65.45% 67.07%

EuclInvProp15 68.36% 68.36% 70.55%

EuclUn06 89.98% 89.98% 89.98%

EuclUn09 99.27% 99.27% 99.27%

EuclUn12 99.27% 99.27% 99.27%

EuclUn15 93.31% 93.31% 93.31%

Raidl06 39.97% 7.51% 100.00%

Raidl09 22.21% 3.70% 88.68%

Raidl12 26.53% 4.53% 85.89%

Raidl15 22.78% 2.85% 74.04%

index variables, which has a smaller number of variables, as compared with
the others. Otherwise the formulation with 4-index variables is the best.

7.6.2 ME-OCSTP

Since the computational times to solve this problem increase very rapidly with
all the formulations, it is not possible compare them. Therefore, in Table 7.8
we only present the values of the LP relaxations of the three formulations of the
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three formulations (in some case adding also a valid inequality). We indicate
the instances for which the optimal value is not known with a “*”.

Table 7.8: Comparison LP relaxations of the three formulations for the ME-
OCSTP.

ME-OCSTP

Instance 2-index 3-index 4-index

palm06 100.00% 42.79% 41.09%

palm09 100.00% 26.80% 26.48%

palm10 82.97% 24.67% 24.31%

palm12* 23.47% 8.89% 9.08%

palm16* 0.00% 53.22% 53.22%

EuclInvProp06 100.00% 21.31% 21.75%

EuclInvProp09 70.92% 11.23% 12.35%

EuclInvProp12* 19.47% 5.67% 6.35%

EuclInvProp15* 0.00% 92.08% 4.18%

EuclUn06 100.00% 28.96% 28.52%

EuclUn09 93.71% 17.52% 18.07%

EuclUn12* 35.22% 10.21% 10.76%

EuclUn15* 6.68% 2.91% 3.09%

Raidl06 100.00% 24.51% 24.51%

Raidl09* 64.98% 15.61% 15.61%

Raidl12* 22.85% 6.48% 6.49%

Raidl15* 3.59% 1.44% 1.52%

It is evident that with small size instances the formulation with 2-index vari-
able produces a lower bound of better quality than the other formulations.
Unfortunately to produce a lower bound of the same quality with larger size
instances one hour is not enough. In fact, in this case the formulation with
3-index variables is better.
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7.7 Heuristic Algorithms for MP-OCSTP

Before presenting the results obtained, we present in Table 7.9 a summery of
all the Greedy Algorithms.

Algorithm Description
HE-I Edges are considered according to their costs (from the small-

est to the greatest), and an edge is added only if it does not
generate a loop with other edges already chosen.

HE-II Edges are ordered from the greatest requirement to the small-
est one, and an edge is added only if it does not generate a
loop with other edges already chosen.

HE-III Edges are ordered from the greatest product between cost and
requirement to the smallest one, and a edge is added only if
it does not generate a loop with other edges already chosen.

HE-IV It’s based on the actualization of the matrix c · r.
HE-V It chose the best star-tree.
HE-VI Edges ordered from the smallest product between the min-cut

and the cost to the greatest one, and an edge is added only if
it does not generate a loop with other edges already chosen.

HE-VII Gomory-Hu tree.

Table 7.9: Summary of Greedy Algorithms.

To evaluate the goodness of a heuristic algorithm, we compute the deviation
of the objective value Z(T ) obtained with with respect to the optimal optimal
or best-known value Z(T ∗). The deviation is defined:

100 · Z(T )− Z(T ∗)

Z(T ∗)
.

Therefore, an heuristic algorithm is considered good if the deviation is small.
In fact, the deviation is 0 if the algorithm objective value is equal to the optimal
value. Note that when the optimal value is not known, the deviation can be
strictly negative if the solution obtained with the heuristic outperforms the
best solution found by CPLEX.
Moreover, we do not discus the computing times with which we have obtained
all the results, because with medium size instances they are influential.

Table 7.10 shows the objective function values and the deviations obtained
applying the Greedy Algorithms and Table 7.11 the average calculated for
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CHAPTER 7. IMPLEMENTATION AND RESULTS

series of the deviations.

Table 7.11: Deviation average for Greedy algorithms for the MP-OCSTP.

Greedy Algorithm Deviation Averages: MP-OCSTP

Series HE-I HE-II HE-III HE-IV HE-V HE-VI HE-VII

palmer 0.00 0.00 0.00 0.40 333.76 439.16 42.83

EuclInvProp 22.42 9.99 1326.06 108.22 400.85 76.12 594.82

EuclUn 41.35 131.88 243.29 45.55 5.28 35.47 32.53

Raidl 8.80 299.92 653.78 116.19 121.28 4.37 136.21

We can observe that with each instance series there is an algorithm outper-
forming the others. In fact, with Palmer benchmark instances series the
algorithms (I, II, III and IV) based on Minimum Spanning Tree are excellent,
while with the EuclInvProp series the best algorithm is HE-II, but also HE-I
and HE-VI produce good results. The HE-I produces good results also with
the Raidl series, but the HE-VI is also very efficient. Instead, the algorithm
based on the star-tree is excellent for EuclUn series.
Finally, it is difficult to say what algorithm is the best, but we can conclude
that the algorithms based on the Gomory-Hu tree, the actualization of the
weight matrix and the product between the costs and the requirements do not
produce reliable upper bounds. This is an unexpected result. In fact the last
two algorithms have been thought precisely for this problem.

Now, we comment the results obtained with the local-search algorithm on the
trees produced by the greedy heuristics, which are presented in Table 7.12.
Moreover in Table 7.13 there are the averages for series of the deviations.
First, we note that this algorithm does not improve considerably the results
obtained with HE-I and HE-II, while it improves the others. In particular, if we
consider HE-III, the percentages of the deviations with respect to optimal/well-
known values have decreased, but however they still remain greater than the
percentages obtained with other algorithms. Instead, HE-V produces results
very different, depending on whether or not the instance satisfies satisfies the
triangular inequality. In fact the percentages are small only in the first case.
The most remarkable aspect is that HE-VI based on the min-cut tree of the
original graph produces excellent results with all the instances: with Raidl

benchmark instances the algorithm does not improve the results, but they are
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CHAPTER 7. IMPLEMENTATION AND RESULTS

Table 7.13: Deviation average for Local-Search algorithm for the MP-OCSTP.

Local-Search Algorithm Deviation Averages: MP-OCSTP

Series HE-I HE-II HE-III HE-IV HE-V HE-VI HE-VII

palmer 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EuclInvProp 22.42 9.99 59.76 16.95 21.80 11.15 28.90

EuclUn 36.36 130.15 161.20 28.27 2.41 22.37 17.12

Raidl 8.80 291.76 408.33 48.16 106.75 4.37 113.38

better than those obtained with the combination of the local-search algorithm
with any other greedy algorithm. Instead, with the other instances the local-
search algorithm enhances the unsuccessful results of this greedy algorithm.
Therefore, if we have to suggest a heuristic algorithm to calculate an upper
bound of good quality for the MP-OCSTP, the preferred algorithm should be
HE-VI followed by local-search algorithm.

7.8 Heuristic Algorithms for ME-OCSTP

The heuristics that we use to solve this problem are the same used to solve
the MP-OCSTP (excluded the algorithm based on the weight matrix actual-
ization). Thus, we can see Table 7.9.

Table 7.14 shows the objectives function value and the deviations obtained
with the Greedy Algorithms. We can see that HE-I produces good results with
each instance and some results are excellent. In fact, the total amount of flow
that has to circulate through the tree is constant. Therefore it is likely that
activating the cheapest edges we control not only the total communication
cost, but also the cost of the most expensive edge of the tree. Despite the
good results of this algorithm, with the EuclUni benchmark instances the
algorithm based on the Star-Tree (HE-V) yields the best results. Moreover
when the instances do not satisfy the triangular inequality (Raidl series),
also the algorithm based on the Gormory-Hu Tree (HE-VI) produces excellent
results. Note that HE-VI was thought for this specific problem.
Instead the HE-VII does not produce results of poor quality, but for each of
the series of benchmark instances there is an algorithm outperforms it.
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CHAPTER 7. IMPLEMENTATION AND RESULTS

Now, we comment the results obtained applying the local-search algorithm on
the trees produced by the greedy algorithms, which are summarized in Table
7.15.
First, we note that this algorithm does not improve the results obtained with
HE-I. In fact, HE-I inserts in the tree the cheapest edges and there is not
an another edge with smaller cost that can substitute an edge in the tree.
Instead, the local-search algorithm improves the results obtained with all the
other algorithms. In particular, it improves considerably the unsatisfactory
results of HE-VI and in some cases it produces the best result.
But, what we have to evaluate is the best general heuristic algorithm, which
combines the local-search algorithm with a greedy algorithm. Therefore, we
think that to solve an instance which satisfies the triangular inequality the best
combinations are the heuristics based on the Gomory-Hu tree. Otherwise, HE-
II and HE-III are the most efficient.
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CHAPTER 7. IMPLEMENTATION AND RESULTS

7.9 Grasp Approach

Since the HE-VI provided good quality solutions, we have developed a random-
ized version of it, along the line of the Greedy Randomized Adaptive Search
Procedure (GRASP).
We have said that in a greedy algorithm, solutions are progressively built. At
each iteration, a new element from the set E is incorporated into the partial
solution under construction, until a complete feasible solution is obtained. The
selection of the next element to be incorporated is determined by the evalua-
tion of all candidate elements according to the greedy evaluation function. The
greediness criterion establishes that the local optimum element is selected.
GRASP is a metaheuristic algorithm which consists of iterations made up
from successive constructions of a greedy randomized solution and subsequent
iterative improvements of it through a local search. The greedy randomized
solutions are generated by adding elements to the problem solution set from a
list of elements ranked by the greedy function. To obtain variability in the can-
didate set of greedy solutions, well-ranked candidate elements are often placed
in a restricted candidate list (also known as RCL), and chosen at random when
building up the solution. Therefore at each iteration of the greedy algorithm
we do not insert in the solution the optimum-local element, but we randomly
pick one of those α% best elements.

In the Tables 7.16-7.17 we show the comparison between the results obtained
applying HE-VI and the results obtained with the GRASP on the same heuris-
tic. In these cases we have chosen α = 10% and a number of iteration equal to
50. We have tried to increase the number of iterations, but with our objective
functions is useless, because there are not a big variability in the results ob-
tained. We observe that, since the problems are solved 50 times, the computing
times increase, but not sufficiently to become relevant.

Moreover, we have tried to change the value of α (5 − 20%), but the results
obtained do not change.

With this procedure with some instances we have obtained a improvement in
the upper bound quality. In some cases the deviation decrease and it becomes
equal to 0, namely it furnish the optimal value (see Radl series with MP-
OCSTP). However, there are instances with which this procedure does not
improve the results. In every case, this procedure furnishes good results and
it could be used also with other heuristic algorithms because it could improve
the upper bounds of poor quality.
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7.9. GRASP APPROACH

Table 7.16: Result obtained with GRASP for the MP-OCSTP.

Grasp: MP-OCSTP

HE-VI Grasp with HE-VI

Instance Optimal Value Deviation Value Deviation

palm06 133300 133300 0.00 133300 0.00

palm09 141900 141900 0.00 141900 0.00

palm10 141900 141900 0.00 141900 0.00

palm12 141900 141900 0.00 141900 0.00

palm16 106800 106800 0.00 106800 0.00

EuclInvProp06 21312 23946 12.36 23946 12.36

EuclInvProp09 24992 25696 2.82 24992 0.00

EuclInvProp12 28458 32688 14.86 29358 3.16

EuclInvProp15 27248 31212 14.55 28116 3.19

EuclUn06 622500 622500 0.00 622500 0.00

EuclUn09 994788 1239408 24.59 1239408 24.59

EuclUn12 994788 1336069 34.31 1336069 34.31

EuclUn15 1091200 1424720 30.56 1374560 25.97

Raidl06 530483 585331 10.34 585331 10.34

Raidl09 598186 631609 5.59 598186 0.00

Raidl12 451005 451005 0.00 451005 0.00

Raidl15 381220 387068 1.53 381220 0.00
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Table 7.17: Result obtained with GRASP for the ME-OCSTP.

Grasp: ME-OCSTP

HE-VI Grasp with HE-VI

Instance Optimal/ Value Deviation Value Deviation
Best-known*

palm06 180600 180600 0.00 180600 0.00

palm09 320342 326800 2.02 320342 0.00

palm10 326502 344000 5.36 326502 0.00

palm12 820301* 528165 -35.61 528165 -35.61

palm16 56700* 182106 221.17 119800 111.29

EuclInvProp06 75542 75542 0.00 75542 0.00

EuclInvProp09 134846 134846 0.00 134846 0.00

EuclInvProp12 272025* 239687 -11.89 225920 -16.95

EuclInvProp15 424402* 253449 -40.28 248103 -41.54

EuclUn06 1149358 1149358 0.00 1149358 0.00

EuclUn09 2382568 4766860 100.07 4766860 100.07

EuclUn12 3854732* 6839756 77.44 6839756 77.44

EuclUn15 13427700* 9981013 -25.67 9278558 -30.90

Raidl06 1572645 2265184 44.04 2265184 44.04

Raidl09 2117302* 2117302 0.00 2117302 0.00

Raidl12 4251531* 2753499 -35.24 2753499 -35.24

Raidl15 15799296* 1630811 -89.68 1630811 -89.68
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Chapter 8

Concluding Remarks

In this work we have studied two variants of the Optimum Communication
Spanning Tree Problem (OCSTP) with different objective functions. In these
problems every pair of nodes has a communication requirement which must be
satisfied and a cost associated with every direct connection (edge). In the MP-
OCSTP the cost of the most expensive path in the spanning tree is minimized.
In the ME-OCSTP the objective is to minimize the cost of the most expensive
edge in the spanning tree.

First, we have investigated some particular cases to show that the optimal
solution has a special structure. In particular, if the costs of the edges are
all equal to each other and the communication requirements satisfy an other
condition, any solution of the MP-OCSTP is a star-tree.

Then, we have proposed three Mixed Integer Linear Programming (MILP)
formulations to solve these problems. The main feature that distinguishes the
formulations is the number of indeces of the variable chosen: 4-index, 3-index
and 2-index. The computational results obtained on instances with Euclidean
and Randomly generated costs show that solving exactly the ME-OCSTP re-
quires a large computing time, even for small-size instances. Therefore, for
some instances we have considered the best-known feasible solution to evalu-
ate the lower bounds of the linear relaxations. Instead, the computing times
needed for solving the MP-OCSTP are quite moderate: less than one hour for
instances with up to 12 nodes and several hours with up to 16 nodes. The for-
mulation with 2-index variables turns out to be more efficient than the other
ones.

We have also compared the linear relaxations of all formulations and tried to
reinforce them adding some valid inequalities. For the MP-OCSTP instances
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CHAPTER 8. CONCLUDING REMARKS

that satisfy the triangular inequality it is recommended to use the formulation
with 2-index variables, which has a smaller number of variables than the other
formulations and provides the same quality results. Instead, if the instances do
not satisfy the triangular inequality, the formulation with 4-index variables is
the best option, in spite of the high number of variables. For the ME-OCSTP
in some case the best lower bound obtained ma be lower than 20% of the value
of the best-known solution. Thus, they are unsatisfactory.

Finally, we have presented some greedy heuristics to obtain initial feasible
solutions and, for each problem, a local-search algorithm to improve on them.
The greedy algorithms are based on the Minimum Spanning Tree or on the
star-tree or on the Gomory-Hu tree. The local-search algorithm for the MP-
OCSTP tries to add the direct edge for the most expensive path and to delete
one of the edges in the generated cycle, while that for the ME-OCSTP tries
to delete the most expensive edge and to add one of the edges that connects
the two disconnected components. Computational results indicate that the
combined greedy-local search heuristic based on the Gomory-Hu Tree provides
the best upper bounds for the MP-OCSTP. For the ME-OCSTP, the results
vary depending on whether or not the instances satisfy the triangle inequality.
In the first case, the heuristics based on the Gomory-Hu tree yield the best
solutions, while in the other case those based on the Minimum Spanning Tree
are the most efficient. Finally, we have developed a randomized version of the
algorithm based on the Gomory-Hu tree and we have seen that in some cases
this procedure yields solutions of improved quality.

Since the formulations for the ME-OCSTP do not produce a lower bound of
good quality, future research could aim at finding some valid inequalities that
strengthen them and thus improve the value of the linear relaxation. Moreover,
an alternative could be to consider a new formulation based on the column gen-
eration. An additional possible direction for further research is the study of
decomposition solution methods that allow to handle medium and large size
instances with the 4-index formulations.
As to the heuristic methods, apart from randomized versions of the other
greedy algorithms, the study of more sophisticated heuristic algorithms based
on the exploration of large neighborhoods in a flexible fashion (Variable Neigh-
borhood Search) seems promising as it could produce improved solutions. An-
other option could be to develop a meta-heuristic, such as for instance tabu-
search, to try to escape from local minima.
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