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Abstract

Data mining is becoming increasingly important in a world where data

is created and consumed at extraordinary rates. Of the many applications

of data mining, anomaly detection is a particularly interesting one that aims

at finding unusual patterns or data points, usually generated by rare neg-

ative events. In particular, anomaly detection applied to mobile networks

can be used to improve the quality of the offered services, with benefits for

end-users and service providers alike. The goal of this thesis is to present

an effective strategy for spatio-temporal anomaly detection in a mobile net-

work. To do so, we studied the performance of existing state-of-the-art

algorithms applied to the mobile network domain. As a solution to the chal-

lenges of anomaly detection in this domain, we present a new algorithm,

the Multivariate Spatio-Temporal Anomaly Detector using Fisher’s method

(MuSTF), an extension of the Fast Subset Scan framework and the STCOD

algorithm. We applied MuSTF to real-world data collected from a region-

wide mobile network over a month, and proved to be an improvement of

current state-of-the-art algorithms in detecting drops in the quality of ser-

vices, especially being able to detect anomalies with very little delay from

the moment of their appearance.
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Sommario

Le tecniche di data mining stanno assumendo un’importanza sempre

più grande in un mondo dove grandi quantità di dati sono create e uti-

lizzate con una velocità straordinaria. Tra le molte applicazioni del data

mining una particolarmente interessante è l’anomaly detection, ovvero il ri-

conoscimento di dati inusuali, in genere indicazione di eventi rari, spesso

negativi. In particolare, l’anomaly detection applicata alle reti mobili può

essere usata per migliorare la qualità dei servizi offerti, con benefici sia per

gli utenti sia per le compagnie che forniscono i servizi. Lo scopo di questa

tesi è di presentare una strategia efficace per l’anomaly detection spazio-

temporale applicata alle reti mobili. Per fare ciò, abbiamo analizzato la per-

formance di algoritmi stato dell’arte nell’anomaly detection applicati a reti

mobili. Per affrontare i problemi che sorgono nell’applicare anomaly detec-

tion in questo campo, abbiamo sviluppato un nuovo algoritmo, Multivariate

Spatio-Temporal Anomaly Detector using Fisher’s method (MuSTF), esten-

dendo gli algoritmi pre-esistenti Fast Subset Scan e STCOD. Abbiamo ap-

plicato MuSTF a dati di QoS raccolti dalla rete mobile del Piemonte per un

mese. MuSTF ha dimostrato di riconoscere cali nella qualità dei servizi con

migliore precisione rispetto allo stato dell’arte, in particolare riconoscendo

le anomalie con un ritardo particolarmente basso rispetto al loro insorgere.
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mostrato in questi anni di università, dal primo all’ultimo giorno di studio.

Ringrazio tutti i miei amici per i momenti di svago e di sfogo in tutti

questi anni. Mi scuso per non essere stato molto presente durante la scrittura

di questa tesi!

Ringrazio il Prof. Lanzi per la sua guida e i suoi consigli nello scrivere
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Chapter 1

Introduction

Data mining is assuming an increasingly large importance in a world where

data is created and consumed at extraordinary rates [20]. As data storage

grows exponentially, the task of manually analyzing datasets becomes im-

possible for any specialist. Techniques for the automated analysis of data

are coming under the spotlight, as companies strive to use the data they ac-

cumulated over the years to improve their business performance. Of the

many applications of data mining, anomaly detection is a particularly inter-

esting one that aims at finding unusual patterns or data points. Depending

on the domain of application, anomaly detection can help finding various

kinds of rare, usually negative, events: in computer networks, Intrusion De-

tection Systems are implemented in many security software suites to detect

malicious activities by malware or external attackers [24]; in medical sci-

ence, anomaly detection can be used to detect disease outbreaks, allowing

the deployment of early countermeasures [50]; signs of abnormal weather

can be used to predict violent precipitation events in localized areas [43];

in industrial machinery, using anomaly detection can be used to predict a

forthcoming fault, in order to schedule maintenance more efficiently [37].

The rarity of anomalous events is the biggest obstacle in studying their

behavior with traditional data mining techniques. This led to the creation

of specialized anomaly detection algorithms.

Mobile networks

In this thesis we study anomaly detection applied to data collected from

a mobile telecommunication network. Mobile networks are ubiquitous in

today’s world and are a critical infrastructure for communication, be it for

work or leisure activities. Services based on these networks range from



phone calls, SMS, mails, to Internet browsing, economic transactions, video

streaming and much more. It should not come as a surprise that the quality

of the mobile network infrastructure is a critical element for companies and

users alike. Monitoring the network for drops in the quality of offered ser-

vices can be beneficial for service provider, that can solve or prevent failures

in the network to increase customer retention.s Anomaly detection in a mo-

bile network faces several challenges: mobile networks cover vast areas and

operate constantly over the course of time; data collected in such networks

is highly dependent on the spatial and temporal dimension. Another chal-

lenge is posed by the heterogeneity of the measurements used to monitor

the quality of the different services. Furthermore, data in a mobile network

is subject to seasonality effects over the course of days, weeks and months.

Finally, the anomalies must be found as soon as possible to solve the issue

before it impacts negatively on the services provided to the users.

Previous work

The characteristics of anomalies change depending on the domain of appli-

cation of anomaly detection. As such, a wide range of approaches have been

developed for specific applications. In supervised applications, data labeled

as normal or anomalous is available. Various classification algorithms have

been developed for supervised anomaly detection. Hawkins developed an

approach based on a replicator feed-forward neural network [39], trained on

normal data, that tries to minimize the error between the output and input

data, and considers the error in replicating a new instance as its anomaly

score; another approach by Davy [9] makes use of one-class Support Vector

Machines to separate normal and anomalous data in a feature space; Ma-

honey and Chan developed an algorithm based on association rules to find

instances that do not satisfy frequent rules; Wong developed a Bayesian net-

work [50] modeling historical information to detect disease outbreaks; the

Isolation Forest algorithm by Liu [15] uses random forest to isolate anomalies

that appear in shallow branches of the trees.

Since labeling anomalies in a dataset is usually a very costly process,

many unsupervised anomaly detection algorithms were developed. Nearest

Neighbor techniques, such as Local Outlier Factor [25], consider anomalous

instances that are distant from the rest of the data. Other approaches follow

a reverse nearest neighbor technique: an example is ODIN [49] that analyzes

a directional graph of the neighborhood relationship to compute the number

of reverse neighbors instead of the direct ones to find anomalies.

Clustering algorithms find the clusters that best fit the data and iden-
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tify as anomalous the points that are not members of any cluster, or whose

membership to a cluster is low. Clustering anomaly detection algorithms are

similar to standard data mining clustering algorithms: some minor varia-

tions include using robust statistics like the medoid instead of the mean [36].

Another approach uses fuzzy versions of k-mean to compute memberships

of instances to different clusters [12]; another technique by He [54] called

CBLOF is able to differentiate between large clusters of normal data and

small clusters of similar anomalies.

Statistical algorithms detect anomalies based on the computation of the

likelihood of an instance being generated by a certain distribution. Parzen

windows [33] compares the log likelihood of the analyzed instance to the log

likelihood of a sample generated by the assumed distribution of the data.

Gaussian Mixture Models can be used to detect anomalies in data whose

distribution can be represented as the sum of multiple different Gaussian

distributions [23]. Several other algorithms based on information theory

have been developed: an example is LSA [55], that measures the changes in

entropy of a candidate anomalous set of instances while swapping instances

in and out. Another algorithm presented by Wang [28] is based on the size

of a compressed text before and after the removal of anomalous lines.

Spatio-temporal data is a more recent field of interest in anomaly de-

tection. Temporal anomaly detection has been studied for quite some time,

and many algorithms for analysis of time series have been developed. An

example is CUSUM [32], an algorithm that compares the cumulative sum

of a value over time against a fixed threshold. For network applications,

dTrend [46] computes statistics on a graph to evaluate traffic trend and find

anomalous behavior in a time interval. Spatial anomaly detection is a less

explored application. Chawla proposed a new factor for measuring anoma-

lies in space, SLOM [38] using a nearest neighbor approach over non-spatial

data followed by the computation of spatial statistics. Another adaptation

of nearest neighbor techniques is AvgDiff [53], that considers the weighted

difference in measurements between neighbors, using as weight the spatial

vicinity of two measurements.

Other approaches exist to study datasets with both spatial and tempo-

ral characteristics. STOUT [51] analyses a dataset by separating spatial

and temporal information from measurement data and constructing matri-

ces that describe the spatial and temporal neighborhood of each value. A

novel neural network approach has been implemented in the Cortical Learn-

ing Algorithm [30], that can memorize spatial and temporal context of an

instance using data structures inspired by the connections between neurons

in the human brain. STCOD (Spatio-Temporal Correlation-based Outlier
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Detector) [27], is an algorithm developed for analysis of a sensor network,

that uses the correlation between past and current windows of values and

a majority voting strategy between neighbors to distinguish outliers from

anomalies. The Fast Subset Scan family of algorithms, developed by Neill

[8], are anomaly detectors that exploit a property called Linear Time Subset

Scan to search and find in linear time the most anomalous sets of instances

in a temporal interval.

Our approach

The goal of this work is to present an effective strategy for spatio-temporal

anomaly detection in a mobile network. To achieve this, we first applied

state-of-the-art algorithms to data collected from a mobile network; we then

developed an algorithm of our own, Multivariate Spatio-Temporal Anomaly

Detector using Fisher’s method (MuSTF), to provide an improved solution

of the problem. MuSTF extends approaches that were successful in other

domains to apply them to a mobile network. In particular, it extends the

Fast Subset Scan approach with weighting and voting strategies to make it

more robust to outliers. MuSTF presents all the characteristics needed to

analyze a mobile network: firstly, it analyzes measurements both in spatial

and temporal context; secondly, it is able to distinguish seasonal effects from

changes in the trend of a feature; thirdly, it can analyze multiple features,

even if different in type; finally, it can operate on-line, providing timely

results for fast intervention in real-world application.

Structure of the thesis

In chapter 2 we give an overview of the task of anomaly detection and

describe state-of-the-art algorithms in the field, with particular attention to

algorithm for anomaly detection in spatio-temporal domains.

In chapter 3 we examine the problem of multivariate spatio-temporal

detection and the challenges it introduces. We show the performance of

current state-of-the-art algorithms when applied to a real-world dataset.

In chapter 4 we present MuSTF, our algorithm that solves the issues of

multivariate spatio-temporal anomaly detection in a mobile network. We

describe in detail the procedure of the algorithm.

In chapter 5 we provide the pseudo code of MuSTF, discussing some

implementation details.

In chapter 6 we show the performance of MuSTF on a real-world dataset,

and we compare its performance to the one of state-of-the-art algorithms.

We show that MuSTF improves detection time and accuracy with respect

4



to the existing algorithms. We also give a short summary of possible future

improvements to MuSTF.
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Chapter 2

State-of-the-Art in Anomaly

Detection

In this chapter, we introduce the state-of-the-art of anomaly detection, with

particular regard to the techniques related to the domain of our problem.

As a first necessary step, we give a definition of the concept of anomaly and

the characteristics it can assume. We then proceed to discuss the process

of anomaly detection, its applications and the challenges that it faces. An

overview of algorithms and strategies follows to provide a reference to the

more general approaches currently employed in the field. We then focus

our attention to the specialized spatial and temporal algorithms that were

designed to work in the domain of our interest. Finally, we discuss the

applicability of the presented algorithms to our problem.

2.1 Concept of Anomaly

Before introducing the problem of anomaly detection, it is crucial to give

a definition that clarifies what is an anomaly. Unfortunately, there isn’t a

single well established definition for the concept of anomaly. Many authors

consider the concept of anomaly to be the same as that of outlier. A well

accepted definition from Hawkins defines an outlier as “an observation which

deviates so much from the other observations as to arouse suspicions that

it was generated by a different mechanism”[18]. Other authors instead try

to differentiate the two concepts by considering anomalies as outliers with

an explanation that can point to an event of interest [44], or outliers that

can provide critical, actionable information [48]. We will follow the latter

approach, and consider anomalies as outliers that point to a phenomenon of



our interest. In the rest of this work, we call normal data those instances of

a dataset that are neither outliers nor anomalies.

2.1.1 Characterization of anomalies

Depending on the application and on the available data, anomalies can as-

sume different forms, each requiring a different approach to be detected. A

categorization of anomalies can help in the choice of the algorithm to use.

A first characterization of an anomaly is in the number of attributes that

need to be considered:

• Univariate anomaly: when the anomalous behavior is detectable by

checking values from a single attribute. Even when multiple attributes

show anomalous behavior, as long as the anomaly can be characterized

with a single attribute it is still treatable with an univariate model.

• Multivariate anomaly: when the anomalous behavior can only be de-

tected by a combination of values from different attributes.

A second distinction is in the number of instances which show anomalous

behavior:

• Point anomalies: individual instances that can be considered anoma-

lies with respect to the rest of the data. This is the simplest kind of

anomaly.

• Contextual anomalies: individual instances that can be considered

anomalies with respect to a subset of the data which shares a context

with them. In this case the attributes in the data are divided in:

– Contextual attributes: the set of variables that provide only in-

formation about the context of the instance, not on its behavior

(eg. latitude and longitude in instances with geographical infor-

mation).

– Behavioral attributes: the set of variables that provide informa-

tion on the behavior of the attribute, regardless of context.

• Collective anomalies: group of instances that shows anomalous behav-

ior, when the individual instances are not anomalies by themselves.

An example of this particular kind of anomaly can be a pattern of

instructions executed by a program, where the individual instructions

are normal but the ordering is not.

8



2.2 Anomaly Detection

Given the definition of anomaly, the anomaly detection process is composed

of three successive tasks:

1. Outlier Detection: the process of identifying outliers present in the

data.

2. Outlier Description: the process of enriching an outlier with informa-

tion about its nature.

3. Anomaly Identification: the process of identifying those outliers which

are of interest to our problem.

While anomaly detection as a process entails all three activities, the

latter two are rarely explored in research. In fact, the information detailing

the nature of an outlier and how to interpret that information as interesting

or not is heavily dependent on the field of application and the goal that

needs to be achieved. For this reason, there is no general solution for outlier

description and anomaly identification, which are rarely automated even in

an ad hoc way. For example, in fraud detection, algorithms are used to raise

an alarm on a suspicious situation, but it’s up to the analyst to decide if it

is really an anomaly after further investigation. In the following sections we

also focus only on the first task, outlier or anomaly detection.

2.2.1 Challenges in anomaly detection

Anomaly detection is a complex problem in data mining with several dis-

tinguishing characteristics from the standard data mining problems.

The first challenge encountered in anomaly detection is conceptual: it

is very hard to define a clear boundary between normal behavior and an

anomalous one. Even when considering a simple definition of outlierness

such as the low probability of occurrence of an event, the threshold to use to

consider a probability low is application dependent. This problem becomes

even more complicated when we try to define a boundary between outliers

and anomalies we are interested in. The ambiguity of the concept of out-

liers and anomalies is one of the main issues when trying to make general

algorithms.

A second challenge is the massive disproportion in the amount of anoma-

lies available with respect to normal data. Using common data mining mod-

els with both normal and anomalous data would be highly skewed in favor of

9



normal data, while using anomalies in high proportion would distort the re-

sults and cause overfit. Furthermore, obtaining correctly labeled anomalies

requires manual intervention, thus being a very expensive procedure.

Another challenge is presented by the dynamic nature of anomalies,

which may change over time. This can be due to several factors: in some

application fields, such as network attacks, anomalies are crafted by an at-

tacker which is interested in hindering the detection as much as possible; in

this situation, the attacker can try to hide the anomaly in such a way that

it appears similar to normal behavior. Even without malicious intent, any

change in the application assumption or new kind of anomaly can prevent

us to use past behavior to estimate current one. These kind of previously

unknown anomalies are called novelties [48].

Another characteristic of anomalies is that they usually impact nega-

tively on the functioning of a system. Balancing false positives while avoid-

ing to misclassify true anomalies is critical. This element requires anomaly

detection algorithms to be evaluated with metrics such as precision and

recall rather that accuracy [4].

2.2.2 Applications of anomaly detection

Anomaly detection is widely used in many scenarios for different disciplines.

Here are some cases of use:

• Intrusion Detection: one of the most common uses of anomaly de-

tection is in network security. IDS use anomaly detection algorithms

to detect suspicious behavior on-line. This can be either host-based,

detecting anomalous patterns in system calls, or network-based, for

remote breaches in security. In particular, misuse detection deals with

recognizing previously known attacks, while novelty detection deals

with recognizing new unknown attacks.

• Fraud Detection: refers to systems employed by commercial organiza-

tions such as banks, insurance companies, etc, to find out fraud at-

tempts. A typical usage consists in comparing profiles of user common

behavior to detect identity thefts.

• Medical Science: there are many examples of anomaly detection in the

health-care field. Malfunctioning of medical instrumentation can be

detected by finding anomalous readings. Outbreak of a disease can

also be predicted from patient data.
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• Industrial: wear is a common problem in heavily industrialized com-

panies. Anomaly detection can be used to use historical behavior

to predict faults ahead of time, avoiding economic losses and safety

breaches.

• Security: anomaly detection algorithms have been applied to analysis

of video data from security camera to detect anomalous behavior in

crowd movements.

• Military: several algorithms have been used in military application,

such as discovery and plotting of enemy route and targeting systems.

• Text Analysis: with the rise of social networks, many companies are

interested in studying change in trends and anomalous behavior of

users for commercial purposes.

2.2.3 Categories of anomaly detection algorithms

As the panorama of applications is quite complex, many different algorithms

were developed.

A first major distinction between algorithms is the requirement of label

for its functioning.

• Supervised algorithms: require training data where each instance is

labeled as normal or anomalous. This kind of techniques is rarely used

because the need of labeled anomalous instance is a huge barrier, and

it is not suited to capture novelties. Furthermore, if labeled instances

are present this problem is not particularly different from standard

data mining. We will not examine this category of anomaly detection

in this document.

• Semi-supervised algorithms: require training data labeled as normal.

The need of normal data is still a requirement not met by many appli-

cations, but they are still used in situation where modeling the normal

data can be used to detect anomalies.

• Unsupervised algorithms: algorithms that do not require data labeled

as normal or anomalous. These techniques can be applied in most

situations.

Another difference between algorithms is the kind of output they gener-

ate:
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• Labeling algorithms: output a binary label that classifies a tested

instance as an anomaly or not, or a set of retrieved outliers.

• Scoring algorithms: compute an outlierness or anomaly score, which

is a numerical value, and flag as anomalies the data with the highest

scores. The computation is usually done over all training instances or

the most likely candidate for outliers.

The labeling approach gives a crisp result and doesn’t need external analysis

and comparison between instances, however it doesn’t give much information

on the nature of outliers. For this reason scoring algorithms are usually

preferred and the most common in literature.

The biggest element that drives the decision of which algorithm to use

in an application is the ability to detect anomalies in the domain of interest.

This includes the kind of data attributes (numerical, categorical, etc) that

the algorithm needs to process, but also the structure of the data (high

dimensionality, network based, etc) and the kind of anomalies we expect to

find.

2.3 Overview of Anomaly Detection Algorithms

To better understand the variety of approaches applied on the field, the

following algorithms are grouped in six major categories, depending on the

main strategy adopted. Note that this categorization is only for clarity of ex-

position, since hybrid algorithms exist using concepts from many categories

at once.

2.3.1 Classification algorithms

Classification algorithms are based on the construction of a classifier model

using available normal data. After deriving the model, it is applied to new

instances to check how much they are represented from the learned model.

If the new instance is badly represented by the model, it is assumed that it

was generated by a different process, and it is flagged as an anomaly.

Classification based algorithms are mostly semi-supervised, which makes

them hard to apply in many situations. Furthermore, they are very sensitive

to changes in the normal behavior of the system that would require relearn-

ing the model. Nevertheless, the learned model can be a useful instrument

for outlier description, and is usually fast, making these techniques useful

when applicable.
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Replicator Neural Network

Hawkins presented a semi-supervised classification based algorithm based

on a neural network [39]. The RNN is a feed-forward multi-layered percep-

tron network, which tries to replicate the input data as the output of the

network. The weights of the RNN are updated at every training instance,

trying to minimize the reconstruction error over all the components of the

output. The network is trained on a dataset containing normal instances,

thus representing a compact model of the normal behavior of the system.

To test data for anomaly detection, instances are simply inputted in the

network. The average reconstruction error over all variables is used as the

outlierness score for each instance. The biggest shortcoming of the RNN

is its inability to treat categorical data without transforming it in multiple

binary attributes, which still causes a raise in computational complexity.

One-class Support Vector Machines

Support Vector Machines are a widely used method to find anomalies in

feature space [9]. Instead of dividing instances by class like traditional SVM

algorithms, one-class SVM consider all instances as members of the nor-

mal class, and find the boundary that best fits the given data, dividing it

from the origin. After the training is finished, the testing simply involves

classifying an instance as normal or anomalous depending on which side

of the found boundary they are mapped. SVM assume, like most semi-

supervised algorithms, that the training data is composed only of normal

data, however robust variants of SVM exist that can work with training

data containing anomalies, thus making robust one-class SVM unsupervised

algorithms. SVM algorithms are very accurate in their result, but they are

also computationally intensive, especially in their robust implementation.

LERAD

Mahoney and Chan developed an algorithm using rules to detect novelties

on-line [24]. The algorithm randomly couples instances from the training set

and generates rules of the form [ifA1 = 10andA2 = 20...thenA3 = 100]. For

each generated rule, every possible value for the consequent is memorized.

During testing phase, for each instance, rule whose antecedent matches the

instance are searched; if they exist, the algorithm checks if the value of the

consequent in the new instance was already memorized in those rules. If

not, the new instance is flagged as an anomaly. To avoid overfitting and

reduce false positives, poor quality rules are pruned after training phase,
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first keeping only a subset of rules that cover the training sample, then by

performing a validation test with a different training set of normal data to

remove rules that generate false positives. Rules provide a very user friendly

tool to understand the nature of an anomaly. The downside of LERAD is

that it is not suited to attributes with many possible values, which makes

learning rules hard. This limits the application of LERAD only to some

categorical domain.

WSARE

Wong presented another algorithm based on networks [50]. A Bayesian

network is built using historical data related to the problem and its en-

vironment. The Bayesian network represents the baseline distribution we

expect from the data. During test phase, we generate rules of one or two

components from the current data, then compare the rules with the baseline

distribution using Fisher’s Exact Test, which is used to test the likelihood

two items were generated by the same distribution. A high outlierness score

is assigned to rules that do not match the distribution found in the baseline.

WSARE requires historical data from several periods of time before being

deployed, however if that data is available is a very accurate algorithm, and

its rules are helpful in outlier description.

iForest

This algorithm proposed by Liu [15] exploits the property of anomalies of

being isolated from the rest of the data to identify them by randomly par-

titioning data using binary decision trees. Because of the aforementioned

property, anomalies tend to be isolated in leaf much sooner than normal

data, thus allowing to stop the partitioning before it processes most of the

data. The process of partitioning is repeated many times, then for each in-

stance the average shortest path from the root is calculated and used as the

outlier factor for that instance. iForest doesn’t need huge amounts of data

to work, therefore subsampling is used for each tree to avoid swamping (false

positives due to closeness of normal and anomaly) and masking (anomaly

hiding other anomalies).

2.3.2 Nearest Neighbor algorithms

Nearest Neighbor approaches are widely popular in anomaly detection. For

each instance a measure is computed considering the neighborhood of the

datum. In particular, two kinds of measure can be identified: distance from
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its neighbors and density of the neighborhood. The biggest advantage of

nearest neighbor techniques is being able to work unsupervised and being

able to detect local outliers. However, the discovery of nearest neighbors

can be an intensive task and is usually quadratic.

Nearest neighbor techniques assume that distance is a meaningful mea-

sure of similarity between two instances. This requires the selection of an

appropriate distance measurement for the application; furthermore, even

with an appropriate distance chosen, if data is too sparse (e.g. in high

dimensional spaces) distance and density tend to lose significance.

Before introducing each algorithm, two common concepts shared by most

techniques are presented:

• k-neighborhood(p): set of the k instances that are the nearest to a

point p

• k-distance(p): distance from point p to the kth-neighbor in order of

distance

Local Outlier Factor

The LOF was introduced by Breunig et al. [25] as a measure of the differ-

ence in density between the instance and its local neighborhood. Consider

the computation of the LOF for a point p. The algorithm computes the

reachable distance to each neighbor as:

reach-distk(p, o) = max(k-distance(o), d(p, o))

Then, compute the local reachability density:

lrdk(p) = 1/(

∑
o∈k-neighborhood(p)

reach-distk(p,o)

|k-neighborhood(p)| )

Finally, the LOF is the average of the ratio between the LRD of the neigh-

bors’ and the instance:

LOFk(p) =

∑
o∈k-neighborhood(p)

lrdk(o)
lrdk(p)

|k-neighborhood(p)|

LOF is a very common density-based metric and the scoring factor used

by many anomaly detection algorithms.
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LOCI

LOCI [40] is a nearest neighbor algorithm based on a metric called Multi-

granularity Deviation Factor (MDEF). MDEF is the relative deviation of its

local neighborhood density from the average local neighborhood density in a

r radius. The lower bound for MDEF is 0, meaning that the density around

the instance is the same of the neighbors. When MDEF is higher than three

standard deviations, the instance is flagged as an anomaly. In addition to

the anomaly score, LOCI is able to compute a LOCI plot for each oulier,

providing a visual description of the area surrounding it and the deviation

of values in the neighborhood.

ODIN

ODIN [49] is an example of a reverse nearest neighbor technique. ODIN

creates a directed graph with instances as nodes and edges connecting each

node to its k-neighbors. The number of nodes that have an instance as a

k-neighbor is the inverse of its outlierness score. This algorithm exploit the

asymmetricality of the k-neighbor relation to find which points are distant

from others without calculating the actual distance. Thanks to this ODIN is

an algorithm with low computational complexity. The downside of using a

count as the measure of outlierness is that it requires a rather large value for

k and a big dataset, otherwise the count would not be significantly different

between normal and anomalous data.

ORCA

ORCA is a successful distance based algorithm introduced by Bay [41]. Each

instance is considered in random order. LOCI keeps track of the nearest

neighbors for each point. When an instance is evaluated and its anomaly

score is found lower than a cutoff (the value of the lowest anomaly thus far),

every other instance that has the currently evaluated element as close neigh-

bor is removed from the dataset, because it can’t be an anomaly. The more

data is processed the more outliers are found, and the cutoff becomes higher,

thus pruning is more efficient. ORCA is able to overcome the computational

complexity limitation of nearest neighbor algorithms, and is near-linear.

However, the pruning strategy of ORCA is only effective if the algorithm

can find anomalies and update its cutoff value. If the dataset contains only

a few anomalies ORCA is not able to work efficiently and is near-quadratic.

16



PINN

An algorithm using concepts from spectral analysis to reduce the computa-

tional complexity of searching for the k-neighbors [45]. The data is projected

with a random projection to a reduced dimensional space. For each projected

instance, its neighbors in the projected space are computed. These are not

considered directly neighbors of the instance, but used as candidates to

prune other points. The true k-neighbors are searched in the original space

only within the candidate neighbors. Afterwards LOF or another nearest

neighbor metric can be used to score instances.

2.3.3 Clustering algorithms

Clustering algorithms assume that normal data is grouped in clusters while

anomalous points are isolated. These algorithms consist in applying a clus-

ter algorithm and searching for outliers in points which were not assigned a

cluster or that show low membership to their cluster. Some of these algo-

rithms can also recognize correctly the presence of clusters of anomalies.

Clustering techniques are similar to nearest neighbor techniques, sharing

some measurements like LOF and distance and density based concepts, but

instead of evaluating instances with respect to the local neighborhood they

evaluate using the assigned cluster.

CBLOF

Cluster-based LOF [54] is a scoring metric derived from LOF used after

applying a clustering algorithm. Depending on a user defined threshold,

clusters are considered small or large. For example, one may consider cluster

containing at least 90% of the data as large if only one cluster of normal

data is expected. The CBLOF is calculated for each instance as the size of

its assigned cluster multiplied to the distance to the cluster centroid (if the

cluster is large) or the distance to the nearest large cluster (if the cluster

is small). The distinction between small and large clusters allows CBLOF

to distinguish clusters of anomalies, however knowledge of the domain is

required to decide the correct value for the threshold between small and

large.

k-medoid and SVM

k-medoid [36] is a variant of k-means that uses as centroid for each cluster

the instance nearest to the mean point instead of the mean point itself.

Thanks to the robustness of k-medoid, this algorithm is highly accurate
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and its resulting normal cluster can be used to train a classifier for fast

recognition, for example a one-class SVM.

Fuzzy c-means

A variant of classic clustering algorithm k-means, instead of crisp member-

ship fuzzy c-means adopts fuzzy values for the membership of an instance

to the clusters [12]. Membership to a cluster is inversely proportional to

the distance to the cluster centroid, which is also a measure of outlierness.

The main issue of FCM is its slow convergence. Depending on the starting

position of the centroids the algorithm may take a long time to reach an

optimum. To improve FCM performance some variants were developed. We

present some of them [22]:

• SPFCM: Instead of applying fuzzy c-means on the whole dataset, it

partitions it and applies it separately on each subset, then uses the

average of the partial result to approximate the global one.

• rseFCM: Computes the cluster centroid only on a random sample of

the data.

• GOFCM: Variant of SPFCM, uses samples that progressively grow in

size, so that the algorithm uses big amounts of data only if needed.

• MSERFCM: Variant of rseFCM, uses a random sample of the data

to estimate the starting point for the centroid, to maintain rseFCM

speedup and the original accuracy.

2.3.4 Statistical algorithms

Statistical anomaly detection is based on measuring the likelihood that an

instance was generated by a certain distribution. Two main approaches can

be identified in this category: the distribution can be assumed or it can be

derived. If a distribution is already assumed or given statistical algorithm

are efficient and can give mathematically sound results. However real data

can always be represented by a traditional distribution. Derivation of a

distribution can be done to avoid relying on weak assumptions, however

the computation becomes intensive. These algorithms show their limitation

when processing high dimensional data, where computing a distribution is

computationally expensive, and assumptions rarely hold.
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Maximum Likelihood Estimation

MLE assumes a distribution for the data, and calculates the likelihood that

an instance was generated by that distribution. Various statistical tests like

Mahalanobis distance can be used to test the outlierness of an instance. If

we don’t want to assume a distribution, we can use regression to estimate

the model and its parameters. Robust regression in particular can be used

even in presence of anomalies in the training data [34].

Parzen windows

Parzen windows is a semi-supervised statistical algorithm [33]. A kernel

function is used to approximate a distribution from data. The algorithm

extracts a sample from a dataset of normal instances and we check the

probability that the log likelihood of our tested instance is inferior of the log

likelihood of the sample [10]. If the computed probability is lower than a

threshold (represents the false alarm rate that we want to accept) then the

instance is classified as an anomaly. This method can be slow, but doesn’t

require training time if historical data exist.

SmartSifter

A Gaussian Mixture Model (GMM) is a parametric probability density func-

tion represented as a weighted sum of many different Gaussian component

densities. The assumption is that the normal data is composed by a mix-

ture of different Gaussian distributions. An example of this approach is

SmartSifter, an on-line unsupervised algorithm based on GMM [23]. The

algorithm uses a variant of the Expectation Maximization algorithm [2] to

estimate the GMM and update its parameters at every new instance, dis-

counting the effect of past estimation. The difference introduced in the

model by each update is used as anomaly score.

Fuzzy Gaussian Mixture Model

Two algorithms based on GMM and fuzzy concepts were proposed by Ju and

Liu [56]. The main idea is to use Fuzzy c-means on different mixture models

instead of the full data with complex distribution. One of the following

dissimilarity measures is used for the FCM:

• Probability based FGMM: applies FCM using a dissimilarity function

composed by both distance and mixture weights. After clustering, the

mixture weights are updated using the distance from the centroids.
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• Distance based FGMM:another dissimilarity function which focuses

only on the distances between points and their component centers.

2.3.5 Information Theoretical algorithms

Information Theoretical algorithms measures outlierness of a point as the

complexity that it introduces in the description of the data. Several mea-

sures are available, the most common of them being entropy. These al-

gorithms are based on the hypothesis that outliers alter significantly the

information content of a dataset by adding elements not easily describable

within the underlying structure. Information theory measures are a good

alternative to statistics to measure the fit of an instance to the rest of the

dataset without having to assume a distribution. The choice of the mea-

sure is however critical: it must be sensitive enough to detect the change in

complexity induced by very few anomalies in very large datasets.

Local Search Algorithm

LSA is a fast information theoretical algorithm developed by He et al. [55].

The algorithm keeps track of a set of k candidate outliers, initialized ran-

domly. Every instance outside the candidate outlier set is exchanged with

every candidate outlier and for each exchange LSA calculates the change

in entropy of the dataset. If the entropy of the dataset decreased in some

of the exchanges, the instance originally outside the candidate outlier set

is inserted in it permanently and the candidate for which the best possible

decrease in entropy was computed is put in the normal data. The algorithm

goes on until every non outlier has been tested. The algorithm is near linear

in time with respect to data size and dimensionality, but it may not reach

a global optimum depending on the initial candidates chosen.

Lossless Compression

Lossless compression estimates the complexity of a dataset as inverse to the

size it can be compressed with [28]. The algorithm use a grammar-based

compression on the whole dataset to determine the baseline. Then for each

instance the compression size of the set obtained removing it is computed.

The difference, absolute or relative, between the overall compressed size or

the leave-one-out compressed size is used as the measure of complexity for

that instance. While this algorithm can achieve accurate results, it requires

the dataset to have an underlying structure suited to compression, which

limits its application to fields such as text analysis.
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2.3.6 Spectral Analysis algorithms

Spectral analysis is used to project data in a lower dimensional space that

shows more evidently anomalous behavior. It is mostly used as a prepro-

cessing technique before applying computationally intensive algorithms. In

some cases it is also used to enable visual detection of anomalies. An issue

with spectral analysis is the problem of proper representation of the charac-

teristics of the data: sometimes the reduced dimension space can represent

normal data very well, but not anomalies. The transformation adopted

needs to be one that conserves outlierness.

PCA

Principal Component Analysis is usually used to find the components with

highest variance as a preprocessing technique. In anomaly detection, one

possible approach is to use the components with the lowest variance, which

are the most sensitive to variations caused by outliers. Another variant,

PCC, uses Robust PCA to find both the highest and lowest variance com-

ponents and uses a threshold for each component to detect anomalies at a

given false alarm rate [26]. An issue of PCA based techniques is that multi-

variate anomalies which can only be identified by checking many attributes

may not be evident only on the principal components.

SVD

Singular Value Decomposition is another technique that derives the principal

components from the algebraic decomposition of the matrix containing the

data. An example of anomaly detection using SVD by Terrell et al. [21]

uses the principal components with the least significance, that are the most

significant to multivariate anomalies. A measure of sum of squared error

on these components is used as a test for anomaly. The SVD provides very

accurate results but is computationally expensive with respect to data size

and dimensionality.

2.4 Anomaly Detection in Spatial and Temporal

Contexts

As described in Section 2.1.1 contextual anomalies are instances that cannot

be considered anomalies with respect to the entirety of the data but only in

their context. Some of the algorithms presented in the previous section can

detect contextual anomalies as well as point anomalies, for example most
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LOF based algorithms can detect anomalous behavior with respect to the

neighborhood of the data point. However, in these algorithm the concept

of context is not well defined and is therefore generalized as the distance

computed from all attributes.

In the following sections we describe algorithm that better capture con-

textual anomalies by separating contextual and behavioral information. In

particular, we examine the cases where context is spatial, temporal, and

finally both spatial and temporal.

2.4.1 Spatial anomaly detection

Spatial anomaly is one of the most common examples of contextual anoma-

lies. The contextual attributes are generally two or three, usually longitude,

latitude and altitude, or analogue spatial coordinates. Two laws of geog-

raphy can help to understand some of the issues in handling spatial data:

first, according to Tobler’s First Law of Geography, “everything is related

with everything else, but near things are more related than distant things

”[47]. A second principle by Harvey states that geographical variables ex-

hibit spatial heterogeneity or heteroscedasticity, that is, data in different

spatial areas may have different distribution and variance [17]. For the

problem of anomaly detection, these laws imply that global approaches are

not suited, and local approaches are preferred.

SLOM

Chawla and Sun [38] propose a new outlier factor for spatial anomaly de-

tection. The algorithm computes nearest neighbors considering the spatial

contextual attributes of data.

A d(p,o) dissimilarity function is computed using only behavioral at-

tributes: the dissimilarity defines a non-spatial distance between an object

p and each of its o neighbors. Then the average d(p,o) is computed, exclud-

ing from the count of the average the neighbor with the highest distance to

avoid outliers to raise the scores of neighbors. A second measure β is com-

puted counting the number neighbors for which the d(p,o) is more than the

average minus the ones for which it is less than the average. SLOM is the

product of these two measures. SLOM avoids the problem of outliers con-

taminating nearby normal data, however if a normal point is near multiple

outliers their effect will still be considered. SLOM is therefore not optimal

in applications where anomalies form clusters of their own.
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AvgDiff

AvgDiff was introduced by Kou et al. [53] to further adapt nearest neigh-

bor techniques to spatial data. AvgDiff assigns different weights to different

neighbors. The weights are determined by spatial relationships such as dis-

tance and common border length. The anomaly score is obtained summing

the weighted difference between behavioral attributes values of neighbor y

and the instance x.

Mean and Median Algorithms

This algorithm [6] defines an attribute function that maps all non spatial

attributes to a single value. For each spatial point, after computing its k

nearest neighbors, the algorithm computes the neighborhood score as the

average of the normalized attribute function over the neighbors. Then a

comparison function is calculated as the difference between the neighbor-

hood score and the normalized attribute function result for the instance.

Finally compute the Mahalanobis distance between the comparison func-

tion and the mean value of the comparison function in the neighborhood. If

the distance is over a defined threshold, the algorithms signals an anomaly.

A variant of this algorithm is also proposed that uses the median of the

comparison function instead of the mean to be robust to outliers during

estimation of the center of the comparison function.

2.4.2 Temporal anomaly detection

Temporal context is usually represented by a single contextual attribute in-

dicating the timestamp or the ordering of events. As with spatial anomalies,

in temporal context elements near each other are assumed to have similar

behavior. Furthermore, instances in time series are ordered and can have a

cause-effect relationship. One of the issues of temporal anomaly detection is

that the assumption of staticity of the model does not hold. In other words,

the system may change behavior over time without being anomalous. This

particular case of temporal detection is called trend analysis or concept drift

[4].

CUSUM

CUSUM is a statistical analysis algorithm which monitors trend change

[32]. CUSUM maintains a cumulative value that updates at every time slot,

adding the current value of the controlled instance minus a weight, usually

the mean or likelihood of the instance. If the cumulative difference within a
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window of time exceeds a value, CUSUM raises an alarm. CUSUM is only

able to detect univariate anomalies. It is however a very simple and fast

algorithm for detection of trend change.

Contextual Collective Anomaly Framework

A framework for the detection of anomalies in distributed streams was pro-

posed by Jiang et al. [52]. The framework is divided in three phases:

1. Dispatching: receives observations and shuffles them in different down-

streams.

2. Scoring: scores instances. It is further subdivided in two different

phases:

(a) Snapshot scorer: calculates anomaly score of an instance based

on current information (assuming normal distribution, variance

and leave-one-out variance are used). A score for the snapshot of

the stream is also computed as the sum of individual instances

scores in that time slot.

(b) Stream scorer: incorporates temporal information into scores

by summing the current snapshot score with historical snapshot

score. The historical information is updated at every time slot

using the current score and discounting the previous one.

3. Alert: if the current score falls outside a window calculated with the

median of the dataset and the minimum anomaly score registered, the

stream is flagged as an anomaly.

dTrend

A statistical algorithm suited to detect anomalies in a network domain [46].

dTrend calculates probabilistic network statistics for each time slot. The

algorithm learns a linear segmentation on these statistics, which is used to

compute residuals for the tested instances. We can then choose a threshold

to decide how much can normal data deviate from the assumed distribution:

for example if we assume that the statistics follow a normal distribution, we

can set a threshold for detection using a p-value of 0.05. The choice of the

statistic used is critical for the computational complexity of dTrend. Note

that the statistics for dTrend are based on network graphs which may not

be a valid form of representation for many applications.
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mWMA

mWMA is a framework proposed by Ciocarlie et al. [16] for anomaly detec-

tion in a cellular network. The hypothesis of the authors is that because of

the varied nature of the variables measured in a mobile network, no single

method for time series analysis can be used to detect anomalies. Instead the

authors propose to use an ensemble of methods to evaluate different anoma-

lies, and weight the methods according to weights. Weights are based on the

precision of a method, according to expert knowledge of the problem, and

the age of the method computation. After weighing methods, an anomaly

is signaled according to the result of a majority vote of all the methods.

2.4.3 Spatio-temporal anomaly detection

When both spatial and temporal contexts are present, both need to be taken

into consideration simultaneously. Using the techniques discussed previously

can still yield some results, however they might miss complex anomalous

situation. The following algorithms are suited to find these complex cases.

STOUT

STOUT [51] is based on tensors, a generalization of vectors. A three-order

tensor with spatial, temporal and measurement dimensions is created from

the dataset. The algorithm identifies a base tensor to use as a benchmark

for normality using as elements the average values from a few sample bins.

Before searching for outliers the algorithm enriches the tensor by multiply-

ing it with the spatial and temporal contiguity matrices. These matrices

contain respectively the spatial and temporal relationship between each two

instances of the original data. This relationship is considered binary and

the values of contiguity are either 0 or 1 depending on whether the two in-

stances are within a certain distance of space or time between each other.

Next, the algorithm uses CANDECOMP/PARAFAC decomposition (which

decomposes the tensor into a sum of vectors) to obtain six vector contain-

ing the space, time and measurement values, one each for the baseline and

the current tensor. The difference of vectors indicate the regions where it is

possible to find outliers, reducing the search space. Finally STOUT perform

outlier detection in the narrowed space using neighborhood dynamicity (ra-

tio of measured distance between elements in the narrowed space and outside

the space). Where the value exceeds a threshold, the cell is an anomaly. The

information of the contiguity matrices manages to add spatial and temporal

context to the data without excessive computations.
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Cortical Learning Algorithm

Implementation of the Hierarchical Temporal Memory framework by Nu-

menta [30], a framework based on the functioning of the neocortex in the

human brain. Layers of neural networks represent information at various

granularity. CLA is based on three key concepts:

• : Sparse Distributed Representation: the information is codified using

only a small portion of the available pool of cells.

• : Context Recognition: Cells are grouped in columns that are trained

to represent the same input. Depending on the context different cells

in the columns are activated.

• Memory: Synapses between cells form and get reinforced to keep mem-

ory of previous patterns of activation and predict the next step.

The prediction method is also used as an anomaly detector: when an

element of a pattern is recognized, CLA predicts the cells that should acti-

vate in the next step. If the successive element is not recognized, instead of

the predicted cells the whole column is activated because no prediction is

available. The activation of a whole column of cells indicates a novelty.

HTM is composed by two sections named Spatial Pooler and Temporal

Pooler, the first of which models similar inputs to similar sets of columns,

and the latter captures context and sequential patterns in the data. The

framework and its implementations are therefore well suited to deal with

contextual spatio-temporal anomalies. In addition, to reduce false positives,

implementations of CLA keep track of the average error rate and consider

if an event is consistent with that or significantly different [31].

STCOD

STCOD is an algorithm developed by Wang and Wu [27] for detection of

outliers in sensor data. The main innovation of this algorithm is the ability

to distinguish between outliers generated by faulty readings and interesting

events. First, a self-detection phase is performed by every node. The simi-

larity between the current window of time and a previous one is computed.

If a node finds low similarity, it starts a collective detection phase. Each

neighbor of the candidate anomaly node checks if their previous window was

similar to the previous window of the candidate. If not, the neighbor votes

0, and if yes, the neighbor also performs a check on the similarity between

the current windows: if it finds them similar it votes +1, if not it votes -1.

After collecting all the answers, the outlier candidate is flagged as defective
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if the vote yields a negative result, while if the result is positive a collec-

tive anomaly is signaled. While the algorithm presented is intended to be

used in a sensor network, it can be easily adapted to any spatial context

by weighting the neighbors vote using Euclidean distance. The algorithm

is as such a contextual collective spatio-temporal anomaly detector. The

downside of this algorithm is that while it scores anomalies with respect to

temporal context (in the self-detection phase), it only labels them without

providing a measure of outlierness within the spatial context.

Outstretch

An algorithm proposed by Wu [14]. The algorithm begins finding the top

k spatial region with high discrepancy from their neighborhood, using a

variant of the Exact-Grid algorithm [3]. If two high-discrepancy regions

overlap on more than a user defined percentage of area, only the region with

the highest discrepancy is chosen. Afterwards the proper Outstretch algo-

rithm is applied to check for temporal anomalies: the algorithm verifies if

an anomalous region at current time falls within a stretched area around an

anomaly of the previous time period. A tree is built using these results, with

sequences of anomalies over the time represented with a child-father rela-

tionship between nodes. Note that an anomaly can fall in the stretched areas

of multiple anomalies and therefore have multiple fathers. Outstretch (with

Exact-Grid-k) has near quadratic complexity due to the high computational

cost of finding regions.

Fast Subset Scan

Fast Subset Scan is an algorithm developed by Neill et al [29], for spatio-

temporal discovery of disease outbreaks. The basic FSS procedure is to find

the most anomalous groups of contiguous locations within the same time

frame. To find these groups, for each examined time period FSS computes

a value called priority for each location, that describes the distance of the

location’s behavior from its expected one. The priority is not used directly

as anomaly score, instead it is used to order locations from the most likely

to be anomalous to the least likely. The main innovation of FSS lies in the

Linear Time Subset Scanning property, thanks to which it is possible to

find the most anomalous subsets of location in linear time by examining the

priorities of nodes in order from the highest to the lowest.

The first FSS algorithm was univariate and suited to gaussian or pois-

sonian counts of data. Since then Neill developed several extensions of FSS:

in [8] a multivariate extension of the FSS algorithm can analyze multiple
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streams of data related to the same location; [13] presents Fast General

Subset Scan, a variant of FSS that does not assume any specific distribution

and operates on categorical data.
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Chapter 3

Analysis of Multivariate

Spatio-Temporal Anomaly

Detection

In this chapter, we describe the goals of our research. We first explain in

detail why these goals are relevant to real-world applications. We present

the issues and difficulties related to achieving our goals. We then show the

performance of state-of-the-art algorithms on a real-world dataset. We give

a short analysis of the results of each algorithm and their adequacy for our

goals.

3.1 Research objectives

The aim of this work is to develop an algorithm or framework for anomaly

detection in the multivariate spatio-temporal domain. As a reference, we

remind the most important characteristics of this domain:

• Multivariate: the anomalies may be evident only when analyzing mul-

tiple attributes of the dataset, rather than a single one;

• Spatio-temporal: the anomalies may be distributed in both spatial and

temporal dimensions;

• Seasonal: the time series exhibit periodic behavior.

Other than detecting anomalies in the environment described above, our

goal is also to develop an algorithm that has the following properties:



• On-line: the anomalies must be detected as they appear, as soon as

possible;

• Actionable: the anomaly detector must report enough data concerning

the anomaly to be useful for identifying and correcting the problem;

• Novelty detection: the anomaly detector must be able to recognize

anomalies that did not occur in the past;

• Scalable: the anomaly detector must be able to work on large quanti-

ties of data and terminate in reasonable time;

• Distributed: the anomaly detector must be ready to operate in a dis-

tributed environment.

A more detailed description of each of these properties follows; we also

describe the difficulties that these properties add to the task of anomaly

detection, and why these properties are of interest in real-world applications.

3.1.1 Multivariate analysis

Dataset composed of many correlated attributes or features are common

in real world application. Traditional time series anomaly detection algo-

rithms such as CUSUM or STCOD analyze only one feature of the dataset.

While many anomalies may be detected by analyzing a single feature, other

anomalies might affect multiple features without being evident in a single

one. In this situation the analysis must be performed on multiple features at

once. Univariate analysis also does not account for the possibility of features

being correlated to each other; this information could be used, for example,

to predict the behavior of a feature by analyzing other correlated features.

Extending a univariate analysis to a multivariate one can be a complex

problem. Firstly, each additional feature increases the execution time of

the algorithm, and in general the increase is not linear with respect to the

number of added features: this is the so called ”curse of dimensionality” [5].

It is therefore necessary to extend univariate approaches while keeping low

time complexity, if possible linear or constant with respect to the number

of features. Secondly, multivariate data is often heterogeneous; when types

of features are different the analysis needs to rely on techniques that are

general enough to be applicable to every data type involved. Other than the

data type, different features may be differently distributed, or have different

semantic (for example only positive are meaningful, only integer etc.).

In anomaly detection we also have the additional problem of identifying

what is an anomaly in the domain: this is especially hard when dealing
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with multivariate data, because characterizing anomalies involving multiple

features may not be intuitive and in most cases visualization approaches

can’t be used with high dimensionality.

Finally, in multivariate data some features may not be available as fre-

quently as others due to coming from different sources, leading to missing

data concentrated in some features. The strategies for dealing with missing

data in multivariate sets need to account for correlation between features.

3.1.2 Spatio-temporal analysis

We recap here some characteristics of spatio-temporal anomaly detection.

The contextual nature of spatio-temporal anomalies is the most prominent

characteristic of this domain of anomaly detection. When analyzing spatio-

temporal data, we need to consider each value in comparison to its spa-

tial and temporal neighborhood. Algorithms dealing with spatio-temporal

datasets are well suited to parallelization since data is already spatially dis-

tributed.

3.1.3 Seasonality

Seasonal time series present an almost periodic behavior. This adds another

layer of context on top of spatio-temporality, since a value may be normal

or anomalous depending on the period of time it occurs. Seasonality can be

dealt with in different manners. It is possible to remove the seasonal compo-

nent of the data, a process called deseasonalization, and perform the analysis

only on the underlying trend. Another approach is to compare to each other

values related to the same period. In this work we use the method of simple

average to memorize for each period the mean and standard deviation of the

features and other parameters. A possible issue arising with seasonality is

that the periodicity of the time series may not be known beforehand, or the

series might be affected by unknown periodic phenomena on top of known

ones.

3.1.4 On-line

Many anomaly detectors operate on datasets that are completely available

at the start of the analysis, and cannot update their results when more data

arrives without executing the whole algorithm anew. This is the case, for

example, of most techniques based on nearest neighbor or STOUT. There

are many situation in which this kind of analysis is not enough because we

need to process streams of data and we need to analyze new values as soon as
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they arrive. On-line algorithms analyze streaming data at regular intervals,

usually at each new arrival of data, therefore are subject to strict limitations

in time complexity. Each new value should be processed approximately in

the same time to ensure that the execution of the algorithm terminates

before the next arrival of data.

3.1.5 Actionable

Knowing that an anomaly occurred is usually not enough information for

most applications. Providing additional information about the anomaly is

required to intervene, however it is not a trivial task, since it requires the

algorithm to distinguish the relevance of a piece of information. This also

implies that the algorithm may not be able to know in advance what kind of

information can be discarded or should be kept for later decisions, increasing

the memory requirement. Knowledge of the domain can be exploited to

define beforehand which kind of information is relevant.

3.1.6 Novelty detection

Novelties are hard to detect because they can’t be matched against a ”black-

list” of anomalies identified in the past and their behavior is entirely unex-

pected. To detect novelties the anomaly detector must compare the behavior

of the system to a baseline normal behavior instead of searching for anoma-

lous patterns. In unsupervised algorithm defining the baseline is a difficult

task. In these applications a model of expected behavior is built using ex-

pert knowledge of the domain and deriving it from training data using robust

techniques.

3.1.7 Distributed execution and scalability

Spatio-temporal data is inherently distributed in space. Algorithms that are

able to exploit this property using parallelization can considerably reduce

their computational time, an important optimization for achieving timely

on-line results. In addition, distributed computation may allow for an early

response based on local results without having to wait for the termination

of the whole algorithm. Scalability is another important property of algo-

rithms dealing with spatio-temporal datasets, usually high in dimensionality

and with many records. Distribution and parallelization can improve dra-

matically the scalability of an algorithm.
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3.2 Application of state-of-the-art techniques

We present and examine in depth state-of-the-art algorithms for spatio-

temporal anomaly detection. We focused on algorithm that satisfied most of

the characteristics of our problem: as such we considered algorithms able to

analyze both spatial and temporal features, with low time complexity. The

considered algorithms, STCOD, MFSS and STOUT were implemented and

tested on our data: we detail here the procedure followed by each algorithm

and analyze the results.

Structure of the data

The subject of our analysis is an unlabeled dataset containing measurements

of five features that describe the quality of a mobile network. Each feature

has been measured hourly over the span of a month in roughly 6500 loca-

tions distributed in the region of Piemonte. These locations are identified

by a code and values of longitude and latitude. We simplified our data by

aggregating locations that have the same values of longitude and latitude.

We refer to these aggregated locations as nodes. Data for each node is aggre-

gated by averaging for all features the values related to locations represented

by that node.

The five features that describe the quality of the network are the behav-

ioral attributes of our task, and can be divided into two categories:

• Three of them (Network Effectiveness Rate (NER), Call Drop Rate

(CDR), Handover Rate (HO)) measure characteristics of the voice ser-

vice, and are numerical values going from 0 to 100 (percentages). The

distribution of these attributes is not normal and the vast majority of

the instances assume the same value (0 or 100).

• Two of them (Erlang High Speed (HS) and Throughput (THP)) mea-

sure characteristics of the data downlink service, and are non neg-

ative numerical values. These values are approximately gaussianly

distributed.

The dataset is not complete, as there are several missing values. Since

the following algorithms cannot deal with missing values, the dataset was

completed before testing. In each node, the missing values were imputed us-

ing a linear regression model computed from the non-missing values directly

preceding and succeding the missing one.
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3.2.1 STCOD

STCOD is an algorithm developed by Wang and Wu [27] for detection of

outliers in sensor data.

STCOD procedure

In STCOD, each sensor is represented by a node in a graph, where the

connections in the graph indicate the neighbors of that node. In our imple-

mentation, instead of using a graph, we consider neighbors of a node i the

nodes that are the first k nearest neighbors of i, using as measure of distance

the euclidean distance between the coordinates of the nodes.

The first phase of STCOD is performed by every node separately, and

consists in an univariate on-line anomaly detector that uses sliding windows

to decide whether the node is anomalous.

Definition 1 Given node i and time t, given xi(t) the value of the node i

at time t, given ∆t the size of the sliding window; the sliding window Wi(t)

is defined as:

Wi(t) = {xi(t−∆t+ 1), xi(t−∆t+ 2), ..., xi(t)} (3.1)

The current window Wi(t) is compared with the previous window Wi(t-

1). These two windows are used to compute a self-similarity measure, the

correlation.

Definition 2 Given two sliding window Wi(t1) and Wj(t2); the correlation

between the two windows is defined as:

corri(t1),j(t2) =
Wi(t1) ·Wj(t2)

‖Wi(t1)‖22 + ‖Wj(t2)‖22 −Wi(t1) ·Wj(t2)
(3.2)

‖Wi(t)‖22 = |xi(t−∆t+ 1)|2 + ...+ |xi(t)|2 (3.3)

The correlation is compared to a threshold thr: nodes with corri(t),i(t−1) <

thr detect a change in the current behavior with respect to the past, and

flag themselves as candidate anomalies at time t.

The second phase of STCOD is performed only by the candidate anoma-

lies. It is not necessary for all the nodes to have finished the first phase.

Each candidate anomaly i requests from its neighbors a collective check via

a similarity voting. For the voting procedure, each neighbor n computes

corrn(t−1),i(t−1), the correlation between the window Wi(t− 1) of the candi-

date node and the Wn(t− 1) of the neighbor. corrn(t−1),i(t−1) is then com-

pared to the same threshold thr. If the similarity of the previous windows is
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found higher than the threshold, then the correlation between the candidate

and the neighbor at time t is computed. This correlation corrn(t),i(t) is com-

pared again to threshold thr. Using this three comparison, each neighbor

provides a vote as following:

voten =


0, if corrn(t−1),i(t−1) < thr;

−1, if corrn(t−1),i(t−1) > thr and corrn(t),i(t) < thr;

+1, if corrn(t−1),i(t−1) > thr and corrn(t),i(t) ≥ thr.

(3.4)

Informally, a vote of 1 signals that the node and its neighbor remained

correlated even during an anomaly event; -1 signals that the node was corre-

lated to its neighbor before the anomaly but its current anomalous behavior

is isolated. Finally, 0 signals that the two neighbors were not correlated in

the past, therefore the vote does not sway the result.

The answers of all the neighbor nodes are then summed by the candidate

node i. If the result is negative or zero, the node is flagged as an outlier; if

the result is positive, the node is flagged as an anomaly.

Results of STCOD application

The algorithm was applied separately on the features of the dataset, since

STCOD is a univariate anomaly detector.

The parameters of STCOD that require manual setting are: the window

size ∆t, the threshold thr, the number of nearest neighbors k. In our imple-

mentation, we separated the threshold in two, the self-similarity threshold

thrself and the neighborhood threshold thrneigh. To set the thresholds for

the analysis, we estimated a small quantile of the various correlation com-

puted by STCOD and the thresholds that correspond to those quantiles.

These computations showed us that the distribution of the values of corre-

lation between oneself and other neighbors are very different. Figures 3.1

and 3.2 show the distributions of the two correlation measures. The graph

of the correlation between a node and its neighbor in the previous slot is

omitted: it is very similar to figure 3.2.

Running the algorithm on the first week of the HS table of the data,

a large number of anomalies are found. In every time frame at least three

nodes are always found anomalous.

Since STCOD does not provide a measure of the level of anomaly, we can

only measure the general condition of the network by counting the number

of anomalies in each time slot. The results are shown in picture 3.3. The

plot shows that peaks of anomalies are present during week 1. The time
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Figure 3.1: STCOD, correlation between Wi(t) and Wi(t − 1); the graph shows high

correlation between a node and its recent past.

Figure 3.2: STCOD, correlation between Wi(t) and Wn(t); the graph shows low cor-

relation between a node and its neighbor.

frames in which peaks are found are coherent with analysis of variance in

the data.

It is also interesting to note that the number of anomalies appears to

be periodic. This happens because STCOD does not make any adjustments

for the fact that during periods where the absolute value of the feature is

higher, the standard deviation is also higher.

We note that the algorithm only returned results as anomalies, and didn’t

flag any outlier.
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Figure 3.3: STCOD, number of anomalous nodes found over week 1; peaks correspond

to high level of variance in the data; note the smaller bumps corresponding to daytime

periods.

Observations on STCOD

We first observe that the correlation measure appears to be sensitive to the

absolute value of the feature: as such, for periodical data, during the periods

of high value, the correlation signals more anomalies. This makes STCOD

unsuitable to seasonal data.

A deeper issue of STCOD lies in its underlying assumption that nodes

should always behave in very similar ways. The fact that different nodes

are assumed to behave similarly is particularly evident since the algorithm

utilizes the same measure to compare a node to itself, and to compare a node

to a neighbor. In fact, in the original formulation the same threshold is used

to compare different nodes and the same node in different thresholds. As

can be seen by the distribution of the values of correlation, this assumption

clearly does not hold.

3.2.2 Fast Subset Scan

Fast Subset Scan is an algorithm developed by Neill et al [29], for spatio-

temporal discovery of disease outbreaks. The main innovation of FSS lies

in the Linear Time Subset Scanning property. Neill gave proof that, if a

function satisfies the LTSS property, it is possible to find the most anomalous

subsets of data in linear time instead of exploring every possible subset,

which would require 2N time for N data points.

Neill developed several variations and improvements of the first FSS al-
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gorithm. In [8] a multivariate version of the same algorithm is presented,

which we will refer to as MFSS. In [13] a general FSS algorithm, FGSS,

which does not make assumptions on the distribution and considers sea-

sonality is presented for categorical data. We implemented a variation of

the multivariate FSS that also applies the corrections for seasonality of the

FGSS algorithm.

As a first step we report here the definition of the LTSS property as

described by Neill in [29].

Linear Time Subset Scan property

Let D = {R1, R2, ..., RN} be a dataset containing N data records, and S

be a subset of D, S ⊆ D. Let F(S) be the score function, a mapping from S

to a real number we will call score of S. Let G(Ri) be the priority function,

a mapping from Rt to a real number, the priority. We indicate with the

notation R(j) the record in D with the jth highest priority. We can now

define the LTSS property:

Definition 3 Given a set D, the score function F and the priority function

G satisfy the LTSS property if and only if:

maxS⊆D{F (S)} = maxj=1..N [F (R(1), ...R(j))] (3.5)

The LTSS property allows us to only examine N subsets of records and

guarantees that no other subset has higher score than them. This is accom-

plished simply by sorting the records by their priority and applying F to the

first record, then the first two records, and so on. In case we are interested

in more than the N most anomalous subsets, it is sufficient to repeat the

procedure without including the records with highest priority already con-

sidered. Even in this case the procedure is optimized, since it would require

examining at most N2 subsets instead of 2N .

FSS Procedure

The priority of each record is computed via the priority function G. The

records are ordered from the one with the highest priority to the one with the

lowest, and the F function is applied to the subsets composed as described

in the LTSS property. We can choose to signal subsets with score higher

than a threshold or choose a specific number of subsets with the highest

priority.
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There are several statistics that satisfy LTSS and can therefore be used as

F and G; the choice of these statistics depends on the assumed distribution

of the data.

We show here the procedure described in [8], however instead of the EBP

statistic we use the EBG and Gaussian statistic described in [29].

For the univariate EBG, the following parameters are introduced: given

a spatial location si in a subset S of the total locations, and given xi, µi,

and σ2i respectively the value, historical mean and historical variance of a

feature:

CS =
∑
si∈S

xiµi
σ2i

(3.6)

BS =
∑
si∈S

µi
σ2i

(3.7)

G(si) =
xi
µi

(3.8)

F (S) =
(CS −BS)2

2BS
(3.9)

Another statistic, assuming Gaussian distribution (for increased counts):

CS =
∑
si∈S

(xi − µi)2

σ2i
(3.10)

BS =
∑
si∈S

σ2i
σ2i

= |S| (3.11)

G(si) =
(xi − µi)2

σ2i
= Csi = Z2

i (3.12)

F (S) =
1

2
(B log(

B

C
) + C −B) (3.13)

3.2.3 MFSS procedure

In [8] strategies for extending the application of these statistics to the mul-

tivariate state are presented. In this work we apply the Subset Aggregation

strategy scanning over location. For each couple of nodes and features, cim
and bim are computed with the formulas seen above for CS and BS , with S

= {si} and xi the value of the considered m feature.

These values can be aggregated by feature, resulting in Ci =
∑
m
cim, or

by location, resulting in Cm =
∑
i
cim. The same applies for Bi and Bm.
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In this work, we consider the aggregation derived by using all the feature

values, Ci.

The FSS search procedure is then applied by computing C and B as the

sum of the Ci and then applying G and F.

In this work we modified the algorithm so that the baseline values µ and

σ are computed and used depending on the hour under examination.

Results of MFSS application

We applied MFSS using both the EBG and Gaussian formulas, over the

NER, CDR and HO data which can be interpreted as counts of anomalous

events.

The MFSS algorithm does not require any parameter. We tested MFSS

on our data to find the top 3 clusters of anomalies in each hour. Results are

shown in 3.4

Using the Gaussian measure, the result of the MFSS showed a varying

number of anomalous nodes anomalous. We note that the anomaly score of

the resulting clusters varies over time from a minimum of 69 to a maximum

of 1014. This makes it almost impossible to determine a significant threshold

to accept a report as anomaly. We instead plot the number of different nodes

that appear anomalous for each hour.

Figure 3.4: MFSS, number of unique anomalous nodes found over week 1, using NER,

CDR and HS.

Using the EBG measure, all nodes are found anomalous over the whole

week.

We also report the application of MFSS on the HS feature, which is

normally distributed, using EBG statistic. Figure 3.5 shows the anomalous
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nodes in the top 3 clusters for each hour.

Figure 3.5: MFSS, number of unique anomalous nodes found over week 1 using HS.

Observations on MFSS

The statistics used in the FSS algorithms rely on count data. This is a

problem in many application domains, including ours, where measures are

continuous values and the count of anomalous events is not available.

The main issue of the FSS algorithm is that the final score has no pre-

dictable upper limit. When the results of the algorithm are the most anoma-

lous cluster within each hour, this is not a problem, since score within an

hour are comparable to each other. However, comparing scores computed

in different hour is impossible because of the huge differences in scores. Fur-

thermore since we cannot predict how high the scores can become until the

end of the algorithm, we cannot define a threshold to distinguish anomalous

clusters from normal ones. For example, it is unclear from figure 3.5 which

clusters represent an anomaly. A possible interpretation would be that dur-

ing the first part of the week there were very few anomalies compared to

the second part of the week. Another interpretation would be that during

the first part the found nodes were so anomalous that they were constantly

the top anomalies, while the high number of different anomalies in the sec-

ond part of the week simply indicates there is no distinct anomalous data.

Without a clear meaning of the scores, neither interpretation can be auto-

matically discarded. The possibility of conflicting interpretation shows that

FSS requires human analysis, which makes it unfeasible for on-line applica-

tions.
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3.2.4 STOUT

STOUT [51] is a multivariate spatio-temporal detector that operates off-line

on tensors, multi-dimensional arrays.

STOUT procedure

In our application we provide to STOUT a tensor of three dimensions: the

spatial coordinates, the considered hours and the features.

The first operation of STCOD is binning of data in slices containing

equal number of hours sizebin. In our implementation slicing is done over

the time dimension: therefore the dataset is divided into numberofhours
sizebin

bins.

After binning, a base tensor representing the normal behavior of the system

is computed by randomly sampling a sizesample number of bins from the

dataset. These bins are then averaged to compute the base tensor that will

be compared to the others.

The spatial and time contiguity matrices that represents if two points

of data are close in space or time are computed: we first compute the time

distance matrix as the Manhattan distance between the timestamps of each

couple of hours; the spatial distance is the euclidean distance between the

the coordinates of every couple of nodes. The distance matrices are com-

pared to two previously defined thresholds, the spatial contiguity threshold

thrsp,contig and the time contiguity threshold thrt,contig. The couples of nodes

that are found to be less distant than thrsp,contig are flagged as contiguous

in the spatial contiguity matrix by flagging their comparison with a 1, while

other couples have their flag set to 0. The same process is repeated with the

time distance matrix to generate the time contiguity matrix.

The base tensor is then decomposed using CANDECOMP/PARAFAC

decomposition [19] in several rank one tensors (vectors). The CANDE-

COMP/PARAFAC decomposition of each bin is also computed. The differ-

ence between an analyzed bin i and the base bin is then computed with the

following formula:

diffsp = (λbase ∗ Sbase)− (λi ∗ Si)difft = (λbase ∗ Tbase)− (λi ∗ Ti) (3.14)

We now compare diffsp and difft to thrsp and thrt, two thresholds for space

and time respectively. Bins that have differences higher than the threshold

are distant from their spatial and temporal neighbors; we score these beins

with a measure called neighborhood dinamicity.

Definition 4 The Neighborhood Dinamicity β is the measurement distance

within the spatio-temporal neighborhood divided by the measurement distance

outside of the neighborhood.
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Let Si be the set of all nodes whose difference from the baseline is higher

than the chosen threshold. Let Tj be the set of all hours in the current

bin whose difference from the baseline is higher than the chosen threhsold.

Let Cs be the set of nodes contiguous to an element of Si; Ct is the set of

contiguous hours of the element. For each node and for each hour in Si and

Tj respectively, calculate β as:

β :=

∑
s∈Cs,t∈Ct

dist(vst)∑
s/∈Cs,t/∈Ct

dist(vst)
(3.15)

If β is over a predefined thrβ, the (i,j) node is considered anomalous during

hour j.

Results of STOUT application

For STOUT, the parameters that need to be chosen are: the sample size used

to compute the base tensor; the size of a bin; the thresholds in space and in

time for two values to be considered contiguous, thrsp,contig and thrt,contig;

the thresholds in space and in time for which the distance between two

contiguous values is too high, thrsp and thrt; the threshold of acceptance

for an anomaly thrβ.

The STOUT algorithm was tested on the dataset after deseasonalizing

it. The reason for the deseasonalization is that data with seasonality leads

to wrong results depending on which bin is randomly sampled. We also

used only a small subset of nodes for this tests because of high memory

requirements of STOUT.

To determine the values to use for the thresholds, we find the cumulative

distribution of these values and compute their 5th and 95th percentiles.

The algorithm showed varying results depending on the selected thresh-

olds, where even small changes in the thresholds can change the results

from no anomaly found to most nodes found anomalous. For some thresh-

old values the algorithm did not terminate. In addition, even with the same

parameters the resulting anomalies changed in successive iteration because

of the random binning strategy.

Observations on STOUT

The main issue of STOUT is the unpredictable execution time derived from

the random binning. Testing of STOUT resulted in execution times varying

from seconds to minutes, and in several cases the algorithm did not termi-

nate. We believe the cause of this issue is that STOUT assumes the bins to
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Figure 3.6: STOUT, distribution of the geospatial distance for contiguity.

Figure 3.7: STOUT, distribution of the temporal distance for contiguity.

be selected from normal data, and data being more or less constant in time.

If the bin that is randomly selected is not similar to the majority of other

bins, the execution times increase significantly because of the necessity to

examine more couples of location and time for anomalies. The STOUT algo-

rithm also cannot perform well with seasonal data, since it assumes there is

a single baseline bin that is valid during the entire duration of the algorithm

execution.

STOUT has high requirements for memory usage, since the distance

matrix over all the dataset is needed. This is unfeasible for high numbers of

nodes, in our case STOUT would have required 50 TB of memory space to

compute the spatial distance matrix for all the dataset.

Other minor issues of STOUT were shown: firstly, STOUT is inherently
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off-line, needing the whole tensor to operate. Secondly, STOUT requires

many thresholds that need to be set by the user.

3.2.5 Conclusions on state-of-the-art algorithms

The analysis of state-of-the-art algorithm showed that no algorithm can

guarantee all our desired properties when applied to multivariate spatio-

temporal data similar to our own.

In particular, we recap the main issues found for each algorithm:

• STCOD is able to detect major anomalies but is sensitive to seasonal-

ity of the data. Furthermore, STCOD does not provide an indication

on which nodes are subject to the same anomaly, and doesn’t score

anomalies. Finally, it assumes that the behavior of the system is sim-

ilar in all nodes and stable throughout time.

• FSS provides a valid framework for fast detection, but its statistics are

not applicable to our data. Furthermore, the scores assigned by FSS

are not useful to distinguish anomalies from normal results.

• STOUT is the directly applicable to multivariate spatio-temporal data,

but its high memory requirement and its unpredictable execution time

makes it unfeasible even for medium-scale problems. Furthermore,

STOUT cannot operate on-line and is hard to tweak because of the

many thresholds it uses. Finally, its random binning strategy makes

it unsuitable for seasonal data and makes its results not repeatable.
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Chapter 4

Multivariate

Spatio-Temporal Anomaly

Detection using Fisher’s

method

In this chapter, we describe our solution of the anomaly detection problem

faced in this work. First, we provide an overview of MuSTF, the extension

of the Fast Subset Scan framework we developed to solve our problem. We

then focus on the most important procedures of the algorithm such as: (i)

generating univariate p-values from each value in the dataset; (ii) generating

a multivariate anomaly score for a node, using new score and priority func-

tions; (iii) searching the most anomalous clusters of nodes in the dataset.

4.1 Extending Fast Subset Scan

We developed a new algorithm based on the FSS approach that adopts new

priority and score functions; these functions solve the two main limitations

of the FSS approach: firstly, none of the statistics used by the FSS family

of algorithms is applicable to continuous data types; secondly, the priority

associated to a cluster is only comparable to priorities relative to the same

hour.

Our algorithm MuSTF (Multivariate Spatio-Temporal Anomaly Detec-

tor Using Fisher’s method) processes a set of nodes; each node represents a

different location identified by longitude and latitude, and is characterized

by five time series of hourly measurements collected over the span of one



month: each series represents a feature of the network in that location.

During a preliminary training phase, the algorithm uses historical data

to learn the baseline behavior of the system. The algorithm also computes

the neighborhood of each node, which is the set of nodes nearest to its

position, using as metric the euclidean distance between their coordinates.

After the training phase, the algorithm operates on-line. Each iteration of

the algorithm examines data relative to an hour, in order from the first to

the last hour in the dataset. During an iteration, the algorithm executes the

following steps:

• A new value arrives for each feature of a node. Using the new value

and the parameters learned during the training phase, several p-values

are computed as univariate anomaly scores of that feature.

• The univariate scores of each feature are combined into a single p-value

using Fisher’s method with weighted priorities. The result is used to

compute the multivariate anomaly score of that node.

• After a score has been computed for every node, the algorithm searches

for clusters of high scoring nodes in each spatial neighborhood. Each

search reports clusters as anomalous if their cluster score is higher

than a threshold chosen by the user.

• Nodes that are members of many anomalous clusters are considered

anomalous.

The graph in figure 4.1 describes the high-level flow of the algorithm.
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Figure 4.1: General schema of the process.

4.2 Univariate node scoring

In the FSS family of algorithms, the priority is a value representing the

anomaly score of a node or feature, and is computed from the count of

anomalous events and its difference from the baseline, which is the expected

count of anomalous events.

In our algorithm we keep using the deviation from the baseline to com-

pute an anomaly score, however we use the p-value of the deviation instead

of the absolute value of the deviation.

Definition 5 The p-value is the observed probability of a statistic being at

least as extreme as the particular observed value when H0 is true.

If Y = u(X1, X2, ..., Xn) is the statistic used to test H0, and the observed
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value d = u(x1, x2, ..., xn), the p-value of d is:

p−value(d) =


Pr(Y ≥ d|H), for measure of right tail event;

Pr(Y ≤ d|H), for measure of left tail event;

2×min(Pr(Y ≥ d|H), P r(Y ≤ d|H)), for measure of double tail event.

(4.1)

Equivalently, if FY is the cumulative distribution function of Y when H0 is

true, the p-value of d is equal to FY (d).[35]

We can compute the anomaly score of a feature by noting that it is high

when the p-value is low. Formally, the anomaly score given a single p-value

is the complement of the p-value.

Using the p-value has a series of benefits over the previous methodology.

Firstly, the p-value is limited between 0 and 1. Secondly, the p-value has a

well-defined interpretation, allowing us to understand the result. Thirdly, if

the null hypothesis H0 is valid and the assumed distribution is correct the

p-value is uniformly distributed [11]; this allows us to evaluate the validity

of our assumptions by checking if the distribution of p-values is uniform

during training phase.

To calculate the p-values related to a value we need to know the distri-

bution function of each feature. However in general we don’t know these

functions beforehand, so we can’t directly compute the p-values. Further-

more, since different features will be differently distributed we need to have

different ways to compute p-values for each feature. For these reasons, in-

stead of assuming a specific distribution function for a feature, we use several

methods to compute p-values according to different null hypotheses. All hy-

potheses assume that data is not anomalous.

4.2.1 Computing p-values

The first method used in this work is the lagged first seasonal difference,

which is the deviation of the observed trend of a feature from its seasonal

trend; the lag is the time interval over which the trend is computed. Consider

the case of observed values x(t−n, t−n+1, ..., t0) and seasonal data x̃(t−n,

t−n+1, ..., t0). The lagged first seasonal difference, with lag i, is defined as:

∆i = (x(t)− x(t− i))− (x̃(t)− x̃(t− i)) (4.2)

For example, ∆1 indicates if in the last hour the feature increased or de-

creased faster than expected. Computing ∆i with a small lag we measure

fast changes in trend with low delay, while higher lags detect persistence
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of a trend change. In our work we compute several of these measures with

different lags to check for anomalies of various durations. To compute a

p-value from the lagged difference, we note that its values appear normally

distributed with mean 0 for all our features, allowing us to obtain the p-value

by computing the z-score, the number of standard deviation from the norm

of the lagged difference. The standard deviation of the lagged difference is

learned during training phase.

We also use the current seasonal difference x(t) - x̃(t) to measure de-

viation from the norm regardless of the past behavior. For features that

are normally distributed, we can simply compute the z-score of the seasonal

difference and compare it to its standard deviation, learned during training.

A more general approach that does not assume a particular distribution is

to learn the empirical cumulative distribution function of the feature dur-

ing training. We can then use the empirical CDF to directly calculate the

p-value according to definition 5, since for example p-value(x) = Pr(X ≤ x)

= FX(x), for left tail events.

Finally, we use regression to compute models of the time series. To

compute this models, we apply ARIMA regression on windows of past values.

We can then check the fit of a new value by comparing it to a forecast value

and using the confidence intervals of the forecast to estimate the p-value of

the new value.

Each resulting p-value measures the deviation of the value from the norm

under different assumptions. Since we don’t know how well each assumption

fits our case, we estimate the validity of each method of computing p-values

on every couple of feature and node by examining the distribution of p-values

obtained during training phase, which should be uniform if the method

assumption holds.

4.2.2 Weighted priority

In our work we use the p-values to measure the probability of occurrence

of a value; the p-values should then be compared to reach a decision of a

node being anomalous or not. However, directly comparing p-values would

ignore the information regarding their accuracy. As in the FSS framework,

the comparison between different nodes and features is done by computing

a priority for each of them, which represents its anomaly score.

We now introduce the priority function that is used to generate a priority

from the previously computed p-values. As a preliminary definition, we call

unweighted priority P the complement of a p-value, thus P(d) = 1 - p-

value(d).
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Definition 6 Let Di be a number between 0 and 1, called the default priority

of i. Let Pi be the unweighted priority we want to weigh. Let wi be the weight,

a number between 0 and 1 we use to weigh P. The weighted priority W(Pi,

wi, Di) is:

W (Pi, wi, Di) =

1− Y − (Y − 1 + Pi)× |Di−Pi|
Di

1
wi , if Pi < Di;

1− Y − (Y − 1 + Pi)× |Di−Pi|
1−Di

1
wi , else.

(4.3)

Y = [(Di − Pi)
1
wi + 1−Di] (4.4)

Informally, the weighted priority is a function that changes the value

of the unweighted priority so that it is closer to the default priority, in

proportion to the given weight. An example can be seen in figure 4.2. For

wi = 1, the weighted priority is equal to the unweighted priority Pi, as can

be seen in figure 4.3. For wi = 0, the weighted priority is equal to the default

priority D, as can be seen in figure 4.4.

Figure 4.2: Weighted priority, weight 0.5, default 0.7; higher weight modifies more the

priority towards the default

The weight of a p-value represents our confidence in using that p-value

to reach a decision: if a p-value has low weight, we want it to have less

influence on our decision when compared with others. The default priority

represents a value of priority that does not sway our decision either towards

accepting normality or anomalousness.

In the following section we describe the procedure used to estimate the

weight of each method of computation of p-values.
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Figure 4.3: Weighted priority, weight 1, default 0.7; for max weight the priority remains

unchanged

Figure 4.4: Weighted priority, weight 0, default 0.3; if no confidence is given to the

priority, it’s automatically brought to the exact default value, which indicates no decision

4.2.3 Weighing methods of computation of p-values

During the training phase, we compute the p-values of all features in every

hour with the methods described before.

After we have all the p-values obtained by applying a method to a feature

we analyze the probability density of the p-values: if the probability density

is not uniform the results of a method need to be adjusted. To do so, we

compute the weighted priority from all p-values using standard values for
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weights and default priority. To find the optimal weight, we check how

many of the computed priorities are over the anomaly threshold or not, and

decrease the weight or increase to shift the distribution function to the left

or right of the threshold. For example, when setting an anomaly threshold of

0.05, we expect that 5% of the p-values would be under the threshold: if we

find more than 5% of p-values under the threshold, we decrease the weight

of the node. We repeat this process until the error around the anomaly

threshold is low. By doing this, we change the distribution of the weighted

priorities so that it is approximately uniform in the critical area around

the threshold. In figure 4.5 and 4.6 we show an example of the initial and

final priority CDFs. After weighting the p-values we can directly compare

priorities computed from different methods.

Figure 4.5: The blue points are the cumulative distribution function of the p-values.

The red areas represent the false positive (on the right) and the false negatives (above),

while the green area represents the true positives.
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Figure 4.6: The graph shows that decreasing the weight changed the distribution func-

tion of the weighted priorities, making it almost uniform in the area of interest. Note

that the area in white is not of our interest and does not influence the result of the

decision process.

4.3 Multivariate node scoring

For each feature measured on a node, we have computed several p-values

and weights associated to them. We also introduced the priority function

that weighs p-values according to their accuracy. To compute a single score

from multiple values, we use the score function, as in the FSS framework.

In MFSS the multivariate score function was the sum or average of the

univariate priorities. Unlike statistics based on counts however, our priorities

cannot be summed or averaged meaningfully because they are based on p-

values. Instead, we use a method proposed by Fisher in [1] to combine

multiple p-values into one.

4.3.1 Fisher’s method

Definition 7 Let S be a set of p-values, computed independently under the

same assumption H0. Fisher’s method is the function:

Fisher(S) = −2
∑
pi∈S

ln(pi) (4.5)

The resulting value is χ2 distributed with a number of degrees of freedom

equal to 2×|S|.

We can compute a p-value from the result of the Fisher’s method since we

know its distribution. This p-value represents the probability that the null
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Figure 4.7: Curve of p-values computed from Fisher’s method changing one of the

input priorities; the remaining priorities are fixed. The blue line represents the value the

Fisher’s method would assume using only the fixed priorities.

hypothesis holds in all the input p-values. In figure 4.7 we see an example

of result of the Fisher’s method when changing one of the input p-values.

As mentioned before, the p-values computed using different methods and

derived from different features may not be directly comparable using the

Fisher’s method, since it assumes that all input p-values are identically dis-

tributed. We solved this issue by introducing weighted priorities, computed

from the p-values, that approximately follow the uniform distribution in the

area of our interest.

In literature weighted variants of the Fisher’s method already exist, such

as the weighted z-test [42] and the Lancaster method [7]. However we cannot

use these methods for our application, because neither method satisfies the

LTSS property. Thanks to our weighting strategy we can directly use the

original Fisher’s method that has the LTSS property. We now introduce

our score function by integrating the Fisher’s method with our weighting

function.

4.3.2 Fisher’s method with weighted priorities

Let S be a set of nodes or a set of features, and i ∈ S. Let Pi be the

unweighted priority Pi = 1 − pi. Let wi be the weight of the p-value of i.

Let Di be the default priority for i.

Definition 8 The Fisher’s method with weighted priorities is the function
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Φ(S), defined as:

Φ(S) := −2
∑
i∈S

ln(1−W (Pi, wi, Di)) χ
2 (4.6)

The resulting value Φ(S) is χ2 distributed with a number of degrees of freedom

equal to 2×|S|

In the following section, we prove that the function Φ(S) satisfies the

LTSS property making use of the theorems proved by Neill in [29].

4.3.3 Strong LTSS property of fisher with weighted priorities

Definition 9 For a given data set A containing N nodes, the score function

F(S) and the priority function G(Ri) satisfy the strong LTSS property if and

only if, for all j ∈ [1,N], max
Sj∈A : |Sj |=j

= F({R(1), R(2), ..., R(j)}):

We now prove that the score function F(S) = Φ(S) satisfies the strong

LTSS property with priority function G(Ri) = W(Pi, wi, Di).

Theorem 1 Let F(S) = f(X, |S|), with X(S) a function of one additive

sufficient statistic of subset S, X(S) =
∑
Ri∈S

x(Ri). If F(S) is monotonically

increasing with X, then F(S) satisfies the strong LTSS property with priority

function G(Ri) = x(Ri).

Proof 1 Let x(Ri) be the weighted priority W(Pi, wi, Di). We consider

the function ln(1 - x(Ri)) = ln(1 - W(Pi, wi, Di)). The natural logarithm

function ln(y) is monotonically increasing with y; in our case we see that y

= 1 - W(Pi, wi, Di), therefore ln(y) is monotonically decreasing with W(Pi,

wi, Di). We also see that the function Φ(S) = −2
∑
ln(y) = 2

∑
−ln(y)

therefore Φ(S) is monotonically increasing with -ln(y). Since -ln(y) is an

additive sufficient statistic of subset S, depending only on record Ri, we can

say that Φ(S) satisfies strong LTSS with G(Ri) = -ln(y). Furthermore, since

ln(y) is monotonically decreasing with W(Pi, wi, Di), for transitivity G(Ri)

monotonically increase with W(Pi, wi, Di). Therefore the given functions

Φ(S) and G(Ri) satisfy the strong LTSS property.

Thanks to the LTSS property, we can now perform in linear time an

exact search over a set of weighted priorities following the FSS procedure,

and find any number of anomaly subsets in reasonable time.

A procedure to estimate weights for each method is defined in the pre-

vious section. Having established our score function, we can now describe a

procedure for estimating the default priority.
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4.3.4 Estimating the default priority

Definition 10 Let S be a set of features or nodes, characterized by a set of

priorities, a set of weights and a set of default priorities. We indicate as

S−i the set S without values related to node or feature i. We define as the

D̄best the set of default priorities di such that:

d̃i ∈ D̄bestiffd̃i = argmin(di|Φ(S−i)− Φ(S)), di ∈ [0, 1] (4.7)

We note that to compute the default priority di, we first need to compute

the weighted priorities of all points other than i, which in turn would require

to know all the other default priorities. It is evident that an exact solution

of the problem would require a search over a space with N dimensions; this is

an unfeasible solution, especially considering that we would need to compute

the default priority at each iteration of the algorithm.

Instead, we compute an approximation of the default priorities using

a simple iterative approach: during each iteration we estimate the default

priorities one by one using the default priorities computed in the previous

iteration. This approach converges to a set of low error default priorities

within very few iterations.

4.3.5 Combining weighted priorities

We can combine the p-values generated by the univariate methods using the

Φ function and the weights and default priorities computed as described be-

fore. The combination is per feature, combining p-values generated from the

same feature using different methods; this approach generates a univariate

score for each feature of the node. To compute a single value that describes

the anomalous state of the node we combine all the univariate scores into

one using again the Φ function. Since the priorities were already weighted

when computing the univariate scores, for this phase we use them without

changing their value. The result of this function is used to compute the

p-value or unweighted priority of the node.

If the result indicates the presence of an anomaly, we also search within

the set of univariate scores using the FSS procedure to find the most anoma-

lous features. Note however that this task does not influence the final score

of the node that is computed using all features.

The procedure from the start of MuSTF to the end of the multivariate

scoring process is summarized in figure 4.8
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Figure 4.8: Schema of the node scoring phase of the algorithm.

4.4 Cluster scoring

After the first phase of the algorithm, we have the unweighted priority of

each node that represents its level of anomaly independent of its context.

During the second phase of the algorithm, nodes evaluate the state of their

spatial neighborhood by searching for sets of nodes that have high priorities.

The unweighted priorities of the neighboring nodes are combined to-

gether using once again the function Phi(S). The weights used in this

phase of the algorithm represent the similarity between the past behavior of

two neighbors. Thanks to the strong LTSS property, we can perform a scan

on the weighted priorities of the nodes and find which clusters of nodes in

the neighborhood present high anomaly scores. If the score of a cluster is

higher than the anomaly threshold set by the user, we consider the cluster

an anomaly candidate.

In the following section we describe the process of updating weights be-

tween neighbors. This update is performed after the computation of cluster

scores.
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4.4.1 Weighing nodes

We maintain weights for each couple(nodei, neighborj). Initially the weights

are all equal to one. At the end of every iteration of the algorithm, the

weights are updated to reflect the correlation in the behavior of a node and

its neighbors. The algorithm computes the discounted cumulative difference

δ between the current node and each of its neighbors. The values used to

evaluate the correlation between two neighbors are windows of their un-

weighted priority, since we are only interested in the correlation between

their anomalous states. Given a node i and its neighbor j, the windows of

priorities are Ci = {Pi(t), Pi(t - 1), ..., Pi(t - m)} and Cj = {Pj(t), Pj(t -

1), ..., Pj(t - m)}. The discount λ is a parameter set by the user between

0 and 1 that is multiplied to the previous window to decrease the effect of

past priorities in the weight. Formally, the discounted cumulative difference

would be:

δi,j(t) =

∑
0<i<m

|Pi(t− i)− Pj(t− i)| × λi∑
0<i<m

λi
(4.8)

After computing δi,j , the weight is updated using a weighted average between

the previous value of the weight and δi,j .

The cluster scoring phase of MuSTF is summarized in 4.9.

Figure 4.9: Schema of the neighborhood scoring phase of the algorithm.
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4.4.2 Result aggregation

As a final step we aggregate the partial results given by the cluster scoring

phase. We compute the vote count of a node i as the number of candidate

clusters that contain i. Since every node has k neighbors, we can consider

a node anomalous if it appears in at least kmin candidate clusters. The

kmin threshold is the minimum consensus between neighbors necessary for a

node to be identified as anomalous, otherwise it is considered an outlier and

removed from all candidate clusters. After identifying the anomalous nodes,

we merge the candidate clusters that overlap by some nodes, to identify

clusters bigger than the neighborhood. The resulting clusters of anomalies

are the final result of our algorithm.

This final phase of the algorithm is not present in the FSS frame work,

and is instead inspired by STCOD voting strategy. The aggregation phase

is summarized in figure 4.10.

Figure 4.10: Schema of the final phase of result aggregation.
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Chapter 5

MuSTF implementation

In this chapter, we provide the pseudo code of the MuSTF algorithm we

developed. We first describe the notation used in the rest of the chapter.

We then give the pseudo code of the training algorithm used before MuSTF.

Finally, we provide the pseudo code of the various procedures of MuSTF.

5.1 Terminology and notation

The dataset used by MuSTF is a set of values identified by the hour when

they were collected, the feature they measure and their node, which rep-

resents their physical location. We give here a few indications about the

notation used in the pseudo code of the following sections: We indicate with

D the dataset. We indicate with i ∈ [1,N] the index of the node. Each node

is characterized by two special features xi and yi, its spatial coordinates.

We indicate with t ∈ [1,T] the index of an hour. Note that hour is intended

as an interval of time, therefore going from hour 1 to hour T at the end of

the dataset. The hour of the day is instead called the period, which goes

in our application from 0 to 23. We indicate with f ∈ [1,F] the index of

a feature. In our application we have five features. We indicate with m ∈
[1,M] the index of a method used to generate a p-value from a value. We

indicate with k the number of nodes in a spatial neighborhood. We indicate

with vi,f (t) the value of feature f at hour t in node i.

We also define here the following abbreviations: vi,f is the set of all

values assumed by a feature f in node i vi(t) is the set of all values of any

feature assumed by a node i in time t vi is the set of all values related to

node i == Vi

The p-values generated is indicated by the letter p. In particular, pi(t)



indicates the final p-value of the node at time t. p
(m)
i,f (t) is the value of the

p-value generated by method m using as input the feature f of node i at time

t. pi,f (t) is the combination of p-values generated by any method for the f

feature, the univariate node p-value. p
(m)
i (t) is the combination of p-values

generated by one method for all features, the multivariate node p-value.

We indicate priorities as P, and the priority function that generates them

G(i) or G(f) depending on what they are applied (nodes or features). Note

that for simple priority functions as P = G(i) = 1 - pi we may indicate the

full formula instead of using the G notation.

5.2 Training phase of MuSTF

The weights and parameters used to compute p-values on a specific node

are determined during the training phase. The dataset used during training

is a set of historical data related to the same nodes. The training phase of

MuSTF is robust to anomalies present in the training dataset.

The first phase of the training is learning seasonal parameters: this is

shown in algorithm 1. The training begins by computing the expected sea-

sonal values for each node and feature. Seasonality is separated between

ferial and festive days by a vector of booleans, indicating if each hour is in

a festive day. The periodicity of the series must be defined by the user with

the freq parameter. The deseasonalized dataset is computed by subtracting

the expected seasonal values from the data. Then the cumulative distribu-

tion functions (CDF) for each feature are computed from the deseasonalized

dataset.
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Algorithm 1 Seasonal training

function SeasonTraining(D, Festive, freq)

for all vi,f ∈ D do

for hour in [1:freq] do

thour ← t | (t - 1) mod freq = hour, t ∈ [1,T] ∧ Festive[t] = F

seasonµ,i,f (hour) ← median(vi,f (thour))

seasonσ,i,f (hour) ← sd(vi,f (thour))

thourF ← t | (t - 1) mod freq = hour, t ∈ [1,T] ∧ Festive[t] = T

season Festiveµ,i,f (hour) ← median(vi,f (thourF ))

season Festiveσ,i,f (hour) ← sd(vi,f (thourF ))

laggedSeries ← differences(vi,f , lag, differences)

diffµ,i,f (hour) ← median(laggedSeries[thour])

diffσ,i,f (hour) ← sd(laggedSeries[thour])

end for

Compute CDFi,f from vi,f
end for

return all computed parametersi,f,t
end function

After computing parameters and CDFs, the training algorithm computes

and stores p-values for each value contained in the training dataset, as seen in

algorithm 2. Note that to achieve better results during the method weighting

process, the anomaly threshold parameter should be set lower than the one

we want to use later in the algorithm. By doing this, we make sure that the

priorities are uniform in the area around the decision threshold, and not just

after it. For example, in our implementation we used an anomaly threshold

of 90% during training, instead of the 95% and 99% thresholds we used in

the algorithm.
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Algorithm 2 P-value learning

function MethodTraining(D, anomaly threshold, parameters)

for all time t do

for all nodes i do

for all features f do

for all methods m do

fiti,m,f ← fit ∪ {Methodm(parametersi,f,t)}
end for

end for

end for

end for

for all nodes i do

for all features f do

for all methods m do

method weighti,m,f ←MethodWeighting(fiti,m,f ,

anomaly threshold)

end for

end for

end for

end function
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Finally, the stored p-values are used to find the weights to apply to each

method of p-value computation, as shown in algorithm 3.

Algorithm 3 Method weights learning

function MethodWeighting(fits, anomaly threshold)

P[] ← 1 - fits[]

Compute iCDF ← inverse CDF of P

error ← | iCDF(anomaly threshold) - anomaly threshold |
weight ← 1

best weight ← 1

best error ← error

while (error ≥ min error ∨ iteration ≤ max iteration) do

P ← WeightPriority(P, weight, base)

Compute iCDF ← inverse CDF of P

error ← | iCDF(anomaly threshold) - anomaly threshold |
if (iCDF(anomaly threshold) ≥ anomaly threshold) then

weight ← max(0, weight - error)

else

weight ← min(1, weight + error)

end if

if (error ≤ best error) then

best error ← error

best weight ← weight

end if

end while

return best weight

end function

The time complexity of the training phase is linear with respect to nodes,

feature and hours in the data. In particular, the computation of seasonality

and other parameters, including CDFs, in algorithm 1 is O(N × F × T ×
log(T)). The method weighting function 3 is O(T× log(T)). In both previous

computation, the log(T) term derives from the CDF calculation that involves

quicksort. The p-value learning is O(N × F × T × O(methods) + N × F ×
M × T × log(T)), O(methods) being the complexity of the used methods.

In general, the training phase has a time complexity of O(N × F × T ×
M × log(T)).
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5.3 MuSTF

MuSTF analyzes the dataset using the parameters learned during training.

5.3.1 Removal of NA

MuSTF can operate in dataset with missing values. One of the following

strategies can be adopted:

• Ignore: when a missing value is processed, it is skipped and no p-value

is generated;

• Last value: when a missing value is processed, the algorithm keeps

valid the p-value generated in the previous hour;

• Average: when a missing value is processed, it is substituted with the

expected seasonal value of that feature;

• Error: when a missing value is processed, stop the algorithm;

• Impute: at the beginning of the algorithm, each missing value is sub-

stituted with the average between the values that preceded it and

succeeded it; this strategy is only possible if the dataset is all available

at the beginning of execution.

In our tests we used the impute strategy, since we have the full dataset

available. The impute strategy is shown in algorithm 4. We indicate as DNA

the dataset with NA, and D the dataset without NA.

The NA removal has time complexity of O(NA × T), where NA is the

number of NA in the data. In the worst case (all NA) this is O(N × F ×
T).
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Algorithm 4 NA Imputation

function NAImpute(DNA)

for all v(i,f) in DNA do v’(i,f) ← v(i,f)

for all tNA | v(i,f)(tNA) = NA do

tb ← max(t | v(i,f)(t) 6= NA ∧ t < tNA )

ta ← min(t | v(i,f)(t) 6= NA ∧ t > tNA )

if @ ta ∨ @ tb then

Ignore this NA

else

dista,b ← ta - tb
vdista,b ← v(i,f)(ta) - v(i,f)(tb)

for all NA t in [tb, ta] do

v’(i,f)(NA t) ← v(i,f)(tb) + (NA t - tb)×(
vdista,b
dista,b

)

end for

end if

end for

end for

return D ←
⋃

v’(i,f)
end function

5.3.2 Node Scoring

In the first phase of the algorithm, each node is attributed an anomaly score

independently from its neighbors. The process is shown in algorithm 5.

The implementation of Fisher’s method, which generates a χ2 variable from

p-values and returns their combined priority is shown in algorithm 6.

The time complexity of node scoring is O(N × F × O(methods) + N ×
F × 2M).
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Algorithm 5 Node scoring

function Node(vi(t), parametersi)

for all m in [1:M] do

p
(m)
i,f (t)←Methodm(parameters)

end for

Univariate ← Pi,f (t) ← FisherCombine(1 - WeightPriority(1 -

p
(m)
i,f (t), weight

(m)
i,f ,default) ), ∀m ∈ [1 : M ]

Multivariate ← P
(m)
i (t)← FisherCombine(1 - WeightPriority(1

- p
(m)
i,f (t), weight

(m)
i,f , default)), ∀f ∈ [1 : F ]

return Pi(t) ← FisherCombine(Pi,1(t),Pi,2(t), ... , Pi,F (t))

end function

Algorithm 6 Fisher method

function FisherCombine(pvalues)

Input: a vector of pvalues

Output: a priority

for all p ∈ pvalues do

log val ← −2 ∗ log(p)

end for

FisherChi ←
∑
∀p

log val

FisherPriority ← P(FisherChi)

return FisherPriority

end function

The Fisher’s method is linear with respect to the number of input p-

values.

5.3.3 Priority Weighting

The priority weighting works as described in previous chapter. The un-

weighted priorities are inputted, along with a weight and the default pri-

ority. The weights represents our confidence in the p-value. The function

returns the weighted priorities.

The priority weight function runs in constant time.
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Algorithm 7 Priority Weighting

function WeightPriority(priority,weight,default)

pow ← (default - priority)
1

weight + 1 - default

dist ← pow - 1 + priority

if priority > default then

wpval ← pow - (dist * |default−priority|1−default

1
weight )

else

wpval ← pow - (dist * |default−priority|default

1
weight )

end if

return 1 - wpval

end function

Default priority discovery

The default priority has to be found for each priority weighting procedure:

this is a lengthy process because the default priority is found by iterating

and testing many values to check which has the minimal error. In algorithm

8 we show the code for a single iteration.

Instead of iterating this process at every time, we find the distribution

of the values assumed by the default priority by iterating the process with

random inputs for many times: we find that the values of the default priority

are distributed in a gaussian curve, with mean 0.6217, and 95% of the values

are within [0.584, 0.684]. This allows us to empirically reduce the interval

of search for the default priority.

In fact, a further optimization can be to just use the mean value of

the default priority. While not granting optimal results, the influence of

the default priority is low within the found interval: the difference in the

weighted priority computation when using the maximum or minimum value

is less than 0.015 of the priority value.

The default priority discovery process is O(M2) for the default priority

of methods priority, O(k2). Because this process is slow, it is done only once

at the beginning of the algorithm or at the end of the training phase.
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Algorithm 8 Default Priority Discovery

function DefaultDiscovery(priorities, weights, start, iterations, inter-

val)

defaulti ← start, ∀i ∈ [1 : N ]

for it ∈ [1:iterations] do

for all i in [1:N] do

wpi ← WeightPriority(pi, wi, defaulti)

end for

for all i in [1:N] do best defaulti ← -1 least errori ← inf

for d doefaulttemp ∈ Interval

fisher without ← FisherCombine(1 - wpj), j ∈ [1:N]\ i

fisher with ← FisherCombine({1 - wpj} ∪ {1 -

defaulttemp}), j ∈ [1:N]\ i

error ← |fisher without - fisher with|
if error < least error then

least errori ← error

best defaulti ← defaulttemp
end if

end for

end for

for all i in [1:N], current errori ¿ least errori do

defaulti ← best defaulti
current errori ← least errori

end for

end for

return default

end function
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5.3.4 Linear Fisher Scan

Algorithm 9 implements the search of the most anomalous subsets in the

given p-value. This can be used during node scoring to identify the most

anomalous subsets of features, or during cluster scoring to find the most

anomalous subsets of nodes.

Algorithm 9 Linear Fisher Scan

function LinearFisherScan(priorities, weights, [default priorities])

Input: unweighted priorities, their weight, optional default prioritys

values, indication of which results to report

Output: the general priority and the indices of priorities used

if @ default priorities then

default priorities←DefaultDiscovery(priorities, weights, 1, 10)

end if

for all pi ∈ priorities do

wpi ← WeightPriority(pi, wi, bi)

end for

priority order ← SortOrder(wp)

for size ∈ [1,|priorities|] do

group prioritysize ← FisherCombine({1 - wp1, ..., 1 - wpsize})
end for

best size ← arg max
size

(group prioritysize)

return nodes: priority order[1,..., best size], priority: group prioritybest size
end function

function SortOrder(vector)

Sorts the given vector, from the highest value to the lowest

return the order of the sorting of values of the vector

end function

Despite its name, LTSS is actually quasilinear since it contains quicksort,

that is O(k × log(k)).

5.3.5 Cluster Scoring

In the third phase of the algorithm, each node evaluates the cluster of neigh-

bors. We also memorize the number of times a node is found anomalous and

the nodes involved in each anomaly to aggregate the results over time.

The group scoring is O(N × k × log(k)).
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Algorithm 10 Cluster Scoring

function Cluster(priorities, neigh weightsi, anomaly threshold)

votesi(t) := number of times node i is found anomalous

clusters(t) := any cluster found anomalous

for all node i ∈ D do Get neighbours of i neigh i.

anomalous cluster← LinearFisherScan(priorities,

neigh weightsi, default priorities)

if anomalous cluster.priority > anomaly threshold then

clusters(t) ← clusters(t) ∪ anomalous cluster.nodes

for j in anomalous cluster.nodes do

votesj(t)++

end for

return anomalous cluster, votes(t)

end if

end for

end function

5.3.6 Node Weighting

We update the similarity weights between nodes according to the unweighted

priorities found in the previous hours.

Algorithm 11 Node weighting

function NodeWeighting(priorities, neigh weights)

Gets the memorized windows of the last unweighted priorities.

Updates the windows with the current new priority

update rate ← 0.2

for all neighbors n do

dissimilarity←
∑

0<mem<maxmem

|priority(t−mem)−priorityneighbor(t−mem)|∗discountmem∑
0<mem<maxmem

discountmem

neigh weightsn ← neigh weightsn*(1-update rate) + (1 - dissimi-

larity)*update rate

end for

return neigh weights

end function

The node weighting time complexity is O(N × k).
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5.3.7 Complete structure

We show in algorithm 12 the invocation of MuSTF, built upon the functions

shown in this chapter.

Algorithm 12 MuSTF

function MuSTF(trained parameters, D, k, anomaly threshold)

Compute k neighborhoods with knn, using x and y vectors

for time t ∈ T do

for node i ∈ N do

priorityi ← Node(vi(t))

end for

for node i ∈ N do

votes, clusters←Cluster(priority, neigh weightsi, anomaly threshold)

neigh weightsi ← NodeWeighting(priorities, neigh weightsi)

end for

anomaly nodes(t) ← arg votes(t) > number

clusters(t) ← Merge anomaly clusters with common nodes

end for

return anomaly nodes, clusters

end function

The complexity of the whole algorithm (not counting training) is O(N

× F × M × k × log(k)) for each iteration. For the full dataset the same

complexity is multiplied by T and is O(T × N × F × M × k × log(k))
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Chapter 6

Experimental evaluation of

MuSTF

In this chapter, we describe the performance of MuSTF and compare it to

the performance of the state-of-the-art. We first describe the dataset used

to evaluate the performance. We then describe the performance metrics

adopted and the expected results. Finally, we present the performance and

analyze it in comparison to the performance of the benchmark state-of-the-

art algorithms.

6.1 Description of the dataset

The dataset used in this research contains quality of service data collected

from roughly 6500 telecommunication towers in Piemonte; the dataset is

composed of hourly measurements and refers to a month of service. The

collected measurements are five features, two of them related to data down-

link service, three of them related to voice service. In figures 6.1 through 6.5

we show examples of time series describing each feature for a single node.

In figure 6.6 through 6.10 we show the average trend of each feature over all

nodes. We grouped towers with the same values of longitude and latitude

together in a single virtual location called node, and used the mean of the

values collected in the grouped tower as the measurement of each node. The

resulting dataset is composed of roughly 1000 nodes.



Figure 6.1: Time series representing the Erlang High Speed (HS) measurement in a

node.

Figure 6.2: Time series representing the Throughput (THP) measurement in a node.

Figure 6.3: Time series representing the Call Drop Rate (CDR) measurement in a node.

Figure 6.4: Time series representing the Handover Rate (HO) measurement in a node.
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Figure 6.5: Time series representing the Network Effectiveness Rate (NER) measure-

ment in a node.

Figure 6.6: Average values of HS in the dataset for each hour.

Figure 6.7: Average values of THP in the dataset for each hour.
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Figure 6.8: Average values of CDR in the dataset for each hour.

Figure 6.9: Average values of HO in the dataset for each hour.

Figure 6.10: Average values of NER in the dataset for each hour.
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6.2 Performance metrics

The performance metric we considered is the number of anomalous nodes

reported by an algorithm in each hour. In MuSTF, we control the number of

anomalous nodes using two parameters: the anomaly threshold of a cluster

and the minimum vote of a node. The anomaly threshold is the minimum

score over which a cluster of nodes is considered anomalous. The vote of a

node is the number of anomalous clusters that contain that node. We set

a minimum vote threshold to exclude from the results nodes that were only

found in a small number of clusters. In STCOD, the number of anomalous

nodes is determined by setting the two thresholds of self similarity and

neighborhood similarity. MFSS does not have any parameters, so its results

are fixed.

6.2.1 Results of MuSTF

We first executed MuSTF using an anomaly threshold of 95%. In figure

6.11 we show the number of nodes found anomalous in each hour, using a

minimum vote threshold of 1. In figure 6.12 we show the same results but

with a minimum vote threshold of 20.

Figure 6.11: Number of anomalies detected by MuSTF with anomaly threshold 95%

and minimum vote threshold 1.

In figure 6.13 and figure 6.14 we show the performance of MuSTF with

anomaly threshold 99%, and a minimum vote threshold of 1 and 20 respec-

tively.

By comparing the performance of MuSTF we notice that increasing the
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Figure 6.12: Number of anomalies detected by MuSTF with anomaly threshold 95%

and minimum vote threshold 20.

Figure 6.13: Number of anomalies detected by MuSTF with anomaly threshold 99%

and minimum vote threshold 1.

value of the minimum vote threshold reduces the number of reported anoma-

lous nodes but in both configuration the same peaks indicating anomalies

are still clearly distinguishable. The effects caused by changing the anomaly

threshold are more prominent. Firstly, the number of anomalies reduce dras-

tically in most hours, but during the peaks of anomalous events the number

of nodes remains the same. We note that a previously undistinguishable

anomaly (November 4th, 00:00) can be seen in the results. Secondly, the

length of detected anomalous events (the width of the peaks in the fig-
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Figure 6.14: Number of anomalies detected by MuSTF with anomaly threshold 99%

and minimum vote threshold 20.

ures) reduces when using a high anomaly threshold. The explanation of the

decreased count of anomalies in the 99% case with respect to the 95% is

obvious: we are now accepting less cluster as anomalous and vote decreases.

The decrease in the length of detected events can be explained by examin-

ing the methods used to discover anomalies. The most effective method in

our data was the lagged difference ∆i. In general, the lagged difference is

only able to discover anomalies events as long as their lag. Furthermore,

the detection power of ∆i decreases for high values of i. For example, ∆1 is

optimal to discover sudden anomalies, and is therefore very sensitive to the

beginning of an anomalous events. However ∆1 can only detect anomalies

in the same hour they start. ∆3 and ∆5 can detect anomalies that last for

3 and 5 hours, but with lower accuracy. In MuSTF we use ∆1, ∆5 and

∆5: the maximum length of anomaly detected by these measures is 5 and

the detection is higher at the beginning because of the higher accuracy of

∆1. Other anomalies are discovered using the empirical CDF. This second

method is punctual instead of window-based, therefore CDF effectiveness is

constant throughout an anomalous event. However, we note that the num-

ber of false positives generated by this method during the training phase

is quite high, therefore the CDF method has a weight lower than the one

of the lagged differences. Because of this anomalies detected only by CDF

tend to have a lower score, and when using a high anomaly threshold the

most obvious anomalies are the ones detected by the ∆i.

The highest peaks of anomalies found by MuSTF are coherent with an
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analysis of the variance and mean of the features in the dataset. In figure

6.15 we show a matrix representing the votes of nodes computed by MuSTF

using 95% anomaly threshold.

Figure 6.15: In this image each node is represented by a row and each hour by a column

of the table. A yellow color indicates a high vote for a node in a hour, while blue color

indicates normal behavior.

Clustering anomalies

To analyze the anomalies reported by MuSTF, we clustered the anomalies

to find the basic shapes that describe the behavior of each feature during

an anomalous event. Before collecting the anomalies from the dataset, we

normalized them with respect to their season. An anomaly was represented

by five windows, each containing the values of a feature before, during and

after the anomalous event. In figure 6.16 we show two examples of anomalies

represented by windows.

To cluster the anomalies we first computed a similarity matrix containing

the similarity between each couple of anomalies. The similarity measure

used was the correlation between the windows of the same feature. The

computation of the similarity matrix is a very intensive task, requiring O(N2)

time for N anomalies, thus we sampled a subset of anomalies instead of

using all of them. After computing the similarity matrix, we used it in the

k-medoids algorithm to find anomalies with similar shapes. To find the best

number of shapes of anomalies k we iterated the clustering algorithm using

different values of k and chose the value maximizing intra-cluster similarity.
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After finding the k clusters of anomalies, we compute the means of their

windows and plot them as the archetypal shapes of found anomalies. In

figure 6.17 we show an example of archetypal shape derived by a cluster of

anomalies.

Figure 6.16: Example of two anomalous windows found in the real-world dataset. On

the vertical axis the original values are represented relative to their seasonal value. For

example, a value of 0.5 on the vertical axis means that the real value is half the one

expected in that period.

Figure 6.17: Example of archetypal shape resulting from the clustering of the anomalies

in figure 6.16 along with similar others.

Analysis of archetypal anomalies

In figure 6.18 through 6.22 we show the archetypal shapes of anomalies

found by clustering the anomalous windows reported by MuSTF. We note

that most anomalies are particularly evident in the trend of the first feature

(the HS), with some influence of the second feature (THP) and the third

(CDR).
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Figure 6.18: First archetypal anomaly found, characterized by a sudden decrease in the

first feature value that keeps decreasing after the detection.

Figure 6.19: Second archetypal anomaly found. In this case the value of the first

feature decreases suddenly but the starting point is a value higher than the seasonal

value. After the detection it rises towards values within expectations.
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Figure 6.20: Third archetypal anomaly found. The value of the first feature increases

from low values to expected levels, but is stable for a period before restarting in its

increasing trend.

Figure 6.21: Fourth archetypal anomaly found. The first feature decreases as in the

second type of anomaly, but from a lower starting point. In this case the second feature

(THP) shows sign of sudden decrease after assuming high values.
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Figure 6.22: Fifth archetypal anomaly found. Similar to the fourth type but the first

features starts from higher values. The same situation is seen in the second feature

while the fifth feature shows no sign of anomalies. The third feature (CDR) shows signs

of a decreasing trend.
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Spatial clusters of anomalies

MuSTF distinguishes different groups of nodes by their spatial location and

the similarity of their anomalous behavior. We show in figures 6.23 and 6.24

the clusters of anomalies relative to two hours of the dataset.

Figure 6.23: Spatial clusters of anomalies in Piemonte, November 4th 00:00

In the first example, in figure 6.23, nodes are grouped in four anomalous

clusters, each identified by a different color. We note that the clusters have

different number of members and different density.

In the second example, in figure 6.24, we can observe the logical division

of clusters. We note that the distance between the purple cluster and the

pink one is smaller than the distance between some of the nodes in the red

cluster. This exemplifies that the clusters are grouped according to their

similarity thanks to MuSTF neighbor weighting strategy. In this particular

case the pink cluster is centered in the Turin metropolitan area while the

purple clusters is outside the city, which explains the difference in the mobile

network usage. We can see that in this case the correlation between an

area prevails over geographical distance in the definition of the cluster’s

boundaries We note however that the pink cluster is likely the merge between
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Figure 6.24: Spatial clusters of anomalies in Piemonte, November 4th 21:00

two or more different clusters. We believe this to be an issue of the merging

procedure that does not analyze the correlation in-between the cluster.

6.2.2 Performance of benchmark algorithms

We compare here the performance of two benchmark algorithms: STCOD

and MFSS.

The performance of MFSS is low because of the lack of evident anomaly

score. We note in figure 6.25 that in the hour where MuSTF detected the

highest anomaly (4th November, 20:00) there is a peak, however it is hardly

distinguishable from the rest of the result. Furthermore we note that even

in the most anomalous peak MFSS finds only 20 anomalous nodes. It is

evident that the FSS family of algorithms is not effective in this application,

even though a similar approach is used by our algorithm.

STCOD is sensitive to seasonality as can be seen by the periodic increase

in the number of detected anomalies in figure 6.26. The peaks of anomaly

detected by STCOD are correlated to the peaks detected by MuSTF: in fact

most peaks detected by MuSTF at 99% are detected by STCOD, with some
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Figure 6.25: Number of anomalies detected by MFSS.

more noise in the latter case. A clear improvement in the detection lies in

the timeliness of detection. STCOD detects anomalies later than MuSTF

because of its larger window size.

Figure 6.26: Number of anomalies detected by STCOD

6.3 Conclusions

MuSTF overcomes the challenges of multivariate spatio-temporal anomaly

detection. MuSTF complexity is linear with respect to the number of

nodes and the number of features it processes. Our tests demonstrated

that MuSTF can operate on-line, analyzing data of an hour from the whole

network in a couple of seconds.
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In our experiments, MuSTF performed at least as well as state-of-the-

art algorithms in detecting anomalies in the same data. Furthermore, the

comparison against STCOD and MFSS shows that MuSTF is less sensitive

to noise, and the hours of major anomalies are clearly distinguishable from

normal hours: this result was achieved by adopting STCOD voting strategy

and improving it to remove outliers from the results. Another particularly

important improvement of MuSTF is the shorter delay in detection: our

algorithm is able to detect the same anomaly several hours sooner than the

state-of-the-art algorithms. Finally, MuSTF performance is less sensitive

to small changes in the user-set parameters than other state-of-the-art al-

gorithm, which relieves the user from having to discover the best settings

to find acceptable results. We also showed how MuSTF is able to identify

the spatial cluster that is involved in the anomaly, distinguishing clusters of

nodes that belong to areas with different behavior even when close to each

other.

Future improvements

MuSTF can be improved in several ways. Firstly, the learning process

we adopted for the weights and baselines is approximate. For the prior-

ity weighting in particular, the process is only able to achieve uniformity

in the area of anomalous behavior. This imprecision may lead to overesti-

mating the combined priority of a feature or node. In our training process,

setting the anomaly threshold lower than the one used in the algorithm was

effective in reducing the effect of this overestimate. Finding a new strat-

egy to transform the original p-values in an exact uniform distribution may

improve further the precision of the Fisher’s method results.

Secondly, the strategy used to define a neighborhood could be improved.

In MuSTF the neighborhood of a node is defined at the beginning of the

execution: if a node is found dissimilar from other neighbors its weight is

lowered, but its neighborhood remains the same. Finding a way to update

the neighborhood without an excessive burden on computation time could

be an improvement in the cluster scoring phase.

Thirdly, other methods of computing p-values could be tested. In partic-

ular, the methods used in this work showed high precision on features such

as THP and HS, but were less effective on features as CDR. Introducing

other methods for generating p-values in our framework might improve its

performance.

MuSTF can be adapted to run in a distributed manner, since both the

node and cluster scores are computed separately for each node. These two
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phases are also the most time intensive, so we believe that a parallelized or

distributed implementation could be much faster than our own.

In this work we examined the performance of MuSTF in comparison

to other state-of-the-art algorithms. While we showed that MuSTF is an

improvement over the performance of these algorithms, we believe that using

datasets with labeled anomalies could lead to a more accurate measurement

of the improvements introduced by MuSTF. Given a labeled dataset, we

also believe that a supervised approach could be adopted during the training

phase to compute the precision of the specific methods in an exact way.
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