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Abstract

This study aims at developing a procedure to identify and modelling the

behaviour of structural elements that show a non-linear behaviour during tests.

The structural element taken into account is part of the Intermediate

eXperimental Vehicle, that successfully completed its 100-minute mission on 11

February 2015. The element under investigation is the flap developed under the

responsibility of Thales Alenia Space Italia, the major contractor, which

provided the experimental data needed to accomplish the investigation.

In this study the application of the Restoring Force Surfacemethod (or

equivalently, the Force State Mapping Technique) as a strategy to characterize

and identify localized non-linearities has been investigated. This method, which

works in the time-domain, has been chosen because it has ’built-in’

characterization capabilities, it allows a direct non-parametric identification of

non-linear systems (in so far as Single-Degree-of-Freedomsystems are

considered) and it can easily deal with sine-sweep excitations.

Firstly, the method implementation was validated by means of several

numerical simulations. Then it was applied to a simple experimental case

prepared on purpose: a clamped beam which showed a non-linear behaviour

characterized by a piecewise linear stiffness. Having obtained satisfactory results

in the previous steps, the identification of the non-linearity present in a real

structure, the IXV flap, was attempted.

Once the non-linear parameters were identified, they were used to update the

finite element model in order to prove its capability of predicting the flap

behaviour for different load levels.

The novelty of this work lies in the application of the methodto experimental

data coming from tests which, in addition, were not meant forthis purpose.

Keywords: Non-linear system identification, Restoring force surface method,

Finite element model updating





Sommario

Questo lavoro di tesi nasce con lo scopo di mettere a punto unaprocedura che

permetta di identificare e modellare il comportamento di componenti strutturali

che mostrano un comportamento non-lineare durante i test. L’elemento strutturale

preso in considerazione fa parte del dimostratore IXV (Intermediate eXperimental

Vehicle), che ha completato con successo la missione il giorno 11 Febbraio 2015.

L’elemento di studio è rappresentato dal flap sviluppato sotto la responsabilità di

Thales Alenia Space Italia, prime contractor, la quale ha fornito i dati sperimentali

che hanno permesso di completare l’analisi.

La tesi esamina l’applicazione del Restoring Force Surfacemethod (o

dell’equivalente Force State Mapping Technique) come strategia per

caratterizzare e identificare non-linearità localizzate.Questo metodo, definito nel

dominio del tempo, è stato scelto per la sua intrinseca capacità di

caratterizzazione, perchè permette l’identificazione non-parametrica di sistemi

non-lineari (limitandosi a sistemi ad un solo grado di libertà) e perchè permette

di gestire facilmente eccitazioni di tipo sine-sweep.

Inizialmente, l’implementazione del metodo è stata convalidata attraverso

diverse simulazioni numeriche. Successivamente, esso è stato applicato ad un

semplice caso sperimentale preparato appositamente: una trave incastrata

caratterizzata da una curva di rigidezza lineare a tratti. Avendo ottenuto risultati

soddisfacenti nei passaggi precedenti, è stata tentata l’identificazone della

non-linearità presente in una struttura reale: il flap del modulo IXV sviluppato da

Thales Alenia Space.

Una volta che i parametri della non-linearità sono stati identificati, essi

vengono usati per aggiornare il modello ad elementi finiti inmodo da verificarne

la capacità di predire il comportamento del flap per diversi liveli di carico.

La novità di questo lavoro risiede nell’applicazione del metodo a dati

sperimentali ottenuti da test che inoltre non erano intesi per questo scopo.

Parole chiave: Identificazione di sistemi non-lineari, Restoring force surface

method, Aggiornamento modello ad elementi finiti
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Chapter 1

Introduction

This chapter presents a brief introduction to the subject ofnon-linear structural

dynamics. In the last section, the structure of the thesis and the relationship

between different chapters are presented in order to give anoverview of the

thesis.

1.1 Background of the problem

Linear system identification is a discipline that has evolved considerably during

the last 30 years. Modal analysis is the most popular approach to perform linear

system identification in structural dynamics and its popularity stems from its

great generality: modal parameters (natural frequencies,mode shapes and

damping ratios) describe the behaviour of a system for any input type and any

range of the input.

In the presence of non-linearity the basic principles that apply to a linear

system and that form the basis of modal analysis are no longervalid. Therefore,

it is necessary to apply a different strategy to detect, characterize and identify

localized non-linearities.

Almost all practical structures are non-linear to some extent, the non-linearity

being caused by one or a combination of factors. In structural dynamics, the most

common types of non-linearities are [1]:

• Geometric non-linearity, which results when a structure undergoes large

1



2 CHAPTER 1. INTRODUCTION

displacements.

• Inertia non-linearity, which derives from non-linear terms containing

velocities and/or accelerations in the equations of motion.

• Non-linear material behaviour, that can be observed when the constitutive

law relating stresses and strains is non-linear.

• Damping dissipation: the modal damping assumption is not necessarily the

most appropriate representation of the physical reality. Dry friction effects

(bodies in contact, sliding with respect to each other) and hysteretic

damping are examples of non-linear damping.

• Non-linearity in the boundary conditions (for example, vibro-impacts due

to loose joints and clearances which possesses non-smooth force-deflection

characteristics).

To predict the behaviour of non-linear systems, it is necessary to include the

corresponding non-linear elements into the numerical/mathematical models

which describe those systems. The parameters of such non-linear elements are

case specific and there is no general analysis method for the development of

structural models from experimental measurements, i.e. non-linear system

identification, that can be applied to all systems in all instances.

1.2 Non-linear system identification

Non-linear system identification is part of the model validation process and it

can be viewed as a succession of three steps (Fig.1.1): detection, characterization

and parameter estimation. Once non-linear behaviour is detected, a non-linear

system is said to be characterized after the location, type and functional form of

the non-linearities are determined. The parameters of the selected model are then

estimated using linear least-squares fitting or non-linearoptimization algorithms.
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Figure 1.1: Non-linear system identification process [1]

1.2.1 Non-linearity detection

The detection of structural non-linearity is the first step toward establishing a

structural model with a good predictive accuracy. A survey of the numerous

non-linear system detection techniques for single-input-single-output systems

can be found in [2] and [3].

The breakdown of the principle of superposition is a possible means of

detecting the presence of a non-linear effect [4]. The test for homogeneity, which

is a restricted form of the principle of superposition, is one of the most popular

detection techniques. Homogeneity violation is best visualized in the frequency

domain through comparison of frequency response functions(FRFs) for different

excitation levels: if the FRFs for different levels overlay, linearity is assumed to

hold. However, this method is not infallible as there are some systems (as

discussed in Section 3.4) which are non-linear which nonetheless show

homogeneity. The reason for this is that homogeneity is a weaker condition than
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superposition.

An example of the application of the homogeneity test is shown in Fig.(1.2).

The hardening behaviour of the non-linearity is translatedinto the shifting of the

resonance frequency towards higher frequencies. An example of the homogeneity

test applied to a real structure can be found in [5].
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Figure 1.2: Real and imaginary part of FRF for different excitation force
levels

1.2.2 Non-linearity characterization

A non-linear system is said to be characterised when the location, type and

functional form of all the non-linearities throughout the system are determined.

The reason why the Restoring Force Surface method was chosenfor this

thesis is that it has ’built-in’ characterization capabilities since it allows the

three-dimensional visualization of the restoring force asa function of

displacement and velocity. Moreover, a characterization of the elastic and

dissipative forces can be obtained by taking a cross-section of this

three-dimensional plot along the axes where either the velocity or the

displacement is equal to zero, respectively. The resultingplots are termed

stiffness and damping curves, respectively (examples of these curves are shown

in Fig.(1.3)). and they represent a quick way for understanding what type of

non-linearity is involved.
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Figure 1.3: Idealized forms of common types of structural non-linearities

1.2.3 Non-linear parameters extraction

Parameter estimation is the last step. An important assumption which conditions

the success of parameter estimation is that all the non-linearities have been

properly characterised. A survey on the available methods to accomplish this

step can be found in [1], [4] and [6].

In this thesis, the parameters will be extracted by curve-fitting the

numerical/experimental data. Each time, the function to befitted to the data will

be chosen according to the type of non-linearity involved.

1.3 The Restoring Force Surface method

The Restoring Force Surface Method began with Masri and Caughey’s paper in

which they proposed a method to identify non-linear mechanical systems

resulting in a modelling of the non-linear force as a function of the displacement

and velocity. A parallel approach, named Force-State Mapping Technique, was

developed independently by Crawley and Aubert and an application can be found

in [7].

The method was first developed for SDOF systems, but the generalisation to

lumped parameter MDOF systems soon followed. However, a further signal
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processing demand arises, in fact displacement, velocity and acceleration data

were required for each DOF necessitating the use of complex instrumentation or

further numerical analysis. Some of these exceptions were overcome by Worden

and Tomlinson [4].

Significant improvements were brought about since the original papers.

Duym [8] applied the method to a damper showing that a more appropriate

choice would be the use velocity and acceleration as independent variables.

Duym and Schoukens [9] designed optimized excitation signals in order to

guarantee the quality of the fit by uniformly covering the phase-plane. They also

used a local non-parametric identification of the non-linear force [10]. Jalaliet al.

[11] showed that the complex phenomenon of energy dissipation in lap joints can

be represented by a simple analytical model capable of producing accurate

results. Shin and Hammond [12] suggested an alternative method which may be

used when all the state variables are not available and when exact values of the

system parameters do not need to be estimated.

Experimental investigations are performed in [13] [14] and[15]. In [16] a

comparison between different techniques, namely the Restoring Force Surface

Method, wavelet transform and Conditioned Reverse Path Method, is carried out

using numerical data related to a real-world structure.

1.4 Objectives of the thesis

The objective of this thesis is the development of a procedure for structural

non-linearity identification and FE model updating. The non-linearity parameters

identification is carried out by means of the Restoring ForceSurface method and

the identified parameters are used to update the FE model. Different ways to

update the model introducing non-linear elements will be analysed and compared

both in the time and frequency domain.



1.5. ORGANIZATION OF THE THESIS 7

1.5 Organization of the thesis

In this thesis, each chapter deals with a more complex systemwith respect to

the one studied in the previous one, thus allowing to check the performance of

the implemented method starting from simple numerical systems and moving on,

step-by-step, towards more realistic systems (Fig. 1.4).

In fact, the method is first applied to simple numerical examples and, having

obtained satisfactory results at this stage, it is tested ona more complex structure

represented by a FE model of a plate. Finally, it has been applied to the data

obtained from an experimental case prepared on purpose.

Since all these steps have produced satisfactory results, the implementation of

the method has been proved to be reliable and can therefore beused to identify

the non-linearity present in a real structure.

In details the topic of each chapter:

Chapter 2. The Restoring Force Surface MethodThis chapter presents the

theory behind the chosen non-linear system identification method, which will be

applied throughout the thesis. The data processing associated with the method is

also presented.

Chapter 3. Numerical simulationsThe method implementation is tested by

means of some simple numerical examples, simulated in MATLAB, which takes

into account different types of non-linearities.

Chapter 4. FE modelling of a gap non-linearityA more realistic structure,

represented by a plate, has been taken into account to further validate the method

implementation. Moreover, different methods for modelling a clearance

non-linearity in Nastran have been analysed in order to set the stage for the last

step (Chapter 6).

Chapter 5. Experimental study of a piecewise linear beamAs an

intermediate step between the numerical simulations and the real-world

structures, the method is applied to experimental data obtained testing a

cantilever beam characterized by a piecewise linear stiffness. A procedure for

estimating the missing velocity measurement from the acceleration and the

displacement measurements by means of the Kalman filter has been presented.
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Chapter 6. Application to a real-life structure: the IXV flap The method

is used to characterize and to extract the parameters of the non-linearity which

influenced the behaviour of the IXV flap during the tests. Oncethe non-linearity

has been fully identified, the parameters are used to update the FE model in order

to prove its capability of reproducing the flap behaviour.

Figure 1.4: Thesis organization



Chapter 2

The Restoring Force Surface

Method

2.1 Theoretical background

The procedure described in this section can be found in [4] and it is here reported

for the sake of clarity. This method allows a direct non-parametric identification

for SDOF non-linear systems and the only a priori information required is an

estimate of the system mass.

The starting point is the equation of motion as specified by Newton’s second

law

mÿ + f(y, ẏ) = p(t) (2.1)

wherem is the mass (or an effective mass) of the system andf(y, ẏ) is the internal

restoring force which acts to return the system to equilibrium when disturbed. The

function f can be a general function of positiony(t) and velocityẏ(t). In the

special case when the system is linear

f(y, ẏ) = cẏ + ky (2.2)

wherec andk are the damping and stiffness constant respectively. Sincef is

assumed to be dependent only ony andẏ, it can be represented by a surface over

9
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the phase plane, i.e. the(y, ẏ)-plane. A rearrangement of equation (2.1) gives

f(y(t), ẏ(t)) = p(t)−mÿ(t) (2.3)

If the massm is known and the excitationp(t) and acceleration̈y(t) are

measured, all quantities on the right-hand side of this equation are known and

hence so isf . Measurements of a time signal entails sampling it at regularly

spaced interval∆t. If ti = (i − 1)∆t denotes thei-th sampling instant, then atti
equation (2.3) gives

fi = f(yi, ẏi) = pi −mÿi (2.4)

wherepi = p(ti) andÿi = ÿ(ti) and hencefi are known at each sampling instant.

If the velocities ẏi and displacementsyi are also known (i.e. from direct

measurement or from numerical integration of the sampled acceleration data), at

each instanti = 1, ..., N a triplet (yi, ẏi, fi) is specified. The first two values

indicate a point in the phase-plane, the third gives the height of the restoring

force surface above that point.

To identify non-linear joint properties, the force transmitted by the joint has to

be represented as a function of its mechanical state coordinates (x andẋ across the

joint). This implies that the joint needs to be separated from the whole structure,

which is something usually not easy to perform.

In the next chapters the method will be tested on some numerical examples to

verify its ability of correctly estimating the parameters related to the non-linearity.

2.1.1 Sections

The surface plot is a very useful tool to visualize the non-linearity acting in the

system, but it is better to rely on a two-dimensional representation of the data for

the parameters extraction.

The stiffness curve or section is obtained by choosing a narrow band of width

δ, through the origin, parallel to they-axis. All the pairs of values(yi, f(yi, ẏi))

with velocities such that|ẏi| < δ are recorded. Theyi values are saved and placed

in increasing order. This gives ay → f graph which is a slice through the force

surface aṫy = 0. The same procedure can be used to obtain the damping curve at
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y = 0. If the restoring force separates, i.e.

f(y, ẏ) = fd(ẏ) + fs(y) (2.5)

the identification (i.e. curve fitting to) of the stiffness and damping sections is

sufficient to identify the whole system.

2.1.2 Base excitation

The qualification of the structural design and the verification of the structural

integrity of spacecrafts are usually carried out by means ofbase-shake sine tests.

To analyse this configuration the beam in Fig.(2.1) has been considered.

Figure 2.1: Schematic of the based-excited system [13]

The beam is excited around its first resonance, therefore it can be

approximated as an oscillator subjected to base excitation. The oscillator is

assumed to be connected to its base by a non-linear element. The base is allowed

to move with acceleration̈eb(t) and this motion is transmitted to the mass

through the non-linear spring and excites the responseÿ(t) of the mass. The

equation of motion is

mÿ + f(wL, ẇL) = 0 (2.6)

wherey is the absolute displacement of the beam tip andwL = y − eb is the

displacement of the beam tip relative to the substrate. In this configuration, the

relative accelerationẅL would be computed and integrated to giveẇL andwL.

The advantage is that the mass only appears as a scaling factor and even ifm is

set to1, the type of non-linearity can be represented faithfully. If an estimate of

the mass becomes available, the force surface can be given the correct scale and

the data can be used to fit a model.
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2.2 Data processing

From the foregoing developments, it appears that displacement, velocity and

acceleration data are all needed simultaneously at each sampling instant. The

easiest approach to the procedure will be measuring one signal and estimate the

other two from it by means of numerical integration or differentiation. Another

strategy could be the one proposed by Crawley and O’Donnel [7], who measure

displacement and acceleration and then form the velocity using a Kalman filter

(this method will be discussed in details in Chapter 5).

Since numerical differentiation leads to inaccurate estimation of the

acceleration, as shown in [4], the following discussion will focus on numerical

integration only. More details about the various method forachieving integration

can be found in [4] [18] [19].

2.2.1 Time-domain integration

The practical solution is to measure the acceleration and numerically integrate it

to find velocity and displacement.

There are two main problems associated with numerical integration: the

introduction of spurious low-frequency components into the integrated signal and

the introduction of high-frequency pollution. Among all the various methods, the

trapezium rule only suffers from the introduction of low-frequency components

and does not require the use of a low-pass filter. Furthermore, it is the simplest

integration process and offers considerable saving of time. For these reasons, the

trapezium rule, expressed by equation (2.7), is consideredthroughout the thesis.

vi = vi−1 +
∆t

2
(ui + ui−1) (2.7)

wherev(t) is the estimated integral with respect to time ofu(t). Each step of
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integration introduces an unknown constant of integration, so that

ẏ(t) =

∫

dt ÿ(t) + A (2.8)

y(t) =

(
∫

dt

)2

ÿ(t) + At+B (2.9)

In the frequency domain, the effect of A and B manifests itself as a spurious

low-frequency component as they affect the d.c. component of ẏ andy.

Usually, the constant of integration is fixed by initial dataẏ(0), but, when

dealing with a stream of time-data, this information is not available. However,

under certain conditions (p(t) is a zero-mean sequence and the non-linear

restoring forcef(y, ẏ) is an odd function of its argument), it can be assumed that

ẏ(t) andy(t) are zero-mean signals. This means thatA andB can be set to the

appropriate values by removing the mean level fromẏ and a linear drift

component fromy(t).

To prove what has been said it is useful to take a look at the transfer function

of the trapezium rule, which is

H(ω) =
FT (estimated results)

FT (true results)
= cos(ω/2)

ω/2

sin(ω/2)
(2.10)

whereFT is the Fourier transform andω the normalized frequency (the frequency

of interest divided by the sampling frequency). Equation (2.10) means that the

trapezium rule only integrates constant signals without error and underestimates

the integral at all other frequencies.

Since the trapezium rule acts as an amplifier of the low-frequency components,

high-pass filtering becomes necessary.

2.2.2 Filtering

Filtering is a frequency selective process that attenuatescertain bands of

frequencies while passing others.

As mentioned earlier, the results of the double integrationby means of the

trapezium rule need to be high-pass filtered to be cleaned totally. Choosing a cut-
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off frequency higher than 0 Hz imposes the filtered signals tobe of zero-mean

since a polynomial trend of order 0, i.e. a constant, is removed.

In order to zero the phase lags introduced by the filter, data must be passed

through any filter in both forward and backward directions. In fact, the impulse

response of a recursive filter1 is not symmetrical between left and right, therefore

IIR (Infinite Impulse Response) filters are characterised byhaving a non-linear

phase, as shown in Fig.(2.2). Any phase lags will destroy thesimultaneity of the

signals and will have disastrous effects on the estimated force surface.
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Figure 2.2: Non-linear phase filter: the impulse response is not symmetrical
between the left and right and the phase is not a straight line

The penalty of this bidirectional filtering technique is a factor of two in

execution time and program complexity. Moreover, it can be applied on stored

data only (no real-time filtering), in fact when filtering forward and backward

causality2 is lost.

When filtering in both directions, the magnitude of the frequency response

is the same for each direction, while the phases are oppositein sign. If the two

directions are combined, the magnitude becomes squared (which means that the

order of the filter is doubled), while the phase cancels to zero. Fig.(2.3) shows an

example of how the bidirectional filtering works.
1Recursive filters are described by the so called recursion equation: y(n) =

a0x(n)+a1x(n− 1)+a2x(n−2)+a3x(n−3)+ ...+ b1y(n−1)+ b2y(n−2)+ b3y(n−3)+ ...
2A system is causal if, for every choice ofn0, the output sequence value at the indexn = n0

depends only on the input sequence values forn ≤ n0. This implies that ifx1(n) = x2(n) for
n ≤ n0, theny1(n) = y2(n) for n ≤ n0. The system is non-anticipative [21]
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(a) Rectangular pulse input signal (b) Fltered signal from left-to-right

(c) Inverse filtering (right-to-left) (d) Signal filtered in both directions

Figure 2.3: Bidirectional recursive filter [20]

This can be best seen in the frequency domain: ifx(n) is the input sequence

andh(n) is the filter’s impulse response, the result of the first filterpass is

Z(ejθ) = X(ejθ)H(ejθ)

with X(ejθ) andH(ejθ) the Fourier transforms ofx(n) andh(n), respectively.

Time reversal corresponds to replacingθ by−θ in the frequency domain, therefore

the result of the time reversal is

W (ejθ) = X(e−jθ)H(e−jθ)

The second filter pass corresponds to another multiplication by H(ejθ),

yielding

V (ejθ) = H(ejθ)W (ejθ) = |H(ejθ)|2X(e−jθ)
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which after time-reversal gives the spectrum of the output signal

Y (ejθ) = |H(ejθ)|2X(ejθ) (2.11)

Equation(2.11) shows that the output spectrum is obtained by filtering with a

filter with frequency response|H(ejθ)|2 which is real-valued, i.e. its phase is zero

and consequently there are no phase distortions. The block diagram of the process

is shown in Fig.(2.4). In MATLAB the functionfiltfilt [22] eliminates phase

distortion using the information in the signal at points before and after the current

point.

The comparison between a zero-phase filter and a linear phasefilter is shown

in Fig.(2.5).

Figure 2.4: Block diagram of the bidirectional filtering (∗ means
convolution)
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Figure 2.5: Effect of zero-phase and linear phase filters on signals

The last issue is related to stability. IIR filters may have both zeros and poles
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on the z-plane3. As such, they are not guaranteed to be stable (an example of

stable filter is shown in Fig. 2.6).
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Figure 2.6: Poles and zeros of a4th order stable filter

The IIR filters behaviour can be improved by means of cascadedstructures: a

high-performance filter is implemented as a combination of cascaded lower

performance filters. This allows the computation of the roots of a lower order

polynomial, thus reducing the round-off errors.

The resultant transfer function of two cascaded filter transfer functions is the

product of those functions

Hcas(z) = H1(z)H2(z) (2.12)

with an overall frequency response of

Hcas(ω) = H1(ω)H2(ω) (2.13)

and the resultant impulse response of cascaded filters is theconvolution of their

individual impulse responses. A more detailed discussion on filters stability and

cascading IIR filters can be found in [21] and [23].

3In the z-plane the region of filter stability is mapped to the inside of the unit circle. If all
poles are located inside the unit circle, the filter is stable
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Butterworth filters

Butterworth filters are an example of IIR filters. They are defined by the property

that the magnitude response is maximally flat in the passbandand rolls off

towards zero in the stopband. Moreover, the magnitude response is monotonic in

the passband and in the stopband.

Compared with Chebyshev filters or elliptic filters, the Butterworth filters have

a slower roll-off and thus will require a higher order to implement a particular

stopband specification, but they have no ripple, as shown in Fig.(2.7).

Thanks to their ability to give a filtered signal with little to no losses,

Butterworth filters have been used throughout this thesis. In MATLAB the

functionbutter [22] allows the design of a n-th order digital Butterworth filter.
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Chapter 3

Numerical Simulations

The Restoring Force Surface method described in the previous section is here

applied on some numerical simulations in order to test it fordifferent

non-linearities. The method is first applied to a linear system and then tested on

two different non-linear cases:

• an asymmetrical system characterized by a bilinear stiffness

• a symmetrical system characterized by non-linear damping

In the following, a brief discussion on the simulations setting is presented.

3.1 Excitation signals

In the Restoring Force Surface method the non-linear force is fitted to a series

of standard functions. In order to guarantee the quality of the fit a sufficiently

uniform distribution of the state trajectory sample pointsover the phase plane is

needed.

A problem in the final step of the procedure is to perform a valid interpolation

from randomly or irregularly spaced points in the plane to regular grid points.

To improve the accuracy, a minimum number of points must be located in the

neighbourhood of each grid point. The effects of different types of excitation on

the non-linearities identification procedure are extensively discussed in [4] while

19
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Duym [9] proposed a method to optimise the phase spectrum so that uniform

coverage is obtained.

The excitation signals here considered for the numerical simulations are the

steady-state sine excitation and the sine-sweep excitation.

3.1.1 Steady-state sine excitation

The use of sinusoidal excitation usually produces the most vivid effects from non-

linear systems. Moreover, all the input energy is concentrated at the frequency of

excitation and it is simple to eliminate noise and harmonicsin the response signal.

As such, the signal-to-noise ration is very good and the result is a well-defined

FRF with distortions arising from non-linearity being veryclear, particularly when

a constant magnitude force excitation is used.

3.1.2 Sine-sweep excitation

Sine-sweep excitation is a form of transient excitation andits effects on structural

responses have been analysed in different papers: Gloth andSinapius [24] showed

that the maximum response for a resonance is lower than the maximum response

expected for a harmonic excitation with the corresponding resonance frequency

and there is a time delay for the maximum; Lollock [25] analysed the effect that

sweep rates have on response amplitude and estimates of resonant frequency and

damping for a SDOF system, whereas Nali and Bettacchioli [26] extended the

analysis to MDOF systems and analysed the beating phenomena.

Sine-sweep excitation can be linear or exponential and can be expressed as

p(t) = A sin(φ(t)) (3.1)

whereA is the amplitude andφ(t) is the argument, phase, of the sine. The

pulsation of the sweep is calculated as

φ(t) =

∫ t

0

Ω(τ)dτ (3.2)
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whereΩ(τ) indicates the instantaneous excitation frequency1. If an exponential

sweep is considered

Ω(τ) = Ω02
(R/60 τ) (3.3)

whereΩ0 indicates the starting frequency of the sweep and the sweep-rateR is

expressed in[oct/min].

After the integration, the phase is given by

φ(t) = 2π
60f0

R ln(2)
(2(R/60 t) − 1) + φ0 (3.4)

3.2 ODE solver

MATLAB has a number of tools for numerically solving ordinary differential

equations. The ODE suite has seven routines, which can be divided in two main

categories, stiff2 and non-stiff, according to the kind of equations they can be

applied to. Stiff solvers are implicit.

Stiffness is an efficiency issue: non-stiff methods can solve stiff problems, but

they take a longer time. To better show the difference in the results obtained with

stiff and non-stiff solvers, the results of the flame examplein [28] are reported in

Fig.(3.1), where it is evident thatode23s takes many fewer steps thanode45.

Since the equations to be solved for the following numericalsimulations are all

stiff, the stiff solvers will be preferred. The one used in the following simulation is

theode15s, which is a variable-order solver (the order can vary between 1 and 5)

based on the Numerical Differentiation Formulas (NDF). NDFs are the default for

ode15s, but it is possible to use another variant of linear multistep method, the

Backward Differentiation Formulas (BDF). Since NDFs can take larger steps than

BDFs maintaining the same accuracy, they have been chosen for the following

simulations.

1The instantaneous frequency defines the location of the signal’s spectral peak as it varies with
time. It may be interpreted as the frequency of a sine wave which locally fits the signal [27].

2An Initial Value Problem is stiff in some interval[0 b] if the step size needed to maintain
stability of the forward Euler method is much smaller than the step size required to represent
the solution accurately. (U.M. Ascher, L.P. Petzold,Computer methods for ordinary differential
equations and differential-algebraic equations)
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(a) Stiff behaviour ofode45 (b) Stiff behaviour ofode23s

Figure 3.1: Comparison between stiff and non-stiff ODE solvers [28]

3.3 Linear system

For a linear system, the restoring force surface is a plane whose slope in the

displacement direction represents the stiffness and the slope in the velocity

direction represents the damping.

The simulation has been run considering equation (3.5)

25ẍ+ 15ẋ+ 330000x = p(t) (3.5)

where both the steady-state sine and the sweep-sine excitation have been

considered as forcing functionsp(t).

For the steady-state sine excitation,p(t) takes the following form:

p(t) = 100 sin(ωt)

where ω has been chosen equal to the first natural frequency of the system

(≃ 115 rad/s). The simulation has been run for 10 s and the sampling frequency

has been set to 1000 Hz.

In the case of the exponential sine-sweep, the excitation isgiven by

p(t) = A t sin(φ(t)) (3.6)

whereA = 1 andφ(t) takes the form explained in Section 3.1.2. The sweep-rate

R is set to4 oct/min and the frequency range is 5-120 Hz. In Fig.(3.2) the time
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domain and time-frequency (spectrogram3) representations of the excitation are

shown. This amplitude modulated signal will produce an increasing spiral shape

in the phase-space, thus providing a fairly dense set of measurement points.

The results of the two simulations are shown in Fig.(3.3),(3.4) and collected

in Table (3.1). The stiffness curves have been obtained by applying the procedure

described in Section 2.1.1 and they are compared with the exact ones.
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Figure 3.2: Sine sweep excitation for linear and bilinear stiffness systems

(a) Steady-state sine excitation (b) Sine sweep excitation

Figure 3.3: Restoring force surface - linear system

3The spectrogram is computed asspectr(τ, ω) = |STFT (τ, ω)|2, whereSTFT (τ, ω) is the
Short-Time Fourier Transform of the time signal.
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Figure 3.4: Exact and estimated stiffness curves - linear system

k c

exact parameters 330000 15
identified parameters (a) 330100 21
identified parameters (b) 329985 11

Table 3.1: Identification results for the linear case

3.4 Bilinear stiffness

The stiffness characteristic has the form

fs(y) =







k1y y < yc,

k2y + (k1 − k2)yc y ≥ yc
(3.7)

The non-linear behaviour, which has been extensively studied in [29], can be

seen by means of the homogeneity test only ifyc 6= 0, in fact, if yc = 0 the

equivalent non-linear stiffness (computed by means of the Harmonic Balance

method, which is presented in Appendix A not to cause a digression here) is

independent from the response amplitude and equals the average stiffness
1

2
(k1 + k2) (as shown in Appendix A). If this happens, even though the

force-displacement curve of the pure bilinear spring is non-linear, it will not

cause distortions to the fundamental harmonic FRF. The system is thus

homogeneous. This demonstrates that homogeneity is a necessary but not

sufficient condition for linearity.



3.4. BILINEAR STIFFNESS 25

The same example simulated in [14] has been considered. It isdescribed by

the following equations







25ÿ + 15ẏ + 330000y = p(t) if y < 0.00072

25ÿ + 15ẏ + 930000y = p(t) if y ≥ 0.00072
(3.8)

The excitation signals are the one described for the linear case and shown in

Fig.(3.2), the same can be said for the simulation time and the sampling frequency.

The results of this simulation are shown in Fig.(3.5),(3.6)and collected in

Table (3.2). A piece-wise linear curve has been fitted to the data.

As can be seen, the exact parameters are not really well approximated in this

case. This can be due to the fact that initial conditions are unknown and filtering

using a cut-off frequency higher then 0 Hz imposes the filtered signal to be zero-

mean, as explained in Section 2.2. As said,ẏ(t) andy(t) can be considered zero-

mean signals under two conditions:p(t) is a zero-mean sequence and the non-

linear restoring forcef(y, ẏ) is an odd function of its argument. This last condition

is not satisfied for the bilinear stiffness and this leads to an inaccurate estimation

of velocity and displacements.

Moreover, unlike what was done in the reference paper [14], where the

clearance value was estimated separately from the stiffness values, here the

clearanceyc has been included in the set of parameters to be estimated by

curve-fitting the set of data, thus the optimization algorithm here used has to deal

with three parameters (not two) at the same time.

k1 k2 yc

exact parameters 330000 930000 0.00072
identified parameters (a) 320312 893636 0.00053
identified parameters (b) 385566 891154 0.00078

Table 3.2: Identification results for the bilinear case
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(a) Steady-state sine excitation (b) Sine sweep excitation

Figure 3.5: Restoring force surfaces - bilinear system
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(b) Sine sweep excitation

Figure 3.6: Exact and estimated stiffness curves - bilinear system
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3.5 Non-linear damping

The most common form of polynomial damping is the quadratic one:

fd(y) = c2ẏ|ẏ| (3.9)

where the absolute value term is to ensure that the force is always opposed to the

velocity.

The equation considered for the numerical simulation is thefollowing

ÿ + 30ẏ + 10ẏ|ẏ|+ 1000y = p(t) (3.10)

This system also has been tested considering two kinds of excitation signals,

but with different parameters with respect to the previous cases.

For the steady-state excitation the equation is

p(t) = A sin(ω t)

whereA = 10000 and ω is set equal to the system first natural frequency

(≃ 31 rad/s).

The exponential sine-sweep is still described by equation (3.6), but with

different parameters: the sweep rate is equal to2 oct/min, the frequency range is

2-10 Hz.

The results of the simulation are shown in Fig.(3.7),(3.8) and collected in

Table (3.3). A polynomial function of the formc(x) = p1 x
3 + p2 x

2 + p3 x+ p4

has been fitted to the data.

k c (poly coeff.)

p1 p2 p3 p4

exact parameters 1000 0.2681 0 119.7 0.03
identified parameters (a) 1055 0.2048 -0.38 169.2 193.8
identified parameters (b) 1207 0.1694 0 170.2 -2.947

Table 3.3: Identification results for the non-linear damping case
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(a) Steady-state sine excitation

−1
−0.5

0
0.5

1

−40

−20

0

20

40
−1

−0.5

0

0.5

1

x 10
4

displacement [m]

Restoring force surface − nonlinear system

velocity [m/s]
fo

rc
e 

[N
]

(b) Sine sweep excitation

Figure 3.7: Restoring force surface - non-linear damping system
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(a) Steady-state sine excitation
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Figure 3.8: Exact and estimated damping curves - non-linear damping
system



Chapter 4

FE modelling of a gap non-linearity

The aim of the first part of this chapter is to prove the usefulness of the Restoring

Force Surface Method as a non-linearity identification toolalso when more

realistic structures are considered. For this purpose, a plate with a gap

non-linearity has been modelled in Nastran and the Restoring Force Surface

method has been subsequently applied on the resulting time histories.

In the second part of the chapter, a way to approximate the gapeffect in a

non-linear frequency response solution has been proposed.

Lastly, two methods for prescribing enforced motion in the non-linear solution

sequences have been analysed and compared in view of what will be done in

Chapter 6.

4.1 Linear plate analysis

The plate has dimensions0.127 x 0.0508 x 0.0012 m and, as shown in Fig.(4.1),

it is constrained at nodes 1, 167 and 353. This constraints configuration has been

chosen because it is similar to the one that characterize thestructure in Chapter 6.

The plate mass is0.02145 kg.

The load is applied along thez-direction at node 32 and it is a sinusoid with

unit amplitude and forcing frequency equal to the first natural frequency of the

plate without the gap (therefore all six degrees of freedom at node 353 are

constrained). The time response (SOL112) and the frequencyresponse (SOL111)

29
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are shown in Fig.(4.2) and their Nastran input files can be found in Appendix B.

The first bending mode occurs at79.26 Hz.

To define the benchmark for the stiffness parameters, two simulations have

been run: one with node 353 fully constrained and one with node 353 free in the

z-direction. In this way it is possible to determine the stiffness values (shown in

Table 4.1) which represent the closed and the open gap conditions in such a way

thatk−, k+ = kz,constrained andk = kz,free. Both linear simulations have been run

using the modal transient solution sequence (SOL112) available in Nastran.

Figure 4.1: Plate FE model

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

time [s]

di
sp

la
ce

m
en

t [
m

]

Time response at node 176

(a) Displacement - time response

20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

frequency [Hz]

m
ag

ni
tu

de

Frequency response at node 176

(b) Displacement - frequency response

Figure 4.2: Plate dynamic responses

The Restoring Force Surface method applied to the simulatedlinear plates

yields the results shown in Fig.(4.3) and in Fig.(4.4). To check the stiffness values
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kz,constrained 5318.6 N/m
kz,free 3592.4 N/m

Table 4.1: Stiffness parameters benchmarks

found by curve fitting the data, the stiffness can be computedask = ω2m which

yields a value of5319.8 N/m.
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Figure 4.3: RFS - linear plate (node 353 fully constrained)
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4.2 Gap modelling and non-linear parameters

identification

The symmetric gap has been modelled by means of theCGAP andPGAP cards

[30], which are intended, among the others, for the non-linear solution sequence

129.

The simulation parameters have been chosen as follows:

• to determine the value of the axial stiffness of the closed gap, a linear

spring alongz has been introduced at node 353 and its value has been set

equal to109 N/m to simulate the constraint. The simulation has been run

using SOL112 and the result has been compared with the one obtained

substituting the spring with an actual constraint to make sure they were

equal.

• the same model has been run with a SOL129 to check the correctness of

thePARAM,W4 value (SOL129 is a direct solution, therefore does not allow

to define the damping using theTABDMP1 card in which it is specified as

percentage of the critical damping).

• the initial gap opening has been chosen looking at the displacement at node

353 obtained from the simulation run without thez constraint (Fig. 4.5).

The chosen value is4 · 10−4 m.

• the axial stiffness for the open gap has been set equal to10−6 N/m.

The setup of the non-linear transient analysis is shown in Listing(4.1).

For all the simulations the time step size has been chosen taking into

consideration the frequency content of the input load and the frequency of the

mode of interest (the first one only). In SOL129 the only method allowed for the

integration scheme isADAPT: the program automatically adjusts the incremental

time, which also means that the number of time steps will not be equal to the one

defined in the card. The user-defined∆t is used as an initial value for the time

step size [31].
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Figure 4.5: Time response at node 353 when the z dof is left free

In order to have a better coverage of the phase-plane, the outputs of the

simulation have been resampled at a constant sampling frequency of10 kHz.

The application of the identification method produced the results in Fig.(4.6)

and collected in Table (4.2). Since the stiffness is piece-wise linear, a

non-polynomial model expressed by equation(4.1) has been fitted to the data.

fs(y) =



















k+y + (k − k+)yc y > yc,

ky |y| ≤ yc

k−y + (k − k−)yc y < −yc

(4.1)

k− k k+ yc yc

exact parameters 5318.6 3592.4 5318.6 -0.0004 0.0004
identified parameters 6657.3 4540.3 6751.5 -0.000419 0.000436

Table 4.2: Symmetric gap identified parameters
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Listing 4.1: SOL129 - symmetric gap
SOL 129
$ Case
TSTEPNL = 1
$
$ Bulk
PARAM W4 498.
$
$TSTEPNL ID NDT DT NO METHOD KSTEP MAXITER CONV
TSTEPNL 1 10000 1.5−3 1 ADAPT 2 10 PW
$
$ Mate r i a l
$MAT1 MID E G NU RHO A TREF GE
MAT1 1 7.0E+10 .3 2770. 0.06
$
$ Gap
$PGAP PID U0 F0 KA KB KT MU1 MU2
$ TMAX MAR TRMIN
PGAP 889 4.−4 0. 1.+9 1.−6 1.+8

1.2−4
$CGAP EID PID GA GB X1 X2 X3 CID
CGAP 888 889 353 998 1. 0 . 0 .
CGAP 887 889 997 353 1. 0 . 0 .
$ x , y coord ina tes equal to x , y coord ina tes o f g r i d 353
GRID* 998 0. .050799999386072

* 0.001
GRID* 997 0. .050799999386072

* −.001

(a) Surface
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Figure 4.6: Restoring force surface symmetric gap
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4.3 Sine-sweep excitation

The verification of the mathematical model used in forced frequency response

predictions is usually carried out by means of shaker-vibration sine tests, therefore

two ways to set up the numerical analysis under a sine-sweep excitation will be

discussed in the following.

The easiest method to be implemented requires the use of theTLOAD1 card

together with theTABLED1 card, which allows the definition of a tabular function

to generate a time-dependent dynamic load. In this way it is still possible to run

a transient analysis (SOL129) and the gap non-linearity is modelled as explained

earlier.

To generate the tabular values to be used in the analysis, equations (3.1) and

(3.4) have been implemented in MATLAB. The frequency range50−100Hz has

been swept at4 oct/min. The total duration of the simulation is therefore of15 s.

The load has been applied at node 32, as before.

Care must be applied in the definition of the starting and ending frequency for

this kind of analysis, in fact, the frequency range to be swept should be chosen as

small as possible in order to reduce the computation time especially when running

the non-linear solution sequence.

The first simulation that has been run is the linear one (SOL109) and the

resulting acceleration is shown in Fig.(4.7a). Then the non-linear simulation

sequence SOL129 has been run and the resulting acceleration(Fig. 4.7b) clearly

shows the so calledjump phenomenon1 caused by the presence of the

non-linearity.

The results obtained applying the Restoring Force Surface method to the non-

linear time histories are shown in Fig.(4.8) and collected in Table(4.3).

During tests the input excitation is usually given as enforced acceleration,

therefore it is useful to analyse the methods available in the Nastran different

solution sequences. The enforced motion analysis set-up will be discussed in

depth in Section 4.5. The concepts there explained will be then applied in

1Jump phenomena are caused by small variations of the initialconditions of the motion which
may drift the response between competing domains of attraction of stable solutions in the phase
space of the system.
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Figure 4.7: Acceleration at node 176 (≃CoG) - input given as LOAD

k− k k+ yc yc

exact parameters 5318.6 3592.4 5318.6 -0.0004 0.0004
identified parameters 5196.5 3939.7 5188.3 -0.000414 0.000414

Table 4.3: Symmetric gap identified parameters under sine-sweep excitation

Chapter 6.

The computational time of the transient solutions grows as the size of the

model increases and might become prohibitive for very largemodels. For this

reason, an alternative method to simulate the non-linear response of the structure

to a sinusoidal excitation will be presented. In Nastran theNon-linear Harmonic

Response solution (SOL128) allows to run the analysis directly in the frequency

domain where the sinusoidal excitation, defined in a given frequency range, can
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Figure 4.8: Restoring force surface - sine-sweep excitation
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be easily defined by means of theRLOAD2 card. The application of this second

method showed a big improvement in terms of computational time and therefore

it will be explained in details in Section 4.4.

4.3.1 Comparison with SOL400

As stated in [31], the solution sequence SOL129 is the preferred one when

dealing with transient response analysis in the presence ofnon-linearities. As a

comparison, the previous analysis has been run using the implicit non-linear

solution sequence SOL400.

The acceleration obtained running the SOL400 is shown in Fig.(4.9) and can

be compared with the one obtained running the SOL129 (Fig. 4.7b). Since the

two input files are identical, the difference in the two responses (one being more

noisy than the other) could be addressed to the algorithms implemented in the

solution sequences not being the same. The differences reduce when considering

velocities (Fig. 4.10) and displacements (Fig. 4.11).
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Figure 4.10: Velocities comparison
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4.4 Non-linear harmonic response

A non-linear harmonic response solution (SOL128) is available in Nastran and it

allows the analysis of the dynamic response of non-linear structures which exhibit

a periodic response when subjected to a harmonic excitation. This means that the

degree of non-linearity in the system has to be light enough that the response

can be described as a combination of harmonic responses through the Harmonic

Balance Method (see Appendix A for a full explanation of the method).

The Harmonic Balance Method assumes the steady-state response consists of

a sum of sinusoidal responses and therefore it can be efficient only if a small

number of sinusoids is necessary to approximate the solution. Its limitation is that

it can only capture harmonic components, so any frequency which is not a pure

sub- or super-harmonic2 of the excitation will be lost.

The main issue related to this solution is convergence. Non-convergence can

be attributed to dynamically unstable conditions, to the reaching of a bifurcation or

turning point or to an insufficient number of harmonics takeninto account. In the

case of non-convergence, the response quantities are set tozero and the calculation

continues to the next excitation frequency retaining the initial conditions of the

solution from the last converged frequency.

Since theCGAP card is no more available in this solution sequence3,

non-linearities have to be defined as non-linear dynamic forces formulated using

NOLINi entries, which describe the force as a function of displacement.

As said, the non-linearities in the system must be mild to achieve convergence,

therefore the model for the gap non-linearity needs to be adjusted not to have

an abrupt change in slope of the force-displacement curve, because it will cause

convergence difficulties. In fact, if the stiffness undergoes to sudden changes to

simulate a hard contact, higher order harmonics will be generated and therefore

it is no more true that the response can be approximated by a small number of

2Super-harmonic responses represent permanent oscillations whose frequencies are multiple
of the forcing frequency.

3It has to be noted, however, that it is possible to define a non-linear radialgap both in the
non-linear transient and in the non-linear harmonic responses by means of theNLRGAP card.
Differently from theCGAP card, which defines an element, theNLRGAP defines a non-linear
load similar to theNOLINi Bulk Data entries.
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sinusoids, as requested by the solution sequence. However,it can be reasonable to

assume that the change in stiffness will be smoother in practice than for numerical

example.

For these reasons, the stiffness curve which represents theclearance

non-linearity has been approximated using a polynomial model of the form

p(x) = p1x
3, as shown in Fig.(4.12). The polynomial coefficientp1 is estimated

to be equal to1.77 · 109. This value will be used to model the non-linear input

defined by the cardsNOLIN3 andNOLIN4.
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Figure 4.12: Polynomial approximation of the gap

The starting point for the setup of this analysis is the linear direct frequency

response (SOL108). The changes needed for the SOL128 are shown in

Listing(4.2).

The simulation has been run for four different load levels:0.1 N , 1 N , 10 N

and100 N . The results are then compared with the results obtained running the

transient analysis (SOL129) introduced in Section 4.2.

As can be seen from Fig.(4.13) to (4.17) the effect of the approximation

introduced in Fig.(4.12) is translated into a different response amplitude in the

two cases, the error being more severe when the level of the input excitation is an

intermediate value between the two limit conditions: always open gap and

always closed gap.

At the first load level of0.1 N (Fig. 4.13a), the structure behaves like if thez

degree of freedom (dof) at node 353 was not constrained (Fig.4.14). This happens

because the load is too low to activate the non-linearity.

Since the response in Fig.(4.14) was obtained running a linear frequency
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Listing 4.2: SOL128 analysis set-up
SOL 128
$ Case
NLHARM = 100
NONLINEAR = 111
$
$ Bulk
$NLHARM ID SUBFAC NHARM NLFREQ
NLHARM 100 1 5 101
$
$ Spin up
$NLFREQ1 ID F1 DF NDF
NLFREQ1 101 20 .5 360
$
$ Cubic non l i nea r s t i f f n e s s
$ Tension
$NOLIN3 SID GI CI S GJ CJ A
NOLIN3 111 353 3 −1.77E+9 353 3 3.
$ Compression
NOLIN4 111 353 3 −1.77E+9 353 3 3.

response (SOL111) with a unitamplitude input excitation, care must be taken

when choosing the level of the input excitation, because there is no perfect

equivalence in the output responses.

When the load level increases (Fig 4.17), the non-linearityis always active,

therefore it behaves as a constraint and the response is similar to the one obtained

with the actual constraint (Fig. 4.18).

The homogeneity test shown in Fig.(4.19) highlights the presence of the non-

linearity and its effects on the natural frequency of the plate.
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Figure 4.13: Response comparison for load level 1: 0.1 N
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Figure 4.14: Linear frequency response for unconstrainedz dof at node 353
(fn = 60.54 Hz)
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Figure 4.15: Response comparison for load level 2: 1 N
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Figure 4.16: Response comparison for load level 3: 10 N
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Figure 4.17: Response comparison for load level 4: 100 N
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Figure 4.18: Frequency response when the z dof at node 353 is constrained
(fn = 79.26 Hz)
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4.5 Enforced acceleration

Enforced motion can be used to specify accelerations at a setof grid points for

frequency and transient response.

In Nastran, two main methods are available to specify motion: the Direct

Enforced Motion (DEM) and the Large Mass Method (LMM). The first one

allows direct specification of displacements, velocities or accelerations via the

SPC and SPCD data entries; the second one is implemented by placing large

masses on all enforced degrees of freedom and supplying dynamic loads

specified by equation (4.2).

p = m0ü (4.2)

The mass should be at least106 times the mass of the entire structure for an

enforced translational dof, keeping in mind that the accuracy of the approximation

increases asm0 is made larger.

Since these two methods are implemented in different solution sequences, the

choice of the method to be used in the analysis is driven by thekind of solution

sequence that needs to be run. The Direct Enforced Motion is implemented in

direct and modal frequency analysis (SOL108 and SOL111), direct and modal

transient analysis (SOL109 and SOL112) and in the non-linear solutions SOL400

and SOL128. The Large Mass Method is applicable to both transient response

and frequency response and it is the only method available toprescribe enforced

motion in SOL129.

The set-ups of both analysis are presented in Listing(4.3) and Listing(4.4). The

motion has been enforced at node 167 in thez-direction.

When implementing the Direct Enforced Motion viaSPCD card, the

components specified inSPCD data must be also referenced onSPC or SPC1

entries (which means that defining aSPCD for one dof implies constraining that

dof).

The results obtained running the Direct Enforced Motion in SOL109 and the

Large Mass Method in SOL112 are presented in Fig.(4.20).
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Listing 4.3: SOL109 Direct Enforced Motion
PARAM ENFMETH REL
PARAM ENFMOTN REL
$
$ Cons t ra i n ts
SPCADD 2 1 996
SPC1 1 123456 1 353
SPC1 996 123 167
$
$ Dynamic load ing
$DLOAD SID S S1 L1
DLOAD 2 1. 1 . 88
$TLOAD1 SID EXCID DELAY TYPE TID US0 VS0 P
TLOAD1 88 99 ACCE 77 0. 0 .
$
$SPCD SID G1 C1 D1
SPCD 99 167 3 1.
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Figure 4.20: Comparison between accelerations obtained by means of DEM
(SOL109) and LMM (SOL112)

As can be seen, the responses are virtually the same providedthat

• the rigid body modes are removed by means of thePARAM,LFREQ

parameter in SOL112, so doing the responses are relative to the overall

motion of the structure and are not absolute quantities

• only the dynamic enforced motion solution relative to the static-based

solution is taken into account in SOL109 by means of the

PARAM,ENFMOTN andPARAM,ENFMETH parameters

When moving to the non-linear solution sequences, the aforementioned

parameters are no more available. This means that the displacement will be



46 CHAPTER 4. FE MODELLING OF GAP

Listing 4.4: SOL112 Large Mass Method
EIGRL 1 −0.1 3000. 0
$ Discard r i g i d body mode
PARAM LFREQ 0.1
$
$ Large mass
$CMASS1 EID PID G1 C1
CMASS1 555 554 167 3
PMASS 554 1.+9
$
$ Cons t ra i n ts
SPCADD 2 1 999 996
SPC1 1 123456 1 998 997
SPC1 999 12456 353
SPC1 996 12 167
$
$ Dynamic load ing
$DLOAD SID S S1 L1
DLOAD 2 1. 1 . 88
$TLOAD1 SID EXCID DELAY TYPE TID US0 VS0 P
TLOAD1 88 99 ACCE 77 0. 0 .
$
$DAREA SID P1 C1 A1
DAREA 99 167 3 1.+9

affected by rigid-body drift, i.e. it increases continuously with time, as shown in

Fig.(4.21). As a consequence, the only way to obtain the relative responses is to

post-process the time histories (integration and filteringof the relative

acceleration response to obtain relative velocity and displacement). Being the

structure non-linear, the principle of superposition doesnot hold any more,

therefore, to be able to retrieve the relative responses, the motion must be

enforced at one dof only.
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Figure 4.21: Effect of the rigid-body drift on the displacement

The acceleration response obtained by means of the Large Mass Method
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implemented in the non-linear solution sequence SOL129 is shown in Fig.(4.22).

Again, thejump phenomenonreveals the presence of the non-linearity.
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Figure 4.22: Relative acceleration obtained running the LMM in SOL129





Chapter 5

Experimental study of a piecewise

linear beam

Until now, the Restoring Force Surface method has been tested on numerical

examples only. To move a step forward toward the identification of a real system,

a simple experimental case has been prepared in order to apply the method to a

real, but controlled, configuration (similar to the one tested in [4]).

The tested system is a beam made of aluminium, mounted horizontally with

one clamped end and one free end, as shown in Fig.(5.1). The dimension and

material constants for the beam are given in Table (5.1).

If the amplitude of the transverse motion exceeds a fixed limit, the beam makes

contact with two stops. In the experiment here described, the clearance was set

at 3.56 mm. When the beam makes contact with the stops, its effective length is

lowered with a consequent rise in stiffness. Therefore, fortransverse vibrations,

the beam has a piecewise linear stiffness. Separate tests were carried out at low

and high excitation.

49
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Figure 5.1: Beam test set-up

Length, L 242mm
Width, w 30mm
Thickness, t 5mm
Density,ρ 2720 kg/m3

Young’s modulus, E 70 · 109 N/m2

Second moment of area, I3.125 · 10−10 m4

Mass per unit length,ml 0.4563 kg/m

Table 5.1: Dimensions and material constants for cantilever beam

5.1 Low excitation test

The behaviour of the beam without impacts should be the one ofa linear system

and therefore it can be compared with theory. According to [32], the first two

natural frequencies of a cantilever (fixed-free) beam are

fi =
λ2
i

2πL2

√

EI

ml
Hz (5.1)

where λ1 = 1.87510407, λ2 = 4.69409113 and I = wt3/12. This gives

theoretical natural frequencies of70.3 Hz and440.6 Hz. From a first test the

identified frequencies are61.5 Hz and359 Hz. This underestimate is due to the

additional mass loading caused by the presence of the accelerometer and of the

load cell, since their mass is the12% of the beam mass.

The theoretical stiffness for the beam can be estimated fromtheory. Applying

a unit load at a distancea from the free-end, the equation for the elastic curve can
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be written as

EI
d2y

dx2
= M(x) (5.2)

The bending moment has the formM(x) = 〈x − a〉 where 〈...〉 is the

Macaulay’s bracket which vanishes if the argument is negative.

Integrating twice and applying the boundary conditions forthe clamped end

(the complete derivation can be found in Appendix C) the displacement is

y(x) =
1

6EI
[〈x− a〉3 − 3(L− a)2x+ 3(L− a)2L− (L− a)3] (5.3)

Evaluating equation(5.3) at a distanced, it is then possible to compute the

observable stiffness for the accelerometer askd = 1/y(d) = 66333 N/m.

The massmd is fixed, once the natural frequency of the system is known, by

the relation

md =
kd
ω2
n

(5.4)

The first two modes are well separated and the first mode is the bending mode,

therefore, if only the first mode is excited, the beam is assumed to behave as a

SDOF system described by the following equation (whered is the position of the

measurements devices)

mdÿ(d) + cdẏ(d) + kdy(d) = p(t) (5.5)

Having made this assumption, the beam was excited with a stepped-sine

sequence band-limited in the55− 70 Hz range (Fig. 5.2). The shaker is attached

to the beam by a stinger. Both the acceleration and displacement responses

(Fig. 5.3) have been measured and the data have been acquiredwith a sampling

frequency set to200 Hz.

In this case, the velocity could be obtained in two ways:

• integrating it from the acceleration and high-pass filtering to eliminate

spurious components from the integration, as discussed in Section 2.2

• it could be estimated by means of a Kalman filter using both the acceleration

and the displacement measurements.
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The second approach was already used in [7], but with a different formulation

with respect to the one presented in this thesis. The complete formulation is given

in Section 5.3.
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Figure 5.2: Force time history - linear test
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Figure 5.3: Measured responses - linear test

Once the velocity has been obtained applying one of the two methods

mentioned earlier, the Restoring Force Surface method can be applied. For the

linear beam, it yields the surface and stiffness curve shownin Fig.(5.4). The

estimated stiffness iskest = 63014 N/m.
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Figure 5.4: Restoring Force Surface method applied to the linear beam

Subsequently, the test has been carried out at four different levels of excitation

to activate the non-linearity. As the level of excitation increases, the non-linear

behaviour becomes more visible, as shown by the homogeneitytest in Fig.(5.5).
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Figure 5.5: Homogeneity test for the cantilever beam

5.2 High excitation test

Being the effect of the non-linearity more evident at high level of excitation, the

parameters identification technique has been applied to theresponses obtained at

the highest level of excitation tested.

The input sequence is shown in Fig.(5.6), whereas the time histories of

acceleration and displacement are shown in Fig.(5.7), where the jump
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phenomenonis now visible although not really clear-cut (it was not possible,

with this set-up, to make it more clear without overloading the shaker).

The Restoring Force Surface method applied to the non-linear test responses

yields the results shown in Fig.(5.8) and collected in Table(5.2). The identified

parameters show good agreement with the theoretical ones and this proves that

the Restoring Force Surface method is an useful tool for identifying real systems.
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Figure 5.6: Force time history - high excitation test
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Figure 5.7: Measured responses - high excitation test

k− k k+ yc yc

exact parameters 74098 66333 74098 -0.00178 0.00178
identified parameters 70152 63166 74852 -0.00189 0.0018

Table 5.2: Identified parameters for non-linear beam
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Figure 5.8: Restoring Force Surface method applied to the non-linear beam

5.3 Velocity estimation via Kalman filter

An exhaustive introduction to the Kalman filter can be found in the original paper

published by Kalman [33] and in Welch and Bishop paper [34], whereas here only

the information needed for the filter set-up will be discussed.

The Kalman filter tries to estimate the state of a discrete-time process governed

by the following equations1:

xk = Axk−1 + qk−1 (5.6a)

zk = Hxk + rk (5.6b)

wherex is the state vector,A is the state transition matrix,z is the vector of

measurements andH is the observation matrix. The random variablesqk andrk
represent the process and measurement noise respectively and they are assumed

to be independent of each other, white and with normal probability distributions

given by

p(q) ∼ N(0,Q)

p(r) ∼ N(0,R)

1In the original equations presented by Kalman in [33] there was also a termBu, which is
added to equation (5.6a) and represents the input to the system. This term is here omitted because
there is no input term in equations (5.7)
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whereQ is the process noise covariance matrix andR is the measurement noise

covariance matrix. The process noise serves the purpose of taking into account all

the factors that influence the system and that are not know and/or modelled.

The state vectorx and the matrixA can be written by considering the

equations that describe the system, which are:

pk = pk−1 +∆tvk−1 +
∆t2

2
ak−1 (5.7a)

vk = vk−1 +∆tak−1 (5.7b)

ak = ak−1; (5.7c)

where p, v and a represent position, velocity and acceleration respectively.

Therefore,x = [p v a]T andA takes the form:

A =









1 ∆t
∆t2

2
0 1 ∆t

0 0 1









Since the measured quantities are acceleration and displacement, the

observation matrixH takes the form:

H =

[

1 0 0

0 0 1

]

The matrixR can be obtained by taking some off-line sample measurements

and computing the variance of the measurement noise.

The matrixQ, instead, needs a special attention. In fact, typically there is not

the possibility to directly observe the process that needs to be estimated, therefore

the determination ofQ usually follows from an off-line tuning process, keeping

in mind that it must satisfy the properties of a covariance matrix, which means it

must be symmetric and positive-semidefinite2.

Since the effect ofQ is to increase the uncertainty of the prediction, it is

2A matrix is said to be positive-semidefinite ifx∗
Mx > 0 for all x in ℜn. A quick check could

be performed computing all the eigenvalues, which have to benon-negative, of the Hermitian part
M+M

T

2
.
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possible to define some guidelines for the choice ofQ:

• huge values (compared toP, which will be introduced later on in the

section) means that the model does not predict the process accurately

enough; ifQ is too large, then the filter will be too much influenced by the

noise in the measurements

• low values ofQ indicate confidence that any unknown noise term and/or

modelling error is small, but the filter may become overconfident in its

estimate of the state which could diverge from the actual solution

In this case the process noise covariance matrix is the following

Q =







2e6 5e7 0

5e7 8e9 5e3

0 5e3 2e6







Figure 5.9: The discrete Kalman filter loop

Now that all the elements have been defined, the discrete Kalman filter can be

implemented (the complete code can be found in Appendix D). The Kalman filter

works in two steps (Fig. 5.9):

1. Time update: the current state and error covariance estimates are projected

forward in time to obtain the a priori estimates for the next time step.

2. Measurement update: a new measurement is incorporated into the a priori

estimate to obtained an improved a posteriori estimate.
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The equations have to be implemented according to the following scheme, as

explained in [34]:

1. Time update

(a) Project the state ahead

x̂−

k
= Ax̂k−1

(b) Project the error covariance ahead

P−

k
= APk−1A

T +Q

2. Measurement update

(a) Compute the Kalman gain

Kk = P−

k
HT(HP−

k
HT +R)−1

(b) Update estimate whit measurementzk

x̂k = x̂−

k
+Kk(zk −Hx̂−

k
)

(c) Update the error covariance

Pk = (I−KkH)P−

k

To start the iteration, initial estimates forx̂k−1 andPk−1 are needed. For the

case in hand, an initial state vectorx̂0 = [0 0 0]T has been chosen. Since the

initial state is a guess, the starting covariance matrixP0 has been set to a large

value. In fact, matrixP is and indicator of the variability of the state: ifPk is

large, it means that the state is estimated to change a lot.

The velocity obtained applying the Kalman filter has been compared to the one

obtained by integration and filtering (by means of a fourth-order Butterworth filter

with cut-off frequency set at5 Hz) of the accelerometer data. The comparison is

shown in Fig.(5.10), a magnification of the signals is shown in Fig.(5.11). As
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can be seen, they are virtually identical, which means both methods are valid in

terms of performance. The drawback which limits the use of the Kalman filter

is related to the need of measuring both acceleration and displacement, which

is not something that is usually done during tests. In addition, when integrating

and filtering the acceleration data, the only parameter thathas to be defined is the

filter cut-off frequency, which has a more intuitive meaningthan the process noise

covariance in the Kalman filter.
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Figure 5.10: Comparison between integrated and estimated velocity
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Chapter 6

Application to a real-life structure:

the IXV flap

Now that the method has been proved to be reliable as far as theidentification of

non-linear systems is concerned, it can be applied to an industrial case in which

a non-linearity showed up during the testing phase. It has tobe underlined that

the tests conducted on this structure were not meant for thispurpose and this will

affect the final identification results, as will be shown.

Once the non-linearity has been identified, the parameters are used to update

the FE model and a non-linear transient analysis is run to check if the improved

model is capable of predicting the behaviour of the real structure.

To the author’s knowledge, the application of the RestoringForce Surface

method to experimental data obtained from tests on a real structure has not been

attempted before. In fact, in [15] the method was applied on numerical data

coming from the finite element model of a real-life structure, in which the

non-linearities were modelled as non-linear springs.

The experimental data showed in this chapter and the FE modelused for the

numerical simulations were provided by Thales Alenia SpaceItalia (TAS-I).
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6.1 The Intermediate eXperimental Vehicle

The Intermediate eXperimental Vehicle (IXV) is an EuropeanSpace Agency

(ESA) experimental re-entry vehicle, which is intended to validate re-entry

technologies for future European reusable launchers [36].The IXV project,

which was successfully launched on 11 February 2015 performing a 100-minute

mission, sees Thales Alenia Space Italia as the major contractor.

The main objective of the project is the design and the development, up to

in-flight verification, of an autonomous European lifting and aerodynamically

controlled re-entry system.

6.1.1 Mission overview

The IXV was launched on ESA’s Vega rocket from Europe’s Spaceport in French

Guyana into a suborbital path that allows the vehicle to conduct a re-entry that

resembles, as closely as possible, a Low Earth Orbit re-entry.

The IXV journey began at spacecraft separation from the Vega’s upper stage:

from that moment on, the IXV covered a ballistic segment thatled it towards

the Pacific Ocean. During this phase, IXV performed autonomously the attitude

manoeuvres that allowed it to remain within a certain attitude corridor to ensure

its transmitters were in a favorable position for visibility from the ground stations.

During the re-entry phase the two aerodynamic flaps were enabled and the

flight control system began sending commands in the form of opening times of

the thrusters valves and desired flap deflection settings, inorder to reach the target

condition for the trigger of the parachutes. The deploymentof the parachutes

allowed to slow the spacecraft down and to make it landing in the Pacific Ocean

where it waited for the recovery after having deployed the flotation balloons.

The mission profile is shown in Fig.(6.1). IXV was closely monitored during

the mission by the Mission Control Centre at the Advanced Logistics Technology

Engineering Centre (ALTEC) in Turin, Italy.
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Figure 6.1: IXV mission profile (Courtesy of ESA)

6.1.2 The vehicle

The spacecraft (Fig. 6.2) is a lifting-body with no wings, with a total length of

5.0 m, width of 2.2 m and height of1.5 m. The outer surface of the vehicle

consists of advanced ceramic and ablative thermal protection materials that are

able to withstand the extreme thermo-mechanical environment encountered

during re-entry to protect the vehicle’s structural integrity and functionality

throughout the re-entry process. The inner elements are built around a

carbon-fibre reinforced polymer structural panels, which provide strength and

stiffness. From front to rear, the IXV spacecraft hosts a number of different

systems: the avionics, the parachute and floating systems and, in the aft of the

vehicle, the control actuators (the electromechanical systems to control the flaps,

the propulsion module and the thrusters).

The flight control is guaranteed by reaction thrusters during the orbital phase

and by two aerodynamic body flaps during the atmospheric re-entry phase. The

Flap Control System (FpCS) is in charge of providing the motion and controlling

the position of the two flaps during re-entry, becoming active when the efficiency

of the aerodynamic control surfaces increases with the dynamic pressure.

The flaps, developed under the responsibility of Thales Alenia Space Italia,

are used to provide control during re-entry, their motion being controlled by the

FpCS through the elongation and retraction of two Electro-Mechanical Actuators
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Figure 6.2: IXV external layout (Courtesy of Thales Alenia Space Italia)

(EMA), shown in Fig.(6.3). Each FpCS actuator is equipped with a locking

mechanism [37], that holds the flaps in a fixed position duringthe launch phase,

the orbital flight and the last part of the descent (with the parachutes). The IXV

flaps are actuated by the FpCS during the re-entry phase and the locking

mechanism holds their position when the FpCS is un-powered.

Figure 6.3: Flap Control System (Courtesy of Thales Alenia Space Italia)

6.2 Experimental results

The flap was tested on a shaking table (Fig.6.4) under a sine-sweep excitation

band-limited in the frequency range5 − 100 Hz, the sweep rate was set to

4 oct/min and the acceleration was enforced in the out of plane direction.

Different levels of excitation were tested and the acceleration responses were

measured and stored with sampling frequency of6.5 kHz. Since during structural

tests the responses are usually stored as frequency domain data, the resulting time

histories of some of them were not available.
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Figure 6.4: Flap testing set-up (Courtesy of Thales Alenia Space Italia)

The input excitations of the two tests taken into consideration are the first and

the second shown in Fig.(6.5).

Looking at the frequency responses obtained from the tests (Fig. 6.6), it is

clear that three modes participate to the response and this will negatively affect

the identification results, as will be explained later.
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Figure 6.5: Input excitations IXV test (Courtesy of Thales Alenia Space
Italia)

The presence of the non-linearity is clearly visible when comparing the

transmissibilities for the different excitation levels (Fig. 6.7), in fact, the
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Figure 6.6: Frequency responses from test (Courtesy of Thales Alenia
Space Italia)

resonance frequency shifts towards higher frequencies (from 32.63 Hz to

36.53 Hz), therefore the non-linearity is expected to be of the hardening type.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
Transmissibilities

Frequency [Hz]

 

 

1st level

2nd level

3rd level

Figure 6.7: Homogeneity test - IXV flap (Courtesy of Thales Alenia Space
Italia)

Being the tip the part that vibrates the most, and therefore the one that gives

the highest evidence of the presence of the non-linearity, the first attempt implied

the use of the acceleration measurement coming from the tip accelerometer.

Unfortunately, looking at the response (Fig. 6.8) is clear that the contribution of

the third mode (torsional) is far from being negligible. Moreover, the

contribution of that mode could not be filtered out, otherwise all the harmonics

generated by the non-linearity would have been lost. Since the Restoring Force

Surface method is meant to deal with SDOF systems, this measurement had to be

discarded.
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Figure 6.8: Acceleration measured at the tip (Courtesy of Thales Alenia
Space Italia)

The second choice was the accelerometer placed at the centreof mass, which

gave the time histories shown in Fig.(6.9). The contribution of the higher modes is

still present (and can not be removed for the reason explained earlier), but it is not

so significant. It has to be noted however, that the presence of other modes will

negatively affect the identification results, because the structure does not behave

exactly as an SDOF system.
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Figure 6.9: Acceleration measured at the centre of mass for both excitation
levels (Courtesy of Thales Alenia Space Italia)
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6.3 Non-linearity parameters identification

The excitation is given as enforced base acceleration, therefore the formulation to

be used for the restoring force computation is the one explained in Section 2.1.2.

The procedure to compute the relative displacementwL and velocityẇL is

the following: first the time history of the input acceleration (Fig. 6.10) has to be

retrieved from the frequency data by means of equations (3.1),(3.4), then both the

input acceleration̈eb and the measured accelerationÿ have to be integrated and

filtered as explained in Section 2.2. As last step, the input and output signals have

to be synchronized to be finally able to compute the relative quantities.

To correctly scale the restoring force, the effective mass is needed and it was

found to be equal to the42.95% of the total mass.
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Figure 6.10: Input acceleration time histories

The Restoring Force Surface method is first applied to the data obtained from

the first test. As can be seen in Fig.(6.11), the behaviour is not linear but, due to

the contribution coming from the other modes, it is not possible to state without

doubt that the distortions are caused by the non-linearity only. In addition, it is not

possible to identify a clear non-linear trend comparable with one of the theoretical

curves that represent the most common non-linearities.

By contrast, when applying the identification method to the data coming from

the second test, the stiffness curve clearly shows a piecewise linear trend

(Fig. 6.12b), which is typical of clearance non-linearities, though the surface

shown in Fig.(6.12a) looks distorted if compared to the onesobtained from the

FE model of the plate (Fig. 4.6 and 4.8).
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Figure 6.11: Restoring Force Surface method applied to the data from the
first test
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Figure 6.12: Restoring Force Surface method applied to the data from the
second test

Due to the fact that it is not possible to rely on theoretical formulations to

compute an estimate of the stiffness values, the identification process was focused

on the determination of the gap size only. However, if the aimof the identification

process is the update of the FE model, the clearance value is the only parameter

needed to model the gap by means of theCGAP card. The identified clearance

values are collected in Table(6.1).

d1 [m] d2 [m]
-0.0013 0.0010

Table 6.1: Identified clearance values
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6.4 FE model update

Once the parameters which describe the non-linearity have been identified, the FE

model can be updated in order to check its capability of predicting the behaviour

of the flap for different load levels.

The set-up of the analysis input files follows the guidelineshighlighted in

Chapter 4.

First of all, a linear transient analysis (SOL109) and a modal frequency

response solution (SOL111) have been run applying the first load level used in

the test. The inputs shown in Fig.(6.5a) and (6.10a) have been applied to the

structure as enforced acceleration by means of the Large Mass Method. The

out-of-plane responses of the node corresponding to the accelerometer position

during the test are plotted in Fig.(6.13). The difference between these responses

and the ones obtained from the test (Fig. 6.6a and Fig. 6.9a) is evident.
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Figure 6.13: Acceleration responses at CoG for excitation level 1

6.4.1 Non-linear transient analysis

A non-linear transient analysis (SOL129) has been run without introducing any

non-linearity, in such a way to check the correctness of the set-up. A look at

the input excitation seen by the enforced node made clear that the input was not

reproduced correctly (see Fig. 6.14 compared to Fig. 6.10a). Several simulations

run to understand the reason of this behaviour showed that the problem was likely

to be due to the accumulation of numerical errors, thereforethe simulation was
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shortened. In Fig.(6.15) the applied input and the acceleration response at the

centre of mass are shown.
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Figure 6.14: Acceleration at the enforced node
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Figure 6.15: Input excitation and acceleration response obtained running a
linear SOL129 (without the gap element)

Once the analysis set-up has been verified, the actual gap canbe modelled

thanks to the parameters identified by means of the RestoringForce Surface

method applied previously (see Section 6.3). The location of the gap was

identified to be at the hinge bearing, where it was meant to accommodate the

distortions caused by thermal and pressure effects. Therefore, the gap has been

modelled at one hinge bearing (Fig. 6.16) and in one direction only since only

one set of measurements (the out of plane ones) have been taken into account

during the non-linearity identification phase.
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Figure 6.16: Flap FE model (Courtesy of Thales Alenia Space Italia)

The non-linear transient analysis has been run for both excitation levels and

yields the results shown in Fig.(6.18). These responses seem to match the trend

of the ones obtained from the test (Fig. 6.9), but for the spike in the first few

seconds of simulation, which is probably due to instabilities in the numerical

solution caused by the damping definition. In fact, being theSOL129 a direct

transient solution, the damping had to be defined by means of thePARAM,G and

thePARAM,W3 parameters. This means that the damping is correct only for the

frequency selected by thePARAM,W31. The effects of the different choices of the

PARAM,W3 can be seen comparing Fig.(6.13a) to Fig.(6.17), where theW3

parameter has been set to50.26 rad/s in the first figure and to194.78 rad/s in

the second (the frequencies selected to compute the parameter are the resonance

frequencies of the structure with and without the gap). Fromthe comparison it is

evident that in Fig.(6.17) the lower frequencies are enhanced, whereas in

Fig.(6.13a) the higher frequencies are more damped. The spikes visible in

Fig.(6.18) come from the contribution of the low frequency mode also visible in

Fig.(6.17).

Nevertheless, the resonance is reached at the same time instant of the test and

the jump phenomenonbecomes more evident as the excitation level increases.

However, the amplitude of the peak is not reproduced correctly, probably

1Every frequency lower than that one sees a lower damping and every frequency greater than
W3 gets more damping
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Figure 6.17: Time response obtained forW3 = 194.78 rad/s

because the non-linearity present in the real system is morecomplex than the one

that has been modelled. Looking at the frequency responses obtained by

applying the Fourier transform to the time histories obtained from the Nastran

simulations, the effect of the non-linearity becomes even more visible and the

hardening behaviour is reproduced correctly (the resonance frequency shifts

towards higher frequencies). However, the responses show alower amplitude if

compared to the ones measured during the test (Fig.6.6). An improvement in the

non-linear behaviour could be obtained modelling the gap inmore than one

direction to try to better simulate the hinge behaviour.
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Figure 6.18: Acceleration responses at CoG in the presence of the gap
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Chapter 7

Conclusions and Future Work

The study aimed at applying the Restoring Force Surface method to a real-life

structure, the IXV flap, in such a way to characterize the non-linearity which

showed up during the testing phase. Once the non-linear parameters were

identified, they were used to update the Finite Element Modelof the flap in order

to make it capable of reproducing the flap behaviour for different load levels.

Before reaching this final step, the method implementation has been verified

by means of several numerical examples representative of different types of non-

linearities, showing that the technique can be applied to a wide range of non-

linearity types.

As an intermediate step between the numerical examples and the real case, a

simple experiment has been prepared in order to test the method on experimental

data obtained under controlled conditions.

The studied cases confirm that the Restoring Force Surface method is an

efficient tool as far as the identification of SDOF systems is concerned and that it

is capable of providing powerful insight into the dynamics of these systems.

However, since it requires the knowledge of acceleration, velocity and

displacement signals, great effort has to be spent in processing the data.

Since the study focused on stiffness non-linearities mainly, future work is

needed to take into account the damping contribution.

For what concerns the Finite Element modelling of the non-linearities, the

study focused on two different ways of modelling the clearance non-linearity.
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The first one relied on the use of theCGAP andPGAP cards, which define a gap

element, whereas the second one implied the use of non-linear load functions

(NOLINi cards) to generate direct forces from displacement functions. Both

strategies have been successfully applied both in time and frequency domains on

the simple case of the plate whereas in the case of the IXV flap the non-linearity

has been modelled by means of the gap element in a non-linear transient analysis

only. A possible direction for future studies could be the modelling of the

non-linearity in the frequency domain so that the numericalresults could be

directly compared to the test results, usually presented inthe form of frequency

responses and/or transmissibility functions.

For what concerns the FE model of the flap, future work should take into

account the possibility of modelling the gap in more than onedirection by means

of the NLRGAP card, which allows to define a non-linear radial gap and works

for both transient and frequency solutions. Another step towards a more realistic

model of the hinge behaviour could be the inclusion of the dryfriction effects.



Appendix A

Harmonic Balance Method

The Harmonic Balance Method [4] [5] allows for analysing thesteady-state

fundamental harmonic non-linear structural response due to harmonic excitation

in the frequency domain (a generalisation of the method to inputs other than a

sinusoid can be found in [35] and it has been applied in [17]).The transformation

to the frequency domain is done by calculating equivalent stiffness and damping

parameters for the non-linear elements which would preventsuch transformation.

For a SDOF system, the non-linear equation of motion can be written as

mÿ(t) + fR(y, ẏ) = p(t) (A.1)

wherefR(y, ẏ) is a non-linear restoring force function.

The fundamental assumption behind the Harmonic Balance Method is that the

response of a non-linear system due to harmonic excitation can be approximated

by a harmonic function in the frequency of excitation, i.e. the total non-linear

response of the system is dominated by the fundamental harmonic response:

p(t) = P sin(Ωt + φ) →



















y(t) ≈ Y sin(Ωt)

ẏ(t) ≈ ΩY cos(Ωt)

ÿ(t) ≈ −Ω2Y sin(Ωt)

(A.2)

If this assumption is fulfilled, the non-linear restoring force functionfR(y, ẏ)
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can be decomposed into a Fourier series truncated after the fundamental terms

fR(y, ẏ) = a0 + a1 sin(Ωt) + b1 cos(Ωt) (A.3)

wherea0, a1 andb1 are the Fourier coefficients which can be calculated from the

following integrals

a0 =
1

2π

∫ 2π

0

fR(y, ẏ) d(Ωt) (A.4a)

a1 =
1

π

∫ 2π

0

fR(y, ẏ) cos(Ωt) d(Ωt) (A.4b)

b1 =
1

π

∫ 2π

0

fR(y, ẏ) sin(Ωt) d(Ωt) (A.4c)

The aim of applying the Harmonic Balance Method is approximating the non-

linear restoring force function by equivalent spring and damper forces

fR(y, ẏ) = keqY sin(Ωt) + ceqΩY cos(Ωt) (A.5)

A comparison of the coefficients of equations(A.3) and (A.5)yields the

equations from which the stiffness and damping parameters can be identified

keq(Y ) =
b1
Y

(A.6a)

ceq(Y ) =
a1
ΩY

(A.6b)

The equivalent parameters in equation(A.6) are dependent on the amplitude

Y of the harmonic displacement response. SinceY is unknown at the beginning

of the response analysis, the determination of the equivalent parameters has to be

performed iteratively.
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The bilinear spring case

The result presented in Chapter 3 about the equivalent non-linear stiffness in the

case of a bilinear spring is here explained in details.

As already said, the bilinear stiffness has the following form

fs(y) =







k1y y < yc,

k2y + (k1 − k2)yc y ≥ yc
(A.7)

The equivalent stiffness is given by equation(A.6a). The integrand changes

when the displacement exceedsyc and this corresponds to a point in the cycle

θc = Ωtc where

θc = sin−1

(

yc
Y

)

(A.8)

Therefore the form of the bilinear stiffness becomes

fs(y) =







k1y −π/2 ≤ θ < θc,

k2y + (k1 − k2)yc θc ≤ θ ≤ π/2
(A.9)

For memoryless1, static non-linearities equation(A.6a) becomes

keq =
2

πY

∫ π/2

−π/2

fs(y) sin θ dθ (A.10)

wherey = Y sin θ. Substituting equation(A.9) into equation(A.10)

1static, single-valued characteristics are termed memoryless, i.e. the output is uniquely defined
by the input value:y(t) = F (x(t)), wherey = F (x) is an injective function (eachx is mapped to
only one valuey)
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keq =
2

πY

∫ θc

−π/2

k1Y sin2(θ) dθ +
2

πY

∫ π/2

θc

[

k2Y sin θ + (k1 − k2)yc

]

sin θ dθ

=
2k1
π

∫ θc

−π/2

1− cos(2θ)

2
dθ +

2yc
πY

(k1 − k2)

∫ π/2

θc

sin θ dθ +
2k2
π

∫ π/2

θc

1− cos(2θ)

2
dθ

=
2k1
π

[

θc
2
+

π

4
− sin(2θc)

4

]

+
2yc
πY

(k1 − k2) cos θc +
2k2
π

[

π

4
− θc

2
+

sin(2θc)

4

]

After some algebra

keq = k1 +
k2 − k1
2π

(

π − 2θc + sin(2θc)−
4yc
Y

cos(θc)

)

(A.11)

If yc = 0, then alsoθc = 0 because of equation(A.8). Therefore

equation(A.11) yields the result presented in Chapter 3

keq = k1 +
k2 − k1

2
=

1

2
(k1 + k2) (A.12)

Clearance non-linearity

The clearance non-linearity is described by equation(A.13)

fs(y) =



















k2(y − yc) y > yc

0 |y| ≤ yc

k2(y + yc) y < −yc

(A.13)

Again, the integrand changes when the displacement exceedsyc and this

corresponds to a point in the cycleθc = Ωtc whereθc is given by equation(A.8),

thus yielding

fs(y) =







0 0 < θ ≤ θc

k2(y − yc) θc < θ < π/2
(A.14)
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The equivalent stiffness can be computed by solving equation(A.15), which

holds for odd, memoryless, static non-linearities:

keq =
4

πY

∫ π/2

0

fs(y) sin θ dθ (A.15)

Substituting the expression offs(y) yields

keq =
4

πY

∫ π/2

θc

k2(Y sin θ − yc) sin θ dθ

=
4k2
π

∫ π/2

θc

sin2 θ dθ − 4k2yc
πY

∫ π/2

θc

sin θ dθ

=
4k2
π

∫ π/2

θc

1− cos(2θ)

2
dθ − 4k2yc

πY
cosθc

=
k2
π

[

π − 2θc + sin(2θc)−
4yc
Y

cos θc

]

Substituting equation(A.8) and knowing thatcos[sin−1(x)] =
√
1− x2, the

previous expression simplifies as follows

keq =
k2
π

[

π − 2 sin−1

(

yc
Y

)

+ 2 sin θc cos θc −
4yc
Y

√

1−
(

yc
Y

)2]

=
k2
π

[

π − 2 sin−1

(

yc
Y

)

− 2yc
Y

√

1−
(

yc
Y

)2]
(A.16)





Appendix B

Nastran input files

Linear solution sequences

SOL108 Direct frequency response

SOL109 Direct transient response

SOL111 Modal frequency response

SOL112 Modal transient response

Non-linear solution sequences

SOL128 Non-linear harmonic response

SOL129 Non-linear transient response

SOL400 Implicit non-linear transient response
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Listing B.1: Modal Frequency Response (SOL111) - Linear plate
$ Frequency Ana lys is
SOL 111
CEND
TITLE = *PLATE*
ECHO = NONE
$
SDAMPING = 1
SUBCASE 1
$ Subcase name : modal_frequency

METHOD = 1
DLOAD = 2
SPC = 2
FREQUENCY = 66
SPCFORCES(SORT1,REAL) = ALL
OLOAD = ALL

OUTPUT (XYPLOT)
PLOTTER NAST
XYPUNCH ACCE /176(T3 )
XYPUNCH VELO /176(T3 )
XYPUNCH DISP /176(T3 )
XYPUNCH OLOAD /32 ( T3 )
$
BEGIN BULK
$
PARAM POST 0
PARAM PRTMAXIM YES
$
$FREQ1 SID F1 DF NDF
FREQ1 66 10. .5 980
$
TABDMP1 1 CRIT

20. .03 300. .03 ENDT
$
EIGRL 1 −0.1 3000. 0
$
$ Elements and Element Prope r t i es f o r reg ion : shel l_mat
PSHELL 1 1 .0012 1 1
$ Pset : " shel l_mat " w i l l be imported as : " pshe l l . 1 "
CQUAD4 1 1 1 2 34 33
$ .
$ .
$ .
CQUAD4 341 1 351 352 384 383
$
$ Ma te r i a l :
MAT1* 1 7.0E+10 .3

* 2770.
$ Nodes of the En t i r e Model
GRID 1 0. 0 . 0 .
$ .
$ .
$ .
GRID* 384 .127000004053116.050799999386072

* 0 .
$
$ Cons t ra i n ts
$
SPCADD 2 1 996
$
SPC1 1 123456 1 353
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$
SPC 996 167 123
$
$ Dynamic load ing
$
$DLOAD SID S S1 L1
DLOAD 2 1. 1 . 88
$
$RLOAD2 SID EXCID DELAY DPHASE TB TP TYPE
RLOAD2 88 99 89 0
$
$DAREA SID P1 C1 A1
DAREA 99 32 3 1.
$
TABLED1 89

10. 1 . 500. 1 . ENDT
$
ENDDATA

Listing B.2: Modal Transient Response (SOL112) - Linear plate
$ Trans ien t Ana lys is
SOL 112
CEND
TITLE = *PLATE*
ECHO = NONE
$
SDAMPING = 1
SUBCASE 1
$ Subcase name : moda l_ t rans ien t

METHOD = 1
TSTEP = 1
DLOAD = 2
SPC = 2
SPCFORCES(SORT1,REAL) = ALL
OLOAD = ALL

OUTPUT (XYPLOT)
PLOTTER NAST
XYPUNCH ACCE /176(T3 )
XYPUNCH VELO /176(T3 )
XYPUNCH DISP /176(T3 )
XYPUNCH OLOAD /32 ( T3)
$
BEGIN BULK
$
PARAM POST 0
PARAM PRTMAXIM YES
$
TSTEP 1 1000 1.0−3
$
TABDMP1 1 CRIT

20. .03 300. .03 ENDT
$
EIGRL 1 −0.1 3000. 0
$
$ Elements and Element Prope r t i es f o r reg ion : shel l_mat
PSHELL 1 1 .0012 1 1
$ Pset : " shel l_mat " w i l l be imported as : " pshe l l . 1 "
CQUAD4 1 1 1 2 34 33
$ .
$ .
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$ .
CQUAD4 341 1 351 352 384 383
$
$ Ma te r i a l :
MAT1* 1 7.0E+10 .3

* 2770.
$ Nodes of the En t i r e Model
GRID 1 0. 0 . 0 .
$ .
$ .
$ .
GRID* 384 .127000004053116.050799999386072

* 0 .
$
$ Cons t ra i n ts
$
SPCADD 2 1 996
$
SPC1 1 123456 1 353
$
SPC 996 167 123
$
$ Dynamic load ing
$
$DLOAD SID S S1 L1
DLOAD 2 1. 1 . 88
$
$TLOAD2 SID EXCID DELAY TYPE T1 T2 F P
TLOAD2 88 99 0 0.0 1 . 79.26 −90.
$
$DAREA SID P1 C1 A1
DAREA 99 32 3 1.
$
ENDDATA



Appendix C

Macaulay’s method for beam

deflection

Considering the cantilever beam shown in Fig.(C.1), the deflection at any point

can be determined applying the Macaulay’s method, which allows to represent

the bending momentM(x) by a single analytical function even in case of

concentrated loads like the one showed in the figure.

Figure C.1: Scheme of cantilever beam to apply the Macaulay’s method

To determine the equation of the elastic curve for the beam inFig.(C.1), it is

necessary to consider two portions and determine the functiony(x) which defines

the elastic curve for each of these portions.

EI
d2y

dx2
= M(x) (C.1)
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For0 ≤ x < a, the bending momentM1 is zero (as can be easily seen drawing

the free-body diagram). Whereas, considering the portion for a ≤ x ≤ L, the

bending moment is expressed asM2(x) = P (x − a). The two functionsM1(x)

andM2(x) can be represented by the single expression

M(x) = P 〈x− a〉 (C.2)

where the brackets〈...〉 should be replaced by ordinary parentheses whenx ≥ a

and by zero whenx < a. These brackets are termed Macaulay’s brackets and they

are defined as

〈x− a〉 =







0 if x < a

x− a if x ≥ a

and the expression has to be integrated as follows (forn ≥ 0)

∫

P 〈x− a〉n dx =
P

n + 1
〈x− a〉n+1 + C

Substituting the expression ofM(x) into the equation of the elastic curve and

assumingP = 1, the equation to be integrated twice is

EI
d2y

dx2
= 〈x− a〉 (C.3)

which gives

EI
dy

dx
=

1

2
〈x− a〉2 + A

EIy(x) =
1

6
〈x− a〉3 + Ax+B

The constantsA andB can be determined from the boundary conditions as

follows

at x = L











dy

dx
= 0 −→ A = −1

2
(L− a)2

y = 0 −→ B =
L

2
(L− a)2 − 1

6
(L− a)3
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The expression for the beam deflection is therefore

y(x) =
1

6EI
[〈x− a〉3 − 3(L− a)2x+ 3(L− a)2L− (L− a)3] (C.5)





Appendix D

Kalman filter MATLAB code

Listing D.1: MATLAB function for discrete Kalman filter

1 function [x,P] = kalman_filter(x,z,A,P,H,R,Q)
2

3 % System’s governing equations:
4 %
5 % x = Ax + Bu + q
6 % z = Hx + r
7 %
8 % Vector Variables
9 %

10 % x : state vector (n,1)
11 % z : observation vector (m,1) where m < n
12 %
13 % Matrix Variables
14 %
15 % A : state transition matrix (n,n)
16 % H : observation matrix (m,n)
17 % P : covariance of the state vector (x) estimate (n,n)
18 % Q : process noise covariance (n,n)
19 % R : measurement noise covariance (m,m)
20 %
21 % Variables omitted from this model
22 %
23 % u : input control vector
24 % B : input matrix
25

26 % Positive-semidefinite check for R and Q matrices
27 [~,pq] = chol(Q);
28 [~,pr] = chol(R);
29

30 if pq > 0
31 error(’Matrix Q is not positive-semidefinite’)
32 end
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33

34 if pr > 0
35 error(’Matrix R is not positive-semidefinite’)
36 end
37

38 % KALMAN FILTER
39

40 % Time update ("prediction") =============================
41 % Project the state ahead
42 x = A*x;
43 % Project the error covariance ahead
44 P = A*P*A.’+Q;
45

46 % Measurement Update ("correct") =========================
47 % Compute the Kalman gain
48 PH = P*H.’;
49 D = H*P*H.’+R;
50 K = PH/D;
51 % Update estimate with measurement
52 x = x+K*(z-H*x);
53 % Update the error covariance
54 [n,m]= size(P);
55 P = (eye(n,m)-K*H)*P;
56

57 end



Abbreviations

ALTEC Advanced Logistics Technology Engineering Centre

BDF Backward Differentiation Formulas

CoG Centre of Gravity

DEM Direct Enforced Motion

EMA Electro-Mechanical Actuators

ESA European Space Agency

FEM Finite Element Method

FpCS Flap Control System

FRF Frequency Response Function

FT Fourier Transform

IIR Infinite Impulse Response

IXV Intermediate eXperimental Vehicle

LMM Large Mass Method

MDOF Multi Degree Of Freedom

NDF Numerical Differentiation Formulas

ODE Ordinary Differential Equation

RFS Restoring Force Surface

SDOF Single Degree Of Freedom

STFT Short Time Fourier Transform

TAS-I Thales Alenia Space Italia
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