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Abstract 
 

This case study discusses the application of a multivariate receptor model, the EPA 

PMF 5.0 to the PM2.5 dataset from Lombardy region in Italy. The aim of the study is to 

perform source apportionment investigation of the applied dataset and identify different 

PM2.5 sources that greatly impact the composition of particulate matter in the studied 

region.  

PMF model evaluates contribution to diverse source types of measured PM2.5 

concentrations by investigating chemical composition of ambient pollution samples. As a 

type of receptor models, PMF used as an input data, PM concentrations and their 

relative chemical specification and provides as an outcome the number of sources, their 

composition and the source contributions.  

The analysis has been performed to dataset which is comprised of PM2.5 sampling 

campaign performed in the downtown Milan between 2002 and 2003. The original data 

set is consisting of 162 daily samples of PM2.5 mass concentration and relative chemical 

specification of 21 chemical species (carbon components, inorganic ions and trace 

elements). However, as some samples did not contain measurements for all species, 

and this represent the main requirement for model to be run, the original dataset had to 

be reduced. Likewise, reduced dataset consisted of 99 daily samples of PM2.5 mass 

concentration and 11 chemical species.  

The analysis of total annual PM2.5 mass concentration revealed presence of 6 sources 

(secondary sulfate, traffic non-exhaust, biomass combustion/break wear, domestic 

heating, re-suspended soil dust and secondary nitrate). After the general examination, 

the dataset was split into two subsets, warn and cold season for the more detailed 

study. The warm season analyses identified 4 sources (secondary nitrates and organics, 

biomass combustion/break wear, traffic exhaust and secondary sulfate), while on the 

other hand the cold season identified 4 sources (secondary nitrates and organics, 

domestic heating, crustal matter and re-suspended soil dust). 
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1 Introduction 
 

Human being can endure hours without the water, days without the food, but only few 

minutes without the air. We must have air to live. However, breathing polluted air can 

cause severe health problems and in some cases even death.  

On the other hand, contamination of the air is also damaging natural environment. 

Trees, crops, rivers, lakes and animals are intensely influenced. Its sustainability and 

diversity is rapidly changing, accompanying the rate of change of world’s pollution.  

The pollution is present in many forms and it represents threat to human being in this 

modern world. The water we drink the air we breathe, the ground where we grow out 

food, and even the noise we hear every day. All these elements contribute to severe 

health problems and a lower quality of life. Hence, our awareness of the problem should 

be increased. Humans should not only understand the air pollution but also they should 

know how to manage air quality. People should know how deeply they are affected in 

their daily life routines. What the methods are in order to decrease and prevent its 

presence, and how they can protect themselves from serious consequences. 

Additionally, the sources of air pollution must be identified, their effects to our 

ecosystem, mechanisms to its reduction and monitoring technologies on a local and 

global scale. 
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1.1 Air Pollution 
 

The present-day atmosphere is entirely different from the natural atmosphere that 

existed before the Industrial Revolution (18th century) in terms of chemical composition. 

If the natural atmosphere is deliberated as “clean”, than this means that in today’s 

atmosphere clean air cannot be found anywhere. In the Table 1 the chemical 

composition of the pre-industrial natural atmosphere is compared to current composition 

of the atmosphere.   

Table 1: Atmospheric Chemical Composition (CDIAC, May 2014)   

Gas 
Pre-1750 

tropospheric 
conc. 

Recent 
tropospheric 

conc. 

GWP(100
y. time 

horizon) 

Atmospheric 
lifetime 
(years) 

Increased 
radiative 
forcing 
(W/m2) 

Concentration in parts per million (ppm) 

Carbon 
dioxide (CO2) 

280 401.33 1 100-300 1.88 

Concentration in parts per billion (ppb) 

Methane(CH4) 722 1893 28 12 0.49 

Nitrous oxide 
(N20) 

270 326 265 121 0.17 

Tropospheric 
ozone(03) 

237 337 n.a. Hours-days 0.4 

Giving a definition to “Air pollution” is not simple. There is a common opinion that air 

pollution started when humans began burning fuels. Particularly, all man-made 

(anthropogenic) emissions may be called air pollution, since they alter the chemical 

composition of the natural atmosphere. The increase in the global concentration of 

greenhouse gases CO2, CH4, N2O and H20 (shown in Table 1) can be called air pollution 

even though is not found that their concentration is toxic for humans and the ecosystem. 

Redefined approach considers anthropogenic emissions of harmful chemicals as air 

pollution (Gordon, et al. 2014). 

However, there is a question, what “harmful” stands for? Harmful can mean an adverse 

effect on the health of living beings, an adverse effect on natural or anthropogenic non-

living structures. Likewise, a chemical that does not cause any short-term harmful 

effects may accumulate in the atmosphere during time and develop a long-term harmful 

effect.  
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The modern definition for the air pollution states that it represents any substance 

emitted into the air from an anthropogenic, biogenic or geogenic source1, that is present 

in the higher concentrations that the natural atmosphere, and may cause short-term or 

long-term adverse effects (Zaneti et al., 2007). 

 

1.2 Air Pollution Occurrences  
 

Air pollution represents a major health risk factor across the globe. Its complexity 

reflects in a fact that it cannot be easy controlled, since a lot of factors are driving it. 

The most obvious factor influencing air pollution is the quantity of contaminants emitted 

into the atmosphere. However, trends in air pollution are not caused by a drastic 

increase in the output of pollutants; instead these trends are driven by changes in 

certain atmospheric conditions.  

Two of the most important atmospheric conditions affecting the dispersion of pollutants 

are: 

1. the strength of the wind and  

2. the stability of the air 

The direct effect of wind speed is to influence the concentration of pollutants. Referring 

to that, global wind trends are represented on the Image 1.  

Figure 1: Global Wind Trends (Global sailing weather, May 2014) 

 
                                                           
1 Geogenic emissions are produced by non-living world, e.g. natural fires, volcanic emission etc. 
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On the contrary, atmospheric stability determines the extent to which vertical motions 

will mix the pollution with cleaner air above the surface layers (Pateraki et. al. 2014). 

The vertical distance between Earth’s surface and the height to which convectional 

movements extend is called Mixing depth. Generally, the greater the mixing depth, the 

better the air quality is (Csavina et al. 2014). 

Another important factor that influences the distribution of the pollutants is temperature 

inversion. During most days, the temperature of air in the atmosphere is cooler the 

higher up in altitude you go. The warm air rises in the atmosphere, where it expands and 

cools. Sometimes, however, the temperature of air actually increases with height. The 

situation of having warm air on top of cooler air is referred to as a temperature inversion, 

because the temperature profile of the atmosphere is inverted from its usual state 

(Wanning et al. 2014). 

The most common aspect in which surface inversions form is through the cooling of the 

air near the ground at night. Once the sun goes down, the ground loses heat very 

quickly, and this cools the air that is in contact with the ground. However, since air is a 

very poor conductor of heat, the air just above the surface remains warm. Conditions 

that favor the development of a strong surface inversion are calm winds, clear skies, 

and long nights. Calm winds prevent warmer air above the surface from mixing down to 

the ground, and clear skies increase the rate of cooling at the Earth's surface. Since the 

nights in the wintertime are much longer than nights during the summertime, surface 

inversions are stronger and more common during the winter months (Tang and Al-Ajmi, 

1997). 

Figure 2: Temperature Inversion (Science unraveled, May 2014) 

 

Surface temperature inversions play a major role in air quality. The warm air above 

cooler air acts like a lid, suppressing vertical mixing and trapping the cooler air at the 

surface. As pollutants from vehicles, fireplaces, and industry are emitted into the air, the 

inversion traps these pollutants near the ground, leading to poor air quality. The strength 
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and duration of the inversion will control air quality impact levels near the ground. Strong 

inversion will confine pollutants to a shallow vertical layer, leading to high impacts on the 

air quality, while a weak inversion will lead to lower impact levels. (NOAA, May 2014). 

 

1.3 Type of Air Pollution 

 

Air pollutants are any gas, liquid or solid substance that have been emitted into the 

atmosphere and are present in a concentration high enough to be considered as 

harmful to the environment, or human, animal and plant health.  

Air pollutants may be either emitted directly into the atmosphere so called “primary air 

pollutant” or formed within the atmosphere itself by reaction with other pollutants, 

“secondary air pollutants”. 

Primary air pollutants are those which are emitted directly into the atmosphere from a 

source, such as factory chimney, exhaust pipe or through suspension of contaminated 

dust by the wind. Considering the mechanism of their appearance, it is possible to 

measure the amounts emitted at the source itself.  

The share of primary pollutants in the atmosphere as well as their main type of sources 

is presented on the Figure 3 (EPA, May 2014). 

Figure 3: Primary Pollutants Share 
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The main primary pollutants that are known to cause harm in high enough 

concentrations are the following: 

 Carbon compounds: CO, CO2, CH4 and VOCs, 

 Nitrogen compounds: NO, N2O and NH3, 

 Sulfur compounds: H2S and SO2, 

 Halogen compounds: chlorides, fluorides and bromides, 

 Particulate Matter (PM or aerosols), either in solid or liquid form, 

Sources of primary pollutants are many. Natural sources of primary pollutants are 

volcanoes, fire, bacteria, viruses, pollens, blowing dust, etc. and they are accentuated 

by humans in recent history. However, the biggest contributions are causing sources 

created by humans.  

After the emission, air pollutants in the atmosphere undergo dispersion and 

transportation, mainly due to meteorological conditions, chemical reactions and 

photochemical reactions. Thus, secondary air pollutants are formed. Because of this 

mode of formation, secondary pollutants cannot readily be included in emission 

inventories, although it is possible to estimate their formation rates. 

The main secondary pollutants that are known to cause harm in high enough 

concentrations are the following: 

 NO2 and HNO3 formed from NO, 

 Ozone (O3) formed from photochemical reactions of nitrogen oxides and VOCs, 

 Sulfuric acid droplets formed from SO2 and nitric acid droplets formed from NO2 

 Sulfates and nitrates aerosols, formed from reactions of sulfuric acid droplets and 

nitric acids droplets with NH3, respectively, 

 Organic aerosols formed from VOCs in gas-to-particle reactions. 

Another important distinction must be made in relation to the physical state of the 

pollutant. There are two categories: gas and particle. Gaseous air pollutants are those 

present as gases or vapors. They are readily taken into the human respiratory system 

and very often are precursors of adverse effects to human health. Gaseous air 

pollutants include NO2, SO2, CO, O3, NH4, VOCs, vapor phase of semi-volatile organic 

compound, etc. Particulate air pollutants mainly refer to fine particles in solid or liquid 

phase suspended in the atmosphere. Such particles can be either primary or secondary 

and cover a wide range of sizes.   

Apart from the physical state it is also important to consider the geographical location 

and distribution of sources as well as their geographical scale (point, line or area 

sources). Depending primarily on the atmospheric lifetime of the specific pollutants, the 

local, regional and global scale of air pollution can be distinguished (WHO, May 2014). 
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1.4 Particulate Matter 
 

Particulate matter, also known as particulate pollution or PM represents a complex 

heterogeneous mixture of liquid droplets and extremely small particles having diverse 

chemical and physical characteristics. It encompasses many different chemical 

components such as organic chemicals, metals, acids (such as nitrates and sulfates) 

and soil or dust particles, many of which have been specified as potential contributors to 

toxicity. Each of these components has multiple sources and each source generates 

multiple components. Sulfur dioxides and nitrogen oxides, known as secondary particles 

make up most of the fine particle pollution (Kelly and Fussell, 2012). 

The size of particles is directly linked to their potential for causing health problems 

(Figure 4). Particles can be solid particles or liquid droplets which diameters are ranged 

from 0.1-50 micrometers. Those particles are called total suspended particles (TSP). 

Small particles, less than 10 micrometers in diameters cause the greatest problems, 

because they can get deep into lungs, and some may even reach bloodstream. Small 

particles which diameters are less than 10 micrometers are further divided into two 

major groups according to the size. Generally, inhalable coarse particles with diameter 

smaller than 10 micrometers and larger than 2.5 micrometers (PM10) and fine particles 

with diameters that are 2.5 micrometers and smaller, (PM2.5).  

Figure 4: Particulate Matters Size (EPA, May 2014) 
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Inhalable coarse particles or PM10, are mainly mechanically produced by the break-up of 

larger solid particles. In urban areas, the coarse particles typically contain resuspended 

dust from roads and industrial activities, and biological material such as pollen grains 

and bacterial fragments. Typically, these particles also include wind-blown dust from 

agricultural activities, uncovered soil or mining operations. Near coasts, evaporation of 

sea spray can also produce large particles. Coarse particles may also be formed from 

the release of non-combustible materials in combustion processes, i.e. fly ash.  

Fine particles, those smaller than 2.5 micrometers, are largely formed from gases. 

However, combustion processes may also generate primary particles in this size range. 

Generally, these particles originate as ultrafine particles (nuclei) produced by chemical 

reactions in the atmosphere, from various processing of metals, driving automobiles or 

burning plants.  

Smaller particles are lighter and they stay in the air longer and travel further. PM10 stay 

in the air for minutes or hours, while PM2.5 can stay in the air for days or weeks. 

Regarding the travel distance, PM10 particles can travel from few hundreds of meters up 

to 50km, still PM2.5 can go even further, many hundreds of kilometers (Stephanou, 

2012). 

The particle matters may become dangerous to our health when we are exposed to it for 

a long time, and also when we breathe in a large amount of it. Apart from that, health 

effects can be acute or chronic. Acute health effects are characterized by sudden and 

severe exposure and rapid absorption of the substance. Normally, a single large 

exposure is involved and health effects are often reversible. On the contrary, chronic 

health effects are characterized by prolonged or repeated exposures over many days, 

months or years. Symptoms may not be immediately apparent. These kinds of effects 

are often irreversible (OSHA, May 2014). 

Epidemiological studies have found a broad number of evidences on the association 

between exposure to air pollution and cardiovascular events. Scientific statement on 

particulate matter made by the first American Heart Association (AHA) concluded that 

short-term exposure to PM contributes to acute cardiovascular morbidity and mortality. 

Likewise long-term exposure may reduce life expectancy.   

Notwithstanding, ambient air quality has been improved on the global scale in the past 

decade (Figure 5.), by following current policies for its abatement. But despite regulatory 

effort, fine particulate continues to be a matter of concern despite its falling trend. 

Protection of human health is further deteriorated considering the inability of scientists to 

establish a safe level of PM2.5 below which it poses very little or no effect on human 

health. Furthermore, the effect of particulate matter on health is very complex since it 

may vary from one individual to another. It must be taken into consideration that not all 

individuals are equally vulnerable to air pollution health effects. Vulnerability could be 
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strictly linked to individual characteristics such as genetics, age, gender and the life 

style. For instance, low socioeconomic classes tend to be more vulnerable to adverse 

effects of air pollution considering their lower quality of life caused by other factors. 

Hence, analysts must calculate changes in health outcomes by taking into account that 

effect of pollution may be easily correlated with other elements that may be just as 

influential (Nazelle et al. 2011).  

Figure 5: Global Trend of PM10 and PM2.5 (EEA, May 2014) 

 

Exposure to PM can affect both your lungs and heart. PM2.5 travels deeper into the lungs 

and since it is made of components which are more toxic (heavy metals), PM2.5 can 

have worse health effects than the bigger PM10. Numerous scientific studies have 

associated particle pollution exposure to a variety of problems, including: 

 Irregular heartbeat,  

 Aggravated Asthma 

 Lung damage (including decreased lung function and lifelong respiratory disease) 

 Nonfatal heart attacks,  

 Premature death with people with heart or lung disease  

 Increased respiratory symptoms, such as irritation of the airways, coughing or 

shortness of breath (Koton et al. 2013). 
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On the other hand, epidemiological studies have shown that pollution acts 

synergistically with tobacco smoking, alcohol consumption and unhealthy diet to induce 

respiratory illness such as asthma, lung cancer and cardiovascular diseases.  

However, there is a general agreement among scientists that fine particle matter (PM2.5) 

composition also plays a meaningful role in the health effects attributed to PM. 

Composition of PM may be more substantial than PM concentration alone in explaining 

health impacts. As evidence linking composition to health impacts emerges in the 

epidemiological and toxicological areas, it is becoming more urgent to distinguish which 

components or combination of components are the most harmful to human health. 

Toxicological studies suggest that several elements, including aluminum, silicon, 

vanadium, carbon-containing components and nickel are the most closely correlated to 

health impacts. However, many other elements have been implicated as well. There are 

no PM components for which there is unequivocal evidence of zero health impact (Rohr 

and Wyzga, 2012). 

Carbonaceous classes, elemental (EC) and organic carbon (OC) are well known 

contributors to the atmospheric particulate matter at a global level, and also very 

frequently dominant contributors to the fine particulate matter mass. EC is derived from 

incomplete combustion of carbon-based materials and fuels and is present in primary 

form in the nature, while on the other hand OC may be directly released into the 

atmosphere or produced by way of secondary gas-to-particle conversion process. Along 

with the adverse health effects which are correlated with fine particulate matter mass 

exposure, carbonaceous species inflict very serious health effects. Considering the fact 

that EC is mainly considered as inert and that combustion process is deriving EC, 

coated by organic matters as PAHs, which are widely known to have carcinogenic and 

mutagenic properties and to cause serious health risks (Lonati et al. 2007).  

Knowledge about carbonaceous portions in fine particulate matters and especially their 

portioning between primary and secondary origin may be used very efficiently in 

conveying new air quality plans and targets (Lonati et al. 2007).     

The particles are causing many serious problems both to humans and ecosystem. 

Hence it is vital to determine the number, morphology and size distribution of these 

particles so as to reflect their intensity and harmful effects on human health. Hence, 

global distribution of PM2.5, averaged over 2001-2006 is presented on the figure 6.  

Identifying and quantifying the influences of specific components or source-related 

mixtures on measures of health-related impact represent one of the most challenging 

areas of environmental health research. Current knowledge does not allow precise 

quantification of the health effects of PM emission especially because particles interact 

with other co-pollutants. Therefore, a carefully targeted program research, including 

more refined approaches is needed to enhance our understanding of the relative toxicity 
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of particles. This approach will facilitate development of abatement policies, more 

effective pollution control measures and a reduction in the rate of health problems 

caused by particulate pollution.  

Figure 6: Global Satellite Deriver Map of PM2.5, averaged over 2001-2006 (WUWT, May 2014) 

 

Besides health problems to humans, particulate pollution also drives other damages. 

For instance, fine particles PM2.5 are the main cause of reduced visibility (haze). In a 

form of acid rain they can damage stone and other materials, including culturally 

important statues and monuments. Acid rain refers to a mixture of wet and dry 

deposition from the atmosphere containing higher than normal amounts of nitric and 

sulfide acids. It can appear in a form of rain, snow, fog and tiny bits of dry material that 

settle on Earth. Origin of formation of such rains lies in the PM either from natural 

sources or from anthropogenic sources. Considering the fact that particles can be 

carried over a long distances by wind and then settled on ground or water, this effect 

can make also lakes and streams acidic. By settling into the other mediums, particles 

may also change theirs nutrient balance, damage sensitive forests and farm crops, 

deplete nutrients in soil and lastly affect the diversity of ecosystem (Liang, 2013). 

Apportionment of pollution sources should be the main interest in development of 

current strategies and regulations of the environment. It is important to acquire as many 

information as possible about the sources of pollution we are exposed to, as well as 

characteristics and concentration of those sources. Hence, if a specific source that 

contributes to air pollution in a given area is known, than strategies can be planned and 

implemented in a way that reduces the impact of those sources.  Additionally, by 

knowing the type of the sources that are contributing the most to the air pollution, 
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awareness of the people may be raised to a higher level, thus they can make some 

modifications in their life style and habits.  

 

1.5 Trends and Projections 
 

Europe needs more resource efficient, greener and competitive economy. Consumers 

who appreciate resource efficiency, new green technology and smart inventions toward 

sustainability can create new economic opportunities. By developing cleaner and more 

efficient energy, this green industry can create new jobs and this approach can as well 

reduce Europe’s import of oil and gas and improve its position on the energy market.  

With development of such technologies, it will not be achieved just improvement 

towards the environmental sustainability but at the same time and economic recovery 

(ESPON, May 2014). 

Accordingly, some of the main trends present nowadays are as follows: 

 Waste treatment processes in EU have improved remarkably since 2000. 

Landfilling represents one of least environmental-friendly technics for managing 

waste. Accordingly incinerators started gradually replacing them with a greater 

frequency by applying composting and recycling techniques.  About 40% of 

municipal waste was recycled or composted. However, there are huge 

fluctuations in techniques used in some countries in Europe. For instance, in 

Bulgaria, Croatia and Romania more than 90% of waste was landfilled, where on 

contrary in Germany, the Netherlands and Sweden this approach was below 1%. 

 Current estimates are showing that the extent of the effects of ozone and fine 

particle pollutants on life expectancy is in the order of several tens to hundreds of 

thousands of premature deaths per year in Europe (WHO, 2006). Despite the fact 

emissions of air pollutants are generally declining, many countries are not jet on a 

track towards EU targets and air quality limit values for PM10, PM2.5 and NO2. 

Even if the emission reduction targets are met, health impacts are still likely to 

occur. However, this appears partly due to background levels and natural 

sources of these compounds, which is impossible to address from a European 

perspective only.  

 Energy consumption in Europe peaked in 2005 and has been declining since. 

This trend decelerated slightly until 2010, partly due to the economic crisis and 

limited economic recovery in 2010. This result is clearly due to implementation of 

energy efficiency and renewable energy policies, where the economic crisis and 

structural changes also played a significant role in the most recent trends taking 

also into account milder winters. More recently, primary energy consumption in 

Europe was 14.4 higher than the 2020’s set target. The most significant decrease 
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occurred in Germany, France, Spain, Italy and the United Kingdom. The 

economic crisis was more pronounced in these countries especially in the 

industry and transport sectors. Also, the switch of fuels played a major role in this 

decrement. Lastly, in 2011, the final energy consumption in EU-28 was only 2.4% 

higher than the 2020’s set target.  

 On the other hand, there is a rapid expansion on renewable energies, particularly 

in electricity sector (Table 2). Energy generated from biomass, wind, solar energy 

and the Earth’s heat are replacing share of fossil fuels in the final energy demand 

in the EU. Between 2005 and 2011 all member states of the EU have increased 

their renewable energy share. While it is asserted the greatest expansion in wind 

and solar energy, however contribution of biomass represents by far the largest 

amount. In conclusion, renewable energy sources are covering a fifth of gross 

power generation in 2011. 

 Despite the fact the gap in CO2 emissions per capita narrowed between the EU 

and developing countries from 2000 to 2011, the CO2 emissions remained at 7.4 

tones per capita in the EU, which is 2.6 times greater than the developing country 

average of 2.9 tones per capita. This narrowing of gap occurred primarily as a 

result of increasing emissions from developing countries and on the other hand 

financial crisis which led to reduction of CO2 emissions per capita in the EU 

(Eurostat, May 2014). 

Table 2: Contribution by Renewable Energy Carriers (electricity, heating/cooling, transport) (EEA, May 

2014) 

Energy (Mtoe) Share (%) 

Year 2005 2010 2011 2020 2020 

RES-E 41.4 55.9 60.7 104.2 42 

RES-H/C 58.9 78.4 76.7 111.5 46 

RES-T(including 
biofuels) 

1.0 
(4.2) 

10.5 
(14.4) 

11.5 
(15.0) 

29.5 12 

Total RES 
(including biofuels) 

100.3 
(103.4) 

143.6 
(147.6) 

147.2 
(151.2) 

245.1 100 

 

Current estimates are indicating that EU is having 7.7% of the world’s population and 

contains 9.5% of the world’s biocapacity. Ability of the system to generate biological 

materials and to absorb waste materials produced by humans accounting current 

management approaches and technologies is called biocapacity. Despite having above 

average biocapacity with respect to its population, EU generates 16% of the world’s 

ecological footprint. What is more, EU’ development strongly depends on the ecological 

reserves in other parts of the world.   
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Nevertheless, some scientists believe that large-scale biomass plants could accelerate 

deforestation or endanger local biodiversity. These observations are not an argument 

against evolution of biomass as a new renewable energy industry. Rather they want to 

emphasize the need for an integrated approach to territorial development.  

Considering other renewable sources of energy, mainly solar and wind, it can be said 

that great expansion is currently being made and still there is a lot of potential in these 

fields. The map of Europe with yearly total yield of estimated solar electricity generation 

(kWh) and production potential of wind power stations, taking into account 

environmental and other constraints are presented on figure 7 and figure 8. From the 

maps it can be seen that the North Europe dominates in a potential for wind production, 

while Southern Mediterranean Europe dominates in the high potential for a generation of 

energy using Sun energy.   

 

 

 

The EU-15 has a common objective to be achieved collectively under the Kyoto 

Protocol. This protocol in an international agreement linked to the United Nations 

Framework Convention on Climate Change, which sets binding obligations on countries 

to reduce emissions of greenhouse gasses. It sets emission limitations and reduction 

targets for each EU-15 Member State. Each of the targets corresponds to an emission 

budget (“Kyoto units”) for the first commitment period (2008-2012) of the Kyoto Protocol. 

Nearly all Member States and all other European Environment Agency (EEA) countries 

achieved targets set by Kyoto protocol by the end of the Kyoto Protocol’s first 

Figure 7 and 8: Yearly Total Yield of Estimated Solar Electricity Generation (kWh) and Production 
Potential of Wind Power Stations. (ESPON, May 2014) 
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commitment period, i.e. the target was set to 8% of reduction for the period of 2008-

2012 compared to base-year levels under the Kyoto Protocol and EU-15 have reached 

reduction of 12.2%.  

However, as in previous years, Italy remains considered off track towards the target, 

mainly due to lack of information on its planned use of flexible mechanisms.  Italy did not 

put a threshold on the use of flexible mechanisms in its national climate change 

strategy, but administrative arrangements are being taken for purchases (EEA, 2013).  

Europe 2020 calls for a perception of structural and technological changes in order to 

move to low carbon, resource efficient and climate resilient economy by 2050. This 

progression will enable Europe to meets its emission reduction targets. It will include 

new business growth to sustain Europe’s leading role in green technologies on the 

international market, but also disease prevention and response as well as adjustment 

measures based on more efficient use of resources.  

The EU has set 5 targets to be reached until 2020. These targets are mainly focused on 

improvement of employment rates, greenhouse gases reduction, poverty reduction and 

enhancement of educational attainment and health. Likewise, “20/20/20” represents the 

triple objective for 2020. There targets are endorsed by the European Council in 2007 

and implemented through the EU’s 2009 climate and energy package and the 2012 

Energy Efficient Directive, and it focuses on: 

 A 20% increase in energy efficiency 

 A reduction in greenhouse gas emissions by at least 20% compared to 1990 

levels.  

 To develop renewable energy resources so that they can account for 20% of total 

energy consumption (ESPON, May 2014).  

The time scale is fundamental to implementing methods for a higher sustainability. 

Europe 2020 represents a short-term time horizon with respect to economic 

development and short-term horizon from the perspective of Europe’s sustainable 

development. Accordingly, it is very important to look further into the future and not just 

into the meeting the current targets. This is fundamental as environmental impacts are 

long lasting, climate change is a long-term process and patterns of urban areas, energy 

and transport networks need time to adapt.     

The territorial impacts on the scenario are under change over time. The primary impact 

is caused by the metropolitan regions, mainly in Western Europe, thus the greatest 

expectations in investments in new technologies are expected to be made in this region. 

However, in the later phase of the scenario there is a diffusion of these ideas and a 

more polycentric pattern of growth. Nonetheless, it is important to identify that such 
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approach carries more challenges for some regions than for others. South and East 

European cities might be more confronted by sustainable issues, as they have less 

advanced public transport systems, more polluting cars, buses and trucks, lower amount 

of green areas, old technology etc.   

 

1.6 Need for Source Apportionment  
 

Abatement of pollution at its source represents one of the main principles of the 

Thematic Strategy on Air Pollution. Information on pollutant sources is essential to the 

design of air quality policies. Therefore, source apportionment is required for the 

implementation of the Air Quality Directives (Dir.2008/50/EC and Dir.2004/107/EC). For 

instance, the true pollution source information is required in order to identify whether 

possible overcoming are due to natural sources or to artificial ones, set the limit values 

of pollutants, preparing air quality plans, quantifying trans-boundary pollution, and 

informing the public (Belis et al., 2014).  

 

Particulate matter (PM) is one of the main pollutants exceeding the ambient standards 

for air quality in Europe. Majority of suspended particles are too small to be seen with a 

human vision. Even if they are identified with some magnification technique, their origin 

very often remains unknown. A variety of sources contribute to a specific event and the 

proportions of these contributions change from event to event, driven by many 

influencers. Some particles preserve the forms in which they were originally emitted, but 

others are created from emitted gases through chemical reactions, or they undergo 

chemical transformations that change their chemical and physical characteristics. These 

facts has let to numerous studies focusing upon its complex composition, toxicology and 

source attribution (Watson and Chow, 2007). 

 

One of the most powerful tools for the formulation of abatement policies and verification 

of their effectiveness is particulate matter source apportionment by the combination of 

chemical and statistical analysis. Source apportionment is the practice of deriving 

information about pollution sources and the amount they contribute to ambient air 

pollution levels (Frao et al. 2013).  

 

Different approaches are used to determine and quantify the impacts of air pollution 

sources on air quality. Commonly used techniques are: 

 

 Explorative methods 

 Emission inventories 

 Inverse modelling 
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 Artificial neural networks 

 Lagrangian models 

 Gaussian models 

 Eulerian models 

 Receptor models 

 

However, contributions to PM levels can be highlighted through two source 

apportionment approaches, receptor and source models. These models are 

complementary rather than competitive. Receptor models are centered towards the 

properties of the ambient environment at the point of impact, while the source-oriented 

dispersion models take into consideration transport, dilution and other processes that 

take place between the source and the sampling site. Each has strengths and 

weaknesses that compensate for the other (Figure 8). Both types of models can and 

should be used in an air quality source assessment of outdoor and indoor air (Bove et 

al. 2014). 

  

Figure 9: Schematic Representation of the Different Methods for Source Identification (JCE report) 

 
Receptor-based models use chemical measurements (chemical composition, particle 

size and concentration variation in space and time) at an individual monitoring site (the 

receptor) to calculate relative contributions from major sources to the pollution at that 

site (EPA, May 2014). Receptor modelling cannot predict future air quality but, instead, 

looks at past data collected at one site over a specific time period to determine the 

sources to that site. Receptors can be stationed indoor or outdoor or they can be mobile 

samplers. This model reconstructs the contribution of each source by processing series 

of PM compositional values that are measured at specific receptor’s sites i.e. 

multivariate analysis is used to solve a mass balance equation to identify and allocate 

sources of the PM in the atmosphere. These tools have the advantage of providing 
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information derived from real-world measurements, including estimations of output 

uncertainty. However, these models can be unsuccessful with reactive species and may 

perform better in areas relatively closer to the sources (Bove et al. 2014).    

 

Receptor models have been widely used over past three decades to apportion ambient 

concentrations to sources. Among these, the Chemical Mass Balance (CMB), Principal 

Component Analysis (PCA) and Positive Matrix Factorization (PMF) methods are the 

most frequently used. CMB can be used if sources and emission profiles of PM are 

known “a priori”. However, a detailed knowledge of sources and emissions is not always 

available; in these cases it is preferable to use multivariate models like PCA and PMF, 

which attempt to apportion the sources on the basis of the internal correlations at the 

receptor site. 

The main output from these models is an estimate of the contributions from each source 

to the air pollution at that site. However, the reliability of receptor model outputs 

depends on appropriate data collection, in terms of data capture and kind of chemical 

species, and proper expression of uncertainty in the input data. This represents an 

aspect particularly relevant in PMF, which scales data on the basis of their uncertainty. 

In addition, determining the number of relevant sources and establishing the 

correspondence between factors and sources still appear as critical steps. Results from 

these models are important for scientifically justifying priorities and observing trends. 

Moreover, this scientific information helps air quality modelers as well as policy and 

decision makers (EC, June 2014). 

An alternative to the statistical data analyses is given by simpler models based purely 

on chemical analysis of dominant PM components and is called source models. Source 

models estimate concentrations at receptor coming from different source emissions and 

being influenced by meteorological measurements. Basically, chemical determinations 

are individually summed up in order to obtain a mass closure and then grouped to 

determine the macro-sources of PM. To enhance the selectivity of the elements as 

source tracers, a size fractionation of PM can be performed, as it is well known that fine 

particles (< 2.5 μm) are mainly emitted from combustion sources and coarse particles (> 

2.5 μm) are generated from mechanical-abrasive processes (Watson et al., 2002).  

 

Within the activities of the Forum for Air Quality Modelling in Europe (FAIRMODE) group 

on “Contribution of natural sources and source apportionment”, few surveys were 

implemented with the focus on the type and frequency of model used for source 

apportionment in Europe. When examining the received information on the most recent 

survey (Fragkou et al. 2012) it becomes obvious that the different tools for source 

identification in Europe ranged from less than 20% for Gaussian models to almost 60% 

for receptor models used in Europe (Figure 9). Furthermore, among all technologies 
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used in Europe, the most used models in Italy are Receptor (CMB, PMF2, PMF3) and 

Dispersion-Eulerian (FARM, CAMx/PSAT) models.  

 

The Receptor models for apportionment of sources and their pollutants are widely 

recognized from all EU countries. Such a large number of Receptor model’s presence 

may be induced for its low computational intensity, source estimation at the urban and 

regional scales which are independent from emission inventories and meteorological 

data preprocessing (Fragkou et al., 2012).  

 

Figure 10: Percentage of Model Types used for Source Apportionment by Different EU Countries 

(Fragkou et al. 2012) 

 

Previous study by Viana and co-authors implemented an analysis of source 

apportionment studies in Europe from 1987 to 2007. According to this study, PCS was 

the most frequently used model up to 2005 by having 30% of study and PMF and CMB 

were respectively 8% and 7%.  In following years, an increase in the usage of PMF 

(13%) and the mass balance analysis of chemical components (19%) occurred (Viana et 

al. 2008). In contrast with the tendency observed between 1987 and 2005, the majority 

of the studies were performed by using PMF and CMD models in the period of 2001 and 

2010 (Figure 10). 
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Figure 11: Time Trend of RM Studies in Europe between 2001 and 2010 (Belis et al. 2014) 

 

The obvious advantage of the PMF models over CMB relates the fact that related 

software is widely available and detailed information on the sources and source profiles 

is not required. On the contrary, CMB model requires expanded data on pollution 

sources prior to source apportionment.   

 

In order to compare all the source apportionment results and to derive useful 

conclusion, sources have been derived into six major categories, representing the most 

frequent ones: 

 

 Sea/Road Salt 

 Crustal/Mineral Dust 

 Secondary Inorganic Aerosol (SIA) 

 Traffic 

 Point Sources  

 Biomass Burning (Belis et al., 2014).  

 

Considering the target metric, until 2005, PM10 was, on average, the preferred target, by 

having more than 46% of the publication reported, and it was followed by 33% of PM2.5. 
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While other smaller size fractions PM2, PM1, PM0.1 had smaller share. However, different 

trend occurred starting from 2006, when PM2.5 took over the lead in the share by having 

38% of the new studies and on contrary only 29% focused on PM10. Thus, this new 

trend shows a change of focus in source apportionment studies in Europe. This new 

order may be due to the stronger recent evidences on the adverse effects of fine 

particles on health with comparison to coarser particles (Viana et al. 2008). 

 

The majority of the studies were implemented in urban areas (53% of the studies) while 

industrial or kerbside sites represented respectively 11% and 20% of the studies (Viana 

et al. 2008).  

 

The results of all surveys demonstrate the simultaneous use of different modelling tools 

and methods for identification and attribution of sources at investigated receptor sites, 

as the applicable methodology in order to combine the advantages and reduce the 

constrains of the individual model components. Moreover, the trends in usage are 

changing rapidly due to new discoveries on adverse effects of particulate matter mainly 

on the human health.  

 

1.7 Scope of the Work 
 

The fundamental objective of this work is to give contribution to better understanding of 

the nature of PM and to quantify relative significance of diverse emission sources and 

enable decision makers to convey efficient air quality remediation plans. Thus, the 

scope of this work is to perform a PM source apportionment by means of the PMF 

model on the PM data set from Milan2.  

In the recent past years during PM monitoring campaigns the data set is acquired with 

an aim to define the composition and contributions of various species to PM2.5 bulk mass 

in Milan. Thus, this work will contribute to enrichment of the current records for the 

specified area.    

The main focus is on PM2.5, since recent air quality standards for PM inquired by 

European Union, studies also PM2.5, besides PM10, where were specified both, 

concentration limits and an exposure reduction target. The second reason for 

centralizing on PM2.5 is that anthropogenic carbon forms are almost completely included 

in fine PM (Lonati et al., 2007).  

 

                                                           
2 The city of Milan is situated in the Lombardy region and is surrounded by many industrial zones; 

Furthermore, the metropolitan area of the city has a population of over 4 million people. 
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2 Model Application and Material 
 

2.1 PMF Application 
 

PMF represent a recent development in the data analysis technique’s sphere, which is 

called factor analysis. The main problem in these techniques is to resolve the identity 

and contribution of components in an unknown mixture. PMF is particularly applicable in 

the projects that use environmental data, for the following reasons: 

1. It integrates the uncertainties of variables which are often associated with 

measurements of environmental samples 

2. It drives all the values in a solution profiles and contributions to be non-negative, 

which represents more realistic approach than previously used models 

PMF is being used to categorize and apportion sources of airborne PM, by collecting 

data in numerous locations in the World. Mainly the collection locations are being 

focused in the urban areas, since there is the biggest need for the knowledge of the 

ambient air components. Likewise, classification of PM is set as PM<1µm (PM1), 

<1PM<2.5 µm (PM2.5) and PM<10 µm (PM10). This information is used for 

categorization of the PMF case studies with respect to PM.  

These data sets are principally used to identify profiles and contributions of PM from 

primary sources; for instance, motor vehicles, residential and industrial fuel 

consumption, biomass burning, soil dust and sea salt. Likewise, secondary sources, 

such as atmospheric oxidation of sulfate and nitrate and heterogeneous gas-to-particle 

conversion reactions on soil dust surfaces, are as well subject to the PMF application. 

(Prakash V. Bhave, et. al. 2007) 

After consideration of the primary use of PMF, there are many more fields of application 

for this model, and many new ones are being under feasibility study. 

Chemical composition of soil samples are multivariate in nature and hence represent the 

ideal data for the multivariate factor analytical techniques (PMF) and for its 

approximation.  Recent enhancements of the model led to the increased application 

within this field of study. The reason lies in the fact that previous approaches used for 

the analysis of soil datasets, did not rely strongly on physically significant assumptions. 

By combining results from PMD model with geostatical approach, it was possible to 

successfully determine the main sources of the combined organic and heavy metal 

contamination. (S. Vaccaro et.al. 2007) 

Another combination of PMF with other approaches is used. Quantification of the diesel- 

and gasoline-powered motor vehicle emissions can be identified by merging results 
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from PMF receptor modelling and on-road measurements captured by a mobile 

laboratory. By obtaining firstly source profiles from the PMF, the calculation of fuel-

based emission factors for each type of the exhaust is possible. (D.A. Thornhill, et.al. 

2010) 

On the other hand, PMF application within the research and development facility 

emissions is very convenient. The processes are varying and because of that the nature 

of research and number of chemicals are being changed rapidly, and PMF was the ideal 

match since it was able to identify the biggest number of source-related factors, while 

other approaches did not achieve such a good results. PMF is able to accept the 

boundaries with little reduction in model fit. (M. Y. Ballinger and T.V. Larson, 2014) 

Eco-efficiency indicators are very significant tool if researchers want to create physically 

meaningful information to policy makers. PMF is limiting its results to be non-negative, 

and with it two important advantages over traditional factor analysis are achieved. 

Firstly, the rotational ambiguity of the solution space is reduced. Secondly, all the results 

are guaranteed to be physically meaningful. (J. Wu et.al. 2012) 

PMF, however, finds its place in a very technical area of studies as well. Time-resolved 

optical waveguide absorption spectroscopy (OWAS) is a technique used for the 

investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent 

molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. The 

application of PMF to these techniques is quite recent, but it is already proved that it 

prevents the negative factors from occurring, avoids contradicting physical reality and 

makes factors more easily interpretable. (P. Liu et.al. 2013) 

On the contrary of PMF extensive use, there are significant fluctuations in the procedure 

process for the source apportionment. This procedure may be separated into three 

broad steps:  

1. Preparation of data to be modeled 

2. Processing the data with PMF with an aim to develop a realistic and robust 

solution 

3. Interpretation of the solution 

Some specific decision making are needed in the above mentioned steps, towards the 

choice of data uncertainties’ set, selection of factors and treatment of outliers. 
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2.2 PMF within Europe 

 

Danube River represents the second longest river in the Europe. Its spring starts in the 

Germany’s Black forest and it flows until its delta on the Black Sea. Considering its size 

and impact that generates, the chemical composition of the river and its tributaries 

should be well identifiable. In the past, some monitoring programs were performed in 

various parts of its drainage basin, taking into consideration its tributaries as well, with 

an aim to quantify the micro-pollutants level in the river. However, as new methods were 

developed, PMF was used with an objective to identify both natural and anthropogenic 

sources affecting Danube basin, as well as origin of heavy metals and other possible 

sources affecting the sediment creation. With applied PMF method, the spatial 

distribution of resulting sources was used to identify the role of the tributaries as 

potential sources of pollution. Results showed that the majority of tributaries are 

influenced by the anthropogenic sources. For instance, Velika Morava River has very 

high concentration of metal in sediments which can be influenced by the mining activity 

in the catchment area. On the other hand, the Sava tributary showed elevated values of 

mercury, probably in association with old refinery activities and chemical industry. In 

conclusion, the PMF application identified one anthropogenic parameter, which could be 

linked to different anthropogenic activities depending on the location along the Danube 

River: municipal and industrial discharge and mining activity (S.Comero et. Al. 2014). 

One of the hotspot areas in Europe with high concentration of particulate matter which is 

having a lot of problems in meeting all standards for current legislation of PM2.5 is the 

Netherlands. For the sake of better understanding of current levels, composition and 

distribution and origin of PM2.5 in the ambient air, one-year measurement campaign was 

run in the five locations in the Netherlands area. PMF was used as the main tool to 

understand and categorize the most relevant source contributions and their spatial 

variability in PM2.5. Wind direction was as well incorporated into the study of the results 

from PMF with an aim to identify more accurately the possible locations of the identified 

sources. (D. Mooibroek et.al. 2011) 

To have a wide outlook of PM1
3

 mass concentration and chemical composition of sub-

micron sized aerosols, two measurement campaigns were performed in three towns in 

Italy, Milan, Genoa and Florence. Every town was having different characteristics with 

respect to their orography, extension, population and emission sources. This campaign 

represents first large-scale investigation on PM1 in Italy and likely in Europe. The aim of 

this research campaign was to identify major sources of PM1, and to estimate their 

contribution to mass concentration. After running the PMF model on the collected data 

sets, it is identified that during the wintertime, the highest concentrations of PM1 were in 

                                                           
3 PM1, particulate matter with aerodynamic diameter smaller than 1 μm, 



31 
 

Milan, due to the high loading of pollutants and the atmospheric stability. Since, Po 

valley where Milan is situated, has peculiar meteorological conditions and very heavy 

emissions of pollutants from many different sources, it represents the most critical area 

in Europe with respect to limit values exceedances. However, during summer time PM1 

concentration significantly decreased in Milan. As the reason of this reduction, slower 

average wind speeds and mixing layer heights were crucial influencers. On the contrary, 

other two cities were showing completely different results since conditions in those 

areas differ significantly with respect one in Milan area. Lastly source identification was 

carried out with the help of available literature source profiles for PM1 fine fractions, by 

looking at source contribution time series and by taking into consideration explained 

variation values. (R. Vecchi et. al. 2008). 

Data set collected in the urban area around Elche in southern Spain starting from 

December 2004 until November 2005 was analyzed with PMF in order to estimate 

sources profiles and their mass contributions. After running the model, six sources were 

identified. However, very important it to mention that with the PMF it was possible to 

distinguish Saharan dust sources from local dust sources, and to quantitatively estimate 

the contributions of these two sources. (J.Nicolás et.al.2008).   

Another sampling was used as well in Spain, Zaragoza city, but this time the collection 

was oriented towards the PM2.5  PAH4 substances. The aim of this project was to identify 

and quantify potential PAH pollution sources. As the origin of the PAH is in the fossil 

fuels, it does not surprise the fact that the most influencing sources were found in coal 

combustion, vehicular emissions, stationary emissions and unburned/evaporative 

emissions. In an evaluation of the results of the PMF model run, some different patterns 

were identified and same were studied for the identification of the potential negative 

impact on the human health. Above all, lifetime cancer risk exceedances were examined 

for both, warm and cold seasons. (M. S. Callén, A. Iturmendi, J.M. López, 2014) 

 

The similar study was performed in UK National Network between 2002 and 2006. The 

goal of the study was apportionment of PAH sources as well, since they are currently 

generating a great deal of interest, mainly because of their high toxicity and 

carcinogenicity. The project was incorporating 14 urban sites which were known for the 

vast impact towards the creation of PAHs. (E. Jang, et. al. 2013).  

 
After considering all above mentioned case studies, it can be concluded that PMF is 

widely used within Europe and for many different purposes. For instance, in the first 

project, PMF identified in a very complex system, major influencing sources to the 

                                                           
4 PAH – Polycyclic aromatic hydrocarbons are organic compounds containing only carbon and hydrogen that are 
composed of multiple aromatic rings. PAHs are found in fossil fuels when an incomplete combustion occurs 
because of insufficient oxygen. Critically, PAHs have been identified as carcinogenic and mutagenic and are 
considered as pollutants of concern for the potential adverse health impacts. 

http://www.sciencedirect.com/science/article/pii/S1352231008008236?np=y
http://www.sciencedirect.com/science/article/pii/S0269749114003741
http://www.sciencedirect.com/science/article/pii/S0269749114003741
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Danube River sediments. In another project conveyed in the Netherlands, the PM2.5 

was examined with PMF, and relevant source contributions and their spatial variability 

were categorized. PM2.5 was under study of PMF but this time direction was toward 

identification of the PAH pollution sources. The studies were performed both in Spain 

and UK. Taking into account particulate matters, another project was conveyed, 

however this time PM1 was studied, and the project took place in Italy. Another use of 

PMF was to differentiate types of sand in the Spanish south regions, thus PM10. 

Accordingly, it may be concluded that PMF represents very popular method for the 

identification of many different types of PMs in the vast range of European territories, 

and the trend of its use is in increasing phase.  

 

2.3 PMF Model 
 

Receptor models represent mathematical methods for quantifying and qualifying the 

contribution of sources to observed samples, based on the structure or fingerprints of 

the sources. The structure of the source is identified by using analytical approaches for 

the media and fundamental species or consolidation of species is needed to separate 

influences. A composition data set can be shown as a data matrix X of i by j dimensions, 

in which i is the number of samples and j represents number of chemical species that 

were measured, with uncertainties u.  The aim of the receptor model is to resolve 

chemical mass balance (CMB) between measured source profiles and species 

concentration. The sources profiles are described with number of factors p, the species 

profile f of each source, and the amount of mass g which is created by influence of each 

factor to each individual sample. The CMB equation can be resolved with many models 

including 3 models that EPA has developed. In this work, EPA Positive Matrix 

Factorization will be used.  

PMF represents a multivariate factor analysis program that decomposes a matrix of 

identified data set into two matrices, factor contributions (G) and factor profiles (F). 

These factor profiles needs to be studied by the user in order to allocate the source 

types that may be influencing to the same cluster, by using quantified source profile 

information and emissions of discharge registers.  

Results are created using the boundary condition that no sample can have significantly 

negative source influence. PMD combines both user-identified uncertainties correlated 

to the sample data to weight individual points and sample concentration. This 

characteristic permits analyst to include confidence in the measurement process.   

PMF model obliges several repetitions of the fundamental Multi-linear Engine (ME) with 

an aim to categorize the most optimal factor contributions and profiles. ME is created to 
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resolve the PMF problem by aggregating two steps. Firstly, the analyst creates a table 

which specifies the PMF model. Thereafter, a programmed secondary model reads the 

previously created parameter table and computes the solution. The best practice is to 

iterate the model approximately 20 times for the development of a solution and 100 

times for the creation of the final solution, however different starting point should be 

used every time.  

Variability due to chemical transformation or method fluctuations can influence 

considerably by causing significant differences in factor profiles among PMF runs. The 

analyst needs to identify all the error estimates in PMF to comprehend the strength of 

the model outcomes.  

Lastly, PMF needs a data set containing a number of parameters which are measured 

across various samples. Usually, PMF is used on diverse PM2.5 data sets containing 

from 10 to 20 species over 100 samples. An uncertainty value that is assigned to each 

specie and sample should be estimated by using the additional uncertainty data set. 

This data set is designed using propagated uncertainties or other available information 

such as collocated sampling precision. (EPA Positive Matrix Factorization (PMF) 5.0. 

Fundamentals and User Guide) 

 

2.3.1. Comparison to PMF 3.0 

 

The PMF Model Development Quality Assurance Project Plan has been created to 

collect comments and suggestions from users. After completion of the project, very 

useful comment were used to improve the problematic features in PMF 3.0 and to  

create new tools for the improvement of the results’ accuracy and error estimation; thus 

to develop version 5.0. 

The main difference between PMF 5.0 and PMF 3.0 is in added two key tools. Firstly, 

two additional error estimation methods and secondly, source contribution and profile 

boundaries are added in the newest 5.0 version. Likewise, many other features have 

been added as well to enhance the software’s friendly use, e.g. ability to read in multiple 

site data, etc (EPA Positive Matrix Factorization 5.0. Fundamentals and User Guide). 
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2.4 Input data 
 

PMF requires two types of input data: 1. Sample species concentration values and 2. 

sample species uncertainty values or parameters for calculating uncertainty. Type of the 

files that EPA PMF admits are comma-separated values (.csv), tab-delimited (.txt) and 

Excel Workbook (.xls or .xlsx) files. The input process may be performed simply by 

writing the file path into the “data file” box or by browsing to the articular file. However, in 

some cases the file may contain multiple worksheets and user will be asked to choose 

only one to be run by model. The concentration file is determined by species as columns 

and sample numbers or dates as rows, including headers for each of them (Figure11). 

The accurate forms for input file may have the following arrangement: 1. with sample ID 

only, 2. With Date/Time only 3. with both Sample ID and Date/Time and lastly 4. without 

IDs or Date/Time. Names of the species must be unique. As it comes to the unity 

information, it is not mandatory since those are not included in the uncertainty file. 

However, information about units may be introduced as a new row in the concentration 

file.  

Table 3: Input Concentration File 

 

Keep in mind that the blank cells are not permitted, otherwise the user will be asked to 

examine the data and repeat the process. Likewise, the named species cannot contain 

commas. Model can recognize negative values, including high values such as -999 and 

it can proceed, however the model will firstly send the warning message. Still, if the 

values of sample are not real or if these are missing, the user should revise data outside 

the program and upload again the data set if necessary.  
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Sampling and analytical errors can be identified from the sample species uncertainties. 

In some cases, analytical laboratory can provide an uncertainty assessment for each 

value.  Nonetheless, uncertainties are not always available, thus errors must be 

estimated by the user.  

Uncertainty files are being accepted by EPA PMF 5.0 in only two forms: 1. observation-

based and 2. equation-based. The first group is providing estimated information of the 

uncertainty for each species in a sample. Dimensions should be the same as in the 

concentration file, but should not include units. The program itself will check the 

correspondence of the uncertainties file and the concentration file, and user will be 

notified if some mismatches appear. Nonetheless, program will continue running if 

encounters some minor mistake, but in a case of mismatching in the number of 

samples, the program will not allow further evaluation of data. In the uncertainty file, 

negative or zero values are not considered as relative values and must be excluded 

from data set. If some values are present with stated values, PMF will show an error 

message and the user will be asked to remove these values from the file and to reload 

the uncertainty file.  

Uncertainty file that contains species-specific parameters, the software EPA PMF 5.0 

processes in order to calculate uncertainties for each sample. This file should contain 

one row of species with their names. The row that follows should contain species-

specific method detection limit (MLD) that is accompanied by the row of uncertainties. 

As stated before, zero and negative numbers are not permitted for both, detection limit 

or for the uncertainty values (EPA Positive Matrix Factorization (PMF) 5.0. 

Fundamentals and User Guide). 

 

2.5 Output Data 
 

The analyst can identify the output file, followed by the choice of the PMF output file 

types and specify a prefix for the output files. The prefix is always added to the 

beginning of every file, thus it will be always used as the first part of the output file. 

Letters or numbers can be used in creation of the prefix, however other characters such 

as “-” and “_” are not permitted. In a case that this prefix is not changed during the 

succeeding run, a warming message will be showed.  

After the base runs are finalized, the output files are created. These files contain all 

necessary information for the on-screen display of the results. The number of the 

created output files, depends mainly on the type of the output file chosen. Accordingly 

the type of the output file may be: 
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 Tab-delimited text (.txt) 

 Comma-separated variable (.csv) or 

 Excel Workbook (.xls) 

If analyst choose Excel Workbook as an output file, two output files will be automatically 

created by EPA PMF during base runs and will be preserved in the output folded that 

was selected by analyst: *_base.xls and *_diagnostics.xls. These files are containing the 

following information: 

 *_base.xls – Profiles, Contributions, Residual, Run Comparison 

 *_diagnostics.xls. – Summary, Input, Base Runs 

On the other hand, if the analyst choses comma-separated variable (.csv), five output 

files will be created: *_diag, *_contrib, *_profile, *_resid and *_run_comparison, where 

each of the sections expresses the following information: 

 *_diag has an information of the user inputs and model diagnostic information  

 *_contrib has the contributions for the each base run which is used to create the 

contribution graphs on the Profiles/Contributions tab. Run number is governing 

the sorting of the contributions. Firstly shown are always normalized 

contributions, and contributions in mass units is following if a total variable is 

specified.  

 *_profile has the profiles for every base run which is used to create graphs on the 

Profiles/Contributions tab. Like in the previous case, profiles are sorted by run 

number, where profiles in mass units are shown first, followed by profiles in 

percent of species and concentration fraction of species total if a total mass 

variable is specified.  

 *_resid has the residuals, which are regulated and scaled by the uncertainty data 

for every base run. It is used to create the graphs and tables on the residual 

analysis screen. 

 *_run_comparison has a summary of the species distribution across all PMF runs 

and for all factors and their comparison to the lowest Q (robust) run.  

 *_base has the *_contrib, *_profile, *_resid and *_run_comparison in the same 

Excel Workbook, however in the separated worksheets.  

Likewise, if a “.txt” type is selected, the information in the base runs tab is created as 

separate file and the diagnostics tab information is merged into one file.  

All output files are being saved to the directory previously specified “Output Folder” 

section in the Data Files screen and with using the prefix defined in the “Output File 

Prefix” section (EPA Positive Matrix Factorization (PMF) 5.0. Fundamentals and User 

Guide). 
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2.6 Environmental Data 
 

The data set (Table 3) contains PM2.5 data set which is derived from sampling 

campaigns at a monitoring site located in Via Messina in downtown Milan (Figure12) 

and was conducted by Politecnico di Milano in a period from August 2002 until 

December 2003.  

Sampling campaigns were executed with a high-volume (30m3/h flow rate) gravimetric 

sampler DIGITEL DA-80H, equipped with PM2.5 cut-off inlet and 150 mm quartz-fiber 

filters. The location of a sampler was in the walled yard of a residential area, quite far 

from the major roads. Consequently, this location may be considered as representative 

of the urban background environment since it was not directly exposed to traffic 

emissions (Lonati et al. 2008). 

Figure 12: Sampling Site 
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Table 4: Dataset, Via Messina, Milan 

Sampling site Milan, Via Messina 

Type of environment Urban area 

Sampling period from 01.04.2002 to 13.12.2003 

  (Concentrations have been normalized at  20oC and 101.3kPa) 

  PM2.5 

No of samples 162 

Warm season 78 

Cold season 84 

  Carbon (EC and OC) 

No of samples 118 

Warm season 64 

Cold season 54 

  Ions (Cl-, NO3
-, SO4

2-, NH4
+) 

No of samples 118 

Warm season 64 

Cold season 54 

  
Trace elements (Si, K, Fe, Cu, Zn, Pb, Al, Ca, Ti, V, Mn, Ni, Cr, Br) 

- Varying - 

The data set contains samples which were analyzed for the PM2.5 mass (162, 24-h 

concentration samples), organic carbon, elemental carbon, ionic species Cl-, NO3
-, 

SO4
2-, NH4

+ (118, 24-h concentration samples) and trace elements Si, K, Fe, Cu, Zn, Pb, 

Al, Ca, Ti, V, Mn, Ni, Cr, Br. Among them, organic and elemental carbon  were identified 

by thermal-optical transmission (TOT) method, while ionic components have been 

ultrasonically extracted from the filter sample by means of high pressure liquid 

chromatography technique (HPLC). Lastly, trace elements were determined by energy 

dispersive X-ray fluorescence (XRF) spectrometer (Lonati et al. 2008). 

In the original data set some samples did not contain all measurements for some 

species. Taking into account that PMF model cannot be run if some data is missing, a 

certain amount of species and samples needed to be excluded from the study; thus, 

original data set was reduced in order to create a data set that will contain records for all 

days and species present.  
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More accurately, from the original data set, mainly trace elements were excluded from 

the scope of the study, since those were the ones which were missing the most of the 

measurements. More accurately, Al, Si, Ca, Ti, V, Cr, Mn, Ni, Cu, Br were excluded from 

the case study, inducing reduction of the number of species from originally 21 up to 11. 

However, some of the species were still missing some measurement entries, thus 

exclusion of some sampling dates occurred as well, until the complete dataset was 

obtained which had no missing measurements. With the reduction procedure, the 

original data set of 162 concentration samples was reduced to 99 (Table 4). Within the 

new scope of 99 concentration samples, 48 were measured in the winter season (from 

October until the end of March), and 51 of them in the summer season (from April until 

the end of September).  

The type of the season is influencing strongly to the outcome of the measurements. The 

winter season lasts from 01.10. until the 31.03., while the Summer season lasts from 

01.04. until the 31.09. During the winter season, despite the traffic, the heating on 

various fossil fuels is present. Combined together, these two aspects are causing pick 

values in the concentration levels of observed elements. While, on the other hand during 

the summer season, heating is not present in this region. Thus, causing the lowest 

values in the records obtained.  

Table 5: Dataset after Reduction 

Sampling site Milan, Via Messina 

Type of environment Urban area 

Sampling period from 10.08.2002 to 13.12.2003 

  (Concentrations have been normalized at  20oC and 101.3kPa) 

  PM2.5, Carbon (EC and OC), Ions (Cl-, NO3-, SO42-, NH4+) 

No of samples 99 

Warm season 50 

Cold season 49 

  
Trace elements (K, Fe, Zn, Pb) 

- Varying - 

Preliminary statistical analysis, i.e. mean concentration, standard deviation as well as 

minimum and maximum values of all data set after reduction is presented in the Table 5. 
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Table 6: Principal Statistical Parameters of Samples 

Samples max min mean st.dev 

PM 2,5  133.42 12.18 43.24 27.10 

EC 4.97 0.50 1.49 0.71 

OC 35.78 1.96 10.16 7.47 

Cl 2.52 0.01 0.36 0.55 

NO3 71.62 0.24 9.56 11.77 

SO4 15.31 0.46 4.79 2.61 

NH4 16.16 0.08 3.13 2.74 

K 0.94 0.01 0.10 0.14 

Fe 0.79 0.05 0.24 0.14 

Zn 0.29 0.001 0.06 0.05 

Pb 0.35 0.01 0.05 0.05 

 

The values of PM2.5 are varying from 12.18 g/m3 measured during the warm season up 

to 133,4 g/m3 obtained in the winter season. Corresponding differences in picks are 

primary due to a seasonal variation, i.e. presence/absence of emissions from domestic 

heating in cold and warm season, respectively. Secondly, differences are caused by 

variable meteorological conditions where for instance lower mixing height changes 

(Hueglin et al. 2005). The lowest values (20 g/m3) were sampled in the end of May 

and begging of July, while on the contrary the highest values, which were exceeding 

110 g/m3, were measures in the end of February and in the beginning of March. 

Despite that, the mean PM2.5 mass concentration is 43.24 g/m3.   

The biggest standard deviations are being recorder within PM2.5 and NO3, 27.1 g/m3 

and 11.8 g/m3 respectively, while the smallest values are recorded within Pb, Zn, Fe 

and K, where the standard deviation is less than 0.2. 

The data set contains many measurement levels in many categories; however, the 

analytical findings do not allow determination of the total PM mass due to several 

reasons: 

 Some elements, for instance vanadium, cadmium, etc. have not been 

determined,  

 The residual humidity of the PM sample is not considered,  

 X-ray inquiries refers only to elements, while the elements in the particulate 

matter are in the form of oxides,  

 Organic compounds are present as organic matter and not only as organic 

carbon (Almeida et al. 2005) 
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3 Results and Discussion 
 

3.1 PMF Objective 
 

The goal of Positive Matrix Factorization (PMF) is to identify the number of factors p, the 

species profile f of each source, and the amount of mass g contributed by each factor to 

each individual sample. 

It is very important for the data analyst to know what types of sources are present in the 

study area. However, in some particular cases where there is a good emission inventory 

it may happen that a source cannot be identified. Additionally, atmospheric processes 

may influence on various factors such as summer and winter secondary sulphate, or in 

generating sufficiently collinear sources that an irresolvable mixture of source profile is 

generated. Considering that, profiles should be interpreted with both knowledge of the 

study area and a background in atmospheric science (Belis et al. 2014). 

Once the factors are identified, it is necessary to compare obtained factor profiles with 

those reported in previously published PMF studies or to look at temporal patterns for 

expected behaviors, e.g. the largest contributions of a source believed to be residential 

wood burning, should likely occur during winter months etc. Additionally, plots of 

contribution over time can be inspected in order to look for possible seasonal of yearly 

oscillations of the source contribution (Farao et. al 2013) 

 

3.3.1 PMF Application 

 

As mentioned in one of the previous paragraphs (2.6 Environmental data) the original 

dataset have been reduced in order to enable run of the model, following the special 

criteria of the PMF mode. Firstly the number of species was reduced from 21 up to 11, 

excluding mainly the trace elements. However, since some species were still missing 

measurement entries, exclusion of the sampling dates needed to take place as well. 

Thus, from starting number of 21 species and 162 concentration samples, the dataset 

ran in the model contained 11 species and 99 concentration samples. 

This resulting dataset was input in the model, including the uncertainty dataset of the 

measurement technique. Uncertainty data set is used to assign to each species and 

sample additional uncertainty dataset. This uncertainty dataset is assigned to a value of 

5%. The dimension of the uncertainty dataset and the dataset of the measurements is 

the same. The model was iterated 100 times for the development of the most accurate 

solution, and obtained results are showed and discussed in the subsequent sections. 
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Considering the investigation of dataset, the correlation between measured and 

reconstructed mass is showed on the Figure 13. The scatter plot shows strong 

correlation between masses of the PM2.5. 

Figure 13: Reconstructed PM2.5 Concentrations vs. Measured PM2.5 

 

All the rows in the dataset have been considered for the analysis; however it was 

possible to divide the dataset in two seasonal subsets with approximately 50 

observations for each season, in order to achieve the additional analysis. During the 

processing application of the warm and cold season respectively, the scatter plot of the 

correlation between measured and reconstructed values of PM2.5 was showing strong 

trend as well. Thus, Figure 14 shows reconstructed PM2.5 concentration versus 

measured PM2.5 for both, warm and cold season respectively.  

 Figure 14: Reconstructed PM2.5 Concentrations vs. Measured PM2.5 – Warm and Cold Season, respectively 
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Concentration time series as the species contribution is showed on the following 

Figure15. It can be seen that the biggest contributions are from the total PM2.5 

reconstructed mass, NO3 and OC, where the rest of the observed species are 

contributing on a smaller scale. 

Figure 8: Concentration Time Series (g/m3) 

 

 

3.3.2 PMF Profiles 

 

The dataset has been studied, after being processed and run by the PMF model, 

following the instructions described in the protocol of the model. The obtained results 

are shown in the section that follows, accompanied with the detailed interpretation of the 

findings.  

Source profiles, “factors” have been identified with PMF model. Considering the whole 

dataset, six factors were identified. On the contrary, with respect to the warm and cold 

season subsets, only 4 factors were identified. All the tables with the profiles of the 

sources as well with their fingerprints i.e. distribution of sources for PM2.5, and factor 

contributions, are represented. 
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Figure 16: Factor Contribution 

  

Figure 17: Factor Fingerprint 

 

Figure 16 reports factors contribution (i.e.: the share of the total PM2.5 associated to 

each of the factors) obtained for the whole dataset. Clearly, factor 4 contributes the most 

to the total mass of the PM2.5 with almost 30% of share followed by factor 6 and factor 3 

with 26,3% and 20,7% respectively. The rest of the factors are contributing on a much 

smaller scale, thus with less than 24%, if considering the contribution of all three factors. 

Accordingly, on the Figure 17, the fingerprint of all factors is showed. By observing this 

graph, an analyst may have deeper insight into the scope of the contributions, 

forasmuch both, the share and the species division of the obtained factors.  Lastly, in the 

Table 7, all identified source profiles are showed. 
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Table 7: Factor Profiles (g/m3) 

 

 

  

Factor 2 

Factor 3 

Factor 4 

Factor 5 

Factor 6 

Factor 1 
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Likewise, the sources represented by the profiles and main average contributors to their 

presence in PM2.5 samples are identified as: 

 Factor 1: SO4 (90%), NH4 (80%), OC (70%) 

 Factor 2: NO3 (90%), NH4 (75%), OC (70%), Zn (58%) 

 Factor 3: OC (95%), EC (70%), NO3 (70%), K (70%), NH4 (60%) 

 Factor 4: OC (85%), NO3 (75%), SO4 (73%), NH4 (70%), Cl (60%), EC (55%) 

 Factor 5: OC (88%), EC (80%), SO4 (70%), Fe (58%) 

 Factor 6: NO3 (90%), NH4 (80%), OC (80%), SO4 (52%) 

By investigating the most recent studies on the apportionment of the PM2.5 sources, it 

may be concluded that: 

 Factor 1 can be identified as a “Secondary sulfate” source with a small 

contribution of about 8% to the total mass of PM2.5 

 Factor 2 is identified as “Traffic non-exhaust” source, with high values of Zn 

share, mainly due to tire wear or brake material 

 Factor 3 stands for “Biomass burning/brake wear”, considering the high 

contributions of EC and K, and it stands for the third biggest contribution to the 

mass of PM2.5 

 Factor 4 is interpreted as “Domestic heating” source, characterized by high 

relative contribution of SO4 and likely related to industrial source contribution, 

representing one of the main contributors to the PM2.5 mass concentration 

 Factor 5 represents the “Re-suspended soil dust”, mainly due to high 

contributions of EC and Fe 

 Factor 6 may be identified “Secondary nitrate”, accounting for the second largest 

contribution to the PM2.5 mass concentrations 

(Farao et al. 2013, Larsen et al. 2012, Piazzalunga et al. 2011, Scotto et al. 2013, 

Vecchi et al. 2008, Viana et al. 2008) 
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On the Figure 18, source concentration with respect to time series is depicted. This kind 

of plot gives a broader overview of the source concentration during time. It may be 

expected that domestic heating, contributes on a smaller scale in the warm season, thus 

we may observe this pattern on the plot. Similar trend is identified for the burning of 

biomass/break wear and secondary nitrate, which contribute vastly in the cold season 

as heating is immensely used. Traffic not-exhaust source shows increased levels of 

concentration in the winter time, while re-suspended soil dust and secondary sulfate 

show relatively uniform trends. 

Figure 18: Source Concentration (temporal series) (g/m3) 

 

Data for the warm season subset only, was run with PMF, and the obtained results are 

reported in the Figures 19 and 20 and in the Table 8. 

Figure 19: Factor Contribution Warm Season 
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Figure 20: Fingerprint Warm Season 

 

As mentioned before, for the seasonal subsets only four factors are identified. 

Observing the accessed factors, the one that contributes vastly (51%) to the total mass 

of the PM2.5 is factor 4, while the remaining three factors are contributing with a smaller 

share. More accurately, factor 1 with 31.4%, factor 3 with 13.6% and lastly factor 2 with 

3.8% (Figure 19). On the Figure 20, the fingerprint is showed with more detailed 

information, as for the total dataset in the previous paragraph.  
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Table 8: Factor Profiles Warm Season (g/m3) 

 

 

 

 

Table 8, depicts the factors identified by the run of the warm season subset.  

Similarly, the sources represented by the profiles and main average contributors to their 

presence in PM2.5 samples are identified as: 

 Factor 1: NO3 (85%), OC (80%), NH4 (80%), SO4 (80%), 

 Factor 2: OC (90%), EC (72%), NH4 (70%), NO3 (70%), Cl (70%) 

 Factor 3: OC (85%), EC (75%), SO4 (75%), Fe (55%) 

 Factor 4: SO4 (85%), OC (82%), EC (70%), NH4 (70%), Fe (55%), NO3 (55%), 

Factor 1 

Factor 2 

Factor 3 

Factor 4 
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Using the same approach as for the whole dataset profiles identification, the following 

sources are recognized: 

 Factor 1 may be identified as “Secondary nitrates and organics”, accounting for 

the second largest contribution to the PM2.5 mass concentrations 

 Factor 2 assumed to be “Biomass burning/brake wear” source, generally 

accounted for the break material and tire wear and it stands for the smallest 

contributor to the mass of PM2.5 

 Factor 3 may be recognized as the “Traffic exhaust”, being one of the significant 

contribution to the total mass of PM2.5 

 Factor 4 is interpreted as the “Secondary sulfate”, representing the greatest 

contributors to the PM2.5 mass concentration 

(Farao et al. 2013, Larsen et al. 2012, Piazzalunga et al. 2011, Scotto et al. 2013, 

Vecchi et al. 2008, Viana et al. 2008) 

Figure 21: Source Concentration Warm Season (temporal series) (g/m3) 

 
On the Figure 21 it may be identified the temporal series of the source concentration for 

the warm season subset. By observing the figure, two peaks may be identified in 

September, where mainly biomass burning/break wear and traffic exhaust are showing 

high concentration trends. It may be assumed that biomass burning/break wear starts to 

contribute greater as a biomass burning, since the cold season is approaching. 

Likewise, the season of holidays is over, thus the traffic exhaust starts to contribute 

significantly. On the other hand, secondary nitrate has relatively uniform trend, while 

secondary sulfate has the highest concentration levels in the spring time. Additionally, it 

should be seen that the model doesn’t recognize a domestic heating source, since warm 

season dataset is being considered.  
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On the other hand, by observing the cold season subset, the subsequent results are 

identified: 

Figure 22: Factor Contribution Cold Season 

 

 

 

The factor that dominates the most in the share of contribution to the total mass of PM2.5 

is the factor 1 with 43.6%, as showed in the Figure 22. The second biggest influencer is 

shared between factor 2 and factor 4, with 25.6% and 26.4% respectively. The factor 

with the lowest weight towards the contribution is the factor 3 with only 4.3%. Lastly, on 

the Figure 23, the fingerprint of all factors with all observed species is presented. 

Figure 23:  Fingerprint Cold Season 
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 Table 9: Factor Profiles Cold Season (g/m3)  

 

In the Table 9 obtained profiles for the cold season are depicted.  

Additionally, the sources represented by the profiles and main average contributors to 

their presence in PM2.5 samples are identified as: 

 Factor 1: SO4 (80%), NH4 (80%), OC (77%),  

 Factor 2: OC (85%), NO3 (85%), NH4 (78%), SO4 (75%), Cl (70%) 

 Factor 3: OC (90%), EC (75%), SO4 (75%), K (70%), Cl (60%), NH4 (55%),           

K (55%) 

 Factor 4: OC (90%), EC (75%), SO4 (70%), NO3 (65%), NH4 (60%), Fe (60%), 

Factor 1 

Factor 2 

 

Factor 3 

 

Factor 4 
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By using the same approach as for the total dataset profiles identification, the following 

sources are recognized: 

 Factor 1 is identified as a “Secondary nitrates and organics” source with greatest 

contribution of about 43% to the total mass of PM2.5 

 Factor 2 assumed to be “Domestic heating”, that stands for the third biggest 

contribution to the mass of PM2.5 

 Factor 3 may be recognized as “Crustal matter5” source, with high values of Zn 

share, mainly due to tire wear or brake material 

 Factor 4 is interpreted as the “Re-suspended soil dust”, mainly due to high 

contributions of EC and Fe, representing the second main contributors to the 

PM2.5 mass concentration 

(Farao et al. 2013, Larsen et al. 2012, Piazzalunga et al. 2011, Scotto et al. 2013, 

Vecchi et al. 2008, Viana et al. 2008) 

 

Figure 24: Source Concentration Cold Season (temporal series) (g/m3) 

  

Temporal series for source concentrations, considering only the cold season is depicted 

on the Figure 24. As expected, domestic heating is identified again, since in the warm 

season its contribution was rather negligible, where other sources were influencing it on 

a much larger scale. The greatest pick is identified for February and March, as being 

one of the coldest months where heating reaches its maximum. For the same reason, 

high levels of secondary nitrates and organics are obtained. Lastly, traffic exhaust  show 

relatively significant and uniform trend. 

 

                                                           
5 Crustal Matter is a fugitive dust originating from the Earth’s crust 
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While pairing resulting profiles, all above identified source profiles are influenced by 

subjective opinion of the analyst. The obtained mathematical results from the model run 

were compared and matched with previously published source profile’s articles. The 

assigned nomination of the source profiles was taken from the published articles, 

keeping in that way the consistency of the profiles. Lastly, due to subjective stance of 

the analyst and some complex or unclear profiles, some minor omissions may occur in 

the interpretation of the reported source profile’s nomination.  

For more detailed investigation, concerning the statistical background of the results 

obtained, box whisker plot6 PM2.5 mass contribution is showed in the Figure 25. More 

particularly, the plot depicts sets of numerical data through their quartiles, where 

variability outside the upper and lower quartiles may be observed, i.e. they represent 

distribution of the estimated daily contribution of the identified sources.   

By observing the Figure 25, it may be concluded that Factor 4 contributes the most to 

the total PM2.5 mass concentration, since its median is having the highest value of 31%. 

In addition, Factor 4 is followed by Factor 5 that has a median value that corresponds to 

29%. It should be noted that Factor 5 is distributed wider than the Factor 4 which is 

mainly concentrated around its median value. Factor 6 have very similar distribution as 

Factor 5 has, while Factor 1 shows the highest distribution of its results among all 

profiles. Moreover, contributions towards the total mass of PM2.5 are for the Factor 1 

(15%) and for the Factor 6 (14%). As the smallest contributors with a moderate 

distribution around its median values are Factor 3 (5%) and Factor 2 (4%). 

 

Lastly, Figure 26 shows the factor contribution dependency on PM2.5 concentration 

values. Traffic non-exhaust, domestic heating and secondary nitrate are not influenced 

by the concentration values of PM2.5, hence these factors are high degree insesitive to 

its levels. On the other hand, starting from biomass burning/brake wear, across the 

secondary sulfate, up to the re-suspended soil dust, are sources positively dependent 

on PM2.5 concentration, respectively.  

 

 

 

 

 

 

                                                           
6 Box Whisker Plot: symbolizes conducive way of graphically rendering sets of numerical data through 
their quartiles. It may also include lines spreading vertically from the boxes (whiskers) that demonstrate variability 
outside the upper and lower quartiles. 

http://en.wikipedia.org/wiki/Quartile
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Figure 25: Box plot for the PM2.5 Mass Contribution 

 

 
Figure 26: Daily to Mean Ratios for all Sources in the Annual Dataset 
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3.3.3 Comparison to Other Receptor Models 

 

Besides Positive Matrix Factorisation (PMF) model, UNMIX and Chemical Mass 

Balance (CMB) models have used the same dataset as well, in order to study the source 

profiles from the PM2.5 in the Lombardy region. These case studies were performed by 

students from Politecnico di Milano. More particularly, this dataset was run and 

investigated with CMB model (A. V. Iannucci and M. Campagnoli) and secondly with 

UNMIX model (G. Sporchia nd U. S. Nobile) as part of the Master thesis. Since, pure 

research has been performed on the source profiles for this particular area, obtained 

results from all three models were compared and conclusion is reported in the following 

paragraph.  

After the run of the annual dataset by PMF and UNMIX models, PMF model recognized 

the most of source profiles, thus six, while UNMIX model highlighted 4 profiles. CMB 

has identified 4 source profiles, but only with respect to seasonal subset; hence it will be 

commented afterwards. In the both models output, ones relevant to annual dataset, 

same source profiles were identified, secondary sulfate and secondary nitrate. Since, 

PMF highlighted more profiles, it is expected that the model output did not identify same 

general source profiles, instead, other similar ones more specific. Therefore, UNMIX 

model has recognized as the two last profiles, motor vehicle exhaust and generic 

combustion. The remaining profiles from PMF run were identified as domestic heating, 

biomass burning/break wear, re-suspended soil dust and lastly, traffic non-exhaust. 

However, the number of source profiles is not identical and comparison among their 

contribution share in total PM2.5 concentration cannot be accomplished, but the biggest 

contributors may be recognized. As a result, the most contributing profile in the UNMIX 

model run output is shared among secondary nitrate and generic combustion source, 

while on the contrary, the ones contributing the most in the PMF model run output were 

domestic heating and secondary nitrate. By observing these findings, it may be said that 

the models were quite similar in their results, since combustion source and domestic 

heating can be considered as almost the same one.   

On the figures 27, 28 and 29, the summary of UNMIX and PMF sources, and their 

average contribution to PM2.5 for annual dataset is showed. Subsequently, the summary 

of UNMIX, PMF and CMB sources, and average contribution to PM2.5 for warm and cold 

season is showed as well. 
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Figure 27: Summary of UNMIX and PMF sources, and average contribution to PM2.5 for annual dataset 

(g/m3) 
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With respect to seasonal subsets, for the warm season particularly, all three models 

have highlighted secondary nitrate and secondary sulfate. Since, again, the number of 

identified source profiles is not identical; the comments about their shares cannot be 

drawn. UNMIX model and CMB have identified 3 source profiles, thus the only 

difference in their output is for the third source profile. It should be noted, that CMB 

model did not assign profiles for all dataset, thus approximately 18% of dataset stood 

unassigned. UNMIX has identified it as a generic combustion, and CMB as a traffic 

exhaust. The only notable difference was in the sulfate contribution. In UNMIX model 

the sulfate source profile has the biggest contribution towards the total PM2.5 

concentration mass, nevertheless, CMB as the biggest contributor identified traffic 

exhaust, followed by sulfate. On the other hand, PMF model has recognized 4 sources, 

among which traffic exhaust was identified, as in CMB model as well. However, instead 

of generic combustion that was the source profile identified by UNMIX, PMF recognized 

biomass combustion/break wear. Once again, no major differences were identified in the 

model output of three models, except the contributions of the secondary sulfate source. 

Still, alignment in the number of source profiles identified is needed for more accurate 

comparison.   

Figure 28: Summary of UNMIX, PMF and CMB sources, and average contribution to PM2.5 for warm 

season dataset (g/m3) 
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among all three models is secondary nitrate. It is the biggest contributor to the total 

PM2.5 concentration mass in both UNMIX and PMF model, while in the CBM model it is 

on the second place, yet very close to the first contributor. Firstly, UNMIX model did not 

consider sulfate in the analysis, thus secondary sulfate was impossible to be determined 

as a source profile; accordingly the remaining two sources were assumed to be generic 

combustion. As it comes to the CMB and PMF models, besides secondary nitrate, the 

rest of the profiles are mainly differing. In particular, CMB model recognized traffic 

exhaust as the first contributor, while the remaining two profiles are secondary 

ammonium and secondary sulfate. It should be highlighted, that CMB model did not 

assign profiles for all dataset, approximately 15% of dataset stood undetermined. On the 

other hand, PMF model recognized as the second biggest contributor domestic heating 

and re-suspended soil dust, and lastly, crustal matter as the minor contributor to the 

total PM2.5 concentration mass. It may be concluded that traffic source identified by CMB 

is shared between re-suspended soil dust and crustal matter in the PMF model, while 

the secondary sulfate could be hidden in the domestic heating source.  

According to performed comparison, it may be concluded that all three source 

apportionment models have generated similar contribution for a given components; thus 

this observation indicates a statistically strong and reliable quantitation of the identified 

sources. 

Figure 29: Summary of UNMIX, PMF and CMB sources, and average contribution to PM2.5 for cold 

season dataset (g/m3) 
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Conclusion 

 
Particulate matter as being one of the air pollutants is on its rising trend of growing 

attention.  Why? Particulate matter is well-known to its great potential for global warming 

and harmful effects on human health and the environment.  What is worsening the 

situation is that these effects do not occur on the local scale only, but the global as well. 

World leading organizations for health are trying to raise awareness that PM affects 

human health more than any other pollutant, mainly towards the respiratory and 

cardiovascular system. Accordingly, it is noted that recently vast amount of scientific 

literature is investigating epidemiological, clinical and toxicological subjects. These 

study cases identified an immense scale of adverse health effects, starting from 

significant respiratory problems up to the cardiopulmonary adverse diseases and lung 

cancer. The severity of its impact is connected to the concentration levels in the 

atmospheric air, chemical composition, particle size distribution, duration of the 

exposure, and individual sensitivity. These studies draw a conclusion that these effects 

are caused by both, short-term and long-term exposure to particulate matter usually 

inhaled within the urban areas throughout the world. World Health Organisation states 

that particulate matter and effects that it causes, triggers death of about 0.85 million 

people annually, mainly in the developing countries.  

On the other hand, particulate matter’s influence on the environment it rather obvious. 

Fossil combustion creates fumes and vapours that are reducing visibility, while besides 

that, due to its chemical and physical characteristics, it influences the alteration of the 

radiative balance of the atmosphere’s absorbing and reflecting solar radiation. Albedo, 

known as the reflectivity of the Earth’s surface is reduced as well, mainly because of the 

global warming phenomenon, i.e. reduction of snow and ice (surfaces that have the 

most potent reflective power). Particulate matter that is suspended in the air creates fog, 

mainly in the urban areas, but contributes vastly to the cloud’s creation as well. Clouds 

are formed when condensation nuclei is created, around which the water droplet forms. 

When the rain is created from these clouds, it may effect in forming strong fog or acid 

rain that will have a severe effects of corrosion on the flora and fauna, buildings, 

monuments and damage electrical installations. Additionally, the concentration of these 

particles may influence greatly on the rainfall regime. On the other hand, earth’s climate 

is immensely influenced by the type and concentration of particulate matter. Firstly, its 

presence is driving global warming on a wide range, where some of the particles have 

enormously large global warming potential. However, that is not the only impact on the 

earth’s climate. As mentioned before, it is very important to control levels of the Earth’s 

reflectivity. Particulate matter as reflective substance is helping to decrease temperature 

on the earth with its shielding effects on the sunlight, but it keeps reflected infrared 

radiation below its layer as well. 
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Severity of the impacts that air pollution has, became more than apparent when report 

from European Environmental Agency was released. It claimed that dirty air cost society 

189 billion euros a year; thus campaigners have demanded a crackdown on Europe’s 

worst polluters. Referring to data from the EEA report, half of the damage is being done 

by only one percent of industrial plants. Coal-fired power plants and the air pollution that 

they emit, cost Europe approximately 189 billion euros in 2012., According to EEA 

figures, among all European countries, Germany was Europe’s biggest contributor, It 

has generated 38.2 billion euros of damage to society as a result of air pollution. 

Subsequent country was the United Kingdom with 25.9 billion euros, followed by Poland 

(24.8 billion euros), France (14.3 billion euros) and Italy (13.8 billion euros). As 

expected, from the 30 most damaging facilities in Europe, eight were in Germany, six in 

Poland, four  in Romania, three in Bulgaria and the United Kingdom, two in Greece, and 

one in the Czech Republic, Estonia, Italy and Slovakia.  

Decision makers, in order to create effective strategies to control of reduce impacts on 

the air quality, mainly use findings of the contributions of the various emission sources 

to the particulate matter concentration levels. Scientific technique that examines this 

phenomenon is called source apportionment. This technique is having two approaches, 

receptor-oriented and source-oriented. Unlike other air model, receptor model do not 

use pollutant emissions, meteorological data and chemical transformation mechanism. 

Alternatively, receptor model uses chemical and physical characteristics of gases and 

particles measured at source and receptor to identify both, presence and contribution of 

sources to receptor concentrations. Since, the dataset used for this case study 

contained concentrations levels and chemical specification of the particulate matter that 

was sampled at a receptor (site) location, the used model was receptor-oriented. The 

main objective of the model is to identify and quantify the sources of air pollutants at a 

receptor location, their profiles and their relative contribution to the total particulate 

matter concentrations.  

Receptor models were developed in the United States and are vastly used to solve air 

quality problems. Accordingly, the EPA7 has developed several receptor models in order 

to reinforce the air quality management. The ones currently available are Chemical 

Mass Balance (CMB), UNMIX and Positive Matrix Factorisation (PMF). This case study 

was examined by the PMF receptor model. PMF represents a multivariate factor 

analysis program that decomposes a matrix of identified data set into two matrices, 

factor contributions and factor profiles. These factor profiles needs to be studied by the 

user in order to allocate the source types that may be influencing to the same cluster, by 

using quantified source profile information and emissions of discharge registers.  

The fundamental objective of this work is to give contribution to better understanding of 

the nature of particulate matter and to quantify relative significance of diverse emission 
                                                           
7 EPA - US Environmental Protective Agency 
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sources and enable decision makers to convey efficient air quality remediation plans. 

Thus, the scope of this work is to perform a particulate matter source apportionment by 

means of the PMF model on the particulate matter data set from Milan. The main focus 

is on PM2.5, since recent air quality standards for particulate matter inquired by 

European Union, studies also PM2.5, besides PM10, where were specified both, 

concentration limits and an exposure reduction target. The second reason for 

centralizing on PM2.5 is that anthropogenic carbon forms are almost completely included 

in fine particulate matter.  

The original dataset have been reduced in order to enable run of the model, following 

the special criteria of the PMF model. Firstly the number of species was reduced from 

21 up to 11, excluding mainly the trace elements. However, since some species were 

still missing measurement entries, exclusion of the sampling dates needed to take place 

as well. Thus, from starting number of 21 species and 162 concentration samples, the 

dataset ran in the model contained 11 species and 99 concentration samples. The 

investigation was firstly made at the whole dataset. Afterwards the data was separated 

into warm and cold season subsets, where additional investigation was made.  

For what concerns the annual dataset of PM2.5 in Milan, the simulation by PMF model 

generated 6 sources (secondary sulfate, traffic non-exhaust, biomass burning/brake 

wear, domestic heating, re-suspended soil dust, secondary nitrate) with average 

contribution to the total PM2.5 mass  that ranges between 10% and 20%, and as 

expected, significant daily variability is identified.  In particular, the main contributor is 

identified as the domestic heating (29.1%). The one that follows is a secondary nitrate 

(26.3%). These two finding are more than likely to be found, since the sampling area 

represents very populated urban area, where great amounts of fossil fuels are being 

combusted. The remaining sources are biomass burning/brake wear (20.7%), re-

suspended soil dust (13.3%), secondary sulfate (8.3%) and lastly, traffic non-exhaust 

(2.4%) source. On the plot of time series, it was identified that domestic heating 

contributes on a smaller scale in the warm season. Similar trend is identified for the 

burning of biomass/break wear and secondary sulfate, which contribute vastly in the 

cold season as heating is immensely used. Re-suspended soil dust shows the biggest 

contribution in between the cold and warm season, while traffic non-exhaust and 

secondary nitrate, show the similar, relatively uniform trend, with picks in September. 

The sources were identified by comparing obtained relative contributions with results 

acquired from previous studies.  

On the seasonal basis, the number of sources identified for both seasons were four. 

However, the type of sources identified, vary from season to season. The warm season 

highlighted, secondary nitrate and organics, biomass burning/brake wear, traffic exhaust 

and lastly secondary sulfate. On the contrary, the cold season obtained slightly different 

results: secondary nitrates and organics, domestic heating, crustal matter and traffic 
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exhaust. Domestic heating draws immediate attention as it is appearing only in the cold 

season, from apparent reason of the cold weather. On the other hand, traffic exhaust is 

present in both seasons, where it greatly contributes to the total PM2.5. That trend should 

draw attention of the decision makers to convey strict control and try to reduce the 

strong impact from this source. For the concern of the average contribution to the PM2.5 

mass concentration, two sources are contributing the most in the warm season: 

secondary sulfate (51.2%) and secondary nitrate and organics (31.4%). The ones that 

follow are contributing on the much smaller scale, traffic exhaust (13.6%) and biomass 

burning/brake wear (3.8%). As for the cold season, out of four sources, three are 

contributing with the great shares: secondary nitrates and organics (43.6), traffic 

exhaust (26.4%) and lastly domestic heating (25.6%). The smallest contribution is 

identified in the crustal matter (4.3%).  

Due to the model structure, it is not possible to make more detailed distinction on the 

type of combustion. Still, some important sources were recognized and this information 

may be used to raise awareness as well to create some strategies with an aim to 

improve the air quality of the area. Looking more into results obtained, it may be 

concluded that the traffic exhaust contributes as double as in the warm season, growth 

that may be associated with reduced traffic during summer months. By investigating 

cold seasons, it can be remarked that no secondary sulfate source has been identified. 

The reason for if may be in a fact that lower temperatures do not favour formation of the 

sulfate. On the other hand, as expected, the combustion contribution is much higher in 

the cold than in the warm season, mainly due to the domestic heating emissions. Lastly, 

there is a slight change in contribution of secondary nitrates and organics from warm 

season to cold one. Nitrate is having a higher volatility at higher temperatures, thus its 

contribution is reduced in the warm season.  
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Annex I – How PMF Works 
 

In receptor models data set is represented as a data matrix X of i  by j dimensions, in 

which i identifies the number of samples and j the number of chemical species which 

were measured, with uncertainties u. The objective of the model is to solve the chemical 

mass balance (CMB) between observed concentrations and source profiles, as 

presented in Equation; with number of factors p , the species profile f of each source, 

and the quantity of mass g that is created by aggregation of each factor to each 

individual sample. 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘𝑓𝑘𝑗 + 𝑒𝑖𝑗
𝑝
𝑘=1  (1) 

Where eij is the residual of sample or species. The CMB equation can be resolved using 

several models, among which are EPA CMB, EPA Unmix and EPA PMF.  

Representing the multivariate factor analysis method, PMF divides original data set into 

two matrices: factor contributions (G) and factor profiles (F). Analyst is than processing 

these factor profiles in order to identify the source types that may be contributing to the 

sample by using information derived from the measured source profile and emission or 

discharge inventories.  

PMF uses both user-provided uncertainties associated with the sample data and as well 

sample concentration in order to measure weight single points. By having this 

characteristic, analyst is in power to account for the confidence in the measurement. For 

instance, data under the detection can be preserved for use in the method, with the 

assigned uncertainty adjusted so that these individual points from data set have less 

impact on the result than measurements above the detection limit.  

Using the PMF model minimization of the objective function Q, factor influences and 

profiles are derived (Equation2). 

𝑄 = ∑ ∑ [
𝑥𝑖𝑗−∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗
]
2

𝑚
𝑖=1

𝑛
𝑖=1  (2) 

Q represents a critical factor for PMF and during the model runs, two version of Q are 

showed: 

 Q(true) indicates the accuracy of factor calculated including all points 

 Q(robust) indicated, on the other hand, the accuracy of factor calculated 

excluding points not fit by the model, and identified as samples for which the 

uncertainty-scaled residual shows values greater than 4.  
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The differentiation between Q(true) and Q(robust) create a measure of the impact of 

data points which have high scaled residuals. Usually peak influences from sources that 

are not present during the sampling time period are connected with these points. 

However, in some cases uncertainties may be too high which implies similar Q(true) and 

Q(robust) values because the residuals are scaled by the uncertainty.  

 PMF model requires various iterations of the Miltilinear Engine (ME) in order to support 

identification of the most optimal factor influences and profiles. This is needed because 

of the nature of the ME procedure that initiates the search for the consistent factor 

profiles with a randomly created factor profile. Additionally, this factor profile is adjusted 

by the gradient approach with an aim to graph the ideal path to the best solution. In 

other words, the model creates a multidimensional space using the measurement 

samples and then passes through the space using the gradient approach to arrive to its 

final destination of the best result along the path. Identification of the best solution 

usually implies the lowest Q(robust) value along the path (i.e. the minimum Q) and it 

may be perceived as the bottom point of the through in the multidimensional space. 

Since the random starting point is determined by the seed valued and the path which 

dictates it, there is no assurance that the gradient approach will always identify the 

lowest point in the multidimensional space (global minimum), but instead, it may find the 

local minimum. In order to increase the chance of reaching the global minimum, the 

model should be run at least 20 times for the development of the solution and 100 times 

for the final solution, with a choice of different starting point every time.  

The points that are not fit by the PMF does not influence the Q(robust), it is normally 

used as a parameter for a choice of the optimal run from the various ones. Likewise, the 

variability of Q(robust) gives an information if the starting run solutions have great 

variability, because of the random seed which is used to initiate the gradient algorithm in 

diverse positions. If the provision of the stabilized path towards the minimum is obtained 

by data used, Q(robust) will have only little variations between the runs. On the other 

hand, the arrangement of the starting point and the space defined by the data set will 

impact the direction to the minimum value, resulting in that way in diverse values of 

Q(robust). The best optimal solution is created by the lowest value of the Q(robust), and 

it is used by default.  

Another influence in factor profiles among PMF runs can be noted if some chemical 

transformations or changes in processes appear. In order to evaluate the variations 

between runs, two approaches are available: intra-run residual analysis and a factor 

summary of the species distribution compared to those of the lowest Q(robust) run. 

Evaluation of all the error estimates in PMF is performed by the analyst. Lastly, the 

variation in the PMF results can be assessed with the following three methodologies: 
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 Bootstrap (BS) analysis is used to identify if there exist a small set of 

observations that can disproportionately impact the result.  BS error intervals 

which includes effects from random errors and as well effects of rotational 

ambiguity. The presence of infinite results that are very much alike to the result 

created by PMF is causing rotational ambiguity. In other words, for any present 

pair of matrices there can be infinite variations of the pair that are created by a 

single rotation. Rotation of the space is impossible to be limited, since only 

boundary condition of non-negative source contribution is present. These errors 

are not affected by the user’s sample uncertainties and are normally representing 

robust errors. 

 Displacement (DISP) analysis helps the analyst to comprehend the final result in 

more detailed aspect, including its sensitivity to minor variations. Error intervals 

from this analysis method include effects of rotational ambiguity, however does 

not include impacts of random errors in the data set. Drawback of this analysis is 

that data uncertainties can directly influence DISP error estimates. Thus, ranges 

for down-weighted species are most likely to be large.   

 BS-DISP (hybrid approach) error intervals comprise influences of random errors 

and rotational ambiguity. BS-DISP solutions are more robust than DISP solution, 

because the DISP phase of BS-DISP does not relocate as great as DISP by 

itself.  

Multi-linear Engine (ME) resolves a range of multi-linear PMF problems comprising 

bilinear, trilinear, and mixed models. It is created to solve relevant problems by joining 

two steps. The analyst creates a table that outlines the PMF model itself. This step is 

followed with automated secondary program that interprets the tabulated model 

parameters and calculates the results. By using EPA PMF model for the solution of the 

PMF problem, the primary step is resolved with an input file that is created with the help 

of EPA PMF user interface. When model has been defined, data and user details are 

inserted into the secondary ME program by EPA PMF. This program resolves the PMF 

program iteratively, minimizing in the same time the sum-of-squares object function, Q 

during the various series as indicated in the Figure11. When diminishing solutions for 

minimizing Q are obtained by processing additional iterations, it means that a stable 

solution has been reached. Filtering of the possible solution produces a finer scale over 

three stages of iterations.  
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Figure 30: Conjugate Gradient Method 

 

The first stage of iteration assigns the general range of solution in space. For the good 

results, the change in Q (dQ) is required to be less than 0.1 over 20 consecutive steps in 

less than 800 steps. Subsequent step identifies the neighborhood of the final solution. In 

this case, dQ should be less than 0.005 over 50 consecutive steps in less than 2000 

total steps. The final step converges toward the best possible Q-values, following as 

well that dQ should be less than 0.0003 over 100 consecutive steps in less than 5000 

steps.  

When small data sets are being used, i.e. less than 300 observations, generally a few 

hundred iterations is needed. However, for bigger data sets around 2000 iterations are 

needed in order to achieve accurate solutions. In a case that a solution is found but do 

not meet any of the requirements set by three stages, then a solution is non-convergent.  

Outcome of the ME process is being interpreted by PMF and then modified for easier 

user interpretation.  The 5.0 version of the EPA PMF uses the newest ME and a PMF 

script file. These two approaches were developed by Pentti Paatero at the University of 

Helsinki and Shelly Eberly at Geomatic Tools.  
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The PMF model requires a data set that contains a range of parameters which have 

been measured across various samples. More specifically, PM2.5 data set comprises of 

10 to 20 species over 100 samples. However, an uncertainty data set is also necessary 

for the complete calculation. This data set is calculated by using propagated 

uncertainties or some similar accessible information, for instance collated sampling 

precision.  

Application of the PMF is connected to a wide range of data, including 24-hour PM2.5, 

size resolved aerosol, deposition, air toxics, high time resolution measurements, i.e. 

aerosol mass spectrometers (AMS) and volatile organic compound (VOC) data.  
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