
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Aeronautica

DESIGN OF SUBOPTIMAL CONTROLLERS
FOR REDUCTION OF VIBRATION AND

SOUND RADIATION OF PLATES
USING INERTIAL ACTUATORS

Relatore:
Prof. Lorenzo Dozio

Tesi di laurea di:
Francesco Riccardo De Leo

Matr. 804648

Anno accademico 2014/2015





Acknowledgments

My first and dutiful thanks go to Prof. Lorenzo Dozio, for his teachings and
advices and for guiding me in the writing of this thesis, with great willingness,
competence and patience.

My thanks also goes to all the teachers of Politecnico di Milano who
transmitted their knowledge to me with passion and motivation.

A big thanks goes to my family and, in particular, to my parents, for their
patience, their support, and their encouragement during this whole period
of studies.

A special thanks goes to my girlfriend, Sara, for standing by me during
these years, making every day better.

Finally, I would like to thank all my friends and my collegues. They made
these years of studies the best adventure of my life.

3





Contents

1 Introduction 1

2 Structural model 5
2.1 Ritz formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dynamic equations of the plate with ideal force actuators and

velocity sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Mechanical model of inertial actuators . . . . . . . . . . . . . 11
2.4 Coupling between plate and actuator models . . . . . . . . . . 12
2.5 Integrator dynamics . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Electrical dynamics of inertial actuators . . . . . . . . . . . . 16

2.6.1 Complete model . . . . . . . . . . . . . . . . . . . . . . 16

3 Radiation model 19
3.1 Formulation in terms of Structural Modes . . . . . . . . . . . 20
3.2 Formulation in terms of Elementary Radiators . . . . . . . . . 21
3.3 Independent Radiation Modes . . . . . . . . . . . . . . . . . . 23
3.4 Radiation Modal Expansion (RME) . . . . . . . . . . . . . . . 25
3.5 State space representation of the acoustic model . . . . . . . . 26
3.6 Global state space representation . . . . . . . . . . . . . . . . 28

4 Control strategy 31
4.1 Definition of the performance variables . . . . . . . . . . . . . 33
4.2 Minimization problem . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Gradient definition . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Gain optimization . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Positions optimization . . . . . . . . . . . . . . . . . . 37

I



II CONTENTS

5 Results of vibration control with sensors and actuators in
assigned positions 45
5.1 Fully clamped isotropic plate with sensor/actuator pairs in

assigned positions . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.1 Fully clamped isotropic plate with one actuator/sensor

pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Fully clamped isotropic plate with 5 actuator/sensor

pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.3 Fully clamped isotropic plate with 9 actuator/sensor

pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.4 Fully clamped isotropic plate with 16 actuator/sensor

pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Separation between resonance frequency of the actuators and

first natural frequency of the plate . . . . . . . . . . . . . . . . 56
5.3 Differences among centralized, decentralized and equal gains

control startegies with different number of actuators . . . . . . 57
5.4 Differences among centralized, decentralized and equal gains

control strategies with different number of modes in the design
reduced order model . . . . . . . . . . . . . . . . . . . . . . . 60

6 Results of vibration control with sensors and actuators in
optimal positions 65
6.1 Comparison between fixed grid and optimal grid configurations 66

6.1.1 Cantilever isotropic plate with one ideal actuator/sensor
pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 CFSF orthotropic plate with 5 ideal sensor/actuator
pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Fully clamped plate with 4 sensor/actuator pairs . . . . . . . . 72

7 Results of structural acoustic control 75
7.1 Differences among centralized, decentralized and equal gains

control startegies with different number of actuators . . . . . . 76
7.2 Fully clamped isotropic plate with 9 sensor/actuator pairs in

assigned positions . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Simply supported orthotropic plate with 5 sensor/actuator

pairs in assigned positions . . . . . . . . . . . . . . . . . . . . 78
7.4 Fully clamped isotropic plate with 5 ideal sensor/actuator

pairs in optimal positions . . . . . . . . . . . . . . . . . . . . . 81
7.5 Simply supported orthotropic plate with 5 ideal sensor/actuator

pairs in optimal positions . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS III

8 Convergence study 89
8.1 Validation and convergence analysis of the structural model . 89

8.1.1 Validation of the structural model . . . . . . . . . . . . 90
8.1.2 Convergence study for a fully clamped isotropic plate . 91
8.1.3 Convergence study for a cantilever orthotropic plate . . 93
8.1.4 Convergence study for a simply supported orthotropic

plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.1.5 Convergence study for a CFSF orthotropic plate . . . . 96

8.2 Validation and convergence analysis of the radiation model . . 98
8.2.1 Validation of the radiation model . . . . . . . . . . . . 98
8.2.2 Convergence study for a fully clamped isotropic plate . 100
8.2.3 Convergence study for a simply supported orthotropic

plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Conclusions 103
9.1 Future developments . . . . . . . . . . . . . . . . . . . . . . . 104





List of Figures

2.1 Rectangular plate lying in the (x, y) plane. . . . . . . . . . . . 7
2.2 Lumped parameter actuator model . . . . . . . . . . . . . . . 11

3.1 Subdivision of a panel into elementary radiators. . . . . . . . . 21
3.2 Radiation modal expansion coefficients (Ψi) for the first six

radiation modes, up to 500 Hz. . . . . . . . . . . . . . . . . . 26
3.3 Fitting of the radiation modal expansion coefficients (Ψi) for

the first six radiation modes, up to 500 Hz, with 3rd order
radiation filters. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 ADD-1N inertial actuator specifications. . . . . . . . . . . . . 46
5.2 Miniature single axis piezoelectric accelerometer specifications

- model 352C23. . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Assigned actuator position on the CCCC M0 plate - 1 Actuator. 48
5.4 Uncontrolled and controlled kinetic energy versus frequency

for different types of control strategy - CCCC M0 plate - 1
Actuator - Wuu = 1/700. . . . . . . . . . . . . . . . . . . . . 49

5.5 Control currents for the three control strategies - CCCC M0
plate - 1 Actuator. . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Assigned actuators positions on the CCCC M0 plate - 5 Ac-
tuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Uncontrolled and controlled kinetic energy versus frequency
for different types of control strategy - CCCC M0 plate - 5
Actuators - Wuu = 1/1500. . . . . . . . . . . . . . . . . . . . 51

5.8 Control currents for the three control strategies - CCCC M0
plate - 5 Actuators. . . . . . . . . . . . . . . . . . . . . . . . . 52

5.9 Assigned actuators positions on CCCC M0 plate - 9 Actuators. 53

V



VI LIST OF FIGURES

5.10 Uncontrolled and controlled kinetic energy versus frequency
for different types of control strategy - CCCC M0 plate - 9
Actuators - Wuu = 1/8000. . . . . . . . . . . . . . . . . . . . 53

5.11 Control currents for the three control strategies - CCCC M0
plate - 9 Actuators. . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12 Assigned actuators positions on the CCCC M0 plate - 16 Ac-
tuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.13 Uncontrolled and controlled kinetic energy versus frequency
for different types of control strategy - CCCC M0 plate - 16
Actuators - Wuu = 1/50000. . . . . . . . . . . . . . . . . . . . 55

5.14 Uncontrolled and controlled kinetic energy versus frequency
for Wuu = 1/106 and different values of the first natural fre-
quency of the CCCC M0 plate - 1 Actuator . . . . . . . . . . 56

5.15 Percentage variation between Decentralized and Centralized
controllers versus Number of Actuators - CCCC M0 plate . . . 58

5.16 Percentage variation between Equal Gains and Decentralized
controllers versus Number of Actuators - CCCC M0 plate . . . 58

5.17 Convergence times for the three types of controller versus
Number of Actuators - CCCC M0 plate . . . . . . . . . . . . . 59

5.18 Percentage variation between Decentralized and Centralized
controllers versus Number of Actuators - CFFF M1 plate . . . 59

5.19 Percentage variation between Equal Gains and Decentralized
controllers versus Number of Actuators - CFFF M1 plate . . . 60

5.20 Convergence times for the three types of controllers vs Number
of Actuators - CFFF M1 plate . . . . . . . . . . . . . . . . . . 60

5.21 Uncontrolled and controlled kinetic energy versus frequency
for different types of control strategy, considering only the
first plate mode in the reduced order model - CCCC M0 plate
- 9 Actuators - Wuu = 1/8000. . . . . . . . . . . . . . . . . . 61

5.22 Assigned actuators positions on the SSSS M1 plate - 5 Actu-
ators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.23 Uncontrolled and controlled kinetic energy versus frequency
for different types of control strategy and considering only the
first 5 plate modes in the reduced order model - SSSS M1 plate
- 5 Actuators - Wuu = 1/350). . . . . . . . . . . . . . . . . . 63

5.24 Uncontrolled and controlled kinetic energy versus frequency
for different types of control strategy and considering only the
first 30 plate modes in the reduced order model - SSSS M1
plate - 5 Actuators - Wuu = 1/300). . . . . . . . . . . . . . . 63

6.1 Assigned actuator position on the the CFFF M0 plate. . . . . 67



LIST OF FIGURES VII

6.2 Uncontrolled and controlled kinetic energy versus frequency
for a fixed grid configuration - CFFF M0 plate - 1 Actuator . 67

6.3 Optimal actuator position on the CFFF M0 plate. . . . . . . . 68
6.4 Kinetic energy versus frequency for fixed and optimal grid

configurations - CFFF M0 plate - 1 Actuator. . . . . . . . . . 69
6.5 Mode shape - mode 2. . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Assigned actuators positions for the CFSF M1 plate . . . . . . 70
6.7 Optimal actuators positions for the CFSF M1 plate . . . . . . 70
6.8 Kinetic energy versus frequency for fixed and optimal grid

configurations - CFSF M1 plate - 5 Actuators . . . . . . . . . 71
6.9 Mode shape - mode 12. . . . . . . . . . . . . . . . . . . . . . . 71
6.10 Optimal sensor/actuator pairs placement obtained from differ-

ent simulations with the same parameters - CCCC M0 plate -
4 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.11 Uncontrolled and controlled kinetic energy versus frequency
for the case (i) - CCCC M1 plate - 4 Actuators - J = 0.0168 . 74

7.1 Percentage variation between Decentralized and Centralized
controllers versus Number of Actuators - CCCC M0 plate . . . 77

7.2 Percentage variation between Equal Gains and Decentralized
controllers versus Number of Actuators - CCCC M0 plate . . . 77

7.3 Convergence times for the three types of controller versus
Number of Actuators - CCCC M0 plate . . . . . . . . . . . . . 78

7.4 Assigned actuators positions on the CCCC M0 plate - 9 Ac-
tuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.5 Uncontrolled and controlled kinetic energy versus frequency
for kinetic energy and radiated sound power minimization in-
deces - CCCC M0 plate - 9 Actuators in assigned positions -
Wuu = 1/2500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.6 Uncontrolled and controlled radiated sound power versus fre-
quency for kinetic energy and radiated sound power minimiza-
tion indeces - CCCC M0 plate - 9 Actuators in assigned posi-
tions - Wuu = 1/1500. . . . . . . . . . . . . . . . . . . . . . . . 80

7.7 Assigned actuators positions on the SSSS M1 plate - 5 Actuators. 80
7.8 Uncontrolled and controlled kinetic energy versus frequency

for kinetic energy and radiated sound power minimization in-
deces - SSSS M1 plate - 5 Actuators in assigned positions -
Wuu = 1/500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



VIII LIST OF FIGURES

7.9 Uncontrolled and controlled radiated sound power versus fre-
quency for kinetic energy and radiated sound power minimiza-
tion indeces - SSSS M1 plate - 5 Actuators in assigned posi-
tions - Wuu = 1/200. . . . . . . . . . . . . . . . . . . . . . . . 82

7.10 Uncontrolled and controlled kinetic energy versus frequency
for kinetic energy and radiated sound power minimization in-
deces - CCCC M0 plate - 5 Actuators in optimal positions -
Wuu = 1/600. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.11 Uncontrolled and controlled radiated sound power versus fre-
quency for kinetic energy and radiated sound power minimiza-
tion indeces - CCCC M0 plate - 5 Actuators in optimal posi-
tions Wuu = 1/500. . . . . . . . . . . . . . . . . . . . . . . . . 83

7.12 Optimal actuators positions on the CCCC M0 plate for kinetic
energy minimization - 5 Actuators . . . . . . . . . . . . . . . . 84

7.13 Optimal actuators positions on the CCCC M0 plate for radi-
ated sound power minimization - 5 Actuators. . . . . . . . . . 84

7.14 Optimal actuators positions on the SSSSS M0 plate for kinetic
energy minimization - 5 Actuators . . . . . . . . . . . . . . . . 85

7.15 Optimal actuators positions on the SSSS M0 plate for radiated
sound power minimization - 5 Actuators. . . . . . . . . . . . . 86

7.16 Uncontrolled and controlled kinetic energy versus frequency
for kinetic energy and radiated sound power minimization in-
deces - SSSS M1 plate - 9 Actuators in optimal positions -
Wuu = 1/300. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.17 Uncontrolled and controlled radiated sound power versus fre-
quency for kinetic energy and radiated sound power minimiza-
tion indeces - SSSS M1 plate - 9 Actuators in optimal positions
- Wuu = 1/360. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1 Frequency response for different numbers N = M of Ritz func-
tions - 627 modes considered - CCCC M0 plate . . . . . . . . 92

8.2 Spectrum of kinetic energy for different numbers N = M of
Ritz functions - 627 modes considered - CCCC M0 plate . . . 92

8.3 Frequency response for N = M = 34 and N = M = 36 Ritz
functions - 79 modes considered - CFFF M1 plate . . . . . . . 93

8.4 Spectrum of kinetic energy for N = M = 34 and N = M = 36
Ritz functions - 79 modes considered - CFFF M1 plate . . . . 94

8.5 Frequency response for N = M = 32 and N = M = 34 Ritz
functions - 172 modes considered - SSSS M1 plate . . . . . . . 95

8.6 Spectrum of kinetic energy for N = M = 32 and N = M = 34
Ritz functions - 172 modes considered - SSSS M1 plate . . . . 95



LIST OF FIGURES IX

8.7 Frequency response for N = M = 30 and N = M = 32 Ritz
functions - 213 modes considered - CFSF M1 plate . . . . . . 96

8.8 Spectrum of kinetic energy for N = M = 30 and N = M = 32
Ritz functions - 213 modes considered - CFSF M1 plate . . . . 97

8.9 First six eigenvalues of the radiation model of an aluminium
baffled simply supported plate versus the parameter k/kb, with
k = ω/c and kb = ω2Mp

EI

0.25
. ω is the natural pulsation, c

the speed of sound in air, Mp the plate mass, E the Young’s
Modulus, I the moment of inertia the plate - Aluminium SSSS
plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.10 First six amplitue-weighting coefficients evaluated through the
RME technique for an aluminium baffled simply supported
plate versus frequency - Aluminium SSSS plate . . . . . . . . 99

8.11 Spectrum of radiated sound power for different numbers n of
significant modes - fmax = 500 Hz - CCCC M0 plate . . . . . . 100

8.12 Spectrum of radiated sound power for n = 10 and n = 12
significant modes - fmax = 500 Hz - SSSS M1 plate . . . . . . 101





List of Tables

3.1 Properties of the simply supported aluminium plate . . . . . . 26

5.1 Material properties used in the numerical results - Dij are the
bending/twisting rigidities of the plate, ρ is the mass per unit
volume, h is the plate thickness, ν is Poisson’s coefficient, E is
the Young’s Modulus and D = Eh3/12(1− ν2) is the flexural
rigidity of the plate. . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Properties of the CCCC M0 plate. . . . . . . . . . . . . . . . . 48
5.3 Cost function values - CCCC M0 plate - 5 Actuators. . . . . . 51
5.4 Cost function values - CCCC M0 plate - 9 Actuators. . . . . . 54
5.5 Values of the frequency separation between the actuator reso-

nance frequency and the fisrt natural frequency of the CCCC
M0 plate, for different control weights, in order to avoid large
actuator resonances. . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Properties of the CFFF M1 plate . . . . . . . . . . . . . . . . 59
5.7 Properties of the SSSS M1 plate . . . . . . . . . . . . . . . . . 62

6.1 Properties of the CFFF M0 plate . . . . . . . . . . . . . . . . 66
6.2 Properties of the CFSF M1 plate . . . . . . . . . . . . . . . . 68
6.3 Properties of the CCCC M1 plate . . . . . . . . . . . . . . . . 72

7.1 Properties of the CCCC M0 plate . . . . . . . . . . . . . . . . 76
7.2 Properties of the SSSS M1 plate . . . . . . . . . . . . . . . . . 78

8.1 First six frequency parameters λ = ωa2
√
ρh/D11 of a square,

simply supported, orthotropic (material M1) plate carrying
an elastically mounted mass Ma = 0.1Mp with dimensionless
spring constant K0 = Kaab/D11 = 10, in position (0,0) . . . . 90

XI



XII LIST OF TABLES

8.2 First six frequency parameters λ = ωa2
√
ρh/D11 of a square,

fully clamped, orthotropic (material M1) plate carrying an
elastically mounted mass Ma = 0.3Mp with dimensionless
spring constant K0 = Kaab/D11 = 10, in position (0,0) . . . . 91

8.3 Properties of the CCCC M0 plate . . . . . . . . . . . . . . . . 91
8.4 Properties of the CFFF M1 plate . . . . . . . . . . . . . . . . 93
8.5 Properties of the SSSS M1 plate . . . . . . . . . . . . . . . . . 94
8.6 Properties of the CFSF M1 plate . . . . . . . . . . . . . . . . 96
8.7 Properties of the SSSS aluminium plate . . . . . . . . . . . . . 98
8.8 Properties of the CCCC M0 plate . . . . . . . . . . . . . . . . 100
8.9 Properties of the SSSS M1 plate . . . . . . . . . . . . . . . . . 101



Abstract

The research presented in this work of thesis is addressed to the problem
of controlling vibration (active vibration control, AVC) and noise (active
structural acoustic control, ASAC) of rectangular plates, using multiple ac-
celerometers and inertial actuators. A coupled structural acoustic model is
developed, taking into account the electromechanical dynamics associated
to the actuators and the dynamics of the integrators, that convert acceler-
ation measures to velocities. Relying on the suboptimal control technique,
a velocity feedback optimal controller is designed. In particular, the types
of controller studied are the decentralized velocity feedback with indepen-
dent gains, the centralized velocity feedback and the decentralized velocity
feedback with equal gains. Results and considerations are presented for the
reduction of vibration and sound radiation of plates with variable charac-
teristics, dimensions and boundary conditions. Configurations of collocated
sensor/actuator pairs, both in assigned positions and located by an optimal
placement technique, are studied. Two optimization approaches based on the
use of different performance indeces are presented for vibro-acoustic control
problems.
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Sommario

Il presente lavoro di tesi ha l’obiettivo di studiare il problema del controllo
di vibrazioni (controllo attivo delle vibrazioni) e del rumore (controllo attivo
del rumore) di piastre rettangolari, utilizzando accelerometri e attuatori in-
erziali. Viene sviluppato un modello strutturale-acustico accoppiato, tenendo
conto della dinamica elettromeccanica degli attuatori e della dinamica degli
integratori, i quali convertono misure di accelerazione in velocitá. Affidan-
dosi alla tecnica del controllo sub-ottimo, viene sviluppato un controllore
ottimo con controreazione sulle velocitá. In particolare, i tipi di controllore
esaminati sono il decentralizzato con guadagni indipendenti, il centralizzato
e il decentralizzato con guadagni uguali. Vengono presentati risultati e con-
siderazioni riguardo la riduzione delle vibrazioni e della radiazione acustica
di piastre con differenti caratteristiche, dimensioni e condizioni al controrno.
Vengono studiate configurazioni di coppie collocate di sensori e attuatori, sia
in posizioni assegnate che posizionate tramite una tecnica di collocamento ot-
timo. Vengono presentati due approcci di ottimizzazione, basati sull’utilizzo
di differenti indici di prestazione, per problemi di controllo vibro-acustico.
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Chapter 1
Introduction

Vibration control of flexible structures is an important issue in many engi-
neering applications. As large lightweight structures used in the aeronautical
and space fields are characterized by modal frequencies and damping ratios
relatively low, they are widely affected by vibrations that may cause prob-
lems both in terms of safety and comfort. The transmission of acoustic noise
is one of the main issues and the improvement of the flight comfort trying
to reduce radiated noise produced by the vibrating structures of the airplane
respresents an important challege in civil aeronautics. Therefore, to comply
with the request of vibration suppression and noise attenuation, the concept
of actively controlled structures with sensors and actuators has to be intro-
duced. In recent years, several studies have been conducted on active control,
both using inertial and piezoelectric actuators.

The aim of this work of thesis is to present active control of vibration
and structure-borne noise of rectangular plates by the method of subotpimal
control and using inertial actuators both in assigned and optimal positions.
The structural model of the plates here considered, described in Chapter 2,
is developed using the Ritz tecnique, whose application to the analysis of
rectangular Kirchhoff plates is discussed by Dozio [6]. The plate model ob-
tained is then coupled with the electromechanical dynamics of the actuators,
as done in the works of Baumann and Elliot [4] and Griffin et al. [10], and
with the dynamics of real integrators that provide velocities from acceler-
ation measures. In Chapter 3 the structural model is finally coupled with
the radiation model, obtained by the Radiation Modal Expansion (RME)
technique developed by Gibbs et al. [9], to obtain the following augmented
state space system:
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2 1. INTRODUCTION

{
ẋ = Ax + Bu

y = Cx
(1.1)

A, B and C are the state space matrices, x is the state vector, u is the vector
of inputs and y is the output vector. In order to attenuate both vibration
and radiated sound, a velocity feedback control system is implemented, based
on the following control law:

u = −Gy (1.2)

Three control strategies based on different structures of the gain matrix G
are discussed:

• Decentralized suboptimal control: G matrix is diagonal with indepen-
dent gains.

• Centralized suboptimal control: G matrix is full with independent
gains.

• Decentralized suboptimal control with equal gains: G matrix is diago-
nal with equal gains.

According to the theory of stochastic suboptimal control presented in
Chapter 4, the optimal control solutions are obtained by minimizing the
following cost function:

J = E [zTWzzz + uTWuuu] (1.3)

where z(t) is a suitably selected performance vector, Wzz is a nonnegative
symmetric weighting matrix associated with the performance and Wuu is
a positive definite symmetric weighting matrix related to the control effort.
The minimization problem to be solved is written as

min J(X)→ X∗ (1.4)

where X∗ are the optimum values that minimize J .
In our specific case, J is the cost functional defined in Equation 1.3 and X is

• a vector with the elements gik of the gain matrix, if an optimization of
the gains in performed;
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• a vector containing the components gik of the gain matix, the positions
of sensors Xs and the positions of actuators Xa if an optimization in
terms of gains and actuators/sensors placement is performed.

Some results in terms of active vibration control (AVC) using sensor/actuator
collocated pairs in assigned positions are presented in Chapter 5, focusing
on the differences among decentralized, centralized and decentralized with
equal gains controllers.
In Chapter 6 some AVC results are obtained using a minimization procedure
which is capable of providing not only optimal gains but also optimal po-
sitions of sensors and actuators. Differences with respect to the fixed grid
approach are discussed.
Then, in Chapter 7, some examples of active structural acoustic control
(ASAC) will be presented. In particular, results obtained performing an op-
timization specifically aimed at suppressing vibration or noise are discussed.





Chapter 2
Structural model

A plate model based on the classical Kirchhoff theory is here considered.
Transverse vibration modes are considered to be of more interest compared
to in-plane vibration modes since the latter have significantly higher frequen-
cies than those related to transverse vibration. Therefore, in-plane vibration
modes often fall beyond the typical range of frequency content of force excita-
tions. For this reason, only the dynamics related to transverse displacements
will be considered.
The model of the plate, both for isotropic and orthotropic cases, is fully de-
scribed by Dozio [6], exployting a Ritz-based approach. The Ritz procedure
consists in approximating the normal displacement variable through a linear
combination of global assumed functions, commonly known as admissible
functions, each satisfying at least the geometrical boundary conditions of the
plate. Due to its conceptual simplicity, wide flexibility, high reliability and
computational efficiency the Ritz tecnique has been widely used. The un-
known coefficients of the combination can be obtained from the minimization
of the energy functional of the system or exploiting the Principle of Virtual
Work. Several effects representing practical situations can be considered, in-
cluding in-plane loads, elastically restrained edges, rigid/elastic concentrated
masses, intermediate line and point supports or their combinations.
This simple model of the plate can be improved by first including the me-
chanical model of the electrodynamic inertial actuators and the accelerometer
sensors. The inertial actuators are control devices in which the current in
a coil suspended in a magnetic gap provides a force between the structure
and a proof mass. They are modelled as damped harminic oscillators with
a plate-attached point mass modeling the case, while the sensors are simply
considered as point masses attached to the plate.
A further step will be to include the dynamics related to real integrators that

5
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provide velocities from acceleration measurements collected by the sensors.
Finally, the electrical dynamics of the actuators is included into the model:
this allow to consider voltages provided to the actuators as input variables
of the problem.
The dynamic effects described can be coupled together, obtaining the overall
state space model of the plate equipped with control actuator/sensor pairs.
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2.1 Ritz formulation

Let’s consider a flat thin rectangular orthotropic plate as in Figure 2.1, with
length a and width b, lying in the (x, y) plane. The transverse displacement
field of the plate is indicated by w = w(x, y, t), where the origin of the (x, y)
coordinate system is located at the plate center.

i-th controller

a

b

z
y

x

Figure 2.1: Rectangular plate lying in the (x, y) plane.

The counterclockwise four-letter symbolic notation introduced by Leissa
[11] is used to describe classical boundary conditions for each edge:

• S = simply supported: zero deflection and free rotation.

• C = clamped: zero deflection and zero rotation.

• F = free: free deflection and free rotation.

The following non-dimensional coordinates are introduced:

ξ =
2x

a
, η =

2y

b
, (2.1)

The Ritz approximation is employed by assuming the following solution:

w(ξ, η, t) =
M∑
m=1

N∑
n=1

Xm(ξ)Yn(η)umn(t) (2.2)
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where the one-dimensional admissible functions proposed by Beslin and Nico-
las [5] are used:

Xm(ξ) = sin(amξ + bm)sin(cmξ + dm) (2.3)
Yn(η) = sin(anη + bn)sin(cnη + dn) (2.4)

The coefficients am, bm, cm, dm and an, bn, cn, dn can be selected according
to the boundary conditions, as proposed by Dozio [6].
The same result can be obtained and expressed through a matrix notation
as follows:

w(ξ, η, t) = N(ξ, η)u(t) (2.5)

expressing the components of the vector N(ξ, η) as the product of the ad-
missible functions Xm(x) and Yn(y):

N(ξ, η) =
[
X1Y1 X1Y2 . . . X1YN X2Y1 . . . X2YN . . . XMYN

]
(2.6)

and the column vector u(t) contains the generalized coordinates

u(t) =
[
u11 u12 . . . uMN

]T (2.7)

2.2 Dynamic equations of the plate with ideal
force actuators and velocity sensors

Once selected the material properties, the plate dimensions, the boundary
conditions and the other complicating factors on the plate, the model ends
up with the complete Mass and Stiffness matrices of the plate, Mp and Kp.
These matrices have dimensions (M ·N ×M ·N), where M and N are the
orders of the Ritz series expansion along x and y directions, respectively.
Once the number Nsa and locations of the actuators are selected, the equa-
tions of motion of the plate forced by Nsa ideal point forces fi(t) at points
(ξai , ηai) can be written.
The plate is also assumed to be subjected to a distributed white pressure
field, acting as a disturbance on the structure.
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According to the Principle of Virtual Work, the equations of motion can be
written as:

Mpü(t) + Kpu(t) = Lcaf(t) + Ldd(t) (2.8)

where f(t) is the vector of actuator forces, d(t) is a white noise disturbance,
Mp and Kp are plate matrices resulting from the Ritz approximation, Lca

and Ld are the matrices containing the Ritz functions evaluated at the actu-
ator’s locations and the integral over the plate surface of the Ritz functions,
respectively:

Lca =
[
NT (ξa1 , ηa1) NT (ξa2 , ηa2) . . . NT (ξNsa , ηNsa)

]
(2.9)

Ld =
ab

4

∫ 1

−1

∫ 1

−1
NTdξdη (2.10)

The above problem is then transformed into modal coordinates in order to
easily manage the model order reduction.
The eigenproblem associated with Equation 2.2, even when it is large since
many functions are used in the Ritz approximation, can be solved numer-
ically in a very efficient way through iterative methods. After computing
eigenvalues and eigenvectors, a small amount of damping, ζ, is included in
the response of the modes. Beeing q(t) the vector of modal coordinates and
U the mass-normalized eigenvectors matrix, such that u(t) = Uq(t), the
following modal model of the plate is obtained: 1

q̈(t) + Diag{2ζjωj}q̇(t) + Diag{ω2
j}q(t) = UTLcaf(t) + UTLdd(t) (2.11)

where ωj are the undamped eigenvalues of the plate.
If the equations of motion are projected on a subset UL of the eigenvectors
matrix and not on the entire set, a reduced order modal model is obtained:

q̈L(t)+Diag{2ζjωj}q̇L(t)+Diag{ω2
j}qL(t) = UT

LLcaf(t)+UT
LLdd(t) (2.12)

This reduced model will be used to design the velocity feedback control.

1As U is the mass-normalized eigenverctors matrix for the plate model, UTMpU = I.
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The equations of motion written before can be expressed in a state space
form as follows: {

q̇L
q̈L

}
= Ap0

{
qL
q̇L

}
+ Bup0f + Bdp0d (2.13)

with

Ap0 =

[
0 I

−Diag{ω2
j} −Diag{2ζjωj}

]

Bup0 =

[
0

UT
LLca

]

Bdp0 =

[
0

UT
LLd

]
If ideal velocity sensors located in (ξsi , ηsi) are considered in order to imple-
ment a direct output velocity feedback control , the output equation is given
by:

yp0 = ẇ(ξsi , ηsi) = LcsULq̇L (2.14)

with

Lcs =


N(ξs1 , ηs1)
N(ξs2 , ηs2)

. . .
N(ξNsa , ηNsa)

 (2.15)

which cast into a state space model gives:

yp0 = Cyp0

{
qL
q̇L

}
(2.16)

with

Cyp0 =
[
0 LcsUL

]
(2.17)

So a state space formulation of a plate provided with ideal actuators and
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ideal velocity sensors has been derived.

2.3 Mechanical model of inertial actuators

Figure 2.2: Lumped parameter actuator model

Now it is possible to introduce the dynamics related to the mechanical
model of the inertial actuators.
Referring to the lumped parameter model presented in Figure 2.2, for each
actuator i the following equation holds:

fi = Kai(z − w(ξai , ηai)− δci) + Cai(ż − ẇ(ξai , ηai)) =

= Kai(z − w(ξai , ηai)) + Cai(ż − ẇ(ξai , ηai))−Kaiδci =

= Kai(z − w(ξai , ηai)) + Cai(ż − ẇ(ξai , ηai))− fci
(2.18)
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zi(t) is the absolute displacement of the proof mass, δci(t) is the elongation
induced by the control force and fci(t) is the control force.
Moreover, the Newton’s equation for each proof mass Mai holds:

fi +Mai z̈ = 0 (2.19)

Substituting Equation (2.18) into Equation (2.19) the following equation for
the mechanical model of the actuators is obtained:

Mai z̈ + Cai ż +Kaiz − Caiẇ(ξai , ηai)−Kaiw(ξai , ηai) = fci (2.20)

2.4 Coupling between plate and actuator mod-
els

The previous model of the plate with ideal point control forces and ideal
sensors is here augmented by introducing sensor masses and actuator cases
and coupling the obtained model to the actuator mechanical model.

Each sensor mass ms and each actuator’s case mass mc can be modeled
as point masses included into the plate model presented before, so a new
mass matrix Mp+s+c will result :

Mp+s+c = Mp + Msens + Mcase (2.21)

where

Msens =
Nsa∑
i=1

NT (ξsi , ηsi)msN(ξsi , ηsi) (2.22)

Mcase =
Nsa∑
i=1

NT (ξai , ηai)mcN(ξai , ηai) (2.23)

Note that projecting this new mass matrix on the set of eigenvectors com-
puted in Section 2.2 we will obtain no more an identity matrix.
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Coupling between the plate model and the actuator model is now per-
formed. After substituting Equation (2.18) into (2.12) and taking into ac-
count that

w(ξai , ηai) = LT
caULqL (2.24)

the dynamic equations of the coupled model are obtained:

M

{
q̈
z̈

}
+ C

{
q̇
ż

}
+ K

{
q
z

}
= Bufc + Bdd (2.25)

with

M =

[
UT
LMp+s+cUL 0

0 Diag{Mai}

]

C =

[
Diag{2ζjωj}+ UT

LLcaDiag{Cai}LT
caUL −UT

LLcaDiag{Cai}
−Diag{Cai}LT

caUL Diag{Cai}

]

K =

[
Diag{ω2

j}+ UT
LLcDiag{Kai}LT

caUL −UT
LLcaDiag{Kai}

−Diag{Kai}LT
caUL Diag{Kai}

]

Bu =

[
−UT

LLca

I

]

Bd =

[
UT
LLd

0

]
A state space formulation of the model is written as:

q̇L
ż
q̈L
z̈

 = Ap


qL
z
q̇L
ż

+ Bupfc + Bdpd (2.26)

with

Ap =

[
0 I

−M−1K −M−1C

]
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Bup =

[
0

M−1Bu

]

Bdp =

[
0

M−1Bd

]
The output equation will be :

yp = Cyp


qL
z
q̇L
ż

 (2.27)

with

Cyp =
[
0 0 LcsUL 0

]
(2.28)

2.5 Integrator dynamics

In implementing velocity feedback control systems, the velocity signals can
be obtained by proper integration of the accelerometer signals. Therefore, it
is assumed that the plate is equipped with accelerometers. Accordingly, the
output equation is modified as follows:

yp = ẅ(ξsi, ηsi) =
[
0 0 LcsUL 0

]
q̇L
ż
q̈L
z̈

 (2.29)

= Cyp


qL
z
q̇L
ż

+ Dupfc + Ddpd (2.30)

with

Cyp =
[
0 0 LcsUL 0

]
Ap
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Dup =
[
0 0 LcsUL 0

]
Bup

Ddp =
[
0 0 LcsUL 0

]
Bdp

The model describing the dynamics of an integrator that provides velocities
from acceleration measures is now introduced. It is possible to describe this
block with the following transfer function:

yinti =
s

s2 + 2ζintiωintis+ ω2
inti

ypi (2.31)

where ypi is the acceleration measure from sensor i and yinti is the corre-
sponding integrator output (velocity). The cutoff frequency ωinti is selected
in order to be a decade lower than the first natural frequency of the plate
provided with real actuators. The state space representation is the following:{

χ̇
χ̈

}
= Aint

{
χ
χ̇

}
+ Buintyp (2.32)

with

Aint =

[
0 I

−Diag{ω2
inti
} −Diag{2ζintiωinti}

]

Buint =

[
0
I

]
The output equation will be:

yint = χ̇ = Cyint

{
χ
χ̇

}
(2.33)

with

Cyint =
[
0 I

]
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2.6 Electrical dynamics of inertial actuators

Another block related to the electrical dynamics of the actuators is here
introduced.
As stated in Griffin et al. [10], the electrical dynamics of the actuator can be
modeled using a single Kirchhoff voltage law loop equation:

vi = L
dii
dt

+Rii + ψ(ż − ẇ(ξai , ηai)) (2.34)

where vi are the control voltages, ii are the control currents, L the induc-
tance, R the DC resistance and ψ the force constant expressed in [N/A].
The relative motion between the two masses creates a feedback effect called
back electromotive force (back-emf), which affects the force applied to the
structure.
The control force applied by the actuator is given as

fci = ψii (2.35)

Setting the currents as state variables, the state and the output equations of
this model are:

ẋel = −R
L

xel −
ψ

L
(ż− LT

caULq̇) +
1

L
v (2.36)

yel = fc = ψxel (2.37)

2.6.1 Complete model

Coupling all the blocks presented before, the overall state space representa-
tion of the model is obtained:

q̇L
ż
q̈L
z̈
χ̇
χ̈
ẋel


= At



qL
z
q̇L
ż
χ
χ̇
xel


+ Butv + Bdtd (2.38)

with
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At =

 Ap 0 ψBup

BuintCyp Aint ψBuintDup[
0 0 ψ

L
LT
caUL −ψ

L
I
]

0 −R
L



But =

 0
0
1
L
I



Bdt =

 Bdp

BuintDdp

0


The output equation is

yt = yint = Cyt



qL
z
q̇L
ż
χ
χ̇
xel


(2.39)

with

Ct =
[
0 Cyint 0

]
Note that if a collocated sensor/actuator pattern is used, which means that
sensors are placed in the same positions of actuators, the following relation
holds:

Lcs = LT
ca (2.40)

and all the previous equations can be rewritten accordingly.





Chapter 3
Radiation model

For the purpose of estimating their sound radiation characteristics, many
structures of practical interest may be modelled sufficiently accurately as
rectangular, uniform, flat plates. For example, consider walls and floor of
buildings, machinery casings, parts of vehicles, plane and satellite shells and
hulls and bulkheads of ships. Even if it is not strictly correct to consider the
modes of isolated panels when they are dynamically coupled to contiguous
structures, the isolated rectuangular plate forms a useful starting point for
modeling their radiation behavior.
The modeling of sound radiation of a plate in an infinite baffle is usually done
in two ways, either by analyzing modal radiation or the so-called radiation
modes. As the first approach is quite cumbersome, due to the need for com-
puting a quadruple integral, the second technique is more appealing. This
method is based on the so-called "radiation filters" and consists in using a
modal expansion in order to calculate the overall radiated sound power as the
summation of the contributions of each acoustic mode. In order to simplify
further the model, a quite new method of reduced order modeling/design of
radiation filters, termed Radiation Modal Expansion (RME), is presented.

19
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3.1 Formulation in terms of Structural Modes

Referring to the book by Fahy and Gardonio [8] , the time-averaged total
sound power radiation of a baffled plate can be evaluated by integrating the
product of the surface sound pressure p(x, y, 0, t) and the transverse velocity
of the panel ẇ(x, y, t) over the surface of a panel. For harmonic vibration,

P̄ (ω) =
1

2

∫ a

0

∫ b

0

Re (ẇ(x, y, ω)∗p(x, y, 0, ω)) dx dy (3.1)

where ∗ denotes the complex conjugate. If analytical modes φ(x, y) are
provided, the transverse velocities of the plate ẇ can be determined through
mode shape terms:

ẇ(x, y) = φ(x, y)v (3.2)

v represent complex modal velocities amplitudes and φ(x, y) represent nor-
malised analytical mode shapes.
The surface acoustic pressure p can be written in terms of the normal surface
velocity through the Rayleigh integral as

p(x, y, 0, ω) =
jωρ0
2π

∫ a

0

∫ b

0

v(x′, y′, ω)
e−jkR

R
dx′ dy′ (3.3)

where, R =
√

(x− x′)2 + (y − y′)2 is the distance between the point (x,y)
where the sound pressure is evaluated and the vibrating point at (x′, y′).
Substituting Eq.(3.3) into Eq.(3.1), the time-average total sound power is
given by the quadruple integral, which, using the modal expansion for ẇ,
becomes

P̄ (ω) =
1

2
Re
{jωρ0

2π

∫ a

0

∫ b

0

∫ a

0

∫ b

0

vHφ(x, y)T

×e
−jkR

R
φ(x′, y′)v

}
dx′ dy′ dx dy

(3.4)

where H denotes the Hermitian transpose (transpose and conjugate). Since
je−jkR/R = j(cos kR − j sin kR)/R, and because vHv is bound to be real
positive, this expression can be rewritten as
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P̄ (ω) =
ωρ0
4π

vH
(∫ a

0

∫ b

0

∫ a

0

∫ b

0

φ(x, y)T
sin kR

R
φ(x′, y′) dx′ dy′ dx dy

)
v

(3.5)

or, alternatively, in matrix form

P̄ (ω) = vHA(ω)v (3.6)

where A is an (n×n) matrix (n represents the number of structural modes),
which is normally referred to as the Power Transfer Matrix.

3.2 Formulation in terms of Elementary Radi-
ators

Although the formulation presented above seems to be quite simple, the
derivation of the quadruple integrals for the elements in the power transfer
matrix A is relatively complex and cumbersome. An alternative approach
based on the elementary radiators is therefore presented, as described by
Fahy and Gardonio [8].

y x

z

ver

Figure 3.1: Subdivision of a panel into elementary radiators.

As shown in Figure 3.1, the baffled panel is divided into a grid of R
small rectangular elements, called elementary radiators, whose transverse
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vibrations are specified in terms of the velocities ver at their center positions
so that, assuming time-harmonic motion, the overall vibration of the panel
can be described by the following column vector of complex amplitudes:

ve = [ve1 ve2 . . . veR]T (3.7)

If the amplitudes of the sound pressures acting on each element are also
grouped into a column vector as

pe = [pe1 pe2 . . . peR]T , (3.8)

assuming that the dimensions of the elements are small compared with both
the structural wavelength and the acoustic wavelength, the total radiated
sound power can then be expressed as the summation of the powers radiated
by each elementary radiator as follows

P̄ (ω) =
R∑
r=1

1

2
AeRe (v∗erper) =

S

2R
Re
(
vHe pe

)
(3.9)

whereAe and S are the area of each element and the whole panel, respectively.
The pressure on each element is generated by the vibrations of all elements
of the panel. Assuming that

√
Ae � λ, where λ is the acoustic wavelength,

Equation (3.3) gives

pei(xi, yi) =
jωρ0Aee

−jkRij

2πRij

vej(xj, yj) (3.10)

with Rij the distance between the centers of the i-th and j-th elementary
radiators. Therefore, the vector of sound pressures can be expressed by the
impedance matrix relation

pe = Zve (3.11)

where Z is the matrix incorporating the point and transfer acoustic impe-
dence terms over the grid of elements into which the panel has been subdi-
vided: Zij(ω) = (jωρ0Ae/2πRij)e

−jkRij . Note that, because of reciprocity,
the impedance matrix Z is symmetric, i.e., Z = ZT .
Substituting Equation (3.11) into the expression for the total radiated sound
power given in Equation (3.9), we obtain
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P̄ (ω) =
S

2R
Re
(
vHe Zve

)
(3.12)

which, as Z is symmetric, can be rewritten as

P̄ (ω) =
S

4R
vHe
(
Z + ZH

)
ve = vHe Rve (3.13)

The matrix R is defined as the Radiation Resistance Matrix and for a baffled
panel is given by

R =
S

2R
Re (Z) =

S

4R

(
Z + ZH

)
=

=
ω2ρ0A

2
e

4πc


1 sin(kR12)

kR12
. . . sin(kR1R)

kR1R
sin(kR21)
kR21

1
... . . .

. . . . . .
sin(kRR1)
kRR1

1


(3.14)

where ω is the circular frequency in [rad/s], ρ0 is the density of the air, Ae is
the area associated with the elementary radiator, c is the speed of sound in
air, k is the wave number (ω/c), and Rij is the distance between the center
of the i-th and j-th velocity locations.
Since Rij = Rji, the radiation matrix is symmetric, and, as found for the
power transfer matrix A, it is also positive definite since the quadratic ex-
pression for the power radiation in Equation (3.13) is positive.

The agreement between Equation (3.5) and Equation (3.13) is generally
good, provided that the dimensions of the discrete elements are much less
than the acoustic wavelengths and the modal wavelengths in the panel.
In general, the modal approach can be used for regular shapes and common
boundary conditions such that analytical expressions can be derived for the
mode shapes. In the elementary radiator model, the velocities of the elemen-
tary radiators can be derived using general Ritz functions (or Finite Elements
analysis), which enables the study of non-uniform, baffled plates of complex
geometry having non-classic boundary conditions.

3.3 Independent Radiation Modes
In both the formulations presented in the previous section, the sound radi-
ation due to the vibration of one structural mode or element is dependent
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on the vibration of other structural modes or elements. Either of these for-
mulations can be used to describe the sound power radiation in terms of a
set of velocity distributions on the structure whose sound power radiation is
independent from the amplitudes of the other velocity distributions. These
velocity distributions are termed "radiation modes". Therefore, the sound
radiation can be expressed in terms of a set of modes that radiate indepen-
dently.
Referring to the formulation in terms of elementary radiators, a singular
value decomposition can be performed on the matrix R to determine the
dominant radiation modes of the system at each frequency. Singular value
decomposition is performed at frequency ωi as follows:

R(ωi) = YΣYH (3.15)

where Y is an (R × R) matrix whose columns are the normalized radiation
modes of the matrix at frequency ωi, and Σ is an (R × R) diagonal matrix
whose elements are the singular values, decreasing monotonically along the
diagonal. The magnitude fo the j-th diagonal element, σj, of Σ determines
the relative importance of the j-th radiation mode compared to other radia-
tion modes.

Substituting the singular value decomposition expression into Equation
3.13, the following expression for the total radiated sound power is obtained:

P̄ (ω) = vHe YΣYHve (3.16)

Isolating the product between the eigenvector matrix Y and elemental radi-
ator velocity vector ve, it is possible to write the vector

y = YHve (3.17)

Accordingly, Equation 3.16 becomes

P̄ (ω) = yHΣy =
R∑
r=1

σr |yr|2 (3.18)

where R represents the number of elements. It is important to emphasise
that, in general, the radiation modes are frequency dependent. Therefore, in
order to predict the total power radiated over some bandwidth, the charac-
teristics of the R matrix must be modeled over the bandwidth, fitting the
trend of the singular values versus frequency to build the so-called Radiation
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Filters model. This dynamic model is used to "filter" the discrete velocity
measurements such that the rms sound power radiated from the structure
can be estimated. Thus, for an (R × R) matrix, a total of R2 transfer func-
tions must be modeled. In order to avoid this high computational effort, a
new method of reduced order modeling/design of radiation filters, termed
Radiation Modal Expansion (RME), is presented.

3.4 Radiation Modal Expansion (RME)

The Radiation Modal Expansion (RME) is a special curve fitting technique,
introduced by Gibbs et al. [9], which provides a reasonable approximation to
the dynamics of the R matrix using a small fraction of the original number of
states. This technique exploits the "nesting" property of the radiation modes:
the space spanned by the significant radiating modes at frequency below some
arbitrary maximum frequency of the bandwidth ωmax is a subspace of the
space spanned by the radiating modes at the frequency ωmax. Thus, the set
of singular vectors at ωmax corresponding to the significant radiating modes
can be used as a basis to describe the radiation at any frequency below ωmax.
The key to incorporating the essential physics of structural acoustic coupling
rests in curve fitting the dominant radiating modes over the bandwidth,
which is performed using the RME techinque outlined in this section. In
this technique, the significant radiation modes at the upper frequency of the
bandwidth of interest are used as a basis to curve fit the properties of the
R matrix over the entire bandwidth. The amplitude-weighting coefficients
Ψi(ω) are determined by the radiated power of each respective normalized
radiation mode shape, at each frequency ω over the bandwidth, as follows:

Ψ2
i (ω) = YH

i,maxR(jω)Yi,max (3.19)

where Ψ2
i (ω) is the radiated power of the i-th radiating mode (shape deter-

mined at ωmax), and Yi,max is the i-th radiating mode shape determined at
ωmax. A plot of the amplitude-weighting coefficients Ψi(ω) for the first six
radiation modes of a simply supported aluminium plate (properties in Table
3.1) is shown in Fig. 3.2.

In order to create a model of the RME system it is only necessary to
curve fit in frequency: the fitting of the Ψi considered is shown in Figure
3.3. Comparing the two figures do not notice visible differences between the
trend of the model and the fitting, despite using relatively low order transfer
functions: for the first 6 radiation modes, until 500 Hz, 3rd order transfer
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Property Description Value
a x dimension 0.355 m
b y dimension 0.254 m
ζ Modal damping factor 0.001 m
h Thickness 0.001 m
E Young’s Modulus 71 x 109 Pa
ρ Density 2700 Kg/m3

ν Poisson’s ratio 0.33

Table 3.1: Properties of the simply supported aluminium plate .
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Figure 3.2: Radiation modal expansion coefficients (Ψi) for the first six radiation
modes, up to 500 Hz.

functions are sufficient.

3.5 State space representation of the acoustic
model

Performing the system realization based on the previous considerations, the
following set of state space matrices for the radiation filters, one for each
filter, is obtained:

Arf Brf Crf Drf (3.20)

In order to couple the radiation model with the structural model, the input to
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Figure 3.3: Fitting of the radiation modal expansion coefficients (Ψi) for the first
six radiation modes, up to 500 Hz, with 3rd order radiation filters.

each radiation mode has to be calculated as a function of the modal velocities
q̇L as:

ve = LcrULq̇L(t) (3.21)

where Lcr is the matrix containing the Ritz functions evaluated in the coor-
dinates of the center of each elementary radiator velocity (ξe, ηe) and UL is
the reduced set of structural modes (see Chapter 2).
At this point, applying the frequency dependent filters, the state space model
for each radiation filter can be derived :{

ȧrfi = Arfiarfi + BrfiY
H
i LcrULq̇L(t)

yrfi = Crfiarfi + DrfiY
H
i LcrULq̇L(t)

(3.22)

and then, incorporating all the radiation modes considered in the model, the
representation becomes:


ȧrf1
ȧrf2
...

ȧrfN

 =


Arf 0 . . . 0

0 Arf2
...

... . . . 0
0 . . . 0 ArfN


︸ ︷︷ ︸

Aac


arf1
arf2
...

arfN

+


Brf1Y

H
1 LcrUL

Brf2Y
H
2 LcrUL
...

BrfNYH
NLcrUL


︸ ︷︷ ︸

Bac

q̇L

(3.23)
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yac =


yrf1
yrf2
...

yrfN




Crf 0 . . . 0

0 Crf2
...

... . . . 0
0 . . . 0 CrfN


︸ ︷︷ ︸

Cac


arf1
arf2
...

arfN

+


Drf1Y

H
1 LcrUL

Drf2Y
H
2 LcrUL
...

DrfNYH
NLcrUL


︸ ︷︷ ︸

Dac

q̇L

(3.24)

It can be written in a more compact form as follows:{
ȧac = Aacaac + Bacq̇L

yac = Cacaac + Dacq̇L
(3.25)

where aac are the states of the radiation filters. Bac describes the excitation
of the filters as a function of the modal velocities, Aac describes the dynam-
ics, Cac describes the relation between the states of each filter and its output
and Dac is a direct feedthrough matrix of the structural modal velocities.

3.6 Global state space representation

An efficient way to simultaneously deal with the structural and the acoustic
model, as they are coupled, is embedding them in a global state space repre-
sentation with a state vector which includes structural modes and acoustic
modes. 

q̇L
ż
q̈L
z̈
χ̇
χ̈
ẋel
ȧac


= A



qL
z
q̇L
ż
χ
χ̇
xel
aac


+ Buv + Bdd (3.26)

with

A =

[
At 0[

0 0 Bac 0 0 0 0
]

Aac

]
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Bu =

[
But

0

]

Bd =

[
Bdt

0

]

The output equation of the structural model (velocities) is

ys = Cys



qL
z
q̇L
ż
χ
χ̇
xel
aac


(3.27)

with

Cys =
[
Cyt 0

]
The output equation of the radiation model (radiated acoustic power) is

yac = Cyac



qL
z
q̇L
ż
χ
χ̇
xel
aac


(3.28)

with

Cyac =
[
0 0 Dac 0 0 0 0 Cac

]





Chapter 4
Control strategy

A modern method of designing an active control for a LTI system is to use a
state-space design technique. Probably the most common design procedure is
the so-called steady-state optimal linear quadratic control or linear quadratic
regulator (LQR). The LQR problem is formulated assuming a stabilizing
linear state feedback law with constant gain matrix

u(t) = −Gx(t) (4.1)

and selecting the gain matrix G such that a properly defined quadratic cost
functional is minimized. If we are dealing with a stochastic response, the cost
function to minimize is represented by the expected value of the quadratic
forms associated with performance and control. It can be written as:

J = E [z(t)TWzzz(t) + u(t)TWuuu(t)] (4.2)

where

• z(t) is a selected performance vector.

• Wzz is a nonnegative symmetric weighting matrix (Wzz ≥ 0) associ-
ated with the performance.

• Wuu is a positive definite symmetric weighting matrix related to the
control effort u(t).

It is noted that the cost functional contains two contributions. The first
is the quadratic form z(t)TWzzz(t), which represents the penalty on the de-
viation of the performance vector z from the origin. The second quadratic

31
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form u(t)TWuuu(t) represents the cost of control and is included in order
to limit the magnitude of the control variables. In most practical cases, the
control weighting matrix is selected large enough to avoid saturation of the
actuators under nominal conditions of operation. The weighting matrices
can be used to specify the relative importance of the various components of
the performance vector and the control input vector.

A similar approach that avoids completely the need of reconstructing the
state vector is based on the direct feedback of the output vector y(t) instead
of the full state x(t). This approach is called Direct Output Optimal Control
or Suboptimal control. It is based on the following feedback law:

u(t) = −Gy(t) (4.3)

where G is the unknown gain matrix and y(t) is the set of output measure-
ments.

Let’s consider the open-loop dynamics written as

ẋ = Ax + Buu + Bdd (4.4)
y = Cyx (4.5)

and the performance vector can be expressed as follows

z(t) = Czx (4.6)

Substituting Equation 4.6 into Equation 4.5 the following expression of J is
obtained

J = E [xTW(G)x] (4.7)

where

W(G) = CT
z WzzCz + CT

y GTWuuGCy (4.8)

In the next section the selection of the performance variables and the mini-
mization of the cost function J will be discussed.



4.1. DEFINITION OF THE PERFORMANCE VARIABLES 33

4.1 Definition of the performance variables
Depending on the type of minimization to be performed, a suitable perfor-
mance term in the expression of the cost function J has to be chosen. As
the aim of the active vibration control is to suppress vibrations all over a
certain bandwidth, a global quantity like kinetic energy is a good index to
be minimized in order to obtain an overall damping of every mode consid-
ered. The same consideration holds for the radiated sound power in order to
suppress noise. Therefore, kinetic energy and radiated sound power will be
the performance indeces to be minimized for the AVC and ASAC problems,
respectively.

Referring to Chapter 2 for the notation, the kinetic energy of the plate
can be computed as:

Ek =
1

2

∫ a

0

∫ b

0

ρhẇ(x, y)2 dA =

=
1

2

ρhab

4

∫ 1

0

∫ 1

0

ẇ(ξ, η)2 dξ dη =

=
1

2

ρhab

4

∫ 1

0

∫ 1

0

u̇TNTNu̇ dξ dη =

=
1

2
q̇TLUT

L

ρhab

4

∫ 1

0

∫ 1

0

NTN dξ dηULq̇L =

=
1

2
q̇TLUTMpUq̇L

(4.9)

So, for the chosen mode shape rapresentation, as the matrix UL contains
mass-normalized eigenvectors, the expression for the kinetic energy will be:

Ek =
1

2
q̇TL(t)q̇L(t) (4.10)

If the kinetic energy is selected as performance index, the following relation
holds:

Ek =
1

2



q̇L
ż
q̈L
z̈
χ̇
χ̈
ẋel



T

CT
z WzzCz



qL
z
q̇L
ż
χ
χ̇
xel


(4.11)
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If Wzz = I,

Cz =
[
0 0 I 0 0 0 0

]
(4.12)

If the radiated sound power is used as performance variable, consider the
expression for the output equation obtained in Chapter 3:

yac = Cyac



qL
z
q̇L
ż
χ
χ̇
xel


(4.13)

with

Cyac =
[
0 0 Dac 0 0 0 0 Cac

]
The radiated sound power will be

Prad = yT
ac(t)yac(t) (4.14)

and Cz matrix will be

Cz = Cyac (4.15)

4.2 Minimization problem

Referring back to Equation 4.7, the cost functional J can be also expressed
by taking the trace without changing the result:

J = Tr {E [xTW(G)x]} (4.16)

Since the trace and the expected value are linear operators, after few ma-
nipulations using the properties of the trace the following expression for the
cost function is obtained:
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J = Tr [W(G)σ2
xx] (4.17)

Therefore, the minimization of J implies the minimization of the variance
matrix of the state vector σ2

xx. We know that σ2
xx must satisfy the following

Lyapunov equation corresponding to the closed-loop dynamics

Acσ
2
xx + σ2

xxA
T
c + BdWddB

T
d = 0 (4.18)

where

Ac = A−BuGCy (4.19)

is the closed-loop state matrix and Wdd is the matrix of intensities of the
white noise disturbances. The above equation represents the constraint equa-
tion of the minimization process. An unconstrained minimization can be
carried out if we introduce into J the constraint equation using the Lagrange
multipliers. Therefore, the cost functional to be minimized is rewritten as

J = Tr [W(G)σ2
xx + Λ(Acσ

2
xx + σ2

xxA
T
c + BdWddB

T
d )] (4.20)

where Λ is the symmetric matrix of Lagrange multipliers. Since we have
three unknown matrices, Λ, σ2

xx and G, the minimization of J implies that

∂J

∂Λ
= 0 (4.21)

∂J

∂σ2
xx

= 0 (4.22)

∂J

∂G
= 0 (4.23)

Performing these partial derivatives, the following equations are obtained:

(A−BuGCy)σ
2
xx + σ2

xx(A−BuGCy)
T + BdWddB

T
d = 0 (4.24)

(A−BuGCy)
TΛ + Λ(A−BuGCy) + W(G) = 0 (4.25)

G = W−1
uuBT

uΛσ2
xxC

T
y (Cyσ

2
xxC

T
y )−1 (4.26)
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Accordingly, if a static output feedback law is assumed, the expression of the
gain matrix G contains two unknown matrices σ2

xx and Λ. Such matrices
satisfy Lyapunov equations, which in turn contain the unknown gain matrix.
Consequently, the overall solution involves a fully coupled set of nonlinear
matrix equations.

Instead of relying on a numerical solution of the previous set, a gradient-
based optimization on the cost function expressed in Equation 4.17 can be
employed. Once provided an expression of the cost functional J(x) (where x
is the vector of variables with respect to which perform the minimization),
an initial guess vector x0 and a gradient, the optimization problem is written
as

min J(X)→ X∗ (4.27)

where X∗ are the optimum values that minimize J .
In our specific case, J is the cost functional defined in Equation (4.17) and
X is

• a vector with the components gik of the gain matrix if an optimization
of the gains in performed;

• a vector containing the components gik of the gain matix, the place-
ments of sensors Xs and the placements of actuators Xa if an optimiza-
tion in terms of gains and actuator/sensor positions is desired.

For this purpose an analytical expression of the gradient of J with respect
to the optimization variables must be provided.

4.3 Gradient definition

4.3.1 Gain optimization

If an optimization in terms of the elements of the gain matrix is desired,
then an expression for the gradient ∂J

∂G
must be provided. The gradient is

computed as following:
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∂J

∂gik
= Tr [

∂W(G)

∂gik
σ2
xx + W(G)

∂σ2
xx

∂gik
] = (4.28)

= Tr [
∂W(G)

∂gik
σ2
xx − (ΛAc + AT

c Λ)
∂σ2

xx

∂gik
] = (4.29)

= Tr [
∂W(G)

∂gik
σ2
xx −Λ(Ac

∂σ2
xx

∂gik
+
∂σ2

xx

∂gik
AT
c )] = (4.30)

= Tr [
∂W(G)

∂gik
σ2
xx + Λ(

∂Ac

∂gik
σ2
xx + σ2

xx

∂AT
c

∂gik
)] = (4.31)

= Tr [σ2
xx

∂W(G)

∂gik
+ 2σ2

xx

∂Ac

∂gik

T

Λ] (4.32)

4.3.2 Positions optimization

If, in addition to the gain optimization, a position optimization is desired,
an expression for the gradient of J with respect to the coordinates of the
locations of sensors (ξsi , ηsi) and actuators (ξai , ηai) must be provided, as
proposed by Xu et al. [12]. It is possible to compute this gradient analitically
deriving the functional J with respect to the state space matrices of the model
and then deriving the latter with respect the position variables. Then, the
following chain rule equation can be exploited:

∂J(A)

∂x
= Tr [(

∂J(A)

∂Aij

T ∂A

∂x
] (4.33)

where J is a generic functional, A a generic matrix and x a generic variable.
The derivatives of the cost function J with respect to the state space

model matrices are here derived. Expanding Equation 4.20 yields

J = Tr [CT
z WzzCzσ

2
xx + CT

y GTRGCyσ
2
xx+

ΛAσ2
xx −ΛBuGCyσ

2
xx + Λσ2

xxA
T

−Λσ2
xxC

T
y GTBT

u + ΛBdWddB
T
d )] (4.34)

Exploiting the properties of the trace, the derivatives of the cost function
with respect to the matrices A, Bu, Cy and Bd can be computed as:
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∂J

∂A
= 2Λσ2

xx (4.35)

∂J

∂Bu

= −2Λσ2
xxC

T
y GT (4.36)

∂J

∂Cy

= −2GTBT
uΛσ2

xx+2GTRGCyσ
2
xx (4.37)

∂J

∂Bd

= 2ΛWddBd (4.38)

According to the model under study (ideal or including sensor/actuator dy-
namics), actuator and sensor positions appear in different matrices of the
selected state-space form.

Ideal case In the ideal case, the positions (ξai , ηai) and (ξsi , ηsi) are in-
cluded in the matrices Bup and Cyp, respectively (see Chapter 2). The fol-
lowing two derivatives with respect to ξi coordinates can be computed:

∂Bu

∂ξai
=

[
0

UT
L
∂Lca

∂ξai

]
(4.39)

∂Cy

∂ξsi
=
[
0 ∂Lcs

∂ξsi
UL

]
(4.40)

Lca and Lcs contain the Ritz functions evaluated at the actuator and sensor
positions (see Chapter 2). So each element of the derivatives ∂Lca

∂ξai
and ∂Lcs

∂ξsi
can be computed as:

∂Lca(m ·n, i)
ξai

=
M∑
m=1

N∑
n=1

{am[cos(amξai + bm) sin(cmξai + dm)]

+ cm[cos(cmξai + dm) sin(amξai + bm)]}
× sin(anηai + bn) sin(cnηai + dn) (4.41)

and
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∂Lcs(i,m ·n)

ξsi
=

M∑
m=1

N∑
n=1

{am[cos(amξsi + bm) sin(cmξsi + dm)]

+ cm[cos(cmξsi + dm) sin(amξsi + bm)]}
× sin(anηsi + bn) sin(cnηsi + dn) (4.42)

Exploiting Equation 4.33 , the following expressions are obtained for the
present case:

∂J

∂ξai
= Tr[(

∂J

∂Bup

)T
∂Bup

∂ξai
] (4.43)

∂J

∂ξsi
= Tr[(

∂J

∂Cyp

)T
∂Cyp

∂ξsi
] (4.44)

The same equations holds considering ηi coordinates. ∂Lca

∂ηai
and ∂Lcs

∂ηsi
can be

computed as:

∂Lca(m ·n, i)
ηai

=
M∑
m=1

N∑
n=1

{an[cos(anηai + bn) sin(cnηai + dn)]

+ cn[cos(cnηai + dn) sin(anηai + bn)]}
× sin(amξai + bm) sin(cmξai + dm) (4.45)

and

∂Lcs(i,m ·n)

ηsi
=

M∑
m=1

N∑
n=1

an[cos(anηsi + bn) sin(cnηsi + dn)]

+ cn[cos(cnηsi + dn) sin(anηsi + bn)]}
× sin(amξsi + bm) sin(cmξsi + dm) (4.46)

If a collocated sensor/actuator pattern is considered the previous equations
remain valid with
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Lcs = LT
ca (4.47)

∂Lcs

∂ξi
=
∂Lca

∂ξi

T

(4.48)

∂Lcs

∂ηi
=
∂Lca

∂ηi

T

(4.49)

and the gradient of J with respect to the coordinates ξi and ηi is computed
summing up the derivatives 4.43 and 4.44.

Complete model In the case the model includes all the dynamic effects
described in Chapter 2, the dependency on ξi and ηi is contained in matrices
At and Bdt and the following derivatives are computed:

∂At

∂ξai
=


[

0 0

−∂M−1

∂ξai
K−M−1 ∂K

∂ξai
−∂M−1

∂ξi
C−M−1 ∂C

∂ξai

]
0 ψ ∂Bup

∂ξai

Buint
∂Cyp

∂ξai
0 ψBuint

∂Dup

∂ξai[
0 0 ψ

L
∂Lca

∂ξai

T
UL 0

]
0 0


(4.50)

∂At

∂ξsi
=


[

0 0

−∂M−1

∂ξsi
K −∂M−1

∂ξi
C

]
0 ψ ∂Bup

∂ξsi

Buint
∂Cyp

∂ξsi
0 ψBuint

∂Dup

∂ξsi

0 0 0

 (4.51)

∂Bdt

∂ξai
=


0

∂M−1

∂ξai
Bd

Buint
∂Ddp

∂ξai

0

 (4.52)

∂Bdt

∂ξsi
=


0

∂M−1

∂ξsi
Bd

Buint
∂Ddp

∂ξsi

0

 (4.53)
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where

∂M−1

∂ξai
= −M−1 ∂M

∂ξai
M−1 =

= −M−1


UT
L
∂Lca

∂ξai
Diag{Mai}LT

caUL+

UT
LLcaDiag{Mai}

∂Lca

∂ξai
UL 0

0 0

M−1 (4.54)

∂M−1

∂ξsi
= −M−1∂M

∂ξsi
M−1 =

= −M−1


UT
L
∂Lcs

∂ξsi
Diag{Msi}LT

csUL+

UT
LLcsDiag{Msi}

∂Lcs

∂ξsi
UL 0

0 0

M−1 (4.55)

∂C

∂ξai
=


UT
L
∂Lca

∂ξai
Diag{Cai}LT

caUL+

UT
LLcaDiag{Cai}

∂Lca

∂ξai
UL −UT

L
∂Lca

∂ξai
Diag{Cai}

−Diag{Cai}LT
caUL 0

 (4.56)

∂K

∂ξai
=


UT
L
∂Lca

∂ξai
Diag{Kai}LT

c UL+

UT
LLcaDiag{Kai}

∂Lca

∂ξai
UL −UT

L
∂Lca

∂ξai
Diag{Kai}

−Diag{Kai}LT
caUL 0

 (4.57)

∂Bup

∂ξai
=

 0

∂M−1

∂ξai

[
−UT

LLca

I

]
+ M−1

[
−UT

L
∂Lc

∂ξai

0

] (4.58)

∂Bup

∂ξsi
=

 0

∂M−1

∂ξsi

[
−UT

LLcs

I

] (4.59)
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∂Cyp

∂ξai
=
[
0 0 LcsUL 0

] [ 0 0

−∂M−1

∂ξai
K−M−1 ∂K

∂ξai
−∂M−1

∂ξai
C−M−1 ∂C

∂ξai

]
(4.60)

∂Cyp

∂ξsi
=
[
0 0 ∂Lcs

∂ξsi
UL 0

] [ 0 I
−M−1K −M−1C

]
+
[
0 0 LcsUL 0

] [ 0 0

−∂M−1

∂ξsi
K −∂M−1

∂ξsi
C

]
(4.61)

∂Dup

∂ξai
=
[
0 0 LcsUL 0

] ∂Bup

∂ξai
(4.62)

∂Dup

∂ξsi
=
[
0 0 ∂Lsa

∂ξsi
UL 0

]
Bup

+
[
0 0 LcsUL 0

] ∂Bup

∂ξsi
(4.63)

∂Ddp

∂ξai
=
[
0 0 LcsUL 0

] ∂M−1

∂ξai
Bd (4.64)

∂Ddp

∂ξsi
=
[
0 0 ∂Lsa

∂ξsi
UL 0

]
M−1Bd

+
[
0 0 LcsUL 0

] ∂M−1

∂ξsi
Bd (4.65)

The derivatives ∂Lca

∂ηai
and ∂Lcs

∂ηsi
can be computed as in Equations 4.3.2 and

4.42.
Exploting previous equations and Equation 4.33 the following derivatives can
be computed:

∂J

∂ξai
= Tr[(

∂J

∂At

)T
∂At

∂ξai
] + Tr[(

∂J

∂Bdt

)T
∂Bdt

∂ξai
] (4.66)

∂J

∂ξsi
= Tr[(

∂J

∂At

)T
∂At

∂ξsi
] + Tr[(

∂J

∂Bdt

)T
∂Bdt

∂ξsi
] (4.67)
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If the plate is provided with collocated sensor/actuator pairs, then the pre-
vious equations remain valid imposing

Lcs = LT
ca (4.68)

∂Lcs

∂ξi
=
∂Lca

∂ξi

T

(4.69)

∂Lcs

∂ηi
=
∂Lca

∂ηi

T

(4.70)

and the gradient can be computed by summing up Equations 4.66 and 4.67.

The same considerations and equations hold for ηi coordinates.

Finally the same equations hold also if the radiation model is added to the
structural one. In this case the state matrices derived in Chapter 3 will be
used but this will not have any effect on the derivatives previously formulated
as the acoustic model doesn’t depend on actuator/sensor positions.





Chapter 5
Results of vibration control with
sensors and actuators in assigned
positions

Referring to the structural model and the control strategy presented in Chap-
ter 2 and Chapter 4, let’s study the active vibration control (AVC) of plates
in different configurations, with assigned sensor/actuator grids and using the
Stochastic Suboptimal Control.
The three different types of suboptimal controllers presented in Chapter 1
(decentralized, centralized and equal gains controllers) are here considered.

Some exampes of AVC performed using assigned grids of sensor/actuator
collocated pairs will be presented in the following sections. Differences among
the three control strategies mentioned above will be discussed, by varying the
number of actuators and sensors. An analysis of the control problem by vary-
ing the number of modes considered in the design reduced order model will
be also provided.
Finally, some remarks on the effects due to the dynamics of sensors and ac-
tuators and to the control weights will be presented.

All data of the electromechanical model of the actuators are taken from
the datasheets of Micromega Dynamics [1]. In particular, inertial actuators
of the type ADD-1N are used (Figure 5.1).
Sensors are located in the same positions of the actuators (collocated sen-
sor/actuator pairs) and their properties are taken from PCB Piezotronics [2].
In particular, miniature single axis piezoelectric accelerometers of the model
352C23 are used (Figure 5.2). Collocated sensor/actuator pairs are here con-
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sidered. The integrator devices are modeled as second order dynamic systems
with a damping factor of 0.7 and a natural frequency a decade smaller than
the lowest frequency of the plate.
Uniform distributed or randomly distributed white noise disturbances are
used to excite the plate.
The weighting matrix Wuu is chosen diagonal, with all equal elements Wuu,
and selected in order to comply with the maximum peak current limitation
of the actuator considered. As relative values between the weighting matri-
ces count, the performance weighting matrix Wzz is selected as the identity
matrix.
A reduced order model with modes up to the frequency fmaxdesign = 1000 Hz is
considered for the control design model, while the test model contains modes
up to the frequency fmaxtest = 10000 Hz.
The models of the plates are built by using a number of Ritz functions that
is chosen according to the convergence analyses presented in Chapter 8.
Two types of materiales, whose properties are listed in Table 5.1, are consid-
ered.

Figure 5.1: ADD-1N inertial actuator specifications.
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Figure 5.2: Miniature single axis piezoelectric accelerometer specifications - model
352C23.

Code Material D22 D12 D66 ν E ρ
M0 Isotropic D νD (1− ν)D/2 0.3 7x1010 Pa 2720 Kg/m3

M1 Orthotropic D/2 νD D/2 0.3 7x1010 Pa 2700 Kg/m3

Table 5.1: Material properties used in the numerical results - Dij are the bend-
ing/twisting rigidities of the plate, ρ is the mass per unit volume, h is the
plate thickness, ν is Poisson’s coefficient, E is the Young’s Modulus and D =
Eh3/12(1− ν2) is the flexural rigidity of the plate.
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5.1 Fully clamped isotropic plate with sensor/actuator
pairs in assigned positions

A fully clamped isotropic (material M0) plate is here considered, with prop-
erties reported in Table 5.2.
The dynamics of actuators and sensors are taken into account for all the
results in the present section.
A uniform distributed white noise excitation of intensity Wdd = 100 is used
as a disturbance.

Property Description Value
a x dimension 0.8 m
b y dimension 0.5 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 5.2: Properties of the CCCC M0 plate.

5.1.1 Fully clamped isotropic plate with one actuator/sensor
pair

Consider the case of a plate with one actuator/sensor pair located in the
central position, as shown in Figure 5.3.
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Figure 5.3: Assigned actuator position on the CCCC M0 plate - 1 Actuator.
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Figure 5.4: Uncontrolled and controlled kinetic energy versus frequency for different
types of control strategy - CCCC M0 plate - 1 Actuator - Wuu = 1/700.

In Figure 5.4 the results in terms of kinetic energy versus frequency are
presented, for a control weight Wuu = 1/700. Obviously, for the case of con-
trol performed with a single actuator/sensor pair, there will be no difference
among the three types of suboptimal control in terms of the minimum found
for the cost function:

Jdec = Jcen = Jeq = 0.1691

A time simulation with a time window of 1 second is performed in order
to see the time evolution of some significant parameters as control currents
(Figure 5.5).
It is possible to notice that, for the chosen value of the control weight, the
values assumed by the control currents remain in the boundaries of ±2A
indicated in the actuator specifications.

In order to quantify the control energy, RMS values of forces, currents
and voltages are reported:

RMSforcedec = RMSforcecen = RMSforceeq = 0.8350 N
RMScurrdec = RMScurrcen = RMScurreq = 0.5219 A
RMSvoltdec = RMSvoltcen = RMSvolteq = 1.5657 V
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Figure 5.5: Control currents for the three control strategies - CCCC M0 plate - 1
Actuator.

5.1.2 Fully clamped isotropic plate with 5 actuator/sensor
pairs

Let’s consider now the same plate controlled by 5 sensor/actuator pairs lo-
cated as in Figure 5.6.
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Figure 5.6: Assigned actuators positions on the CCCC M0 plate - 5 Actuators.

In Figure 5.7 the results in terms of kinetic energy versus frequency are
presented. As expected, it is possible to notice that the centralized controller
performs the best, while the decentralized and equal gains controllers give
substantially the same results. This is clearly seen from the cost function
values reported in Table 5.3. The chosen value for the control weight is
Wuu = 1/1500.
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Figure 5.7: Uncontrolled and controlled kinetic energy versus frequency for different
types of control strategy - CCCC M0 plate - 5 Actuators - Wuu = 1/1500.

Subopt Dec Subopt Cen Eq Gains
0.0767 0.0766 0.0767

Table 5.3: Cost function values - CCCC M0 plate - 5 Actuators.
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Relative errors between cost functions obtained with the three types of
controller are:

errdec−cen = 0.1454% erreq−dec = 0.0055%

As done before, time simulations with a time window of 1 second are per-
formed in order to see the evolution of control currents for the three control
strategies (Figure 5.8).
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Figure 5.8: Control currents for the three control strategies - CCCC M0 plate - 5
Actuators.

In order to quantify the control energy, RMS values of forces, currents
and voltages are reported:

RMSforcedec = 0.4749 N RMSforcecen = 0.4759 N RMSforceeq = 0.4746 N
RMScurrdec = 0.2968 A RMScurrcen = 0.2974 A RMScurreq = 0.2967 A
RMSvoltdec = 0.8762 V RMSvoltcen = 0.8787 V RMSvolteq = 0.8757 V

5.1.3 Fully clamped isotropic plate with 9 actuator/sensor
pairs

The same plate configuration is now studied with a regular grid of 9 actua-
tor/sensor pairs (Figure 5.9)

In Figure 5.10 the results in terms of kinetic energy versus frequency are
presented for a control weight Wuu = 1/8000. For this case it is possible
to notice a more pronounced difference in terms of performance of the three
different types of suboptimal controller. As expected, the best performance
is achieved by the centralized controller, followed by the decentralized one.
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Figure 5.9: Assigned actuators positions on CCCC M0 plate - 9 Actuators.

The controller with equal gains is the simpler one, so it performs slightly
worse than the decentralized controller.
These remarks are clearly proved by the cost function values reported in Ta-
ble 5.4.
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Figure 5.10: Uncontrolled and controlled kinetic energy versus frequency for dif-
ferent types of control strategy - CCCC M0 plate - 9 Actuators - Wuu = 1/8000.

Relative errors between cost functions obtained with the three types of
controllers are:

errdec−cen = 1.6095 erreq−dec = 0.0804
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Subopt Dec Subopt Cen Eq Gains
0.0275 0.0271 0.0277

Table 5.4: Cost function values - CCCC M0 plate - 9 Actuators.

The time simulation of control currents is presented in Figure 5.5.
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Figure 5.11: Control currents for the three control strategies - CCCC M0 plate - 9
Actuators.

In order to quantify the control energy, RMS values of forces, currents
and voltages are reported:

RMSforcedec = 0.5174 N RMSforcecen = 0.5097 N RMSforceeq = 0.5168 N
RMScurrdec = 0.3234 A RMScurrcen = 0.3185 A RMScurreq = 0.3230 A
RMSvoltdec = 0.9642 V RMSvoltcen = 0.9504 V RMSvolteq = 0.9641 V

5.1.4 Fully clamped isotropic plate with 16 actuator/sensor
pairs

Let’s now consider the same plate controlled by 16 actuators in a regular grid
as in Figure 5.12.

In Figure 5.13 the results in terms of kinetic energy versus frequency
are presented. For this problem a very low control effort weight is used
(Wuu = 1/50000). It is possible to observe how a peak at low frequency
arises in the energy plot: this peak is due to the resonance of the actuators,
a phenomenon that is observed when the control weight is strongly reduced
and the separation between the resonance frequency of the actuators and
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Figure 5.12: Assigned actuators positions on the CCCC M0 plate - 16 Actuators.

the first natural frequency of the plate is quite small. A brief study on this
aspect is presented in the following section.
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Figure 5.13: Uncontrolled and controlled kinetic energy versus frequency for dif-
ferent types of control strategy - CCCC M0 plate - 16 Actuators - Wuu = 1/50000.
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5.2 Separation between resonance frequency of
the actuators and first natural frequency of
the plate

As shown in the previous example, a large resonance associated with the
actuator dynamics may appear when a rather aggressive control action is
introduced on the plate. The amplification of kinetic energy introduced by
this phenomenon depends on the separation between the resonance frequency
of the actuators and the first natural frequency of the plate. Let’s consider
the same fully clamped isotropic plate of the previous examples, but modeled
with only one mode and controlled by one actuator/sensor pair placed in
the center. In Figure 5.14 four plots of the spectrum of uncontrolled and
controlled kinetic energies are presented for a control weight Wuu = 1/106

and different geometric dimensions of the plate(and so different values of
natural frequencies): it is possible to notice how the resonance of the actuator
is less and less important increasing the frequency gap between the dynamics
of the actuator and the plate. For a frequency gap of 150 Hz the actuator
resonance almost disappears.
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Figure 5.14: Uncontrolled and controlled kinetic energy versus frequency forWuu =
1/106 and different values of the first natural frequency of the CCCC M0 plate - 1
Actuator

Some simulations have been performed in order to obtain an information
on the minimum frequency gap required to obtain negligible amplifications
in the controlled kinetic energy due to the effect described: in Table 5.5 some
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suitable values of frequency gap between the dynamics of the actuators and
the plate are presented for different control weights.

Weight Frequency Gap
1/105 80− 90 Hz
1/104 30− 40 Hz
1/103 20− 30 Hz

Table 5.5: Values of the frequency separation between the actuator resonance
frequency and the fisrt natural frequency of the CCCC M0 plate, for different
control weights, in order to avoid large actuator resonances.

5.3 Differences among centralized, decentral-
ized and equal gains control startegies with
different number of actuators

Several other simulations have been performed using the configuration con-
sidered in Section 5.1 and varying the number of actuator/sensor pairs in
order to see the differences in the performances obtained with the three
types of control strategy considered. The results in terms of percentage vari-
ation of the cost function between centralized and decentralized controllers
and between decentralized and equal gains controllers versus the number of
actuators used are reported in Figures 5.15 and 5.16, for a control weight
Wuu = 1/1000.

The positions of actuator/sensor pairs have been chosen in order to keep
the simmetry in the configuration. Nevertheless this arbitrariness in locating
the transducers doesn’t allow to observe a clear trend in the error evolution,
which is mainly oscillatory. The most important remark is that, for any
number of actuators considered, the error between decentralized and central-
ized controllers remains very low. This happens also for the error between
decentralized and equal gains control strategies.
As the centralized controller presents a full gain matrix, the optimization
procedure for this strategy is computationally demanding and, increasing
the numeber of actuators, the time required for the convergence is greater
and greater compared to the one of the decentralized controllers. This remark
is clearly shown in Figure 5.17.

The same observations can be done performing the study on an or-
thotropic (material M1) cantilever plate, whose properties are shown in Table
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Figure 5.15: Percentage variation between Decentralized and Centralized con-
trollers versus Number of Actuators - CCCC M0 plate
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Figure 5.16: Percentage variation between Equal Gains and Decentralized con-
trollers versus Number of Actuators - CCCC M0 plate

5.6.

Also in this case convergence times are shown in Figure 5.20.

It appears that using a simple equal gains decentralized control strategy
provides closed-loop performances comparable to other more complicated
stategies. Therefore, for the AVC of a simple structure like a plate, con-
trol strategies like equal gains and decentralized with independent gains are
satisfactory compared to more complicated and computationally expensive
centralized controllers.
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Figure 5.17: Convergence times for the three types of controller versus Number of
Actuators - CCCC M0 plate

Property Description Value
a x dimension 0.25 m
b y dimension 0.25 m
ζ Modal damping factor 0.001
h Thickness 0.003 m

Table 5.6: Properties of the CFFF M1 plate
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Figure 5.18: Percentage variation between Decentralized and Centralized con-
trollers versus Number of Actuators - CFFF M1 plate
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Figure 5.19: Percentage variation between Equal Gains and Decentralized con-
trollers versus Number of Actuators - CFFF M1 plate
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Figure 5.20: Convergence times for the three types of controllers vs Number of
Actuators - CFFF M1 plate

5.4 Differences among centralized, decentral-
ized and equal gains control strategies with
different number of modes in the design re-
duced order model

Some simulations have been performed by varying the number of modes
considered in the design reduced order model in order to study the sensitivity
of the controllers to this parameter.
Let’s consider the same fully clamped plate used in Section 5.1, controlled
by 9 actuators placed as in Figure 5.9. The design reduced order model here
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considered takes into account the dynamics of sensors and actuators and it
is built considering only the first mode of the plate. The test model takes
into account all modes up to the frequency fmaxtest = 10000 Hz.
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Figure 5.21: Uncontrolled and controlled kinetic energy versus frequency for differ-
ent types of control strategy, considering only the first plate mode in the reduced
order model - CCCC M0 plate - 9 Actuators - Wuu = 1/8000.

As we can see from Figure 5.21, the control system performs well, without
introducing any destabilizing action. However, if few modes are considered
in the reduced order model, the centralized control may perform worse than
the other two control strategies in damping modes not included in the design
model. Quite reasonably this result is due to the fact that the centralized
control takes into account the behavior of the complete set of actuator/sensor
pairs optimizing the control action for the modes it is considering. In a de-
centralized strategy, on the contrary, every actuator/sensor pair performs a
control loop independent from the others and this may result in an advantage
if models with few modes are provided.

Several simulations with very reduced order models have been performed
but none of them has shown a destabilizing behavior of the control action.
Even for very low damping values and taking into account only few modes
the only effect observed is a degradation of the perfomance.
This remark can be shown in the following example, in which a fully simply
supported, squared, orthotropic (material M1) plate is considered. Properties
of the plate are reported in table 5.7.

The control is performed with 5 actuators positioned as in Figure 5.22 and
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Property Description Value
a x dimension 0.4 m
b y dimension 0.4 m
ζ Modal damping factor 10−4

h Thickness 0.003 m

Table 5.7: Properties of the SSSS M1 plate

the plate is excited with a randomly distributed white noise of unit intensity.
Taking into account only the first 5 plate modes in the design reduced order
model, the control action is quite ineffective but not destabilizing (Figure
5.23).
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Figure 5.22: Assigned actuators positions on the SSSS M1 plate - 5 Actuators

Increasing the number of modes considered in the design model and keep-
ing the control action quite constant in terms of control currents (RMScurr5modes =
0.47 A, RMScurr30modes = 0.45 A) better results are obtained (Figure 5.24).
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Figure 5.23: Uncontrolled and controlled kinetic energy versus frequency for dif-
ferent types of control strategy and considering only the first 5 plate modes in the
reduced order model - SSSS M1 plate - 5 Actuators - Wuu = 1/350).
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Figure 5.24: Uncontrolled and controlled kinetic energy versus frequency for differ-
ent types of control strategy and considering only the first 30 plate modes in the
reduced order model - SSSS M1 plate - 5 Actuators - Wuu = 1/300).





Chapter 6
Results of vibration control with
sensors and actuators in optimal
positions

In this chapter some AVC results are obtained using a minimization proce-
dure which is capable of providing not only optimal gains but also optimal
positions of sensors and actuators, according to what outlined in Chapter
4. In the following, some examples aimed at discussing AVC with optimal
placement of collocated sensor/actuator pairs are presented.
In particular, a comparison between configurations with a fixed grid and
an optimal grid of ideal sensor/actuator pairs are presented first. Then, an
example of optimal grid AVC including actuators and sensors dynamics is
presented in order to demonstrate that different optimal configurations do
exist for the same problem, but they all correspond to similar values of the
cost function.
Owing to the remarks on control strategies discussed in Chapter 5 and for
the sake of brevity, only a decentralized control strategy will be considered
in the present dissertation.

Properties of the sensors, the actuators and the materials considered are
the same used in Chapter 5. Uniform distributed or randomly distributed
white noise disturbances are used to excite the plate.
A reduced order model with modes up to the frequency fmaxdesign = 1000 Hz is
considered for the control design model, while the test model contains modes
up to the frequency fmaxtest = 10000 Hz.
The models of the plates are built using a number of Ritz functions that is
chosen according to the convergence analyses presented in Chapter 8

65
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6.1 Comparison between fixed grid and opti-
mal grid configurations

In this section some advantages of the optimization of positions of sensors
and actuators are shown through two examples. In order to compare the
optimal grid solutions with the fixed grid ones, ideal models are considered;
indeed the kinetic energy response would deeply change varying the position
of sensors and actuators if their dynamic effects were included.
In order to make a valid comparison, control weight matrices are selected
so that almost the same RMS values of control forces are obtained for the
compared configurations.
Collocated sensor/actuator pairs are considered.

6.1.1 Cantilever isotropic plate with one ideal actua-
tor/sensor pair

Let’s consider a cantilever isotropic (material M0) plate, equipped with a
sensor/actuator pair located at (0.17, 0) (Figure 6.1). The properties of the
plate are reported in Table 6.1.

Property Description Value
a x dimension 0.4 m
b y dimension 0.3 m
ζ Modal damping factor 0.001
h Thickness 0.003 m

Table 6.1: Properties of the CFFF M0 plate

If the plate is excited with a randomly distributed white noise disturbance
of unit intensity, the spectrum of the controlled kinetic energy in Figure 6.2 is
obtained, using a control weight Wuu = 1/150. The configuration considered
allows a good damping of flexural modes, as the first and the third, while it
is mainly ineffective in damping the torsional modes because the actuator is
located on a nodal line of these modes.

If a grid optimization is provided, the sensor/actuator pair is placed in a
more suitable position in order to damp well all resonance peaks. The kinetic
energy spectrum obtained, using a control weight Wuu = 1/110, is shown in
Figure 6.3: even if some modes are less controlled compared to the fixed grid
case, the optimal grid guarantees a more uniform damping action over the
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Figure 6.1: Assigned actuator position on the the CFFF M0 plate.
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Figure 6.2: Uncontrolled and controlled kinetic energy versus frequency for a fixed
grid configuration - CFFF M0 plate - 1 Actuator
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bandwidth of interest (Figure 6.4). In particular, the better distribution of
the control action over all modes reflects in a good damping of the torsional
modes.
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Figure 6.3: Optimal actuator position on the CFFF M0 plate.

The mode shape of a torsional mode (the second) is reported in Figure
6.5 : it is clear how the position of the actuator in the optimal grid case is
suitable for damping this mode.

6.1.2 CFSF orthotropic plate with 5 ideal sensor/actuator
pairs

Let’s consider now a rectangular orthotropic (material M1) plate. The plate
is clamped on an edge and simply supported on the opposed one, while the
other two edges are free. Properties of the plate are reported in Table 6.2.

Property Description Value
a x dimension 0.4 m
b y dimension 0.3 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 6.2: Properties of the CFSF M1 plate

The control is performed with 5 actuators and the plate is excited with a
randomly distributed white noise of unit intensity. In Figures 6.6 and 6.7 the
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Figure 6.4: Kinetic energy versus frequency for fixed and optimal grid configura-
tions - CFFF M0 plate - 1 Actuator.

Figure 6.5: Mode shape - mode 2.
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positions of the actuators in the fixed grid configuration and in the optimal
positions obtained by the minimization process are presented, respectively.
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Figure 6.6: Assigned actuators positions for the CFSF M1 plate
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Figure 6.7: Optimal actuators positions for the CFSF M1 plate

Also in this case, the optimal grid approach guarantees a more distributed
control action, capable of damping modes that are not controlled by the fixed
grid configuration (Figure 6.8).

As an example, the modal shape related to the mode 12 is reported in
Figure 6.9: the reader can see how the optimal grid configuration obtained
from the optimization procedure presents actuators located in the proximity
of peaks and valleys, resulting in a very effective damping action.
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Figure 6.8: Kinetic energy versus frequency for fixed and optimal grid configura-
tions - CFSF M1 plate - 5 Actuators

Figure 6.9: Mode shape - mode 12.
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6.2 Fully clamped plate with 4 sensor/actuator
pairs

Let’s now consider a fully clamped, orthotropic (material M1) plate with
4 sensor/actuator pairs (Table 6.3). The model here considered takes into
account all the dynamics described in Chapter 2. The plate is excited by
a uniform distributed white noise disturbance. A weigthing value Wuu =
1/1000 on the control action is used.

Property Description Value
a x dimension 0.5 m
b y dimension 0.5 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 6.3: Properties of the CCCC M1 plate

Ten simulations are performed keeping the same parameters: the results
in terms of sensor/actuator pairs placement and cost function obtained are
presented in Figure 6.10.

As mentioned in the introduction to this chapter, it is possible to see how
the solution of the positions optimization is not unique and a different pattern
of the sensors/actuators grid is obtained for each simulation. However, all
the results obtained correspond to similar values of the cost function, which
guarantees that the optimization procedure always finds the same optimal
compromise between performance and control.
A possible guideline to select one configuration among the others is to observe
that each solution provides better damping of some modes compared to the
others. Even if differences are not so pronounced, if we are interested in
controlling some specific modes among the others, we can select the optimal
solution that gives the best performance in that sense.

For example, looking at the spectrum of the kinetic energy for the case
(i), shown in Figure 6.11, it is possible to see that this configuration provides
a very good damping of the first five modes.
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(a) J = 0.0168 (b) J = 0.0176

(c) J = 0.0167 (d) J = 0.0162

(e) J = 0.0163 (f) J = 0.0162

(g) J = 0.0168 (h) J = 0.0168

(i) J = 0.0168 (j) J = 0.0161

Figure 6.10: Optimal sensor/actuator pairs placement obtained from different sim-
ulations with the same parameters - CCCC M0 plate - 4 Actuators
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Figure 6.11: Uncontrolled and controlled kinetic energy versus frequency for the
case (i) - CCCC M1 plate - 4 Actuators - J = 0.0168



Chapter 7
Results of structural acoustic control

Referring back to Chapter 3 for the acoustic model, in this chapter some
examples of active structural acoustic control (ASAC) are presented. In par-
ticular, results obtained using as performance index the total kinetic energy
or the total radiated sound power are discussed and compared in order to
quantify the differences between the two approaches. The same considera-
tions are made for assigned and optimal grids of collocated sensor/actuator
pairs.
The weighting matrix Wuu is chosen diagonal with all equal elements of value
Wuu, which is selected in order to comply with the maximum peak current
limitation for the actuators considered. The performance weighting matrix
Wzz is selected as the identity matrix.
A reduced order structural model with modes up to the frequency fmaxdesign =
500 Hz is considered for the control design model, while the test model con-
tains modes up to the frequency fmaxtest = 5000 Hz. As respect to the acoustic
model, a maximum frequency fmaxacoustic = 500 Hz is considered to perform the
RME realization. Quite reasonably, if spillover doesn’t show for the struc-
tural model, it is supposed that the same happens for the acoustic model.
For this reason, the same reduced order radiation model is used both for
the design and the test models. The number of significant modes is selected
based on the convergence study presented in Chapter 8. In order to build
the elementary radiators grid, 20 elementary radiators are used along the x
direction, while 18 elements are used along the y direction for rectangular
plates, 20 for the squared plates .
The reader can refer to Chapter 5 for the properties of sensors, actuators and
materials used.
A randomly distributed white noise of unit intensity is chosen to excite the
plate.

75
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7.1 Differences among centralized, decentral-
ized and equal gains control startegies with
different number of actuators

The present example is aimed at showing how, even for the case of vibro-
acoustic control, differences in terms of performances among decentralized
with independent gains, centralized and decentralized with equal gains con-
trollers are not so significant and the complication introduced by the central-
ized controller justify the fact that this approach is hardly ever used in control
problems. In Figures 7.1 and 7.2, the results in terms of percentage variation
of the cost function between centralized and decentralized controllers and
between decentralized and equal gains controllers versus the number of actu-
ators, are shown, for a fully clamped isotropic plate (properties in Table 7.1)
with 9 sensor/actuator pairs. The radiated sound power is used as perfor-
mance index to minimize and a weightWuu = 1/1000 is used. It is possible to
see how the percentage variations among the three types of control strategy
are larger than those found in Chapter 2 for the vibration control. However,
convergence times for the centralized approach remain very high compared
to the other two types of controller (Figure 7.3).

Property Description Value
a x dimension 0.8 m
b y dimension 0.5 m
ζ Modal damping factor 0.001 m
h Thickness 0.002 m

Table 7.1: Properties of the CCCC M0 plate

The previous considerations and the fact that in real life centralized con-
trollers may lead to an improper behavior in case of failure explain why
decentralized control strategies are much more used.

7.2 Fully clamped isotropic plate with 9 sen-
sor/actuator pairs in assigned positions

Let’s consider the same fully clamped isotropic (material M0) plate of the
previuos section (properties in Table 7.1), equipped with 9 sensor/actuator
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Figure 7.1: Percentage variation between Decentralized and Centralized controllers
versus Number of Actuators - CCCC M0 plate
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Figure 7.2: Percentage variation between Equal Gains and Decentralized controllers
versus Number of Actuators - CCCC M0 plate

pairs located as in Figure 7.4. The dynamics of sensors and actuators are
taken into account.

Let’s perform an ASAC on the plate using as performance index the
kinetic energy, first, and then the radiated acoustic power. Both designs
are perfomed using a control weighting to obtain the same RMS values
of the control currents. For the kinetic energy minimization, a value of
RMSkincurr = 0.4013 A is obtained with a control weight Wuu = 1/2500, while,
for the acoustic radiated power minimization, the value RMSradcurr = 0.3832
A is obtained with a control weight Wuu = 1/1500.

In this case, it is possible to see how the two types of minimizations
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Figure 7.3: Convergence times for the three types of controller versus Number of
Actuators - CCCC M0 plate

lead to very similar results in terms of kinetic energy and radiated sound
power control (Figures 7.5 and 7.6). In particular, better results up to 3 dB
for the vibration control performed using the kinetic energy as performance
index are shown on modes 4,5 and 6. The same improvements are shown
for the modes in the middle of the bandwith in the case of noise attenuation
obtained by radiated sound power minimization . However, differences are
not remarkable.

7.3 Simply supported orthotropic plate with 5
sensor/actuator pairs in assigned positions

Let’s consider a simply supported orthotropic (material M1) plate, whose
properties are listed in Table 7.2, equipped with 5 sensor/actuator pairs
located as in Figure 7.7. The dynamics of sensors and actuators are taken
into account.

Property Description Value
a x dimension 0.5 m
b y dimension 0.5 m
ζ Modal damping factor 0.001 m
h Thickness 0.002 m

Table 7.2: Properties of the SSSS M1 plate
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Figure 7.4: Assigned actuators positions on the CCCC M0 plate - 9 Actuators.
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Figure 7.5: Uncontrolled and controlled kinetic energy versus frequency for ki-
netic energy and radiated sound power minimization indeces - CCCC M0 plate - 9
Actuators in assigned positions - Wuu = 1/2500.
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Figure 7.6: Uncontrolled and controlled radiated sound power versus frequency for
kinetic energy and radiated sound power minimization indeces - CCCC M0 plate -
9 Actuators in assigned positions - Wuu = 1/1500.
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Figure 7.7: Assigned actuators positions on the SSSS M1 plate - 5 Actuators.
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The results for the spectrum of the kinetic energy using the two minimiza-
tion procedures are shown in Figure 7.8. Also in this case, the performances
obtained with the two approaches differ in few decibels. The same consid-
erations hold for the radiated sound power spectrum presented in Figure
7.9.
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Figure 7.8: Uncontrolled and controlled kinetic energy versus frequency for ki-
netic energy and radiated sound power minimization indeces - SSSS M1 plate - 5
Actuators in assigned positions - Wuu = 1/500.

Therefore, it seems that performing an optimization with an approach
rather than the other doesn’t lead to significant improvements in the results.
However, in the following, it is shown that, if an optimal sensor/actuator
placement tecnique is used, remarkable differences arises between the two
minimization approaches.

7.4 Fully clamped isotropic plate with 5 ideal
sensor/actuator pairs in optimal positions

Let’s consider the same fully clamped isotropic plate of the previous example
(see Table 7.1), equipped with 5 ideal sensor/actuator pairs located by an
optimal placement technique.
For the kinetic energy minimization approach a weight Wuu = 1/600 is used,
while the acoustic sound power minimization is performed withWuu = 1/500.
This guarantees similar control currents values in the two cases.
Very important differences are shown in the two minimization approaches
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Figure 7.9: Uncontrolled and controlled radiated sound power versus frequency for
kinetic energy and radiated sound power minimization indeces - SSSS M1 plate -
5 Actuators in assigned positions - Wuu = 1/200.

here considered. As shown in Figure 7.10, the controlled kinetic energy
presents strong differences (up to 12-14 dB) on some modes using a min-
imization technique rather than the other. Moreover, for the first two modes
and the sixth mode, it appears that the sound power minimization approach
works better, while, for the other modes, the level of damping obtained min-
imizing the kinetic energy is definitely better. The same consideratons hold
for the noise control, whose results in terms of the spectrum of radiated
sound power are shown in Figure 7.11. For example, using a sound power
minimization approach, the radiated power magnitude corresponding to the
sixth mode is reduced 14 dB more compared to the other minimization ap-
proach, which consists in a remarkable difference perceived by the human
ear.
This example shows how, in this case, the optimal solution for the vibration
damping doesn’t provide an optimal solution in terms of noise attenuation
and viceversa and, depending on the mode considered, one of the two appo-
raches may lead to better results both in terms of kinetic energy and radiated
sound power minimization.

The two grids of sensor/actuator pairs obtained by the optimization pro-
cedure are shown in Figures 7.12 and 7.13.

It must be pointed out that another possible reason why the two simula-
tions lead to very different results is the non-uniqueness of the solution for
the optimal placements of sensors and actuators. However, several simula-
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Figure 7.10: Uncontrolled and controlled kinetic energy versus frequency for ki-
netic energy and radiated sound power minimization indeces - CCCC M0 plate - 5
Actuators in optimal positions - Wuu = 1/600.
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Figure 7.11: Uncontrolled and controlled radiated sound power versus frequency
for kinetic energy and radiated sound power minimization indeces - CCCC M0
plate - 5 Actuators in optimal positions Wuu = 1/500.
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Figure 7.12: Optimal actuators positions on the CCCC M0 plate for kinetic energy
minimization - 5 Actuators .
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Figure 7.13: Optimal actuators positions on the CCCC M0 plate for radiated sound
power minimization - 5 Actuators.
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tions has shown slight differences between the optimal solutions obtained and
the trend of kinetic energy and radiated sound power for the two difference
apporoaches described have been confirmed.

7.5 Simply supported orthotropic plate with 5
ideal sensor/actuator pairs in optimal po-
sitions

Let’s now consider the same simply supported orthotropic (material M1)
plate of the previous example (see Table 7.2), equipped with 5 ideal sen-
sor/actuator pairs located by an optimal placement technique (Figures 7.14
and 7.15).
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Figure 7.14: Optimal actuators positions on the SSSSS M0 plate for kinetic energy
minimization - 5 Actuators .

The spectra of the kinetic energy and the radiated sound power are shown
in Figures 7.16 and 7.17. Control weigths Wuu = 1/300 and Wuu = 1/360
are used, respectively.

As discussed in the previous example, also in this case it is possible to
see how, depending on the minimization approach used, the optimal solution
obtained is different. For example, the first two modes are controlled very well
optimazing the controller configuration for the minimization of the radiated
acoustic power and this leads to a decrease of 6−7 dB of the noise produced
with respect to a configuration obtained minimizing the kinetic energy.
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Figure 7.15: Optimal actuators positions on the SSSS M0 plate for radiated sound
power minimization - 5 Actuators.
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Figure 7.16: Uncontrolled and controlled kinetic energy versus frequency for ki-
netic energy and radiated sound power minimization indeces - SSSS M1 plate - 9
Actuators in optimal positions - Wuu = 1/300.
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Figure 7.17: Uncontrolled and controlled radiated sound power versus frequency
for kinetic energy and radiated sound power minimization indeces - SSSS M1 plate
- 9 Actuators in optimal positions - Wuu = 1/360.

Therefore, depending on which performance we want to optimize, the suitable
minimization approach should be selected.





Chapter 8
Convergence study

In order to validate the results obtained in the previous chapters, a study
of convergence of the methods used is carried out, without control simula-
tion, both for the structural and the acoustic model. Plates with all the
combinations of boundary conditions used in the previous chapters are here
considered. Some convergence results are also compared with references from
the literature in order to validate both the structural and the acoustic mod-
els. For the other examples the only plots in which convergence is reached
are shown.
A bandwidth of 10 kHz will be considered for the convergence analysis of the
structural model, while the convergence of the RME model is verified for a
bandwidth up to 500 Hz.
For the present work, good accuray of the model used may be required only
in the control bandwidth, which is usually up to 1 kHz or less, while only
discrete convergence properties on the other modes can be sufficient in order
to perform simple spillover tests. However, a number of Ritz functions suffi-
cient to guarantee good accuracy all over the bandwidth is chosen.

8.1 Validation and convergence analysis of the
structural model

In this section convergence solutions for a clamped and a simply supported
plates are compared with reference cases available in the literature. Then,
convergence studies are presented for the following cases:

• a fully clamped isotropic (material M0) plate
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• a cantilever orthotropic (material M1) plate

• a simply supported orthotropic (material M1) plate

• a CFSF orthotropic (material M1) plate

Convergence is shown through plots of both the spectrum of kinetic en-
ergy and the frequency response of the system.
All the plates are considered equipped with a sensor/actuator pair with the
properties presented in Chapter 5 and whose dynamics is taken into account.
Results are obtained by using a square selection strategy, i.e., the same num-
ber of terms M = N is adopted in the series.

8.1.1 Validation of the structural model

In order to validate the structural model used, the first six frequency pa-
rameters λ = ωa2

√
ρh/D11 of square orthotropic plates (material M1) car-

rying an elastically mounted mass Ma with dimensionless spring constant
K0 = Kaab/D11 will be presented and compared with two references in lit-
erature, Dozio [6] and Bambill et al. [3].
Note that ω is the natural pulsation corresponding to the mode considered
and Mp is the plate mass. In Table 8.1 the comparisons are shown for a
simply supported plate and in Table 8.2 a fully clamped plate is considered.
Good agreement among the results can be seen.

Reference Mode sequence
1 2 3 4 5 6

Present 9.34771 21.2068 43.4712 51.1890 79.7635 79.9378
Dozio [6] 9.34718 21.2066 43.4711 51.1890 79.7630 79.9378

Bambill et al. [3] 9.34828 21.2070 43.4711 51.1889 79.7626 79.9377

Table 8.1: First six frequency parameters λ = ωa2
√
ρh/D11 of a square, simply

supported, orthotropic (material M1) plate carrying an elastically mounted mass
Ma = 0.1Mp with dimensionless spring constant K0 = Kaab/D11 = 10, in position
(0,0)
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Reference Mode sequence
1 2 3 4 5 6

Present 5.59411 34.4230 61.5623 73.5962 103.841 104.580
Dozio [6] 5.59375 34.4223 61.5602 73.5938 103.835 104.574

Bambill et al. [3] 5.5940 34.422 61.558 73.592 - -

Table 8.2: First six frequency parameters λ = ωa2
√
ρh/D11 of a square, fully

clamped, orthotropic (material M1) plate carrying an elastically mounted mass
Ma = 0.3Mp with dimensionless spring constant K0 = Kaab/D11 = 10, in position
(0,0)

8.1.2 Convergence study for a fully clamped isotropic
plate

Let consider a fully clamped, isotropic (material M0) plate, whose properties
are listed in Table 8.3.

Property Description Value
a x dimension 0.8 m
b y dimension 0.5 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 8.3: Properties of the CCCC M0 plate

The frequency response and the spectrum of the kinetic energy are shown
in Figures 8.1 and 8.2, for different number of Ritz functions used. Although
good accuracy in the bandwidth up to 1 kHz is obtained with a small number
of admissible functions, good convergence properties all over the bandwidth
can be reached including more trial functions in the model. Using 36 Ritz
functions for each dimension the accuracy of the model seems to be very
good.
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M = 38

M = 36

Figure 8.1: Frequency response for different numbers N = M of Ritz functions -
627 modes considered - CCCC M0 plate
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M = 38

M = 36

Figure 8.2: Spectrum of kinetic energy for different numbers N = M of Ritz func-
tions - 627 modes considered - CCCC M0 plate



8.1. VALIDATION AND CONVERGENCE ANALYSIS OF THE STRUCTURAL MODEL 93

8.1.3 Convergence study for a cantilever orthotropic plate

The properties of the plate considered in this example are listed in Table 8.4.

Property Description Value
a x dimension 0.25 m
b y dimension 0.25 m
ζ Modal damping factor 0.001
h Thickness 0.003 m

Table 8.4: Properties of the CFFF M1 plate

The convergence plots of the frequency response and of the spectrum of
the kinetic energy are shown in Figures 8.3 and 8.4: in order to have a good
approximation all over the bandwith considered, 34 terms must be adopted
in the series expansion of the Ritz functions. In the control bandwidth, which
is up to 1000 Hz, the model is very accurate.
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M = 36
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Figure 8.3: Frequency response for N = M = 34 and N = M = 36 Ritz functions -
79 modes considered - CFFF M1 plate

8.1.4 Convergence study for a simply supported orthotropic
plate

The properties of the plate considered in this example are listed in Table 8.5.
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Figure 8.4: Spectrum of kinetic energy for N = M = 34 and N = M = 36 Ritz
functions - 79 modes considered - CFFF M1 plate

Property Description Value
a x dimension 0.4 m
b y dimension 0.4 m
ζ Modal damping factor 10−4

h Thickness 0.003 m

Table 8.5: Properties of the SSSS M1 plate

The convergence plot of the frequency response and of the spectrum of
the kinetic energy are shown in Figures 8.5 and 8.6: in order to have a good
approximation all over the bandwith considered, 32 terms must be adopted
in the series expansion for the Ritz functions. Also in this case, the number
of admissible functions chosen guarantees a very good accuray of the model
in the control bandwidth.
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Figure 8.5: Frequency response for N = M = 32 and N = M = 34 Ritz functions -
172 modes considered - SSSS M1 plate
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M = 34

M = 32

Figure 8.6: Spectrum of kinetic energy for N = M = 32 and N = M = 34 Ritz
functions - 172 modes considered - SSSS M1 plate
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8.1.5 Convergence study for a CFSF orthotropic plate

The properties of the plate considered in this example are listed in Table 8.6.

Property Description Value
a x dimension 0.4 m
b y dimension 0.3 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 8.6: Properties of the CFSF M1 plate

The convergence plot of the frequency responce and of the spectrum of
the kinetic energy are shown in Figures 8.7 and 8.8: in order to have a good
approximation all over the bandwith condidered, 30 terms must be adopted
in the series expansion of the Ritz functions. For the control bandwidth,
which is usually of 1000 Hz, the model is very accurate.
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Figure 8.7: Frequency response for N = M = 30 and N = M = 32 Ritz functions -
213 modes considered - CFSF M1 plate
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Figure 8.8: Spectrum of kinetic energy for N = M = 30 and N = M = 32 Ritz
functions - 213 modes considered - CFSF M1 plate
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8.2 Validation and convergence analysis of the
radiation model

In this section some convergence studies of the RME model are presented. In
particular, an example of evaluation of eigenvalues and amplitude weighting
coefficients for an aluminium simply supported plate is compared to refer-
ences in the literature in order to validate the radiation model used. Then,
plots of the radiated sound power evaluated by the RME tecnique for a num-
ber of significant modes that guarantees convergence are shown. All the
analyses are performed using a number of Ritz functions that guarantees the
convergence of the structural model of the plates considered.

8.2.1 Validation of the radiation model

In order to validate the radiation model used, let’s consider an aluminium
simply supported plate, whose porperties are listed in Table 8.7.

Property Description Value
a x dimension 0.355 m
b y dimension 0.254 m
ζ Modal damping factor 0.001 m
h Thickness 0.001 m
E Young’s Modulus 71 x 109 Pa
ρ Density 2700 Kg/m3

ν Poisson’s ratio 0.33

Table 8.7: Properties of the SSSS aluminium plate .

In Figure 8.9 the first six eigenvalues of the Radiated Resistance Matrix
R (see Chapter 3) are plotted versus frequency (a) and compared with a
reference in the literature (b). It is shown a good agreement between the
two results.

The amplitue-weighting coefficients for the same plate evaluated through
the RME technique are shown in Figure 8.10 and compared to the ones
obtained by Gibbs et al. [9]. Also in this case the agreement between the
two results is good.
Therefore, both the radiation element model and the RME model results are
comparable to the ones present in the literature.
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(a) Present (b) Fahy and Gardonio [8]

Figure 8.9: First six eigenvalues of the radiation model of an aluminium baffled

simply supported plate versus the parameter k/kb, with k = ω/c and kb =
ω2Mp

EI

0.25
.

ω is the natural pulsation, c the speed of sound in air, Mp the plate mass, E the
Young’s Modulus, I the moment of inertia the plate - Aluminium SSSS plate

(a) Present (b) Gibbs et al. [9]

Figure 8.10: First six amplitue-weighting coefficients evaluated through the RME
technique for an aluminium baffled simply supported plate versus frequency - Alu-
minium SSSS plate
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8.2.2 Convergence study for a fully clamped isotropic
plate

The properties of the plate considered in this example are listed in Table 8.8.

Property Description Value
a x dimension 0.8 m
b y dimension 0.5 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 8.8: Properties of the CCCC M0 plate

The convergence of the radiation filters model reduced by the RME tec-
nique is shown through Figure 8.11, where the radiated sound power spec-
trum obtained with different numbers significant modes considered in the
RME model is represented. 20 radiators elements are used on the x-wise di-
rection, 18 along the y-wise direction. A maximum frequency fmax = 500 Hz
is used to perform the RME realization. It is shown that using 10 significant
radiation modes the convergence is reached.
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n = 6

n = 4

n = 8

n = 6

n = 10

n = 8
n = 12

n = 10

Figure 8.11: Spectrum of radiated sound power for different numbers n of signifi-
cant modes - fmax = 500 Hz - CCCC M0 plate
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8.2.3 Convergence study for a simply supported orthotropic
plate

The properties of the plate considered in this example are listed in Table 8.9.

Property Description Value
a x dimension 0.5 m
b y dimension 0.5 m
ζ Modal damping factor 0.001
h Thickness 0.002 m

Table 8.9: Properties of the SSSS M1 plate

In Figure 8.12 the radiated sound power spectrum obtained with 10 and
12 significant modes considered is represented. 20 radiators elements are used
on the x-wise direction, 20 along the y-wise direction. A maximum frequency
fmax = 500 Hz is used to perform the RME realization. It is shown that the
two curves are perfectly overlapping, hence the model is at convergence.
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Figure 8.12: Spectrum of radiated sound power for n = 10 and n = 12 significant
modes - fmax = 500 Hz - SSSS M1 plate





Chapter 9
Conclusions

Several examples related to the active vibro-acoustic control of rectangular
plates have been presented in this work, with the aim of showing some as-
pects of this important field of engineering.
First of all, the dynamics of inertial actuators and integrators was introduced
in order to provide a more realistic model, allowing to consider real control
efforts in terms of control currents and taking into account real limitations
of the actuators.
A study was done on three different types of suboptimal control (decen-
tralized with independent gains, centralized and decentralized with equal
gains) in order to show differences, advantages and drawbacks. It was shown
through some examples that the centralized controller gives slightly better
results compared to the other two approaches, but the level of complexity
and the high computational cost for its design are significant drawbacks for
its use for the control of a simple plate.
Active vibration results were obtained using a minimization procedure which
is capable of providing not only optimal gains but also optimal positions
of sensors and actuators, showing the advantages of this approach in terms
of more uniform control action on the bandwidth considered. Moreover, it
was pointed out that the solution of the sensor/actuator placement opti-
mization is non-unique, but, for the same plate configuration, comparable
results in terms of performance and control are obtained with the different
sensor/actuator grid solutions.
Finally, results for the actve structural acoustic control were presented using
two types of minimization approach, based on the use of the kinetic energy
or the radiated sound power as performance index to minimize. It was shown
that, in case of assigned grid of sensor/actuator pairs, the two approaches
provide only slight differences in terms of vibration and noise control. On
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the contrary, it was shown that, using an optimal sersor/actuator placement
technique, important differences arise in the use of a minimization approach
rather than the other and the optimal solution for the vibration damping
doesn’t provide an optimal solution in terms of noise attenuation and vicev-
ersa.

9.1 Future developments
This work presents a large variety of aspects that can be improved or adapted
to different types of applications and challenging situations.

Here follows, as an example, a small list of topics that can be taken as a
direction path for future research works:

• Improvement of the numerical optimization technique using Hessian
based methods, instead of a Gradient based one.

• Consider non-collocated sensors and actuators, improving the numeri-
cal optimization procedure in order to obtain good and reliable results.

• Use piezoelectric actuators instead of inertial actuators to control the
plates.

• Consider plates made of other materials, like laminated composite
plates.

• Include a new type of plate geometry.
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