
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Toward a Mobile User Interface for the Personal Mobility
Kit of The ALMA Project

 Supervisor: Prof. Matteo Matteucci

 Co-supervisors: Prof. Sara Comai

 Ing. Giulio Fontana

Graduation Thesis of:

Okan Çoban, matricola 796254

Academic year 2013-2014

Contents
Abstract ... 1

Sommario ... 1

Chapter 1: Introduction ... 1

Chapter 2: Background Information .. 5

2.1 LURCH ... 5

2.2 ALMA ... 9

Chapter 3: System Architecture and Software Specifications ... 13

3.1 System Architecture ... 13

3.2 Software Specifications ... 15

3.2.1 Download an IndoorGML map from ALMA servers ... 15

3.2.2 Parse IndoorGML map to generate the maps in needed format 17

3.2.3 Send map to wheelchair ... 20

3.2.4 Retrieve map metadata ... 21

3.2.5 Visualize wheelchair movement and laser scan .. 22

Chapter 4: Software Project ... 27

4.1 Used Software and Technologies.. 27

4.1.1 Android SDK and External Libraries ... 27

4.1.2 IndoorGML .. 28

4.1.3 ROS .. 33

4.1.4 ROSJava for android ... 38

4.2 Software Project Implementation .. 39

4.2.1 Android Application ... 40

4.2.2 Map Server Modification ... 67

Chapter 5: Development and Usage Guide ... 71

5.1 Tools used for development ... 71

5.1.1 Android Studio .. 71

5.1.2 STDR simulator ... 73

5.1.3 RVIZ .. 75

5.2 Setting up the development environment ... 76

5.2.1 Installing the application on a mobile device ... 76

5.2.2 Setting ROS environment and running simulator ... 77

5.2.3 User manual ... 81

Chapter 6: Conclusions and Future Work ... 89

Bibliography... 93

List of Figures

Figure 1: The autonomous drive architecture of the LURCH wheelchair 7

Figure 2: Functional modules of the ALMA system and their relationship 11

Figure 3: Architecture of the project and relations with other projects .. 14

Figure 4: Sequence diagram for download IndoorGML Map .. 16

Figure 5: Sequence diagram for parse IndoorGML .. 17

Figure 6: Example generated image containing occupancy data ... 18

Figure 7: Example generated YAML file content .. 19

Figure 8: Sequence diagram for send map to wheelchair .. 21

Figure 9: Sequence diagram for retrieve map metadata .. 22

Figure 10: Sequence Diagram for visualization.. 23

Figure 11: Example visualization of wheelchair and laser scan data .. 25

Figure 12: L1 - TOPOGRAPHIC - Geometry ... 31

Figure 13: L2 - TOPOGRAHIC - Navigation .. 31

Figure 14: L3 - SENSOR - Camera ... 32

Figure 15: L4 - SENSOR - Localization ... 32

Figure 16: L5 - TAGS - Semantic .. 33

Figure 17: ROS basic structure [11] ... 35

Figure 18: STDR simulator architecture overview [19] ... 74

Figure 19: STDR simulator GUI with map, robot, and laser scan .. 75

Figure 20: rviz screen with map, tf and laser scan layers ... 76

Figure 21: Home screen on start ... 83

Figure 22: Alert dialog when map does not exist ... 83

Figure 23: Alert dialog when wifi is disabled .. 83

Figure 24: Settings screen with map info after a successful test connection 85

Figure 25: Maps screen with a selected map from list ... 85

Figure 26: Download section in maps screen ... 87

Figure 27: Preview without laser scan ... 87

Figure 28: Visualization with laser scan ... 87

Abstract

For most of the cases, people with different types of motor disabilities need assistance

for mobility. Autonomous wheelchairs try to solve mobility problems for these people by

assisting them to navigate. This assistance could be semi-autonomous or autonomous

depending on the level of users’ involvement in the process of navigation.

For both autonomous and semi-autonomous navigation of wheelchairs, user

needs to be informed about the position, speed, direction, status of the wheelchair

(moving, idle, waiting… etc.). User should also be able to configure and use the

wheelchair easily and safely through an interface. This interface should be simple and

easy to use to increase the usability of the wheelchair.

In Politecnico di Milano, there are two projects under development for solving

problems of disabled people. Within LURCH (Let Unleashed Robots Crawl the House)

project, a software system for robotic powered wheelchairs is developed. This system

has capabilities of moving wheelchair autonomously on a given map, estimating

odometry data (position, rotation and velocity) of the wheelchair, and detecting the

obstacles around it using sensors. LURCH intends to solve navigation problems of

people with motor disabilities by creating a system with software and hardware

technologies. The developed solution is going to be PMK (Personal Mobility Kit) module

of ALMA project and will be connected with PNA (Personal Navigation Assistant) module

of ALMA (Ageing without Losing Mobility and Autonomy) project. ALMA project aims to

create a personal indoor navigation system for elderly and people with some disabilities.

In this work, a mobile application is proposed as the base of further developments

to create a complete user interface for PMK. The purpose is to create a familiar and

easy to use interface for the existing system so that people with motor disabilities can

use the PMK easily and safely. The complete user interface will be merged with the

mobile application developed as the user interface of PNA.

The application visualizes the data supplied by wheelchair in order to give

feedback to users about the movement of the wheelchair on an indoor map and about

the obstacles around wheelchair. IndoorGML maps from ALMA servers are proposed

as a source to create occupancy data of maps. This approach creates a map source for

PMK by generating new maps easily from already collected data without the need of

gmapping technique. The application allows user to download a map in IndoorGML

format. From this map, occupancy data is retrieved and a map for PMK is created and

sent to wheelchair.

In order to communicate with ROS (Robot Operating System) framework, which

runs on the wheelchair, rosjava for android framework is used in the application. Beside

the developed mobile application, some modifications are made on ROS nodes of PMK.

Sommario

Per la maggior parte dei casi, le persone con diversi tipi di disabilità motorie hanno

bisogno di assistenza per la mobilità. Carrozzine autonome per disabili cercano di

risolvere i problemi di mobilità di queste persone aiutandoli a navigare. Dipende del

livello di coinvolgimento degli utenti nel processo di navigazione, l'assistenza potrebbe

essere semi-autonomo o autonomo.

Per la navigazione autonoma e semi-autonomo di carrozzina per disabili, l'utente deve

essere informato circa la posizione, la velocità, la direzione e lo stato della carrozzina (in

movimento, inattivo, in attesa ... eccetera). L'utente anche dovrebbe essere in grado di

configurare e utilizzare la carrozzina con facilità e senza rischi usando un'interfaccia. Questa

interfaccia deve essere semplice e facile da utilizzare per aumentare l'usabilità della carrozzina.

In Politecnico di Milano, ci sono due progetti in fase di sviluppo per risolvere i problemi

delle persone disabili. All'interno progetto LURCH (Let Unleashed Robots Crawl the House), un

sistema di software è sviluppato per la robotica carrozzina motorizzata. Questo sistema ha

capacità di muoversi carrozzina autonomamente su una mappa, la stima dei dati odometria

(posizione, rotazione e velocità) della carrozzina e individuare gli ostacoli intorno utilizzando

sensori. LURCH intende risolvere i problemi di navigazione delle persone con disabilità motorie,

creando un sistema di tecnologie software e hardware. La soluzione sviluppata sarà PMK

(Personal Mobility Kit) modulo di progetto ALMA e sarà collegato con PNA (Personal Navigation

Assistant) modulo di progetto ALMA (Ageing without Losing Mobility and Autonomy). Scopo di

progetto ALMA è creare un sistema di navigazione interna personale per anziani e le persone

con alcune disabilità.

In questo lavoro, un'applicazione mobile si propone come la base di ulteriori sviluppi per

creare un'interfaccia utente completa per PMK. Lo scopo è creare un ambiente familiare e facile

da usare per il sistema esistente in modo che le persone con disabilità motorie possono

utilizzare il PMK modo semplice e senza rischi. L'interfaccia utente completa sarà fusa con

l'applicazione mobile sviluppata come l'interfaccia utente di PNA.

L'applicazione visualizza i dati forniti dai carrozzina per dare risposte agli utenti sul

movimento della carrozzina su una mappa interna e sugli ostacoli intorno carrozzina. Mappe

IndoorGML dai server ALMA sono proposti come fonte per creare i dati di occupazione di

mappe. Questo approccio crea un fonte di mappe per PMK generando nuove mappe facilmente

da dati già raccolti senza la necessità di tecnica di gmapping. L'applicazione permette all'utente

di scaricare una mappa in formato IndoorGML. Da questa mappa, i dati di occupazione vengono

recuperati e una mappa per PMK viene creato e inviato alla carrozzina.

Per comunicare con il framework ROS (Robot Operating System), che viene eseguita

sulla carrozzina, framework rosjava per Android è utilizzato nell’applicazione. Oltre l'applicazione

mobile sviluppata, alcune modifiche sono fatte su nodi ROS di PMK.

Chapter 1

Introduction
When we think of our daily lives, even very simple tasks, such as navigating around

safely and easily, can be a big issue for people with different types of impairments. Most

of the time these problems are ignored and everything is built for fully functioning human

bodies. As a result, people having disabilities are being dependent on others to

overcome these issues and this dependency lowers the quality of their lives.

As the society realizes the problems of disabled people, some solutions have

been tried to ease their lives. These solutions try to enable people safely accomplishing

their daily life activities without the need of other people. Solutions might include

changing the environment and creating disabled friendly buildings. With the help of

technology, disabled people are being supplied with necessary equipment to overcome

these issues.

Most of the time, people with different types of motor disabilities need assistance

for mobility. Autonomous wheelchairs try to solve mobility problems for these people by

assisting them to navigate. This assistance could be semi-autonomous or autonomous

depending on the level of users’ involvement in the process of navigation.

For both autonomous and semi-autonomous navigation of wheelchairs, user

needs to be informed about the position, speed, direction, status of the wheelchair

(moving, idle, waiting… etc.). Users should also be able to configure and use the

Chapter: Introduction 2

wheelchair easily and safely through an interface. This interface should be simple and

easy to increase the usability of the wheelchair.

There are some projects under development by Politecnico di Milano to solve

problems of disabled people or elderly. PMK (Personal Mobility Kit) [3] is the software

system for a robotic powered wheelchair developed in LURCH (Let Unleashed Robots

Crawl the House) project. LURCH intends to solve navigation problems of people with

motor disabilities by creating a system with software and hardware technologies.

PMK concerns autonomous robotics, a branch of robotics that deals with study

and design of vehicles able to fulfil tasks without the need for human intervention. It has

capabilities of moving wheelchair autonomously on a given map, estimating odometry

data (position, rotation and velocity) of the wheelchair, and detecting the obstacles

around it using sensors.

ALMA (Ageing without Losing Mobility and Autonomy) project [2] aims to create a

personal navigation assistant for elderly and people with different types of disabilities.

PMK developed by LURCH project will be combined with other modules of ALMA project

to create a complete solution for helping disabled people and elderly to live safely and

more independently.

Mobile devices are in a big part of our daily activities. With the help of mobile

devices, many difficulties are now easily solved. Especially for people with different

types of disabilities, many daily life tasks are easier using mobile devices. Mobile

devices can be used for robotics for supplying a familiar interface to users so that users

can easily and safely access to developed technologies. In this thesis, mobile

application development is combined with robotics field in order to create an easy to use

interface for people with motor disabilities to make the use of autonomous wheelchair

easier and safer.

In this work, a mobile application is proposed as the base of further developments

to create a complete user interface for PMK. The purpose is to create a familiar and

easy to use interface for the existing system so that people with motor disabilities can

use the PMK easily and safely.

Chapter: Introduction 3

The aim is to increase the usability of wheelchair by supplying a user interface

that can be used and accessed easily. The intended users of the application are people

with motor disabilities who are using the developed wheelchair. The application is also a

proxy for LURCH and PNA (Personal Navigation Assistant) module of ALMA, which

aims to create a personal assistant for elderly people or people suffering from different

kinds of disabilities.

The project intends to use mobile devices to give users feedback about the

movement state of the wheelchair and information about the obstacles around the

wheelchair. It also offers possibility to manage the configurations of wheelchair easily by

using an android device. The application can be used as a standalone application with

PMK (autonomous wheelchair) without the need of connecting to ALMA project.

Application offers users use of mobile devices for (Figure 3):

- Downloading IndoorGML maps from the ALMA servers

- Converting downloaded maps into convenient format to be used by the

wheelchair

- Connecting to wheelchair and getting information about map used by

wheelchair

- Changing the map used by wheelchair with one of the maps from the device

- Visualizing the odometry information (position, direction on the map)

- Visualizing the sensor information (laser scan detecting the obstacles around

and the giving the distances from wheelchair)

- Visualizing the wheelchair movement

The application was developed taking into consideration the latest software

structure of the wheelchair. In the latest software structure [3], ROS (Robot Operating

System) is used for providing the wheelchair with autonomous features like path

planning and collision avoidance, while keeping it safe for both users and people around

it.

Beside the mobile application developed, some modifications are made on the

software running on the wheelchair in order to enable some tasks.

Chapter: Introduction 4

This work is going to be a base for the further developments for creating a

complete user interface to PMK. The final interface will be merged with the user

interface developed for PNA.

The structure of this document is below:

• Chapter 2 gives some background information about two projects

(ALMA and LURCH) briefly. The purpose of these projects and the connection

of this work with them are explained in detail.

• Chapter 3 describes the software architecture, along with the

explanation of all design choices and specifications of the developed

application.

• Chapter 4 explains software project in detail including the

implementation of project and the software and technologies used for the

development of the application.

• Chapter 5 explains how to set up a test and development environment

in detail as a guide for the further development of the project and a user

manual is included for users with some screenshots from the application.

• Chapter 6 draws conclusions, and some possible extension and

improvement suggestions are suggested for project.

Chapter: Background Information 5

Chapter 2

Background Information
This work is built on top of these two projects. This chapter describes briefly these two

projects (LURCH and ALMA). The general purposes of these projects are included as

well as the detailed description of the parts related to application developed within this

thesis.

2.1 LURCH

In 2007 the AIRLab (Artificial Intelligence and Robotics Laboratory) of Politecnico

di Milano developed a robotic wheelchair called LURCH (acronym for Let Unleashed

Robots Crawl the House). It is based on a commercial wheelchair and implements both

semi-autonomous and autonomous modes [3].

The first version of LURCH was equipped with [4]:

 • 2 laser scanners in the front, each scanning the environment at 240

degrees;

 • an IMU (Inertial Measurement Unit) to measure velocities;

 • a camera that detects artificial landmarks;

 • an on-board x86 computer;

 • a touchscreen that helps the user interacting with the computer.

Chapter: Background Information 6

The wheelchair, basically, could detect obstacles by means of the two laser

scanners, localize itself with the help of the camera, and have a velocity feedback given

by the IMU. In semi-autonomous mode, the wheelchair could be driven with the on-

board joystick or a joypad alike; the software was able to facilitate the user’s movement,

avoiding collisions [3].

In autonomous mode, the user could select a goal position through the

touchscreen; the control software had the task of computing the path to reach the goal

and executing it by sending the proper commands to the motors. In order to make the

computer give commands to the motors, the connection between the joystick and the

motors was cut, and an interface circuit was realized and put in the middle. Such board,

basically, has two functions [3]:

• it reads the joystick positions and it sends them to the on-board computer;

• it translates the commands sent by the computer into voltage values that

control the motors.

A peculiarity of this solution is that the joystick still keeps its functionality, as its

position can always be known and employed, and it can be used in conjunction with

other input devices [3].

Over the years, some changes to LURCH have been made. In particular:

• the IMU was removed, for its low accuracy in velocity measurements

• and for its high costs;

• the velocity feedback is now given by encoders mounted on the wheels;

• an odometry board was made in order to interface the computer with the

encoders.

In the latest software structure configuration, ROS (Robot Operating System) [3] is used

for providing the wheelchair with autonomous features like path planning and collision

avoidance, while keeping it safe for both users and people around it. With its publish-

and-subscribe paradigm and high portability, this framework improves extensibility and

reuse of software modules. Moreover, the issue of robot localization has been studied.

Chapter: Background Information 7

Figure 1: The autonomous drive architecture of the LURCH wheelchair

To this end, a new library for multisensor fusion and pose estimation, called

ROAMFREE (Robust Odometry Applying Multisensor Fusion to Reduce Estimation

Errors), has been used. ROAMFREE fusion engine allows to merge odometry data

coming from different sensors, in order to provide an estimate for the robot pose which is

robust, meaning that it is less prone to errors. This method has been combined with an

algorithm known in literature as AMCL (Adaptive Monte Carlo Localization), in order to

increase the robustness of the estimate by compensating, in many cases, the absence

of absolute position sensors.

This thesis offers an android mobile application as the interface of PMK

developed in LURCH. It will be merged with the user interface of PNA module from

ALMA project.

Chapter: Background Information 8

In the development of the application, some of the ROS nodes running on the

wheelchair are used by connecting via android device to get the published map,

odometry information, and sensor information in order to give feedback to users.

Moreover, a ros node (map_server) has been modified in order to fulfil some of the

requirements. (More information about ROS and about the modification made on the

map_server will be given in the Chapter 4.1 and Chapter 4.2 respectively).

The nodes used by the application are mainly map_server and nodes publishing

odometry messages and laser scan messages.

Map server is used for publishing the information about the map data. With the

modified version of the map server, it is also possible to update the published map on

wheelchair with a new map from mobile device while the system is running without the

need of restart. This map is used by the other nodes for navigating autonomously and

detecting obstacles. In the mobile application, these maps are visualized on devices

screen.

Odometry messages are published for giving data about the position, direction,

and velocity of the wheelchair. Transform configuration of the map according to the real

world is hold on a tree with tf which is a package that lets the user keep track of multiple

coordinate frames over time. tf maintains the relationship between coordinate frames in

a tree structure buffered in time, and lets the user transform points, vectors, etc.

between any two coordinate frames at any desired point in time. These odometry

messages are used for visualizing the position, direction, and velocity of the wheelchair.

Laser scan messages are used to publish the data about obstacles around the

wheelchair. Obstacles are detected with the lasers on the wheelchair. Laser scan is

used for autonomous movement. In the mobile application, this data will be visualized for

users to give feedback about the obstacles around the wheelchair.

For the implementation of the connection to wheelchair from android application,

“rosjava for android” has been adopted. (rosjava will be explained with more details in

Chapter 4.1).

Chapter: Background Information 9

2.2 ALMA

ALMA [1] is an international project within the AAL Ambient Assisted Living Joint

Programme, started on April 2, 2013 and involving the following partners:

Scuola Universitaria Professionale della Svizzera Italiana (Switzerland),

Politecnico di Milano (Italy),

Infosolution SpA (Italy),

VCA Technology Ltd. (UK),

Istituti Sociali di Chiasso (Switzerland),

Clinica Hildebrand (Switzerland),

University of Wuerzburg (Germany),

Degonda SA (Switzerland).

The aim of ALMA is to combine a set of advanced hardware and software

technologies into an integrated, non-invasive and modular system in order to offer

assistance for people affected by different types of impairments. In the context of ALMA

end-users can be either patients or a healthcare structure.

ALMA project tackles the issue of not being able to move autonomously or

effectively by combining a set of advanced hardware and software technologies into an

integrated and modular system composed by [2]:

 (i) an indoor localization system based on a network of low-cost/low-power

RF emitters, to provide room level localization of people and objects;

 (ii) an ad-hoc, autonomic hw/sw system based on networked smart

cameras providing accurate indoor and outdoor localization and environment monitoring;

 (iii) an intelligent system for the online planning of users' paths according

to their specific needs, matching these with the actual state of the environment and the

available resources;

 (iv) a personal mobility kit for electric powered wheelchairs allowing them

to perform automatic or assisted navigation and, additionally, to interact with the

surrounding environment; (PMK)

Chapter: Background Information 10

 (v) a personal navigation assistant supporting user-friendly interface to all

the functionalities of the system, tailored to the specific user-defined requirements and

physical limitations (e.g., vocal and tactile interfaces, ad-hoc devices). (PNA)

ALMA users [2] will be supported in their mobility to acquire knowledge about

interesting locations (e.g., services, people, facilities, etc.), to select and follow an

efficient and safe path to such destinations considering their needs and/or limitations or

the status of the environment to present the resources provided by intelligent

environments to the users so they can effectively access them with familiar instruments

without feeling disoriented or overwhelmed by technology. ALMA aims at bringing to the

mobility of a wide range of primary end-users a real advancement that will be measured

in terms of the most appropriate metric: their own feeling of freedom and increased

empowerment. At the same time secondary end-users, e.g., residences and hospitals,

will leverage on the information collected by the system on the movements of their

guests to monitor their ageing, to design personalized support services or rehabilitation

paths.

The ALMA project developed a modular system of hardware and software

components that can support or enhance the autonomous motion of people with

different degrees of mobility and/or cognitive impairments. Each module of the ALMA

system provides standalone functionalities that can be used to address individually one

of the three mobility issues previously introduced, i.e., destination selection, path

planning, and movement execution. The architecture of the whole system is shown in

Figure 2.

This thesis proposes a mobile application as the user interface for the module

which is a personal mobility kit for electric powered wheelchairs allowing them to

perform automatic or assisted navigation and, additionally, to interact with the

surrounding environment (LURCH). This application will be improved to be a complete

user interface for PMK, and the final application will be merged with user interface for

indoor navigation (PNA).

Chapter: Background Information 11

Figure 2: Functional modules of the ALMA system and their relationship

In ALMA, maps are specified as IndoorGML an OGC standard that extends the

GML (Geographic Markup Language) with an application schema for indoor spaces. It

takes inspiration from CityGML which is a recently introduced OGC standard to describe

cities at various levels of detail. In particular, CityGML at Level-of-Detail 4 (LoD 4),

provides classes to describe the geometry and semantics (door, room, floor, furniture,

...) of the interior of buildings.

The vision behind the IndoorGML standard (and other indoor maps development)

is that in the near future, when we enter a building with a smart phone, we will be able to

download a map, visualize it and get navigation instruction to the place we are looking

for. The maps will contain enough information to be useful for people (and other agents)

with different capabilities. IndoorGML will be explained with more details in Chapter 4.1.

The application connects to ALMA server, which stores the IndoorGML maps

through any internet connection (wifi, 3g). Users download the map with the entered url

into a specific folder on device to be parsed and used later on for generating the map in

the proper format to be sent to wheelchair as well as for the visualization on the device.

The format necessary for the wheelchair is YAML format with an image containing

Chapter: Background Information 12

occupancy data (occupancy grid map). The IndoorGML map is parsed and occupancy

grid map is generated with resolution value decided by users.

Since the map is downloaded through a url entered by the user, the server could

be any server publishing a proper IndoorGML map for connecting and downloading the

map. Therefore, the application developed for this thesis does not depend on the ALMA

server directly, but maps from server can be used. Other capabilities of the application

can be used as a stand-alone application with PMK.

Chapter: System Architecture and Software Specifications 13

Chapter 3

System Architecture and Software

Specifications
In this chapter, general architecture of the project is given including the relations with the

ALMA server and PMK. The specifications of the application are described with some

basic information. The specifications can be outlined as follows:

 - Download an IndoorGML map from the ALMA server

 - Parse the IndoorGML map to generate the maps in needed format

 - Send the map to the wheelchair

 - Retrieve the map metadata

 - Visualize the wheelchair movement and the laser scan on mobile devices

screen

3.1 System Architecture

As it was stated before, this thesis is working on the top of two projects previously

developed by Politecnico di Milano, namely ALMA and LURCH. The overall architecture

of the project and relations with the other projects can be seen in Figure 3.

Chapter: System Architecture and Software Specifications 14

Figure 3: Architecture of the project and relations with other projects

The relation with ALMA project is not a mandatory one but a supportive one in the

sense that the application developed for this thesis can also function without any

connection to ALMA servers. ALMA server is used only for getting the IndoorGML maps

as the source files to generate the occupancy grid maps to be used by wheelchair and

for visualization purposes on the screen of the device. IndoorGML maps can be

transferred to device manually or can be downloaded also from another server

publishing maps online via a public url.

The format of the IndoorGML used as the source to generate occupancy data for

PMK is considered as equal to the ones on ALMA server. For example, the resolution of

source maps is assumed as 100 pixels per meter when generating the occupancy data.

The connection with LURCH project is mandatory for the application. This thesis

is based on the implementation and structure of PMK. Therefore, the application itself,

without the wheelchair, is not useful for the users. The connection to wheelchair is a

Chapter: System Architecture and Software Specifications 15

TCP/SFTP connection meaning that mobile device running the application should be

connected to the same local network to be able to work properly.

The data for establishing a connection to the wheelchair is entered by user and

saved for later use. This data include:

- IP of the wheelchair and the port for ROS

- Wheelchair node name

- Topic names of odometry layer and laser scan layer

- Username and password of the SSH protocol running on PMK.

When connected to wheelchair, users can:

 - Send a map to wheelchair in order to change and reload the map used by

the wheelchair

 - Get the information about the current map, get the position, direction, and

velocity of the wheelchair on the published map

 - Get the sensor information from wheelchair in order to visualize it and

give users an idea about obstacles around the wheelchair.

The application will be improved with some new features to have a complete user

interface for PMK and will be integrated with user interface of PNA in the future.

3.2 Software Specifications

3.2.1 Download an IndoorGML map from ALMA servers

IndoorGML maps contain the necessary information for generating occupancy

data of the maps needed by PMK. In this work, IndoorGML maps are proposed as the

source of occupancy data map generation for PMK. The application allows users to

Chapter: System Architecture and Software Specifications 16

Figure 4: Sequence diagram for download IndoorGML Map

download IndoorGML maps published by the ALMA servers through a url. The url of the

map to be downloaded should be entered by the user in the specified box. Moreover,

the name for saving the file should be entered. File is downloaded into the

folder(ALMA_MAPS) containing maps and files used by the application.

In order to have a successful download, mobile device should be connected to

internet using 3g or wifi .

If IndoorGML url typed by user does not correspond to a proper xml file

(IndoorGML file is a specialized type of xml file) or if there is a problem with the internet

connection of the device, download action fails and user is informed with an alert dialog

about possible reasons.

If there is already a map in the folder with the same name entered by user, the

old file will be replaced with the new map or a new map will be created with the given

name after user confirmation.

Chapter: System Architecture and Software Specifications 17

Figure 5: Sequence diagram for parse IndoorGML

3.2.2 Parse IndoorGML map to generate the maps in needed format

The previously downloaded or manually added IndoorGML maps can be parsed

from the ALMA_MAPS folder on device in order to generate the maps in YAML format.

YAML format contains an image file holding occupancy data and a text file holding

metadata of the map. This format is used by PMK as the maps used for necessary

tasks.

After chosing the name of the map to be parsed from the IndoorGML file list,

which shows the IndoorGML files under ALMA_MAPS folder, user needs to enter the

resolution value to be used in the creation of the occupany map.

If the IndoorGML file format is not correct, parse action fails. If the size of the

image file to be created is too large, meaning that IndoorGML corresponds to a big map

having large coordinate values, mobile device might be out of memory and application

crashes. In this case, users are asked to use a smaller resolution value.

The parsed IndoorGML file is kept in ALMA_MAPS folder of device to be parsed

again with a different resolution value if it is needed in the future. If a map is parsed

again, old generated files for that map will be replaced with the newly generated ones.

Chapter: System Architecture and Software Specifications 18

Figure 6: Example generated image containing occupancy data

When generation of the files is finished, there will be a pair of files with the same

name, in png (See Figure 6) and YAML formats (name.png and name.yaml). Beside

these files there will be another image file generated with a visualization suffix following

same name (name-visualization.png). This file is going to be used for visualization of the

map on devices screen. All these three files will be placed in the ALMA_MAPS folder

containing also IndoorGML files previously downloaded. Two of these files are in the

format to be used by map server of the wheelchair and can be sent and directly used by

wheelchair.

The generated image file to be sent to wheelchair will have the resolution chosen

by user, but the visualization images have a fixed resolution (10pixels / meter).

IndoorGML map files downloaded from ALMA servers have coordinates such that 1 pixel

corresponds to 1 centimeter meaning a resolution of 100 pixels / meter.

Chapter: System Architecture and Software Specifications 19

Figure 7: Example generated YAML file content

Two of the generated files are in png format with different resolution values, and

these files encode occupancy data. One of these files is used for map visualization on

devices screen. When user chooses to send a map to wheelchair, the other image file

will be sent to wheelchair and wheelchair will be using this new map after this action.

The image generated describes the occupancy state of each position on the map

with the color of the corresponding pixel. Thresholds in the YAML file are used to divide

space occupancy to three categories as given in Figure 7. Image contains three colors:

o white pixels mean space is navigable

o black pixels mean space is occupied

o gray pixels mean unknown area

One of the generated files is in YAML format, which is a simple text file describing

the map metadata and holds the name of the image file holding occupancy data. Beside

the image file name, there are some other fields to describe the map such as resolution,

origin, etc.

Required fields of YAML file used by PMK are:

- image: Path to the image file containing the occupancy data; can be

absolute, or relative to the location of the YAML file

- resolution: Resolution of the map, meters / pixel

Chapter: System Architecture and Software Specifications 20

- origin: The 2-D pose of the lower-left pixel in the map, as (x, y, yaw),

with yaw as counterclockwise rotation (yaw=0 means no rotation). Many parts

of the system currently ignore yaw.

- occupied_thresh: Pixels with occupancy probability greater than this

threshold are considered completely occupied.

- free_thresh: Pixels with occupancy probability less than this threshold

are considered completely free.

- negate: Whether the white/black free/occupied semantics should be

reversed (interpretation of thresholds is unaffected).

An extra field, which is not required by PMK is included in YAML file with the

generation method implemented in this work:

- lla_origin: This field holds the translation and rotation of the map with

respect to world coordinates which is taken from the IndoorGML.

3.2.3 Send map to wheelchair

Users can use the application to send a previously generated or manually

transferred map to wheelchair and refresh the modified version of the map server node

on wheelchair to start using this new map.

When user choose to send one of the map names from the list of maps, the

generated pair of files are transferred to wheelchair via SFTP connection established

using the settings configured by user. After wheelchair receives files the modified

version of the map server is reloaded with the newly received map info. To reach this

goal a service provided by the modified version of map server is called from mobile

device If there already exists a map in the wheelchair with the same path and name, the

old files are replaced with the new pair of files.

Chapter: System Architecture and Software Specifications 21

Figure 8: Sequence diagram for send map to wheelchair

In order to have a successful send and reload action, wheelchair and device

should be connected to the same LAN(Local Area Network) and IP, port, username,

password of the wheelchair should be properly set in the settings section of the

application.

This action assumes that the modified version of the map server node is already

running on the wheelchair. If modified version of the map server node is not running, this

action will not have any effect on the published map even though it transfers the files to

wheelchair. (More information will be given about the modified version of the map server

in Chapter 4.2).

3.2.4 Retrieve map metadata

In the settings section of the application, users are asked to fill the necessary

information for establishing connection to PMK. These values are used for retrieving

information from wheelchair and making service calls to update map published on PMK.

Users can retrieve the published map information from the map_server node

which is running on the wheelchair. This feature is used to test and verify the saved

values of IP and port for the wheelchair. After saving the IP and port number in the

settings page, users can try connecting to wheelchair. The verified values of IP and port

Chapter: System Architecture and Software Specifications 22

Figure 9: Sequence diagram for retrieve map metadata

will be also used in the other sections of the application where application needs

connection to wheelchair such as retrieving data from a published topic or making a

service call to update map published on PMK.

To be able to retrieve the map information, device should be connected to the

same LAN with wheelchair. When user connects to wheelchair, the information about

the published map from the wheelchair is seen on the screen and status seen on the

screen changes from disconnected to connected.

3.2.5 Visualize wheelchair movement and laser scan

Application offers a way for visualization of the odometry information and laser

scan information published from PMK. This information is used for showing position,

direction, movement of the wheelchair on the map and laser scan giving information

about the obstacles around the wheelchair.

The movement of the wheelchair is visualized on the device with a simple

implementation (See Figure 11). On the main screen user will see the map name

chosen for visualization. To change this map name user should choose a map and send

it to wheelchair from the maps screen. After sending a map and going back to home

screen, the name of the map will change from default chosen name to the sent one.

Since the map is just sent to wheelchair, the map used by the wheelchair is known and

correct map can be visualized on the device.

Chapter: System Architecture and Software Specifications 23

Figure 10: Sequence Diagram for visualization

If there is visualization image file containing the occupancy data for the given map

name in ALMA_MAPS folder, users see a preview button on the main screen. When

users click on this button, the correct map image is retrieved from the reserved folder.

Users can see the value of zoom, which can be changed by pinch gestures on the

imageview or with buttons on the upper right corner of the screen.

Application retrieves odometry messages from the wheelchair and shows the

position of wheelchair on x y plane, as well as the direction of the movement. Two dots

on the map simulating the position and the velocity (direction) of the wheelchair are

drawn with different colors. For successful visualization of the wheelchairs movement,

the device should be connected to the same local network with the wheelchair and

values for wheelchair name, odometry topic name should be configured correctly.

When preview is running, users will have an option below disconnect button for

toggling the sensor visualization on/off. User should correctly configure the name of the

laser scan topic to be shown from settings screen to have a successful visualization.

When the preview is started, sensor visualization will be started as well. To hide

the laser scan checkbox below the Disconnect button can be used. Laser scan

messages created by sensor on wheelchair and published by PMK will be used to

visualize the laser scan data on the map.

Chapter: System Architecture and Software Specifications 24

Users can zoom in or out with pinch gesture on the image or by using the buttons

on the upper right corner. By default map is shown without zoom meaning whole map is

shown at the beginning. If the map is zoomed, the part of the map to be shown decided

according to the position of the wheelchair on the map.

If the wheelchair is not close to the boundaries of the map, a blue colored dot

representing the wheelchair is shown in the middle of the map. As wheelchair moves

around, the visualized part of the map is also changed so that wheelchair is always in

the center of the map.

If the wheelchair is close to the boundaries of the map, wheelchair is not placed

anymore in the middle of the visualized part of the map. The width and the height of the

shown map are kept the same for that zoom value. Starting from the boundaries that

wheelchair is close to, part of the map within the width and height of the map is shown

and the point for representing wheelchair is moved around this part of the image.

Beside the current position of the wheelchair, direction of the wheelchair is also

represented on the map with a smaller dot colored in yellow.

Laser scan data is represented by drawing red lines for each ray. For each ray

starting from the position of the wheelchair and ending at a point calculated according to

the distance of obstacles retrieved from laser scan and direction of the each ray.

The coordinates of the wheelchair are also shown as text on the screen and

updated as wheelchair moves. Zoom value is also updated if it is changed by user while

preview is running. The visualization can be stopped by clicking Disconnect button on

the main screen and restarted later.

Chapter: System Architecture and Software Specifications 25

Figure 11: Example visualization of wheelchair and laser scan data

Chapter: System Architecture and Software Specifications 26

Chapter: Software Project 27

Chapter 4

Software Project
In this chapter, some background information is given about software and technologies

used in the implementation of software project. File structure of mobile application,

functionalities of the files, and implementation strategies are explained in detail.

Modifications made on the map server running on the wheelchair are also included.

4.1 Used Software and Technologies

Software and Technologies used by the project are mainly:

 - Android SDK and external libraries

 - IndoorGML

 - ROS

 - ROSjava for android

4.1.1 Android SDK and External Libraries

In this work, android operating system is chosen as the mobile development

environment. The minimum sdk version supported is 10 and screen layouts are

prepared for tablets.

Different modules of the android sdk (software development kit) are used in the

implementation of the application as well as some external libraries. Most of included

Chapter: Software Project 28

external libraries are necessary for making the application ROSjava compatible and

having ROS features in the application.

Used external libraries are mainly for:

 - Parsing the IndoorGML(xml) files

 - Connecting to ALMA servers

 - Retrieving IndoorGML files from internet

 - Sending generated maps to wheelchair via SFTP connection

 - ROS enabling the application to be able to communicate with ROS
framework used by PMK

The used permissions for the app are:

 - android.permission.WRITE_EXTERNAL_STORAGE allows application to
write external storage of the mobile device, which is needed for creating new files under
devices file structure.

 - android.permission.INTERNET allows application to connect internet
using if the device is has access to internet. Internet connection is needed for
downloading IndoorGML maps from ALMA server.

 - android.permission.ACCESS_NETWORK_STATE allows application to
check if the device is connected to wifi. This permission is needed to warn user if the
device is not connected to wifi when application needs it to connect wheelchair.

 - android.permission.WAKE_LOCK: allows application to keep the devices
screen on while the application is running.

4.1.2 IndoorGML

As it was mentioned before, IndoorGML is used in ALMA project for storing the

map information and it is used by the application developed within this thesis as an input

for generating the occupancy grid map files.

IndoorGML is a candidate OGC standard for an open data model and XML

schema for indoor spatial information. It aims to provide a common framework of

representation and exchange of indoor spatial information. It is defined as an application

schema of OGC_Geographic Markup Language 3.2.1 [5].

Chapter: Software Project 29

The IndoorGML schema (data model) addresses the general problem of data

exchange relevant to the indoor navigation of heterogeneous agents (pedestrian,

disabled/impaired people, robots, motorized wheelchairs,). It was submitted as a

proposal in September 2013 by an OGC (Open Geospatial Consortium) working group.

It focuses on topological and semantic information and contains simpler geometrical

information than that provided by buildings descriptions in other formats (like IFC and

CityGML). Geometrical information can either be self-contained or refer to such external

files.

The vision behind the IndoorGML standard (and other indoor maps development

is that in the near future, when we enter a building with a smart phone, we will be able to

download a map, visualize it and get navigation instruction to the place we are looking

for. The maps will contain enough information to be useful for people (and other agents)

with different capabilities [6, 7].

At the core, IndoorGML provides a multi-layered (topological) graph that can

optionally contain geometrical information.

IndoorGML defines the following information about indoor space;

 Navigation context and constraints

 Space subdivisions and types of connectivity between spaces

 Geometric and semantic properties of spaces and connectivity

 Navigation networks (logical and metric) and their relationships

General concepts of IndoorGML [8]

 - Cellular space: indoor space as a set of cells, which are defined as

the smallest organizational or structural unit of indoor space.

 - Semantic representation: Semantic is an important characteristic of

cells. In IndoorGML, semantics is used for two purposes: to provide classification and

to identify a cell and determines the connectivity between cells.

 - Geometric representation: The geometry of 2D or 3D object may be

optionally defined within IndoorGML according the data model defined by ISO 19107.

Chapter: Software Project 30

 - Topological representation: Topology is an essential component of

cellular space and IndoorGML.The Node-Relation Graph (NRG) represents

topological relationships, e.g., adjacency and connectivity, among indoor objects.

 - Multi-Layered Representation: A single indoor space is often

semantically interpreted into different cellular spaces.

IndoorGML files contain 5 different layers (See Figures 12- 16 [23]):

- L1 – TOPOGRAHIC - Geometry

- L2 - TOPOGRAPHIC - Navigation

 - L3 - SENSOR - Camera

 - L4 - SENSOR - Localization

- L5 - TAGS - Semantic

In this work, only the first layer of the IndoorGML map, (See Figure 12), is used

for the generation of occupancy grid map. In this layer, topographic geometry of the

indoor environment is stored. Each polygon composing the overall map is defined by the

corner points of the polygon. Semantic information such as doors are also included in

this layer. For every polygon, it is stated if this polygon is a navigable space or not.

There is also transition information in this layer but it is ignored in this work.

IndoorGML files used in this thesis have coordinates such that 1 point

corresponds to 1 centimeter meaning that resolution of the map is 100 pixels / meter. In

Chapter 4.2 process of interpreting IndoorGML file will be explained in detail with the

specific tags used to retrieve the necessary information.

http://isin12.dti.supsi.ch:5001/worlds/Como/map/layers/L2
http://isin12.dti.supsi.ch:5001/worlds/Como/map/layers/L4
http://isin12.dti.supsi.ch:5001/worlds/Como/map/layers/L5

Chapter: Software Project 31

Figure 12: L1 - TOPOGRAPHIC - Geometry

Figure 13: L2 - TOPOGRAHIC - Navigation

Chapter: Software Project 32

Figure 14: L3 - SENSOR - Camera

Figure 15: L4 - SENSOR - Localization

Chapter: Software Project 33

Figure 16: L5 - TAGS - Semantic

4.1.3 ROS

ROS (Robot Operating System) is an open-source operating system for robots,

developed by the Stanford Artificial Intelligence Laboratory and by Willow Garage. More

precisely, it is a meta-operating system, as it provides a structured communication layer

above a host operating system. Its aim is to provide a general framework, suitable for

the most common use cases in robotic software development [9].

a. Basic structure

A system built using ROS is made of a certain number of processes, potentially

on a number of different hosts, connected at runtime in a peer-to-peer topology. Those

processes are called nodes. In a typical robot application, each node is responsible for a

specific task, often related to a particular part of the hardware. [3]

Chapter: Software Project 34

Nodes communicate with each other by passing messages. A message is a typed

data structure. Standard primitive types, such as integer, float, etc. are supported, but

programmers can also create custom messages and combine different types to produce

more complex messages. A node sends a message by publishing it to a given topic. A

node that is interested in a certain kind of data must subscribe to the proper topic. In

general, many nodes publishing or subscribing to the same topic may exist, and a single

node may publish or subscribe to multiple topics. Publishers and subscribers are not

aware of each other’s existence.

Although this topic-based model, which is founded on publish and subscribe

paradigm, is very flexible and can be useful in many of the most common cases, it is not

appropriate for synchronous transactions. To solve this problem, ROS provides the

possibility to define a so-called service that is a pair of messages, one for the request

and one for the reply. This is similar to what happens on Web services, which have

request and response documents of well-defined types.

In order to let processes locate each other at runtime there is a module called

master, which provides naming and registration services to the rest of the nodes in the

ROS system. It tracks publishers and subscribers to topics and services. [10]

b. Main properties

The structure, made of independent nodes and messages, improves the reuse

and extensibility of software projects. In fact, the encapsulation of code forced by this

structure, makes it relatively easy to take a single node or a package, that is a set of

nodes, from a project and put it into another project.

The only required effort is to adapt the new project to the interface of the retrieved

nodes, namely message types and topic names, without having to touch their inner

code. For these reasons, many generic nodes are provided, by the ROS team or by the

community of programmers, and can be used in many cases directly out of the box or

with little tuning. Among those, there is a variety of drivers for the most famous or

common devices for robots, like sensors and input devices. The growing diffusion of

Chapter: Software Project 35

Figure 17: ROS basic structure [11]

ROS as a standard for robot software developing has increased the number of available

solutions for many typical problems. [3]

Another important feature of ROS is that it allows communication between nodes

written in different programming languages. This allows, to write some parts of the

software in an interpreted language (like Python) to make those parts configurable and

testable with less effort, and use more complex, compiled languages (like C++) to deal

with tasks that have strict constraints in terms of time or memory consumption. ROS is

not a monolithic development and runtime environment. On the contrary, it is composed

of many small tools, able to perform various tasks. [3]

All these tools can be run by means of bash commands, so they are integrated in

the normal operating system usage. These tools allow navigation through the source

code tree, getting and setting configuration parameters, running single nodes or sets of

Chapter: Software Project 36

nodes, see which topics and nodes are running, visualizing messages published on a

topic, and so on. This modular structure is useful when debugging, especially if the

scope of investigation is a single part of the project, such as a single node. In fact, a

node can be run, modified, and then rerun without having to restart the whole

infrastructure: the graph composed by talkers and listeners is dynamically modifiable.

ROS also provides specific tools for recording and playing back nodes, thus simplifying

data analysis and research. [3]

Among the tools provided by ROS, an important role is played by graphic tools.

Programmers can plot data and visualize graphs containing nodes, topics and relations

between them. There is also a complete tool for data visualization, called rviz. This tool

allows to view maps, reference frames, landmarks, planned paths, sensor data, and so

on. In a nutshell, ROS allows to employ less effort in the coding and engineering parts,

and to concentrate more on the core research. [3]

In this thesis, a few specific ros nodes and messages are used in the

implementation to reach the goal intended. map_server node with some modification

(will be explained in chapter 4.2) is used for publishing a map on the wheelchair and

retrieving map info. Odometry messages are used to detect position, direction and

velocity of the wheelchair and to visualize wheelchairs movement. Laser scan messages

are used also for retrieving information about the obstacles around the wheelchair.

These obstacles are detected by lasers. Laser scan can also be visualized on the map

during the visualization of the wheelchair movement. Moreover, a custom service

message is generated in order to create a service for updating the published map while

map_server is running.

Beside these nodes and messages used directly in the implementation, some

other nodes and tools were used for simulating the wheelchair. These nodes and tools

will be explained in Chapter 5.1.

Chapter: Software Project 37

map_server Node:

map_server node provides publishers for map metadata and occupancy data of

the map. Maps used by map server are stored in a pair of files. The YAML file describes

the map meta-data, and names the image file. The image file encodes the occupancy

data of the map. The information about YAML file and image holding occupancy data

has been explained in the previous chapters.

With the modification on map_server node, a new feature, added. With this new

feature map can be updated with a service call to map_server node. This helps to

change the map being published by the map_server which is used by the wheelchair

when the node is already running without the need of stoping and restarting the node.

Modification made on the map_server is explained briefly in Chapter 4-2.

Odometry Messages:

Odometry is the use of data from moving sensors to estimate change in position

over time. Odometry is used by some robots to estimate (not determine) their position

relative to a starting location[12]. This method is sensitive to errors due to the integration

of velocity measurements over time to give position estimates.

ROS uses odometry to estimate the position of the robot. Especially the

Navigation stack uses odometry. Using odometry messages, estimated position and the

velocity of the wheelchair is retrieved and used for the visualization of the wheelchair

movement on the map.

Compact message definition for Odometry message: [13]

 std_msgs/Header_header

 string child_frame_id

 geometry_msgs/PoseWithCovariance pose

 geometry_msgs/TwistWithCovariance twist

Variable pose holds the estimated position and orientation info where variable

twist holds angular and linear velocity. Orientation is given in quaternions instead of

Chapter: Software Project 38

Euler Angles since Euler Angles are limited by a phenomenon called "gimbal lock,"

which prevents them from measuring orientation when the pitch angle approaches +/- 90

degrees. A quaternion is a four-element vector that can be used to encode any rotation

in a 3D coordinate system.

LaserScan Messages:

Laser scanners are commonly used sensors in robotics. LaserScan message is a

type of sensor message that gives information about the obstacles around wheelchair.

Basically, laser rays are sent from the sensor to environment with a fixed angle

increment between each ray within the angle ranges of the sensor. If there is an

obstacle in the direction of the ray, this distance and intensity is detected. If ray does not

hit any obstacle within the range that sensor can detect, infinity assigned for this rays

distance. In this manner all the angles from defined minimum angle to defined maximum

angle are controlled and the values of distances and intensities are saved.

LaserScan messages are used in the visualization part, by processing the

retrieved message and drawing lines for each ray in the length of distance detected.

Compact message definition for LaserScan message: [14]

 std_msgs/Header_header

 float32 angle_min

 float32 angle_max

 float32 angle_increment

 float32 time_increment

 float32 scan time

 float32 range_min

 float32 range_max

 float32[] ranges

 float32[] intensities

4.1.4 ROSJava for android

rosjava_core is a pure Java implementation of ROS. It provides a client library

that enables Java programmers to quickly interface with ROS Topics, Services, and

Chapter: Software Project 39

Parameters. It also provides a Java implementation of roscore. Because ROS is heavily

dependent on network communication, ROSJava is asynchronous. [15]

ROS is also available to android with libraries developed based on ROSJava

client and core libraries.

android_core is a collection of components and examples that are useful for

developing ROS applications on Android.

android_core provides Android Library Projects to help for writing ROS

applications for Android. The library projects are named for the Android API level they

require (e.g. android_gingerbread_mr1 and android_honeycomb_mr2). Each class or

feature is defined in the library project that represents the minimum version of Android

required for it to work. [16]

In this thesis android_gingerbread_mr1 (API level 10) library project is used. It is

the lowest API level supported and provides the base Activity(RosActivity) and Service

(NodeMainExecutorService) for executing and managing the lifecycle of your

NodeMains. [16]

Beside the core dependencies of rosjava for android, there are also some other

rosjava packages included in the application for specific features such as messages,

services.

Moreover, service messages for communicating with the modified version of the

map_server are generated and included as an external library and included to

application. More information will be given about this generated jar file in Chapter 4-2.

4.2 Software Project Implementation

In this section, implementation of the software project is explained in detail. The

general structure of the application, implementation of the android application, and

modifications made on the map server node are included. In the sections explaining

http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/reference/android/app/Activity.html
http://rosjava.github.io/android_core/latest/javadoc/org/ros/android/RosActivity.html
http://developer.android.com/reference/android/app/Service.html
http://rosjava.github.io/android_core/latest/javadoc/org/ros/android/NodeMainExecutorService.html
http://rosjava.github.io/android_core/latest/javadoc/org/ros/node/NodeMain.html

Chapter: Software Project 40

android application implementation and map server modification, some important code

pieces are shown and explained for guiding the future developers.

4.2.1 Android Application

4.2.1.1 Layouts and resources

In the application, there are three different screen serving for different

functionalities of the project. These screens are Home Screen, Settings Screen, and

Maps Screen. For each screen, there is a xml layout file under res/layout folder:

activity_main, activity_maps, activity_settings.

Layout files define the user interface of the screens with components such as;

buttons, edit text boxes, text views, image views, list views, and layouts. All three layouts

have been divided into two parts. On the left buttons for navigation exists and on the

right, there are other components for specific features of each pages. These layouts are

updated from the activity classes according to the actions taken by user. Each screen

has an activity class for managing the layout and responding to user inputs. Since the

application is intended for tablets, all the screens are in landscape orientation. In all

layout files, the flag for keeping the screen always on while the application is running is

set to true.

Beside the layout files, there is a file named strings.xml under values folder. This

file is used for holding the string values used in the application.

In AndroidManifest file, minimum sdk version is defined as 10 and the target is

21. Configuration of the application are made in this file. Moreover, for using some

features permissions are added such as:

WRITE_EXTERNAL_STORAGE: allows application to create files under

the external storage of the device.

 INTERNET: allows application to connect internet.

 ACCESS_NETWORK_STATE: allows application to get the information

about the state of network connections.

Chapter: Software Project 41

 WAKE_LOCK: allows application to hold the screen from locking itself.

Functionalities and components of each screen are described below:

Home Screen:

On the left part of the main screen users see navigation buttons for other pages.

Below these buttons there is a panel for giving information to user. The chosen map

name (when app is started default map name is shown) is shown on start. When

application starts or main screen is viewed from other screens, if there is no wifi

connection, user is warned since it is necessary to have a wifi connection for map

preview. If there is an image file already created before and placed into ALMA_MAP

folder under devices file structure for the chosen map, Preview button for starting the

preview is shown under the information panel. When preview is started, a checkbox is

seen below Disconnect button for retrieving and visualizing laser scan information.

Users can enable and disable the laser scan visualization on the map using this

checkbox.

On the right side of the main screen, there is a panel for showing the map and

wheelchair movement. This is a simple imageview showing the related part of the map

and wheelchair with position and velocity information on it. To see the map, user should

be connected to same connection with wheelchair and press on preview button. Map will

be updated as the wheelchair moves around. There will be two buttons on the right

upper corner of the screen for zoom in and zoom out. The implementation will be

explained in MapViewer class.

Settings screen:

On the left part of the settings screen there are navigation buttons for other

screens. Below these buttons, there is a panel showing information about connection

status and published map metadata.

Chapter: Software Project 42

By default the status is Disconnected and when user press on connect button on

the right part of the screen, this status turns into Connecting. If connection is successful

users see status as Connected and width, height, resolution information of the published

map from the wheelchair. This connection is made only for testing the connection with IP

and port number saved in settings screen. If there is no wifi connection and connect

button is pressed, users are warned that for proper connection device should be

connected to same local network with wheelchair.

On the right part of the screen, there are edit text boxes for entering wheelchair

name which will be visualized on the map(this name is node name which publishes

odometry and laser scan messages), odometry and laser scan topic names, IP and port

number for connecting to wheelchair. Below these boxes, there are two edit boxes for

username and password for the SSH framework running on wheelchair environment to

be used for establishing a SFTP connection and sending map. Below these boxes there

is a save button for saving the entered information and to be used in all other sections

using connection to wheelchair. By default, these boxes are filled with default values.

Next to save button, a button is placed for testing the saved values used for connecting

to wheelchair as explained above.

Maps screen:

In the maps screen, similar to other screens, there is left panel for navigation

buttons. On the right part, there are two tabs. By default users see the map list panel,

which lists the maps in the ALMA_MAP folder with xml (IndoorGML) format. Users can

choose a map and see parse or send buttons. If the map is not parsed before and YAML

format is not generated yet, send button is not visible. After clicking on parse button,

map is parsed with the given resolution and YAML format is generated with an image

holding the occupancy data and and image to be used in visualization. Users can send

the map to wheelchair by choosing the map from the list and clicking on send button. For

connection, values of IP, username, and password are taken from already saved values

in the settings screen. If there is no wifi connection user is warned with a dialog.

Chapter: Software Project 43

On the second tab, there is an option for downloading IndoorGML files by using

the download url. By default, there is an example url and map name in the edit box

widgets. When user clicks on dowload, file is downloaded and placed under

ALMA_MAPS folder. Device should be connected to internet for downloading the file. If

there is already a map with the entered name in ALMA_MAPS folder, the old file is

replaced with the new one.

4.2.1.2 File structure and classes

The file structure of the project is shown below:

→i. activity

1. BaseActivitiy

2. MainActivity

3. SettingsActivity

4. MapsActivity

→ ii. almaui

 a. ALMA

 → b. utils

 1. AlmaMap

 2. AlmaMapFactory

 3. ServerAdapter

 4. MapViewer

5. Alert

6.OdomInfo

 7. LaserInfo

 8. MapTransferrer

→ iii. ros

1. MapUpdateService

2. OdomListener

3. RetrieveMapInfo

4. SensorListener

i. Activity: Under the activity folder, there are activity classes for managing the user

interface and implementing the logic with the help of other classes.

1. BaseActivity: This class is a parent class for other Activity classes in the

project. Therefore, the shared methods and variables are placed in this class

and they are inherited by the other activity classes.

Chapter: Software Project 44

There are three methods defining the navigation buttons callback

handlers (mapsClickHandler, settingsClickHandler, homeClickHandler).

These methods are mapped to corresponding buttons from the child activity

classes for each screen.

Since NodeMainExecutor class, which is the class for executing ROS

nodes in ROSjava environment, is used by all the activity classes, it is placed

in this class. There are variables holding wheelchair uri (IP), wheelchair port,

wheelchair username, wheelchair password and default values are assigned

to these variables. With a method in BaseActivity class, saved values in

Settings screen are taken from the shared preferences and replaced with the

default values. This method is called at the beginning of each activity, so in

all activities latest saved values are used.

When user exits from the application or changes the screen in the

application, NodeMainExecutor class instance should be shut down so that

the connection with wheelchair is closed for that activity. Therefore,

whenever user navigates using the navigation buttons or presses on back

button, if NodeMainExecutor is already running, shutdown method of this

class is called inside the navigation button callback handler and back button

pressed callback handler.

2. MainActivity: MainActivity class extends the BaseActivity class and holds

the methods and variables for managing the main screen. It holds a variable

for the name of the map to be shown in preview. This map name has a

default value on start and is changed whenever user sends a new map to

wheelchair. This class contains variables holding the odometry information

and sensor information retrieved from wheelchair. These variables are

modified within the OdomListener class or SensorListener class and used in

visualization process.

Moreover, mapViewer variable in MainActivity class is used to update

the map preview and wheelchair position. Whenever a new odometry

Chapter: Software Project 45

message is received by OdomListener class, variables holding the rotation,

position and velocity of the wheelchair are assigned with new values, values

shown on the screen are updated and method for updating the map preview

is called from mapViewer instance. All these are made inside a handler

created in MainActivity. Also, sensor information is updated if show sensors

option is selected and laserInfo in mapViewer instance is updated by the

same handler.

In the initialization, the method for getting the latest values of

wheelchair Ip, port, username, and password is called from the parent

activity to be used later for connecting to wheelchair and getting the position

information or laser scan information of wheelchair.

The image view for previewing the map has also zoom in and zoom

out feature. Therefore, in MainActivity class there is a ScaleGestureDetector

instance for receiving pinch gestures on map image and updating the view

accordingly as well as callback for zoom in and out buttons.

When user starts the application main screen is viewed, which means

MainActivity class is initialized. In the initialization, if the device is not

connected to wifi, user is warned with a dialog informing that device should

be connected to same wifi connection with wheelchair in order to preview the

map. Same dialog is shown also when user tries to preview map by clicking

on preview button without connecting to a wifi. If the image file for the

chosen mapname does not exist under ALMA_MAPS folder, user is warned

with a small message telling the map chosen does not have the

corresponding image file. In this case user cannot see the Preview button. To

be able to continue with the preview, user should go to maps screen, parse

the corresponding file (download if necessary), or choose a map with

generated image and send it to wheelchair.

In MainActivity class, there are methods for putting the image of the

map on the imageview widget by initializing mapViewer instance, setting up

Chapter: Software Project 46

the handlers for zooming and updating the map view, starting the connection

for receiving the odometry messages from wheelchair. These methods are

called inside the callback handler of preview button. When the preview is on,

it is possible to disconnect and stop the preview with another method which

is the callback handler for disconnect button. This button replaces the

preview button when preview is started and vice versa when preview is

stopped. There is also methods for starting the sensor visualization.

3. SettingsActivity: SettingsActivity extends the BaseActivity and holds the

methods and variables for managing the settings screen. There are variables

holding the map information to be shown on the screen after the test

connection, which can be established by using a button on this screen. There

is also a variable holding the status of the connection, which is in disconnect

state on start-up and becomes connecting when user tries to test the values

saved in this screen. If the connection is successful, state becomes

connected and map metadata information is shown on the status panel of the

screen.

In the initialization of SettingsActivity, the values of the wheelchair

name, uri, port, username and password are retrieved from the shared

preferences and placed to corresponding edit text views on the screen. User

can edit these values and save by calling a method, which saves these

values in shared preferences of the application to be used by all other

methods in the application which connect to wheelchair.

When user test the connection with connect button, if device is not

connected to wifi, a similar dialog to the one in MainActivity warns the user

about the wifi connection.

4. MapsActivity: MapsActivity class extends the BaseActivity class and

contains the methods and variables for managing the maps screen. There is

a ProgressDialog instance, which is shown whenever a task is processing in

Chapter: Software Project 47

the background such as downloading IndoorGML file, sending map to

wheelchair, parsing IndoorGML file for generating the YAML formatted maps.

In maps screen there are two tabs. In the tab map list, which is shown

by default, there is the list of maps in IndoorGML format, which are placed

under ALMA_MAPS folder. In the initialization of the MapsActivity class, this

list is created with an adapter. There is also a callback assigned to this list.

When user selects a map from the list, on the right panel, the name chosen

is shown as well as an edit text box for resolution to be used for parsing file

and a button for calling the parse task. If the map has already parsed and

YAML format is generated send button is also placed next to parse button.

For switching between tabs, there are two methods assigned to tab

buttons. These methods update the layout and show the correct components

on the screen.

On download map screen, there are two edit text boxes with a button

for downloading the map using the uri in the edit text box above and saving

with the name in the second edit text box.

For downloading, parsing, and sending map, there are different

AsyncTask classes created and placed under MapsActivity class. These

tasks are started within the callback handler methods of the corresponding

buttons.

When download button is clicked, callback method gets the uri and

map name written in the boxes, using these values calls the DownloadTask.

DownloadTask method uses ServerAdapter class for connecting to

AlmaServer and downloads the file. The progress dialog is shown until the

task is finished. If download is successful, map list is updated with the new

file. If the name chosen for the downloaded map is same as one of the

indoorGML files under ALMA_MAPS folder, the file is replaced with the new

file.

Chapter: Software Project 48

When a map is chosen from the list and parse button is clicked,

resolution value entered is taken and used for calling ParseTask. ParseTask

uses AlmaMapFactory class for generating the YAML formatted map. The

progress dialog is shown until task finishes.

If user chooses a map and clicks on send button while the device is

not connected to wifi, user is warned with a dialog telling that device should

be connected to same wifi connection with wheelchair in order to send the

map. If the connection is valid, SendTask is started from the callback handler

of the button. SendTask uses MapTransferrer class for sending the chosen

map in YAML format with the image file containing occupancy data to

wheelchair.

After sending and locating these files under the file structure of the

wheelchair, a service call to wheelchair is made by using MapUpdateService

class. When a map is sent, this map becomes the one to be previewed on

the main screen.

ii. Almaui: Under almaui folder, there are utility classes, which are used by activity

classes for accomplishing the tasks explained above.

a. ALMA: ALMA class holds the uri for the default ALMA server and the default

world to be used while downloading the indoorGML file. This value is shown

when download tab in maps screen is viewed. User is supposed to modify the

url on the screen in order to download a different map.

b. Utils: Under utils folder there are supplementary classes explained below:

1. AlmaMap: AlmaMap class is a helper class for AlmaMapFactory and

it holds the variables for generating a map from indoorGML

file(mapName, xMax, yMax, xMin, yMin, translationX, translationY,

rotation, resolution). There are getter and setter methods for all this

variables. mapName holds the name of the map to be generated as

well as being parsed. xMax, yMax, xMin, yMin variables are used for

calculating the width and height of the image file to be generated.

Chapter: Software Project 49

These will take the lowest and highest values from the points defined

in indoorGML file while parsing the indoorGML file inside

AlmaMapFactory class.

Moreover, there are static functions inside this class which

gives the path on the device for the map which is given as parameter

to these functions. There are five static methods: one for general path

for ALMA_MAP folder and others for xml, yaml, and two png formatted

files for the given map name.

2. AlmaMapFactory: AlmaMapFactory class is used by ParseTask in

MapsActivity and serves for parsing the indoorGML file, which is

previously downloaded under ALMA_MAPS folder. There are six static

methods in this class.

First method, createAlmaMap, is called with a map name and

resolution value. The xml file content is retrieved with another static

method in this class (getFileToParse). An AlmaMap instance is

created and the values are assigned to this instance to be used in the

next steps of the process. Three other methods are called from the

createAlmaMap method in the order: initializeMapValues,

generateMap, and saveFiles.

InitializeMapValues method is called with the almaMap

instance and the content of the xml file, which has been retrieved

previously. In this method, indoorGML file is parsed using an xml

parser instance to set the variables in AlmaMap instance by reading

the specific tags in indoorGML file (xMax, xMin, yMax, yMin,

translationX, translationY, rotation).

After initialization of the almaMap instance, occupancy data

bitmap is generated by calling generateMap method with parameters:

almaMap and xml file content. This method generates a bitmap by

parsing the xml file content and using the previously retrieved

Chapter: Software Project 50

information about almaMap instance. The width and height of this

bitmap is calculated by almaMap instance by taking into account the

xMax, yMax, xMin, yMin values. Similar to initializeMapValues

method, specific tags of the indoorGML file are parsed and polygons

are drawn on the bitmap created.

The polygons are colored according to their availability for

navigation with the logic below:

 If polygon is navigable → white color

 If polygon is obstacle or wall → black color

 If an area is not defined by indoorGML tags → gray color

Polygons indicating doors are retrieved and painted into white

color by generateMap method. The generated bitmap is resized

according to the resolution value set by user and this resized bitmap is

returned as the occupancy data image. Beside the bitmap image

returned as a result, another image is created and saved with a fixed

resolution (10 pixels / meter) in order to be used for visualization. This

image file is created by calling saveVisualizationImage method and

giving almaMap, bitmap generated, width and height values of the

map to be created as parameters. This method simply resizes the

image to given dimensions and saves under ALMA_MAPS folder.

After initializing almaMap instance and generating the bitmap

with occupancy data, saveFiles method is called for creating and

saving the YAML file and image file in png format. This method takes

bitmap and almaMap instance, previously generated by other

methods, as parameters and saves an image file in png format under

ALMA_MAPS folder with the same map name given. Moreover, the

YAML format holding the metadata of the map is created by using the

information from almaMap instance. Image name, resolution assigned,

origin, occupied and free threshold values are written into text file.

Chapter: Software Project 51

TranslationX, TranslationY and rotation values from the almaMap

instance are also added as lla_origin value in this file. This yaml

formatted file is saved under ALMA_MAPS folder as well as the image

file generated which will be sent to wheelchair.

3. ServerAdapter: ServerAdapter class is used by DownloadTask in

MapsActivity class. This class simply has a static method which

creates a HTTP request with a Json object parser and gets the

content of the file which is published on the url given as parameter.

This content is saved as an xml file with the given name as a

parameter under ALMA_MAPS folder. In order to have a successful

download call, the device should be connected to internet.

4. MapViewer: MapViewer class is used by MainActivity class for

visualization of map preview and wheelchair movement on the map.

When user clicks on Preview button on main screen, an instance of

mapViewer is created with parameters:

imageView(the widget on the screen for viewing the map image),

mapImage(full bitmap image of the map),

positionX(text view showing the position of wheelchair on x plane),

positionY(text view showing the position of wheelchair on y plane),

width(width of the image part to be shown on screen with zoom),

height(height of the image part to be shown on screen with zoom).

If preview is already called once and clicked again, instead of

creating a new instance updateMap method of the previously created

instance is called with mapImage, width, and height values.

MapViewer class has fields for the values given as parameter

in initialization and an extra field for holding the part of the image to be

shown which changes dynamically according to the position of the

wheelchair and zoom value set by user. There is also LaserInfo class

instance, which is updated by the handler in MainActivity setting the

Chapter: Software Project 52

values retrieved from wheelchair with SensorListener class. LaserInfo

instance is used for adding the sensor information on the map.

UpdateMap method of this class is called for updating the

previously created mapViewer and restart preview, after disconnecting

the previous preview. It simply updates the bitmap image by recycling

the old one and replacing it with the new one from parameter.

Variables holding the width and height are also updated with the new

parameters.

UpdateViewerZoom method is called from MainActivity class

whenever a pinch gesture is detected. The width and the height of the

map being previewed are recalculated with the new zoom value from

parameter. For calculating the new width and height, the original width

and height of the bitmap image is divided by the value:

(zoom + 1) * 0.5

The text widget showing the zoom value on the screen is

updated from MainActivity class after zooming.

Whenever a new odometry message retrieved by MainActivity

class, setPosition method of the MapViewer class is called in order to

update the position of the wheelchair and change the part of the

image shown on the screen. This method first updates the values of

the text widgets on screen showing the position of the wheelchair on x

y plane. The part of the map shown on the screen is calculated

according to width, height values after zoom. If the wheelchair is not

close to boundaries of the map, it is placed in the middle of the

preview. If the wheelchair is close to boundaries of the map, the

closest part of image to wheelchair with calculated width and height is

shown and wheelchair is not placed in the middle anymore.

Chapter: Software Project 53

After calculating the part of image to show, wheelchair is drawn

as a blue circle and velocity as a smaller yellow circle on the map

showing the next position that wheelchair will move (the direction of

the wheelchair). If the sensor visualization is enabled, results of the

laser scan is visualized on the map by drawing a red line for each

laser by using the values retrieved from LaserInfo instance which is

updated with new values by SensorListener class. After calculating the

current status of the map (map preview, wheelchair position, direction

and laser scan optionally), image view on the screen is updated with

the created bitmap image. If wheelchair is out of the boundaries of the

map, only the visible part of the laser scan or wheelchair is drawn on

the map.

5. Alert: Alert class has a static function for creating an alert dialog

easily by giving context, title for dialog, and message of the dialog.

This method is called by the activity classes whenever an alert dialog

is needed to give warning or information to users.

6. OdomInfo: OdomInfo class is created to store the values retrieved

from the odometry topic of the wheelchair. There are fields and

getter/setter methods for holding x, y plane coordinates of wheelchair

position in meters, x, y, z, w values of the orientation (quaternion

values) to be used in calculating the wheelchair direction, and linear

velocity of wheelchair on x, y planes.

MainActivity has and OdomInfo instance and values of this

instance is updated by OdomListener class with the values retrieved

from odom topic of the wheelchair. These values are used for calling

the setPosition method of MapViewer instance in order to calculate

the new preview image.

The angle in degrees, which shows the rotation of the

wheelchair from the default direction is calculated using quaternion

Chapter: Software Project 54

values (only z and w) within convertAngleToDegrees method with the

formula given below:

 if z > 0

 angle_in_degrees = 2 * acos(w)

 else

 angle_in_degrees = -2 * acos(w)

7. LaserInfo: LaserInfo class is created to store values laser scan

values retrieved from wheelchair by using SensorListener class. There

are fields and getter/setter methods for the values of:

angleMin (minimum angle of the laser scan with the direction of

wheelchair),

angleMax (maximum angle of the laser scan with the direction

of wheelchair),

angleIncrement (angle difference between two laser scans),

rangeMax (maximum distance that laser can measure in

meters),

rangeMin (minimum distance for laser),

ranges (list of distances in meters scanned for each angle

within the range of laser at a given time instance).

The values are used for drawing the sensor information on the

map preview if users choose the option of showing sensor for the

given laser name while preview is on. In setPosition method of

MapViewer instance, for each angle that laser can scan, a line is

drawn on the preview image by calculating position and direction of

each ray relative to the position and direction of the wheelchair.

8. MapTransferrer: MapTransferrer class is used for sending the map

to wheelchair by SendTask of MapsActivity. There is a static method

called transferMap which takes the name of the map to be sent, ip,

username, and password of wheelchair as parameters and creates a

Chapter: Software Project 55

SFTP connection using these values. Via this connection YAML file

and the png file holding data for the map chosen are sent and placed

under ALMA_MAPS folder on wheelchairs file structure.

iii. Ros: Under ros folder, there are classes for connecting to ros master running on

the wheelchair in order to retrieve information or modify the current running nodes. This

classes are called from activity classes using NodeMainExecutor instances, and they

connect to wheelchair using the ros message passing paradigm. In order to have

successful calls with these classes, device should be connected to same wifi connection

with the wheelchair and the values for connection (IP, port) should be set correctly.

1. MapUpdateService: MapUpdateService class used by MapsActivity class in

order to update the modified version of the map service node running on

wheelchair after sending a new map to wheelchair. It uses generated

MapUpdateResponse and MapUpdateRequest classes, which are imported

into project as a jar file as service messages to send the map path and

retrieve the result of the action. The path of map on the wheelchair is set as

the path value in MapUpdateRequest class and this request is sent to

wheelchair. If the running instance of the map server is not the modified one

within this project, the update call is not going to be successful. After a

successful map update call, map server node running on wheelchair will start

publishing the new map under the given path.

2. OdomListener: OdomListener class is used by MainActivity class in order to

get the position, direction and velocity (next point to be navigated) of the

wheelchair on the map. When user starts the preview, and instance of

OdomListener class is started and a handler is assigned to receive update

message from OdomListener. This handler is passed as a parameter when

initializing the OdomListener instance. Whenever a new odometry message

is received from the wheelchair, variables in MainActivity class holding the

position and velocity of the wheelchair in x/y planes are updated with

Chapter: Software Project 56

received data and an update call is made to handler in MainActivity in order

to make a call to setPosition method in MapViewer class.

3. RetrieveMapInfo: RetrieveMapInfo class is used by SettingsActivity class

for testing the connection between wheelchair and device. When user clicks

on connect button after saving the correct values of the Ip and port number of

the wheelchair, an instance of this class is started. This class simply listens

to map metadata published from the map server node running on the

wheelchair. When the metadata of the map is retrieved, a message to the

handler, which is created and send to this class as parameter in the

constructor, in order to update the values shown on the screen with the ones

just received. Width, height, and resolution of the map published from map

server is retrieved and the connected status in the SettingsActivity is

changed to true after a successful call.

4. SensorListener: SensorListener class is used by MainActivity similar to

OdomListener class, but instead of odometry messages, purpose is to

retrieve laser scan messages from wheelchair. Laser scan messages give

information about the obstacles around the wheelchair and distance between

wheelchair and these obstacles or walls. When user fills the name of the

correct laser to be listened and starts sensor visualization while preview is

on, this class starts to listen to the topic publishing the laser scan results.

When creating an instance, same handler for OdomListener is passed as

parameter as well as the names for wheelchair and laser to be listened. A

new node is created which subscribes to the given topic, which publishes the

laser scan messages and whenever a new message arrives, LaserInfo

instance in MainActivity is updated with the new values from the message.

4.2.1.3 Implementation of the specifications

Chapter: Software Project 57

In this section, some code pieces used in the implementation of different tasks

will be explained in detail.

a. Downloading IndoorGML file:

Downloading and creating the IndoorGML file is done by a static method in

ServerAdapter class. This method is called from doInBackground method of

DownloadTask instance in MapsActivity class with the url and map name entered by

user into edit boxes on the screen:

 ServerAdapter.downloadMap(downloadUrl, downloadedMapName);

Inside the downloadMap method a HttpRequestFactory is created from

HTTP_TRANSPORT, in order to create requests using the JSON object parser with

JSON_FACTORY.

Content of the file from the url is parsed as string using a request build from

requestFactory. After getting the content of the file DocumentBuilderFactory is used for

creating a document instance and this document is used to create a DOMSource

instance. A new file is created under ALMA_MAPS folder if there is no file created

before with the same name. DOMSource instance is transformed by a Transformer and

content is saved in xml format into this file.

b. Parsing indoorGML file:

IndoorGML file is parsed by AlmaMapFactory class using AlmaMap class as a

model. The process of parsing IndoorGML file and generating YAML file and image with

occupancy grid maps is divided into a pipeline with 4 steps. Parsing starts from

parseTask subclass of MapsActivity with a call to createAlmaMap method of

AlmaMapFactory with mapname and resolution:

 AlmaMapFactory.createAlmaMap(chosenMap, resolution);

Before parsing starts the first step is getting the content of the IndoorGML file with

getFileToParse method which basically reads the content of the file from file system of

the device.

Chapter: Software Project 58

 String data = getFileToParse(mapName);

After initializing an instance of AlmaMap class with map name and resolution,

initial values for creating the bitmap image for occupancy grid data are retrieved by

calling initializeMap method with parameters almamap, and content:

 initializeMapValues(almaMap, data);

Inside this method, an xml parser instance created for content. To retrieve the

width and height values of the final image, content is parsed according to tag names.

Only the first layer of the IndoorGML format is used. With a loop over the branches of

the xml tree, for each start event, tag names are checked to decide which data that

branch corresponds.

 currentTagName = parser.getName();
 if (currentTagName.equals("gml:Polygon")) {
 inPolygon = true;
 } else if (currentTagName.equals("indoorCore:SpaceLayer")) {
 String layer = parser.getAttributeValue(0);
 if (!layer.equals("L1")) {
 endOfFirstLayer = true;
 }
 } else if (currentTagName.equals("gml:posList")) {
 if (inPolygon) {
 inDataItemTag = true;
 }
 } else if (currentTagName.equals("indoorNavi:translation")) {
 inTranslation = true;
 } else if (currentTagName.equals("indoorNavi:rotation")) {
 inRotation = true;
 }

"gml:Polygon" tag switches a flag to inform the parser is inside one of polygons

which creates the map. "indoorCore:SpaceLayer" tag is checked if the L1 layer is

finished. "gml:posList" is used to get the points of the polygons which will be used in text

event capture to decide the max and min coordinates over x and y planes so the image

size can be calculated. "indoorNavi:translation" and "indoorNavi:rotation" tag names are

used to switch flags for saying translation and rotation of the map according to world

coordinates will be in the next text event.

Chapter: Software Project 59

Inside the text event, the flags are controlled to decide type of retrieved data and

data is processed according to these flags. At the end of process used flags are reseted.

If tag being parsed is point list of a polygon, with a loop over points of polygon

maximum and minimum coordinates calculated for x and y planes are updated with new

values.

 almaMap.setxMax(Math.max(almaMap.getxMax(), Double.valueOf(split[i])));
 almaMap.setyMax(Math.max(almaMap.getyMax(), Double.valueOf(split[i + 1])));
 almaMap.setxMin(Math.min(almaMap.getxMin(), Double.valueOf(split[i])));
 almaMap.setyMin(Math.min(almaMap.getyMin(), Double.valueOf(split[i + 1])));

If data corresponds to translation or rotation these values are set in AlmaMap. If it

is end of firstlayer, process is finished and AlmaMap instance is initialized with

necessary values to generate files.

With generate file method following the initialization bitmap image is created and

occupancy information is encoded.

 Bitmap bitmap = generateMap(almaMap, data);

In this method, bitmap image is created with the width and height calculated by

using the minimum and maximum points of x, y planes retrieved with previous method.

Similar to initialize method, content is parsed one more time. In the second loop over

branches of xml tree, polygons and position list are retrieved as before but with addition

flags for deciding if the polygon is navigable with tag name "indoorNavi:NavigableSpace"

or a connection space (a door) with tag name "indoorNavi:ConnectionSpace".

When the text events are captured if data corresponds to points of polygon, A

path is created to be drawn on bitmap image following all the corners of the polygon.

Path wallpath = new Path();
wallpath.reset();
double firstX = Double.valueOf(split[0]) - almaMap.getxMin();
double firstY = Double.valueOf(split[1]) - almaMap.getyMin();
wallpath.moveTo((float)firstX, (float)(almaMap.getHeight() - firstY));
for(int i = 2; i < split.length; i = i + 2) {

Chapter: Software Project 60

 double x = Double.valueOf(split[i]) - almaMap.getxMin();
 double y = Double.valueOf(split[i + 1]) - almaMap.getyMin();
 wallpath.lineTo((float)x, (float)(almaMap.getHeight() - y));
 }
 wallpath.lineTo((float)firstX, (float)(almaMap.getHeight() - firstY));

As it can be seen for calculating the y coordinate, the number retrieved is

subtracted from the height of the image since the images origin is upper left corner,

while the world’s origin is given as lower left corner.

The polygon is drawn on the bitmap and filled with a color code: white meaning

navigable space or a door, and black meaning obstacles or walls.

When all the polygons defined in the indoorGML file are drawn, image file is saved with

a fixed resolution (10 pixels / meter) for visualization purposes.

 saveVisualizationFile(almaMap, Bitmap.createScaledBitmap(bitmap,

(int)(almaMap.getWidth() / 10), (int)(almaMap.getHeight() / 10), false));

The image is resized according to the resolution value by dividing the width and

height to “almaMap.getResolution() / 0.01” to get an image with correct resolution and

result image is returned as the output.

In the final step two files are saved according to data collected:

 saveFiles(bitmap, almaMap);

In this method, image file is saved under ALMA_MAPS folder in png format and

given map name. YAML files content is generated with values and it is created and

placed in the same folder.

 String yamlData = "image: " + almaMap.getMapName() + ".png \n" +
 "resolution: " + String.valueOf(almaMap.getResolution()) + "\n" +
 "origin: [0, 0, 0] \n" +
 "occupied_thresh: 0.65 \n" +
 "free_thresh: 0.196 \n" +
 "negate: 0 \n" +
 "lla_origin: " + (almaMap.getTranslationX() - almaMap.getxMin()) + ", " +
(almaMap.getTranslationY() - almaMap.getyMin()) + ", " + almaMap.getRotation();

c. Sending map to wheelchair:

Chapter: Software Project 61

Generated files are sent to wheelchair using MapTransferrer class from

SendTask subclass of MapsActivity.

 final String path = MapTransferrer.transferMap(mapNameToSent, wheelchairUri,
wheelchairUsername, wheelchairPassword);

Within this function a secure ssh session is created by using the values given as

parameters:

 Session session = jsch.getSession(wheelchairUsername, ip , 22);
 session.setPassword(wheelchairPassword);

From this session an SFTP channel is created and if the folder does not exist

under the home folder of the username on wheelchair file system, it is created. Through

this channel, both YAML file and png image file are read from device folder, sent to

wheelchair and placed under ALMA_MAPS folder.

The path to YAML file on wheelchair file structure is returned as output. This path

will be sent to map server in order to update the map being published with the new map:

 return "/home/" + wheelchairUsername + "/" + FOLDER_NAME + "/" +
mapNameToSent + ".yaml";

d. Connection to ROS nodes of PMK:

For connecting to ros nodes running on wheelchair in order to retrieve information

or make a service call, NodeMainExecutor class from rosjava library is used. For

sending a service message to modified version of map server node, MapUpdateService

instance is executed with necessary parameters.

 NodeConfiguration mapPathConfig = NodeConfiguration.newPrivate();
 mapPathConfig.setMasterUri(URI.create(wheelchairUri + ":" + wheelchairPort));
 mapPathConfig.setNodeName("MapUpdate");
 NodeMain mapUpdate = new MapUpdateService(path);
 e.execute(mapUpdate, mapPathConfig);

MapUpdateService creates a service clients and calls the service with the path to

YAML file on the wheelchair file system:

Chapter: Software Project 62

 ServiceClient<MapUpdateRequest, MapUpdateResponse> client =
 connectedNode.newServiceClient(SERVICE_NAME, SERVICE_TYPE);
 MapUpdateRequest request = client.newMessage();
 request.setPath(pathToMap);
 client.call(request, new ServiceResponseListener<MapUpdateResponse>() {
 …
 }

MapUpdateRequest and MapUpdateResponse classes are generated according

to custom service message used by modified map server node and included as an

external library to application. Request holds a string variable for the path and response

holds a boolean variable to inform about the result of call stating if it successful.

Generation of these classes will be explained in map server modification section.

For retrieving map metadata being published from map server node, a subscriber

for map metadata is created in RetrieveMapInfo class. This node is executed from

SettingsActivity in a similar way to MapUpdateService call by changing the node name

and creating node as an instance of RetrieveMapInfo class instead of

MapUpdateService class. Inside this class a subscriber for map_metadata topic is

created and added a message listener which assigns the values of map width, height

and resolution to fields in SettingsActivity and calls the handler to inform that values are

updated.

Similar to retrieving map metadata, listening to odometry messages is done by

creating a subscriber for odom topic for the chosen wheelchair name. This node is

created in the same manner with previous nodes by using OdomListener instance. A

message listener is added to subscriber for updating the values of position on x, y plane,

orientation quaternion, and linear velocities on x, y plane in the OdomInfo instance of

MainActivity with each messages retrieved. After assigning values, handler is called to

inform the MainActivity for updating the position and orientation of the wheelchair on the

map.

The same implementation is valid for retrieving laser scan information, where the

node is created as an instance of SensorListener class. In this class a subscriber for the

topic with the given name on the given wheelchair is created. A similar message listener

Chapter: Software Project 63

added for updating values of laser rangeMin, rangeMax, angleMin, angleMax,

angleIncrement, and ranges in LaserInfo instance of MainActivity. MainActivity is

informed about the new message by sending a message to handler.

e. Visualization of wheelchair movement and laser scan:

For the visualization of wheelchair MapViewer class is implemented such a way

that map is placed and the wheelchair position, direction, and laser scan information are

drawn on the top of map image. When preview is starting, wifi connection is checked

and if there is no wifi connection an alert dialog is shown to user asserting preview

cannot start without connection to wheelchair, since it is necessary to retrieve the

necessary data for preview. If the device is connected to wifi a scale gesture detector is

initialized for detecting zoom in or out events. Zoom value changes discretely with every

single event detected.

Width and height of the image to be shown on the screen is calculated according

to the zoom value:

 int width = (int) (mapImage.getWidth() / ((zoom + 1) * 0.5));
 int height = (int) (mapImage.getHeight() / ((zoom + 1) * 0.5));

If the MapViewer instance is not initialized before a new instance is created. If the

preview is being called second time after disconnecting, instead of creating a new

MapViewer instance, old one is being updated with values.

 if(mapViewer == null) {
 mapViewer = new MapViewer(imageView, mapImage, positionX, positionY,
width, height);
 } else {
 mapViewer.updateMap(mapImage, width, height);
 }

After initializing the MapViewer instance, handler is initialized for receiving update

flags for odometry messages from the OdomListener and laser scan messages from

Chapter: Software Project 64

SensorListener. OdomListener is executed with wheelchair ip and port in order to get the

odometry messeges and update the position and direction of the wheelchair.

In the initialization of the MapViewer instance, image view for drawing the preview

image, the original map image to be used, width, height values showing the width and

height of the map that will be visible, text widgets showing the position on x, y

coordinates are assigned to fields. A LaserInfo instance is created and wheelchair is

position is set to default in order to have the map shown on the screen right after the

initialization.

If MapViewer is being updated instead of being created from scratch, the old

image holding the map is recycled and new values for image, width and height are

assigned.

Whenever a zoom event is detected, either by using the zoom in/zoom out

messages on the right upper corner or using pinch gesture, width and height values

deciding the part of the image to be shown are updated:

 this.width = mapImage.getWidth() / ((zoom + 1) * 0.5);
 this.height = mapImage.getHeight() / ((zoom + 1) * 0.5);

If a laser scan message is retrieved, the values of the laser scan are assigned to

LaserInfo instance in this class.

For retrieved odometry message, setPosition method is called in order to redraw

the preview with new values. After updating the text views showing the coordinates of x,

y plane, x and y values retrieved in meters are converted to pixels. Since all the

visualization image files have a resolution of 10 pixels / meter and origin of the image

save is different than the origin of the coordinates received x and y values in pixels are

calculated as:

 y = mapImage.getHeight() - (y * 10);
 x = x * 10;

Chapter: Software Project 65

After converting all values in pixel coordinates, starting point of the image going to

be viewed are calculated. Since wheelchair is going to be in the center of the image, half

of the width and height are substracted from the coordinates:

 int startX = (int)(x - (width / 2));
 int startY = (int)(y - (height / 2));

If wheelchair is close to boundaries, it can not be placed in the center of the

image that will be viewed. Therefore, calculated starting points should be checked if they

are out of the boundaries as well as the end points (startX + width, startY + height):

 int positionToStartX = (int)((mapImage.getWidth() - x) > (width / 2) ? startX :

mapImage.getWidth() - width);

 int positionToStartY = (int)((mapImage.getHeight() - y) > (height / 2) ? startY :
mapImage.getHeight() - height);

Firstly, end points of the image that will be viewed are checked. If they are in the

map, initial values are used. If they exceed the width and height of the whole map,

starting points are selected for fitting the end points on the boundaries of the whole map.

 positionToStartX = Math.max(positionToStartX, 0);
 positionToStartY = Math.max(positionToStartY, 0);

After checking the endpoints, calculated start coordinates are checked if they are

negative. This means wheelchair cannot be in the center of the shown image and

starting points of the image will be viewed should be fitting the starting boundaries of the

whole map. With the final values the part of image that will be viewed on the screen is

selected from the whole map.

 partToShow = Bitmap.createBitmap(mapImage, positionToStartX,
positionToStartY, (int) width, (int) height);

The wheelchairs coordinates are calculated according to the starting point of the

image being viewed:

Chapter: Software Project 66

 double wheelchairX = x - positionToStartX;
 double wheelchairY = y - positionToStartY;

Over the image a blue circle is drawn at the position calculated using a canvas. If

the laser scan is also going to be visualized, a loop over the range values for each ray

starts. For each ray, angle between the base direction and the ray is calculated using

the data from LaserInfo which is being updated with every laser scan message:

 float rayDegree = (float) Math.toDegrees(laserInfo.getAngleMax() - (rayNumber *
laserInfo.getAngleIncrement()));
 matrix.postRotate((float)degree + rayDegree);

The exact coordinates of the rays end point is calculated by rotating the rays

distance. Angle is calculated in degrees by summing the wheelchairs rotation angle and

calculated for the specific ray. Wheelchairs rotation angle is calculated from quaternion

values inside OdomInfo class and passed to setPosition method as a parameter.

 if orientationZ > 0
 degree = -1 * Math.toDegrees(Math.acos(w) * 2);
 else

 Math.toDegrees(Math.acos(w) * 2);

The distance of the ray is checked if it is lower than rangeMin or higher than

rangeMax for laser. To show the ray on the map a red line is drawn from wheelchairs

position to calculated end point.

 canvas.drawLine((float)wheelchairX, (float)wheelchairY,
(float)wheelchairX + rayEnd[0] * 10, (float)wheelchairY + rayEnd[1] * 10, paint);

After drawing the wheelchair circle and laser scan according to position and

rotation of wheelchair, velocity information and rotation of the wheelchair is interpreted

and next point that wheelchair will navigate is drawn as a yellow circle which has half the

radius of the wheelchair circle.

 canvas.drawCircle((float)(wheelchairX + point[0] * 10), (float)(wheelchairY
+ point[1] * 10), wheelchairRadius / 2, paint);

Chapter: Software Project 67

The final result has a blue circle for wheelchair, a yellow circle for the next

position and the laser scan data with red lines on the viewed part of the image according

to zoom value. With every odometry message received, the image viewed is updated

and wheelchair movement is visualized with laser scan.

4.2.2 Map Server Modification

a. General Information

In the default implementation of the map server, there is a service for detecting

the map requests and there are publisher topics for map metadata and occupancy data.

However, there is no service or method to load a new map while map server is running.

In order to change the map being published map server is supposed to be stopped and

started with the new YAML file path.

To fulfill the specifications of the application, a service is added to MapServer

class in main.cpp file. This service serves for updating the published map with a new

map while map server is running. The only modified file is main.cpp file. The new

implementation can be compiled by using catkin_make command after setting up the

proper development environment following the tutorials. Moreover, MapUpdate.srv file is

created and new classes to be used in the service callback are generated with compile.

In a similar way java classes are generated from the same MapUpdate.srv file as an

external library and included to android application.

MapUpdate.srv file content:

 string path

 bool done

Chapter: Software Project 68

This content means that, there will be a string variable holding the path of map

that is going to be published and there will be a boolean variable stating if the update is

successful or not.

After compiling the same srv file in rosjava environment by following the tutorial

for setting up a development environment, a jar library file is created holding three

classes:

 MapUpdate

 MapUpdateRequest

 MapUpdateResponse

These files are used for calling the update service from rosjava environment, in

this case from the android application. Path of the map on the wheelchair file system is

assigned to path variable in MapUpdateRequest and when the update is finished,

MapUpdateResponse is retrieved with a true value assigned done field.

b. Implementation:

In the original implementation of map server, inside the constructor of the class,

all the initialization is done, map is loaded, publishers are created. Since it is needed to

update the published map, meaning loading a new file and publish new values over

publishers, a new method, loadMap, is extracted. This method does exactly the same

things that original implementation does in the constructor for loading a YAML file,

publishing both map metadata and occupancy data. This new method is called from the

constructor in order to load and publish the map given as parameter. After loading the

map, new service is advertised similar to “static_map” service so that requests for

update can be detected.

 MapServer(const std::string& fname, double res) {
 fnameToLoad = fname.c_str();
 resValue = res;
 loadMap();
 service = n.advertiseService("static_map", &MapServer::mapCallback, this);
 updateService = n.advertiseService("MapUpdate",
&MapServer::updateMap, this);

 }

Chapter: Software Project 69

The new service added, MapUpdate, simply calls a method, which loads the map

with the new path to the YAML file. The new path is retrieved from the path field of sent

request. After assigning the path, loadMap method is called in order to load the map and

publish new values. If the update is successful, variable in the response class is

assigned to true.

 bool updateMap(map_server_pmk::MapUpdate::Request &req,
 map_server_pmk::MapUpdate::Response &res) {
 fnameToLoad = req.path;
 ROS_INFO("Map update callback");
 loadMap();
 res.done = true;
 return true;
 }

With these modifications, a new node map_server_pmk is created which has

same properties with default map_server node and an extra service for updating the

map while the node is already running.

Chapter: Software Project 70

Chapter: Development and Usage Guide 71

Chapter 5

Development and Usage Guide
In this chapter, there will be information about the tools used in development process

and explanation about how to setup a development/test environment. Moreover, a user

manual for the end users is included with some screenshots from the application. This

section is intended to guide future developers of the application. In this work, all the

development is done using Ubuntu 14.04 as the operating system. Samsung Galaxy

Tab2 10.1 tablet running with Android version 4.2.2 and Samsung Galaxy Ace Plus

running with 2.3.3 are used for testing and developing as mobile devices in the system.

5.1 Tools used for development

5.1.1 Android Studio

For the development of the mobile application, android studio IDE is used.

Android Studio is the official IDE for Android. Instead of this tool, Eclipse IDE with

android development plugin can be used for development. However, there might be

some incompatibilities in terms of configuration and a migration will be necessary for

working in Eclipse.

Android Stuido can be dowloaded as a bundle with android development sdk,

which enables the android development. If Eclipse IDE is going to be used, android sdk

should be downloaded and path to this sdk should be configured to be able to use

android libraries.

Chapter: Development and Usage Guide 72

According to android developers tutorial [17]:

Before setting up Android Studio, JDK 6 or higher (the JRE alone is not sufficient)

must be installed, JDK 7 is required when developing for Android 5.0 and higher.

To set up Android Studio on Linux:

1. Unpack the downloaded ZIP file into an appropriate location for your

applications.

2. To launch Android Studio, navigate to the android-studio/bin/ directory in a

terminal and execute studio.sh.

You may want to add android-studio/bin/ to your PATH environmental variable so

that you can start Android Studio from any directory.

3. If the SDK is not already installed, follow the setup wizard to install the SDK

and any necessary SDK tools.

Note: It might be needed to install the ia32-libs, lib32ncurses5-dev, and

lib32stdc++6 packages. These packages are required to support 32-bit apps on a 64-

bit machine.

After following these steps Android Studio is ready and loaded with the Android

developer tools, but there are still a couple packages need to be added to make Android

SDK complete. By default, the Android SDK does not include everything to start

developing. The SDK separates tools, platforms, and other components into packages

to be download as needed using the Android SDK Manager [18]. When Android SDK

Manager is started from android studio, some default packages are selected and as a

minimum when setting up the Android SDK, the latest tools and Android platform should

be downloaded. Other packages are not needed for the development of the application

explained here.

https://developer.android.com/tools/help/sdk-manager.html

Chapter: Development and Usage Guide 73

5.1.2 STDR simulator

For development and testing, a simulator is needed so that communication to

wheelchair can be developed faster. As a simulator, a ros environment is needed first

and creation of a ros environment will be explained in the following sections. For basic

functionalities of simulator, a roscore master node can be started and necessary nodes

publishing topics and supplying service can be added. There will be explanation about a

robot simulator, which makes this process easier.

STDR Simulator implements a distributed, server-client based architecture. Each

node can run in a different machine and communicate using ros interfaces. STDR

Simulator, also provides a GUI developed in QT, for visualization purposes and more.

The GUI, is not necessary for the simulator to run and its functionalities can be

performed using command-line tools provided with the package.

The STDR Simulator available packages are [19]:

stdr_server: Implements synchronization and coordination functionalities of
STDR Simulator.

stdr_robot: Provides robot, sensor implementation, using nodelets for
stdr_server to load them.

stdr_parser: Provides a library to STDR Simulator, to parse yaml and xml
description files.

stdr_gui: A gui in Qt for visualization purposes in STDR Simulator.

stdr_msgs: Provides msgs, services and actions for STDR Simulator.

stdr_launchers: Launch files, to easily bringup server, robots, guis

stdr_resources: Provides robot and sensor descripiton files for STDR
Simulator.

stdr_samples: Provides sample codes to demonstrate STDR simulator
functionalities.

http://wiki.ros.org/stdr_gui
http://wiki.ros.org/stdr_gui
http://wiki.ros.org/stdr_server
http://wiki.ros.org/stdr_robot
http://wiki.ros.org/stdr_parser
http://wiki.ros.org/stdr_gui
http://wiki.ros.org/stdr_msgs
http://wiki.ros.org/stdr_launchers
http://wiki.ros.org/stdr_resources
http://wiki.ros.org/stdr_samples

Chapter: Development and Usage Guide 74

Figure 18: STDR simulator architecture overview [19]

To simulate the wheelchair, an instance of STDR simulator is started and with the

help of gui a map is inserted. On this map, a pre-created robot is added. Using the

teleop interface running on a different terminal robot can be moved around. After setting

up this structure, the necessary topics needed for simulating the application such as

laser scan messages, odometry messages, map server node will be ready.

Since map server instance is modified, part related to update of the map from

device with update map call can only be tested by running this node after creating a new

ros master node and running modified map server node in a different terminal. To be

able to use this map server instance with STDR simulator, there should be some

modification in map server such as a service for adding a robot.

Chapter: Development and Usage Guide 75

Figure 19: STDR simulator GUI with map, robot, and laser scan

5.1.3 RVIZ

RVIZ is a 3D visualization tool for ROS. Below commands are used to install

RVIZ in ubuntu from a terminal:

 sudo apt-get install ros-indigo-rviz

 source /opt/ros/indigo/setup.bash

 roscore &

To start using the tool, one of the below commands is enough to run it from a

terminal:

 rviz or rosrun rviz rviz

RVIZ is used to visualize the map, odometry, and laser scan in 3D. For visualizing

these layers, necessary topics should be chosen from the menu of add button. For

showing the odometry tf layer should be added.[20]

Chapter: Development and Usage Guide 76

Figure 20: rviz screen with map, tf and laser scan layers

5.2 Setting up the development environment

5.2.1 Installing the application on a mobile device

The application can be installed on a mobile device by following these 6 steps:

1- In order to run the application, Android Studio should be installed and

android sdk should be configured as explained in section 5.1.1. Android

Studio IDE is started by navigating to bin subfolder of installment from a

terminal and running ./studio.sh command.

2- Previously downloaded source code of the application is imported from

Import Project option by navigating to the folder containing the project. If all

the configurations are done correctly project should be ready to install on

the device.

Chapter: Development and Usage Guide 77

3- The mobile device should be connected to the computer with a usb cable.

The necessary usb drivers should have been installed from Android SDK

Manager.

4- Before installing the application on the device, developer options should be

turned on. In the new version of android devices, developer options are

hidden by default. To activate the developer options from the “About

Device” option in the settings, the “build number” of the device should be

tapped 7 times. After enabling, developer options will be present on the

settings list.

5- USB debugging third party app installation should be enabled. When the

device is connected with the correct configurations, a dialog will be present

to allow the computer and after taping on ok device should be ready for

installation.

6- When all the configurations on the device and computer are done,

application can be installed by clicking on run option from Android Studio.

For debugging purposes, debug option should be used to install the

application.

5.2.2 Setting ROS environment and running simulator

For simulating the wheelchair from the computer, ROS environment should be

created. In this work, indigo version of the ROS framework is used.

According to installation tutorial of ROS Indigo [21]:

Ubuntu repositories should be configured to allow "restricted," "universe," and

"multiverse." Ubuntu guide [ref] can be followed for instructions on doing this.

Setup computer to accept software from packages.ros.org:

 sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu trusty main" >

/etc/apt/sources.list.d/ros-latest.list'

https://help.ubuntu.com/community/Repositories/Ubuntu

Chapter: Development and Usage Guide 78

Setup keys:

 wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -O - | sudo

apt-key add

Make sure Debian package index is up to date:

 sudo apt-get update

If there are dependency issues, for installing some additional system

dependencies:

Ubuntu Trusty 14.04.2:

 sudo apt-get install xserver-xorg-dev-lts-utopic mesa-common-dev-lts-utopic

libxatracker-dev-lts-utopic libopenvg1-mesa-dev-lts-utopic libgles2-mesa-dev-lts-utopic libgles1-

mesa-dev-lts-utopic libgl1-mesa-dev-lts-utopic libgbm-dev-lts-utopic libegl1-mesa-dev-lts-utopic

Ubuntu 14.04:

 sudo apt-get install libgl1-mesa-dev-lts-utopic

After setting these configurations for Desktop install with ROS, rqt, rviz, and

robot-generic libraries:

 sudo apt-get install ros-indigo-desktop

For installing individual packages replacing the underscores with dashes of the

package name :

 sudo apt-get install ros-indigo-PACKAGE

Before using ROS, rosdep should be initialized which enables easily installing

system dependencies for source wanted to be compiled and is required to run some

core components in ROS.

 sudo rosdep init

 rosdep update

For adding ROS environment variables automatically to bash session every time

a new shell launched:

http://wiki.ros.org/rqt
http://wiki.ros.org/rviz

Chapter: Development and Usage Guide 79

 echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

 source ~/.bashrc

For creating a catkin workspace:

 mkdir -p ~/catkin_ws/src

 cd ~/catkin_ws/src

 catkin_init_workspace

 cd ~/catkin_ws/

 catkin_make

catkin_make command is a convenience tool for working with catkin

workspaces.[22] In the current directory there should be 'build' and 'devel' folders. Inside

the 'devel' folder there are several setup.*sh files. Sourcing any of these files will overlay

this workspace on top of the environment. To source new setup.*sh file:

 source devel/setup.bash

Now workspace should be ready to build new packages. Source code of modified

version of map server(map_server_pmk) should be placed under src folder in catkin_ws

folder. STDR simulatorshould be cloned in to src folder. After clonning packages,

workspace can be build.

 mkdir src

 cd src

 //command for cloning map_server_pmk goes here

 git clone https://github.com/stdr-simulator-ros-pkg/stdr_simulator.git

 cd ..

 rosdep install --from-paths src --ignore-src --rosdistro $ROS_DISTRO

 catkin_make

To add the workspace to ROS environment generated setup file should be

sourced:

 . ~/catkin_ws/devel/setup.bash

For driving the robot from terminal teleop_twist_keyboard package should be

installed:

 sudo apt-get install ros-indigo-teleop-twist-keyboard

http://wiki.ros.org/catkin/commands/catkin_make
http://wiki.ros.org/catkin/workspaces
http://wiki.ros.org/catkin/workspaces

Chapter: Development and Usage Guide 80

After following the instructions above, simulator can be started and tested by

connecting with mobile device.

Similar to catkin workspace, rosjava workspace is needed for generating the

library of MapUpdate service in jar format which is already included in the application:

 mkdir -p ~/rosjava

 wstool init -j4 ~/rosjava/src

 https://raw.githubusercontent.com/rosjava/rosjava/indigo/rosjava.rosinstall

 source /opt/ros/indigo/setup.bash

 cd ~/rosjava

 rosdep update

 rosdep install --from-paths src -i -y

After clonning the “map_server_pmk” package in the “src” folder, under “rosjava”

workspace library including the necessary classes to make service call from android is

generated with a build:

 catkin_make

Generated jar file can be found under:

 ~/rosjava/build/map_server_pmk/java/map_server_pmk/build/libs

To start simulator following command should be run from a shell:

 export ROS_IP={ip-of-computer}

Simulator without map and robot can be started with from the same shell:

 roslaunch stdr_launchers server_no_map.launch

To test update map feature of application, an instance of map_server_pmk should

be started in a different shell while ros master is running. This test can be done also by

starting a master with roscore command in a different shell instead of simulator.

 rosrun map_server_pmk map_server {path-to-yaml-file}

Chapter: Development and Usage Guide 81

 To test other features gui of the simulator can be used. Gui can be started with:

 roslaunch stdr_gui stdr_gui.launch

Map and robot (pandora robot example can be used) can be initialized from gui

using the options on the upper panel. After starting the map, robot can be chosen and a

click on the map adds the robot instance. To simulate the movement of the wheelchair in

a different shell:

 rosrun teleop_twist_keyboard teleop_twist_keyboard.py

cmd_vel:=robot0/cmd_vel

On the shell, instructions for moving the robot with keyboard inputs can be found.

All the configurations should be ready for testing. To be able to test features

properly mobile device and computer running ROS master should be connected to same

wifi. Following section explains how to use the application giving instructions to test after

setting up the environment. As it was mentioned before, to test update map feature,

map_server_pmk node should be running. Other features can be tested by using GUI for

configurations. If the loaded map is a big image file, GUI might crash. To load a new

map, ros master should be stopped and a new instance without map should be started

again. Robot can be removed by using right click menu of the robot.

5.2.3 User manual

5.2.3.1 Starting the app: Home Screen

When the application is started, the HOME screen is displayed. (See Figure 21)

On the left panel, there are the buttons for navigating between screens. Below these

buttons, there is information panel, which gives information about the current map that

will be previewed. Right panel of the main screen is empty if the preview is not started.

By default, the last map used by the user is selected as the current map. The current

map can be selected from available maps list in MAPS Screen. To change the chosen

map, a map from the list should be sent to wheelchair in maps screen.

Chapter: Development and Usage Guide 82

If there is no image file for the current map (the last used map is chosen by

default), user is warned with a dialog and option for preview is hidden (Figure 22).

When user navigates to home screen, if wifi of device is not enabled, a dialog

warns user (Figure 23).

5.2.3.2 Settings Screen

SETTINGS screen (Figure 24) can be viewed by clicking on the settings button

from navigation panel. This screen is used to configure of variables to connect

wheelchair. In a similar way to the HOME screen, there are navigation buttons on the left

panel. Below navigation buttons there is an information panel showing the status of the

test connection and width, height, and resolution of the map published by the

wheelchair. On the right panel, there is a form for setting the variables for the

connection. Default values, which are the values used for the last connection, are set on

start. Below the form, there are buttons to save the values and testing connection.

If wifi is disabled while trying to connect, a warning dialog is shown (Figure 23).

Values from settings screen and their meaning:

Wheelchair Name: ROS node name for the wheelchair

Wheelchair IP: IP of the wheelchair

Wheelchair Port: Port of wheelchair for ROS

Odometry Topic: Topic name to get odometry messages from the wheelchair

Laser Topic:Topic name to get laser scan messages from the wheelchair

Wheelchair Username: Username for SSH connection to wheelchair

Wheelchair Password: Password for SSH connection to wheelchair

Chapter: Development and Usage Guide 83

Figure 21: Home screen on start

Figure 22: Alert dialog when map does not exist

Figure 23: Alert dialog when wifi is disabled

Chapter: Development and Usage Guide 84

5.2.3.3 Maps Screen

MAPS screen has navigation panel on the left and two tabs on the right (Figure

25). On the first tab, there is a list of already downloaded (available) maps. When a map

is selected by tapping on one of the names from the list of maps, on the right of the list

there is the parse option for generating the necessary files for wheelchair with a

resolution value given by the user. If the files are already generated, there is also a send

option for sending the map to the wheelchair and change the chosen map to be

previewed in the home screen.

Parse button retrieves IndoorGML file from devices storage for the selected map

from the list and generates two files to send to the wheelchair. These files are; YAML file

containing metadata of the map, and image file with png format containing the

occupancy data of the map. Moreover, another image file is generated for visualization

of the map on HOME screen. This image file also holds the occupancy data for the map,

however the resolution of this image is a fixed value (10 pixels per meter) while the

image to send to the wheelchair has the resolution value typed by user for parse action.

Send button connects to the wheelchair and sends the selected map from the list

to the wheelchair. Generated YAML file and png file from the storage of the device are

sent to wheelchair using the variables (IP, username, password) configured in

SETTINGS Screen (Figure 24). After sending these files, map server running on the

wheelchair is updated so that wheelchair will start using the new map, which is just sent

from the application.

In the download section (Figure 26) there is the form and button for downloading

a map from ALMA server. User should enter the url of the map and a name for the

downloaded map. In order to use a map for visualization in HOME Screen, user should

parse the downloaded map with a resolution value from the other tab in MAPS Screen

containing the list of available maps. After parsing the downloaded IndoorGML file,

generated files by parse action should be sent to wheelchair using send button.

If download action fails, there is a dialog for warning user to control internet

connection and url of the map.

Chapter: Development and Usage Guide 85

Figure 24: Settings screen with map info after a successful test connection

Figure 25: Maps screen with a selected map from list

Chapter: Development and Usage Guide 86

5.2.3.4 Home Screen with Preview

After sending a map to wheelchair, the current map to be previewed is chosen as

the one sent to wheelchair. In the home screen preview can be started for this map,

using preview button.

While preview is running, position of the wheelchair on the map and value of the

zoom is shown on info panel (Figure 27). Laser scan can be enabled by ticking the show

sensor checkbox (Figure 28). User can zoom in/zoom out using the buttons on the right

upper corner of the screen or by using pinch gesture on the map. Disconnect button is

used to stop visualization of the wheelchair movement.

When the preview is running with laser scan, there is a blue circle representing the

wheelchair, a yellow circle representing the direction of the wheelchair, and red lines

representing the laser scan retrieved from the wheelchair. If red lines are shorter than their

maximum range, an obstacle is detected in that direction.

Chapter: Development and Usage Guide 87

Figure 26: Download section in maps screen

Figure 27: Preview without laser scan

,

Figure 28: Visualization with laser scan

Chapter: Development and Usage Guide 88

Chapter: Conclusions and Future Work 89

Chapter 6

Conclusions and Future Work
In this thesis, the problem tackled is necessity of an easy to use interface for previously

developed autonomous wheelchairs. Users should be able to receive feedback about

the wheelchair movement and they should be able to configure and use the wheelchair

easily with a familiar user interface.

The result of the work is an android application as the user interface for Personal

Mobility Kit of ALMA project. This application will be a base for the future improvements

to have a complete user interface. The complete user interface will be integrated with

user interface of PNA (Personal Navigation Assistant) module of ALMA project.

With the proposed implementation, occupancy data maps are generated

successfully from IndoorGML maps in the format needed by PMK. With this attempt

wheelchair can access to occupancy data of maps easier and quicker comparing to the

creation of maps using gmapping method. These maps are sent to the wheelchair via

application and new maps can be used by the wheelchair without requiring a restart of

the overall system. Having the proper data of maps for the wheelchair easier, makes the

system more adaptable and extends the use of system to more users in different

environments.

Chapter: Conclusions and Future Work 90

Integration between android environment and ROS framework running on the

wheelchair has been established using rosjava for android framework. This enables

mobile devices to retrieve collected or generated data of wheelchair and to give

commands to wheelchair by calling services of the wheelchair.

Data retrieved from wheelchair is used for the visualization of the wheelchair

odometry (position, direction, velocity on the map), wheelchair movement and laser scan

(obstacles around). The visualization is implemented in a simple way and aims to give

feedback to users about the current state of the system.

The connection between the wheelchair and the mobile device needs a good wifi

connection to be able to give real time response and feedback to users. This aspect can

be improved by giving options to use different types of connections such as bluetooth

technology.

For the generation of occupancy data from IndoorGML files, users are supposed

to enter the direct url address of the map on ALMA server. This implementation

decreases the usability of the application. A better solution could be giving a list of

available maps to user in order to choose and download the required map. In order to

implement such an improvement, ALMA server needs to be modified for publishing the

list of available maps.

Since occupancy data can be generated by using ROS framework and laser

scans with gmapping, a new service can be introduced to retrieve the map published by

wheelchair to device for visualization purposes.

Users are supposed to fill some configuration values such as published topic

names of the odometry messages and laser scan messages. Considering that users will

not have technical knowledge, this configuration process needs to be simplified. A

solution could be creating a fixed service on the wheelchair software system publishing

the necessary data in a way that application can recognize and use automatically for

configuration. This would reduce the required input to basic data needed to establish a

connection and all the rest can be automatized. A new ROS node can be implemented

which encapsulates all the necessary features to have one single communication

Chapter: Conclusions and Future Work 91

channel between two modules of the system (wheelchair and mobile device). This

approach would ease the implementation of a similar solution for devices running with

different operating systems such as IOS, windows mobile.

Visualization process can be improved and different types of feedback methods

such as audial can be added beside the visual one. All different types of input methods

supported by mobile devices can be introduced for getting commands from users.

Some extra features can be introduced in the future such as driving the

wheelchair with user commands.

Chapter: Conclusions and Future Work 92

Chapter: Bibliography 93

Bibliography

[1] F. Fontana, M. Gianfreda, Design and implementation of an android based personal

indoor navigation assistant, Master’s thesis, Politecnico di Milano, 2013.

[2] D1.1 End user and user interface requirements, Deliverable of ALMA Project, 2013.

[3] L. Calabrese, Robust Odometry, Localization and Autonomous Navigation on a

Robotic Wheelchair, Master’s thesis, Politecnico di Milano, 2014.

[4] S. Ceriani, Sviluppo di una carrozzina autonoma d’ausilio ai disabili motori, Master’s

thesis, Politecnico di Milano, 2008.

[5] JL Ki-Joune Li and Jiyeong Lee. Indoor spatial awareness initiative and standard for

in-door spatial data. In Proceedings of IROS 2010 Workshop on Standardization for

Service Robot, volume 18, 2010.

[6] Marcus Goetz and Alexander Zipf. Extending openstreetmap to indoor environments:

bringing volunteered geographic information to the next level. Rumor M, Zlatanova S,

ledoux H (eds) Urban and regional data management, Udms Annual, 2011.

[7] Michael Worboys, Modeling indoor space. In Proceedings of the 3rd ACM

SIGSPATIAL International Workshop on Indoor Spatial Awareness, pages 1–6. ACM,

2011.

[8] Ki-Joune Li, OGC Candidate Standard for Indoor Spatial Information IndoorGML

documentation, accessed April 10, 2015, last updated 09, 2013, http://indoorgml.net/

[9] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,

and A. Ng, ROS: an open-source Robot Operating System, IEEE International

Conference on Robotics and Automation, 2009.

[10] ROS Documentation, accessed April 10, 2015, http://wiki.ros.org

[11] R.B. Rusu, ROS - Robot Operating System, Tutorial Slides, November 1, 2010

[12] ROS Odometry messages documentation, accessed April 10, 2015,

http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html

[13] ROS Odometry Tutorial, accessed April 10, 2015,

http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom

Chapter: Bibliography 94

[14] ROS Laser scan messages documentation, accessed April 10, 2015,

http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html

[15] ROSJAVA_CORE Documentation, accessed April 10, 2015,

http://rosjava.github.io/rosjava_core/latest/

[16] ANDROİD_CORE Documentation, accessed April 10, 2015,

http://rosjava.github.io/android_core/latest/

[17] Android Studio and SDK dowload tutorial, accessed April 10, 2015,

https://developer.android.com/sdk/installing/index.html?pkg=studio

[18] Android SDK install packages tutorial, accessed April 10, 2015,

https://developer.android.com/sdk/installing/adding-packages.html

[19] STDR simulator tutorial, accessed April 10, 2015,

http://wiki.ros.org/stdr_simulator/Tutorials

[20] RVIZ User Guide, accessed April 10, 2015, http://wiki.ros.org/rviz/UserGuide

[21] Installing and Configuring Your ROS Environment, accessed April 10, 2015,

http://wiki.ros.org/indigo/Installation/Ubuntu

[22] Building a ROS package tutorial, accessed April 10, 2015,

http://wiki.ros.org/ROS/Tutorials/BuildingPackages

[23] ALMA Integration and Planning Module, ALMA Server, accessed April 15, 2015,

http://isin12.dti.supsi.ch:5001/worlds/ComoSim/map

