
POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Master of Science in
Computer Engineering

Experience and comparison
between native and hybrid

development approaches for
mobile devices

Candidate

Giona Colombo
Student Id. number 785986

Thesis Supervisor

Prof. Brambilla

Academic Year 2013/2014

POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Laurea Magistrale in
Ingegneria Informatica

Esperienze e comparazione tra gli
approcci di sviluppo nativo e
ibrido per dispositivi mobili

Candidato

Giona Colombo
Matricola 785986

Relatore

Prof. Brambilla

Anno Accademico 2013/2014

Experience and comparison between native and hybrid development approaches
for mobile devices
Master thesis. Politecnico di Milano

c© 2015 Giona Colombo. All rights reserved

This thesis has been typeset by LATEX and the smcthesis class.

Author’s email: giona.colombo@mail.polimi.it

mailto:giona.colombo@mail.polimi.it

Dedicated to
. . .

iii

Sommario

Lo sviluppo di applicazioni per dispositivi mobili è un argomento molto attuale.
Si conoscono, ad oggi, tre diversi approcci per avvicinarsi a questo tema e ognuno
di questi presenta vantaggi e svantaggi. Questi sono lo sviluppo di applicazioni
nativa, ibrida e web app. L’applicazione nativa risulta essere più efficace ma è
disponibile solo per un sistema operativo alla volta. l’applicazione ibrida non è
efficiente come quella nativa ma può essere dedicata a tutti i sistemi operativi. La
web app si trova solo online. In questa tesi prendiamo in considerazione soprattutto
lo sviluppo nativo e quello ibrido. Questi due metodi di sviluppo per dispositivo
mobile sono gli unici due modi per impacchettare e caricare un’applicazione su
un negozio online. Non c’è modo migliore per sviluppare un’applicazione e gli
sviluppatori hanno pareri contrastanti. Di solito si tengono in considerazione vari
aspetti per decidere quale sistema utilizzare. Di questi, i più importanti sono
risorse umane ed economiche. L’obiettivo di questo lavoro di tesi è illustrare il
nostro punto di vista sull’argomento, valutare quale approccio riteniamo sia il
più corretto, sviluppando un’applicazione per testare ognuno di questi approcci.
Abbiamo sviluppato l’applicazione nativa per iOS e di conseguenza abbiamo testato
l’applicazione ibrida su iPhone per comparare l’interfaccia dell’utente e le prestazioni.
Abbiamo usato lo strumento Xcode. L’applicazione nativa è stata sviluppata usando il
linguaggio di programmazione Swift. L’applicazione ibrida è, invece, stata sviluppata
utilizzando PhoneGap che sfrutta, a sua volta, tecnologie HTML, CSS e JavaScript.
L’applicazione che abbiamo sviluppato si trova a dover fronteggiare una questione
alquanto attuale: la ripartizioni di spese comuni in un gruppo di lavoro. All’utente
dell’applicazione è permesso aggiungere amici a un gruppo di lavoro, utilizzando
le API di Facebook. Agli amici facenti parte di tale gruppo è concesso aggiungere
i propri movimenti finanziari e ognuno di questi può sfruttare le API native della
fotocamera e quelle di Foursquare del dispositivo per fare il check-in in un posto. Per
tutta la durata di questo processo, l’applicazione calcola passo a passo se un membro
del gruppo debba dare o ricevere denaro. Durante lo sviluppo abbiamo riscontrato
varie difficoltà per ogni approccio. Quella predominante nell’approccio nativo è
che il linguaggio di programmazione (Swift) è nuovo e poco conosciuto ma molto
intuitivo e, inoltre, non presenta alcun problema di compatibilità con le API native.
Le difficoltà maggiore dell’approccio ibrido sono, in generale, la complessità nello
svolgere operazioni semplici e l’incompatibilità con le API. In conclusione diamo la
nostra valutazione a entrambi gli approcci e spieghiamo dettagliatamente quale di
questi riteniamo essere il più valido.

iv

Abstract

The application development for mobile devices is a very actual and discussed
topic. There are three main approaches, and each of them has its advantages and
disadvantages. These approaches are the native app development, the hybrid app
development, and the web app. The native app is more performing but available only
for one operating system at time. The hybrid app is not as performing as the native
app but it can be allocated for all the operating system. The web app can only be
found online. In this work of thesis we take into account especially the native and
hybrid development. These two ways of developing for a mobile device are the only
ways for packaging and deploying an app on a online store. There is not a better
way of developing an app, and the developers have different opinions about the topic.
Usually the choice of the approach is given by several factors. The most important
are economical and human resources. The purpose of this work is trying to explain
our idea about this matter, decide which approach we would generally choose, by
developing an app with both approaches. We developed our native app for iOS
and consequently we tested our hybrid app on an iPhone for comparing the user
interface and the performance. We used the tool Xcode. The native app has been
developed in the programming language Swift. The hybrid app has been developed
using PhoneGap that is exploiting HTML, CSS and JavaScript technologies. The
app we developed is facing a very modern issue: the repartition of common expenses
in a group of work. The user of the app is allowed to add friends to a group of work,
exploiting the Facebook APIs. The friends who are part of the group are allowed to
add some financial movements they do. Each financial movement can exploit the
device’s native APIs of the camera and the APIs of Foursquare for checking-in to
a place. During the whole process, the app is calculating step-by-step if a person
present in the group must give or receive money. During the development we faced
different issues for the two approaches. The main problem of the native approach is
that the programming language (Swift) is new and not known. But, on the other side,
it’s very intuitive. Besides, with Swift there are not problems related to the native
APIs compatibility. The main problems of the hybrid approach are the complexity,
even for easy operations, and the compatibility with the APIs in general. Finally,
we give our evaluation on both approaches, and we carefully explain which approach
is, in general, better for us.

v

Acknowledgments

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Structure of the Thesis . 2

2 Background 4
2.1 Mobile app development . 4

2.1.1 Mobile web and apps . 4
2.1.2 Technical considerations . 5
2.1.3 Nontechnical considerations 6

2.2 Relevant Technologies . 8
2.2.1 Xcode . 8
2.2.2 Swift . 9
2.2.3 PhoneGap . 12

3 Comparison between native and hybrid development 14
3.1 Web apps . 14

3.1.1 Advantages . 14
3.1.2 Disadvantages . 15

3.2 Hybrid Approach . 15
3.2.1 Gartner Hype Cycle . 15
3.2.2 Advantages . 16
3.2.3 Disadvantages . 18

3.3 Native Approach . 18
3.3.1 Advantages . 19
3.3.2 Disadvantages . 20

3.4 Conclusions . 20
3.4.1 Summary . 20
3.4.2 Choices we made . 21

4 Case study specification 22
4.1 Description of the problem . 22

4.1.1 The "travel" case . 22
4.2 Proposed solution . 23

4.2.1 Main idea . 23
4.2.2 Main features . 23

4.3 Entity-Relationship model . 24

Contents vii

4.3.1 Group . 24
4.3.2 People . 26
4.3.3 Movements . 26

4.4 Use case diagram . 26
4.4.1 Sign up with Facebook . 27
4.4.2 Log in with Facebook . 29
4.4.3 Add group . 30
4.4.4 Edit group . 31
4.4.5 Delete group . 32
4.4.6 Go to group page . 33
4.4.7 Add friend to a group . 34
4.4.8 Delete friend from a group . 35
4.4.9 Go to a friend page . 36
4.4.10 Add movement . 38
4.4.11 Edit movement . 39
4.4.12 Delete movement . 40
4.4.13 Go to a movement page . 41
4.4.14 Take a picture of a receipt . 43
4.4.15 Log in with Foursquare (1) 45
4.4.16 Log in with Foursquare (2) 46
4.4.17 Check in with Foursquare . 48

5 High level design 49
5.1 Collaboration diagram . 49

5.1.1 Home . 49
5.1.2 Groups . 49
5.1.3 People . 51
5.1.4 Movements . 51

5.2 Activity diagrams . 51
5.2.1 Add a movement . 51

6 Partial implementation experience with the two technologies 54
6.1 Technologies we used and structure of the app 54

6.1.1 Structure with PhoneGap . 54
6.1.2 Structure with Swift . 56

6.2 Criticalities . 56
6.2.1 Criticalities with PhoneGap 56
6.2.2 Criticalities with Swift . 57

6.3 Results . 57

7 Conclusions and Future Works 58
7.1 Conclusions . 58
7.2 Future works . 59

Bibliography 60

viii

List of Figures

2.1 Criteria to consider when choosing a native, hybrid, or Web app
approach. 8

2.2 PhoneGap Build . 12

3.1 Gartner Hype Cycle . 17
3.2 Main Operating Systems . 19
3.3 Pros and cons. Picture taken from [1]. 21

4.1 E-R model . 25
4.2 Use case diagram . 28

5.1 Collaboration diagram . 50
5.2 Activity diagram for adding a movement 53

ix

List of Tables

4.1 The "travel" case. 23
4.2 The "travel" case solutions. 24
4.3 Sign up with Facebook . 27

6.1 Results in term of time . 57

1

Chapter 1

Introduction

This work of thesis is the result of an experimental research aimed at the evaluation
of the different approaches in the development of an app for mobile devices. In
particular we have worked on native and hybrid approaches, we developed an app
with both approaches and we tried to achieve some relevant result. We tried to
establish which approach suits more the development of a simple app by evaluating
the time and the issues we encountered.

1.1 Context
The universe of the mobile devices development is very actual and it grows

day by day.[2] While for other fields like web or desktop programming there are a
strengthened methodology and a clearer hierarchy, these doesn’t exist, or they’re
not very well defined, for mobile programming. What is clear is that there are very
well defined characteristics for the three main approaches of mobile programming:

• Web apps

• Hybrid apps

• Native apps

The web apps are multi-platform web sites developed for mobile devices. They are
for sure the cheapest to develop, since most of the time they derive from an already
existing web site. Plus the technology used for programming is well known. There
are a lot of developers who know perfectly HTML and CSS. The main issues of a
web app is that it cannot be deployed on an app store, it cannot be integrated with
any of the native APIs and it’s only online. This is why, in this work of thesis we
will only give a superficial explanation about this technology, without going throught
the details, and we will not use it for our experimental part.[1]

The hybrid apps are web applications packed into a native app. They are, in a
sense, a middle way between web and native apps. They have some similarities with
the web apps and some with the native. As the web apps, the technology used for
programming is very often HTML, CSS and JavaScript, and they’re multi-platform.
But the can also be deployed on an app store, they can use native APIs.

1.2 Problem Statement 2

The native apps are applications build exclusively for one operating system.
These apps are very powerful and with high performance, they can be deployed on
an app store and they can, obviously, use native APIs with full compatibility. The
greatest lack of a native app is that is single-platform, and this fact increases the
cost.
We developed two apps, using the two main different approaches:

The mobile operating system that we used for developing a native app is iOS. This
operating system, is the only OS available for Apple’s mobile devices. For building
a native app is necessary to exploit Xcode, an integrated development environment
present only for Mac OS X, the Apple’s operating system for computers.[3]

The hybrid app has been developed using PhoneGap. For better comparing the
two apps, we developed our app with Xcode on Mac OS X. We also used some tool
like Handlebars for managing the different pages of the app, and Ratchet, a tool that
gives a native user interface to hybrid apps. For our database wee used Parse.

1.2 Problem Statement
The problem we tried to solve with this work of thesis is related to the choice

that a developer must take before starting to develop a mobile app. We tried to
understand which issues, for both approaches, are less relevant and easy to bypass.

By developing the same app with the native and hybrid approach, we tried to
understand if the known problems are real or if it’s possible to find a compromise.
The main problems we took into account for hybrid development are:

• Performance

• Cost

• Time

• APIs compatibility

• User interface

The main problems we took into account for native development are:

• Cost

• Time

• The inability to build the app for other operating systems

1.3 Structure of the Thesis
This work of thesis is structured in this way:

• In the chapter 2, with the help of some source and reference, we explain
which is the state of the art of the mobile development. Then we show which
technology we used to reach our goal and solve our problem.

1.3 Structure of the Thesis 3

• In the chapter 3 illustrate in detail the advantages and disadvantages that
a developer might have by using the three different approaches in mobile
development.

• In the chapter 4 we elucidate which problem is solving the app we developed.
We describe the app by using an entity-relationship model and a use case
model.

• In the chapter 5 we show how the app we developed is working and what it’s
doing with the help of a collaboration diagram and some activity diagram.

• In the chapter 6 we display how our apps have been implemented with the two
different approaches

• In the chapter 7 we exhibit which conclusions we reached and what are the
possible future implementations.

4

Chapter 2

Background

In this chapter we present the general background of the actual situation of the
mobile app development. Then we present the main technologies that we used.

2.1 Mobile app development
Nowadays smartphones are the main handheld devices for the majority of people,

which makes mobiles applications crucial in both technical and commercial fields.
The approaches for developing mobile Web apps can be various, but taking into
consideration the high-speed of software evolution with continuously appearing new
gadgets, the comprehensive understanding of basic technologies became critically
important. [1]

The previous trend was creating desktop applications specially for an OS like
Windows or Unix. However sequentially the tendency is changes, as developers
mainly want to make the application work for mobile devices. The decision-making
process for creating mobile apps is multipart, mainly because of the significant
increase in the number of platforms and frameworks. Therefore understanding the
various types of mobile apps and the various options for building them became
crucial [2].

2.1.1 Mobile web and apps

By definition, native apps run at native speed, while hybrid and mobile apps run
on top of additional layers, which consumes computing resources and can decrease
the app’s speed.

Different users and developers use both responsive design and adhoc options. [4]

Responsive web

Applications with a responsive Web design handle different style solutions, mainly
found on cascading style sheets (CSS). While serving the application the server can
choose the design, also the chosen design can be applied at the client level or both
can occur.

The intention is to have a single source of content that renders variously depending
on the features of the device. It is worth mentioning that this is not only a solution

2.1 Mobile app development 5

for Web apps, but also critically important for such devices as tablets, tv sets game
consoles and etc.

Mobile web

Mobile web expression is used for labelling the case when there is an exact
website or login implementation for content to be sent specifically to mobile devices.
In general the feel and touch of Mobile web is better than the feel and touch of
responsive one, as it renders the user Interface controls , (for instance, buttons,
selectors, and text-boxes) in the similar with native app way. Nevertheless, with
mobile Web, the need to retain various sites is still present.

Hybrid apps

Hybrid apps are mobile Web applications packed into a native app. Hybrid apps
perform like a native app: like native apps, hybrid are also installed from a Web
store and have access to the Capabilities of native app. However, hybrid apps are
developed by the similar tools used to develop Web applications (mainly, HTML5,
CSS, and JavaScript).

Native apps

Organizations, which develop MOS (mobile operative systems) prefer apps,
specific to their own field, for benefiting fully from their specific features. In its turn,
it necessitates building the app using that provider’s language and framework (for
example, using Xcode with Objective-C for iOS and Eclipse with Java for Android).

Therefore, one project should be maintained for each OS, which, obviously means
a significant increase in the development team, and as a result, in time and financial
costs. Furthermore, developers must discourse the fact that new OSs constantly
appear.

2.1.2 Technical considerations

The most suitable development approach for mobile apps for various situations
cannot be chosen based on a single solution. Different technical norms and conditions
can help to decrease the amount of possible options for selecting the most suitable
approach in a specific situation. [5]

Platforms and version support

Primarily, the platforms and versions to be supported have to be considered,
counting the range of devices, the development stack for each of them, the platform’s
browser capabilities, and our own development skills. For instance, a hybrid or
mobile web approach can be considered as a better solution than the native app, in
case if the aim is to develop an app with support for multiple platforms, as native
apps should be developed exactly for each mobile platform.

2.1 Mobile app development 6

Device capabilities

Another important point is consideration of required device capabilities. For
instance, if the app needs access to the came, a barcode scanner, the file system, or
a Bluetooth, it is more useful to Implement a native or hybrid approach because of
the direct access to the features. The most up to date browsers maintain hardware-
accelerated animation features, however they are not able to use device capabilities
at its maximum.

User experience

Worth mentioning is that native apps still offer a more comfortable and more
convincing experience with a more approachable interface and superior interaction ,
as users are able to open them faster as well as use device-specific hand gestures.
Furthermore, it is still challenging for mobile apps to access a device’s native features
across all mobile browsers. In its turn, Hybrid apps offer an important middle
ground in terms of the deepness of experience. Hybrid apps allow the HTML code
to have access to native APIs (although this comes at the cost of a nonnative user
interface due to the Web technologies involved).

Performance

One of the key concerns of app-developers is the performance. Best performance
is harder to be achieved using mobile and hybrid apps approaches, in case if the
user interfaces needs heavy graphics or extreme data processing. The reason is that
mobile and hybrid apps are running on top of additional layers, which uses computing
resources. In any case it is critically important to test the level of performance,
using a initial prototype or testing other comparable existing apps.

Upgrade

In case if developers choose native app development approach, they should
take into account that app upgrade cannot be forced, so, by default, they will be
concurrently serving various versions, adding complexity to back-end development
and support, which also relates to hybrid apps when the code is in the local part of
the application.

2.1.3 Nontechnical considerations

Several nontechnical considerations can also help to identify the best solution for
choosing a type of mobile application to develop.

Distribution

Even though mobile apps are easy to distribute, it can be difficult for users
to discover them outside the app store. From discoverability point of view, it is
better to use a native or hybrid app. In case of targeting consumer or gaming
segments, it is possible to significantly reduce the marketing expenses by handling
the distribution through the platform store. However, taking into account the fast

2.1 Mobile app development 7

increase of applications in these stores, efforts for obtaining visibility in the market
are more vital. In case if there is a necessity to bound the reach of the applications
(for instance, in case of developing enterprise apps) it is possible to use a private
enterprise app store. Nevertheless, these stores have their restrictions (for instance,
there is no chance to effect the store-management). Moreover, the store might have
numerous applications, which are in a tough completion for users’ attention.

Approval cycle

Mobile development and agile development methods can conflict with each other.
Fast turnover and continues user feedback are essential for agile development. If the
developers are following native or hybrid approaches, approval process should be
considered as a part of the project. In case of no rejections, the time for approval
and the total time generally are short. It is also possible to have a license for a
particular phone, as well as to use a private enterprise app store.

Monetization

Together with the distribution advantage, there is a possibility to significantly
improve conversion rate due to a simple, well-defines payment gateway, in case of the
app development is found on platform store. The negative side of this advantage is
the cost associated with it: the owner of the platform store receives the considerable
part of the revenue (for instance, 30% for iOS), therefore there is a necessity to
thoroughly examine if it is better off outside of the platform.

Frameworks

Despite the possibility to build a mobile Web, hybrid or native app without
a framework, however the use of frameworks can significantly easer as well as
decrease the effort for development process. In its turn, frameworks are available
for various development preferences, majority of them are for HTML5 development.
Nevertheless, if the choice is to develop for a hybrid or native approach with,
considering a cross-platform development frame, there are various options to be
reviewed.

Native

Native app can be developed using a cross-platform approach, but just one
codebase for all devices. We can select our platform on the basis of our preferred
development language (for example, JavaScript or Ruby).

Hybrid

For a hybrid approach, Phonegap is the predominant technology and can be used
with HTML5 frameworks. Also Sencha mobile packaging can be considered, which
complements the Sencha development stack but only supports iOS and Android.
Nonetheless, it could be a good option when developing with Sencha tools. Other
important cross-development tools are Appcelerator, Adobe AIR, and Qt.[4]

2.2 Relevant Technologies 8

Figure 2.1. Criteria to consider when choosing a native, hybrid, or Web app approach.

HTML5

For choosing an HTML5 framework, it is necessary to try each of the frameworks,
in order to select the one most fitting to the development practices. Various options
in the HTML framework are available. There will be a significant progress as more
features are added and more devices are supported. Nevertheless, as a consequence of
this trend, the framework’s codebase is getting bigger, which considerably influence
performance and bandwidth consumption. We suppose to see some specialization
in frameworks’ capabilities, with different approaches to overcome this issue. (For
example, JQuery Mobile can select just the necessary modules for a project.)

2.2 Relevant Technologies
In this section we present an overview of the technologies we adopted.

2.2.1 Xcode

Xcode is an integrated development environment (IDE) containing a suite of software
development tools developed by Apple for developing software for OS X and iOS.
First released in 2003, the latest stable release is version 6.1 and is available via
the Mac App Store free of charge for Mac OS X Lion, OS X Mountain Lion, OS X
Mavericks and OS X Yosemite users. Registered developers can download preview
releases and previous versions of the suite through the Apple Developer website. [6]

Major Features

Xcode can build universal binaries thanks to the Mach-O executable format,
which allow software to run on both PowerPC and Intel-based (x86) platforms, and
both 32-bit and 64-bit code.

Xcode also includes Apple’s WebObjects tools and frameworks for building Java
web applications and web services.

Xcode includes the GUI tool Instruments, which runs atop DTrace, a dynamic
tracing framework created by Sun Microsystems and released as part of OpenSolaris,
an open source computer operating system.[3]

2.2 Relevant Technologies 9

Composition

The elements which are componing Xcode are:

• The Integrated Developement Environment (IDE), also named Xcode

• A compiler, the LLVM (Low Level Virtual Machine), a compiler infrastructure
designed as a set of reusable libraries with well-defined interfaces.

• A debugger, the LLDB debugger.

Xcode also supports several languages such as C, C++, Objective-C, Objective-
C++, Java, AppleScript, Python, Ruby, Rez and Swift.

2.2.2 Swift

Swift is a new programming language created by Apple for iOS and OS X apps that
builds on the best of C and Objective-C, without the constraints of C compatibility.
Introduced at Apple’s 2014 Worldwide Developers Conference (WWDC), Swift is
designed to work with Apple’s Cocoa and Cocoa Touch frameworks and the large
body of existing Objective-C code written for Apple products.

Swift adopts safe programming patterns and adds modern features to make
programming easier. It is built with the LLVM compiler framework included in
Xcode 6, and uses the Objective-C runtime, allowing C, Objective-C, C++ and
Swift code to run within a single program.[7]

History

Developement of Swift began in 2010 under the guide of Chris Lattner, and it
took language ideas from Objective-C, Rust, Haskell, Ruby, Python, C#, CLU and
other programming languages.

The first app written in Swift was released on June 2nd, 2014 (WWDC app),
together with "The Swift Programming Language", a free 500-page manual.

The 1.0 version of Swift and the 6.0 version of Xcode were released on September
9th, 2014. The 1.1 version was released on October 22nd, 2014, alongside the launch
of Xcode 6.1.

Features

By default, Swift does not create pointers and other unsafe accessories, contrary
to Objective-C, although pointers can be created explicitly. Additionally, Objective-
C’s use of a Smalltalk-like syntax for making method calls has been replaced with
a dot-notation style and namespace system more in common with other modern
languages derived from C, like Java or C#. Swift introduces true named parameters
and retains key Objective-C concepts, including protocols, closures and categories,
often replacing former syntax with cleaner versions and allowing these concepts to
be applied to other language structures, like enums.

• Types, variables and optionals

2.2 Relevant Technologies 10

Objective-C provided various bits of simplified syntax to allow an easier
creation of the objects, but once created they were managed with object calls,
making the code quite complicated. For instance, concatenating two NSStrings
required method calls similar to this:

NSString *str = @"hello,";
str = [str stringByAppendingString:@" world"];

In Swift, many of these basic types have been promoted to the language’s
core, and can be manipulated directly, automatically bridging strings to the
NSString. There is no need of specifying the type and the strings can be
concatenated by using the "+" operator:

var str = "hello,"
str += " world"

As the most languages, Swift allows to create constraints and variables, and it
does that by using respectively the keywords l e t and var .
Another important feature is the possibility of creating an optional pointer,
or rather a pointer that may exists or that may be null, avoiding all the "null
pointer errors". This can be made with this declaration:

var optionalInteger: Optional<Int>

• Libraries, runtime and development
Swift uses the same runtime as the existing Objective-C system but requires
iOS 7 / OS X 10.9 or higher. Swift and Objective-C code can be used in a
single program, and by extension, C and C++ as well.
It’s even possible to import projects developed in Objective-C and accessing
to all the functions and classes by simply using the code:

#import "MyApp-Swift.h"

Swift also has limited the set of attributes, metadata that is read by the
development environment, and is not necessarily part of the compiled code.
Like Objective-C, attributes use the @ syntax, like the @IBOutlet attribute.

• Memory management
Swift uses Automatic Reference Counting (ARC) to allow for easier memory
allocation and deallocation.

2.2 Relevant Technologies 11

One problem with ARC is the possibility of creating a strong reference cycle,
where instances of two different classes each include a reference to the other,
causing them to become leaked into memory as they are never released. Swift
provides the weak and unowned keywords that allow the programmer to
prevent strong reference cycles from occurring.

• Debugging and other elements
A key element of the Swift system is its ability to be cleanly debugged and
run within the development environment, using:

– REPL (read-eval-print loop): it takes single user inputs, evaluates
them, and returns the result to the user;

– Playgrounds: interactive views running with the Xcode environment
that respond to code or debugger changes on-the-fly.

• Similarities to Objective-C

– Basic numeric types (Int , UInt , Float , Double)
– Most C operators are carried over to Swift, but there are some new

operators
– Variables are assigned using an equals sign, but compared using two

consecutive equals signs. A new identity operator, ===, is provided to
check if two data elements refer to the same object.

– Control statements, for , while , i f , switch are similar, but have
extended functionality, e.g. a f o r in that iterates over any collection
type, a switch that takes non-integer cases, etc.

– Class methods are inherited, just like instance methods; s e l f in class
methods is the class the method was called on.

• Differences from Objective-C

– Statements do not need to end with a semicolon (;), though they must
be used to allow more than one statement on a line

– Header files are not required
– Strong typing
– Type inference
– Functions are first-class objects.
– Enumeration cases can have associated data (algebraic data types).
– Operators can be redefined for classes (operator overloading), and new

operators can be created.
– Strings fully support Unicode. Most Unicode characters can be used in

either identifiers or operators.
– No exception handling (though it can be emulated through use of closures)
– Several notoriously error-prone behaviors of C-family languages have been

changed,:

2.2 Relevant Technologies 12

Figure 2.2. PhoneGap Build

• Comparing with Python
Python is one of the languages that helped inspire Swift.

– Both languages feature Read–eval–print loop (REPL) development envi-
ronments

– Conditional statements are similar for , i f , whi l e
– Swift is a compiled language while standard Python is interpreted
– Whitespace is not significant
– Python doesn’t employ var or l e t

[3]

2.2.3 PhoneGap

PhoneGap is a mobile development framework produced by Nitobi, but Adobe
Systems purchased it in 2011.

Phonegap allows programmers to develop mobile applications using JavaScript,
HTML5 and CSS3. It extends the features of HTML and JavaScript to work with
the device, and the resulting applications are hybrid.

An hybrid application is a mix between a native application and a web-based
app. The layout rendering is done via web views instead of the platform’s native
UI framework, but it’s packaged as app for distribution and it has access to native
device APIs.

A native application is a mobile application developed exclusively for one operat-
ing system, exploiting all the native APIs.

A Web-app is a mobile application that can be visited by browser, but it’s not
packaged and it cannot be downloaded from the online stores.

With PhoneGap has been possible to mixi native and hybrid code snippets has
since version 1.9.[8]

The software underlying PhoneGap is Apache Cordova.

2.2 Relevant Technologies 13

History

First developed at an iPhoneDevCamp event in San Francisco, PhoneGap went
on to win the People’s Choice Award at O’Reilly Media’s 2009 Web 2.0 Conference
and had the approval of Apple Inc.

Adobe purchased PhoneGap from Nitobi on October 4th, 2011 and, at the same
time, the code was distributed to the Apache Software Foundation for a project
called Apache Cordova.

After September 2012, Adobe’s PhoneGap Build service allowes developers to
compile the code on the cloud, but before that, PhoneGap required a person for
each operating system.

Design and Rationale

The core of PhoneGap applications use HTML5 and CSS3 for their rendering,
and JavaScript for their logic.

Although HTML5 now provides access to underlying hardware such as the
accelerometer, camera and GPS, browser support for HTML5-based device access is
not consistent across mobile browsers, particularly older versions of Android. To
overcome these limitations, the PhoneGap framework embeds HTML5 code inside
a native WebView on the device, using a foreign function interface to access the
native resources of the device.

PhoneGap is also able to be extended with native plug-ins that allow for devel-
opers to add functionality that can be called from JavaScript, allowing for direct
communication between the native layer and the HTML5 page. PhoneGap includes
basic plugins that allow access to the device’s accelerometer, camera, microphone,
compass, file system, and more.

However, the use of web-based technologies leads many PhoneGap applications
to run slower than native applications with similar functionality. Some applications
developed by PhoneGap have been rejected by Apple for being too slow or not
feeling "native".

Supported Platforms

PhoneGap currently supports development for the operating systems Apple iOS,
BlackBerry, Google Android, LG webOS, Microsoft Windows Phone (7 and 8), Nokia
Symbian OS, Tizen (SDK 2.x), Bada, Firefox OS, and Ubuntu Touch. The table
below is a list of supported features for each operating system.

14

Chapter 3

Comparison between native and
hybrid development

In this chapter we present the comparison between the two main approaches in app
developing: the native approach and the hybrid approach. We show the general
characteristics as well as advantages and disadvantages for both the methods.

We also give a brief walk-through about the other way of accessing internet data
using a mobile device: the web app.

3.1 Web apps
A web app is pure HTML and CSS code fitted for several devices. It’s actually a

website with limited content and functionality for helping the user to easily navigate
within the touch screen and not with peripherals (such as mouse and keyboard), and
without downloading a big amount of data (such as great images and other large
graphical contents).

3.1.1 Advantages

We list all the advantages of building a web app.

• Cost
The costs are limited. Most of the time, if there is a web app, there is also a
website. This means that the code already exists and it should only be adapted
for the devices. The developers who managed the website can easily manage
the web app, because they already know the programming language and the
structure of that specific website. In this case, there are some missing phases
of the software development process: no feasibility study and limited software
design and implementation make the costs very low.

• Time
The time is strictly related to the cost, and vice versa. Since the code already
exists, and developers already managed it, it’s easy for them to work on it.
They don’t have to write it from the beginning most of the times, and due to
this fact, the time is exponentially reduced.

3.2 Hybrid Approach 15

• Cross-platform
Certainly, being a web app the device version of a web site, it is also exploitable
on any kind of device and operating system.

3.1.2 Disadvantages

We list all the disadvantages of building a web app.

• App stores deployment
The greatest lack of a web app is the impossibility to deploy the app on any
app store. The app is not packaged and it works only with a browser. Some
operating systems allow to create a permanent "app-shaped" link to easily
access to the contents.

• Device features
There are no native device APIs that can be used with a web app. In
particular, there is no possibility to use camera, geolocalization, storage, media,
accelerometer and many other device features that are almost essential in the
modern apps.

• User Interface
The user interface of a web app is, of course, not native. This implies that
the layout is not consistent with the device’s one, but more important, the
controls are not responsive as a native or a hybrid app, because everything
must be used online.

• No off-line mode
All the contents available in the web app come from the internet. This doesn’t
allow the user to use the app when there is no wifi or network connection.

3.2 Hybrid Approach
The hybrid approach is the newest approach in terms of time. It has been invented

due to the large variety of mobile devices and operating systems. Developers were
looking for a way to build multi-device applications with the same code, that could
be used offline and that could exploit the native APIs of the device. The hybrid
approach is essentially HTML, CSS and JavaScript code packaged as a native app
with a native shell.

3.2.1 Gartner Hype Cycle

The Gartner Hype Cycle (Figure 3.1) helps to understand the tendency of the
expectations for any new technology. It represents the time on the x-coordinate, and
the expectations on the y-coordinate. It’s not a qualitative graphic, but quantitative,
so it’s only a tool for understanding better the phenomenon. Since it can be used for
any kind of technology, it can also be used for explaining the trend of expectations
of the hybrid app development:

3.2 Hybrid Approach 16

• Technology Trigger: it’s the phase in which the new technology is introduced.
There is excitement and the expectations start to grow. In the case of the hybrid
apps, the rise of several mobile operating systems, brought the developers to
think about a method to build applications by using some technology that
they already knew. At this point, new cross-platform tools (as PhoneGap)
were born.

• Peak of Inflated Expectations: the peak is reached when there are too many
expectations, but probably the technology is not ready to manage them.
Speaking about hybrid apps, the peak is reached when Adobe started believe
in multi-platform development, and in 2011 it acquired PhoneGap, the most
used framework.

• Trough of Disillusionment: this phase happens happens when the technology
can’t face the expectations because of some lack or bug, and everybody starts
to lose hope. In our particular case, the lack of some important aspects brings
Facebook and, later, LinkedIn to abandon the hybrid approach. These aspects
are:

– Performance not even close to the native apps
– Lack of a remote debugger
– Lack of a cloud-based builder
– Impossibility to have a native aspect of the user interface

• Slope of Enlightenment: during this period, the lacks and bugs that brought
the expectations until the bottom, are in some way fixed and/or improved.
The two most spread operating system (iOS and Android) gave the chance
to debug the applications by using their official browsers (respectevely, Safari
and Chrome). PhoneGap and other frameworks allowed the developer to build
the apps on the cloud, and, furthermore, some frameworks gave the possibility
to give a native aspect to the apps. Also the performance are improved.

• Plateau of Productivity: we find this phase when there is a stabilization of the
expectations. The biggest problems are solved, and the technology is set.

3.2.2 Advantages

We list all the advantages of building a hybrid app.

• App stores deploy
Compared to a web app, this is the most important feature of an hybrid app.
The fact that can be deployed on a store implies that:

– The app can be sold
– Advertisement can be added
– In-app purchase items can be inserted

3.2 Hybrid Approach 17

Figure 3.1. Gartner Hype Cycle

• Profit
The direct implication of the previous point is about profit. If it is true that
with a web app there might be indirect profits, with an hybrid app the earnings
are direct.

• Cross-platform
As a web app, a hybrid app can be dedicated to multiple platforms. PhoneGap,
for example, allows the developer to build apps for iOS, Android and Windows
Phone. The code is packaged with some native parts of the user interface for
each operating system, so it doesn’t change.

• Device features
Most of the frameworks have access to all the native APIs of the device.
Developers can build app using camera features, geolocalization, accelerometer,
contacts, events, file, InAppBrowser, media, notification, splashscreen, storage.
This implies that all the offline features can be used.

• Offline mode
As said in the previous point, since the framework has access to almost all
the APIs, the online mode is not essential anymore. Even though the app is
developed using HTML, CSS and JavaScript, the several accessible features
give the opportunity to build native-like apps.

• Performance (compared to a web app)
If we take a web app as a point of reference, the performance related to a
hybrid app is considerably higher. If we speak about apps that need an internet

3.3 Native Approach 18

connection, it is true that part of the content is online, but it’s also true that
the UI is stored on the device, and the controls are more responsive.

• Cost and time (compared to a native app)
The cost and the time for a hybrid app is on average comparable to the cost
and the time for a web app. The way the app is developed is very similar
(HTML, CSS and JavaScript). The only difference is when the app is including
other features as camera or geolocalization APIs. In this case, the time and
cost increase, but also the quality and complexity of the app increase.

3.2.3 Disadvantages

We list all the disadvantages of building a hybrid app. Some of these characteris-
tics are present also in the "advantages" list, but here they are compared all with a
native app.

• Device Features
The percentage of the compatible APIs depends on the used framework for
developing the app, and the related operating system we are developing for.
For example, using PhoneGap, there are no compatibility problems with the
APIs for the two main operating systems (iOS and Android). Some feature, if
we develop for Blackberry or Windows Phone may not be available.

• Performance
Hybrid app performance can be strong, but will sometimes suffer depending
on how the tools build code to interface with the native OS. For complex apps,
in fact, the abstraction layer may prevent native-like performance.

• User Interface
The user interface of a hybrid app can be very similar to the user interface of
a native app with the help of some dedicated framework. But some difference
remains. There are three main points:

– The native user interfaces are constantly changing (for example, from iOS
6 and iOS 7), the framework we are using must be updated or changed.

– Some graphical features (like the bounce at the end of a page in iOS)
cannot be reproduced by using JavaScript.

– The hybrid UI is apparent. The bitmap composition, when a UI web view
is used, does not happen in the hardware like in a native app.

3.3 Native Approach
A native app is an application developed exclusively for a specific operating sys-

tem, using the programming language that is originally supported by that operating
system.

The main operating systems for mobile devices and their related programming
languages are shown in the Figure 3.2.

3.3 Native Approach 19

Figure 3.2. Main Operating Systems

3.3.1 Advantages

We list all the advantages of building a native app.

• App store deploy
Clearly, as for the hybrid apps, there is the possibility to deploy a native app
on the relative store. There are two aspects to take into account, one positive
and one negative. The positive one is that the process for validating an app, if
it’s written with native language and not with some framework, is easier. The
negative one is that, obviously, once the app is complete, it can be deployed
only for one store.

• Profit
The monetization is an important aspect if we want to develop a native app.
The characteristics are the same as the hybrid app, with two difference, one
positive and one negative. The positive one is that, most of the time, a native
app is more performing and good looking than a hybrid app, and this gives
to the app more chances of being a successful app. The negative one is that,
developing for only one operating system, the number of downloads will be
probably less.

• Device features
A native app has access to all the native APIs of the device. From this point
of view, it’s even better than a hybrid app.

• Offline mode
A native app using native APIs can be developed. Internet is not needed, and
a local storage can be used to store temporary and permanent data.

• Performance
Performance are much better than the performance of an hybrid app. Since
the access to the APIs is direct, and the UI is native, the responsiveness of
a native app, and its access to the data is very fast. Another aspect to take

3.4 Conclusions 20

into consideration is about developing mobile games. They need a very quick
response from the device, and only a native app can manage some graphic
animations having direct access to the GPU properties.

• User Interface
The user interface is native and it’s not a representation of it. This means
higher performance, because most features happen in the hardware, and better
looking apps, because the developer doesn’t have to manage the design or
layout of an app. This is already set.

3.3.2 Disadvantages

We list all the disadvantages of building a native app.
• Cost and time
The cost and time, as for the hybrid apps, are strictly related. There are some
aspects to take into consideration. To develop a native app, a developer who
knows a specific programming language is needed. There are two possibilities:

– Exploit some developers for each programming language.
– Train some developers in order for them to learn every programming

language.

In both cases, a big amount of resources, in terms of time and money, is needed.
Plus, it must be considered that programming languages as Objective-C and
Swift are more "rare" and less known by the developers, on average. This
might mean that the cost can increase even more.

• Single platform
Clearly, the main disadvantage of a native app is related to the fact that once
the app is built and ready, it can work only with an operating system, and the
code cannot be reused for the others.

3.4 Conclusions
In this section we write a brief summary about the different approaches and we

explains the choices we made.

3.4.1 Summary

The Figure 3.3 represents a visual summary of what has been explained in the
previous sections. It is visible how the more we move from the right to the left of
the diagram, the more we have a cheaper with low performances product. The more
we move from the right to the left, the more our product would need more resources
but with better quality.

The greatest lack of the native approach is, obviously, the single-platform support,
while the greatest advantages are compatibilities and performance.

The greatest lacks of the hybrid approach are compatibilities and performance,
while the big advantage is the cross-platform support.

3.4 Conclusions 21

Figure 3.3. Pros and cons. Picture taken from [1].

3.4.2 Choices we made

Our initial idea was to try to develop an app using an hybrid approach, since
the language is less technical and more known. The APIs we needed are supported
and we didn’t need very high performance. The possibility to test the app on more
operating systems was a plus.

22

Chapter 4

Case study specification

In this chapter we describe the problem that we managed. We show our solution
and we explain how it is implemented, with the help of an entity-relationship model
and a use case diagram.

4.1 Description of the problem
In this section we show the overview of the problem we tried to solve. The

scenario implies two main factors: a group of people and money.
In everyday life is usual to perform an activity with friends or other people, in

which money is implied, such as the organization of a travel, of a home-made dinner
or of an event. We show in details the "travel" case, for understanding better the
problem.

4.1.1 The "travel" case

The classic scenario of a travel is divided in two periods. The first period is
before the travel, and it’s the organizational part. The second period is the travel
itself. Both of these periods face some financial issues.
The organizational part faces these financial issues:

• Research and booking of the flight (or a different means of transport);

• Research and booking of the hotel (or a different accommodation);

• Research and rental of a car on site;

The travel faces these financial issues, due to everyday common expenses:

• Grocery shoppings

• Rentals

• Restaurants

• Common activities

4.2 Proposed solution 23

All these activities have to be managed by someone who is calculating all the
money spent by each person in the group, and then dividing and redistributing all
the money. This problem can be solved in an easier and faster way.

4.2 Proposed solution
In this section we explain our idea for solving the problem explained in the

previous section.

4.2.1 Main idea

The main idea for solving the problem is the development of an app that is
calculating all the movement step by step. The users can create some group of work
and add some friend. Each friend, then, can add some expense. The tool, for each
movement added, is calculating if a person must receive or give money.

The "travel" case example

In order to better understand the problem and the solution, we take as an
example the "travel" case explained in the section 4.1.1.

Mark, John and Spencer are organizing a travel. Mark is paying for the flight
tickets, John is reserving the hotel and Spencer is renting a car. The following table
is explaining the problem:

Mark 400e Flight ticket
John 300e Hotel reservation

Spencer 80e Car rental
Total 780e

Table 4.1. The "travel" case.

In this case, the total cost of the trip is:

400 + 300 + 80 = 780

The total cost must be divided fot the number of partecipants (in this case: 3), and
we have:

780/3 = 260

260eis the total cost for each participant, but some of them payed more and some
of them payed less. In the following table we show, for each participant, if he must
give or receive money:

According to this table and our calculation, Mark must receive 140e, John must
receive 40eand Spencer must give 160e.

4.2.2 Main features

The main features of our app are:

• Possibility to add new groups of people

4.3 Entity-Relationship model 24

Mark 400e 260e -140e
John 300e 260e -40e

Spencer 80e 260e +160e
Total 780e

Table 4.2. The "travel" case solutions.

• Possibility to add new people to the groups, by selecting them among Facebook
friends

• Possibility to add new financial movements for each person present in the
group

• Possibility to exploit the native APIs of the device camera to add a picture for
each movement

• Possibility to check-in for each movement

• Possibility to calculate if a person should give or receive money from the other
people of the group

• Record of every movement

4.3 Entity-Relationship model
In this section we present the entity-relationship model of the data of our app.

The Figure 4.1 shows the E-R model with all the three entities, their respective
attributes and the cardinalities.

4.3.1 Group

The Group entity has these attributes:

• idgroup: it’s a unique attribute that autogenerates all the times a group is
created and it’s necessary to distinguish a group from another. Type: integer.

• amount: it’s an attributes that indicates the total money that have been spent
by each person in the group. Type: smallmoney.

• groupname: it’s an attribute that indicates the name of the group. It’s also
the name that is displayed in any page of the app. Type: character.

• date: it’s an attribute that indicates when the group has been created. Type:
date.

• description: it’s an attribute that allows the user to describe the characteristics
of the group. Type: character.

4.3 Entity-Relationship model 25

Figure 4.1. E-R model

4.4 Use case diagram 26

4.3.2 People

The People entity has these attributes:

• idperson: it’s a unique attribute that autogenerates all the times a friend is
added and it’s necessary to distinguish a person from another. Type: integer.

• amount: it’s an attributes that indicates the total money that have been spent
by a person. Type: smallmoney.

• name: it’s an attribute that indicates the name of the person (friend). It’s
also the name that is displayed in any page of the app. Type: character.

• group: it’s an attribute that links a person to a certain group. It is equal to
the id of the group from which the person has been added. Type: integer.

4.3.3 Movements

The Group entity has these attributes:

• idmovement: it’s a unique attribute that autogenerates all the times a move-
ment is created and it’s necessary to distinguish a movement from another.
Type: integer.

• amount: it’s an attributes that indicates the money that have been spent in
that movement.

• person: it’s an attribute that links a movement to a certain person. It is equal
to the id of the person from which the movement has been created. Type:
integer.

• date: it’s an attribute that indicates when the movement has been created.
Type: date.

• description: it’s an attribute that allows the user to describe the characteristics
of the movement. Type: character.

• picture: it’s an attribute that contains the image taken by the user for a certain
movement.

• checkIn: it’s an attribute that contains the check in done by the user for a
certain movement.

4.4 Use case diagram
The Figure 4.2 shows the use case diagram. The tables describe every use case

present in the diagram:

• Purpose describes what the use case allows the user to do.

• Role(s) indicates who is using a certain use case.

4.4 Use case diagram 27

• Pre-condition lists all the previous use cases completed before the current use
case.

• Post-condition lists all the enabled use cases after completing the current use
case.

• Workflow explains all the steps that the user must cover to complete the
current use case.

• Accesses data in each view indicates which data are available to the user in
the current use case. RM and WR indicates, respectevely, "read mode" and
"write mode".

4.4.1 Sign up with Facebook

Purpose It allows the user to register to the app with Facebook
credentials

Role(s) User, friends
Pre-condition None
Post-condition It’s now possible to log in with facebook credentials and to

start using the features of the app:

1. Log in with Facebook

2. Add group

Workflow

1. The user accesses the app

2. The user signs up with Facebook credentials

Accesses data in each
view

WM: Facebook API

Table 4.3. Sign up with Facebook

4.4 Use case diagram 28

Figure 4.2. Use case diagram

4.4 Use case diagram 29

4.4.2 Log in with Facebook
Purpose It allows the user to access the app with Facebook credentials
Role(s) User, friends
Pre-condition The user must be registered. Use case completed:

1. Sign up with Facebook

Post-condition It’s now possible to use the features of the app. Use case
enabled:

1. Add group

Workflow There are two ways. The first one is when the user access
the app for the first time:

1. The user accesses the app

2. The user signs up with Facebook by tapping on the
button

3. The user is automatically logged in

The second way is if the user already signed up:

1. The user accesses the app

2. The user is automatically logged in

Accesses data in each
view

RM: Facebook API

4.4 Use case diagram 30

4.4.3 Add group
Purpose It allows the user to create a new group
Role(s) User
Pre-condition The user must be registered and logged in. Use case com-

pleted:

1. Sign up with Facebook

2. Log in with Facebook

Post-condition It’s now possible to go to a group page and add people to
the created group or delete or modify the group. Use case
enabled:

1. Go to group page

2. Edit group

3. Delete group

4. Add friend to a group

Workflow

1. The user accesses the app

2. The user taps on the "+" button for adding a new
group

3. The user writes the name of the group in the text field

4. The user tap on "ok" to confirm

Accesses data in each
view

WM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date

4.4 Use case diagram 31

4.4.4 Edit group
Purpose It allows the user to modify the name of the group
Role(s) User
Pre-condition The user must be registered and logged in, and he must have

created a group. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

Post-condition It’s now possible to go to the group page, add people to the
edited group, or to delete the group. Use case enabled:

1. Go to group page

2. Delete group

3. Add friend to a group

Workflow

1. The user accesses the app

2. The user taps on the "edit" button

3. The user taps on the group he wants to edit

4. The user changes the name of the group and taps "ok"

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.date
WM: Group.groupname, Group.description

4.4 Use case diagram 32

4.4.5 Delete group
Purpose It allows the user to delete a group
Role(s) User
Pre-condition The user must be registered and logged in, and he must have

created a group. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

Post-condition It’s now possible to create a new group or to go to an existing
group page. Use case enabled:

1. Add group

2. Go to group page

Workflow

1. The user accesses the app

2. The user taps on the "edit" button

3. The user taps on the group he wants to delete

4. The user taps on the "delete this group" button

Accesses data in each
view

WM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date

4.4 Use case diagram 33

4.4.6 Go to group page
Purpose It allows the user to navigate from the home page to a group

page.
Role(s) User
Pre-condition The user must be registered and logged in. At least one

group must be already created. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

Post-condition It’s now possible to add friends to the group, or delete the
existing people. Use case enabled:

1. Delete friend from a group

2. Add person

Workflow

1. The user accesses the app

2. The user taps on a element in the list of groups

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson, Per-
son.name

4.4 Use case diagram 34

4.4.7 Add friend to a group
Purpose It allows the user to add a person to the group
Role(s) User
Pre-condition The user must be registered and logged in. At least one

group must be already created. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

Post-condition It’s now possible to add new movements to the added people,
to delete the added people, or to go to a friend page. Use
case enabled:

1. Delete friend from a group

2. Add movement

3. Go to a friend page

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user taps on the "+" button for adding a new
friend

4. The user searches the friend in his friend list and tap
on it for adding it

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date
WM: Person.idperson, Person.name, Person.group, Per-
son.amount

4.4 Use case diagram 35

4.4.8 Delete friend from a group
Purpose It allows the user to delete a friend from a group
Role(s) User
Pre-condition The user must be registered and logged in, he must have

created a group and added at least one person. Use case
completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Add friend to a group

5. Go to group page

Post-condition It’s now possible to add new people to the group or to go to
an other friend page. Use case enabled:

1. Add friend to a group

2. Go to a friend page

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user taps on the "edit" button

4. The user taps on the person he wants to delete

5. The user taps on the "delete this person from group"
button

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date
WM: Person.idperson, Person.name, Person.group, Per-
son.amount

4.4 Use case diagram 36

4.4.9 Go to a friend page
Purpose It allows the user to navigate from the group page to a friend

page.
Role(s) User
Pre-condition The user must be registered and logged in. At least one group

must be already created and one person must be added. Use
case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Add friend to a group

Post-condition It’s now possible to add, edit or delete a movement. Use case
enabled:

1. Add movement

2. Edit movement

3. Delete movement

Workflow

1. The user accesses the app

2. The user taps on an element in the list of groups

3. The user taps on an element in the list of added friends

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson,
Person.name, Person.group, Person.amount, Move-
ment.idmovement, Movement.amount, Movement.date

4.4 Use case diagram 37

4.4 Use case diagram 38

4.4.10 Add movement
Purpose It allows the user to add a movement of a friend
Role(s) User, friends
Pre-condition The user must be registered and logged in. At least one group

must be already created and one person must be added. Use
case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

Post-condition It’s now possible to go to a movement page, edit or delete a
movement, to take a picture of the receipt of that movement
or to check in with Foursquare. Use case enabled:

1. Go to a movement page

2. Edit movement

3. Delete movement

4. Take a picture of a receipt

5. Log in with Foursquare

6. Check in with Foursquare

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user accesses to an added friend

4. The user taps on the "+" button for adding a new
movement

5. The user fill the fields of the movement (amount, date
and description) and taps on the "ok" button

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson, Per-
son.name, Person.group, Person.amount
WM: Movement.idmovement, Movement.amount, Move-
ment.person, Movement.date, Movement.description, Move-
ment.picture, Movement.check-in

4.4 Use case diagram 39

4.4.11 Edit movement
Purpose It allows the user to modify the fields of a movement
Role(s) User
Pre-condition The user must be registered and logged in. At least one group

must be already created, one person and one movement must
be added. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

7. Add movement

Post-condition It’s now possible to add new movements. Use case enabled:

1. Add movement

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user accesses to an added friend

4. The user taps on the "edit" button

5. The user taps on the movement he wants to edit

6. The user changes the fields of the group he wants to
change and taps "ok"

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson,
Person.name, Person.group, Person.amount, Move-
ment.idmovement, Movement.person
WM: Movement.amount, Movement.date, Move-
ment.description, Movement.picture, Movement.check-in

4.4 Use case diagram 40

4.4.12 Delete movement
Purpose It allows the user to delete a movement
Role(s) User
Pre-condition The user must be registered and logged in. At least one group

must be already created, one person and one movement must
be added. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

7. Add movement

Post-condition It’s now possible to add new movements. Use case enabled:

1. Add movement

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user accesses to an added friend

4. The user taps on the "edit" button

5. The user taps on the movement he wants to edit

6. The user taps on the "delete this movement" button

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson, Per-
son.name, Person.group, Person.amount
WM: Movement.idmovement, Movement.amount, Move-
ment.person, Movement.date, Movement.description, Move-
ment.picture, Movement.check-in

4.4 Use case diagram 41

4.4.13 Go to a movement page
Purpose It allows the user to navigate from the person page to a

movement page.
Role(s) User, friends
Pre-condition The user must be registered and logged in. At least one

group must be already created, one person must be added
and one movement must be created. Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

7. Add movement

Post-condition It’s now possible to edit or delete a movement, to take a
picture or check in with Foursquare. Use case enabled:

1. Add movement

2. Edit movement

3. Delete movement

4. Take a picture

5. Check in with Foursquare

Workflow

1. The user accesses the app

2. The user taps on an element in the list of groups

3. The user taps on an element in the list of added friends

4. The user taps on an element in the list of a created
movement

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson,
Person.name, Person.group, Person.amount, Move-
ment.idmovement, Movement.amount, Movement.person,
Movement.date, Movement.description, Movement.picture,
Movement.check-in

4.4 Use case diagram 42

4.4 Use case diagram 43

4.4.14 Take a picture of a receipt
Purpose It allows the user to add a picture to a movement
Role(s) User, friends
Pre-condition The user must be registered and logged in. At least one group

must be already created, and one person must be added. Use
case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

7. Add movement

Post-condition It’s now possible to add, edit or delete a movement. Use case
enabled:

1. Add movement

2. Edit movement

3. Delete movement

4. Log in with Foursquare

5. Check in with Foursquare

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user accesses to an added friend

4. The user taps on the "+" button for adding a new
movement

5. The user fill the fields of the movement (amount, date
and description)

6. The user taps on the "camera" button and add a picture
(new picture or from library)

7. The user taps on the "ok" button

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson,
Person.name, Person.group, Person.amount, Move-
ment.idmovement, Movement.amount, Movement.person,
Movement.date, Movement.description, Movement.picture,
Movement.check-in
WM:Movement.CameraAPI

4.4 Use case diagram 44

4.4 Use case diagram 45

4.4.15 Log in with Foursquare (1)

Purpose It allows the user to log in with a Foursquare account
Role(s) User, friends
Pre-condition The user must be registered and logged in. At least one

group must be already created, and one person must be
added. The user doesn’t have to be already logged in. Use
case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

7. Add movement

Post-condition It’s now possible to check in with Foursquare, or add, edit
or delete a movement. Use case enabled:

1. Check in with Foursquare

2. Add movement

3. Edit movement

4. Delete movement

5. Take a picture of a receipt

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user accesses to an added friend

4. The user taps on the "+" button for adding a new
movement

5. The user fill the fields of the movement (amount, date
and description)

6. The user taps on the "Foursquare" logo and logs in
with his credentials

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson, Per-
son.name, Person.group, Person.amount
WM: Movement.idmovement, Movement.amount, Move-
ment.person, Movement.date, Movement.description, Move-
ment.picture, Movement.check-in, Movement.FoursquareAPI

4.4 Use case diagram 46

4.4.16 Log in with Foursquare (2)

Purpose It allows the user to log in with a Foursquare account
Role(s) User, friends
Pre-condition The user must be registered and logged in. Use case com-

pleted:

1. Sign up with Facebook

2. Log in with Facebook

Post-condition It’s now possible to add a group or to go to a group page.
Use case enabled:

1. Add group

2. Go to group page

Workflow

1. The user accesses the app

2. The user taps on the "Foursquare" logo and logs in
with his credentials

Accesses data in each
view

RM: Group.idgroup, Group.groupname
WM: FoursquareAPI

4.4 Use case diagram 47

4.4 Use case diagram 48

4.4.17 Check in with Foursquare
Purpose It allows the user to check with Foursquare
Role(s) User, friends
Pre-condition The user must be registered and logged in. At least one

group must be already created, and one person must be
added. The user must be already logged in with Foursquare.
Use case completed:

1. Sign up with Facebook

2. Log in with Facebook

3. Add group

4. Go to group page

5. Add friend to a group

6. Go to a friend page

7. Add movement

8. Log in with Foursquare

Post-condition It’s now possible to add, edit or delete a movement. Use case
enabled:

1. Add movement

2. Edit movement

3. Delete movement

4. Take a picture of a receipt

Workflow

1. The user accesses the app

2. The user accesses to a created group

3. The user accesses to an added friend

4. The user taps on the "+" button for adding a new
movement

5. The user fill the fields of the movement (amount, date
and description)

6. The user taps on the "Foursquare" logo and checks in

Accesses data in each
view

RM: Group.idgroup, Group.amount, Group.description,
Group.groupname, Group.date, Person.idperson, Per-
son.name, Person.group, Person.amount
WM: Movement.idmovement, Movement.amount, Move-
ment.person, Movement.date, Movement.description, Move-
ment.picture, Movement.check-in, Movement.FoursquareAPI

49

Chapter 5

High level design

In this chapter we describe the app from an high level using some UML diagrams.
Specifically we use:

• a collaboration diagram to understand the relations between the pages of the
app;

• an activity diagrams to understand the path of the actions that a user can do;

5.1 Collaboration diagram
The Figure 5.1 shows the class diagram of our app. Each class represents the

pages of the app and how they’re related.
The diagram shows also some simple units that represents the APIs used by the

device. These classes are Facebook, Foursquare and Camera.

5.1.1 Home

From the home page it is possible to:

• See all the created groups

• Edit all the created groups

• Delete the existing groups

• Access to a group page

5.1.2 Groups

From any group page it is possible to:

• See all the added friends

• Delete the added friends

• Access to a person (friend) page

5.1 Collaboration diagram 50

Figure 5.1. Collaboration diagram

5.2 Activity diagrams 51

5.1.3 People

From any person page it is possible to:

• See all the added movements

• Edit the added movements

• Delete the added movemements

• Access to a movement page

5.1.4 Movements

From any group page it is possible to:

• See all the added friends

• Delete the added friends

• Access to a person (friend) page

5.2 Activity diagrams
In this section we present an activity diagrams. It explains how the user can

create a movement of a person.

5.2.1 Add a movement

The Figure 5.2 is the activity diagram that shows the steps needed to add a
movement. This activity diagram also includes other use cases, and these are:

• Add group

• Go to a group page

• Add friend to a group

• Go to a friend page

In this activity diagram is shown the activities of the main actor (the user) and
those of the system.

Actor

1. Tap on "+" to add a group: the user taps on the "+" button on the right part
of the header to open a pop-up with a text field and the "Ok" button.

2. Write the name of the group and tap "Ok": the user writes the name of the
group in the text field and taps on the "Ok" button in order to save the group.

3. Add another group?: the user can now choose to add another group or to enter
in the group page that he has just created.

5.2 Activity diagrams 52

4. Tap on a created group: the user enters in the group page that he created.

5. Tap on "+" to add a friend: the user taps on the "+" button on the right part
of the header to open the Facebook’s friend list.

6. Tap on the selected friend: the user taps on the name of the friend in order to
add it to the group.

7. Add another friend?: the user can now choose to add another friend or to
enter in the friend page that he has just added.

8. Tap on "+" to add a movement: the user taps on the "+" button on the right
part of the header to open a pop-up with two text fields and the "Ok" button.

9. Write amount and description of the movement and tap "Ok": the user writes
the amount of the movement and its description in the text fields and taps on
the "Ok" button in order to save the movement.

10. Add another movement?: the user can now choose to add another movement
or to enter in the movement page that he has just added.

System

• Check among Facebook friends: the system, with the Facebook APIs, list all
the user’s friends.

• Send notification to the added friend: the system sends the notification to the
added friend. He has the option to accept or decline the invitation.

• Send notification to the people in the people in the group: anytime someone is
adding a movement, the system sends the notification to all the members of
the group.

• Make calculations: anytime someone is adding a movement, the system makes
the calculations and displays the results.

5.2 Activity diagrams 53

Figure 5.2. Activity diagram for adding a movement

54

Chapter 6

Partial implementation
experience with the two
technologies

TODO Per il 6 devi descrivere la soluzione implementata. Descrivi le tecnologie
usate e spiegare la struttura dell’applicazione. Spiega quali scenari hai coperto e se
possibile le criticità rispetto al livello modeling.

Then we show how the app is developed, the scenarios and some results and
criticality.

6.1 Technologies we used and structure of the app
In this section we present the technologies we used to develop our app. For each

technology we show the structure of our app.

6.1.1 Structure with PhoneGap

The first version of the app is hybrid, and developed using PhoneGap. PhoneGap
is exploiting the potential of HTML, CSS and JavaScript. This means that it’s
creating web pages that are packaged and used as a native app.

Once PhoneGap is installed and a new project is started, we can work on our
app using Xcode. The advantage of Xcode is the possibility to emulate the device
and test our app. The emulator is very fast and responsive. We can choose any kind
of device among Apple’s devices. In our case, we chose the iPhone 4.
PhoneGap gives us 3 main files to work on:

• index.css: a CSS file used to describe the look of our application. In our
case we didn’t work on it. The reason is that we wanted our app to look as a
native app. We used the framework Ratchet that provides a native app look
alike file CSS.

• index.html: a HTML file. This is the most important file for two reasons.
The first reason is that this file is where all the pages of our app are. Each
page is exactly like a web page. It’s divided in:

6.1 Technologies we used and structure of the app 55

– Header : the upper part of the page, usually used for the title of the app,
the name of the page or some useful button (like "back" or "add" buttons).

– Body: the central part of the page, where all the data and contents
are. In our case, the bodies of our pages always contain a list ("groups",
"people" and "movements") or some text fields with button for adding
a new element to our lists. For easier manage these lists, we used the
framework Handlebars.

– Footer : the lower part of the page, usually used for some permanent
button. In our case, the "home" button is always present.

The second reason is that this file groups all the other files. All the scripts
and links are imported to this file, index.css and index.js included.

• index.js: a JavaScript file that contains all the functionalities of our app.
If the HTML file is used to describe "how" our app looks, the JavaScript file
describes "what" our app is doing. The functions that are in our app can be
grouped:

– OnDeviceReady(): it’s the first function that is called once the app is
launched. In our app is calling the function renderHome().

– insert() functions: it’s a group of function thanks to which the user is
allowed to add an element to "groups", "people" or "movements";

– edit() functions: it’s a group of function thanks to which the user is
allowed to edit an element in "groups", "people" or "movements";

– delete() functions: it’s a group of function thanks to which the user is
allowed to delete an element from "groups", "people" or "movements";

– list() functions: it’s a group of function thanks to which the system is
listing all the elements in "groups", "people" or "movements";

– render() functions: it’s a group of function thanks to which the system
is rendering all the pages of "groups", "people" or "movements";

– API calls: these functions are calling some services as camera’s API
(native) and Facebook and Foursquare APIs (external).

Handlebars

Handlebars is a framework that is allowing the developers to set some templates.
These templates are filled with the data given by the database. In our case it has
been very useful. To list all those data wouldn’t be easy without a template.

Ratchet

Ratchet is a framework that is allowing the developers to set a user interface
that looks alike a native user interface. The downloadable Ratchet’s package gives
to the developers a set of CSS and JavaScript files. Importing this file in our project,
we are allowed to use some customized commands in our HTML pages.

6.2 Criticalities 56

6.1.2 Structure with Swift

The second version of the app is native, and developed using Swift, the new
Apple’s programming language. Once Xcode is installed, we are ready to develop a
project.
A Swift project is divided in this way:

• Main.storyboard: this file has a big potential. It gives us a graphical view of
the layout of each page. With the help of this file, we are allowed to create
layouts by drag-and-dropping elements from the "Object library" of Xcode.
We are allowed to directly link different functionalities to each element that
we drop in our layout. Furthermore, we can see the path of our app.

• Proups.swift, People.swift, Movements.swift that manage the data of our
app.

• TableViewController.swift files: in these files are included all the functions
and links of each page.

6.2 Criticalities
In this section, we explain which problems and criticalities we faced with both

technologies.

6.2.1 Criticalities with PhoneGap

We list all the issues we encountered by developing the app using PhoneGap.

• Installation: for a developer, this is not a hard procedure. But PhoneGap
needs to be installed from the terminal using some commands.

• Utility frameworks: in order to develop our hybrid app, and make it similar to
a native app, we needed some frameworks:

– Handlebars: this framework was necessary. Since our app is a set of nested
lists, writing the dependency in HTML wouldn’t have been possible.

– Ratchet: this framework was not necessary for the functionalities, but it
was necessary for the user interface. We wanted our app to be as similar
as possible to the native app. The result is good, even if the two apps
are not looking exactly the same. The bounce at the end of page, when a
user is scrolling a list, is missing. Some element is a little different. The
app is not responsive as the native one.

• APIs: we had some trouble with the APIs:

– Facebook and Foursquare: it’s not a real issue, but we had to decide if
the API we needed were the web version (since our pages are built as
web pages) or the iOS version.

6.3 Results 57

– Camera: with these APIs we had some problem we couldn’t solve. The
camera was not working even if the app was correctly calling the function.
We tested this with the help of a debugger, and, with some "alert", we
realized that we entered in the function. But nothing happened.

• Languages: our knowledge of HTML and JavaScript was a beginner knowledge.
Starting from this point, we needed to learn how the markup language and
the programming language were working together and by themselves.

6.2.2 Criticalities with Swift

We list all the issues we encountered by developing the app using Swift.

• Language: our knowledge of Swift was a beginner knowledge. Starting from
this point, we needed to learn the logic of the programming language.

This is the only problem we encountered. We didn’t have problems with the other
features.

6.3 Results
The results of our experiments are not qualitative, but quantitative. The only datum
we can estimate is the time we dedicated to the development of our app. Here the
results: With Swift we didn’t encountered any problem with the installation since it

PhoneGap 3-4 weeks
Swift 1 week

Table 6.1. Results in term of time

is already included in Xcode. We didn’t need to use any kind of framework that
helped us to build our app or that helped us to make our app to look good. We
didn’t have any problems with the APIs. The external APIs had a clear explanation
on Facebook’s and Foursquare’s website on how they should be used. The native
API of the camera are working since they’re native and made exactly for Apple’s
devices and Swift programming language, while with PhoneGap the problem is
still unsolved. Furthermore, Swift is very intuitive and easy to learn. It’s only one
language, while with PhoneGap we needed to learn two of them.

Our opinion is that, it is true that with PhoneGap we can build the app for
another operating system with only a click.

58

Chapter 7

Conclusions and Future Works

In this chapter we lead to the conclusions of the work we have done. Then, we
explain which are the possible future works.

7.1 Conclusions
After the results obtained in the chapter 6, we can list our conclusions:

• Performance: it’s confirmed that the hybrid approach brings to a less pow-
erful and responsive app. The delay after each tap is significantly longer, the
page loading is slower especially during the retrieve of some data.

• APIs compatibility: even though there shouldn’t be any compatibility
problem with the native APIs of the device for the hybrid approach, it’s not
true for our case. We encountered some issue with the camera API that we
couldn’t solve. The process is apparently easy, but there are no tools for
solving our problem. The emulator and the browser cannot use the camera.

• User interface: the user interface is very similar to the original one, but it’s
slower. In addition, during the development, even adding a button, is not as
natural as for the native app. Xcode offers to the native app a tool to build
the layout of each page, and the link of a page to another one. For hybrid app,
the layout is led only by coding.

• Time: even if it’s true that, once an hybrid app is developed, it can be build
for any operating system, it is not true that it’s faster to develop. In fact, there
are less tools that are helping PhoneGap during the developing and debugging
phase compared to the tools given to Swift. The time wasted to face all the
issues during these phases can be used to learn a new programming language
(like Java, for Android) and to develop a new native app for another operating
system. The precise time is not known, but in the end the result will be a
more performing app.

• Cost: the costs are strictly related to the time.

• Cross-platform: as we said for the time, it is a problem that we are allowed
to develop our native app only for one operating system at time. But we

7.2 Future works 59

also showed that the time for solving all the PhoneGap issues can be used for
developing two times the same app in the native way.

The hybrid approach is only apparently a faster way to develop a mobile app. It’s
true that for an expert web developer, building an app by using HTML, CSS and
JavaScript is easier. But starting from the same level, as in our case, learning a
language like Swift, or learning a language like JavaScript led us to face with the
same problems. Our conclusion is that, starting from the same knowledge of the
programming languages for the hybrid app (as PhoneGap with HTML, CSS and
JavaScript) and the native app (Swift for iOS), it is better to start the project by
using the native language.

7.2 Future works
What we concluded in the section 7.1 is the actual situation of the native and

hybrid development. The hybrid approach still presents too many bugs. It’s true
that the technologies used for developing hybrid apps are improving day by day, but
it still lacks of performance and user experience. The native approach is improving,
but from a conceptual point of view. Swift is a new programming language, made
to improve the old and less intuitive Objective-C. The good aspect of the hybrid
approach is that it has substantial room for improvement.

60

Bibliography

[1] P. R. M. de Andrade, A. B. Albuquerque, O. F. Frota, R. V Silveira, and F. A.
da Silva. Cross platform app: a comparative study. ArXiv e-prints, March 2015.

[2] Nicolas Serrano, Josune Hernantes, and Gorka Gallardo. Mobile web apps. IEEE
Softw., 30(5):22–27, September 2013.

[3] M. Knott. Beginning Xcode. Apress, 2014.

[4] Andre Charland and Brian Leroux. Mobile application development: Web vs.
native. Commun. ACM, 54(5):49–53, May 2011.

[5] Anthony I. Wasserman. Software engineering issues for mobile application
development. In Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 397–400, New York, NY, USA, 2010.
ACM.

[6] Wikipedia. Xcode — wikipedia, the free encyclopedia, 2015.

[7] Wikipedia. Swift (programming language) — wikipedia, the free encyclopedia,
2015.

[8] Wikipedia. Phonegap — wikipedia, the free encyclopedia, 2015.

	Introduction
	Context
	Problem Statement
	Structure of the Thesis

	Background
	Mobile app development
	Mobile web and apps
	Technical considerations
	Nontechnical considerations

	Relevant Technologies
	Xcode
	Swift
	PhoneGap

	Comparison between native and hybrid development
	Web apps
	Advantages
	Disadvantages

	Hybrid Approach
	Gartner Hype Cycle
	Advantages
	Disadvantages

	Native Approach
	Advantages
	Disadvantages

	Conclusions
	Summary
	Choices we made

	Case study specification
	Description of the problem
	The "travel" case

	Proposed solution
	Main idea
	Main features

	Entity-Relationship model
	Group
	People
	Movements

	Use case diagram
	Sign up with Facebook
	Log in with Facebook
	Add group
	Edit group
	Delete group
	Go to group page
	Add friend to a group
	Delete friend from a group
	Go to a friend page
	Add movement
	Edit movement
	Delete movement
	Go to a movement page
	Take a picture of a receipt
	Log in with Foursquare (1)
	Log in with Foursquare (2)
	Check in with Foursquare

	High level design
	Collaboration diagram
	Home
	Groups
	People
	Movements

	Activity diagrams
	Add a movement

	Partial implementation experience with the two technologies
	Technologies we used and structure of the app
	Structure with PhoneGap
	Structure with Swift

	Criticalities
	Criticalities with PhoneGap
	Criticalities with Swift

	Results

	Conclusions and Future Works
	Conclusions
	Future works

	Bibliography

