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Every moment, the voice of Love is arriving from left and right;

we are departing for the skies–who has a mind for sightseeing?

We were once in heaven, we were friends of the angles;

let us all return thither, for that is our city.

We are even higher than heavens, we are greater than angels;

why should we not transcend both? Our loading-place is Majesty.

Jalal ad-Din Muhammad Rumi–12th century

http://en.wikipedia.org/wiki/Rumi
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Abstract

ROBOTS are used to perform many repetitive and precise tasks. How-
ever, the programming time and cost of a robot restricts the use of
robots, especially in non-production-line uses. Although robot pro-

gramming by demonstration (PbD), by which a robot can learn to perform
a task from demonstrations, has been introduced to tackle this issue, still
a major concern is how a robot can generalize task demonstrations across
different conditions.

In this regard, many studies have been recently inspired by studies of
psychologists and particularly by imitation learning in observational learn-
ing, which allows a human to generalize an observation to a new goal point.

Based on the analogy between robot learning from demonstrations and
human learning from observation, and according to different types of obser-
vational learning, including mimicking, imitation, and emulation, we pro-
pose a multilayered approach to robot learning from demonstration. This
approach enables a robot to learn a model to perform a task from noisy
demonstrations and to generalize it to a new start and goal point as well as
to different environments. We demonstrate the usefulness of the approach
with a practical example of sweeping.
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Riassunto

IRobot vengono oggi utilizzati per l’esecuzione di molti compiti ripetitivi
o che richiedono elevata precisione. Tuttavia, la loro programmazione
richiede spesso tempi lunghi e, quindi, costi elevati, specialmente nella

produzione non in serie.
Sebbene la tecnica di programmazione per dimostrazione, che permette ad
un robot di imparare ad eseguire un compito a partire dalle dimostrazioni
fornite da un operatore, sia stata introdotta per risolvere questo problema,
è ancora poco utilizzata poiché il problema di generalizzare un’operazione
a contesti differenti da quello in cui è stata dimostrata non è ancora stato
completamente risolto.

Recentemente sono stati effettuati molti studi ispirati dalla teoria psi-
cologica dell’apprendimento per imitazione, secondo cui una persona è in
grado di generalizzare quanto appreso attraverso le osservazioni a nuovi
contesti.

Sulla base dell’analogia tra le tecniche utilizzate per ’apprendimento
dei robot a partire dalle dimostrazioni e l’apprendimento delle per-
sone dall’osservazione, questa tesi propone un approccio gerarchico
all’apprendimento da dimostrazioni, suddiviso in differenti livelli. Questo
approccio permette ad un robot di imparare un modello del compito che
deve eseguire a partire da dimostrazioni e generalizzarlo a differenti con-
dizioni ambientali e differenti stati iniziale/finale.

L’efficacia dell’approccio proposto è dimostrata attraverso
l’apprendimento di un compito che consiste nel raccogliere alcuni
oggetti in una paletta mediante una piccola scopa.
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Summary

ROBOTS have been used for many years in automatic production lines
in the industry, because of their capabilities to perform precisely
some repetitive tasks without stopping. However, programming

time and cost of a robot restrict the use of robots for a new task. Robot
programming by demonstration or robot learning from demonstration has
been proposed to reduce the time and cost of programming a robot.

This work has three parts. The first part is devoted to the existing ap-
proaches of robot Learning from Demonstration (LfD). The existing ap-
proaches of robot programming by demonstration are presented and classi-
fied according to the mathematical approaches in Chapter 1. Furthermore,
in Chapter 2, the connection between robot learning from demonstration
and learning by observing in psychology are discussed. We then classify
the approaches to robot LfD according to different types of observational
learning such as mimicking, imitation and emulation learning.

In the second part of this work, the mathematical model of the proposed
robot LfD approach are presented according to the distinguished types of
robot LfD in Chapter 2. The mathematical model used in the approach are
Gaussian mixture model/Gaussian mixture regression, presented in Chap-
ters 3, Mean-Path algorithm, presented in Chapter 4, dynamic movement
primitives, presented in Chapter 3, and inverse optimal control which is
presented in Chapter 5.

In the last part and in Chapter 6, the proposed approach of robot LfD
is applied to different problems including an example of deburring a work-
piece in an industrial context, a surgical robotic task and a sweeping ex-

V
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ample. These examples demonstrate the effectiveness of the proposed ap-
proach to obtain a model of a task from demonstrations in different con-
texts.

Recently, we extended the approach of robot learning from demonstra-
tion that allows a robot to replicate the demonstrated task in a dynamic
scenario in that the obstacles move during task execution. This result is
submitted to IROS 2015; however, we could not include the corresponding
part and the results in this thesis.

Although this work tries to illustrate and exploit the connection between
studies in psychology and robot LfD, there are still many rooms in this con-
text to explore which may benefit both studies in robotics and observational
learning.
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CHAPTER1
Introduction

1.1 Robot Programming

Robots have been used for many years in automatic production lines in the
industry, because of their capabilities to perform precisely some repetitive
tasks without stopping. They have been used to perform many tasks that
had not been planned during robot design procedure. This made them ver-
satile machines; however, to perform every single task an expert must care-
fully program them. This programming procedure is very time-consuming
and costly. So far, many researchers have worked on reducing the time and
cost of programming a robot, that results in different robot programming
approaches. In 1989, Lozano et al. [82] identified three major categories of
robot programming methods, as follows:

1. Robot-level programming or off-line programming: special robot pro-
gramming languages such as Versatile Assembly Languages or gen-
eral purpose programming languages are used to explicitly control
a robot. This method allows a programmer to specify every single
movement of the robot. Hence, the method allows a programmer to
program the robot in such a way that it can react to external events
by using sensors. An expert in sensor-based motion algorithms must

3
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Chapter 1. Introduction

Figure 1.1: Early approaches to Robot Programming by Demonstration decomposed a
task into symbolic units. Temporal dependencies across these units were used to build
a hierarchical task plan that reproduce the task [16].

program the robot, specifying the functionality of the robot based on
the sensory information. This enables a robot to cope with uncertainty
in the workspace. For example, a robot can be programmed to recog-
nize an object, estimate its position and pick the object from different
positions.

2. Task-level programming or implicit programming: a programmer only
determines the goals and sub-goals of a task. Then, a motion planning
system, such as MoveIt [31] or STRIPS1 [43], is used to generate the
necessary movements to carry out the task.

3. Programming by Guiding (PbG): it is also known as teaching by
showing, teach-in, play-back, walk-through and lead-through. In pro-
gramming by guiding, an operator moves the robot’s end effector to
perform a corresponding task. During these movements, all relevant
positions are explicitly recorded2. The sequence of recorded poses
is then used to carry out the demonstrated task. The full motion is
then obtained by interpolation [83] between the set of key points or a
planning system can be used to reach the key points.

An operator may only know implicitly how to perform a task, but he
may not have either skills or the time to program the robot to perform the
task. PbG allows the operator to teach the robot how to perform a task by

1STRIPS is abbreviation of Stanford Research Institute Problem Solver, is an automated planner that finds an
optimal plan at the symbolic level to perform a task.

2An operator may use a teach pendant to move the robot’s end effector or he may tele-operate the robot.

4
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1.1. Robot Programming

showing a robot an example execution of the task, and without program-
ming it at task- or robot-level. Programming by guiding approach has been
effectively used to reduce the programming time of a robot and the corre-
sponding cost in a production line. Nonetheless, it is only effective in the
case where a robot has to repeatedly execute the same movements. For ex-
ample, it has been used successfully to program an industrial robot for spot
welding or painting [6].

Despite the advantage of using programming by guiding, some limita-
tions arise where the robots have to repeat the task in a slightly different
working condition. For example, although PbG enables a robot to accom-
plish a task if the conditions during all task reproductions are identical,
namely in the painting and the welding examples, it cannot be used to en-
able a robot to pick an object from slightly different positions.

In order to cope with these limitations of PbG, and to generalize a
demonstration to a slightly different condition, Munch et al. [91] proposed
an approach called Robot Programming by Demonstration (RPD). This ap-
proach decomposes a demonstration into some symbolic units. Then, a
planning approach is used to determine temporal dependencies of units to
reproduce the task in different conditions (Figure 1.1). RPD incorporates
the sensory information into a programming procedure to generalize the
task demonstrations across different situations. For instance, consider the
task of picking an object from a conveyor belt in a production line and
putting it in a box, where the position of the object relative to the robot
changes at each repetition. Our goal is to teach a robot how to pick objects
from different given positions.

RPD has been initially inspired from programming by demonstration in
software development [11, 50]. Over the past couple of decades, many RPD
approaches have been developed at different levels of task abstraction [44].
Many machine learning approaches have been adopted to solve the gen-
eralization problem of RPD, such as Gaussian mixture model/ Gaussian
mixture regression [22], artificial neural networks [79], fuzzy logic [37],
radial-basis function networks [61], hidden Markov models [72] and in-
verse reinforcement learning [13]. Later in 1990s, due to analogies between
human learning by observing and robot programming by demonstration3,
observational learning in psychology study became a main source of in-
spiration to develop new corresponding approaches of RPD [110]. Hence,
robot programming by demonstration and robot learning from demonstra-
tion have been interchangeably used.

3Hence, here we use robot learning from demonstration as an identical term to robot programming by demon-
stration.
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Figure 1.2: Schema of robot programming categories distinguished in this thesis.

So far, four different types of observational learning have been distin-
guished in psychology studies [123, 135], including stimulus enhancement,
mimicking, imitation, and emulation. In observational learning apart from
stimulus enhancement, a human learns how to perform a task from observ-
ing others performing either the same task or another task. In fact, every
type of observational learning represents a level of generalization of the
observed task to a new scenario. Accordingly, in RPD context, we rec-
ognize three levels of generalization of task demonstrations such as RPD
through mimicking, imitation and emulation. Then, we propose a workflow
of RPD allowing a robot to learn a model of a task from a set of noisy
demonstrations and to generalize it across different situations. In the con-
text of robot learning from demonstration, we are interested to find simpler
modular models that can be easily transferred across different tasks. The
workflow of RPD consisting of three proposed types of RPD decomposes
a model of a complex task to be learned into simpler components that can
be used across different tasks.
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1.2. Programming by Demonstration

In the rest of this chapter, we present an overview of the related stud-
ies that extended robot programming by guiding to robot programming by
demonstration. We distinguish two levels of task model abstraction of RPD,
i.e. symbolic level and sub-symbolic level (Figure 1.2). State-of-the-art of
three main lines of studies of robot programming by demonstration such
as statistical approaches, Dynamic Movement Primitives and inverse rein-
forcement learning (Figure 1.2), as well as their limitations and advantages
are discussed in Section 1.4.1. The application of the existing methods of
RPD in an industrial problem is presented in Section 1.4.1, and their lim-
itations are discussed. Finally, in Section 1.5 we present the contribution
of this thesis. In Figure 1.2, the works related to the content of this thesis
are shown with dark blue blocks. The rest are branches of studies that are
out of the scope of this thesis, but are here considered in order to draw a
complete picture of RPD.

1.2 Programming by Demonstration

In software developing, programming by example or Programming by
Demonstration is an approach for faster software development in which
computer learns a new behavior of a user by recording user’s input through
a user interface. A computer can later exploit the learned behavior to help
the user by reducing the amount of required inputs that the user must give
to the computer/machine to carry out a user’s desired procedure (Fig. 1.3).

In 1950, Turing [128] proposed the question “ Can machines think?”.
This initiated many studies in different machine learning contexts. In the
late 70s, Bauer [11] proposed an algorithm to synthesize a procedure from
a set of example computations. This work was based upon the work of
Biermann and Krishnaswamy [12], in which formation of procedures from
sequences of instructions are discussed. In the mid-80s, Halbert [50] pre-
sented a practical system for programming by example. He discussed fur-
ther how that system could be incorporated into a richly functional, com-
mercial software system. In the 80s and early 90s, programming by exam-
ple and RPD had been mutually inspired [50]. Eventually in the late 1990s,
many researchers started to cope with this problem from the viewpoint of
learning [110].

1.3 Robot programming by demonstration

“Industrial robots have long been programmed by example [122].
The programmer of the robot can either physically move the robot’s

7
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Machine

User input

F(i)

oi

Figure 1.3: Schema of computing machine, initial state i, final state o and user input.
Programming by demonstration aims at learning function F .

“arms"(leadthrough) or else command the robot from a control panel
(walkthrough), and have the robot record the sequence of movements and
actions. The machine moves the workpiece, its drill bits, cutting tools, spray
guns, arc welders, and so forth as it follows the program."

(Halbert [50] 1984)
In the early 1980s, programming by guiding began attracting attention

of the people working in the domain of industrial robotics [122]. Even-
tually, it has become a useful and practical approach of programming an
industrial robot to perform a task, which is less time-consuming and costly
than the conventional programming methods, namely robot- and task-level
programming. Still, a main advantage of conventional robot-level program-
ming was that it has capabilities to cope with some uncertainties in the
workspace. This allows a robot to adaptively perform a task in different
situations. In order to extend robot programming by guiding such that the
robot can perform a demonstrated task in different environments, general-
ization became a crucial point [5]. However, the generalization of a demon-
strated task in robotics is a much more challenging problem than general-
ization in software development because task reproduction involves some
hard physical constraints to be satisfied. Furthermore, the operator and the
robot may not necessarily share the same embodiment and affordances.

After the appearance of non-industrial robots, such as humanoid and
mobile robots, the generalization issue became even a more crucial point,
since the robot’s workspace was no longer fixed and under control. Thus,
instead of simply copying a single demonstration, a robot had to gener-
alize the demonstrated movements to a new situation and across a set of
demonstrations. In the domain of humanoid robotics, RPD resembles ob-
servational learning4 in human [135]. Accordingly, many studies were in-

4Observational learning is a basic way of learning in human. In this way, a person learns to perform a task by
watching another person doing that task.

8



i
i

“thesis” — 2015/5/2 — 17:07 — page 9 — #37 i
i

i
i

i
i

1.4. Problem of generalization

Demonstrations Mimicking
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<Generalized path (GMM/GMR&Mean-Path)>

< Path adapted to a new goal point (DMPs) >

< Path adapted to a new goal and environment>

< Path adapted to a new environment >

Figure 1.4: Schema of Robot Learning from Demonstration workflow. In the proposed
workflow, first a generalized path is computed from a set of given task demonstrations
(level I). The obtained path is used as a baseline to learn Dynamic Movement Primi-
tives (level II) as well as learning a cost function encoding a response of demonstrator
to environment (level III). Finally a cost function combines the path with a new goal
point and response of the demonstrator to environment (level IV).

spired from observational learning and specifically from imitation learning5

[94, 110, 23].
In the following sections, we briefly review the works related to the

problem of generalization of task demonstrations to a new environment. In
Chapter 2, we present the corresponding types of observational learning,
and then we discuss how each level of RPD gives rise to a different aspect
of generalizing task demonstrations to different situations.

1.4 Problem of generalization

The first attempt at generalizing a demonstrated skill was mainly based on
the user’s feedback to give the robot explicit knowledge about the user’s in-
tentions [53]. Friedrich et al. [44] proposed a dialog based method in which
a demonstration of the task was stored in a trace and transformed into the
symbolic level using a given STRIPS-like planning language. Then, they
used a planning language to find the optimal sequence of basic operations.
Moreover, the user’s intention was used to analyze a demonstration and
to detect and eliminate the superfluous subparts. Therefore, generalization
occurred based on the user’s intention and optimization of the planning
parameters. Friedrich et al. [44] proposed two levels of task model abstrac-
tions to resolve the generalization issue, as follows (Figure 1.2):

5Imitation learning is a type of observational learning in which a person copies the form of the demonstrated
movements to achieve a goal. For example, a toddler may watch a person pouring water into a cup and he may
copy the form of the demonstrated movements to repeat the same task where the positions of the cup changed.

9
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1. symbolic level

2. sub-symbolic level

RPD at the symbolic level decomposes demonstrations into a sequence of
subtasks including some perception-action units as addressed by Ekvall and
Kragic [42], Friedrich et al. [44], Nicolescu and Mataric [97] and Par-
dowitz et al. [102]. An induction process is then used to determine the se-
quence of subtasks to be performed in a new condition. At the sub-symbolic
level, instead, RPD determines a nonlinear mappings between sensory and
motor information. Hence, a task at the sub-symbolic level is described by
continuous signals representing different configurations of the robot during
the execution time [7, 112, 129, 56, 21].

After Turing [128] proposed the question “ Can machines think?’, many
machine learning techniques were developed that could resolve the gen-
eralization problem in the RPD. The developed approaches attracted the
attention of robotic researchers [124] when generalization became a major
issue in the RPD. Muench et al. [91] used machine learning techniques
to identify elementary operators from a demonstration. They extracted the
dependencies of each elementary operation at a symbolic level, based on
the user feedback. A sequence of discrete basic motor skills was then de-
termined by a planner to use the obtained skill of performing a task in a
new condition. Many other works explored further the symbolic reasoning
in the context of RPD [42, 109, 120].

The symbolic level of RPD determines the sequence of symbolic rep-
resentation of the subtasks by induction. Hence, a robot cannot only use
them to execute the corresponding task. In order to perform the task, a
robot must interpret the high-level symbolic information and then generate
the necessary low-level information, such as motor current over the execu-
tion time. A planner, such as MoveIt and STRIPS, can be used for example
to generate the motor current based on the symbolic representations of the
corresponding task. On the other hand, the sub-symbolic level of RPD
generates a path or trajectory to be followed during task execution. The
sub-symbolic level methods of RPD are thus lower level of abstraction than
symbolic level methods.

A few years later, different levels of abstraction at the sub-symbolic level
have been also considered. For instance, data corresponding to a demon-
stration can be collected as the end effector poses or as the motor currents.
In this regard, Alissandrakis et al. [5] defined three different levels of the
sub-symbolic method. In the following, these levels are presented in suc-
cessively increasing levels of resolution, called ‘granularity’.
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1.4. Problem of generalization

• end-point level: a robot tries to reach the overall destination. Hence,
the behavior of the robot between the starting point and endpoint may
be qualitatively different from the one shown by the demonstrator.

• trajectory level: a robot has to visit a sequence of some important
points to be reached specified by the demonstrator.

• path level: a robot tries to exactly visit all the sequence of points that
demonstrator followed during task demonstration.

We assume that a complex demonstrated task can be decomposed into many
atomic movements, called sub-tasks. Hence, generalization of demon-
strated task may need to simultaneously occur at the symbolic and sub-
symbolic levels. In fact, a robot learns from task demonstrations how to
determine a sequence of sub-task at the symbolic level as well as how to
generate appropriate trajectories to accomplish each atomic movement in
an unseen environment. Dillmann et al. [38] combined RPD methods at the
symbolic and trajectory levels to benefit from generalization at both levels.
Nonetheless, in this thesis we focus only on generalization of task demon-
strations at the sub-symbolic level. In the following section we briefly re-
view the studies on generalization problem at the sub-symbolic level.

Besides the studies on generalization issue, many studies focused on
developing new interfaces to log the necessary data of a task demonstration,
such as kinesthetic teaching method [60], data gloves [127], laser range
finder [58] and vision sensors [62].

1.4.1 Related works

To solve the problem of generalization at the sub-symbolic level, many
approaches of machine learning has been adopted, such as artificial neural
networks [79], fuzzy logic [37], radial-basis function networks [61] and
HMM [72]. In the following, we review three main lines of research related
to each level of the proposed workflow of RPD.

1. Machine learning approaches

2. Dynamic Movement Primitive

3. Inverse reinforcement learning

RPD using machine learning approaches

The use of statistical techniques has been investigated in many studies to
encode, recognize and reproduce a set of movements. HMM has been used

11
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Chapter 1. Introduction

to encode a temporal, as well as a spatial variation of a complex movement.
For instance, Hovland et al. [55] modeled a skill at task level by a set of
discrete event controller. The structure of the discrete event is then mod-
eled by HMM whose parameters are obtained by training on the sensory
data of human demonstration. Tso and Liu [126] used an HMM model to
represent human demonstrations implying an appropriate model for human
performance modeling that is then used to retrieve the Cartesian trajectory.

In Computer Graphics, Brand and Aaron [19] suggested using HMMs
to identify common elements in a motion and synthesize new motions by
combining and blending these elements. In many works, an averaging ap-
proach has been used to retrieve human motion sequences from HMM [59].
Lee and Nakamura [73] used HMM to encode a set of trajectories captured
by a monocular camera. The multiple HMM is then employed to retrieve a
generalized movement. Calinon et al. [25] encoded trajectories into HMM
models by decomposing them into a set of relevant key points and em-
ployed spline fitting to retrieve and generalize the continuous trajectories.
The main problem of using HMM to encode the demonstrated trajectories is
that this model reproduce discontinuous trajectory. Billard et al. [15] used
interpolation between a set of computed key points to resolve this problem.

Other studies, instead of encoding the demonstration into HMM, en-
coded a set of trajectories into Gaussian components of an HMM. Then,
they used Gaussian Mixture Regression to obtain a smooth generalized
trajectory [27]. The proposed method inherently solved the problem of
smoothness of the generated trajectory. For example, Calinon [22] used
HMM (Figure 1.5) as a first approach. He then further explored the joint
use of GMM/GMR, see Figure 1.6.

Calinon et al. [27] showed that the first principal advantage of
GMM/GMR over HMM is that task constraints can be represented con-
tinuously along the trajectory and GMM/GMR model reproduces smoother
trajectory than HMM. To combine several constraints across different task
executions, they used GMM/GMR. They also showed how GMM/GMR
can be incrementally trained. Cho and Jo [32] used the GMM/GMR method
to encode the demonstrated behavior in the components of Gaussian param-
eters. They proposed a method that automatically determines the number of
Gaussian components during learning, when a new teaching trial is avail-
able.

In order to satisfy the constraints in both joint and task spaces, Calinon
and Billard [24] used the inverse kinematics information to modify the co-
variance matrix of the Gaussian component during reproduction. Muhlig et
al. [92] used GMM to encode the dataset. Then, they defined a cost function

12
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1.4. Problem of generalization

Figure 1.5: Left: A robot learns how to make a chess move by generalizing across different
demonstrations of the task performed in slightly different starting positions of the hand.
Right: The robot reproduces the skill for slightly different initial position of the chess
piece by computing appropriate path by HMM [22].

rating similarity between the produced movement and the demonstrated one
to reproduce the movement in a new condition.

RPD has been originated in the domain of industrial robots, as men-
tioned at the beginning of this chapter. Nonetheless, the developed statisti-
cal approaches focused on non-industrial problems. The mentioned statis-
tical approach aimed at using variability across different demonstrations in
order to capture the most relevant trajectory in different situations. Accord-
ingly, they provided some approaches for online adaptation and learning
that are useful for humanoid robots [131].

When the precision is not a major issue in a robotic task, the developed
statistical approaches of RPD may be successfully used to reproduce the
demonstrated motion in a different situation. For example, in a production
line in the presence of perturbation and/or spatial and temporal constraints,
the task of picking an object from different positions on a conveyer belt and
putting it in a box needs the precise start and goal point, but may not need
a precise trajectory to be followed. Hence, the precision of the trajectory
generation phase may not be a major issue.

In Chapter 4, we present how RPD can be used in a problem with a high
precision requirement. For example, we describe how RPD can be used in a
deburring problem to automatically generate a nominal profile of the work-
piece from a set of demonstrated profiles generated by an expert. The main
goal in deburring is to remove the burrs from final products, see Figure 1.7.
In this problem, the robot must automatically generate a nominal profile of
a new product and learn the feed rate of deburring tool from a set of human
demonstrations to perform the deburring operation. The product may have
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Figure 1.6: (a) A set of three sample 2-D paths and the computed Gaussian components
in the plane; (b) The computed GMR model based on the computed GMM.

different nonlinear profiles. Since human performance may not be optimal,
deburring residuals may exist on the final product at random positions after
an expert carries out the deburring operation.

Deburring problem In-contact tasks, such as deburring, are the most com-
mon robotic tasks in manufacturing [139]. RPD is useful especially in the
case of frequent changes in production in medium and small size enter-
prises. In order to program the robot to perform the deburring task, dif-
ferent sources of information, e.g. human input, sensor data and a model
of the work-piece, are used [36]. The goal of RPD, however, is to reduce
the programming time and cost by decreasing the amount of information
provided by an expert that a robot requires to perform a task [110].

Shimokura and Liu [118] stored the tool feed rate in accordance with
varying burr characteristic in an associative memory, given a set of demon-
strations of an expert performing the task of deburring. The learned asso-
ciative memory was then represented as a neural network to produce the
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1.4. Problem of generalization

Figure 1.7: A setup prepared to collect data of work piece profiles and perform deburring
operation [10].

feed rate for a new burr characteristic. In this work, the burr size was mea-
sured by laser sensor based on an available model of the work-piece. Ziliani
et al. [142] used a hybrid force/velocity control method along with a new
design of the deburring tool with two ball bearings to avoid penetration of
the tool in the work-piece. Therefore, a profile model was not required
since a mechanical constraint, namely two ball bearings, align the tool with
the burr free surface of the work-piece. Aertbelien and Van Brussel [3]
modeled the expert actions as an impedance controller with adaptive pa-
rameters in accordance with burr characteristics. A neural network was
then employed to learn the nonlinear relation between the parameters and
burr characteristics.

Although the problem of learning the force and feed rate of the tool for
a deburring task has been studied in prior works, the problem of building
a profile model from a set of suboptimal and noisy human demonstrations
has not been taken into account in those works. Building a profile model
from a dataset of observations is especially important for medium and small
size companies where a precise CAD model of each final product may not
be available.

As mentioned in the last prior section, in the last two decades a growing
body of works on RPD has been devoted to non-industrial robotic prob-
lems. For example, multi demonstrations are employed to find a subspace
representation of a demonstrated task [51, 68, 26]. Calinon et al. [27] lin-
early projected a dataset of human demonstrations onto a subspace of lower
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dimensionality using Principal Component Analysis (PCA). GMM/GMR
method is then used to compute a nonlinear generalized trajectory from a
subspace representation of the demonstrations.

We assume that the profile model of a work-piece may have different
nonlinear shapes. Thus, in analogy with standard PCA, we can use Prin-
cipal curves [39] and nonlinear PCA [115]. These methods have been
proposed to capture and remove nonlinear correlation between data points
where data points lie on a nonlinear manifold. These methods are sub-
sets of a framework developed to compute a nonlinear manifold of the data
points, such as principal curves [52, 63, 100, 117], kernel PCA [119, 78]
and nonlinear PCA [85, 80, 140, 114]. In a dataset of deburring task demon-
strations, we assume that every single demonstration is strongly correlated
with the task profile. Therefore, a nonlinear principal curve of a demon-
strated dataset represents a noise free profile model of the corresponding
work-piece.

1.4.2 Dynamical system

In another part of this thesis, we consider the problem of learning a model
of a demonstrated task that allows a robot to reproduce a path/trajectory to
a new goal point. Although the use of HMM and GMM/GMR addressed
some aspects of RPD in robotics, they could not provide the flexibility,
that is usually needed for generalizing the demonstrated task to a new goal
point.

In another line of research, a dynamical system approach has been
adopted to deal with perturbations as well as to reproduce a trajectory with
a new goal point. For example, Ito et al. [60] proposed modeling the inter-
action between a human user and a humanoid robot by using a Recurrent
Neural Network. This model learns the dynamics of the motion and allows
to switch between different motions through a dynamic interaction. Ijspeert
et al. [56, 57] proposed a motion planner called Dynamic Movement Prim-
itives (DMP), which uses an autonomous set of nonlinear differential equa-
tions that form a control policy to generate a trajectory with a new goal
point, see Figure 3.4. They demonstrated that their approach is robust to ex-
ternal perturbations and it can be modified on-line by additional perceptual
variables. The stability of evolution of a produced trajectory from an initial
point to an attractor goal point is further studied by Hoffmann et al.[54],
Ijspeert et al. [57] Lim et al. [76] and Schaal et al. [112]. This approach
is appropriate for many manipulative tasks, in which the start position and
goal position are of utmost importance to reproduce the task. Calinon et
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Figure 1.8: The computed path by GMM/GMR (blue line) with start point A and goal
point B. The produced path by the learned Dynamic Movement Primitives with start
point A and the new goal point B′.

al. [30] explored further the use of GMM to encode a set of virtual spring-
damper systems connected to a set of candidate coordinate frames based
on a set of demonstrations. The desired trajectory is then generated by
use of GMR. This allowed them to combine the statistical method and dy-
namical system. Therefore, they benefited from important features of the
task characterized by a statistical approach, as well as the capability of dy-
namical systems to cope with perturbations in real-time and generating a
trajectory with a new goal point. In the mentioned methods, a dynamic
model is trained using a dataset of task demonstrations, and it is then used
to reproduce a trajectory with a new goal point.

During reproduction of a trajectory in the presence of an obstacle, avoid-
ing an obstacle is a major issue and serious concern in robotics. A range
of methods has been developed to cope with obstacles in the environment.
Some studies combined the obstacle avoidance policy with policy obtained
by robot learning from demonstration methods. Calinon et al. [28] used a
modified version of dynamic movement primitives by considering a set of
virtual spring along the demonstrated trajectories. They used the variability
of different demonstrations along the movement to estimate stiffness matri-
ces of the virtual springs. A risk indicator modulating repulsive force was
then defined to enable a robot to safely avoid collisions with a human. In
another work by Guenter et al. [48], a model of a task was developed using
a dynamical system modulated by a GMM. This was combined with rein-
forcement learning to enable a robot to learn a new way of accomplishing
a task in a constrained environment. Kormushev et al. [67] used a model
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Chapter 1. Introduction

based on a dynamic system learned by a demonstrated trajectory. They then
used reinforcement learning to compute the optimal parameter values of the
model for a new environment.
Park et al. [103] employed a dynamic potential field that depends on the
relative distance and velocity between end-effector and obstacle combined
with a dynamic model to solve the problem of obstacle avoidance. In this
work, the gradient of the potential field was added to the acceleration term
of the differential equation of dynamic movement primitives. Hoffmann et
al. [54] proposed a method based on the use of a relative angle between
robot end-effector velocity and a vector connecting the position of the end-
effector to the position of the obstacle. This relative angle is then modified
based on the relative position and velocity of the end-effector and obstacle.
A term of perturbation, which is a function of the relative angle, is then
added to the Dynamic Movement Primitives formulation to guarantee that
the generated trajectory does not collide with the obstacle. Lin and Lai [77]
encoded the learned skill of reaching an object in GMM components. They
used reinforcement learning to modify the component parameters and ad-
just the end-effector trajectory near the obstacle.

The main challenge addressed in these works was to solve the problem
of the obstacle avoidance in combination with the learned model, such as
dynamic movement primitives, for robot learning from demonstration. In
these works, the parameters of obstacle avoidance model were fixed ex-
plicitly in the formulation. Although the goal of RPD is to reduce the pro-
gramming time and cost by enabling a robot to learn a new task from task
demonstrations, the methods mentioned in this section do not provide the
flexibility needed to teach the robot the desired responses to different ob-
stacles.

Based on the workflow proposed in this thesis, we will present a mul-
tilayer approach, which builds upon the Dynamic Movement Primitives a
utility function encoding the response of a demonstrator to a given obsta-
cle. To recover the corresponding utility function of a task demonstration
we use inverse optimal control, also know as inverse reinforcement learning
approach. This method enables a robot to learn obstacle avoidance from a
set of task demonstrations.

1.4.3 Inverse reinforcement learning

Inverse reinforcement learning is an approach to recover a utility function
underlying a set of task demonstrations, attracting many researchers of dif-
ferent domains including robotics. Ng and Russell [96] addressed the prob-
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Table 1.1: Methods and studies of robot programming by demonstration based on the
classification discussed in this chapter including sub-symbolic level approaches, such
as inverse reinforcement learning (IRL) and Dynamic Movement Primitives (DMPs).

Robot Programming by Demonstration
Symbolic level Sub-symbolic level

IRL Statistical approach Dynamical System
Hidden Markov Model:

Muench et al. [91], 1994 NG et al. [96], 2000 Hovland et al. [55], 1996 Calinon et al. [28], 2010

Kuniyoshi et al. [70], 1994 Abbeel et al. [1], 2004 Tso and Liu [126], 1996 Calinon et al. [30], 2012

Wallner et al. [133], 1994 Abbeel et al. [2], 2007 Brand et al. [19], 2000 DMPs:
Dillmann et al. [37], 1995 Ziebart et al. [141], 2008 Billard et al. [15], 2006 Ijspeert et al. [56], 2002

Kaiser et al. [61], 1996 Ratliff et al. [106], 2009 Inamura et al. [59], 2006 Schaal et al. [112], 2005

Friedrich et al. [44], 1996 Mombaur et al. [90], 2010 Calinon et al. [27], 2007 Lim et al. [76], 2005

Nicolescu et al. [97], 2003 Dvijotham et al. [40], 2010 Calinon et al. [29], 2010 Ito et al. [60], 2006

GMM/GMR: Hoffmann et al. [54], 2009

Ekvall et al. [42], 2006 Boularias et al. [18], 2011 Calinon et al.[27], 2007 Bitzer et al.[17], 2009

Pardowitz et al. [102], 2007 Levine et al. [75], 2011 Calinon et al. [24], 2008 Ude et al. [129], 2010

Dillmann et al. [38], 2010 Levine et al. [74], 2012 Muhlig et al. [92], 2009 Tamosiunaite et al. [121], 2011

Ek et al. [41], 2010 Billard et al. [13], 2013 Calinon [22], 2009 Nemec et al. [95], 2012

Billard et al. [13], 2013 Calinon et al. [29], 2010 Ijspeert et al. [57], 2013

Cho and Jo [32], 2013 Obstacle avoidance:
Other methods: Guenter et al. [48], 2007

Liu and Asada [79], 1993 Park et al. [103], 2008

Shimokura and Liu [118], 1994 Pastor et al. [104], 2009

Atkeson et al. [7], 1997 Calinon et al. [28], 2010

Miyamoto et al. [89], 1988 Kormushev et al. [67], 2010

Aertbelien et al. [3], 1999 Kulvicius et al. [69], 2012

Schaal [110], 1999 Lin and Lai [77], 2012

lem of extracting a reward function from a given observed optimal behavior
in the context of Markov decision processes. In large state space, they ap-
proximated the reward function by a linear combination of some predefined
basis functions. Abbeel and Ng [1] proposed an approach, called appren-
ticeship learning, to learn a reward function from expert demonstrations.
They assumed that the reward function is a linear function of predefined
features. In this approach, an empirical estimate of the features is computed
for a set of demonstrations. They proposed an algorithm that finds parame-
ters of the reward function by minimizing a distance between the estimated
empirical feature of the demonstrations and an estimated empirical feature
of a reproduced trajectory. Nonetheless, if the true reward function is not
a linear function of the features, the problem became an ill-posed problem.
Ziebart et al. [141] employed the principle of maximum entropy to address
this issue. They used it to determine a distribution over decisions to recover
the reward function of the demonstrated behavior for deterministic Markov
decision processes.

Dvijotham and Todorov [40] proposed a method called inverse optimal
control with linearly solvable Markov decision processes to recover a pol-
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icy and a cost function of a set of demonstrations. A major advantage of
this method is that it does not solve the optimal control problem iteratively
to recover the cost function, i.e. it does not compute the optimal solution
to the estimated cost function. They showed that the proposed algorithm
outperformed the previous inverse reinforcement learning methods. Levine
et al. [75] presented an approach of inverse reinforcement learning by em-
ploying Gaussian processes to recover a nonlinear reward function. They
demonstrated that the method is able to select the relevant features to the
task among a set of candidate features. Levine and Koltun [74] explored
further a probabilistic inverse optimal control algorithm to recover a con-
tinuous reward function. They used the derivative of the proposed reward
features to learn the reward function. Therefore, in their approach the re-
ward features need to be differentiable.

Although inverse reinforcement learning has demonstrated promising
results, there are few studies that use inverse reinforcement learning in
the context of robot learning from demonstration due to its computational
complexity. For example, Boularias et al. [18] proposed a model free in-
verse reinforcement learning algorithm employing the relative entropy be-
tween state-action distribution under a learned and a true reward function.
They validated the result of their method on a robotic simulation exam-
ple. Boularias et al. [13] used inverse reinforcement learning to learn a
reward function, a linear combination of some predetermined known fea-
tures, from a set of demonstrations in which some experts performed the
same task. The proposed approach was then validated by a simulated robot
example.

Inverse reinforcement learning allows for computing a reward function
underlying a set of task demonstrations, however learning a full reward
function of a task is computationally expensive. This complexity increases
by increasing the dimensions of the state and action space. Our proposed
method, that simplifies the learning process by decomposing it into dif-
ferent components, reduces the complexity of the problem of computing
a utility function underlying the demonstrations. This results in a utility
function with lower dimension of state and action space. We benefit from
the developed methods of RPD, GMM/GMR, DMP and inverse optimal
control, to compute different components.

In Table 1.1, some of the related works to the corresponding workflow of
RPD are listed. These works correspond to the blocks shown in Figure 1.2
with dark blue.
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1.5 Contribution and outline of the thesis

In this thesis, we assume that a robot must learn how to perform a task
from a set of sub-optimal and noisy task demonstrations. We decompose
a complex processes of robot learning from demonstration into different
components. These components provide different levels of generalization
of the demonstrations, resulting in a workflow of RPD. This workflow al-
lows a robot to obtain a task model from a set of noisy demonstrations and
allows the robot to generalize the task model to a new start and goal point
as well as to a new environment in the presence of obstacles.

In Chapter 2, the observational learning and its different types are briefly
presented. We discuss how the studies on psychology inspired us to decom-
pose a learning from demonstration processes into three layers: mimicking,
imitation and emulation.

In Chapter 3, we present the problem of mimicking, computing a gen-
eralized path across a set of sub-optimal task demonstrations. We empha-
size the precision of the computed generalized path by defining a precision
metric in Chapter 4. Accordingly, we propose an algorithm inspired from
expectation-maximization to compute the generalized path from a set of
demonstrated paths. The precisions of the generalized path computed by
this algorithm, by GMM/GMR and by NLPCA are compared for different
datasets. The comparison illustrates that the proposed algorithm outper-
forms both GMM/GMR and nonlinear PCA in terms of precision. In the
deburring example, the obtained profile model can be later used as a base-
line for other learning methods, e.g. neural network [3] or reinforcement
learning, to learn a control policy to compute the required temporal infor-
mation, such as feed rate of the tool, and force. These values, namely the
force and the feed rate, determine the removed amount of burrs and must
be adapted during every single execution, as the tool sharpness may vary
from one demonstration to another one.

The problem of imitation is also studied in Chapter 3. Dynamic move-
ment primitive is used to generalize a desired demonstration to a new start
and goal point.

In Chapter 5, the problem of emulation is presented. In this chapter,
we show how a robot can learn specific reaction to a stimulus during task
reproduction. In particular, we focus on the problem of obstacle avoidance
through RPD. To do so, we build a utility function whose parameters are
learned from task demonstrations. Our approach incorporates mimicking,
imitation and emulation into a utility function, allowing us to generate a
necessary path to perform a task with a new goal point in an environment
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with an unseen configuration of obstacles.
In Chapter 6, we use our approach to obtain a model of a robotic exam-

ple designed for surgeon training. Furthermore, we applied the approach to
a problem in which an industrial robot learns from noisy task demonstra-
tions how to sweep a rubbish into a dustpan while reacting specifically to
different non-rubbish object.

22



i
i

“thesis” — 2015/5/2 — 17:07 — page 23 — #51 i
i

i
i

i
i

CHAPTER2
Robot learning from demonstration (LfD)

2.1 Outline of the chapter

This chapter points to the connection between robot programming by demon-
stration and observational learning in psychology1[9]. Hereinafter, due to
this connection we use Robot Learning from Demonstration (RLfD) for the
framework in which a robot learns how to perform a task from a set of task
demonstrations.

RLfD is a subset of robot learning (see Figure 2.1). Corresponding to
human learning, robot learning allows a robot to obtain the ability to per-
form a task by different means, such as reinforcement learning in robotics,
knowledge transfer and experimental learning.

In this chapter, we aim at using the existing taxonomy of observational
learning proposed in psychology by Thompson and Russell [123] and Whiten
et al. [135]. We adapt this taxonomy to specify the corresponding pro-
cesses of robot learning from demonstration. This helps us to recognize
and decompose different processes of robot learning from demonstration
that eventually results in relatively simpler models.

1Observational learning is a learning process that occurs through observing the behavior of others.
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Programing by
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Figure 2.1: Robot learning includes several types, including robot learning from demon-
stration and reinforcement learning. Robot learning from demonstration has strong
connection with observational learning and programming by demonstration.

2.2 From RPD to RLfD

The first approach of robot learning from demonstration, as mentioned in
Chapter 1, appeared in industrial robotics and was called programming by
guiding, teaching by showing, teach-in, play-back, walkthrough and lead-
through. The redundant terminologies of robot programming by demon-
stration methods exist due to the different types of data collection of demon-
strations, due to the different level of generalizing the demonstration to
a new situation and due to the different abstraction levels of the model.
For example, Friedrich et al. [44] distinguished the generalization of the
demonstrated task at the symbolic and sub-symbolic levels. A robot col-
lects the trajectory data set when a robot programmer physically moves the
robot’s arm in the leadthrouth method or the programmer moves the robot
by tele-operating in walkthrough method.

As people started to use robot programming by demonstration in do-
mains different from industrial robotics, e.g. humanoid or mobile robotics,
robot learning from demonstration became an identical term to robot pro-
gramming by demonstration [8]. This seemed natural due to the anal-
ogy between robot programming by demonstration and observational learn-
ing in psychology [135]. Eventually, robot learning from demonstration
has become the most used term in robotics for the framework in which a
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robot acquires the ability to perform a task from a set of task demonstra-
tions. Nonetheless, a variety of terms has been used interchangeably for
this framework in the robotics literature, such as robot learning/program-
ming by/from demonstration/watching, programming by guiding, imitation
learning, teaching a new skill to a robot and apprenticeship learning.

In 1999, Schaal [110] discussed the analogy between robot learning
from demonstration and imitation learning2 from the viewpoint of behav-
ioral and cognitive science [88] as well as imitation from the viewpoint
of neuroscience and cognitive neuroscience [98]. After that, many studies
focused on imitation learning in robotics [120, 5, 14].

In the mid 90s, Tomasello [125] proposed a new process of learning
from demonstration in observational learning, called emulation learning.
Accordingly, in 2004 Thompson and Russell [123] proposed a more solid
classification of different processes of observational learning. However,
this classification did not completely clarify the complex processes of ob-
servational learning. After that, in 2009 Whiten et al. [135] described the
classification with more details. This is still an ongoing research in psy-
chology and cognitive neuroscience as well as behavioral and cognitive
science.

2.3 Observational learning

Observational learning is a means of learning through which humans learn
basic skills from observing others. In this way, a person learns how to
perform a task by watching another person doing that task. In the follow-
ing, we present some useful definitions of different types of observational
learning (Figure 2.2) relevant to robot learning from demonstration. These
definitions are discussed here because a classification of the existing meth-
ods of robot learning from demonstration can be built based on these types
of observational learning. The existing methods of robot learning from
demonstration are then categorized based on the defined classification.

As mentioned earlier, observational learning is a very basic type of
human learning through which a toddler obtains very basic skills of per-
forming a task by watching others doing that task. For example, a tod-
dler learns by observational learning to manipulate an object. In the early
1990s, imitation learning was widely thought as the main means of learn-
ing from demonstration in the psychology community. After that, Whiten
et al. [135], Thompson and Russell [123] established a more detailed clas-
sification of observational learning, distinguishing imitation learning from

2Imitation learning is a subset of observational learning.
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Observational
Learning

Stimulus

Enhancement

Mimicking Imitation
Learning

Emulation
Learning

Figure 2.2: Schema of different types of observational learning proposed by Thompson
and Russell [123].

other types of observational learning. These different types, defined in the
following, are useful to better understand different methods of robot learn-
ing from demonstration. In the following definitions, models are people
who perform a task when a person, called observer, watches them. Four
main learning categories of observational learning have been distinguished
by Thompson and Russell [123] and Whiten et al. [135], as follows:

1. In stimulus enhancement, the model’s action does no more than draw
the observer’s attention to the object or part of the apparatus that has
to be manipulated. During this process observer does not notice what
has to be done and does not take an action [123].

2. Mimicking is the copying of a model’s bodily movements. Thompson
and Russell [123] mentioned that mimicking must involve no concep-
tualization on the part of the observer of the purpose of the action.
Hence, the observer may or may not perform the task.

3. Whiten and Ham [134] defined imitation learning as goal oriented
copying the form of an observed action. In imitation learning an ob-
server is assumed to recognize what the form of the model’s move-
ments is bringing about and use that to carry out the task. Nonetheless,
affordance learning may not be involved at all [123].

4. In emulation learning, the observer replicates, as a means to an end,
not the bodily movements of the model, but the dynamic result of the
model’s action, having noted how the manipulated element caused the
desired result. What is conceptualized here is both the causal power
of the affected element and the kind of actions that the element af-
fords [123]. In 1989, emulation learning was originally distinguished
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from imitation learning by Wood [136]. In 1996, Tomasello [125] rec-
ognized emulation learning as a method of observational learning by
which the observer learns the environmental results of the model’s ac-
tion. In 2009, Whiten et al. [135] recognized and classified different
types of emulation learning, such as end-state emulation, affordance
learning and object movement re-enactment. In 2013, Gibson [46]
defined emulation as follows. In emulation, the learner matches the
achievement of a conspecific by focusing not on the conspecific’s be-
havioral strategy, but on the environmental outcomes caused by its ac-
tions, and does so by perceiving the dynamic affordances and learning
a model of environmental outcome based on the taken actions.

These definitions may seem not so clear because the corresponding pro-
cesses are complex. Furthermore, they are defined by psychologists. Hence,
in the following sections according to the presented definitions, we define
the corresponding terms in robotics. Although the proposed definitions of
the corresponding terms may not be complete, we try to formalize a simple
definition that distinguishes different processes of learning from demon-
stration. There are still ongoing research studies on better understanding
the difference between imitation and emulation, and separating imitation
and emulation learning is not easy in some cases.

The correspondence between robot learning from demonstration and ob-
servational learning in psychology as a consequence of the appearance of
humanoid robots initiated many studies in robotics. People, working in
robotic, were initially inspired from imitation learning [8] to develop nec-
essary methods of robot learning from demonstration, because at that time
imitation learning was the only definite types of observational learning al-
lowing an observer to generalize an observed behavior to a new situation.

After that in the late 90s, psychologist recognized emulation learning
as a key component of observational learning that is different from imita-
tion learning [125]. Hence, it is necessary to use the updated classification
of observational learning in robotics to develop necessary method for the
proposed emulation learning.

In this chapter we try to take the most solid definitions of the different
observational learning processes consistent with the different types of robot
learning from demonstration. Consequently, in the following sections, we
present the corresponding processes of robot learning from demonstration
to the processes of observational learning resulting in a multi-layered robot
learning from demonstration, as mentioned in Chapter 1.
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Robot Learn-
ing from

Demonstration

Discriminative

model

Generative
Model

Mimicking Imitation Emulation

Figure 2.3: Schema of Robot Learning from Demonstration and corresponding system
identification approach, correspondence are depicted by hollow bars.

2.4 Towards robot learning from demonstration

For designing a framework in which a robot learns how to perform a task
from a set of task demonstrations, Alissandrakis et al. [5] proposed five
central questions to be answered: When to imitate? Who to imitate? What
to imitate? How to imitate? How to evaluate a successful imitation?

In this section, we benefit from these five questions to describe a tax-
onomy of robot learning from demonstration. In particular, we translate
these questions about imitation into five corresponding questions of robot
learning from demonstration:

1. What to learn from demonstration?

2. How to learn from demonstration?

3. What is the model?

4. When to learn from demonstration?

5. How to evaluate a successful reproduction?

2.4.1 What and how to learn from demonstration?

The question of ‘What and how to learn from demonstration?’ can be dis-
cussed based on the different types of observational learning in psychology.
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2.4. Towards robot learning from demonstration

Four different types of robot learning from demonstration are thus recog-
nized in this section, as follows.

Robot learns a model to discriminate

In the first type of robot learning from demonstration shown in Figure. 2.3, a
robot learns a model to classify or cluster a data set. The learned model may
be used to recognize a pattern or structure of a given data set 3. For instance,
we identify the methods of object or activity recognition, enabling a robot
to recognize an object or an activity of a person, as robot learning a model
to discriminate from a set of given demonstrations [132, 65]. This type of
robot learning from demonstration corresponds to stimulus enhancement in
observational learning.

Mimicking

The second type of robot learning from demonstration called mimicking
enables a robot to learn how to perform a task where the reproduction
and demonstration conditions are identical. In this way, robot plays back
exactly the recorded data. This corresponds to programming by guiding,
discussed in Chapter 1. For example, in the framework of robot learning
from demonstration, one may record some important key points of a task
and robot uses a planning algorithm to reach these key points, or one may
record the motor current of each robot joint motor during a demonstration
and robot plays back the recorded motor current to repeat the same trajec-
tory. So, a robot builds a model of a demonstrated task to replicate the same
demonstrated performance in mimicking. This replication brings the task
goal about if the environmental condition is invariant.
In this type of robot learning from demonstration, the robot has neither the
ability to recognize the goal of the movement nor the ability to generalize
the demonstrated task to slightly different conditions. For example, con-
sider a task of picking an object at A and placing it at B. In this example,
if a programer tele-operates the robot to pick the object while the robot is
recording the followed trajectory, the task can be successfully repeated as
long as the position of the object during the demonstration and reproduc-
tion are identical. Otherwise, the robot is not able to pick the object. People
used successfully robot learning through mimicking in industry to program
a robot to repeat exactly the same trajectory. As mentioned in Chapter 1,
this was called programming by guiding, walk through and lead through.

3In Figure. 2.3 and Figure. 2.2 corresponding components are represented with the same color.
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If demonstrations are noisy, robot has to build a model from demonstra-
tions that produces a smooth trajectory or path. In this regard, Calinon [22]
used Gaussian Mixture Model/Gaussian Mixture regression to compute a
generalized trajectory across a set of demonstrations.

Imitation learning

The third approach of robot learning from demonstration, called imitation
learning, enables a robot to learn how to perform a task and generalize it to
a slightly different situation. In this approach, the robot is capable of rec-
ognizing the goal of the movement. Hence, the robot builds a model based
on the demonstrations to generate the sufficient and necessary actions, tra-
jectory or path to reach the goal of the demonstrated task. In the example
of picking and placing an object, the robot recognizes a new position of the
object A′ and position of the goal B′ and it generates the necessary path to
be followed based on the demonstrated path.

Among the methods of robot learning from demonstration at the
subsymbolic-level, Dynamic Movement Primitives and Gaussian mixture
model/Gaussian mixture regression has been largely studied in this context.
In particular, Schaal [111] studied Dynamic Movement Primitives to gen-
erate a trajectory with a new start and goal points based on a single demon-
strated trajectory. Calinon et al. [27] studied Gaussian mixture model/-
Gaussian mixture regression to account for temporal and spatial constraints
across different demonstrations by combining Gaussian mixture models of
different tasks. The obtained model is then used to produce a generalized
trajectory across a set of demonstrated trajectories. This method encodes
invariant constraints into a model across different tasks.

Emulation learning

Before the early 90s, imitation learning was recognized as the highest level
of observational learning in psychology community4. However, it does not
describe the complex process of observational learning in the situations in
which a learner does not copy the form of the model’s movements. For
example, a person may learn from demonstration how to open a door by
rotating a door handle and use the learned model to push a door handle to
open a different door. In this example, the person learns affordance of the
door handle by emulation, and generalize the learned model across different

4There are common processes of observational learning between human and apes [125]. Psychologists be-
lieve that humans use more imitation learning where apes use emulation learning to learn by watching. That is
why they mention that imitation learning is the highest level of observational learning that make human more
successful in developing skills and cultures [20].
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Table 2.1: Studies that are classified based on the classification of robot learning from
demonstration discussed in this chapter, see Figure 2.3.

Robot learning from demonstration
Model to discriminate Models that generate action, path or trajectory

Mimicking Imitation Emulation
Viola et al. [132], 2001 Calinon et al.[27], 2007 Ijspeert et al. [56], 2002 Abbeel et al. [1], 2004

Vail et al. [130], 2007 Calinon et al. [24], 2008 Schaal et al. [112], 2005 Ziebart et al. [141], 2008

Sethi et al. [116], 2009 Muhlig et al. [92], 2009 Ito et al. [60], 2006 Ratliff et al. [106], 2009

Murphy et al. [93], 2009 Calinon [22], 2009 Ude et al. [129], 2010 Dvijotham et al. [40], 2010

Yang et al. [138], 2011 Calinon et al. [29], 2010 Nemec et al. [95], 2012 Levine et al. [75], 2011

Kitani et al. [65], 2012 Cho and Jo [32], 2013 Ijspeert et al. [57], 2013 Levine et al. [74], 2012

types of door handles to open different door types. Lopes et al. [81] studied
affordance learning of different objects in the context of robot learning from
demonstration.

The fourth approach of robot learning from demonstration, called emu-
lation learning, enables a robot to learn how to respond to different environ-
mental features while performing a task to achieve the goal of demonstrated
task. In 1996, Tomasello [125] described a process of observational learn-
ing, called emulation learning, and studied the difference between imitation
and emulation learning. For example, one of the major concerns in robotics
is the problem of obstacle avoidance. In the example of picking and placing
an object, the robot can learn by emulation how to respond to the measured
distance from different objects.

In many robotic tasks, robot must learn a model that is task dependent as
well as environment dependent. For example, robot learns from demonstra-
tion how to assemble some production parts in an unstructured environment
that entails performing a learned task of assembly and avoiding obstacles.
Imitation learning enables a robot to learn a task dependent model where
emulation enables the robot to learn an environment dependent model of a
demonstrated task.

In order to clarify the difference between the last three types of robot
learning from demonstration in Section 2.4.1, consider the following exam-
ple. Assume that a person (the trainee) wants to put a spoon of sugar from
cup A in cup B, where A and B are on a table. If the trainee was to learn
by mimicking, it would follow exactly the same path as the model did, and
would be successful so long as neither cup A nor cup B are moved. Given
some noisy demonstrations, Calinon [22] studied Gaussian Mixture Mod-
el/Gaussian Mixture regression to compute a generalized trajectory across
the demonstrations. This method can be considered as mimicking given a
set of trajectories.
On the other hand, if the trainee was to use imitation learning, s/he would
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be able to successfully carry out the task no matter where the cups were.
In this case, the trainee is able to extract a task model given a set of task
demonstrations, recognize the state of the goal, which are positions of the
cups A and B, and map the observed behavior to the new states of the goal
to do the job. Ijspeert et al. [56] proposed Dynamic Movement Primitives
model allowing a robot to replicate a demonstrated trajectory or path with
a new target point. In a scene with an obstacle, the nominal model learned
by Dynamic Movement Primitives may no longer be feasible, so the trainee
uses emulation learning to infer from features of the scene how and when
to deviate from the nominal trajectory. Inverse reinforcement learning can
be employed to encode the responses of a model to environmental features
into a reward function. In Table 2.1 some of the related works to each
distinguished robot LfD in this chapter are listed.

2.4.2 When to learn and what is the model?

The question of ‘when and who to imitate’ corresponds to the data set of
demonstrations. An observer determines the data set of demonstrations by
answering to these two questions. Nowadays, these questions are already
answered by giving a dataset of demonstrations to a robot. A main issue
arising about data set of task demonstration both in robotics [5] and cogni-
tive neuroscience [108] is the problem of transformation of the demonstra-
tions from model coordinate frame into the coordinate frame of the observer
or robot.

In robotics, demonstrations may be presented either in self-frame (robot
base frame) or in demonstrated-frame. For example, demonstrations are
available in the self-frame in walkthrough and lead-through methods where
the data are collected through joint angles. Moreover, due to development
of required sensors, e.g. data gloves [127], laser range finder [58] and vi-
sion sensor [62], demonstrated-frame became available. The demonstrated
data collected with sensors has to be transformed from demonstrated-frame
into the robot base frame whereas robot does not need to transform the
demonstrations collected in the self-frame. Di Pellegrino et al. [35] has
also studied the hypothesis of transformation in observational learning.

2.4.3 How to evaluate a successful reproduction?

The question of ‘how to evaluate a successful reproduction?’ entails a feed-
back on robot performance. Either this feedback may be provided by an
external evaluator, which is called teacher, or a robot can generate a signal
of feedback based on comparing the results of his performance and the re-
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sults of the demonstrations. In either case the evaluation entails employing
learning approaches different from robot learning from demonstration, e.g.
reinforcement learning.

2.5 Conclusion

In this chapter we discussed the connection between robot learning from
demonstration and observational learning in psychology. Corresponding to
the developed classification in observational learning, we defined a classi-
fication of robot learning from demonstration. This classification describes
different processes of robot learning from demonstration. Although the
main focus in this thesis is on robot learning at the subsymbolic-level, the
defined classification can be extended to robot learning at the symbolic-
level. In order to better describe the processes of robot learning from
demonstration, we answered five central questions originally proposed in
the context of imitation learning in robotics by Alissandrakis et al. [5].
The existing methods of robot learning from demonstration have been then
categorized based on the defined classification. As robots are expected to
perform some physical task, such as picking and placing an object, the pro-
cesses of robot learning from demonstration that generate path or trajecto-
ries are the main focus of this thesis. These processes are learning from
demonstration through mimicking, imitation and emulation.
In the next chapter, Gaussian mixture model/Gaussian mixture regression is
presented as a method of robot learning from demonstration through mim-
icking with multiple demonstrations. Then, Dynamic movement Primitives
is presented as a method of robot imitation learning with a single demon-
stration.
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CHAPTER3
Robot LfD: from mimicking to imitation

Learning

3.1 Outline of the chapter

This chapter presents two methods of robot learning from demonstration
through mimicking and imitation at the subsymbolic-level. We present
Gaussian mixture model/Gaussian mixture regression as a method to com-
pute a generalized paths given a set of noisy demonstrations for mimicking
and Dynamic Movement Primitives for imitation learning model.

In robotics, many tasks are highly constrained in some parts of the cor-
responding paths or trajectory where the other parts are less constrained,
resulting in different ways of task execution. Moreover, the collected data
might be noisy due to measurement noise. In order to tackle these problems
and compute an invariant basis of the demonstrated task performance, we
present Gaussian mixture model/Gaussian mixture regression as a method
that computes a generalized path given a set of demonstrated paths that can
be used for robot learning from demonstration through mimicking.

Dynamic Movement Primitives, inspired by biological systems, has been
introduced by Ijspeert et al. [56]. We use DMP as an imitation learning
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model. This model encodes an observed behavior represented by a tra-
jectory into a dynamical system model with an attractor, which is a goal
point. The main advantage of Dynamic Movement Primitives is that it gen-
erates a trajectory with a new determined goal position. The stability of the
generated trajectory under external perturbation has been also discussed by
Ijspeert et al. [56]. This model provides a stable trajectory generation with
attractive landscape or an attractor point. Accordingly, the learned model
from a demonstrated trajectory by Dynamic Movement Primitives is used
to generate a corresponding trajectory to a new goal point.

This chapter is organized as follows. In Section 3.2 the joint use of
Gaussian mixture model and Gaussian mixture regression is presented in
order to compute a generalized trajectory from a set of demonstrated tra-
jectories. Next, in Section 3.3 Dynamic Movement Primitives, a method
to encode a demonstrated trajectory into a dynamical system model, is dis-
cussed. This model is then used to generate a trajectory with a new goal
point. An example of human walking task is presented in Section 3.4. In
this example, a data set of positions of humans during walking is collected.
Gaussian mixture model and Gaussian mixture regression are then used to
compute an invariant basis of the set of collected data set. To do so, first
the data set is encoded into a set of Gaussian model components. Gaussian
mixture regression is then used to computed a generalized path that is in-
variant basis of the demonstrated task. The computed generalized path is
used to learn a Dynamic Movement Primitives model that is used to gener-
ate a path to a new goal point.

3.2 Gaussian mixture model/Gaussian mixture regression

The theory of Gaussian mixture model and Gaussian mixture regression
has been largely studied in machine learning community by McLachlan
and Peel [87, 86], Dasgupta and Schulman [33], Ghahramani and Jordan
[45]. The application of this method in the robot learning from demonstra-
tion domain has been then studied by Calinon [22] to encode an observed
behavior characterized by a set of demonstrated trajectories into a model.
In this method, an invariant basis of a set of demonstrated trajectories is
encoded into a set of Gaussian components. Gaussian mixture regression is
then used to compute a generalized trajectory across the set of demonstrated
trajectories. This computed trajectory may be considered as an optimal way
to carry out the task based on the demonstrations. The obtained generalized
trajectory captures the invariant constraints across all demonstrated trajec-
tories.
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As there is no generalization of demonstrated trajectories to a new goal
point, we classify this method as robot learning from demonstration through
mimicking given multiple demonstrations. Nonetheless, this method en-
ables a robot to compute a generalized trajectory across multiple demon-
strated trajectories. At the lowest level of mimicking, a robot plays back
only a recorded trajectory that may be noisy or may not be the optimal tra-
jectory. GMM/GMR enables a robot to compute a trajectory that captures
the invariant information across all the demonstrated trajectories.

3.2.1 Gaussian mixture model (GMM)

Consider n observed demonstrations of a task performed by a human, con-
sisting of n observations of time dependent sensory data. Each demonstra-
tion is rescaled to the fixed number of observed data points T. The total
number of collected datapoint is then given by N = nT . Therefore, ob-
served data set is ζ = {ζj}Nj=1 where ζj ∈ RD and D is the dimensionality
of each datapoint. The subscript notation t and s is used to define temporal
or spatial variables of each datapoint ζj = {ζs, ζt} consisting of a temporal
value ζt ∈ R and a spatial vector ζs ∈ RD−1.

The dataset ζ is modeled by a mixture of K components, defined by the
probability density function:

p(ζj) =
K∑
k=1

p(k)p(ζj|k) (3.1)

where p(k) is a prior and p(ζj|k) is a conditional probability density func-
tion. For a mixture of K Gaussian distributions of dimensionality D, the
parameters in equation (3.1) are defined by

p(k) = πk

p(ζj|k) = N (ζj;µk,Σk) =

1√
(2π)D | Σk |

e
((ζj−µk)TΣ−1

k
(ζj−µk))

2

(3.2)

whereN (ζj;µk,Σk) represents the probability of a datapoint ζ with respect
to the normal distribution N (µ,Σ). The Gaussian mixture model param-
eters, including prior probabilities, mean vectors and covariance matrices,
are described by {πk, µk,Σk}.
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3.2.2 Gaussian mixture regression (GMR)

After encoding the temporal and spatial values of a set of trajectories in a
set of Gaussian models, Gaussian mixture regression is introduced to re-
trieve a smooth trajectory from the observed trajectories. To do so, the
observed data is first modeled by a joint probability distribution p(ζs | ζt).
A generalized trajectory is then computed by estimating E[p(ζs | ζt)], and
cov(p(ζs | ζt)) is used to estimate the constraints of performing the task,
where E and cov are expectation and covariance, respectively.

In regression problem, a set of input variables X ∈ Rp and response
variable Y ∈ Rq are given, where p and q are the dimensionality of model
input and output. The regression methods aim at estimating the conditional
expectation of Y given X based on a set of observations {X, Y }. We con-
sider a set of observation {ζt, ζs}where ζs is a vector of positions at time ζt.
In the context of Gaussian mixture regression, regression aims at maximiz-
ing the conditional expectation of ζs given ζt. The generalized trajectory
is obtained by computing conditional expectation of ζs at each time step.
In this way, a joint density of the set of trajectories is first estimated by a
Gaussian mixture model and then a regression approach is used to compute
a generalized trajectory. Consider spatial and temporal values of a Gaussian
component as follows:

µk = {µt,k, µs,k} , Σk =

(
Σtt,k Σts,k

Σst,k Σss,k

)
.

For each component k, the expected distribution of ζs,k given the tempo-
ral value ζt is given by theorem of Gaussian conditioning based on linear
combination property of Gaussian distributions, as follows.

p(ζs,k|ζt, k) = N (ζs,k; ζ̂s,k, Σ̂ss,k)

ζ̂s,k = µs,k − Σst,k (Σtt,k)
−1 (ζt − µt,k),

Σ̂ss,k = Σss,k − Σst,k(Σtt,k)
−1Σts,k,

The K Gaussian distributions N (ζ̂s,k, Σ̂ss,k) are mixed according to prior
βk

p(ζs | ζt) =
K∑
k=1

βkN (ζs; ζ̂s,k, Σ̂ss,k) (3.3)

where βk = p(k | ζt) is determined by the probability of the component k
to be responsible for ζt
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Figure 3.1: (a) A set of three sample 2-D trajectories and the computed Gaussian compo-
nents for ζs1 and ζs2; (c) A set of three sample 2-D paths and the computed Gaussian
components in the plane.

βk =
p(k)p(ζt|k)∑K
i=1 p(i)p(ζt | i)

=
πkN (ζt;µt,k,Σtt,k)∑K
i=1 πiN (ζt;µt,i,Σtt,i)

An estimation of conditional expectation of ζs given ζt in equation (3.3)
is computed by using the linear combination property of Gaussian distribu-
tion by p(ζs|ζt) ∼ N (ζ̂s, Σ̂ss), where parameters of the Gaussian distribu-
tion are defined by

ζ̂s =
K∑
k=1

βkζ̂s,k , Σ̂ss =
K∑
k=1

β2
kΣ̂ss,k. (3.4)

A trajectory and associated covariance matrix Σ̂ss is then reproduced by
evaluating {ζ̂s, Σ̂ss} at different ζt.
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Figure 3.2: (a) The computed trajectory by Gaussian mixture regression based on the
computed Gaussian mixture model for ζs1 (top) and ζs2 (bottom) versus time ζt; (b)
The corresponding computed Gaussian mixture regression in 2-D. The blue shaded
area represents the computed covariance matrix of the Gaussian mixture regression
model.

3.2.3 Learning of GMM parameters

Expectation-Maximization algorithm [34] has been proposed to compute
the parameters of the Gaussian mixture model. Consider equation (3.2)
and equation (3.1), pk,j can be defined as posterior probability p(k | ζj)
computed using the Bayes theorem p(k | ζj) =

p(k)p(ζj)∑K
i=1 p(i)p(ζj |i)

. An initial es-
timate of the parameters used for iterative algorithm θ = {πk, µk,Σk, Ek},
where Ek is the sum of the posterior probabilities, is computed by k −
means segmentation [84]. The parameters are then iteratively computed
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E − step
p

(r+1)
k,j =

π
(r)
k N (ζj ;µ

(r)
k ,Σ

(r)
k )∑K

i=1 π
(r)
k N (ζj ;µ

(r)
i ,Σ

(r)
i )

E
(r+1)
k =

∑N
j=1 p

(r+1)
k,j

Maximization− step
π

(r+1)
k =

E
(r+1)
k

N

µ
(r+1)
k =

∑N
j=1 p

(r+1)
k,j ζj

E
(r+1)
k

Σ
(r+1)
k =

∑N
j=1 p

(r+1)
k,j (ζj−µ(r+1)

k )(ζj−µ(r+1)
k )T

E
(r+1)
k

Table 3.1: Expectation maximization algorithm that is used in [22] to learn the GMM
parameters.

until convergence by expectation-maximization algorithm1 reported in Ta-
ble 3.1.

The iterations stop when the improvement in log-likelihood is less than
a threshold.

L(r+1)

L(r)
< C

where L(r) (ζ, θ) =
∑N

j=1 log
(
p
(
ζj | θ(r)

))
.

3.3 Dynamic movement primitives

Dynamic movement primitives (DMPs) are a method of learning from
demonstration through imitation at the subsymbolic-level [57]. Inspiring
from the biological concept of motor primitives [47], Ijspeert et al. [56]
introduced DMPs.

In the domain of cognitive science, it is proposed that a skill consists of
many movement primitives [64]. Hence, one may adapt an obtained skill
by combining the movement primitives in a new situation.

The processes of learning dynamic movement primitives were inspired
from movement primitive. DMPs aim at finding some movement primitives
based on a demonstration that can produce a new trajectory to a new goal
point. A stable linear dynamical system that has an attractor is used to build
dynamic movement primitives. In order to encode a trajectory, an external

1For further details of the expectation maximization algorithm refer to [22].
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input added to the linear dynamical system. This input is generated by a
nonlinear function learned from the demonstration and is fixed during all
reproductions of the demonstrated task to different goal points. Dynamic
movement primitives has been proposed to encode rhythmic as well as non-
rhythmic behaviors. In the following, we present a discrete Dynamic move-
ment primitives formulation [104], i.e. DMPs which encode non-rhythmic
or episodic trajectories.

DMPs are composed of two differential equations, a first order differen-
tial equation, called canonical system, and a second order differential equa-
tion. The canonical system is independent where the second order system
depends on the output of the canonical system. Consider a linear dynamical
system represented by a second order differential equation as follows:

τ ÿ(t) = k (g − y(t))− cẏ(t) (3.5)

where τ , k and c are mass, spring constant and damping factor of a simple
mass-spring system, respectively. Moreover, g is a goal point of a new re-
production of the demonstrated task. The damping factor c, spring constant
k and τ are chosen such that the equation (3.7) becomes a critically damped
dynamical system. We add an external input u to the dynamical system.

τ ÿ(t) = k (g − y(t))− cẏ(t) + (g − y(0))u (3.6)

where y(0) is the initial position. We consider x1(t) = y(t) and x2(t) =
ẏ(t), hence, the state space representation of equation (3.6) is given by[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
−k
τ

−c
τ

] [
x1(t)
x2(t)

]
+

[
0
k
τ

]
g +

[
0

g−y(0)
τ

]
u(t)

(3.7)
The first order differential equation is used to compute the external input

u in combination with a set of basis functions, as follows:

τŻ = −αZ (3.8)

where Z and α are state of the differential equation and a predefined con-
stant, respectively. α is selected such that s monotonically goes from initial
stat Z(0) = 1 to Z(T1) = 0 during trajectory production ([x1, x2]T ) (see
Figure 3.3).

3.3.1 Learning of the external input

The external input in equation (3.7) is selected to be nonlinear in the state Z
of the differential equation in (3.8) and it transforms the simple dynamics of
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Figure 3.3: Evolution of the canonical state Z during the trajectory reproduction.

the unforced system in (3.5) into a forced system with a desired trajectory
(equation (3.6) ). The external input u is active in a finite time window (T1)
leading to a dynamical system with an attractor (g), i.e. u(t) = 0 ∀ t > T1.
In order to learn a new skill represented by a trajectory, the data of a desired
movement x1,d is collected and its velocities x2,d and acceleration ẋ2,d are
computed at each time step t = 0, ..., T . Second, the canonical system is
computed by using equation (3.8) with the selected temporal scaling factor
τ . The target external input ud of the desired movement is then computed
(see Figure 3.5) based on equation (3.7) as follows:[

0
gd−x1,d(0)

τ

]
ud =

[
ẋ1,d

ẋ2,d

]
−
[

0 1
−c
τ

−k
τ

] [
x1,d

x2,d

]
−
[

0
k
τ

]
g (3.9)

where x1,d and x2,d are position and velocity of the demonstrated trajec-
tory. Equation (3.9) can be also written as follows:

ud(t) =
τ ẋ2,d(t)− k(gd − x1,d(t)) + cx2,d(t)

(g − x1,d(0))

ud(t) =
τ ÿd(t)− k(g − yd(t)) + cẏd(t)

(g − yd(0))

(3.10)

where x1,d(0) and gd are initial and goal positions of the demonstrated tra-
jectory. In order to encode different trajectories into dynamic movement
primitives model, the external input is defined as a function of the state of
the canonical system, as follows.
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Figure 3.4: (a) A demonstrated minimum jerk trajectory (red line) and the reproduced
trajectory by the learned DMPs model (black dashed line) (top), the corresponding
velocities of demonstrated trajectory (red line) and the reproduced trajectory (black
dashed line) (bottom); (b) corresponding acceleration of the demonstrated trajectory
(red line) and the reproduced trajectory (black dashed line).

u(t) = Θ(Z)Z(t)

Θ(Z) =

∑
iwiψi(Z)∑
i ψi(Z)

(3.11)

where ψi(Z) = e(−hi(Z−ci)2) is a fixed Gaussian basis function, with fixed
centers cis and widths his, and wis are adjustable weights. cis and his
are design parameters and should be selected such that the basis functions
spans the space of Z to generate the required external input u. The external
input depends on the state of the canonical system (equation (3.11)) where
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Figure 3.5: (a) The external input that generates the demonstrated trajectory in Fig-
ure 3.4; (b) the learned Θ corresponding to the obtained external input u.

it evolves autonomously based on the differential equation in (3.8). The
complete state space representation is obtained from equation (3.7), (3.8)
and (3.11) as follows:

 ẋ1

ẋ2

Ż

 =

 0 1 0
−c
τ

−k
τ

(g−x1(0)
τ

)×Θ(Z)
0 0 −τ

α

 x1

x2

Z

+

 0
k
τ
0

 g
(3.12)

Ijspeert et al. [56] discussed the stability of the solution of DMP and
the convergence of the solution to the goal point. The weights wi can be
learned to generate every desired nonlinear trajectory. The model can be
used to generate a trajectory with different goal position g similar to the
demonstrated trajectory in the training phase without changing the weights
wi. The weights wis are thus computed by minimizing the error criterion in
equation (3.13).

J =
∑
t

(ud(t)− u(t))2

(3.13)
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Figure 3.6: 10 considered Gaussian basis function for computing the Dynamic Movement
Primitives model (top). A set of 10 weights of the considered Gaussian basis functions
computed for the given trajectory in Fig, 3.4.

The weights wis can be computed in a closed form as follows.

F (t) = τ ÿd − k(g − yd) + cẏd

F =

 F (t1)
...

F (tT )

 , W =

 w1
...
wN

 (3.14)

where ÿd, ẏd and yd are acceleration, velocity and position of the desired or
demonstrated trajectory. By using equation (3.14), equation (3.11) can be
written in the following matrix form [129]:

XW = F

where

X =


ψ1(Z1)∑N
i=1 ψi(Z1)

Z1 . . . ψN (Z1)∑N
i=1 ψi(Z1)

Z1

. . . . . . . . .
ψ1(ZT )∑N
i=1 ψi(ZT )

ZT . . . ψN (ZT )∑N
i=1 ψi(ZT )

ZT


Hence, the corresponding weights of the external input that minimizes the
cost in equation (3.13) can be computed as follows.

W = (XTX)−1XF
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Figure 3.7: (a) Position (top) and velocity (bottom) of the demonstrated trajectory (red
dashed line) and reproduced trajectory (blue line) with a new goal point generated by
Dynamic Movement Primitives model; (b) corresponding acceleration of the demon-
strated trajectory (red dashed line) and reproduced trajectory (blue line) with new
point by Dynamic Movement Primitives model.

In Figure 3.6 the considered basis functions and the obtained weights
for a desired trajectory are shown. Furthermore, in Figure 3.4 the desired
trajectory, its velocity and acceleration are shown. The target external input
required to generate the desired trajectory is shown in Figure 3.5. A new
trajectory with a new goal point can be generated using equation (3.12),
where g equals to the new goal position. A major advantage of the proposed
formulation is the robustness of the generated movements against perturba-
tion, studied by Ijspeert et al. [56, 57]. Dynamic Movements Primitives has
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been also used to encode rhythmic movements by learning the weights of
the model for an attractor landscape rather than point attractor [56].

To show how Dynamic Movement Primitives reproduce an observed tra-
jectory with a new goal point a minimum jerk 1-D trajectory shown in Fig-
ure 3.4 is taken as a demonstrated trajectory. Dynamic Movement Primi-
tives model is learned from the demonstrated trajectory. where the weights
learned from the desired trajectory are shown in Figure 3.6. Moreover,
the reproduced trajectory by the learned Dynamic Movement Primitives
is shown in Figure 3.4. The obtained model is then used to generate a
trajectory with a new goal point shown in Figure 3.7. This example illus-
trates how the leaned model of Dynamic Movement Primitives generates a
smooth trajectory to a new goal point.

3.4 A case study

In this section, we take a set of demonstrated paths of a walking experiment
into account. In this experiment, 5 volunteers were asked to walk from
a point within circle A, in a room, to enter a corridor and reach a point
within a circle B (see Figure 3.8). While we were collecting the positions
of each volunteer, they repeated the task six times. Hence, a set of 30
paths constitutes the walking experiment data set. In this example, the main
objective is to compute a path from a set of noisy demonstrations that a
mobile robot must follow to reach a desired goal point.

Based on the proposed workflow for robot LfD (see Figure 1.4), we first
use GMM/GMR to compute a generalized path across the set of demon-
strated paths. For the sake of simplicity, we assume that all the experiments
are completed in the same time T = 20[s]. We resampled every path to get
100 number of data points. The obtained mean value of the Gaussian com-
ponents computed by the expectation-maximization algorithm reported in
Table 3.1 are:

µ1 = {13.3584, 1.4776,−0.3013}

µ2 = {7.0778, 3.0349,−0.0252}

µ3 = {2.1845, 4.2990,−0.0590}

µ4 = {18.1842, 0.4296,−0.8792}

where µk = {µt,k, µs,k}, k = 1, ..., 4, and the corresponding obtained co-
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variance matrices are as follows:

Σ1 =

 4.6572 −1.0930 −0.3902

−1.0930 0.2634 0.0863

−0.3902 0.0863 0.0403

 ,

Σ2 =

 5.0746 −1.2776 −0.0249

−1.2776 0.3244 0.0049

−0.0249 0.0049 0.0043

 ,

Σ3 =

 1.7950 −0.4545 −0.0163

−0.4545 0.1159 0.0039

−0.0163 0.0039 0.0063

 ,

Σ4 =

 1.6186 −0.1976 −0.3317

−0.1976 0.0294 0.0394

−0.3317 0.0394 0.0700

 .
where

Σk =

(
Σtt,k Σts,k

Σst,k Σss,k

)
, k = 1, ..., 4.

Then a continuous generalized path is obtained by using equation (3.4)
(Fig. 3.9).
In the case that a set of noisy task demonstrations is provided, performing
the task by following the generalized path corresponds to the mimicking
level of robot LfD. This generalized path can be used to move a mobile
robot from pointA to pointB. We assume that the optimal time component
of a demonstrated trajectory can be determined by considering minimum-
jerk for the robot that performs the task [105, 71].

The considered Gaussian model components, as well as the computed
path, are shown in Figure 3.9. The shaded area in the bottom figure in Fig-
ure 3.9 represents the variability of the demonstrated path computed by co-
variance matrix along the generalized path. The covariance matrices along
the generalized path computed by equation (3.4) represent the constraints
imposed by the environment during task performance. That is, the part of
generalized path with low covariance matrix is more constrained than the
part with higher covariance. This information allows to modify the general-
ized path where demonstrated paths have higher variation. In this example,
the constraints are imposed by corridor walls shown by thick red lines in
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Figure 3.8: Walking experiment data set, start and goal circle A and B and the constraints
of the environment represented with thick lines. One demonstrated path is shown by
black line and the others are shown by the corresponding data points.
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Figure 3.9: The Gaussian mixture component computed based on the walking example
dataset in Fig, 3.8 (top), the corresponding computed Gaussian mixture regression.

Figure 3.8. Nonetheless, this generalized path is only useful as long as the
goal point is invariant across all performances.

The robot learns a Dynamic Movement Primitives model using the com-
puted generalized path, and uses that model to generate a new path with a
new desired goal point. This corresponds to imitation component of robot
LfD.

To do so, the path computed by GMM/GMR is used to learn Dynamic
Movement Primitives model. First, each degree of freedom of the obtained
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Figure 3.10: The generalized path obtained by GMM/GMR (top figure), and the presen-
tation of each DOF versus time (two bottom figures).
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Figure 3.11: X1 versus time (top), its corresponding velocity (middle) and acceleration
(bottom).
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Figure 3.12: The weights of the basis functions obtained from X1.
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Figure 3.13: X2 versus time (top), its corresponding velocity (middle) and acceleration
(bottom).
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Figure 3.14: The weights of the basis functions obtained from X2.

generalized path is taken into account (Fig. 3.10). We assign a fixed time
step to every sample point of this path (Figs. 3.11 and 3.13), i.e. we assign
every sample point Pi to time i∆t, i = 1, ...,m and T = m∆t. Although
we consider T = 1, the total duration considered to perform the task, it
can be scaled to any desired value. The velocity and acceleration of each
degree of freedom is then computed, shown in Figs. 3.11 and 3.13. We
trained an MDP model for every degree of freedom where the obtained
wights of the corresponding basis functions are shown in Figs. 3.12 and
3.14. The damping factor c = 25, spring constant k = 156.25 and τ = 1
are chosen so that the equation (3.7) represents a critically damped system.
The basis functions and the canonical system shown in Figures 3.3 and 3.6
are also used for this example.

The learned model is then used to generate a smooth path that reaches
a new imposed goal point. Figure 3.15 shows the produced path by the
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Figure 3.15: (a) The generalized path obtained by GMM/GMR (blue solid line) starting
from A and terminating at B, the path obtained by the learned DMP model to a new
goal point B′; (b) The generated trajectory by the learned DMP model for X1 (top)
and X2 (bottom).

learned Dynamic Movement Primitives that satisfies the constraints of en-
vironment and reaches the new imposed goal point.

This example illustrates how two levels of workflow shown in Figure 1.4
are used to produce a generalized path to a new desired goal point from
a set of noisy demonstrations. This is highly important, because human
demonstrations are not always optimal. Hence, this workflow provides us
with a practical tool to tackle the problem of noisy demonstrations and
produces a path or trajectory to a new goal point.
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Chapter 3. Robot LfD: from mimicking to imitation Learning

3.5 Conclusion

In this chapter, we presented two methods of robot LfD corresponding
to two level of the proposed workflow (Figure 1.4). In the first level,
namely mimicking, a generalized path or trajectory is computed from a set
of demonstrations. In the second level, namely imitation, the generalized
path is used to produce a path to a new goal point.

We discussed Gaussian mixture model/Gaussian mixture regression as
a method of robot learning from demonstration through mimicking. This
method was developed in machine learning community and its application
in robot learning from demonstration has been studied [22] to encode an ob-
served behavior and produce a generalized trajectory. The main advantage
of using this method is that invariant basis of a set of demonstrated trajec-
tories can be encoded into the Gaussian components. These components
are then used to compute a generalized trajectory by Gaussian mixture re-
gression across all the demonstrated trajectories represented by covariance
matrix along the generalized trajectory. The obtained generalized trajectory
captures the invariant constraints across all demonstrated trajectories.

We then presented Dynamic Movement Primitives as a method of robot
LfD corresponding to second level of the workflow. This model encodes
an observed behavior, represented by a trajectory, into a dynamical system
model. The main advantage of Dynamic Movement Primitives is that it
generates a trajectory with an attractor, which is a goal point. The stability
of the generated solution by DMPs, whose parameters are selected such that
the main differential equation becomes critically damped, against external
perturbation was studied by Ijspeert et al. [56, 57]. The learned model by
Dynamic Movement Primitives can be used to generate necessary trajec-
tory to accomplish a demonstrated task with a different goal point. This is
mainly useful in the context of imitation learning proposed in Chapter 2.

We use these two methods of robot LfD to compute the necessary path
from the experimental data set of the walking example. The path obtained
by these methods can be then used to move a mobile robot from point A to
either B or B′. This example illustrates that robot can learn a generalized
path to a new goal point from a set of noisy demonstrations. For example,
in picking and placing an object, a generalized path to place objects at dif-
ferent goal positions can be computed from a set of noisy demonstrations
and based on sensory information about the goal position.
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CHAPTER4
Estimating a Mean-Path as a mimicking

component

4.1 Outline of the chapter

In the previous chapter, Gaussian mixture model/ Gaussian mixture regres-
sion was presented as a means of computing a generalized path from a set
of task demonstrations. We use this method as the mimicking component of
the proposed workflow of robot LfD. In this chapter, we stress the precision
of the computed generalized path (Figure 2.3), and we formalize a measure
that allows us to evaluate the precision of the existing nonlinear regression
methods, such as GMM/GMR. The main motivation of this chapter arose
from industrial applications in which the precision of the computed gener-
alized path is of utmost importance.

In the context of robot learning from demonstration, variability across
multiple demonstrations has been studied by Calinon [22]. However, it is
mainly focused on computing a generalized path across different tasks to
encode invariant constraints across them for a humanoid robot. In this sort
of applications, precision is not critical, but in industrial applications, such
as deburring, the precision is critical. In order to compute the precision of
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Start

Data set X

e1

Reference-
Path(k+1) =

Mean-Path(k),
λ = 1 and
k = k + 1

Initialization:
Mean-Path(1),

k = 1

Mean-Path(k)

λ

e2

| e1 − e2 |<
ε

e1 > e2

λ = λ/2

λ

Mean-Path(k)

End

yes

no

yes

no

Figure 4.1: This flow chart shows the Mean-Path algorithm. A set of paths of a task
performances constitutes our data set (see the text for more information). The algo-
rithm terminates when the difference between error of Reference-Path and estimated
Mean-Path (| e1 − e2 |) is less than a threshold ε.

the generalized path, we propose an error metric in Section 4.4.
Based on the proposed error metric, we present an algorithm for com-

puting a generalized path, called Mean-Path, from a set of demonstrated
paths. This method computes a generalized path that minimizes the pro-
posed error metric.

A flow chart of the proposed method for computing a generalized path
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4.1. Outline of the chapter

Table 4.1: Glossary

MP : Mean-Path, ζmp PL : Perpendicular-Line
RPa : Reference-Path, DS : Distance-Space, Z
RPo : Reference-Point OS : Original-Space, X
OP : Objective-Path Φ : map from OS into DS
Ψ : map from DS into OS

from a set of paths is shown in Figure 4.1. According to this algorithm, one
of the path within the set is taken as initial path for Mean-Path computa-
tion, called Reference-Path. Distances of all path from the Reference-Path
are computed at each point of Reference-Path along a line normal to the
Reference-Path. This distances build a new representation of paths based
on the considered Reference-Path, called Distance-Space representation of
paths.

An expected Mean-Path is then computed based on the correspond-
ing Distance-Space. Every point of the expected Mean-Path is computed
by finding the mean value of the distances of all paths from the point of
Reference-path. The covariance matrices of Distance-Space representa-
tions of paths based on the Reference-Path and Mean-Path are computed.
Then, the trace of the computed covariance matrices is taken as an evalu-
ation metric and it is used to check the convergence of the algorithm. A
regularization parameter is also used to guarantee the convergence of the
algorithm (see Appendix 7.1). A sequence of the computed points is taken
as a new Reference-Path and this procedure is iterated till the proposed
evaluation metric is improving. This results in a path that has the minimum
evaluation metric value.

To evaluate the result of the proposed Mean-Path algorithm, we use
Mean-Path algorithm, GMM/GMR and nonlinear PCA, which is a method
to identify and remove nonlinear correlation between data points, to com-
pute a generalized path of different data sets, such as an artificially gener-
ated data set, the walking experiment data set and a data set of a deburring
example. The results obtained by the Mean-Path algorithm, GMM/GMR
and nonlinear PCA illustrate the superiority of the Mean-Path algorithm in
terms of precision. In order to increase the readability of this chapter, in Ta-
ble 4.1 and 4.2 we provide a glossary of abbreviations and nomenclature,
respectively.
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Chapter 4. Estimating a Mean-Path as a mimicking component

4.2 Problem definition

Consider a set of n continuous 2-D trajectories xj(t) (Fig. 4.2)

X =
{
x1(t), x2(t), ..., xN(t)

}
, (4.1)

where t denotes the time. Although trajectories are continuous (as ex-
pressed in eq. (4.1)), they are, usually, available only through a set of col-
lected sample points. Hereinafter, we call a sequence of sample points,
which are collected while a continuous trajectory is followed, a path ζ . We
assume that all the paths (ζj ∈ X , j = 1, 2, ..., N ) are represented by M
sample points,

ζj =
{
xji ∈ R2, ∀ i = 1, ...,M

}
, (4.2)

where xji = xj(ti), ∀j = 1, ..., N and ti denotes the time corresponding to
ith collected points of xj . In this work, we use the term path for a sequence
of points unless it is stated.

We assume that a set of task demonstrations is generated by a nonlinear
function F(ti) perturbed with noise e, as follows:

xji = F(ti) + e

where e = N (0n,1, σ
2In,n), 0n,1 = [0, ..., 0]T and n is the number of paths

in X . We are interested in a nonlinear path, called Mean-Path ζmp, that
captures major variation of a set of task demonstrations. We assume that
a set of task demonstrations is available through a set of points xji ∈ X .
Hence, similar to first principal component in standard PCA, we minimize
the following error:

ζmp = argmin
F

N∑
j=1

M∑
i=1

(
xji − F(ti)

)2

xji ∈ ζj ∀ j = 1, ...,M. (4.3)

ζmp removes the variability of human demonstrations from data. This solu-
tion provides an invariant basis of the demonstrated path.

In order to formalize a definition of a generalized path, called Mean-
Path, an Euclidean distance between a point on a path, called Reference-
Path, and another path is introduced in the following (Fig. 4.2).

A list of symbols used in this chapter is presented in Table 4.2.
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4.2. Problem definition

Table 4.2: Nomenclature

X a set of continuous paths, X =
{x1(t), ..., xN (t)}

xj(t) a continuous path

ζj a set of sample points of xj(t), ζj =

{xj1, ..., x
j
M}

X {ζ1, ..., ζN}

M number of collected points for each
path

N number of path

q number of dimensions of the collected
data points

t each computation step

xji ith sample point of ζj and xji ∈ Rq δ
j
i xji−1, x

j
i

∆ζj
:{δj2, ..., δ

j
M} ζr Reference-Path

xri : Reference-Point belonging to ith

Reference-Path (ζr)
Lri ⊥ xri , xri+1 at xri

pi(∗, .) L∗
i ∩∆. , pr,ji = pi(ζj , ζ

r
k) V r,ji xri − pr,ji

Z Distance-Space of X ; Z =

{ζd1 , ..., ζdN}
ζdj {Φ(V r,j1 ), ...,Φ(V r,jM )}

Φ mapping from Original-Space into
Distance-Space; Z = Φ(X , ζr),
ζdj = Φ(ζj , ζ

r)

−→
I i innovation at xri

Ψ mapping from Distance-Space into
Original-Space; X = Ψ(Z, ζr),
ζj = Ψ(ζdj , ζ

r)

tr(x) trace of a square matrix x

e1 the first evaluation metric; e1 =
tr(ZTZ)

ζn a priori known Mean-Path

e2 the second evaluation metric, e2k :=∑M
i=1

∥∥∥zmpi − PNi
∥∥∥ and zmpi =

LNi ∩∆ζmp

ζmp estimated Mean-Path

e3 the third evaluation metric, e3k :=∑M
i=1

∣∣∣−→I i∣∣∣ xmpi a point of ζmp

4.2.1 Distance between a Reference-Point and another path

Let ζr = {xr1, ..., xrM} be a 2-D path taken as a reference for distance com-
putation, called Reference-Path, and xri s be the Reference-Points. A set of
line segments, denoted by ∆ζj , connecting two consecutive points of a path,
are defined as follows:

∆ζj =
{
δ
j

1, δ
j

2, ..., δ
j

M−1

}
,

δ
j

i = xji−1x
j
i ,

(4.4)

where δ
j

i is a line segment connecting an initial point xji−1 and a termi-
nal point xji . As the information of a continuous path xj(t) may not be
always available, we assume that xj(t) is piecewise linear. Hence, xj(t)
is approximated by some line segments connecting consecutive collected
points, ∆ζj , wherever information of the corresponding continuous path is
needed. For example, an orthogonal subspace to a Reference-Path at point
xri is approximated by a subspace orthogonal to each line segment of the
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Chapter 4. Estimating a Mean-Path as a mimicking component

Reference-Path, δ
r

i , which is denoted by
←→
Lri

1 ∈ Rq−1. In the 2-D case,
this subspace is a line, called Perpendicular-Line, where the inner product
between δ

r

i and the unit vector of Lri is zero (see Fig. 4.2), i.e. Lri ⊥ δ
r

i .
A similarity measure between a Reference-Path and another path in the

set, denoted by V r,j
i , at each Reference-Point, xri ∀ i = 1, ...,M , is a vector

whose absolute value is a distance between xri and ∆ζj , ∀ j = 1, ..., N , as
follows:

V r,j
i :=

−−−→
xrip

r,j
i ,∣∣V r,j

i

∣∣ =
∥∥ xri − pr,ji ∥∥ , (4.5)

where pr,ji is an intersection of ∆ζj and Lri (see Fig. 4.2),

pr,ji = ∆ζj ∩ Lri . (4.6)

Intuitively, a local observer, moving along the Reference-Path, measures a
distance from its location to ∆ζj at each xri along Lri . In the case of more
than one intersection of Lri and ∆ζj , V

r,j
i corresponding to the minimum

distance is chosen.
It is assumed that for a set of paths X and a considered ζr there always

exists an intersection of Lri and each ∆ζj , otherwise distance between ∆ζr

and ∆ζj along Lri is assigned to be infinite.
In Fig. 4.2, a set of continuous paths, X = {x1(t), x2(t), x3(t)}, their

collected data points, X = {ζ1, ζ2, ζ3}, and the proposed similarity mea-
sure, V r,2

i , for a point of the Reference-Path are shown.
It is worth mentioning that the proposed definition of similarity measure

between ∆ζr and ∆ζj at each point of ∆ζr is not symmetric. This definition
first determines a point on ∆ζjs, namely pr,ji , that corresponds to a point
of ζr, namely xri . Then, the distance between these two points is taken as
a similarity measure, computed by eq. 7.1. However, if we take ∆ζj as a
Reference-Path, xri does not necessarily correspond with pr,ji because the
subspaces orthogonal to ∆ζr and ∆ζj are not necessarily the same.

The similarity measure here presented can be easily extended to higher
dimensions by considering an intersection between a path and a subspace
orthogonal to a reference path.

In the following section, a new representation of the paths, that is called
Distance-Space, and its use for the Mean-Path computation algorithm is
presented.

1For the sake of simplicity we use L∗i instead of
←→
L∗i .
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90°

pr,3i

pr,2i

xr,iδr,i

x2
2 x2

3

δ2
2

pr,1i

Li

V r,2i

ζ1 x1(t)

xr(t)

ζr

ζ2 x2(t)

ζ3 x3(t)
hhhhhh

t

Figure 4.2: A set of four 2-D curves (continuous ones xi, i = 1, 2, 3, and their collected
data points ζ, shown by circle signs), Reference-Path xr and its data points ζr shown
with square signs. The line segment δ2

2 = x2
2, x

2
3 linearly approximates the continuous

path x2 between x2
2 and x2

3. The line Li is perpendicular to δr,i. Intersections of Li
and each ∆ζj , denoted by pr,ji ,∀ j = 1, 2, 3 (marked with triangle sings). Vector V r,2i

determines the position of pr,2i relative to xri .

4.3 The Distance-Space

In this section, the similarity measure in eq. (4.5) is used to represent a path
relative to a Reference-Path, in such a way that the information concerning
the relative position of the considered path with respect to the Reference-
Path is kept invariant.

A new representation of all the paths, X , is then obtained by computing
the similarity measure proposed in eq. 7.1, based on a chosen Reference-
Path, and expressing the paths in a common coordinate frame, called Distance-
Space coordinate frame, as follows:(

zji
0

)
= Rj

iV
r,j
i , i = 1, ...,M

ζdj = {zj1, ..., zMi }
Z = {ζd1 , ..., ζdN}

(4.7)

where Z ∈ RN×M , zji ∈ R1 and Rj
i ∈ R2×2, i = 1, ...,M are rotation

matrices(
zji
0

)
=

(
cos(θji ) −sin(θji )

sin(θji ) cos(θji )

)
V r,j
i , ∀i = 1, ...,M, ∀j = 1, ..., N.

These rotation matrices align a local coordinate system fixed at every ref-
erence point, e.g. y1 in Fig. 4.3(a), with the coordinate system of Distance-
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Figure 4.3: A point pr,ji in original data space X is transformed into a point in the
Distance-Space Z based on the considered Reference-Path (black dashed line) using
Φ, and the corresponding point in the Distance-Space, namely zji , is transformed back
to original data space using inverse mapping Ψ. The Reference-Points, xri s, and pr,ji s
are marked with bold dots in both spaces: (a) A set of 2-D paths (red lines), a chosen
Reference-Path ζr (black dashed line), computed similarity metric dj,i, and the local
coordinate frame y1 fixed at a Reference-Point tangent to δr,i (blue arrow); (b) the cor-
responding paths in Distance-Space, Z , and the corresponding local coordinate frame
y1 at the corresponding Reference-Point (blue arrow). For better view, continuous
representation of points are shown.

Space, e.g. y′1 in Fig. 4.3(b).

The vectors computed by eq. (4.7) constitute a bijective mapping, namely
Φ2, from points of the data set in the Original-Space into a set of points in

2Notice that the mapping is invertible since it is bijective.
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4.4. Mean-Path

the Distance-Space (Fig. 4.3), as follows:

Φ(X , ζr) : X
Lri⊥ζr at xri−−−−−−→ Z,

where, X ∈ Rn×m×q and Z ∈ Rn×m×q−1. Consequently, an inverse map-
ping, denoted by Ψ, from the Distance-Space, shown in Fig. 4.3(b), to
the Original-Space, shown in Fig. 4.3(a), is also defined using the same
Reference-Path, which is a reference for mapping.
Based on a Reference-Path, ζr, a map from original data space into Distance-
Space, Φ, and its inverse, Ψ, are symmetric resulting in a one-by-one cor-
respondence of each pair of points in X and Z (see Fig. 4.3). Φ trans-
forms ζr into the horizontal axis of Distance-Space coordinate system (see
Fig. 4.3(b)), and Ψ transforms the horizontal axis of Distance-Space coor-
dinate system into ζr (see Fig. 4.3(a)). Hence, we express the map from the
Original-Space into the Distance-Space in eq. 4.8 and vice versa in eq. 4.9
by addition and subtraction of the Reference-Path with and from the corre-
sponding data set, as follows:

zji = Rj
i (p

r,j
i − xri )

Z = Φ(X , ζr)
(4.8)

and
pr,ji =

(
Rj
i

)−1
zji + xri

X = Ψ(Z, ζr),
(4.9)

where pr,ji ∈ ∆ζj , ∆ζj is obtained from ζj ∈ X (see eq. (7.1)) and zji ∈ Z .
Φ and Ψ maps the data set from Original-Sapce into Distance-Space , in
accordance with eq. (4.7).

4.4 Mean-Path

In this section, we use the Distance-Space representation of a set of paths,
X , to define a generalized path, called Mean-Path.

First of all, we introduce some definitions.
We call residual of the data set, based on a Reference-Path ζr, the vari-

ations of the paths ζj , j = 1, ...,M , with respect to ζr. The residual can
be obtained by computing the trace of the data covariance in the Distance-
Space based on ζr, i.e. tr(ZTZ), where Z is computed using eq. (4.8).

In this chapter, a smooth nonlinear curve that captures the maximum
variation of the data set, X , is called Mean-Path of the data set. The Mean-
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Chapter 4. Estimating a Mean-Path as a mimicking component

Path is denoted by ζmp and can be computed as follows:

ζmp = arg min
ζr∈Rm×q

tr(Σ)

s.t. Σ = ZTZ
Z = Φ(X , ζr)

(4.10)

A distance-Space representation of the data set, based on the computed
Mean-Path, corresponds to the representation of a linear data set in a prin-
cipal component coordinate system, in which the first principal component
is aligned with the first main axis.
This is exemplified in Fig. 4.7. In Figs. 4.7(a) and 4.7(b), a data set that lies
on a nonlinear manifold and its corresponding Distance-Space, based on
the computed Mean-Path, are shown. A 2-D Gaussian distribution and its
corresponding representation in a principal component coordinate system
are also shown in Fig. 4.7(c). Figs. 4.7(b) and 4.7(c) (bottom) illustrates
the difference between the underlying assumptions of the standard principal
component analysis and the Mean-Path: in standard principal component
analysis it is assumed that a data set is normally distributed around the first
principal component which is linear, whereas in the Mean-Path computa-
tion we assume that the data set is normally distributed around a non-linear
curve.

4.4.1 Mean-Path algorithm

In this section, we introduce an iterative algorithm to compute a solution to
eq. (4.10) for a set of paths X , whose elements are supposed to be highly
correlated with an unknown nonlinear path called nominal path and denoted
by ζn. The aforementioned algorithm is mathematically formalized in Sec-
tion 4.5. The algorithm results in the minimum variance of the data set,
ζj ∈ X ∀j = 1, ..., N , relative to the obtained path ζmp, as per eq. (4.10).

First, an arbitrary path is taken from the data set as the Reference-Path
for the first iteration k of the Mean-Path computation algorithm, e.g. ζrk ∈
X , k = 1.

We consider a coordinate system fixed at each point of the Reference-
Path such that its first axis is aligned with the corresponding δr,i. Hence,
the data set is transformed into the Distance-Space using eq. (4.8) (Fig. 4.3)
and the residual of the data set is computed using tr(ZTZ).

Assuming that for each subspace in Distance-Space, Li,k ∀i = 1, ...,M ,
the points of the data set, zji,k, ∀j = 1, ..., N , are normally distributed, the
expected value of zji,k, zci,k, is estimated by maximizing the likelihood of
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4.5. Formulation of the Mean-Path and of the iterative algorithm

the corresponding sample points. The computed expected value at each
subspace is taken as a candidate point of a new Reference-Path, as it mini-
mizes the variance of a set of normally distributed data points zji,k.

For each point of the Reference-Path, an innovation is defined as
−→
I i,k

3 =
xri,k − zci,k. This operation can be interpreted as an estimation of a gradi-
ent descent direction of the objective function in eq. (4.10). The obtained
innovations can be used to update the origin of the coordinate systems by
xri,k+1 = xri,k + λIi,k where λ ∈ [0, 1].

The sequence of points xri,k+1 generates a Reference-Path for the next
iteration ζrk+1 = {xr1,k+1, ..., x

r
M,k+1}. The regularization parameter λ can

be used, as per eq. (4.17), to guarantee the convergence of the algorithm at
each iteration.

This procedure is repeated with the new Reference-Path, ζrk+1, until the
algorithm converges to a solution. A flow chart of the algorithm shown in
Figure 7.1 describes the processes of Mean-Path computation.

4.5 Formulation of the Mean-Path and of the iterative algo-
rithm

In this section, a mathematical formulation of the algorithm introduced in
Section 4.4.1 is presented. A pseudocode of the iterative algorithm is re-
ported in Algorithm 1.

We consider a set of paths, X , whose components xj(t) can be repre-
sented as the superposition of a nominal path xn(t) and a random perturba-
tion η (t) directed along the normal to xn(t) as follows:

X =
{
xj (t) ∈ Rq : xj (t) = xn(t) + ηj (t) 1T L̂j

}
j = 1, ..., N

N (0, σ̄(t)) = [η1 (t) , ..., ηN (t)]

(4.11)

where N (0, σ̄(t)) is a multivariate random generator, ηj ∈ R(q−1)×1, 1 ∈
R(q−1)×1 and all its elements equals to one, and L̂j ∈ R(q−1)×(q−1) is a ma-
trix of unit vectors of the corresponding subspace. For example,N (0, σ̄(t))
for a 2-D problem xj ∈ R2, generates n random numbers at each time t,
ηj(t) ∈ R1, with zero mean, where the variance σ̄ at every s may be differ-
ent4. Here, we do not enforce any assumption of the correlation between

3For the sake of simplicity we use Ii,k instead of
−→
I i,k

4Although we derive the formulation making reference to a set of normally distributed paths, the same argu-
ment can be applied for a set of uniform distributed paths obtaining the same results.
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Start

Data set X

Zrp = Φ(X, ζrk+1)

Σ1 = (Zrp)TZrp

e1= tr(Σ1)

X rp =
Ψ(Zrp, ζrk+1)

and X rp ∈ RM×N

∀, i =

1, ...,m,
−→
I k =

1
N

∑N
j=1 Z

rp
k (:, j)

ζmpk+1 =

ζrk+1 + λ
−→
I (t)

λ

Zmp =
Φ(X rp, ζrk+1)

Σ2 =
(Zmp)TZmp

e2= tr(Σ2)

| e1 − e2 |<
e

e1 > e2

ζrk+1 = ζmpk ,
λ = 1 and
k = k + 1

Initial value:
ζmpk ⊂ X , k = 1

λ = λ/2

λ

ζmpk

End

yes

no

yes

no

Figure 4.4: This flow chart shows the Mean-Path algorithm. A set of paths of a task
performances constitutes our data set. The iterative algorithm at each computation
step updates the Reference-Path along a set of lines normal to the Reference-Path.

two consecutive points of a path. However, to ensure the convergence of
the algorithm, we assume that every path, xj , is Lipschitz continuous.

Each path in X is represented by a set of collected data, ζj,∀ j =

1, ...,M , of points5 zn,ji ∈ ζj , j = 1, ..., N that are normally distributed

5The superscript n denotes the values computed based on ζn taken as the Reference-Path.
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4.5. Formulation of the Mean-Path and of the iterative algorithm

around xni ∈ ζn and along Lni , i.e.

zn,ji ∼N(xni , σ̄
2
i ), j = 1, ..., N

where σi is the standard deviation of the path distribution along each Li,k.
As a consequence, the probability density function of these points along
each Li,k can be written as follows:

f(zn,ji ) =
1

σi
√

2π
e
−

(zn,ji −xni )
2

2σ2
i

Accordingly, the likelihood function is

L
(
µi, σ

2
i

∣∣∣zn,1i , ..., zn,Mi

)
=

N∏
j=1

f
(
zn,ji ;µi, σ

2
i

)
.

In order to find these parameters, one can maximize the log-likelihood func-
tion, i.e.

lnL
(
µi, σ

2
i

)
=

N∑
j=1

ln f
(
zn,ji
∣∣µi, σ2

i

)
=

−n
2

ln (2π)− n

2
lnσ2

i −
1

2σ2
i

N∑
j=1

∥∥(zn,ji − µi)∥∥2
, (4.12)

for a set of sample points, {zn,1r , ..., zn,Mi }.
Consider that, if zn,ji ∈ ζj,∀j = 1, ..., N , were known, the parameters µi

and σi could be found using maximum likelihood estimation, and the orig-
inal problem would have become to find m mean values along every Lni .
However, the data points collected during an experiment may not necessar-
ily be aligned along every Lni . Therefore, to obtain a set of corresponding
points, lines Lni , and thus the points of the nominal path, should be known.
However, as here we assume the nominal path of a task is unknown and a
set of task demonstrations, i.e. a set of paths, is the only available informa-
tion, an objective function based on maximum likelihood estimation cannot
be used to directly compute the Mean-Path. For this reason, we propose an
iterative algorithm, inspired by the expectation-maximization method.

As this algorithm has been already introduced in Section 4.4.1, we con-
sider here the generic iteration t in order ro formalize the computation of
the innovation Ii,k.
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Figure 4.5: (a) A nominal path (blue line), two generated paths uniformly distributed
about the nominal path (circle and square signs) and the computed Mean-Path (red
dashed line); (b) Evolution of the residual during Mean-Path computation.

First of all, from eq. (4.12), the maximum likelihood estimate of the
mean value is

µ̂i = arg max lnL(µi, σ
2
i )

µ̂i =
1

n

N∑
j=1

zji,k (4.13)

Substituting zji,k from eq. (4.9) into eq. (4.13) yields

zci,k := µ̂i = xri,k +
1

n

N∑
j=1

zji,k, (4.14)

where xri,k ∈ ζrk and zci,k is a center point in Original-Space based on the
corresponding ζrk . The summation term in the right-hand side of eq. (4.14)
is a center point in the corresponding Distance-Space.
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4.6. Experiments

Accordingly, the updating values or innovations, Ii,k, are computed as
follows:

Ii,k := zci,k − xri,k,
xri,k+1 = xri,k + λIi,k,

(4.15)

where λ is a regularization parameter that is used to guarantee the conver-
gence as per eq. 4.17. The sequence of computed points, xri,k+1 ∈ ζrk+1, i =
1, ...,M , is taken as a Reference-Path for the next computation step.

Based on a chosen Reference-Path we can thus explicitly formalize a
Mean-Path at each step. However, the path obtained by maximum likeli-
hood estimation may not be identical to the desired Mean-Path, because
the lines perpendicular to ζrk and ζrk+1 are different. As a consequence, the
values of the objective function in eq. (4.10) at two consecutive iterations
could be different, unless the chosen Reference-Path is the desired Mean-
Path. In conclusion, a Mean-Path can be iteratively computed as follows:

ζrk+1 = arg min
ζrk∈Rm×q

tr(Σk)

s.t. Σk = ZTZ
Z = Φ (X , ζrk)

(4.16)

where ζr1 ⊂ X , ζmp = ζrend. The points of ζrk at each computation step, xri,k,
are updated using eq. (4.15). At each iteration, the residuals of the data
points based on ζrk and ζrk+1, and the regularization parameter λ are used to
check the convergence6 , introduced in eq. (4.17).

Zk+1 = Φ
(
X , ζrk+1

)
,

Σk+1 = tr
(
ZTk+1Zk+1

)
and

tr (Σk+1) < tr (Σk) (4.17)

4.6 Experiments

In this section, we first introduce some evaluation metrics in order to evalu-
ate the generalized path obtained by the Mean-Path algorithm. Besides, to
validate the proposed approach we use the evaluation metrics to compare

6The proof of convergence of the proposed algorithm is available at
https://sites.google.com/site/ghalamzanamir/documents or ftp://ftp.elet.polimi.it/outgoing/Amirmasoud.Ghalamzanesfahani/
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Chapter 4. Estimating a Mean-Path as a mimicking component

Algorithm 1 Mean-Path algorithm, ∆̄e is a chosen small threshold
1: procedure MEAN-PATH(X = {ζ1, ..., ζN})
2: k = 1 , ζrk ← ζ1 , ∆e = 1 and λ = 1
3: while ∆e > ∆̄e do
4: Z = Φ(X , ζrk)

Σk = ZTZ ,
ek ← tr(Σk),

5: zdi,k ← E(zji,k ∈ Z,∀j = 1, ..., N)

zci,k = Ψ(zdi,k, ζ
r)

∀ i = 1, ...,M
6: Ii,k ← λ(xri,k − zci,k) ∀i = 1, ...,M

7: ζrk+1 ← ζrk +
−→
I k

8: Z = Φ(X , ζrk+1),
Σk+1 = ZTZ ,
ek+1 ← tr(Σk+1)

9: if ek+1 > ek then
10: λ← λ

2
11: else
12: ∆e← ‖ek+1 − ek‖ , k = k + 1 and λ← 1
13: end if
14: end while
15: return ζrk
16: end procedure

the generalized paths obtained by the Mean-Path algorithm, nonlinear prin-
cipal component and GMM/GMR [27]. We use nonlinear principal compo-
nent, based on a multi-layer perceptron with an auto-associative topology
[115, 114]. We present four different examples in the following. In the first
example, we generate a set of uniformly distributed paths from a known
nominal path. This allows us to define an evaluation metric in Section 4.6.1
with respect to a known ground truth, a known nominal path. Although the
second example, which is a walking example, does not stress the high ac-
curacy requirement, we use that to present some interesting features of the
approach. In the third example, a surgical robotic task, we focus on skill as-
sessment of a novice surgeon based on some expert noisy demonstrations.
This example illustrates how the accuracy of an obtained generalized path
can affect the quality of the skill assessment. Finally, in the last exam-
ple, we evaluate the precision of the proposed approach, GMM/GMR and
NLPCA applied to a deburring example.
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4.6. Experiments

4.6.1 Evaluation metrics

We start defining two metrics that can be used to evaluate the proposed
algorithm. First of all, we introduce the residual of a data set based on an
estimated Mean-Path as the first evaluation metric, i.e.

e1
k = tr(Σk).

When the ground truth is known, we can define an evaluation metric as
the sum of the absolute values of the distances between the computed path,
ζri,k+1, and the known nominal path, ζn, as follows:

e2
k :=

M∑
i=1

‖zmpi − x
np
i ‖ ,

zmpi = Lnpi ∩∆ζri,k+1
,

where Lnpi ⊥ ∆ζn , P np
i is the ith sample point of ζn, M is the number of

nominal profile sample points, ∆ζn and ∆ζrk
are computed by using eq. 4.4.

Finally, another evaluation metric is given by

e3
k :=

M∑
i=1

|Ii,k| =
M∑
i=1

∥∥∥ N∑
j=1

zji,k

∥∥∥.
Although, e2

k provides the precision of an estimated Mean-Path with respect
to a ground-truth, it is only computable if the corresponding nominal path
is known a priori. On the other hand, e1

k and e3
k can be always computed

even if the corresponding nominal profile is unknown. In particular, e3
k

is proposed for Mean-Path computation since it measures how large the
updating values are at each computational step of the Mean-Path algorithm.

Furthermore, the minimum value of e1
k represents the minimum vari-

ation of the corresponding data points, i.e. the computed point of the
Reference-Path corresponds to the expected value. As a consequence, the
corresponding innovations are zeroimplying that e1

k and e3
k are correlated.

4.6.2 Artificially generated data set

A first validation of the algorithm has been performed with a set of artifi-
cially generated data.

Two quasi-circular paths have been generated with uniform distances
from a considered quasi-circular nominal path (Fig. 4.5(a)).

In this case, the Mean-Path algorithm converges after just few iterations
to a Mean-Path, a good estimation of the nonlinear nominal profile (Fig.
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Figure 4.6: (a) A computed nonlinear principal component (red dashed line) for the same
data set, shown in Fig. 4.5(a); (b) Evolution of e3

k (red line) and of e2
k (black dashed

line) at each computation step during Mean-Path computation of the data set shown in
Fig. 4.5(a).

4.5). The computation of the Mean-Path was continued even after conver-
gence to show the stability of the algorithm (Fig. 4.5(b)).

The evolution of e1
k, e2

k and e3
k during Mean-Path computation are shown

in Fig. 4.5(b) and 4.6(b). As it is shown in Fig. 4.5(b) and 4.6(b) e1
k, con-

verges to a minimum value during Mean-Path computation whereas e2
k and

e3
k is going to zero.

Furthermore, GMM/GMR with 90 Gaussian components is used to com-
pute a generalized profile from the same data set.
We also use NLPCA, a neural network model to compute a principal curve
of the same data set (Fig. 4.6). This method computes a nonlinear prin-
cipal component of the data set based on a multi-layer perceptron with an
auto-associative topology [115]. According to the topology of the corre-
sponding data set, the corresponding parameters, determining the structure
of this neural network model, can be set. Here, we only report the results
of the NLPCA model type with the best evaluation value to compute a non-
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4.6. Experiments

Table 4.3: Artificially generated data set, e1 [m2] of the obtained path by different ap-
proaches.

e1[m2] e2[m]
GMM/GMR 138.698 3.811
NLPCA 76.638 2.928
Mean-Path 68.653 0.3

linear principal component of the data sets as shown in Fig. 4.6(a).
It is worth mentioning that the evaluation values sum over all M = 100

sample points. The evaluation values for the nonlinear curves obtained by
the Mean-Path algorithm, GMM/GMR, and NLPCA are reported in Ta-
ble. 4.3.

As it is shown in this table, e1 of the path obtained by Mean-Path algo-
rithm is less than the ones of the path obtained by GMM/GMR and NLPCA.
e1 represents the variation of the data set with respect to the path obtained
by different methods, hence its value depends on the distribution of the data
set with respect to each obtained path. Since the ground truth in this exam-
ple is known, we can also compute e2. This metric shows how close are
the ground truth and the computed paths by different methods. Compar-
ing e2 of the path obtained by the Mean-Path algorithm, GMM/GMR, and
NLPCA shows that Mean-Path algorithm is able to capture the ground truth
with higher precision.

4.6.3 Experimentally collected data set

A second example considers a se t of experimentally collected human walk-
ing trajectories (Fig. 4.7(a)). Five volunteers were asked to walk from a
point within circle A, in a corridor, and to enter a room and reach a point
within a circle B. Each volunteer repeated the task six times, giving rise to
a set of 30 paths.

The rational explanation for using the proposed method in the context of
robot programming by demonstration is as follows: we assume to perform
a task, e.g. moving from A to B, an individual tries to follow a reference
path maximizing the squared distances to some task constraints, , e.g. the
walls of the corridor, while reaching a target point.

Each execution of the task is disturbed by some perturbations result-
ing in deviations from the reference path (Fig. 4.7). We consider that the
constraints are unknown and the demonstrated paths are the only available
information. In fact, a set of demonstrated paths includes information about
the imposed constraints in the corresponding environment during task ex-
ecution. We are interested to compute a noise free Reference-Path that
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Figure 4.7: (a) Walking experiment data set, start and goal circle marked with A and B,
respectively. The constraints of the corresponding environment are represented with
thick lines; (b) Distance-Space of the data setbased on the computed Mean-Path. (c)
a set of 2-D data points (above) and the corresponding representation by aligning the
first principal component of the data points with the first main axis (bottom).

allows a mobile robot to smoothly move from A to B. A generalized path
obtained by the Mean-Path algorithm with the minimum squared distances
from all the demonstrated paths results in the maximum square distances
from the task constraints if the demonstrations are some paths with max-
imum squared distances from the constraints disturbed by some perturba-
tions.

The path obtained by the Mean-Path algorithm from the demonstrated
paths along with the corresponding Reference-Path and the generalized
path obtained by NLPCA are shown in Fig. 4.8(a).

Furthermore, the corresponding Distance-Space based on the obtained
Mean-Path, shown in Fig.4.7(b). We also present a 2-D normally dis-
tributed data set (Fig. 4.7(c) (top)) to show the similarity between Distance-
Space representation (Fig.4.7(b)) and corresponding representation of the
2-D data set in its principal component coordinate system (Fig. 4.7(c) (bot-

74



i
i

“thesis” — 2015/5/2 — 17:07 — page 75 — #103 i
i

i
i

i
i

4.6. Experiments

0 1 2 3 4 5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x
2
 [

m
]

x
1
 [m]

(a)

5 10 15 20
22

22.1

22.2

22.3

22.4

22.5

22.6

22.7

Number of GMM component

e
rr

o
r 

[m
2
]

(b)

Figure 4.8: Walking experiment data set: (a) computed nonlinear principal compo-
nent (blue dashed line), Mean-Path (marked with red crosses) and the corresponding
Reference-Path (black line) used by the Mean-Path algorithm; (b) e1 of the computed
path by GMM/GMR with increasing number of Gaussian components.
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Figure 4.9: Walking experiment data set: (a) evolution of e1
k during Mean-Path computa-

tion; (b) evolution of e3
k during Mean-Path computation.

tom)).
We computed the Mean-Path (Fig. 4.8(a)) of the data set. The algorithm

converges to a solution with data residual, e1, equal to 13.886 [m2] with
+/ − 0.1 deviation for different initial Reference-Paths. The evolution of
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Table 4.4: Walking data set, e1 [m2] of the obtained path by the Mean-Path algorithm,
GMM/GMR, and NLPCA

Mean-Path 13.886
GMM/GMR 22.364

NLPCA - Neural Network

C-B-S NA
C-B-H 15.372
C-I-S 15.089
C-I-H NA
NC-B-S 14.635
NC-B-H 99.630
NC-I-S 14.690
NC-I-H 14.490

the e1
k and e3

k during a Mean-Path computation are shown in Fig. 4.9. In
Fig. 4.8(b), e1s of the obtained paths by GMM/GMR with different num-
ber of Gaussian components are shown. The values of the data residual,
namely e1

k, yielded by the Mean-Path algorithm, GMM/GMR, and NLPCA
are reported in Table 4.47. The comparison of e1 corresponding to the path
obtained by the Mean-Path algorithm, GMM/GMR, and NLPCA shows
that our proposed algorithm results in a path with higher precision.

4.6.4 A surgical robotic task

As a third example, we consider the task of picking and placing an object
during surgeon training, subjected to spatial constraints that represent the
small available space within a patient’s body.

To obtain a constrained environment we designed the structure shown in
Fig. 4.10(a), that is characterized by two walls constraining the movement
of the robot tool during picking the object from zI and placing at zG.

In this experiment a da Vinci robot (Fig. 4.10) was used to collect a
set of demonstrations of the aforementioned task, asking the operator to
maximize the distances from both walls.As a result we collected a data set
X composed of four paths (Fig. 4.11(a)). As shown in the figure, human
demonstrations are inherently noisy. Our goal is to obtain a generalized
path from these noisy demonstrations that can be later used to assess the
skill of a novice performing the same task [107]. In this regard, e2, the
sum of the distances between the obtained generalized path and the path
followed by the operator can be used as an error metric to evaluate the
novice performance.

A generalized path is computed using the Mean-Path algorithm, GM-
7The abbreviations used in Table 4.4 and 6.1, are the modeling parameters determining the structure of the

used neural network, as follows: Circular (C), Non-Circular (NC), Inverse (I), and Bottleneck (B). For further
explanation about these parameters and the corresponding network structure see [115].
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Figure 4.10: (a) The task model used for data collection with da Vinci surgical robot
with a single obstacle (marker), the nominal path that expert follows in the absence
of obstacles (green line), initial point zI , goal point zG and the walls of the structure
W constraining the movement of the robot’s arm; (b) da Vinci set up to collect expert
demonstrations.

M/GMR and NLPCA and the corresponding results are reported in the fol-
lowing. The paths in the Distance-Space based on the computed Mean-
Path and evolution of e1 and e3 during Mean-Path computation are shown
in Fig. 4.11(b) and Fig. 4.12(a), respectively. Furthermore, e1s of the com-
puted generalized path by GMM/GMR with different numbers of Gaussian
components are shown in Fig. 4.12(b). As shown in Fig. 4.12(b), GM-
M/GMR with thirteen Gaussian components results in the minimum e1.
However, the path obtained by Mean-Path algorithm results in an e1 three
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Figure 4.11: (a) The data set collected with da Vinci robot (black dashed line) and the
generalized path computed by Mean-Path (red solid line); (b) Distance-Space repre-
sentation of the data set based on the computed Mean-Path.

times smaller than the one obtained by GMM/GMR with the best selection
of the number of Gaussian components (Fig. 4.12(a)). The use of NLPCA
results in e1 = 0.0145 [m2], which is a bigger error value than both the one
obtained by the Mean-Path algorithm and GMM/GMR.

4.7 Conclusion

In this chapter, we discussed the mimicking component of robot LfD. We
propose a method to estimate the nominal profile of a task given a set of
noisy human demonstrations as mimicking component of robot LfD. In
many cases, human demonstrations are suboptimal and noisy solutions to
the problem of performing a task. An iterative algorithm is therefore pre-
sented to estimate a noise free geometrical model of human performances.
This model is highly demanded where a model of the workpiece is not avail-
able especially in small and medium size companies. Two examples with
synthetic and experimental data are used to compare the accuracy of the
proposed method with different methods, namely GMM/GMR and non-
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Figure 4.12: da Vinci data set: (a) evolution of e3 (top) and e1 (bottom) during Mean-
Path computation; (b) e1 of the generalized path obtained by GMM/GMR with different
numbers of Gaussian component.

linear PCA. Moreover a real-world problem of deburring was discussed
where the resulted profiles of the Mean-Path, nonlinear principal compo-
nent analysis and Gaussian mixture model/Gaussian mixture regression are
compared. The comparisons between different methods illustrates that the
accuracy of the nonlinear principal component analysis and the Gaussian
mixture model/Gaussian mixture regression depends on the nominal profile
model. For example, the nonlinear principal component analysis and the
Gaussian mixture model/Gaussian mixture regression both result in higher
accuracy in linear profile than circular profile. In contrast, the proposed
method maintain good accuracy for different nominal profiles and results
in higher precision in estimating the nominal profile.
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CHAPTER5
Robot LfD: from imitation to emulation

5.1 Outline of the chapter

Robots has been programmed to successfully perform a task in factories
with a known structured environment in which the condition is controlled;
however, they are still far from an autonomous agent performing different
tasks in an unstructured environment. Robot learning from demonstration
has shown a potential capacity to provide robots with more autonomy. In
this regard, we present an approach of robot learning from demonstration
that enables a robot to learn how to adapt the learned skill to an environment
with varying configuration of obstacles with different object classes.

We assume here that a skill can be represented by a nominal model,
discussed in the previous chapters, where a robot can use it to perform the
corresponding task in a known structured environment. Nonetheless, the
robot must react to some stimuli existing in an unstructured environment
during task execution, e.g. an existing obstacle. We further assume that a
specific reaction to a stimulus itself is a part of the skill. For example, a
person may keep very far from a pet during manipulating an object while
not very far from an object. Another motivation to learn a specific reaction
to a stimulus is that a robot that can execute a task like humans may allow
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people to trust it as a coworker since its movement is more natural. This
may thus ease human-robot interaction.

We aim at providing a robot with the ability to learn from human demon-
strations how to react to a stimulus. The proposed approach in this chapter
allows a robot to obtain a control policy from human demonstrations to
perform a task. The obtained policy combines the nominal model of the
skill, obtained by the method presented in the previous chapters, with an
adaption functionality to a new environment with different configuration of
obstacles.

5.2 Motivating example

Assume that a person may wish to teach a household service robot how to
set a dinner table. He/she may walk the robot and teach it how to bring the
dishes from the kitchen and put them on the table. A simulation of a task is
shown in Fig. 5.1.
Inspired by the observational studies, presented in Chapter 2, and corre-
sponding to the types of observational learning, we propose an approach
(Fig. 5.2) of robot learning from demonstration that

1. computes a generalized path (mimicking);

2. adapts the obtained path to a new environment (emulation);

3. scales the generalized path to a new goal point (imitation).

First, when mimicking a skill, we assume that a set of suboptimal and noisy
task demonstrations are available to a robot from which the robot must
compute a noise-free generalized path using GMM/GMR [22]. The robot
can replicate the task using the generalized path if the environment is fixed
and without any obstacle. This method alone however cannot generalize to
different environments.

Second, at the emulation learning level, based on the computed gen-
eralized path we use an Inverse Optimal Control (IOC) approach to com-
pute a reward function whose optimal solution is as close as possible to
the demonstrations (see Section 5.3). The IOC problem recovers a reward
function from a set of demonstrations in terms of a set of environment fea-
tures [1]. A further literature review of recent works on inverse optimal
control was presented in Chapter 1. This lets us learn how the robot should
deviate from the nominal path in response to different obstacles.

Third, at the imitation learning level, a robot must be able to generalize
a demonstration to a new goal point. In the proposed method, we use DMP
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to scale the generalized path obtained by GMM/GMR to a new goal point
[56], resulting in what we refer to as a nominal path: an estimate of the
underlying noise- and obstacle-free trajectory. The obtained nominal path
along with the obtained parameters at the emulation learning level are used
to build the reward function. The obtained reward function is then used
to generate a necessary path to perform the task in a situation with a new
distribution of obstacles and with a new goal point.
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Figure 5.1: (a) Mimicking component: picking an object (green sphere) from PI and
placing it at PG in a known structured environment, and the corresponding optimal
solution (red line), the structure of the environment imposes constraint on robot move-
ment by the walls; (b) emulation component: an unknown unstructured environment
(the blue bar). The position of each bar may change from one execution to another.
The optimal solution to the structured environment (black dashed line) and the optimal
solution to the new environment with the obstacles (red line).
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IV

III.I III.II

II

I

Noisy task demonstrations

Mimicking: repoduce noise-free path (GMM/GMR)

Imitation: generalize path to new goal point (DMP) Emulation: generalize path to new environments (IOC)

Execution: reproduce skill in new environments

Figure 5.2: Overview of the different steps in the proposed method. At the first level I ,
a set of noisy task demonstrations are provided. At level II , a noise free generalized
path is computed. Then, at level III.I and III.II , a path is computed adapted to new
goal point as well as to a new environment. Finally, the robot performs the task at level
IV by using the previously obtained path.

In contrast to our approach, prior works explicitly planned for obstacle
avoidance and combined it with DMP. Those approaches neither allow a
non-expert user to modify the behavior of the robot nor the robot reaction
to a stimulus might look human-like.

Eventually, with this strategy, a robot incorporates the noise-free skill
and the desired user response to different environmental features, both ob-
tained from human demonstrations, into a single reward function which can
be used to generalize the task to new goal points and environments. This
approach allows a person to teach a robot to keep far from the cat and not
very far from the chair. This is the most natural way for a non-expert user
to determine the robot’s behavior by showing the robot how to respond to
different object classes.

5.3 Reward Function Formulation

In order to integrate different types of robot LfD into a single model of a
demonstrated task, we formalize the learning from demonstration problem
proposed above as an optimal control problem.

5.3.1 Optimal Control Formulation

We assume a set of task demonstrations D is collected (Fig. 5.3) such that
each task demonstration ζd ∈ D , ∀d = 1, ..., D, is an optimal solution to
an unknown reward function in the corresponding environment corrupted
by noise, Scd = {O1, ...,OL}, ∀ d = 1, ..., D, where D is the number
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Figure 5.3: Spatial part of a set of task demonstrations (red dashed-dotted lines) nominal
path (black dashed line) and estimated nominal path (blue line marked with triangles).

of demonstrations and L is the number of obstacles O in dth scene. The
optimal control problem is defined by a state s ∈ Rn, an action a ∈ Rm,
a state transition function T (sk, xk) : Rn+m → Rn, and a reward function
R(sk) : Rn → R. We assume the reward function is a function of state,
R(sk = {xk, fk}), including state of the actor x ∈ Rp and the features of the
environment f ∈ Rq such that n = p + q. We compute the optimal action
a ⊂ A at each state s ⊂ S for a new unobserved environment based on this
reward function.

Assume a robot can optimally perform a task by following a nominal
path of the task ζN in an environment without any obstacle. Nonetheless the
collected demonstrations ζds may not be identical to the nominal path be-
cause of the presence of obstacles in the corresponding environment and/or
the noise. We use GMM/GMR, computing a generalized path/trajectory
across a set of suboptimal demonstrations, to estimate the nominal model
of the task. Hence, the recovered reward function must be a function of
the nominal model of the task, as well as of the corresponding features of
environment, e.g. position of an obstacle O. Features of the environment
depend on x given a scene, however, for the sake of simplicity, we write f
instead of f(x).

We consider the problem of performing a task to be an episodic, de-
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terministic, optimal control problem with fixed time horizon K in discrete
time, with a continuous state-space and action-space and a known world
model. As per [1], given a set of task demonstrations D in different en-
vironments, the system is going to learn the underlying reward function R
of D. We decompose the underlying reward function R(xk, fk) into two
components: an imitation component RN(xk), whose optimal solution will
be identical to the nominal path, and an emulation component RA(fk), that
encodes the response of the robot to the environmental features.

Given a reward function R = RN + RA, we assume a robot is going
to maximize the expected return ρπ =

∑K−1
k=1 R(sk+1), giving rise to an

optimal control policy, as follows

π∗ = argmax
π

K−1∑
k=1

(RN (xk+1) +RA (fk+1))

subj. to sk+1 = T (sk, xk),
xk ∈ U ,

(5.1)

where π = {a1, ..., aK−1} is the sequence of actions that a robot takes to
accomplish the task and U ⊆ A is a polyhedral region that is a feasible
subset of the set of all actions A. By executing the optimal policy π∗, the
robot follows a sequence of states ζ̄ = {s1, s̄2, ..., s̄K}, where s1 is a given
initial condition.
The imitation and emulation components of the task are discussed in the
following.

Imitation component of the reward function

We represent the model producing the nominal path to a new goal point as
a DMP (Fig. 5.4). This DMP is produced by the imitation learning step
described above: it is trained based on a generalized path obtained from
a GMM/GMR model as described in [22]. As such, we assume it is the
noise-free optimal solution to performing a task with no obstacles in the
environment. This gives us the nominal reward function (Figure 5.5):

RN (xk : Q) = −
(
xk − xN

k

)T Q
(
xk − xN

k

)
xNk ⊂ ζ̄ , k = 1, ..., K (5.2)

where xN
k ∈ Rn is a point on the nominal path ζN , which is learned as a

DMP, and where the line segment xNk xk is perpendicular to ζN .
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Figure 5.4: The computed mimicking path model with goal point G and the produce path
by imitation component to a new goal point G′.

Emulation component of the reward function

The optimal solution for the emulation adaptation component problem is
not invariant over different distribution of obstacles: Scd ∀ d = 1, ..., D.
Since deviation from the nominal model in a new environment Scnew is
local, a Gaussian function with covariance matrix R can be learned from
features of the demonstration data. This gives us the adaptation component
of the reward function RA:

RA (fk : R) = −exp
(
−(xk −O)T R−1 (xk −O)

)
(5.3)

where fk ∈ Rq is a vector of the environmental features at xk, captured
during dth demonstration, e.g. fk(xk,Scd) = (xk − O), where O is the
position of an added obstacle in dth scene, Scd.

Accordingly, the general reward function (Figure 5.6) characterizing the
demonstrated behavior in a different environment is a combination of the
adaptation component (eq. (5.3)) and nominal component (eq. (5.2)) as fol-
lows:

R (xk,Scd : θ) = −
(
xk − xNk

)T Q
(
xk − xNk

)
− e−fTk R−1 fk (5.4)

where θ = {Q,R}, Q and R being positive definite matrices.

5.3.2 Inverse Optimal Control

Inverse optimal control aims at finding a reward function whose optimal
solution is as close as possible to the demonstrations. Given an estimated
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Figure 5.5: (a) Contour of quadratic mimicking reward function and the obtained optimal
solution (black dashed line); (b) the estimated generalized path by Mean-Path algo-
rithm is used to train a DMP. A nominal path is generated by the DMP to a new goal
point. The contour of quadratic imitation reward function based on the nominal path
and corresponding optimal solution (black dashed line). The area with hot color has
higher reward.

reward function one can use the existing methods, such as dynamic pro-
gramming or reinforcement learning, to find a solution, ζ̄R(θ,Scd) to eq. (5.1).
Therefore, to learn the parameters of the reward function we minimize the
cumulative distances between the optimal solution ζ̄R(θ,Scd) and the demon-
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Figure 5.6: Emulation component of the reward function corresponding to an obstacle in
the environment.

strations as follows:

θ = argmin
θ

D∑
d=1

K∑
k

(
ζ̄R(θ,Scd),k − ζd,k

)2

(5.5)

where ζd,k and ζ̄R(θ,Scd),k are the corresponding points on the demonstration
and the solution to the estimated reward function.

5.4 Solution to the learned reward function

In order to compute the optimal solution to the learned reward function for
a new scenario, e.g. a new distribution of obstacles with different initial
and goal positions, we maximize the return of eq. (5.1). In a finite-horizon
problem, optimal control aims at finding the optimal policy by determin-
ing a sequence of actions ā maximizing the expected return. In this pa-
per, model predictive control is employed to find an optimal solution to the
learned reward function with continuous state and action.

Consider a prediction time horizon H , the optimal action corresponding
to the proposed problem in eq. (5.1) at kth time step can be formulated as
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Figure 5.7: Contour of the recovered reward function; (a) the corresponding demonstra-
tion (black dashed line); (b) the obtained optimal solution to the recovered reward
function. The area with hot color has higher reward.

follows:

āk = argmax
xk

H+k∑
h=k

−
(
xk − xNk

)T Q
(
xk − xNk

)
− e−(fTk R−1 fk)

subj. to zh+1 = Azh +Bah
xh = Czh

h = k, ..., (k +H)

(5.6)
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and
ah ∈ A
xh ∈ X

k = 1, 2, ..., K − 1,

where X and A are the polyhedral feasible sets of actor states and actions
respectively, and π∗ = {ā1, ..., āK−1} is a sequence of optimal actions
where its corresponding sequence of optimal states is ζ∗ = {x̄2, ..., x̄K}
with initial value x1.

In eq. (5.6) a linear dynamical system is considered as the transition
function of the actor in eq. (5.1). It is assumed that the actor moves with
constant velocity along the nominal path. To find a solution to eq. (5.5)
and (5.6), we use a MATLAB toolbox, called minConf, with a quasi-Newton
strategy and limited-memory BFGS updates [113]. In Figure 5.7, a task
demonstration, obtained reward function and the path maximizing the re-
turn are shown.

It is worth mentioning that the asymptotic stability of the proposed MPC
formulation for a path planning problem was discussed by Xu et al. [137].

The corresponding trajectory of the dynamical system for the time hori-
zon H using a linear dynamical system in equation (5.6) can be written as
follows:

xk+1

xk+2

xk+3

...

xk+H

 =


B . . . 0

AB B 0 . . . 0

A2B AB B . . . 0

...
. . .

. . .

AH−2B AH−3B . . . AB B




ak
ak+1

ak+2

...

ak+H−1

+


A1

A2

A3

...

AH−1

x1

(5.7)
At each time step k, the optimization in equation (5.6) finds a vector of
inputs,

[ak, ak+1, ak+2, . . . , ak+H−1],

that is the optimal solution to the reward function based on equation (5.7)
for the time horizon H . The first input of the computed vector of actions,
xk, is taken as the action to be performed by the robot at time step k.
The next state is then obtained by taking action xk based on the transi-
tion model in equation (5.6) and this procedure repeats for every time step
k = 1, ..., K. In this way, it is guaranteed that for a computed action at a
step there is a feasible optimal solution up to the time horizon H according
to the reward function. This formulation deals with some sort of local min-
ima of the corresponding reward function (Figure 5.8). However the time
horizon must be set properly. In this simulation we experimentally selected
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Figure 5.8: Contour of a reward function based on an environment with five obstacles
arranged to shape a concave form of reward function. The computed solution is able
to cope with this concave arrangement of the obstacles.
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Figure 5.9: A set of eight artificially generated paths.

4 ≤ H ≤ 12. A small time horizon does not provide enough informa-
tion about the future rewards while a big time horizon results in inaccurate
prediction horizon of the reward with the linear model.

5.5 An example of using the proposed approach

92



i
i

“thesis” — 2015/5/2 — 17:07 — page 93 — #121 i
i

i
i

i
i

5.5. An example of using the proposed approach

In this section, to show how the proposed workflow of robot LfD in Fig-
ure 5.2 produces a task model from a set of task demonstrations, we use the
proposed approach to compute a reward function explaining an artificially
generated data set. First we consider a task model to be a nominal path
(Figure 5.10). In order to generate a set of task demonstrations, we add an
obstacle at a different position in each environment. We use the task model,
nominal path, combined with a model of obstacle avoidance to simulate the
demonstrations. A set of eight trajectories is then generated building our
data set (Figure 5.9). We consider this data set along with the position of
the added obstacle to be the only available information of the correspond-
ing task. Thus, neither the corresponding nominal model of the task nor the
demonstrated obstacle avoidance policy is explicitly provided through the
available data set. We are going to estimate a corresponding model using
the proposed multi-layered robot LfD that explains all the demonstrations.

First, at the mimicking level (level I of Figure 5.2), we use the Mean-
Path algorithm. At this level, a corresponding generalized path across all
demonstrations is estimated to represente the task model in an environment
with no obstacle. Figure 5.10 shows the used nominal path to generate the
trajectory and estimated one in the top and bottom figure, respectively. To
evaluate the generalized path obtained by the Mean-Path algorithm we use
the mean square error measuring the distances between the ground truth
and the generalized path as follows:

MSEGp =
1

m

m∑
i=1

(ζNp,i − ζGp,i)2

where ζNp,i and ζGp,i are the data points of the ground truth and the gen-
eralized paths, and m is the number of collected points of every path. The
mean square error of the generalized path with respect to the nominal path
is MSER = 0.94× 10−3 [m].

Next, at the imitation level, we use the estimated nominal path to train
a DMP model. We then use this model to generate a new path whenever
the task must be generalized to a new goal point (Figure 5.12). Finally, at
the emulation level, we use inverse optimal control. We form a quadratic
reward function (equation (5.2)) such that a robot that follows the previ-
ously obtained path collects the maximum reward. Then, we add the emula-
tion component (equation (5.3)) and compute the corresponding parameters
characterizing the demonstrated responses to the obstacle. The obtained re-
ward function incorporates a nominal model to perform the corresponding
task and the user response to an obstacle into a single reward function. The
parameters of the reward function are Q = 10 and R = [2500, 215].
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Figure 5.10: Considered nominal path (top) and the corresponding estimated path by
Mean-Path algorithm (bottom).
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Figure 5.11: Contour of the recovered reward function of a demonstrated path (black line)
in the corresponding environment with added obstacle.

To evaluate the path obtained by the computed reward function we de-
fine a mean square error measuring the distances between the demonstrated
and reproduced paths as follows:

MSER =
1

nm

m∑
i=1

n∑
d=1

(ζd,i − ζR,i)2

where ζd,i and ζR,i are the data points of the demonstrated and reproduced
paths. n and m are the numbers of paths and the collected points of every
path. The mean square error of the reproduced paths using the obtained
reward function is MSER = 1.077× 10−3 [m].
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Figure 5.12: The estimated nominal path (black dashed line) to the goal point (marked
with square) and the generated path to a new goal point (marked with circle) with
dynamic movement primitives model.

x
1
 [m]

x
2
 [
m

]

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.13: Contour of the recovered reward function based on the path generated with
dynamic movement primitives.

This example shows how the workflow of robot LfD allows a robot to
learn from a set of task demonstrations a task dependent model and a model
to avoid an obstacle. The emulation component of the model, a policy to
react to an obstacle,can be transferred across tasks with different nominal
path (Figure 5.13), which allows a robot to reuse part of obtained knowl-
edge for a new task execution.
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5.6 Conclusion

In this chapter, we discussed robot LfD at emulation level for the prob-
lem of learning obstacle avoidance. We decomposed the robot LfD model
into two components, nominal component and adaptation component (em-
ulation component). This decomposition allows use to transfer the emula-
tion component across different tasks. Therefore, the obstacle avoidance
learned in a specific task can be used in another task performance.

This chapter represents the general picture of the proposed workflow of
robot LfD, shown in Figure 1.4. First, at mimicking level, a nominal path or
trajectory is computed from a set of noisy demonstrations. This noise might
be measurement noise or deviation from the nominal model due to an added
obstacle. The robot can use the nominal path to carry out a demonstrated
task in an environment with no obstacle.

Second, at imitation level, the computed nominal path is used to train
DMP, which is then used to generate a smooth path to a new goal point.
Next, at emulation level, a reward function is built that characterizes both
the task model and the response to the added obstacle to the corresponding
environment. Finally, the learned emulation component and the path gener-
ated to a new goal point are used to build a reward function characterizing
the task with a new goal point and the response to the obstacle.
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CHAPTER6
Experimental results

6.1 Outline of the Chapter

The problem of robot learning from demonstration has been discussed in
the former chapters at different levels, namely mimicking, imitation, and
emulation. In this chapter, a problem of computing a nominal profile of
a workpiece after deburring operation is considered to be robot learning
from noisy demonstrations at mimicking level. Furthermore, two experi-
ments with a da Vinci and a UR5 robot are presented to illustrate how the
workflow proposed in Chapter 2 allows a robot to automatically build a task
model from a set of demonstrations.

In the example with the da Vinci robot, a pick and place task of an object
within an environment, a designed structure, with an obstacle is studied.
During surgeon training, pick and place task is very common. Hence, it
is of utmost importance to build a model of this simple task, from a set of
expert demonstrations, that it can be used to help a trainer to follow the
optimal path, or to evaluate the trainer performance.

The data set collected by the da Vinci robot is divided into two sets, a
training set and a test set. We propose an error metric that is a distance
between a reproduced path and the corresponding path in the test or train-
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ing set. Furthermore, we define a precision measure to show the improve-
ment of the solution with respect to the generalized path computed by the
Mean-Path algorithm. The comparisons of the error and the precision of
the training and test set demonstrate the efficiency of the proposed method
and the obtained model.

In the example performed with the UR5 robot, a model of sweeping a
cube into a dustpan is learned from few demonstrations in a scene with
an obstacle. The sweeping task is a typical example of household task.
This model is then used by UR5 to perform the sweeping task in different
scenarios, i.e. different positions of the obstacle and dustpan. This example
shows how a user can teach a robot a household task with desired response
to a specific object.

6.2 Deburring example

As an example of robot learning from noisy demonstrations at the mim-
icking level, we present a problem of automatically computing a deburring
profile of a workpiece from a set of demonstrated profiles, requiring very
high precision. In order to have a robot that learns from demonstrations
how to autonomously perform the deburring task, the robot must compute
a nominal profile of the workpiece from a set of profiles collected after the
deburring operation. The nominal profile will then provide a baseline for
another controller that computes the feed rate and velocity of the deburring
tool. Therefore, an accurate nominal profile results in the minimum debur-
ring residuals on the workpieces while the deburring tool does not penetrate
in the workpiece.

We assume that an expert cannot perfectly remove the burrs of a set of
workpieces because human demonstration is always suboptimal. Hence,
the set of demonstrated profiles have still deburring residuals with small
sizes at different positions along the profile of the workpieces.

In order to simulate a set of suboptimal demonstrations, a data set of
nominal linear profiles and a data set of nominal circular profiles with de-
burring residuals have been generated (Fig. 6.3). To do so, a set of seven
linear profiles with the same length and with different deburring residuals
was first prepared (Fig. 6.1 and 6.2)1. We then consider the nominal profile,
linear or circular, consisting of a number of profile segments with identical
length. For each segment, a random generated number determines whether
the deburring residual is added or not, then a deburring residual profile is
selected randomly and added to the nominal profile.

1The photos are not with the same scale size.
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Figure 6.1: Sample workpieces with the artificial deburring residuals.
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Figure 6.2: The seven deburring residual models used to generate the data set.

In order to estimate a nominal profile, we use the proposed algorithm,
GMM/GMR [27] with different numbers of components and NLPCA [115]
with different modeling types.

To evaluate the precision of each approach, to estimate the underlying
nominal profile, e2 was computed (Table 6.1)2. The network structure of
NLPCA and the number of GMM components are selected such that the
error is minimized. For the linear profile, NLPCA and GMM/GMR result
in error values of 127.1 and 127.8 [mm], while the Mean-Path algorithm er-
ror is 99.6[mm]. The obtained circular profile by NLPCA and GMM/GMR
results in relative error of 1433.4 [mm] and 75.9 [mm] with respect to the
circular nominal profile, where the profile obtained by the Mean-Path algo-
rithm results in an error of 75.3 [mm].

In Fig. 6.4(b) and 6.5(b) the green shaded areas represent the nominal
workpiece. Although the circular profile obtained with GMM/GMR has
almost similar error compared with the one obtained by the Mean-Path al-

2In Table 6.1, NA represents the values that are not available.
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Figure 6.3: (a) Ten linear profiles with randomly added artificial deburring residuals (red
dashed lines), according to the models in Figure 6.1, and the computed mean profile
(blue line); (b) Ten circular profiles with randomly added artificial deburring residuals
(red dashed lines), and computed mean profile (blue line).

gorithm, the workpiece will be destroyed if the robot follows this profile
during execution of deburring as it penetrates the workpiece in some parts,
see Fig. 6.5(b) where the obtained profile by GMM/GMR (black line) pene-
trates the green shaded area. The obtained errors with different approaches
illustrate the superiority of the proposed approach for both linear and cir-
cular profile.

6.3 Experiments with a da Vinci robot

The use of robotic surgery has been increased during the last couple of
decades making it a common procedure in many hospitals. For example,
the da Vinci system has proved its performance in many clinical studies and
it is installed in thousands of hospitals worldwide [49]. However, robotic
surgery has still significant potential to improve its performance. Many
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Figure 6.4: Ten linear profiles: (a) e2 of the obtained profile by GMM/GMR; (b) the
distances between the linear nominal profile and the computed paths by the Mean-Path
algorithm (red thick line), GMM/GMR with 10 components (black line) and NLPCA
(blue dashed line). The shaded green area represents the workpiece.

Table 6.1: e2 [mm] of deburring data set by using NLPCA, GMM/GMR and Mean-Path
for linear/circular profile

Linear Circular

Mean-Path 99.6 75.3
GMM/GMR 127.8 75.9

NLPCA - Neural Network

C-B-S NA NA
C-B-H NA NA
C-I-S NA 1433.4
C-I-H NA 18534.5
NC-B-S 127.1 NA
NC-B-H 586.4 NA
NC-I-S 169.5 NA
NC-I-H 226.8 NA

studies have been conducted to develop more intelligent surgical robotic
systems to improve the quality of the robotic surgery [4].

One of the research topics in this domain is surgical task automation.
The main motivation of surgical task automation is to reduce the operation
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Figure 6.5: The case of ten circular profiles: (a) e2 of the obtained profile by GMM/GMR;
(b) the distances between the nominal profile and the computed paths by the Mean-
Path algorithm (red thick line) and by GMM/GMR with 60 components (black line).
The shaded green area represents the workpiece.

effort of a surgeon and hopefully to reduce the surgery time [99]. However,
the automation of a surgical task has challenging problems to be solved.
One of these problems is the adaptation of a learned path according to the
state of the environment where the environment may change from one task
execution to another, e.g. obstacle avoidance in different environments.

In many surgical tasks more than one slave robotic instrument is used
to perform a task. Although different robotic instruments are necessary to
perform a complex task, they cause some constraints on movement of an-
other instrument. Hence, each instrument must avoid collision with others
during task execution. In order to automate a robotic surgery task, robot
learning from demonstration that allows for automatic extraction of a task
model in different environments can be used.

In the following section, according to the workflow proposed in Chap-
ter 2, we decompose robot LFD into three components, namely mimicking,
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Figure 6.6: The path collected by da Vinci during pick and place task in the presence of
an obstacle at different positions.

imitation and emulation, and we use it to build a model of a task from a set
of task demonstrations.

6.3.1 Experimental setup of da Vinci example

Many surgical tasks are constrained by the small available space within a
patient’s body. To obtain a constrained environment a structure is designed
and used to perform a pick and place task. The task of picking and placing
an object is a common task during surgeon training. The designed task is
to pick an object from PI and put it at PG of the structure (Figure 4.10).

In this experiment, the operator was asked to move the object from PI
to PG with da Vinci slave tool. He was asked to maximize the distances
from both walls during task execution. The operator repeated the task three
times (Figure 4.11) in order to collect a set of demonstrations.

Then, a marker was fixed to the scene as an obstacle and the operator
repeated the task. He avoided collision with the obstacle during task exe-
cution. The obstacle can be also regarded as another instrument with which
collision has to be avoided. The distance from the instrument to the marker
was used as an environmental feature f. A set of eight demonstrations with
different positions of the marker in the scene was collected that constitutes
our data set and can be seen in Figure 6.6. As shown in these figures, the
operator responded differently to the same environmental stimulus, result-
ing in noisy responses to the same obstacle.

We assume here that in a real scenario a task model can be represented
by a reference path or trajectory and this reference path is adapted to a
new scene, e.g. a scene with an added obstacle at a new position. This
adaptation is represented by deviation from the reference path. Hence, a
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Figure 6.7: The contour of the learned reward function learned by the training set of the
da Vinci experiment. The area with hot color represents the higher reward; (a) and
(b) corresponding demonstrations (blue dashed line); (d) and (c) the computed opti-
mal solution that has the maximum cumulative reward based on the obtained reward
function.

reference path and an adaptation functionality are the main components of
a task model.

6.3.2 Learning the parameters of the model

According to the proposed workflow in Figure 1.4, at the mimicking level
of robot LfD, a generalized path is computed by the Mean-Path algorithm
from a data set of task demonstrations without any obstacle (Figure 4.11).
The evolution of the error and the residuals of the data during Mean-Path
computation are shown in Figure 4.12. The robot can perform the task of
moving an object from the point PI to the point PG in the structure without
any obstacle by playing back this smooth path. Next, at the emulation level
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Figure 6.8: The demonstrated paths within the test sets (dashed red line) and the corre-
sponding reproduction by the obtained reward function (solid black line).

of the workflow the parameters of the reward function are computed. We
consider the computed generalized path to be a reference path for building
the corresponding reward function. A sequence of points that maximize
the reward will result in generalized path adapted to a scene with an added
obstacle.

We divide the collected data set into two sets, training set and test set
(Figs. 6.7 and 6.8), where the training set is used to learn the parameters of
the reward function and the test set is used to evaluate the obtained model.
The parameters of the reward function are computed by using equation
(5.5). The estimated parameters of the reward function result in a min-
imum distance between the corresponding demonstration and a path that
has the maximum cumulative reward.

The obtained parameters of the corresponding reward function are as
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Figure 6.9: The mean square error (MSE) of the reproduced path using the obtained
reward function. The error bars show the lower and upper value of MSE in the
training set and the test set.

follows: Q = 200 and R−1 = diag[475.8 8576.3]. The obtained re-
ward functions of two demonstrated paths within the training set as well
as their corresponding optimal solution and demonstrations are shown in
Figure 6.7.

The optimal solutions corresponding to different environments are com-
puted using the obtained reward function. Although the demonstrations
are noisy, the resulting optimal solutions with the obtained reward function
are smooth paths, as shown in Figure 6.7 and 6.8. This is, indeed, highly
desirable in many robotic tasks.

In order to evaluate the obtained model, we propose two metrics. First,
we propose a mean square error

MSER =
1

nm

n∑
d=1

m∑
i=1

(ζd,i − ζR,i)2

where ζd,i and ζR,i are the data points of the demonstrated and reproduced
paths. n and m are the number of paths in the training or the test set and
the collected points of every path.

The mean square error of the reproduced path using the obtained model
with the environment corresponding to the training set and the test set are
shown in Figure 6.9. The mean square error corresponding to the training
set and test set are equal to e = 0.174924[mm] with var(e) = 0.0041 and
e = 0.0911[mm2] with variance var(e) = 0.0064, respectively. This error
sums the distances between the reproduced path and the Mean-Path as well
as the distances between the responses of the operator and the model to each
environmental feature. Hence, in order to evaluate how the added adapta-
tion functionality to the reward function improves the obtained solution, we
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Figure 6.10: The improvement of the reproduced path with respect to use of the computed
Mean-Path.

propose a precision/improvement metric as follows:

Pr =
MSEMp −MSER

MSEMp

× 100%

where

MSEMp =
1

nm

n∑
i=1

m∑
i=1

(ζd,i − ζMp,i)
2.

The improvement of the obtained solution with respect to the use of Mean-
Path along with their upper and lower values for the training set and the test
set are shown in 6.10. Comparing the error and precision value of the test
and training set (Figs. 6.9 and 6.10) illustrates that the obtained controller
from the training set generates paths corresponding to the environment of
the test set that are close to the demonstrations (Fig. 6.8).

Although the obtained generalized path and the adaptation model en-
able a robot to perform the task with different positions of the obstacle, the
robot will not succeed if the target point changes to P ′G. In this regard, dy-
namic movement primitives may be used at the imitation level to generate
a smooth path to a new goal point. Then, a reward function based on the
computed path can characterize the required path to perform the task with
a new target point and position of the obstacle.

The reward function combines the imitation or mimicking (nominal)
component with the emulation (adaptive) component. Hence, the resulted
optimal path generalizes the observed behavior to a new target point P ′G
and a new environment, e.g. scene with a new obstacle position. The com-
puted generalized path with the Mean-Path algorithm results in a relatively
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Figure 6.11: The estimated generalized path (blue line) with the initial point PI and the
goal point PG. The path computed by dynamic movement primitives (black dashed
line) for the new goal point P ′G. The contour of the corresponding reward function
based on the path computed by dynamic movement primitives and the corresponding
computed path with maximum reward is shown with a black dashed line. O is an
obstacle added to the scene.

smooth path from a set of noisy task demonstrations. This generalized path
is used to train a DMP model that scales the generalized path to a new tar-
get point that is used as a reference path to build the reward function. The
emulation component is used to capture the response of the demonstrator
to the features of the environment. In fact, this component adapts the ref-
erence path to a new environment. Finally, a reward function combines all
these three components resulting in a path to a new goal point and adapted
to an environment with a new distribution of the obstacles. This reward
function can cope with noisy demonstrations, different target positions and
arrangements of obstacles. The results shown in Figure 6.11 illustrate the
effectiveness of the approach in capturing the response to an obstacle and
generalize the learned skill to the new target point.

6.3.3 Transferring the emulation across different scenarios

In many machine learning problems a model is built based on a training
data set and it is later used for classification, clustering or prediction given
a new data set. However, many of the proposed methods work well under
some assumptions. For example, it can be assumed that the distribution of
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Figure 6.12: The emulation component of the learned model is used to avoid obstacles in
an environment cluttered with four obstacles.

the training data set and of a new data set are the same. If the new data
set has a different distribution, a new model may be required [101]. One
way to avoid recollecting a new training data set and rebuilding a model
is knowledge transfer or transfer learning. This is significantly beneficial
since knowledge learned based on an experiment can be reused across many
experiments with slightly different models. For example, knowledge trans-
fer is an approach to reduce the computation cost of finding an optimal
policy in reinforcement learning [66].

In the context of robot learning from demonstration, transferring the
learned knowledge to a new environment or to a new task with a differ-
ent model is truly advantageous. In this regard, decomposing a task model
into two components is beneficial. First, the imitation and emulation com-
ponents can be reused across different environments, e.g. environments
with different positions of obstacles. Second, the emulation component can
also be used across different tasks with different reference paths. The use
of the learned knowledge across different situations enhances the learning
process, and the knowledge learned in one experiment can be generalized
across different scenarios.

In Figure 6.12, the obtained model is used to compute the optimal path
for a more complex environment in the presence of four obstacles. This
figure shows that the emulation component can be learned from a sim-
ple demonstration but it can be used in an unseen and complex environ-
ment. Next, the emulation component is used to find the optimal path of

109



i
i

“thesis” — 2015/5/2 — 17:07 — page 110 — #138 i
i

i
i

i
i

Chapter 6. Experimental results

x
1
 [m]

x
2
 [
m

]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.1

−0.05

0

0.05

0.1

Figure 6.13: The emulation component of the learned model with da Vinci data set is used
to avoid obstacles in a task with a different task model.

a task with completely different reference path, as shown in Figure 6.13.
This example shows that the knowledge obtained in one experiment can be
transferred to tasks with different models. This property of the proposed
approach of robot learning from demonstration boosts the efficiency of the
learning procedure.

The proposed approach of robot LfD enables a robot to cumulate knowl-
edge from demonstrations of different tasks and build obstacle avoidance
models. These models can be later used in combination with an unseen task
model, as shown in Figure 6.13.

6.4 Sweeping task experiment with UR5

In order to learn a task model, e.g. sweeping, not only a robot must ex-
tract a model of how to perform the task but also it must be capable to
extract a model of how to react to different environmental changes. In this
regard, one of the important environmental entity that is common across
many robotic tasks is the existence of an obstacle. In many robotic tasks,
obstacle avoidance problem is a major concern. Hence, a robot must extract
both model of the task and a strategy for obstacle avoidance.

Consider a task of sweeping rubbish, shown in Figure 6.14, where there
might exist different obstacles in the scene. We aim at teaching a robot
how to sweep a green cube to a dustpan and avoid collision with some
objects, by providing a few demonstrations of the task. To do so, the task
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(a) (b)

Figure 6.14: The experimental setup of sweeping example. The UR5 robot mounted on
the table where the origin of the reference frame is the center of the base of the robot
(as shown in Figure 6.18) where x1 is parallel with the width of the white table and it
is from the center of the robot’s base to the right side of the figure.

of sweeping the green cube to the dustpan is demonstrated a few times in
the presence of two objects, a marker and a cup, which we do not want to
sweep.

The proposed approach of robot LfD is used to generalize the demon-
strations over different environments with new positions of the dustpan and
different positions of the obstacles. The approach also allows the robot to
combine different models, e.g. the model obtained for the marker and the
cup, into a single reward function. This also allows the robot to perform the
task in the presence of both object classes. Further details of the sweeping
example is presented in Chapter 6.

6.4.1 The UR5 robot

The UR5 robot is a six degree of freedom flexible industrial manipulator
manufactured by Universal Robots (Figure 6.16). It has six revolute joints
and cylindrical extruded aluminum links. Each joint has a Brushless servo
motor and a harmonic drive reducer. Two sizes of motors are used in the
joints where the first three joints have the bigger motors (see Table 6.2
for the specifications). This robot is designed for industrial applications
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(a) (b) (c)

Figure 6.15: Three different scenarios of sweeping task with unseen position of the dust-
pan as well as unseen position of the marker and cup (obstacles): scenario 1, 2 and 3
are shown in (a), (b) and (c).

suitable for small and medium-sized companies that require less than five
kg of payload. Nonetheless, it is increasingly used in academic studies due
to its comparatively low price. The robot weighs 18.4 kg and it can reach a
point with maximum distance of 85 cm from the center of its base.

The robot is provided with a control box, a twelve inches touchscreen
and a programming interface, called Polyscope (see Figure 6.163). The
control box comes with a Linux based Operating System. Furthermore, a
teaching button on Polyscope allows a user to move the robot and record
a set of waypoints required to perform a task, which can be later played
back to perform the task. An emergency bottom on Polyscope is available
to stop the robot in emergency situations.

The Universal Robot can be controlled at three different levels: The
Graphical User-Interface (GUI) level, the script level and the C-API level.
The graphical user-interface has some button to move the robot either in the
joint space or Cartesian tool space. The joint angle values as well as end-
effector positions and orientations can be read directly on the touchscreen.

At the script level user can program the robot using Polyscope. The
company provides the robot with a programming language, called URScript.
The URScript has variables, types, functions, and control statements, such
as loop. In addition URScript has a number of built-in variables and func-
tions which monitors and controls the I/O and the movements of the robot.

3Image is taken from : http://scandasia.com/danish-robots-a-success-in-malaysia/universal-robot-ur5/
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Figure 6.16: UR5 robot and its Polyscope control panel.

For example, URScript has a command to read the joint angle values as
well as the tip center pose (TCP) value, including the position and orienta-
tion of the center of the end-effector. The controller of the robot solves the
forward kinematics of the robot based on the measured joint angle values
to compute the pose of the end-effector.

The robot can be programmed in two different ways using URScript.
Firs, one can write a program on Polyscope using URscript to indepen-
dently control the robot. The URScript program is executed in real-time on
the URControl RuntimeMachine (in the control box) and the RuntimeMa-
chine communicates with the robot with a frequency of 125 Hz. Second,
Polyscope can be connected to a personal computer (PC) through an Eth-
ernet cable. A script written on PolyScope as a client application commu-
nicates over a TCP/IP connection with another program written on the PC
as the server. In our experiment, we used client-server connection over a
TCP/IP communication.

6.4.2 Robot mechanical specifications

The UR5 manipulator has seven links li : i = 0, ..., 6 and six revolute
joints ji : i = 1, ..., 6 (Figure 6.17). Each link is moved by a brushless
motor through the RuntimeMachine on the control box. The joint angle
limitations as well as the maximum angular velocity of the motors at each
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Chapter 6. Experimental results

Table 6.2: Electrical and mechanical specifications of the UR5 motors.

Big motor Small motor
qmax ±2πrad ±2πrad
q̇max ±3.2 rad

s
±3.2 rad

s

q̈max ±15 rad
s2

±15 rad
s2

τmax 150 Nm 28 Nm
Static friction 0 0

Dynamic friction 0.11 0.13
Viscous friction 0.4 0.3

Dynamic friction backdrive 0.07 0.07
Viscous friction backdrive 0.6 0.25

Torque constant 0.13 0.14

Table 6.3: Denavit-Hartenberg parameters of UR5.

Link i di [mm] ai [mm] αi [rad]
1 89.16 0 π

2
2 0 -425 0
3 0 -392.25 0
4 109.15 0 π

2
5 94.65 0 −π

2
6 82.3 0 0

joint and motor specifications are reported in Table 6.2.
The end-effector position and orientation can be controlled in both joint

space and tool space. To control the robot in tool space the RuntimeMa-
chine computes the forward kinematics of the robot. To derive the forward
kinematics, Denavit-Hartenberg convention can be used (see Figure 6.17
and 6.184). The Denavit-Hartenberg parameters of the UR5 manipulator are
reported in Table 6.3 based on the reference frames shown in Figure 6.18.
Accordingly, the position and orientation of ith coordinate frame can be ex-
pressed in the {i − 1}th coordinate frame by the following homogeneous
transformation matrix:

T ii−1 =


Cθi −CαiSθi SαiSθi aiCθi

Sθi CαiSθi −SαiCθi aiSθi

0 Sαi Cαi di

0 0 0 1

 (6.1)

where θi is the joint angle of ith joint. C and S denote the cos(.) and
sin(.), respectively. The corresponding transformation matrix T ii−1 to each
joint can be computed by substituting the Denavit-Hartenberg parameters
ai, αi, di and θi from Table 6.3 into equation (6.1), and eventually the full

4Figure 6.17 and 6.17 are taken from Katharina Kufieta "Force Estimation in Robotic Manipulators: Model-
ing, Simulation and Experiments", Master thesis, 2014
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6.4. Sweeping task experiment with UR5

Figure 6.17: Sketch of UR5, it has six revolute joints and seven links.

transformation matrix T 6
0 is computed by production of the transformation

matrices of joints ji,∀i = 1, ..., 6, as follows:

T 6
0 = T 1

0 T
2
1 T

3
2 T

4
3 T

5
4 T

6
5 (6.2)

Robot gripper

A ROBOTIQ adaptive gripper with two fingers was used to hold a poly-
brush in order to perform the sweeping experiment (Figure 6.195). The
gripper is capable to adapt to different geometry of the object by the de-
signed mechanism. The working range of the gripper is 84 mm. A schema
of the ROBOTIQ gripper is shown in Figure 6.20.

The adaptive gripper needs a 24 V power supply at 2 A. This gripper
comes with a gripper controller box that can communicate with the Univer-
sal Robot’s controller with an auxiliary power supply. The control box has
a Modbus TCP communication interface, which allows to control the grip-
per finger position through Universal Robot’s teach pendant. This interface

5Figure 6.19 and 6.20 are taken from manual of the ROBOTIQ 2-finger gripper.
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Chapter 6. Experimental results

Figure 6.18: Sketch of the UR5 and the considered coordinate frames at each joint accord-
ing to Denavit-Hartenberg convention (left), and the dimension of each link (right).

Figure 6.19: ROBITIQ gripper used to hold the poly-brush.

allows to control the position, speed and force of the gripper, and it gets
information of gripper motor current and finger position.
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6.4. Sweeping task experiment with UR5

Figure 6.20: schema of ROBOTIQ gripper. Unit of the provided dimensions is mm and
the unit in [ ] are inch.

6.4.3 Sweeping data collection

In the past years, due to the development of robots that can safely perform
different tasks out of the cage, including household tasks such as Roomba
Vacuum Cleaning Robot, many studies have been conducted. These stud-
ies aim at making robots more intelligent and to enable them to learn a task
from human demonstrations and adapt the learned task to a new environ-
ment. In this section, in the context of robot learning from demonstration,
the task of sweeping is chosen to be performed by the UR5 robot.

The teach pendant of UR5 has a teaching mode in which a user can pull
the robot arm and move it to the desired position and orientation and save
the pose of the end-effector. To provide a set of task demonstrations, the
robot was moved in the teaching mode to perform the sweeping task and
a set of waypoints6 was recorded during every task demonstration. Then,
the waypoints were played back by the robot and a set of data-points of the
corresponding trajectory was collected.

In order to collect the data of the trajectories, the end-effector positions
are obtained through a script written on Polyscope and sent over a TCP/IP
connection to the counterpart script on the Personal Computer (PC). Al-
though Polyscope can send messages over a TCP/IP to PC at 100 Hz, the
time required to get the end-effector pose limits the number of data-points

6A waypoint is a recorded position and orientation of the coordinate frame attached to the tool center point
of the UR5.
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Figure 6.21: (a) Collected data during sweeping task demonstrations. The user moved
the arm by pulling the end-effector while another person holding the teaching bottom
and a set of waypoints (blue solid circle) are recorded. The recorded waypoint were
then played back by the robot and the corresponding points of the resulted trajectory
is collected (black dashed line). The computed generalized path by the Mean-Path
algorithm across demonstrations (red line); (b) Residual of the data in the Distance-
Space (tr(Σ)); (c) error of the Mean-Path computation ε.

collected during each experiment. We set the speed of task execution at
20% of its maximum speed to collect necessary data points. Eventually,
for the sweeping task with 15 recorded waypoints, 90 data-points were
collected. The task of sweeping the green cube into the black dustpan,
shown in Figure 6.14, with two types of obstacles, a cup and a marker,
were demonstrated four times. We use the tool tip of the robot to point-
ing at the position of every obstacle to collect the necessary information of
each obstacle position. This can be also done by a calibrated camera, e.g.
a Kinct. The collected data-points of the different sweeping task and the
corresponding waypoints are shown in Figure 6.21(a).
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6.4. Sweeping task experiment with UR5

Table 6.4: The evaluation metric values (e1 [mm2] and e3 [mm]) of the computed Mean-
Path by using different initial Reference-Path ζr = ζj , j = 1, ..., 4, where ζjs are
demonstrated paths.

ζr = jth demonstrated path e1[m2] e3 [mm]
j=1 1603 5.36
j=2 1554 7.44
j=3 1548 6.44
j=4 1548 6.32

mean/variance of error 1563/710 6.39/0.7236

6.4.4 Learning the model

Robot learning from demonstration is a means of programming a robot to
perform a new task. One way to enhance this method of programming is by
partially learning the model of the task from demonstrations and explicitly
defining the remaining part. In the sweeping example, the model is sim-
plified by using some prior knowledge, e.g. the brush must be in contact
with the surface of the table x3 = 0.192[m] and it must be orthogonal to the
corresponding trajectory, i.e. α = 0, β = 0 and γ can be defined such that
the tool tip is orthogonal to the corresponding path 7. Therefore, the task
can be considered a 2-DOF motion.

Using the Mean-Path algorithm a generalized path across different task
demonstrations is computed. In Figure 6.21 the obtained generalized path
and the evolution of the error and residual of the data based on the computed
generalized path during Mean-Path algorithm computation are shown. The
errors of computing a generalized path by the Mean-Path algorithm, i.e.
e1 = tr(Σ) and e3 =

∑m
i=1

∥∥∥∑n
j=1

−→
d j,i

∥∥∥, with different Reference-Path
(initial value) are reported in Table 6.4. The generalized path can be con-
sidered the required reference path to sweep the green object to the dustpan
without the presence of an obstacle.

If the generalized path ζMp computed by the Mean-Path algorithm is
used to reproduce the task of sweeping in the presence of the marker and
the cup, the mean square error MSEMp = 1

nm

∑n
d=1

∑m
i=1(ζd,i − ζMp,i)

2,
is equivalent to 2.8181[mm2] and 5.8572[mm2], respectively. Although
the generalized path might be used to reproduce the task, it would not be
feasible in the presence of the obstacle.

We use inverse optimal control problem (equation (5.5)) to recover un-
derlying reward function of a demonstration. We consider the problem of

7x = [x1, x2, x3] is the position of the tool center point. α, β and γ are the corresponding angle of transfor-
mation matrix that transforms the reference coordinate frame to the local coordinate frame attached to the tool
center point of the UR5. For example, α, β and γ are the rotation angle around x1, x2 and x3 in Figure 6.23,
respectively.
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Figure 6.22: The reproduced paths by the obtained reward function for two obstacles, the
cup (a) and the marker (b).

computing the necessary path to sweep the green cub into the dustpan in
the presence of an obstacle to be an optimal control problem. In order to
adapt the task model to a new environment based on the different positions
of the cup or the marker a reward function is built using equation (5.4).
whose parameters are as follows: Q = 20, Rc = diag([ 1

15.4
1

1000
]) and

Rm = diag([ 1
20.08

1
880

]). The obtained reward function is then used to
generate the required path to sweep the green cube to the dustpan and avoid
colliding with the marker and the cup (Figure 6.22).

The corresponding mean square error of the produced path,

MSER =
1

nm

n∑
d=1

m∑
i=1

(ζd,i − ζR,i)2

where n and m are the number of the number of demonstrated paths and
the collected points of every path, are 0.2177 [mm2] and 0.2074 [mm2],
respectively. Furthermore, we compute the improvement value, Pr =
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Figure 6.23: (a) A sample demonstration and the fixed local coordinate frame to the tool
tip along the trajectory; (b) top view of the local coordinate frame along the demon-
stration; (c) the computed position and orientation of the tool along the demonstration.

MSEMp−MSER
MSEMp

× 100%. For the marker and the cup, the improvement val-
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Figure 6.24: The obtained model is used to reproduce required paths to accomplish the
sweeping task in different scenarios. The computed path corresponding to scenario 1,
2 and 3 are shown in (a), (b) and (c).

ues with respect to the use of the generalized path are 92.7% and 96.46%,
respectively.

To perform the sweeping task we have to send a sequence of poses to
the UR5.The pose values of the end-effector consists of three position val-
ues and three orientation values. The standard orientation values that UR5
accepts are axis angles representation. Hence, first the rotation matrix of
the end-effector with respect to the reference frame at the base of the UR5
is computed (Figure 6.23). Then, the computed rotation matrix must be
converted to an axis angle representation. The axis angle parameterizes a
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6.4. Sweeping task experiment with UR5

rotation with a rotation axis ω and an angle of rotation θ.

θ = arccos

(
trace(R)− 1

2

)

ω =
1

2sin(θ)

 R(3, 2)−R(2, 3)

R(1, 3)−R(3, 1)

R(2, 1)−R(1, 2)

 (6.3)

6.4.5 Task reproduction

According to the proposed workflow in Chapter 2, three different levels
of robot learning from demonstration are used in this experiment. First,
the generalized path has been computed from a set of task demonstrations.
This generalized path would be the best path that the robot could follow if
there was no information available from the scene, i.e. in the case that there
is no available information about the position of the obstacles. We adapt
the generalized path to every environment by employing robot LFD at the
emulation and imitation level of the workflow. This improves the solution
by enabling a robot to generalize the task to both a new position of the
dustpan and an environment with an obstacle. To do so, the response of the
demonstrator to different obstacles is encoded into an appropriate reward
function. This reward function can be used to reproduce a suitable path for
a different position of the obstacles in the scene (see Figure 6.22(b)).
Furthermore, Dynamic Movement Primitives is used to generate a path to
a new goal point. A new reward function based on the generated path by
DMPs and the computed adaptation component has been built using the
parameters of the reward function Q and R. The optimal solution to of the
reward function provides the required path to perform the sweeping task
with the new position of the dustpan and of the obstacles (see Figure 6.24).

The proposed workflow of robot learning from demonstration has been
used to solve the problem of obstacle avoidance in different examples. The
proposed method succeeds to replicate a task in a slightly different envi-
ronment with good precision. One of the main advantages of the proposed
method is that it solves the problem with a continuous state space. Next,
the MPC formulation of the solution allows the robot to cope with some
local minima of the reward (objective) function.

On the other hand, the proposed method has some limitations. First, the
process of finding the parameters of the reward function is iterative and in-
volves the problem of finding an optimal solution with the estimated reward
function at each iteration. This is a computationally expensive process.
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Next, a time horizon has to be determined for the MPC formulation. In
order to deal with the local minima of the reward function the time horizon
should be big enough. On the other hand, a very big time horizon may
result in an unstable solution and a discontinuous path generation. In this
work, we have chosen the sweeping to be an episodic task with one hundred
time steps. We have experimentally selected a time horizon 4 ≤ H ≤ 12 in
the MPC formulation (equation (5.6)).

In the future, the problem of uncertainty of the measured position of an
obstacle in a scenario with moving obstacles can be studied. This allows
for solving a more realistic problem of robot learning from demonstration
in which the objects may not be static and the sensory information may
be noisy. Furthermore, a component with attractive reward values can be
studied to adapt the reference path according to some target points in the
scene. For instance, in the sweeping example the position of the cube to be
swept can be considered in the reward function. Hence, the resulted reward
function will adapt to the new position of the target.

6.5 Conclusion

In this chapter the proposed methodology has been applied to a pick and
place task with a da Vinci robot and a sweeping example with UR5 robot.
Robot learning from demonstration at three different levels, i.e. mimicking,
imitation and emulation, has been used to build a model of the tasks from a
set of task demonstrations.

The collected data set with by Vinci was divided into a training set and
a test set. The model obtained from the training set is used to generate a
path required to perform the task in one of the scenes of the test set. The
reproduction error and precision of the generated paths corresponding to
paths of the test set illustrate the efficiency of the model learned from the
training set to generate the required path in a new scene.

In the sweeping example the task with two types of obstacles have been
demonstrated separately. The model obtained for each type of obstacle
shows how a user can teach a robot a desired response to an obstacle, which
may be highly demanded in different applications. The obtained obstacle
avoidance components of two types of obstacle are then used and efficiently
produced the required path to perform the task in the presence of both ob-
stacles. This shows how different components of the proposed model can
be learned independently and transferred across different scenarios. Fur-
thermore, dynamic movement primitives has been used to generate a path
to a new goal point. The reward function combined the obstacle avoidance
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6.5. Conclusion

component with the generated path with DMPs. Finally the robot succeeds
to perform the task with a new position and of the obstacle and of the dust-
pan by following the optimal path with maximum collected reward.
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Appendix

7.1 Proof of the convergence of Mean-Path algorithm

In this section the Mean-Path algorithm is briefly presented and the conver-
gence proof of the algorithm is discussed. The Mean-Path algorithm aims
at computing a path from a data set of 2-D paths capturing the most vari-
ability of the data set. A path that captures the most variability of a data set
of 2-D paths has the minimum sum of the squared distances to all the paths
within the data set.

Let ζr = {xr1, ..., xrM} be a 2-D path taken as a reference for distance
computation, called Reference-Path. Further, xri are called Reference-Points.
A set of line segments, denoted by ∆ζj , connecting two consecutive points
of a path, are defined as follows,

∆ζj = {δj,1, δj,2, ..., δj,m−1} ,

δj,i = xji−1x
j
i ,

where δj,i is a line segment with initial point xji−1 and terminal point xji .
Because a continuous path xj is not available, a piecewise linear approx-
imation of the sequence of points ∆ζj are used wherever information of
continuous path is needed. An intersection point of the normal line to the
Reference-Path at xri and another path ζj is used to compute the distance
between xri and another path ζj .

We define residual of the data set of 2-D paths based on a Reference-
Path as the sum of the squared distances between xri s and ζj ∀ i = 1, ...,M .
Hence, the Mean-Path, capturing the most variability of the dataset, is for-
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Start

Data set X

Zrp = Φ(X, ζrk+1)

Σ1 = (Zrp)TZrp

e1= tr(Σ1)

X rp =
Ψ(Zrp, ζrk+1)

and X rp ∈ RM×N

∀, i =

1, ...,m,
−→
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Figure 7.1: This flow chart shows the Mean-Path algorithm. A set of paths of a task
performances constitutes our data set. The iterative algorithm at each computation
step updates the Reference-Path along a set of lines normal to the Reference-Path.

malized in equation (G.1) as the path resulting in the minimum residual of
the data set.
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ζrk+1 = argmin
ζ

(t)
r ∈Rm×N

tr(Σk)

s.t. Z = Φ(X , ζrk)

Σ = E[ZTZ]

(G.1)

where
Z = Φ(r)(X ) := Φ(X , ζrk),

and Z = {V r,j
i ,∀ i = 1, ...,M and j = 1, ..., N} is a set of corresponding

data points of original dataset, X = {ζ1, ..., ζN}, in Distance-Space based
on the considered Reference-Path.

A similarity measure between a Reference-Path and another path in the
set, denoted by V r,j

i , at each Reference-Point xri ∀ i = 1, ...,M , is a vector
whose absolute value is a distance between xri and ∆ζj , ∀ j = 1, ..., n, as
follows:

V r,j
i :=

−−−→
xrip

r,j
i ,∣∣V r,j

i

∣∣ =
∥∥ xri − pr,ji ∥∥ ,

where pr,ji is an intersection of ∆ζj and Li,k, see Figure 7.2,

pr,ji = ∆ζj ∩ Li,k.

A description of the iterative algorithm is reported in Algorithm 2.

7.1.1 Preliminary

For a given set of task demonstrations some definitions are presented in
the following in order to formalize a geometrical model of a task, called
Mean-Path.

Definition 1. Given two paths ζA and ζB, a directed line segment δAiA (iA =

1, . . . ,mA − 1) on ζA is associated with a directed line segment δBiB (iB =

1, . . . ,mB − 1) on ζB if δAiA · δ
B
iB
> 0 and the line perpendicular to δAiA

intersects δBiB (Fig. 7.2).

Definition 2. A necessary and sufficient condition for two paths ζA and ζB

to be globally associated is that each directed line segment of path ζA (δAiA ,
iA = 1, . . . ,mA − 1) is associated with a directed line segment of path ζB

(δBiB , iB = 1, . . . ,mB − 1) and vice versa.
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Figure 7.2: A set of four 2-D curves (continuous ones xi, i = 1, 2, 3, and their collected
data points ζ, shown by circle signs), Reference-Path xr and its data points ζr shown
with square signs. The line segment δ2

2 = x2
2, x

2
3 linearly approximates the continuous

path x2 between x2
2 and x2

3. The line Li is perpendicular to δr,i. Intersections of Li
and each ∆ζj , denoted by pr,ji ,∀ j = 1, 2, 3 (marked with triangle sings). Vector V r,2i

determines the position of pr,2i relative to xri .

Algorithm 2 Mean-Path algorithm, ∆̄e is a chosen small threshold
1: procedure MEAN-PATH(X = {ζ1, ..., ζN})
2: k = 1 , ζrk ← ζ1 , ∆e = 1 and λ = 1
3: while ∆e > ∆̄e do
4: Z = Φ(X , ζrk)

Σk = ZTZ ,
ek ← tr(Σk),

5: zdi,k ← E(zji,k ∈ Z,∀j = 1, ..., N)

zci,k = Ψ(zdi,k, ζ
r)

∀ i = 1, ...,M
6: Ii,k ← λ(xri,k − zci,k) ∀i = 1, ...,M

7: ζrk+1 ← ζrk +
−→
I k

8: Z = Φ(X , ζrk+1),
Σk+1 = ZTZ ,
ek+1 ← tr(Σk+1)

9: if ek+1 > ek then
10: λ← λ

2
11: else
12: ∆e← ‖ek+1 − ek‖ , k = k + 1 and λ← 1
13: end if
14: end while
15: return ζrk
16: end procedure

A corresponding definition of the globally associated continuous paths
xA(t) and xB(t) can be defined in the same way.
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7.1. Proof of the convergence of Mean-Path algorithm

Definition 3. Considering two differentiable and globally associated paths
xA(t) and xB(t), the Mean-Path is a differentiable path whose sum of
squared distances from ζA and ζB is minimum.

It is worth mentioning that the distances are measured along the perpen-
dicular lines to the Mean-Path.

Definition 4. Given a nominal path of a task x(t), a task demonstration
x(t) is called slender demonstration if and only if x(t) is differentiable and
the distance of point t on x(t) to x(t) (dx,x(t), t ∈

[
0, t
]
) is less than the

radius of curvature of x(t) at that point.

Theorem 1. For two differentiable and globally associated paths xA(t)
and xB(t), which are slender demonstrations of a task with the same initial
point, the Mean-Path exists and is unique.

Proof : see 7.1.2
In fact, the Mean-Path ζmp is the one minimizing the cumulative sum

of squared distances to all the paths within the set. Therefore, given a set
of paths (ζ) and a Reference-Path (ζr), the Mean-Path (ζ̄) is computed, at
each computation step (k) in equation (G.1).

7.1.2 Proof of Convergence

In this section the proof of convergence of Mean-Path algorithm, and the
proof of theorem 1 are discussed. Assume that two demonstrations of a
task, differentiable and globally associated paths x1 and x2, are available
for Mean-Path computation. They are represented by two discrete paths,
i.e. two sets of sample points, ζ1 and ζ2, where

ζj = {xj1, x
j
2, ..., , x

j
N} ∀ j = 1, 2.

Definition 5. A point belongs to a realization of the Mean-Path (shown in
Fig. 7.3, 7.4, and 7.5) if and only if

‖xmi+1 − xm,b‖ = ‖xmi+1 − xm,s‖, (G.2)
i = 1, 2, ..., N − 1

where xm,s and xm,b are the intersections of the line perpendicular to xmi x
m
i+1

and paths ζ1 and ζ2, respectively.

Consider a point xmi on the Mean-Path, fixed by a boundary condition8

or through the algorithm. Let assume that we need to compute only the
8If two paths have the same initial point, the initial point will be the first point of the Mean-Path (xm1 ).

Otherwise, the line connecting two boundary (ending or beginning) points of two paths can be considered as the
boundary condition and consequently xm1 can be computed.
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90°

90°

xri+1,k+1 = xmi+1 xmi

xbk+1xbk

xsk+1xsk

xri+1,k

ζ1

ζ2

Figure 7.3: Two line segments of parallel paths.

next point xmi+1 (eq. (G.2)) on the realization of the Mean-Path through the
proposed algorithm. Hence, given a reference line segment xmi xri+1,k by
applying Mean-Path algorithm a point on a realization of the Mean-Path
(xmi+1) can be computed, iteratively, as follows

xri+1,k+1 = V c
i+1,k + xri+1,k, (G.3)

where
V c
i+1,k = λ(xri+1,k − xci+1,k)

0 < λ ≤ 1
(G.4)

and

xci+1,k =
xsk + xbk

2
. (G.5)

In eq. (G.3) xsk and xbk are intersections of the line
←−→
xskx

b
k perpendicular to

the reference line segment xmi xri+1,k by ζ1 and ζ2, respectively, and each
computation step is denoted by t.

Lemma 1. Considering two parallel path segments ζ1 and ζ2 in Fig. 7.3,
and crossing line

←−→
xbkx

s
k perpendicular to the given reference line segment

xmi x
r
i+1,k, a point on a realization of the Mean-Path (xmi+1) is computed by

(G.3) in one step with λ = 1.

Proof. The mean value of xsk and xbk, the intersection points of the crossing
line and ζ1 and ζ2, is identical to the mean value of the intersection points
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7.1. Proof of the convergence of Mean-Path algorithm

of any other line crossing ζ1 and ζ2.

xmi+1 =
xsk + xbk

2
,

xmi+1 =
xsk+1 + xbk+1

2
.

Lemma 2. Considering two obtuse path segments ζ1 and ζ2 in Fig. 7.4,
and crossing line

←−→
xbkx

s
k perpendicular to the given reference line segment

xmi x
r
i+1,k, a point computed by (G.3) at each computation step is closer to

the point on a realization of the Mean-Path with λ = 1.

Proof. Assume point xmi+1 is given on Mean-Path, which satisfies eq. (G.2),
therefore

‖xmi+1 − xm,b‖ = ‖xmi+1 − xm,s‖.

If the line
←−−−−→
xm,bxm,s perpendicular to xmi xmi+1 rotates around xmi+1 (e.g. line

←−→
xskx

b
k), the mean value (xri+1,k+1) of the intersection points position (xsk and

xbk, which are the intersections of the line
←−→
xskx

b
k by the paths ζ1 and ζ2) can

be calculated through eq. (G.3), as well. On the other hand, considering
line segment xmi xri+1,k perpendicular to

←−→
xskx

b
k and passing through xmi , it

can be confirmed that

xri+1,k+1 ∈ xmi+1x
r
i+1,k →

‖xmi+1 − xri+1,k+1‖ < ‖xmi+1 − xri+1,k‖ (G.6)

Hence, given a reference line segment xmi xri+1,k and computing a point on
a realization of the Mean-Path using eq. (G.3) results in xri+1,k+1 such that

θ(t+1) < θ(t),

where θ denotes the angle of the line segment of the Reference-Path and the
Mean-Path. Therefore, the updated value xri+1,k+1 converges to xmi+1.

Lemma 3. Considering two acute path segments ζ1 and ζ2 in Fig. 7.5,
and crossing line

←−→
xbkx

s
k perpendicular to the given reference line segment

xmi x
r
i+1,k, a point computed by (G.3) at each computation step is closer to

the point on a realization of the Mean-Path if

V c
i+1,k ·

−−−−−−−−−→
xri,k+1x

c
i+1,k+1 > 0.
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Figure 7.4: Two line segments of obtuse paths.
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Figure 7.5: Two line segments of acute paths.

Proof. Consider a Reference-Point xri+1,k such that

‖xsk − xri+1,k‖ < ‖xbk − xri+1,k‖,

where xsk and xbk are the intersections of the line perpendicular to xmi xri+1,k,

i.e.
←−→
xskx

b
k, by ζ1 and ζ2 in Fig. 7.5. The mean value of the intersection points

(xci+1,k) is computed using eq. (G.5).
Eventually, with an argument similar to the one used in Lemma 2, it can

be shown that

‖xri+1,k − xci+1,k‖ > ‖xri+1,k − xmi+1‖ (G.7)
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7.1. Proof of the convergence of Mean-Path algorithm

and

‖xc,s − xci+1,k‖ > ‖x
c,b
k − x

c
i+1,k‖, (G.8)

where xc,s and xc,b are intersections of the paths by the line perpendicular
to xmi xci+1,k. Consequently, in order to guarantee the convergence of the
algorithm to a point on a realization of the Mean-Path, xri+1,k+1 is computed
such that

xri+1,k+1 ∈ xri+1,kx
m
i+1,

From equation (G.5) and (G.8), for different values of λ it follows that

λ << 1→ xri+1,k+1 ∈ xri+1,kx
m
i+1 (G.9)

→ V c
i+1,k ·

−−−−−−−−−−→
xri+1,k+1x

c
i+1,k+1 > 0, (G.10)

and

λ = 1→ xri+1,k+1 ∈ xci+1,kx
m
i+1 (G.11)

→ V c
i+1,k ·

−−−−−−−−−−→
xri+1,k+1x

c
i+1,k+1 < 0. (G.12)

It can be also shown that

V c
i+1,k ·

−−−−−−−−−→
xri,k+1x

c
i+1,k+1 > 0→ θ(t) > θ(t+1). (G.13)

Therefore, to guarantee the convergence of the algorithm λmust be selected
in such a way that

V c
i+1,k ·

−−−−−−−−−→
xri,k+1x

c
i+1,k+1 > 0.

Definition 6. The radius of curvature Ri is defined here as as follows,

Ri = min (di+1, di−1)

i = 1, 2, ...,M (G.14)

where

di+1 = Li,k ∩ Li+1,k

di−1 = Li,k ∩ Li−1,k

If there is no intersection di is considered infinity (d0 = dm+1 =∞).
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.

.

xmi

xmi+1

dl,i+1

dr,i+1

ds

Li

ζA

ζB
ζmp

Figure 7.6: A pair of associated paths (ζA and ζB) and their Mean-Path. dr,i+1 and
dl,i+1 are distances between the Mean-Path and the Objective-Paths. A tangent line to
the circle centered at xmi is selected such that dr,i+1 and dl,i+1 are equal.

Lemma 4. For a pair of slender task demonstrations (introduced in defini-
tion 3), given a point xmi on the Mean-Path (eq. (G.5)) and a small step size
r, point xmi+1 on a circle with radius r (Fig. 7.6) exists whose distances to
both demonstrations along the tangent line to the circle are identical.

Proof. The demonstrated paths can be considered linear in the neighbors
(with small step size r) of the intersection points of the line tangent to circle
and the paths (ζA and ζB). Therefore, in three cases including parallel,
obtuse and acute paths, with the same argument used in Lemma 1, 2 and
3 it can be shown that there is only one point on a circle with radius r
whose distances to both demonstrations along the tangent line to the circle
are identical.

As it is discussed in Lemma 1, 2 and 3, given any Reference-Path the
computed Mean-Path at each iteration remains in the convex hull of the
set of paths. In the case that the chosen Reference-Path is parallel to the
Mean-Path9, we can compute the Mean-Path in one computation step, in-
dependent of the distance between the two paths. Moreover, in the case that
the Reference-Path is not parallel to the Mean-Path, the algorithm, indeed,
reduces the distances to the Mean-Path at each iteration. In fact, after each
iteration not only the distances reduce, but also the slopes of the result-
ing path are modified in such a way that they are closer to the ones of the
Mean-Path.

9Two paths are parallel if and only if every line perpendicular to the one path will be perpendicular to another
path as well.
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7.1. Proof of the convergence of Mean-Path algorithm

Proof of Theorem 1

Proof. For a given pair of globally associated paths, which are slender
demonstrations of a task, using Lemma 4 while r tends to zero results in
existence of a differentiable Mean-Path for the pair of paths.

Proof of convergence of Algorithm 2

Proof. Given a boundary crossing line, the first point on the Mean-Path is
computed using eq. (G.3) with λ = 1. Moreover, considering a differen-
tiable Reference-Path, within the convex hull of the demonstrated paths,
and updating all the points of the Reference-Path using Algorithm 2, if a
point of the Reference-Path (Pr,i) converges to the one on the realization
of the Mean-Path (eq. (G.2)), the next point of the Reference-Path (Pr,i+1)
will be close to the next point on the realization of the Mean-Path. On the
other hand, since the perpendicular line at each step of computation de-
viates insignificantly with respect to the one in the last computation step,
the paths crossed by the line can be considered linear in the neighbors of
the intersections. Consequently, convergence of Mean-Path algorithm is se-
quentially proved through the convergence of the algorithm for every single
point, which has been proved in Lemma 1, 2 and 3.
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Conclusion and future works

Robots are used to perform many repetitive and precise tasks. However, the
programming time and cost of a robot restricts the use of robots, especially
in non-production-line uses. To tackle this issue and in order, although
robot programming by demonstration has been introduced by which a robot
can learn to perform a task from demonstrations, still a major concern is
how a robot can generalize task demonstrations across different conditions.

Based on the analogy between robot learning from demonstrations and
human learning from observationwe propose a multi-layer approach to robot
learning from demonstration, including mimicking, imitation, and emula-
tion. This approach enables a robot to learn a model to perform a task from
noisy demonstrations and to generalize it to a new start and goal point as
well as to different environments. We, further, classify the existing meth-
ods of robot learning from demonstrations, such as Gaussian mixture mod-
el/Gaussian mixture regression (GMM/GMR), dynamic movement primi-
tives, and inverse optimal control according to the different layer of robot
learning from demonstrations.

We demonstrate how the proposed approach applies to a practical exam-
ple of sweeping rubbish into a dustpan.

We further extend the proposed approach to enable a robot to reproduce
the learned task in a dynamic environment with moving obstacles using a
Kalman filter to obtain a prediction of the obstacle position in a predica-
tion horizon. However, this is a very recent result which was not available
during preparation of this thesis.

Although we present a framework of robot learning from demonstra-
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Chapter 8. Conclusion and future works

tions that enables a robot to learn a task from noisy demonstrations and
generalizes the task to different goal points and positions of the obstacles,
there are many rooms to explore and many directions for future works.

To extend the Mean-Path algorithm to higher dimensional space is a
future work. To do so, one may need to compute the intersection of a
trajectory and a subspace orthogonal to a reference trajectory.

Furthermore, it is interesting future work to extend the proposed reward
function formulation to a higher dimensional space. For the current inverse
optimal control process, we iteratively minimize the sum of the distances
between a demonstrated trajectory and the one generated by a candidate
reward function. This makes the algorithm computationally expensive as at
each iteration a trajectory must be obtained based on the candidate reward
function. A main question, however, is how to speed up the inverse optimal
control processes in this context.

Here, we formalize the reward function based on the distance of the end-
effector and obstacle. However, in many tasks other environmental features
are important to the task. Another possible direction of future work may be
to investigate other features which are important for task execution and use
them to form the corresponding reward function.

Finally, at the emulation level of robot learning from demonstration,
we investigate the problem of obstacle avoidance during task execution,
however, for different aspects of emulation learning, such as affordance
learning, a different model needs to be adopted.
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Glossary

GMM/GMR Gaussian mixture model and Gaussian mix-
ture regression.

DMP Dynamic Movement Primitives.

GMM Gaussian Mixture Model.
GMR Gaussian Mixture Regression.

HMM hidden Markov model.

IOC Inverse Optimal Control.

LfD Learning from Demonstration.

NLPCA Nonlinear Principal Component Analysis.

PbG Programming by Guiding.
PCA Principal Component Analysis.

RPD Robot Programming by Demonstration.
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