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Abstract

The grasping hand problem consists of designing a non-human hand,
which is able to grasp objects autonomously, often trying to duplicate
the real human hand and trying to imitate the human brain way of
reasoning.

Robotics faces this issue regularly as there’s a high need for indus-
trial robots capable of grabbing a huge variety of objects. In the 3D
graphics field the problem is slightly different: physics laws can be
manipulated or ignored while realism of animations has the greatest
importance.

This document describes an experimental way of designing a virtual
human-like hand together with an algorithm that allows it to perform
realistic finger movements while grasping objects in a 3D environment.

The algorithm has been developed in Unity3D 5.1, while the virtual
hand modeling is achieved with Blender 2.7 and MakeHuman software.
The aim was to make the algorithm as flexible as possible, so that it
worked with different hand structures and models.

A complete 3D scenario in Unity was created in order to test the al-
gorithm under realistic circumstances. This test aims to evaluate the
performance of the algorithm in case of eventual application in the
video games field. Nonetheless the document explains how robotics
might benefit from this experiment as well.
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Chapter 1

Introduction

The issue of designing a non-human hand which is able to grasp dif-
ferent and unknown objects is widely studied under several aspects, as
it is a complex problem for which finding a universal solution is im-
possible. In particular, robotics focuses on physics aspects, while 3D
graphics tries mostly to improve the realism of the grasping animation,
given that in a 3D environment often physics laws can be manipulated
or even ignored.

Grasping hand animation itself includes several problematic aspects
that make finding a unique solution extremely hard. Especially con-
cerning human-like hands the main challenge is trying to imitate the
human-brain way of thinking and trying to replicate all those tricks
that persons unconsciously apply while grasping objects. Although
video games represent the most important application field we can
rarely observe realistic human-like hand animations even in the most re-
cent products. Mainly because of the limited amount of computational
resources, the issue is usually avoided by realizing pre-defined anima-
tions and by limiting the complexity of the graspable objects meshes.
This works fine for most games but, since the available technology level
grows fast, the need for more realistic animations is stronger every year.

The question is slightly different concerning 3D special effects in videos
(movies, short films and all kinds of animated 3D scenes): the problem
seems less evident because perfect pre-defined animations are achieved
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with great efforts and by exploiting high amounts of computational
resources. An algorithm that allows to create realistic grasping finger
animations with a relatively low computational cost would be helpful
in 3D special effects applications without doubts.

The purpose of this thesis is to design an algorithm that allows virtual
hands to perform realistic finger movements during the act of grasping
small objects. The algorithm is flexible enough to support hand struc-
tures having an arbitrary number of fingers and an arbitrary number
of phalanges for each finger, although a set of initial operation is still
necessary in order to make it works for each hand structure. Given the
hand bones structure, the position of the character and an object, the
algorithm finds a good grasping position for the character’s hand on
that object.

A hand positioning system is described, which allows the hand to be
connected with the target object and to move around it while always
pointing its palm towards it. This is achieved by the introduction of
two entities: hook and grasp center. The concept is to link the hand
and the object through a hook and apply rotations on the hand with
respect to the hook as a pivot point. The hand can also translate along
the upward axis that goes perpendicularly through its palm and that
always coincide with the hook’s one.

Grasp poses are generated by a combination of a generic grasp move-
ment and a target object the fingers collide with. Movements are
stored using only an initial pose and a final pose, so that the algo-
rithm can generate an arbitrary number interpolations between them.
A classification of grasp movements is shown but the thesis focuses on
two among the most important movements: spherical power grasp and
thumb-index precision grasp.

The algorithm runs in real-time, showing an intrinsic tendency to be
used in video games or other real-time executing applications. It con-
sists of an iterative optimization that in a few instants computes a
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correct grasp pose for the hand of a character and a target graspable
object. The optimization is based on an evaluation system that allows
to compare grasp poses appointing a quality value (real number) to
each one of them. As the name suggests a grasp with a greater quality
value is preferable with respect to others having lower quality values.
The quality is computed with the help of a grasp simulation process
that, given the position of the hand and the position of the target ob-
ject, generates the corresponding grasp as it would be if the hand was
in that position. Once the process ends, the quality is calculated as
a weighted sum of several arbitrary parameters that can be extracted
from the generated grasp pose itself. Particular care is given to the
optimization step which is the core of the whole procedure. In one
step, a certain amount of grasp poses are compared and the one with
maximum quality is chosen to be the base for the next iteration. De-
pending on the available computational resources, one or more steps
can be executed within the time of a frame rendering; the step can be
even split among several frames if it afflicts performances too much.

The chosen working environment is Unity 5 while the chosen language
is C# (one of the options available in Unity). First of all we created
a testing 3D scenario where we developed the algorithm from scratch.
After several changes and a long optimization process, the algorithm
was applied to a realistic game-like 3D environment that we built with
the help of two other applications: Blender 2.7 and MakeHuman. Here
it was possible to evaluate performances and to observe the real appli-
cation result on a basic video game.
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Chapter 2

State of the Art

This chapter summarizes the public available research results obtained
in the last years concerning the control of 3D virtual grasping hand
animations. Some concepts and techniques coming from robotics stud-
ies are taken into account as well, given the fact that in this area of
interest sometimes robotics procedures are comparable to the graphics
ones. Common knowledge and basic methods are discussed first and
progressively more specific and experimental techniques follow. In par-
ticular we expand the concepts of data-driven animation, physics-based
animation, grasp quality function and grasp stability.

2.1 Hand Models

We focus on the 3D representation of human hands mainly because the
most faced challenge in this sector is to reproduce closely human body.
Plus, human hand has a complex structure (more than virtual robotic
hands in general) and an algorithm working fine on it might work very
likely also on simpler models.

2.1.1 Human Hand Skeleton

In order to work with animations it’s logical to think of manipulating
the skeleton of the model (armature in Blender, avatar in Unity) and
let the 3D mesh follows it. The skeleton is usually built starting from a
root bone and extruding five chains of additional bones (fingers). Bones
are set in the same positions as real human bones and although their

13



number can vary a good standard practice is to assign three bones to
the Thumb and four bones to the other fingers [21, 23, 38]. Decreasing
the number of bones is doable especially in game engines in order to
reduce the cost of animations, although it also reduces realism con-
siderably; as an example in Unity it’s possible to animate the hand
considering only 2 fingers (Thumb and Middle) with three bones each
[34]. The standard nomenclature usually follows the anatomical names
of human bones (Figure 2.1). Each link point between two bones is
called joint. It’s possible to add joints in order to generate more real-
istic postures but a quantity of 20 joints is usually considered a good
approximation that can produce all hand movements without losing
too much realism.

Figure 2.1: Positions and Names of hand relevant
joints and bones. (Original image taken from The
Visual Dictionary http://www.infovisual.info)

2.1.2 Human Hand Constraints

Despite the number of joints the managing effort is lowered if we take
into account the anatomical limitations of the real human hand joints.
By fact a logical and satisfactory approximation leads to consider two
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rotation axes available for the bones and just one for distal phalanges
and middle phalanges. Moreover, limitation on rotation angles helps
producing realistic postures. A good study on hand constraints was
done by John Lin, Ying Wu and Thomas S. Huang [21]. According to
them there are three types of constraints:

Type 1: Anatomical joint limits.

Type 2: Angle limits due to tendon links between fingers. Often
called dynamic constraints.

Type 3: Angle limits that force a natural posture. These limits are
hard to set as they’re due to all tendon and muscle links in
human body.

A common and necessary approach obtained from hand constraints is
to reduce joint degrees of freedom while producing a good grasping pos-
ture for the hand: searching only for possible and natural hand postures
heavily decreases the computational cost of any grasping algorithm.

2.1.3 Non-Human Hands

Infinite types of virtual hands can be designed but in general all the
various structures follow the human hand’s one: a root bone and an
arbitrary number of fingers (chains of bones) composed by an arbitrary
number of phalanges. Usually the number of fingers and the number of
phalanges are lower than the relative ones in the human hand structure.
Size of phalanges can vary. Some studies show experimental hand
designs, mainly based on the purpose of the project; as an example,
we mention a hand with soft hemispherical finger tips designed to grab
small polyhedral objects [18]. One of the most useful application of
virtual non-human hand animation is simulating robotic hands: it may
speed the testing process by saving production costs. GraspIt! [24] is
a great instance of robotic grasping hand simulator.

2.2 Data-Driven Animations

When we speak of animating the 3D model with pre-defined anima-
tions, we mean applying a set of movements already created by some-
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one else to it. Those animations can be either build from scratch or
recorded with motion capture techniques (in the last years the second
option has become the standard one as technologies for capturing hu-
man movements are cheaper and more advanced). Even though having
ready-for-use animations seems to be certainly helpful for our task, a
big disadvantage is represented by the infinitely high number of possible
hand grasp configurations. Not only the amount of different graspable
object is great, but also each one of them can be grabbed from differ-
ent positions and by different types of hand. In general the data-driven
approach is adopted with the purpose of defining a basic set of grasp
postures or movements; after that other techniques must be applied to
obtain realistic grasp animations [3, 27, 41].

2.2.1 Grasp Movement Classification

Because of the reason discussed before, lowering the number of possible
grasp movements (without considering eventual collisions with grasped
objects) is fundamental. An excellent approximation of grasp choices
has been presented by Cutkosky and Howe [20]:

Alternative methods for generating correct grasp movements have
been presented; they usually require additional devices interacting with
the user’s hand. We mention the grasp generation with real-time track-
ing of a camera taking a real hand grasping the object [41] and the
Tango device: a ball which measures contact pressures on its surfaces
as well as acceleration; with such a device, a grasp movement is calcu-
lated based on the user’s hand contact with the ball’s surface [19].

2.3 Physics Based Animations

In 3D graphics engines physics simulation has reached high levels of
realism and performances. In this context the hand is composed by
physical bodies and motors that apply forces to them. Although it’s
true that a 3D physics engine can quite easily manage collisions and
anatomical constraints, the real challenge is to design and implement
a controller that supervises all the motors of the hand [2, 27, 15]. Pre-
defined animation can’t be used in general on a physical body, therefore
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Figure 2.2: Grasp Classification taken from Grasp
Choices diagram by Cutkosky and Howe [7].
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even producing a simple movement requires particular care. Despite
that, especially in the robotic hand simulation field, some prefer to
adopt this methods considering that, after all, robots use motors for
movements as well.

2.4 Grasp Evaluation

As said before, the number of possible grasp postures is very large and
it depends on the hand structure, on the grasped object and on the
chosen grasp movement. This makes a strategy to choose among all
them necessary. This strategy is the core of the whole grasp algorithm.
Searching for a perfect grasp (among all the possible ones) often means
being able to evaluate each grasp and to compare it to the others
in terms of some arbitrary parameters. Defining the comparison is a
complex process because it means describing how human brain decides
that a grasp is better than the others. Various methods have been
proposed; aside from several exceptions, we can synthetically identify
two types of analysis that have been developed more than the others:
realism analysis and stability analysis.

2.4.1 Grasp Realism

Evaluating a grasp posture from a kinematic point of view is not a
straightforward task. Checking that the posture is possible and natural
is mandatory but a harder challenge is to define the analysis procedure
that, given a grasp posture and an object, states how realistic and
suitable is the posture for that object. A perfect solution for designing
such a procedure doesn’t exist especially because of the variety of tasks
to be performed by the hand that lead to different types of analysis. An
example of comparable parameter is the pinch distance (gap between
the thumb tip and another finger tip chosen before, usually the index
tip or the middle finger tip) [29]. Another possible parameter to check
is the empty space between the hand joints and the object after the
movement is complete: minimizing this parameter should lead to a
correct enveloping grasp [6].

18



2.4.2 Grasp Stability

If the task is to design a robotic grasping hand simulator then it might
be mandatory to verify whether a grasp is stable and secure. Therefore
an analysis of the forces applied to the object must be carried out
[8, 33, 36]. A physics engine is not strictly needed because it’s enough
to compute all the forces applied but the object must possess a physical
body. If its body is raised and held firmly by the forces then the grasp
is stable. Grasp stability check is almost never necessary in 3D graphics
applications (video games, special effects applications) because physics
can be manipulated or ignored in those cases. The drawback is that
some unstable grasps may be considered valid by the evaluation leading
to unrealistic effects during the execution.

2.5 Locating Contact Points

Another kind of information we could use while searching for an op-
timal grasp is to analyze the object and to identify possible contact
points for the fingers [5, 16, 39]. In 3D environments the algorithm
usually knows the meshes of the objects while in robotics applications
shapes could be recognized by cameras [31]. Although locating contact
points is a difficult task, it brings a huge advantage: the number of
possible grasp postures decreases considerably. Plus, theoretically un-
realistic collisions are avoided since collision points are known. Found
contact points should satisfy some conditions like their placement de-
pendencies with respect to the hand structure; their positions should
also be compatible with a stable grasp. As a consequence it becomes
necessary to write an algorithm that is able to compare the different
combinations of contact points in terms of grasp realism and stability.
In any case, the contact points information must be integrated with
other strategies on order to produce good results. One example of such
strategies is surface matching.

2.5.1 Surface Matching

Once contact points have been located, it’s even possible to perform
a surface matching between parts of the object mesh corresponding to
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the identified contact points and the surface described by the fingers
performing a grasp movement [20, 40]. Maximizing the similarity rate
should produce a correct grasp. This solution however is suitable only
when searching for enveloping grasps; for instance a picking movement
(using only the thumb and the finger) can’t be evaluated correctly by
this method.

2.6 Reducing Complexity of Graspable Objects

The number of graspable objects is nearly infinite. As we have seen
this represent one of the biggest obstacles of grasping animation design.
Graspable objects can be composed by different and separate meshes,
they can have some preferable parts where to be grabbed, they can
require ad-hoc grasping movements and their meshes can be concave
or convex. For such reasons it’s rational to think of simplifying the
object structure when possible. This requires additional efforts but it
may lead to a sensible simplification of the grasping algorithm. Surely
there are several good approaches to accomplish the task; here after
we cite two of the most common ones.

2.6.1 Subdividing Objects in 3D primitives

It’s well know that basically all 3D graphics and physics engines per-
form better and faster working with primitive 3D shapes rather than
with complex 3D meshes. A good strategy could be subdividing the
3D mesh of the graspable object obtaining a set of 3D primitive shapes
(Figure 2.3). Grasp posture generation on 3D primitives can be heav-
ily optimized allowing to build a fast and precise algorithm [25]. The
real challenge is to design an algorithm that performs good subdivisions
on all kinds of objects producing acceptable approximations. In fact,
if the primitives don’t fit the 3D shape perfectly, unrealistic graphics
errors like wrong collisions and mesh penetrations may be generated.

2.6.2 Locating Graspable Parts of the Object

Some studies suggest that a better plan is to locate on the object all the
sections that possess certain graspable features. In this way only those
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Figure 2.3: Example of 3D primitive subdivision
performed on the 3D model of a mug. (Image taken
from [25].)

parts are taken into account and the rest of the object can be ignored
(not totally, as the whole object must be considered for collisions in any
case). An example is the Plumber method proposed by Tolga, Mortara,
Patanè, Spagnuolo, Vexo and Thalmann [1]: through intersections of
spheres centered on the mesh vertexes it allows to identify tubular
sections of arbitrary radius and size which can be marked as graspable
components of the object.
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Chapter 3

Objectives

The grasping problem is widely studied by researchers coming from
several fields, among which robotics is surely the most present. In gen-
eral the objective of the studies is to make a single non-human hand
(robotic or virtual) able to grasp objects of any shape and size, accord-
ing to its physical possibilities. However, this goal being so complex
to achieve, it can be represented as a set of sub-tasks like the grasp
stability assurance, the fulfillment of certain hand constraints or the
production of realistic finger movements. Depending on the research
field and based on the purpose of the project, some sub-tasks might be
crucial while others might be ignored.

We decided to face the single-hand grasping problem from a 3D graph-
ics point of view, adjusting the target for all those applications that
need to generate grasping hand animations, such as video games or
special effect software for movies. Therefore we needed to define our
set of sub-tasks which had to be addressed. In broad terms, the goals
we chose to accomplish are:

• Realistic choice of grasping pose

• Realistic object-finger collisions

• Algorithm adaptability for different hand structures

• Algorithm adaptability for different object shapes

• Real-time execution
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In the following sections we discuss these goals in detail, pointing out
the meaning of each term we used. In Section 3.4 we discuss the op-
eration level of the algorithm; that is to say how the algorithm should
manipulate the hand and manage its contact with the objects. Finally
in Section 3.5 we explain what the algorithm should give as output.

3.1 Virtual Hand

First of all we have to declare what is a virtual hand because it’s the
main entity of the whole process. With this term we indicate a 3D
object composed by a mesh and a skeleton. The mesh is linked to
the skeleton and it’s moving and blending according to the skeleton
movement and rotation (attaching a mesh to a skeleton is the modern
standard technique for moving complex 3D objects). The skeleton is
the internal manipulable structure; its name is not accidentally related
to the human bones, indeed the virtual hand skeleton follows exactly
the bone placement of a real human hand, although with some approx-
imation: it’s composed by a root bone, which is called wrist, and five
chains of bones that corresponds to the fingers.

3.1.1 Hand Variations

Because of the variety of possible applications (just think of humanoid
characters in video games), it must be possible to apply the same algo-
rithm to different hand structures. A condition that must be satisfied is
that the hand must be prehensile: it must be composed only by fingers
that are attached to the same primitive shaped body and that fold in
the same direction. The most common alterations are made on:

• Number of fingers (at least two)

• Number of phalanges per finger

• Finger placement

• Hand size and finger size
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3.1.2 Grasp Pose and Grasp Movement

The grasp pose is the final result of the act of grasping: it includes
position and rotation of wrist and all the fingers when the object is
grabbed. In other words it’s the output of a grasp generation algo-
rithm and it’s computed using all information available: position of
the character, hand structure, object structure and grasp movement.
The grasp movement instead is just the path that the fingers follow
without considering the grasped object. As an example, just think of
a open hand that blend its fingers until it becomes a fist. Starting
from a grasp movement an infinite number of grasp poses can be gen-
erated, especially because of finger-object collisions that modify the
final rotation of the fingers.

3.2 Graspable Objects

It’s necessary to define the features of a graspable object in order to
know when the algorithm can actually be used. In order for an object
to be graspable with respect to a single hand at least one part of its
mesh must have size along at least one axis smaller than the average
length of the fingers. The size of the object should not be an issue as
long as the previous condition is satisfied. This description includes
all objects that are intuitively graspable with one hand, not taking
into account their weight. As said before, because of the nature of
possible applications, we don’t consider the physics while computing
the grasp pose. What is not included in the description is any object
that necessarily requires two hand to be grasped (or a bigger hand than
the considered one) and any object that can’t be grasped by hands.
Concerning the object’s mesh, the only requirement is that it must be
closed: all its faces must be connected and it must not have missing
faces that result in holes.

3.2.1 Concave Objects

A convex mesh is a 3D set of faces that, drawing a straight line any-
where in 3D space, is crossed by this line only once. A concave mesh
might be crossed several times by a generic 3D straight line. Despite
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the fact that, from the perspective of graphics engines, working on con-
cave meshes requires much more computational effort than working on
convex ones, the algorithm must be able to manage concave objects as
they represent the majority of graspable objects in reality.

3.3 Improving Realism

The algorithm should work on graphic simulations of realistic envi-
ronments (not necessarily real) so achieving a good level of realism
is fundamental. The strategies in this direction are different, but we
identified three objectives that, if pursued, lead to realistic enough sim-
ulations:

• Correct finger-object collisions

• Fulfillment of human body constraints

• Real-time execution

Surely these objectives are not the only possible ones: correct collid-
ing phalanges blending could be in this list, as well as correct object
response to the forces applied by the fingers. Many other detail im-
provements could lead to a higher level of realism, but the one we chose
assure the production of a simulation that is good enough to be used
by the target applications. Plus, as real-time execution is needed, it’s
essential to develop an algorithm that doesn’t require a high computa-
tional effort, so we want rather to reach only the crucial objectives.

3.3.1 Finger-Object Collisions

One of the biggest problems of using pre-defined animations is that, due
to the huge variety of graspable objects, the fingers usually don’t adapt
their movement to the shape of the object; after all it’s impossible to
store a grasp animation for each different object and for each possible
position the object is grasped from. If, like in this case, fingers don’t
consider the shape of the object then two unwanted phenomena show
up: mesh penetration (hand’s mesh penetrates object’s mesh) and/or
empty space remaining between fingers and object at the end of the
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grasping movement. These problems can be frequently observed in
modern video games especially because for most games the grasping
action is not a fundamental one so developers are inclined to ignore
this issue as it’s considered not worth of the computational effort that
it requires.

3.3.2 Human Body Constraints

Naturalness of a grasp pose has a great importance concerning realism.
Clearly the algorithm must not allow the hand to perform unnatural
finger rotations. However other constraints are given by tendon and
muscle disposition in the whole arm. The position of the elbow may
allow different rotations for the wrist, while the character posture (con-
sidering all the body) influences the possibilities of the arm. Perhaps
building a full-body constraint system would be possible by using a
physics engine, but in our case an approximation is necessary. In any
case we are determined to solve the grasping problem focusing on the
hand pose and on finger positions mostly.

3.3.3 Real-Time Execution

Since target applications set include mostly video games and real-time
simulations, it’s mandatory to design an algorithm which is able to
perform in real-time. This means that it must require a small compu-
tational effort as it might be executed together with other computations
(at least graphic rendering computations).

3.4 Abstraction Level of Operation

The algorithm manipulates the hand bones and manages their contact
with grasped objects. In graphic engines bones usually correspond to
simple entities located in 3D space. Therefore these entities have a 3D
position field, a 3-axis rotation field and a 3-axis scaling field. The
algorithm can operate on those fields by changing the numeric val-
ues. Modifying those fields means performing the three fundamental
3D transformations: translating, rotating and scaling. Translation and
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rotation are both metric transformation (they preserve all metric prop-
erties of the entity) while scaling is an affine transformation (only affine
properties are preserved, such as angle between lines). In our case the
algorithm doesn’t exploit the scaling transformation as it’s unneces-
sary, so we may conclude that it only applies metric transformations
to the skeleton parts. The bones compose chains, being connected one
with the other. In particular one bone may have a predecessor (all
except the wrist) and a successor (all except the tips). When applying
a transformation to a bone, it’s automatically applied to all its succes-
sors. We’ll discuss this in detail in Chapter 6. Concerning the contact
between the hand and the objects, the algorithm must exploit all those
features of the graphic engine that allow to perform collisions detection
between entities in 3D environments. Summarizing, the algorithm can:

• Translate entities

• Rotate entities

• Detect collisions between entities

The computation should be performed within the time of a frame ren-
dering, so it must take not more than a few milliseconds. Eventually
the algorithm may be able to split the computation among several
frames as long as the real-time effect is preserved.

3.5 Output of the Algorithm

As a final result, we obtain a grasp pose: position and rotation of all the
bones (wrist and fingers) in 3D space. Each entity will know the target
values for its fields. In this way a smooth movement of the character
can be performed using simple inverse kinematics techniques. Grasp
poses are different depending both on the grasped object and on the
position the object is grasped from. The major benefit coming from
this algorithm is that grasp poses don’t need to be stored anymore, but
they’re computed just before the grasping action. In Figure 3.1 there
are some examples of grasp poses computed by our algorithm.
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Figure 3.1: Output examples.

29



30



Chapter 4

Human Hand Model

In this chapter we analyze in detail all the feature of the hand structure
which is the principal entity that the algorithm manipulates. Also we
describe the necessary requirements to have a fully compatible hand
3D model and we expand the explanation of hand structure variations
already mentioned in section 3.1.1.

4.1 Human Hand

In order to build a 3D model that imitates a human hand, it’s manda-
tory to study the structure of a real hand and its composition. If
observed from outside, it shows three different components:

• Wrist

• Palm

• Fingers

Although the wrist may be considered as a component of the arm, we
take it into account because we need it to manage the rotation of the
whole hand for which the wrist is responsible. The palm and the fin-
gers are the components that experience the contact with the grasped
object. Finger movements are much more evident than palm defor-
mations and in some cases an approximation that ignore the latest
ones is enough. We will demonstrate that in our case this approxi-
mation wouldn’t bring any difference in terms of computational effort
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so we consider palm deformations being of the same kind as finger
movements. Fingers are composed by three phalanges each, with the
exception of the thumb that has only two phalanges. For what concern
the hand anatomy, the only notions we need are the bones composition
and placement and the rotation constraints imposed by bone joints,
tendons and muscles. However we don’t need any specific information
about tendons and muscles themselves.

4.1.1 Human Hand Bones

Following the real bones disposition and classification is useful and con-
venient. According to the anatomic nomenclature hand bones belongs
to three sets:

• Carpal bones

• Metacarpal bones

• Phalanges

In Figure 4.1 the sets are shown together with the placement of each
bone. We don’t go into the details of carpal bones composition because,
as we point out in Section 4.2, we don’t consider them as single bones.
Metacarpal bones and phalanges are basically of the same kind but, if
we consider the whole hand composition, metacarpal bones are situated
in the hand palm while phalanges correspond to the relative finger
phalanges. A further subdivision labels the phalanges attached to the
metacarpal bones as proximal phalanges, while the remaining are called
distal phalanges (one for the thumb and two for the other fingers).

4.1.2 Mechanical Constraints: Fingers

From now on we consider a reference on the hand. In Figure 4.2 we
show the hand in default configuration that is every component has
rotation 0° around all the three axes. The z-axis is the one that goes
from the wrist and follows the fingers; the x-axis is the one crossing all
the knuckles horizontally (except the thumb one); the y-axis is perpen-
dicular to the hand palm surface and it’s obviously orthogonal to the
others.
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Figure 4.1: Hand bones classification.

Figure 4.2: Reference axes shown on the hand in
default position.

33



Because of the joints nature and because of the tendon and muscle
limitations bones can rotate only within certain angle ranges and only
around a limited number of axes. The thumb axes have different ori-
entation. Concerning the fingers we get our information form a study
conducted by John Ling, Ying Wu and Thomas S. Huang [21]. They
point out an excellent classification of finger constraints as well as their
computation in terms of angles (values are necessarily approximated).
The subdivision consists of three types of constraints:

4.1.2.1 Type I: Static Constraints

These constraints correspond to the anatomical limitations of the fin-
gers. Distal phalanges can only rotate around x-axis (flexion); Proximal
phalanges and the thumb metacarpal can rotate around x-axis (flex-
ion) and around y-axis (abduction/adduction). The metacarpals of
the other fingers can only rotate around x-axis (flexion). The follow-
ing equations describe the angle limitations (in Figure 4.3 angles are
referenced):

0◦ ≤ α1 ≤ 90◦

0◦ ≤ α2 ≤ 110◦

0◦ ≤ α3 ≤ 90◦

−15◦ ≤ α4 ≤ 15◦

A common approximation is to consider no abduction/adduction move-
ment for the metacarpals and for the middle finger proximal phalanx:

βMIDDLE = 0◦

γ = 0◦

4.1.2.2 Type II: Dynamic Constraints

This group includes all those constraints that link fingers during the
motion. They can be further classified in two sets:

• Intra-Finger Constraints: Limitations due to the rotations of
the other bones in the same finger. For instance the two distal
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Figure 4.3: On the left, the blending angles are
shown; on the right, the abduction-adduction an-
gles.

phalanges of the fingers can only blend together. A commonly
used approximation states:

α1 = 2
3 ∗ α2

• Inter-Finger Constraints: These constraints are the ones im-
posed by the other fingers movements. As an example, think of
a flexion movement of the index: the middle finger is forced to
follow it, even if not performing a complete flexion. Inter-Finger
constraints are not easy to formalize. It’s possible to find some
studies that show a few equations about them but in our case
those equations are not necessary.

4.1.2.3 Type III: Naturalness Constraints

The naturalness of a hand pose has nothing to do with anatomical lim-
its. Fulfilling this type of constraint would mean knowing how the brain
works while performing any action with the hand. In other words, it
would mean knowing exactly which movement a person prefers in order
to accomplish every manipulating task. Not only these constraints are
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almost impossible to describe with equations, but also they can vary
for each character. We simply avoid a formalization of them, entrust-
ing our intuition in generating natural hand poses by the imitation of
reality.

4.1.3 Mechanical Constraints: Wrist

Wrist constraints require particular care. If we get along with the
previous classification and if we make the same assumption about the
reference axes and the angles, we can approximately describe the Type
I constraints of the wrist as (angle references in Figure 4.4 ):

−55◦ ≤ θx ≤ 55◦

−45◦ ≤ θz ≤ 110◦

−30◦ ≤ θy ≤ 45◦

We can’t say anything about Type II constraints as the wrist is consid-
ered as a single bone. For what concern the Type III constraints the
same line of reasoning already introduced can be applied here.

Figure 4.4: Wrist rotations is determined by the
main reference axes.

36



4.2 Structure Approximation

Although there are several possible approximations for the hand skele-
ton that can be used in 3D graphic engines, we mean to employ the
most complete between the common ones. We name each bone and
each joint as we often need to distinguish between them. As carpal
bones don’t move (they move in conjunction with the wrist) they’re
not considered as bones, but rather an extension of the wrist bone.
The wrist itself is considered as a single short bone because this allows
us to perform wrist rotations without the need to involve the arm. In
Figure 4.5 we show the structure elements and their names.

Figure 4.5: The sketch of the hand structure we use.
CM: Carpometacarpal joints - MCP: Metacar-
pophalangeal joints - IP: Interphalangeal joints.
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4.3 Structure Variations

Because of the nature of the target applications, it’s fundamental to
specify a compatibility scheme for the hand structure. Virtual hands
can be of any kind but mostly they can be grouped as human, humanoid
and robotic. All those categories have some features in common. The
algorithm supports any structure belonging to these as long as it sat-
isfies some requirements:

1. The structure has a single root bone and all the other root bones
derive directly or indirectly from it.

2. Fingers are composed by chains of single bones. Chain roots
aren’t necessarily attached to the main root bone but they must
be virtually connected in any case. Number of phalanges per
finger is arbitrary as well as the number of fingers.

3. All of its grasping actions are intended to grasp a single object
or a single part of an object. In other words the grasping action
must have only one focus point. For instance, a robotic hand
composed by six fingers, of which three are meant to grasp a part
of an object and the other three are meant to grasp another part
of the same object, would not be compatible with the algorithm.
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Figure 4.6: A couple of examples of hand variations
compatible with the algorithm. On the right, the
respective eventual structure.
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Chapter 5

Algorithm Design

In this chapter we illustrate the concepts exploited by the algorithm
as well as the ideas that led us to develop its core. Imitating the line
of reasoning pursued by human brain was our first purpose so, before
getting into the design process, we tried to analyze basic real-life grasp
movements performed by ourselves and others in order to understand
what is the logic behind such a natural and intuitive movement. In
the following sections we describe the main phases of the developing
process, from the basic picture of a strategy to the final output. In the
last section we summarize the concepts and we present an outline of the
whole algorithm which will be taken as base for the implementation.

5.1 Iterative Optimization Approach

As said before the algorithm must work within the time of a frame
rendering. This is a hard task to accomplish if we want to complete
a grasp pose computation all at once. The best solution is without
doubts splitting the computation between frames; in this way we obtain
much more computational resources depending on the time taken to
exploit them. For instance if we split the computation among 30 frames
and if the graphic engine renders 30 frames per second then in one
second we would obtain 30 times the computational resources that
we could exploit in one frame. Considering such availability together
with the need for designing simple and time-saving strategies, a good
compromise is to think of iterative optimization. In broad terms, we
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generate one (or more) grasp pose for each frame, we evaluate the
goodness of such pose and frame by frame we try to improve the pose
by moving the hand around the object and comparing the evaluations.
In this way the output is improved after each frame and a suitable one
is found provided that the time necessary to render enough frames has
passed. It’s possible to use this approach without considering the actual
frame rendering: simply splitting the computation among several time
instants is an option; another one could be exploiting multi-threading
as long as the graphic engine allows it. Summing up, we could split
the computation in three ways:

• Distribution among frames

• Distribution among time instants

• Multi-threading

The core of an iterative optimization strategy is represented by an eval-
uation system that allows to compare poses according to some evalua-
tion criteria. The comparison parameters are discussed in Section 5.5.
Instead in Section 5.6 we explain when the evaluation is performed and
how the result values are managed.

5.2 Hand Positioning

A fundamental issue to face is hand positioning: how to relate hand and
grasped object in order to carry out the evaluation mentioned in the
previous section? We took care of this by developing a simple system
based on 3D space relations. We concentrated on the fact that during
the great majority of real-life grasping actions, the hand focuses on a
single potential point in the space located for example inside the fist
when performing a power enveloping grasp. We call this point Grasp
Center. In any grasped object we can also identify one or more poten-
tial points in the space that would be suitable locations for the grasp
center in order to generate a correct grasp pose. We call those points
Hooks.
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Although a target object might host more hooks, for any grasp ac-
tion we consider only one hook. Local axes of grasp center and hook
must be in sync. They are set such that the y-axis corresponds to the
y-axis of the hand as shown in Figure 5.1.

Figure 5.1: The green ball represents the grasp cen-
ter while the red ball is the hook. Reference axes
are the same for hand, grasp center and hook. Ro-
tations are only applied to the hook in order to move
the hand around it.

Moreover hook, grasp center and hand must be linked such that all
transformations applied to the hook are performed also on the grasp
center and all the transformations applied to the grasp center are per-
formed also on the hand. The pivot of all those transformations is
the hook. In this way, by rotating the hook, we can move the hand
around the object making it always points toward the hook. Examples
on rotations applied to the hook are shown in Figure 5.2. In the ideal
situation the grasp center and the hook perfectly coincide. Because of
hand-object collisions this is not always possible, so the grasp center
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Figure 5.2: Possible rotations of the hook. From left
to right, rotations around x, z and y axes are shown.

(and all the hand together with it) must be able to translate along its
y-axis just enough to set the hand free from collisions.
In other words, hand position is entirely defined by:

• Rotation of the hook

• Translation of grasp center along its y-axis

5.2.1 Grasp Center

Grasp center has a certain relevance because as we’ll describe (mostly in
Section 5.5) important parameters depend on its position. Therefore
its placement must be carefully thought out. For some grasp move-
ments deciding its location is straightforward: the thumb-index preci-
sion grasp clearly needs its grasp center in the central contact point
between the thumb tip and the index tip. The spherical power grasp
on the other hand requires more attention while determining the grasp
center position. There is no mathematical way to state where the grasp
center should be in 3D space for each grasp movement but intuition is
sufficient in order to place it. For instance we instantiate the grasp cen-
ter in the middle of the fist for the spherical power grasp. It’s enough
to remember that the grasp center stands for the grasp’s focus point.

5.2.2 Hooks

Individuating hooks in a target object is done manually. For most of
small objects (a tennis ball, a glass, a rubik cube...) we can consider
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Figure 5.3: Green dots represent the positions of
grasp centers. The positioning is quite intuitive but
it has to be defined manually.
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only one hook, situated in the mass center of the object. It’s natural
to think that the grasp focuses on the mass center of the object in
this case. Things change when we want to locate the hooks of bigger
but still graspable objects (a suitcase) or when we deal with particular
objects that should be grasped in different ways (a sword can’t be
grasped by its blade). Identifying possible positions for the hooks in
such objects is relatively easy if done manually: it’s enough to answer
to the question: where would the hand focus its grasp? Examples of
hooks are shown in Figure 5.4.

Figure 5.4: A few examples of hook placement. Red
dots represents the hooks. There might be several
hooks for a single object.

5.3 Grasp Movements

The fact that an infinite number of grasp poses exist is unquestionable.
However, in the human brain there isn’t a storage of all the possible
grasp poses suitable to grasp all the known objects. Even if with some
questionable exceptions, human brain computes the grasp pose every
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time the person needs to grasp an object. What is really stored in
the brain is a set of muscular movements that doesn’t depend on the
target object. As an example, just think of the grasping actions for a
tennis ball and for a rubik cube: the muscular movement of each finger
is the same, but resulting grasp poses are different for the two objects
(see Section 3.1.2 for a definition of grasp pose). Therefore what we
really want to store is a set of grasp movements, without taking into
account the shape of the eventual grasped object. Clearly different ob-
jects may require different movements for the grasp, but the number
of movements is drastically reduced if we only consider the muscular
movements of the hand.

In Section 2.2.1 we illustrated a grasp movement classification described
by Cutkosky and Howe [20]. Taking that classification as a reference,
it’s possible for instance to store only information about those sixteen
movements and use it as a base to compute the final output, choosing
the best movement suitable for the target object. For our purposes we
wanted to test the algorithm at least with two possible grasp move-
ments. We chose the most commonly used ones (according to us): the
sphere power grasp and the thumb-index precision grasp.

Figure 5.5: Among the grasps described by the clas-
sification we chose the spherical power grasp and the
thumb-index precision.
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5.3.1 Movement Information Storage

Storing information about a grasp movement is a relatively simple task
and it can be achieved in several ways of which we describe the most
common:

• Animations: a grasp movement can be simply stored using ani-
mations. They are usually created by a 3D model designer. This
solution is not particularly recommended in our case because of
two reasons mostly: fingers perform very simple movements (a
big effort is not required to generate them at runtime); phalanges
need to be stopped when colliding with the grasped object (usu-
ally animations shouldn’t depend on collisions).

• Interpolation Storage: it’s possible to store all the various in-
terpolations that compose grasp movements. Although this is a
rough method, it allows to easily manage the the phalanges stop
in presence of collisions. A drawback is that the number of in-
terpolations for each movement should be decided from the start.
Moreover, generating many interpolations for each movement re-
quires maybe a too long time and preferably it’s done by a 3D
modeler designer.

• Initial and Final Poses Storage: if the graphic engine allows
it, instead of storing all the interpolations that compose a grasp
movement, it’s possible to store only the initial one and the final
one and let the engine computes the remaining ones. Using this
technique it’s possible to vary the number of interpolations for
each movement at any time. Also, it doesn’t require a long time
and the objective can be reached without the help of a 3D model
designer.

Among those methods, we chose the third one, as we heavily base the
algorithm on collision detection and as the number of poses we have
to store is relatively small. In Figure 5.6 we show them. The starting
pose can be shared by the power grasp and the precision grasp without
loss of realism. Notice that in the final poses we don’t worry so much
about mesh penetrations because likely during all simulations fingers
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will be stopped before they reach the last interpolation due to collisions
with the target object.

Figure 5.6: The three poses we stored in order to
generate two grasp movements. The starting pose
is shared between them.

5.4 Grasp Simulation

As we want to evaluate grasp poses, we need a procedure that, based
on a start hand position (defined by hook rotation and grasp center
translation) and on a grasp movement, generates the grasping pose
taking into account the grasped object, computing the final positions
and rotations of all the bones.

First of all we need to compute all the interpolations between the ini-
tial one and the final one. The number of interpolation should be
allowed to vary because it can be influential for the performances but
we estimated that a minimum of 10 interpolations is required in or-
der to avoid problems. Indeed if the interpolations are not enough
mesh penetration issues can arise because collisions are detected with
a too noticeable delay. Once we have all the interpolations we also
have the grasp movement and we can start the simulation. Notice that
the simulation is never rendered and it’s computed in a much shorter
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time than the frame render. For this reason it’s not possible to exploit
the physics engine in order to move the fingers, nor any feature of the
graphic engine that performs actions split among frames. The grasp
simulation follows the strategy shown in Figure 5.7

Figure 5.7: Grasp Simulation Flowchart.

Starting from the first one, for each interpolation a collision check
is performed on all the bones. Clearly we can’t check a whole finger
at once because phalanges don’t move (rotate) totally in sync: consid-
ering a single finger, if a phalanx touches the object all the previous
phalanges stop rotating while the further phalanges continue the simu-
lation. The process ends when all the bones stopped (either because of
collisions or because they reached the last interpolation). In order to
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realize this we need to know the predecessor and the successor of each
finger and we need a way to check whether a phalanx is colliding with
the target object.

At the end of the simulation we have the grasp pose corresponding
to a starting hand position and a grasp movement. The pose consists
of the knowledge of positions and rotations of all the bones after per-
forming the movement. Having that knowledge it’s possible to evaluate
the goodness of the pose and compare it with other poses. In addition,
a useful datum we get from this procedure is the interpolation reached
by each finger. If this number is equal to the total number of interpo-
lations for each bone of a finger, we know that the finger didn’t collide
with the object during the entire simulation.

5.5 Quality Value

The essence of an iterative optimization process is the evaluation. If
a correct comparison system is designed then the algorithm will al-
ways reach a suitable output in a finite number of steps. In order to
identify the parameters to use for the comparison we had to take as
examples several grasp poses on the same object and try to understand
why certain poses were more suitable than others. Again, designing the
comparison means in some ways trying to imitate the logical reason-
ing performed by human brain. We can compare two grasp poses only
based on numerical parameters: the simplest way to solve the com-
parison is defining a value called Quality that stands for the goodness
of a pose. We arbitrarily decide that a pose is more appropriate than
another if its quality value is greater (we could have defined the Cost
instead, inverting the comparison).

For each grasp pose during the optimization process we compute its
quality as a combination (weighted sum in our case) of several param-
eters that we deduce from the grasp simulation output. When the
simulation finishes, the available information we could use to compute
the parameters consists of:
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• Grasp center’s position and rotation

• Hook’s position and rotation

• Position and rotation of each bone

• Amount of interpolations reached by each bone

• Character’s position and rotation

• Target object’s shape (3D mesh)

Based on this information we may compute several parameters that
we can combine to build a quality value. At this point parameters are
measured by simple math calculations so the actual number of param-
eters and their nature is easily adjustable. Depending on the type of
hand, it might be necessary to modify the combination of parameters,
or even the parameters themselves. In the following sections we de-
scribe the set of parameters we believe are the most suitable for the
simulation of a grasping human hand.

5.5.1 Evaluation Parameters

We illustrate the parameters we found suitable in order to compare
the goodness of grasp poses (notice that not all of the parameters will
necessarily be part of the quality value):

• GRASP CENTER-HOOK DISTANCE (gDist)
In the ideal case this value is equal to zero as grasp center and
hook coincide. If the target object is small enough this happens
also in practice; for this reason it’s not a parameter that can be
used alone otherwise several grasp poses would have the same
quality. In any case this parameter is relevant because it says
how close the position of the grasp center is to its position in the
ideal situation. The value is quite easy to compute, as it’s nothing
but a distance in 3D space between two known positions.

• AMOUNT OF INTERPOLATIONS REACHED
We obtain this information (for each bone) directly after the grasp
simulation process. It’s very useful especially because it allows to
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check whether a finger touched the target object. Indeed, con-
sidering a finger, if all its bones reached all the interpolations of
the grasp movement then we can conclude that the finger bones
didn’t collide during the entire simulation. Moreover this value
states the blending level of each finger and, accordingly, the aver-
age amount of interpolations reached by all bones represents the
state of progress the hand reached for the grasp. However this
is not a one-way valuation: for some objects the hand performs
better grasps when it reaches a higher progress in the simulation
while for other objects the grasp is ideal when the hand reaches a
lower progress. Because of this ambiguity we prefer to avoid this
use of the value.

• TIPS-HOOK DISTANCE (tDist)
Simply as the name says, this parameter is equal to the sum of
the distances between all the finger tips and the hook. Those dis-
tances are relevant especially when dealing with precision grasps:
it might be necessary to specify that only the tips must touch the
object (think of picking a dice placed on a table) instead of letting
the whole finger envelopes the object like in the case of a power
grasp.

• FIRST CONTACT PHALANGES-HOOK DISTANCE (fDist)
We found out that computing distances between the tips and the
hook was not enough to evaluate a grasp because in several sit-
uations the hand uses different phalanges to envelope an object.
We noticed that for each finger in most cases the phalanx which
really performs the grasp (the one that holds the target object) is
the first phalanx to come in contact with the target object. For
this reason we thought that a suitable parameter to analyze would
be the sum of all the distances between the phalanges which first
collide with the object and the hook (considering one finger at
the time). Considering one finger, the distance is taken from the
end joint of the phalanx, as shown in Figure 5.8.

This parameter is especially used for enveloping grasps like the
spherical power grasp. It might be used for precision grasps as
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Figure 5.8: A fDist representation: for each finger,
considering the first colliding bone, the distance be-
tween the end of the bone and the hook is taken.
Such distances are then summed up.
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well, but if the first colliding phalanges are necessarily finger tips,
then some incorrect evaluations can be done. In those cases it’s
correct to use directly the tips-hook distance parameter.

• WRIST-CHARACTER DISTANCE (wDist)
It’s logical to think that the character would choose among the
various suitable grasps the one which requires less effort to per-
form. A way to reduce the physical effort is reducing the distance
between the actual position of the hand and its target position.
Considering the grasp pose, an estimation of the physical effort
could be represented by the distance between the wrist (in the
simulated grasp) and the character (more correctly its shoulder):
minimizing this distance would mean also reducing the physical
effort needed by the character to perform that grasp action. We’re
aware of the fact that this is not the most correct approximation
that describes how the human brain automatically thinks of re-
ducing physical efforts, but we discovered it to be valid enough
for our purposes.

5.5.2 Quality as a Weighted Sum

As mentioned before, we decide to define the quality value of a grasp
pose as a weighted sum of sub-values, taken from the set of parameters
just described. The combination might be slightly different for the
various grasp movements and for different hand structures. In the case
of human hand and spherical power grasp movement, we choose the
following combination of parameters:

Quality(P ower) = −k1 ∗ gDist− k2 ∗ fDist− k3 ∗ wDist (5.1)

Terms are rightly negative because the distances must be minimized in
order to get a suitable quality value. The k-terms are weights and their
values may be set arbitrarily. The quality value for the thumb-index
precision grasp is:

Quality(P recision) = −w1 ∗ gDist− w2 ∗ tDist∗ − w3 ∗ wDist (5.2)

where the w-terms are the weights and tDist∗ is the sum of the dis-
tances between the finger tips and the hook considering only the thumb

55



and the index. Weight values are very influential in determining the
final quality. A series of tests is required in order to find the proper
weights: in 3D space the order of distances may change due to different
units of measure and scaling factors. If the weights are wrongly regu-
lated some problems on the evaluation may arise: if one of the terms
prevails on the others it will be in practice the only one considered
by the algorithm. All the terms should belong to the same order. In
Chapter 6 we illustrate the values we found out to be suitable for our
scenario both in case of spherical power grasp and in case of thumb-
index precision grasp.

5.6 Optimization Step

Once the evaluation system has been set, we only need a procedure
that chooses and evaluates the possible grasp poses. We already have
a positioning system that allows us to move the hand around the ob-
ject while the palm is always pointing towards it (see Section 5.2). In
this system, moving the hand is done by changing the rotation angles
of the hook. The optimization step follows the schema in Figure 5.9:
starting from a position, each step consists of seven grasp simulations
and seven evaluations accordingly. The current pose is evaluated, then
the hook is rotated in the six possible directions (positive and negative
rotation around x-axis, y-axis and z-axis) and for each of the six poses
generated another evaluation is performed. The poses obtained after
the simulations are associated with a quality value; before the next
step the hand will move to the pose with greater quality. If the current
pose has the maximum quality value then the optimization ends and
the current pose is the output of the algorithm.

This method is a slight variation of Depth First Search applied on an
endless tree. Indeed hand poses can be represented as nodes of a tree.
Actually, if we choose an integer angle variation for each step, poses
aren’t infinite but considering that the search can go over the same pose
more than once we can say that the poses tree is endless. As the hand
moves, lower nodes of the tree are reached. Clearly, computing all the
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Figure 5.9: Optimization step flowchart. It’s prefer-
able that one iteration is executed for each frame
rendering, but this is not always the case.
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values of the entire ramification of the tree is not necessary: knowing
the values of the ramifications directly starting from the current node
is enough. The search ends when the value contained in the current
node is greater than all the values contained in its direct ramifications.
One of the known problem of a depth first search is that the found
solution is not necessarily optimal if the tree has no constraints on the
values of its nodes. We illustrate two ways of working around this issue
in Section 5.6.2. An example of search tree is shown in Figure 5.10: the
values contained in the nodes are purely symbolic; they represent the
quality value computed for the grasp pose corresponding to the node.
A transition from one node to another represents the rotation (either
positive or negative) around one of the three axes.

Finishing the whole computation in one time instant or frame render-
ing time slot might be too expensive in terms of computational effort.
The first logical solution to this issue is performing a small number of
steps for each time instant, splitting the computation. This is easy to
achieve and the only limit is that at least one step must be completed
in one time slot. If the computation of a single optimization step in one
time instant affects too much application performances, it’s possible to
perform a similar type of optimization steps, even if this will reduce
the efficiency: instead of performing seven simulations, it’s possible to
perform only three of them for each frame (time instant). If this is the
case, the set of evaluated poses includes the current one and the ones
generated from a rotation in one direction (positive and negative). We
call this step variation a unidirectional step. It’s enough to switch the
direction at every step in order to be sure that all the possible grasps
are taken into account. Using this kind of step reduces the efficiency
because the search is performed in one direction only (it changes at
every step, but the search power is lower anyway).

A noticeable fact is that, if the computation is split among several
frames or time instants, parameters may change due to the transfor-
mations happening in the 3D environment. For instance, the wDist
parameter is related to the position of the character which can move
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Figure 5.10: Iterative optimization as a depth first
search. Values inside the nodes represents the qual-
ity values of the computed positions. Notice that the
tree is endless because of the variable nature of the
quality value. In other words, after each iteration
branches of the tree may change.
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around during the execution. This produces a even greater number of
possible tree configurations but it doesn’t affect much the performances
because each transformation in the environment requires several time
instants or frames to be performed: this allows the algorithm to exploit
enough computational resources to tolerate small changes in the tree.

5.6.1 Starting Hand Position

An iterative optimization process must start from an initial state in
which the first optimization step takes place. In our case, the initial
state consists of a hand position (described by the hook rotation). In
other words, we needed to define a system that chooses the initial hand
position based on the position of the character and on the target ob-
ject. We analyzed the way a person approaches an object when trying
to grasp it and we found out that in the majority of cases the hand
advances to the object from the top, with the palm pointing towards it.
Therefore we designed a function that, based on the character’s shoul-
der position and on the hook’s position (belonging to the target object),
computes the hook rotation necessary to obtain a position of the hand
with the fingers pointing in the direction shoulder-hook and with the
palm directed to the hook itself. The iterative optimization begins
by evaluating this position and the six positions around it, according
to the optimization step system described before. A few examples of
initial hand positions are shown in Figure 5.11.

5.6.2 Local Maxima Problem

We already pointed out that an iterative optimization process per-
formed on the kind of tree we have doesn’t necessarily lead to an opti-
mal solution. As we explain in detail in Chapter 6 a relevant problem
arises: quality values almost never follow a continuous trend. In other
words, the optimization may get stuck in a position with a quality
value that is suitable if we consider the very close range of rotations
around it but that is far from being the best solution among all ro-
tations; this value represents a local maximum in the virtual function
built from the quality values, varying the rotation angles of the hook.
This is mostly due to irregularity of the shape of target objects which
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Figure 5.11: The initial position depends on the
character location with respect to the target object.
At the beginning of the process, the clone hand is
set to assume the starting pose of the chosen grasp
movement. In our case the starting pose is the same
for all the movements we generate.
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are approached from different directions, each time producing a differ-
ent quality function. Indeed, only a perfectly spherical object would
produce a monotone quality function having only one maximum that
represents the best solution. We developed two conceptually different
solution to the local maxima problem: one more logical and the other
more coherent with resources availability.

5.6.2.1 Logical Solution: Initial Approximation

The first solution we found is quite straightforward: we try to guess
the range of rotations where the optimal solution could be located, we
place the hand into that range and finally we apply the iterative opti-
mization in order to get the hand to the optimal position. The initial
guess must take into account the entire range of possible positions and
it must estimate the quality without performing any simulation (oth-
erwise it would be too expensive and it wouldn’t be different from the
optimization step). Our intention is to subdivide the range of possible
positions in several sample hook rotations that will be analyzed. This
is easily done by taking only some of the possible angle values for each
rotation axis, equally distributed between 0° and 360°. Quality esti-
mation is performed for each combination of sample rotations around
x-axis, y-axis and z-axis. The number of combinations might be great
so the estimation method must be quite fast. We thought of a simple
enough solution that gives a correct estimation of the range where to
perform the optimization: for each combination of sample rotations
the hand is translated along y-axis until it’s free from any collisions;
after that, the distance between grasp center and hook (gDist) is taken
as estimation of the quality. This strategy works fine in the great ma-
jority of situations. Notice that the simulation is not performed, so
the hand bones movement progress is at the initial interpolation of
the grasp movement and the collision check is made on this hand con-
figuration. It’s possible to reduce the possible combinations of hook
rotations by eliminating from the comparison all those rotations that
corresponds to unnatural hand positions (the ones which don’t fulfill
hand constraints). This solution is conceptually correct but, because
of the great number of positions that have to be analyzed, it’s not
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particularly suitable if the algorithm runs in real-time.

5.6.2.2 Practical Solution: Random Angle Search

One more suitable technique that allows us to work around the prob-
lem of local maxima and still to perform in real-time is the random
angle search. While executing the optimization step, instead of choos-
ing a fixed basic rotation angle (positive and negative) to rotate the
hook around its three axes, we let the system chooses a random angle
(between 0° and 180°). In this way, even if it takes a longer time, we’re
able to explore the total range of possible hook rotations. The random
angle should let the hand tries positions that are far from each other.
Bigger angles allow to try out different parts of the whole combination
range while smaller angles will work as expected in order to find the
best combination in the short range. Although a random search could
seem something very far from the imitation of human brain line of rea-
soning, it turned out to be quite effective because of the nature of the
problem. Together with the time-saving effect, we obtain another ben-
efit from this method: a random number is not necessarily an integer,
so we can analyze an infinite number of possible hand positions; search
power doesn’t change, but search range increases.

5.7 Algorithm Outline

Finally we summarize what we explained in this chapter and we show
the whole algorithm’s flowchart (Figure 5.12). We can identify two
main phases:

1. The hook is chosen and the connection between the hook and the
hand is set. Based on the position of the character, a starting
rotation for the hook is computed and applied. In case of initial
approximation (see Section 5.6.2.1) the initial rotation is com-
puted by checking the estimated quality between a set of possible
rotations equally distributed in the whole rotation range and the
one with the greatest estimated value is chosen as initial rotation.

2. The iterative optimization takes place, starting from the initial
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Figure 5.12: Algorithm Flowchart.
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hook rotation computed in phase 1. Each optimization step con-
sists of a simulation stage in which a few grasps simulation are
performed and an evaluation stage in which the output poses
computed during the first stage are analyzed and compared. The
iteration ends when, of all the poses obtained from the simula-
tions, the one with the highest quality value corresponds to the
actual position of the hand. As explained in Section 5.6 opti-
mization one can split the optimization steps in several ways (for
clarity we only use the term time instant but the computation
can also be split among frames):

• All the iterations in one time instant
• One iteration in one time instant
• One unidirectional iteration in one time instant
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Chapter 6

Implementation and
Performances

We decided to implement and test the algorithm on Unity 5 Personal
Edition, one of the most popular between the currently available free
game engines. Code is written in C# language, supported by Unity.
The 3D models we used are in part taken from the web and in part real-
ized with Blender 2.7 while we generated the human character’s model
and skeleton using MakeHuman software. After a brief description of
the Unity features we exploited, we illustrate the 3D scenario which
is the test-field of the algorithm and the developing of the algorithm
itself, pointing out the practical issues that were not addressed in the
design process. Finally, we show the results of tests from which we
deduce the performance level of the algorithm.

6.1 Unity 3D Environment

In Unity the object is the basic entity. An empty object consists of a
point in 3D space with coordinates x, y and z called pivot. A scene is the
3D space where objects are placed and where they interact with each
other. Every object has a parent field (it’s null by default); this allows
the generation of hierarchies of objects. Unity engine is object-oriented
in the sense that objects behave independently from each other and
they interact only when they’re supposed to. Developers can attach
several components to an object. Components define the features of

67



objects; a list of the components we exploited most is:

• TRANSFORM:
Every object has a transform component by default. It determines
its actual position, rotation and scale in the 3D space of the scene.
Values can be modified both manually by the developer and by
the physics engine (for instance if a force is applied on the object).
The transform component is used to apply basic transformations
to objects (translation, rotation, scaling) with respect to their
pivot point. If a transformation is applied on an object with
children, it’s automatically applied also on all the children (all
the objects under it in the hierarchy) with respect to the pivot of
the parent object.

• BEHAVIOR SCRIPT:
One or more user-written scripts can be attached to an object,
defining its behavior. With these scripts the developer can man-
age interactions between objects, perform computations and ac-
cess other components at runtime.

• RIGIDBODY:
This component defines the physics-related properties of an ob-
ject. Although we don’t use the physics engine to compute grasp
poses, we need this component in order to allow the system to
check collisions. Plus, when target objects are not grabbed by
the character, they’re subject to gravity, so they need to be taken
into account by physics engine.

• COLLIDER: It’s the container that allows collision detection
with other objects (other colliders). Usually the shape of a col-
lider is much simpler than the shape of the object it’s attached to,
due to the fact that for the physics engine checking collisions be-
tween primitive 3D shapes (or simpler shapes anyway) is much less
expensive in terms of computational effort than checking complex
shape collisions, but it’s still possible to generate a mesh collider
based on an object’s mesh.

• ANIMATOR: The animator component manages the pre-defined
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animations of an object. Animating an object requires a controller
which chooses the animations and decides when they should be
activated and an avatar which is the skeleton (armature) of an
object (see sub-section 6.1.1).

• MESH FILTER: It defines the mesh of an object. Primitive
shape meshes can be created in Unity but usually object meshes
are realized with a 3D modeling software and then imported.

• MESH RENDERER: If the object has a mesh filter component
the mesh rendering takes care of rendering that mesh attaching
all the graphic features like textures, visual effects and others.

6.1.1 The Avatar

The skeleton of an object is called avatar in Unity. Not every object has
an avatar, only those which are animated with pre-defined animations
have one. When it’s the case, the mesh of the object distorts and
blends according to the movements of the avatar (weights of mesh
vertexes are set by the 3D model designer). As we need to act on
hand bones, we need to know how to define an avatar and how to spare
a part of it (the hand of the character) from the animation system.
We focus on the avatar of a human hand. The default configuration
of hand bones in Unity doesn’t correspond to the one we wanted to
use: metacarpal bones are not taken into account when animating the
human hand. This is not a big problem as it’s possible to import more
complex avatars in any case and as our algorithm doesn’t deal with
with pre-defined animations.

Rotation and translation values determined by pre-defined anima-
tions overwrite the current ones before each frame rendering. In order
to superimpose different values it’s enough to modify them between
the moment in which the animator changes them and the actual frame
rendering.

6.1.2 Coroutines

In Unity, computation is frame-based: some functions are called during
each frame, like the Update() function while some others are called only
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Figure 6.1: The hand avatar in Unity is less complex
than our skeleton model: CM joints are not included
and this means that rotations of metacarpal bones
are always null. Moreover Unity doesn’t include fin-
gertips in the avatar (the correct choice for any an-
imation system) so we need to add them manually
if we deal with models designed to be imported in
Unity. Wrist joint is present in Unity avatar but it’s
not shown on the hand as it’s considered to be part
of the arm.
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in certain moments or when other functions need them, but always
within the time of a frame rendering. If a function needs a few seconds
to complete its computation the game stops for a few seconds because
the next frame is rendered after all functions finish their computations.
Our algorithm needs to perform several computations which would take
more than a frame rendering interval. The immediate solution would be
to use a multi-threading technique in order to move the computation in
a parallel time line. However this is not possible, as Unity game engine
is not thread-safe: we can’t act on object in the scene if we’re out of the
main thread. Indeed we need to manipulate the transform component
of the bones. Unity provides a solution which we found out to be really
convenient in order to split computation in time: Coroutines. These are
particular functions that can stop the computation in a certain point,
defined by the developer. In the next frame slot, the computation starts
from the point where it stopped previously. This kind of functions is
particularly useful in order to split code cycles among several frames
(code cycles are exactly the structures we need in our algorithm).

6.1.3 Quaternions

Rotations of an object can be stored in a vector of three float values
(rotation around x-axis, y-axis an z-axis) which intuitively allows to get
an immediate sense of the rotation. However Quaternions can store ro-
tations as well. Quaternions are extremely efficient when working with
interpolations, so we use them when we need to interpolate between
the starting pose and the final pose of a grasp movement (see Section
6.4).

6.2 Scenario

We created a 3D scenario for our test. It consists of a large living room
and some furniture with some graspable objects placed on. A human
character is able to walk around the room, to grasp the objects and
to drop them. Physics engine manages graspable objects bodies only
when they’re not in the character’s hand, while it never considers the
character. This scenario might represent a small portion of a video
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game in which the algorithm could be used.

Figure 6.2: The 3D scenario created with Unity. It’s
a living room filled with both graspable and ungras-
pable objects.

6.2.1 Human Character

We used MakeHuman software to build a realistic human character
and its skeleton. In MakeHuman the shape of the character is cus-
tomizable as well as its clothes. The skeleton can be chosen from a
list of 6 types. The one which fits our purposes has the same structure
Maya3D software uses for humanoid characters. Although the num-
ber of bones is higher than the one supported by Unity avatar system
and the bone placement slightly differs from the Unity default one,
the hand structure turns out to be exactly the one we planned to use.
When imported in Unity, the skeleton is turned in a series of empty
objects placed where the bones start. They’re linked by parent-child
relations: the first spine bone is the parent of all the other bones; from
that, chains of bones are naturally set to be children and children of
children.

72



Figure 6.3: Character is made with MakeHuman
and imported in Unity after some adjustments done
with Blender. One of the skeletons provided in
MakeHuman includes a hand structure that corre-
sponds to the one we decided to use.
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6.2.2 Graspable Objects

For the algorithm tests, several small objects with different shapes have
been placed in the scenario. Each object needs one or more hooks
in order for the algorithm to work with them. We decided that the
developer should define the hooks as empty child objects only when
the graspable object has more than one hook or when its hook does
not coincide with its pivot point. In case hooks are not defined, the
algorithm automatically takes as hook the pivot point of the target
object. For instance if the pivot point of a tennis ball is its mass center
position, then the tennis ball needs no hook definition, while a suitcase
(which usually doesn’t have its pivot point on its handle) needs it if we
want the character to try grasping its handle.

6.3 Algorithm Setup

The algorithm works directly on the objects components, it’s not pure
computation, so it needs to know what objects it can manipulate and
at the same time the character needs information about the algorithm’s
output in order to move the hand in the right grasp position. A series
of setup operations will allow the algorithm to work on the defined
models. Before the description of setup operations, we need to illustrate
the main entities in game together with a brief explanation of their
behaviors.

6.3.1 Main Entities and Behaviors

• CHARACTER:
The human character is a container (a parent) for most of the im-
portant objects in game: its children are the character mesh, its
avatar (composed by several objects corresponding to the bones)
and, as we’ll describe, also the grasp controller and all grasp cen-
ters. Its behavior (script) defines the character walking and blend-
ing movement through the animator component and the inverse
kinematic system that allows the hand to reach a target pose.

• RIGHT HAND (WRIST):
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It’s the empty object corresponding to the right wrist bone and
it’s the hand skeleton root. The algorithm output defines the
position for all the children object of the wrist and for the wrist
itself. The rest of the body is managed by the character animator
and by the inverse kinematic system. The wrist should always be
attached to the arm. The behavior of the wrist and all its children
defines the pose of the whole hand (rotations of all the bones).

• GRASP CONTROLLER:
The grasp controller is an empty object that manages all the
phases of the algorithm. It decides when the optimization steps
are executed and when the character performs the actual grasp
movement.

• HOOK CENTER:
It’s an empty object that is placed in the current hook. While
the algorithm is working, the current grasp center is made a child
of the hook center. The grasp controller manages hook center’s
translation and rotation. The hook center also represents the
pivot point of the hand rotation.

• GRASP CENTERS:
There is one grasp center for each grasp movement. Grasp cen-
ters are wrist’s children but when the algorithm computes the
optimization instead the wrist is a child of the grasp center (see
Chapter 5) that corresponds to the chosen grasp movement. The
grasp controller manages the translation and the rotation of the
grasp center involved in the process.

• GRASPABLE OBJECTS:
Graspable objects possess a mesh and a collider. The collider may
have a primitive shape but, unless the complexity of the object
is very low, it has the same shape as the object’s mesh (mesh
collider). Even if the object has a concave mesh (majority of
cases) the mesh collider is set to have a convex shape because the
physics engine can’t easily manage concave meshes collisions but
when the algorithm starts a grasp simulation the collider is set to
have the natural concave mesh of the object.
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6.3.2 Setup Operations

• CLONING HAND SKELETON:
The algorithm needs to manipulate the hand for the grasp sim-
ulation and evaluation of the optimization steps but this should
happen among each frame and it’s not possible to operate with the
original hand as it must remain attached to the character. The
straightforward solution to this issue is to duplicate the hand
skeleton starting from the wrist: in this way an invisible clone
hand is used to search for a pose while the original one remains
on the character’s arm. The algorithm core will only work on the
clone hand.

• DEFINING BONES CONNECTIONS:
Even if a phalanx only has at most one parent and one child, we
need to define the relations in the behavior scripts so that each
bone knows exactly which are its child and its parent. The only
exception is the wrist: it has no parent (the forearm is not consid-
ered) and five children which are the finger roots. This knowledge
is important especially in the collision detection process.

• STORING GRASP MOVEMENTS:
Grasp movements are stored using only two poses each (the initial
one and the final one). We decided to implement two movements:
spherical power grasp and thumb-index precision grasp. We set
the hand in the pose we wanted to store and we saved the rotation
values of all the bones as variables. Each bone of the clone hand
knows its rotation for each pose. We stored three poses in this
way (the starting pose is shared by both movements):

– Starting pose

– Spherical power grasp end pose

– Thumb-index precision grasp end pose
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6.4 Grasp Simulation

In Section 5.4 we described the simulation process: a certain number
of interpolation between the two poses (initial and final) is computed
and for each interpolation collisions between bones and the target ob-
ject are checked. If a bone collides it doesn’t advance in the simulation
together with all its parents in the bone chain. In order to compute
interpolation we use the Quaternion.Lerp(...) function provided by
Unity.

rotOut = Quaternion.Lerp(rot1, rot2, f)
This function takes two rotations as input (Quaternion class) and a
float number f which has a value included between 0 and 1. The
function’s output is a rotation rotOut which is the interpolation be-
tween rot1 and rot2 at f percentage. If f is equal to 0 the output is
rot1 while if f is equal to 1 the output is rot2.

We show the conceptual code of the grasp simulation:

Algorithm 1 Grasp Simulation A
1: procedure SimulateMovement
2: mov = GRASP MOVEMENT
3: n = NINT ERP OLAT IONS ;
4: i = 1;
5: while i <= n do
6: f = i/n;
7: for all bones do
8: if bone.isColliding = false then
9: bone.rot = Quaterion.Lerp(mov.startRot, mov.endRot, f);

10: if bone.checkCollision() then
11: bone.SetIsCollidingTrue();

12: i = i + 1;

We define an integer number NINT ERP OLAT IONS and we set up a cycle
that repeats NINT ERP OLAT IONS times. For each interpolation reached
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an f value is computed as:

f = NREACHED

NINT ERP OLAT IONS

and the rotation of each bone is updated using the Quaternion.Lerp(...)
function (each bone knows its initial and final rotations). After the up-
date, the collision check is performed on each bone and if a bone collides
with the target object a boolean isColliding is set to be true for it and
for all its parents. Clearly, the interpolation update is performed only
on the bones with isColliding set to false. At the end of the cycle we
obtain that all the bones are stable and a grasp pose is generated.

Algorithm 2 Grasp Simulation B
1: procedure SetIsCollidingTrue
2: isColliding = true;
3: if parent != null then
4: parent.SetIsCollidingTrue();

6.4.1 Collision Check

We can’t use a mesh collider with the same shape of the hand because
we need to know which bone is colliding exactly on each interpolation
so we check the collisions for each bone singularly. It’s much convenient
to use primitive shaped collider because it improves the performances.
We found two ways to do that: using sphere colliders and using capsule
colliders. Collision is checked between one bone and any other object.
We know the starting point of the bone and we can get the starting
point of the next bone in the chain. We could distribute a few sphere
colliders among the two points in order to cover all the bone. Instead,
we choose to use a capsule collider as Unity provide the useful function
checkCapsule(point1, point2, radius) which checks whether the capsule
with radius radius and with centers of the end hemispheres in point1
and point2 collides with anything in the scene. If it collides the func-
tions returns true, false otherwise. Notice that capsules of connected
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bones penetrates each other but the check is performed singularly, so
this is not an issue. In order to use this system we need to add an
empty object for each finger that represents the tip of the finger itself;
it must be a child of the last phalanx. In this way even for the last
bone of a finger we can correctly get the ending point of the capsule
collider.

6.5 Real-Time Grasp Search

Having a good grasp simulation system allows us to set up the grasp
search as an iterative optimization performed in real-time. In this
section we illustrate in detail all the core points of the algorithm we
implemented. We also discuss the problems that arise in practice and
that the previous chapter didn’t examine in depth. First of all, we
describe a function we implemented that will be mentioned in the next
subsections: the TranslateToFree() function.

6.5.1 TranslateToFree() Function

In order to fully understand the purpose of the function, it’s necessary
to have a clear notion of our hand positioning system described in
Section 5.2: the hook center is the main pivot point to which all the
rotations are applied. The grasp center follows those rotations around
the same pivot point and so does the hand. In this way the hand is
able to move around the target object while always focusing on it. If
we don’t consider collisions (as we did so far) the grasp center coincides
with the hook center but in this case it may happen that the hand mesh
penetrates the target object’s one. The TranslateToFree() functions
solves this penetration (only if needed) by translating the grasp center
and the hand together with it along the local y-axis of the hook center
(the same as the grasp center). This must be done by steps: for each
step a collision check is performed (see previous section) and if any
bone collides the hand is translated away from the object along the
y-axis. The magnitude of the translation may be set by the developer.
A too small magnitude would afflict performances because of the great
amount of collision checks to be performed while a too big magnitude

79



would let the hand translate too much away from the object, generating
a wrong pose.

Algorithm 3 Translate to Free
1: procedure TranslateToFree
2: vStep = MAGNITUDE;
3: isFree = false;
4: if hand.collisionCeck() = false then
5: isFree = true;
6: while isFree = false do
7: hand.TranslateY(vStep);
8: if hand.collisionCheck() = false then
9: isFree = true;

6.5.2 Initial Phase

Before the actual optimization starts, we need to perform a few op-
erations. We can also compute a starting pose for the hand without
afflicting too much the performances. This is not strictly necessary but
it helps to find a good output pose in a shorter time. Before applying
the optimization steps, the algorithm needs to:

1. Get the hooks of the target object and take the closest.

2. Move the hook center such that it coincides with the closest hook.

3. Make the clone hand a child of the grasp center that corresponds
to the chosen movement.

4. Move the grasp center in the same position as the hook center.

5. Rotate the hook center such that its axes coincide with the grasp
center’s ones.

6. Make the grasp center a child of the hook center.

Those operations set up the hand positioning system: applying simple
rotations on the hook center we’re able to move the clone hand around
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Figure 6.4: After choosing and performing a hook
rotation, it may happen that the hand collides with
the object already in the starting pose. The Trans-
lateToFree() function translates the grasp center
(green dot) along the y-axis of the hook (red dot)
until the hand is free from any collision. Notice that
the hand translates together with the grasp center
so we don’t need to perform any transformation on
the hand.
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the target object while making its palm always points towards it.

In Section 5.6.1 we illustrated a good example of system to compute
an initial pose from where to start the optimization. Provided that
the z-axis of the grasp center corresponds to the one of the hand’s fin-
ger direction (excluding the thumb) we can easily compute the pose
starting from the hook center position and the character right shoulder
position. We compute the direction:

d = hookCenterPos− shoulderPos

and then we rotate the hook center such that its z-axis points towards
d. This is easily achieved with the Transform.LookAt(Direction d) func-
tion provided by Unity. Notice that if the set up operation are per-
formed correctly the z-axis of the hook center should always correspond
to the z-axis of the grasp center.

6.5.3 Optimization Step with Random Angle

Once the hand positioning system is set up and the clone hand has an
initial pose (it might be the one we computed in the previous subsec-
tion) we can finally start to write the iterative optimization described
in the previous chapter. We don’t use the logical solution illustrated
in Section 5.6.2.1, instead we adopt the practical solution of Section
5.6.2.2 mostly because it’s the one that allows a real-time execution.
The computation takes place inside a particular function defined by
Unity in each behavior script: the Update() function.

Update()
This function is called between each frame rendering. It’s possible
to allow certain actions to be executed before or after this function
in the same frame interval. For instance, animations are computed
by the animator component after the Update() function.

The strategy is to execute a step for every frame rendering. We need
to use a coroutine (see Section 6.1.2) that suspends the execution just
after a step is completed and that resumes it after the next frame is

82



rendered. For each iteration, before the actual optimization step we
need to make the target object ready to be working on: it must be
free from external forces and its collider must not be convex, but con-
cave. Unity defines as kinematic a body that is not affected by external
forces. After the step is completed, the hook center’s rotation repre-
sents the current state of the optimization. For the reasons described
in Section 5.6.2.2 we compute a random angle between 0°and 180°for
each iteration and we pass it as a parameter to the MakeStep() function
which will be defined later. If we suppose that every step can be the
last one, we have to set the correct pose for the hand relative to the
hook center’s rotation. We do this with a combination of the functions
TranslateToFree() and hand.SimulateMovement() seen before. At the
end of each iteration the clone hand assumes a correct grasp pose and
after every additional iteration the pose improves. The coroutine never
ends the computation unless the developer decides so. A conceptual
iteration is shown in Algorithm 4.

Algorithm 4 Iteration
1: procedure Iteration
2: angle = RANDOM(0, 360);
3:

4: object.isKinematic = true;
5: object.convexCollider = false;
6: makeStep(angle);
7: object.isKinematic = false;
8: object.convexCollider = true;
9:

10: TranslateToFree();
11: hand.SimulateMovement();
12: suspend until the next frame

Algorithm 5 shows the actual optimization step. Having an angle value
we produce the grasp poses that will be compared based on their qual-
ity. Hook center can be rotated around three axes (x, y, z) so, if we
consider both a positive and a negative rotation, with one angle value
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we can generate up to six grasp poses in addition to the current one.
This leads to a comparison between seven grasp poses. The quality
of a pose is computed by the function QualityCheck() that will be an-
alyzed in detail later. We set up a list of quality values and for the
comparison we simply take the maximum between those values. If the
maximum corresponds to the one computed for the current grasp pose,
the hand doesn’t move (the hook center doesn’t rotate), otherwise the
hand will move to the position corresponding to the grasp pose that
had the greater quality among all the others.

The QualityCheck() function is what decides how the comparison be-
tween poses is defined, so it’s up to the developer determining which
parameters are to be used and how great their weights should be. After
a series of tests we found a good combination of parameters that allows
a good comparison between poses. The function structure shown in Al-
gorithm 6 is quite straightforward: the values are computed exploiting
some methods of the hand and then they’re returned in a weighted
sum. Values names and meanings are defined in Section 5.5. This may
change depending on the type of application and on the chosen grasp
movement. Algorithm 6 is just an example of such a function (the one
we used to evaluate spherical power grasps). Notice that weights are
negative because they’re multiplied by distances that should be mini-
mized; the quality increases when any of those distances decreases. In
this case all resulting quality values will be negative, but this is not
relevant for the comparison.

For clarity we also show how the hand.ComputeFDist() function works
(Algorithm 7). For each bone chain the first colliding bone is ob-
tained choosing the last (the further in the chain) between the ones
that reached the smallest number of interpolations. A distance is com-
puted between the end point of this bone and the hook center. Done
that for all the fingers, the distances are returned in a sum.
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Algorithm 5 Optimization Step
1: procedure MakeStep(angle)
2: qualities = new List(value, rotation);
3: qualities.add(QualityCheck(), current);
4:

5: hookCenter.rotate(x, +angle);
6: qualities.add(QualityCheck(), xpos);
7: hookCenter.rotate(x, -angle);
8:

9: hookCenter.rotate(x, -angle);
10: qualities.add(QualityCheck(), xneg);
11: hookCenter.rotate(x, +angle);
12:

13: hookCenter.rotate(y, +angle);
14: qualities.add(QualityCheck(), ypos);
15: hookCenter.rotate(y, -angle);
16:

17: hookCenter.rotate(y, -angle);
18: qualities.add(QualityCheck(), yneg);
19: hookCenter.rotate(y, +angle);
20:

21: hookCenter.rotate(z, +angle);
22: qualities.add(QualityCheck(), zpos);
23: hookCenter.rotate(z, -angle);
24:

25: hookCenter.rotate(z, -angle);
26: qualities.add(QualityCheck(), zneg);
27: hookCenter.rotate(z, +angle);
28:

29: max = qualities.Max();
30: if (max != qualities(current)) then
31: hookCenter.rotate(rotation corresponding to max);
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Algorithm 6 Evaluation
1: procedure QualityCheck
2: gDist = Distance(graspCenter, hookCenter);
3: wDist = Distance(wrist, character);
4: fDist = hand.ComputeFDist();
5: k1 = -5;
6: k2 = -1;
7: k3 = -1;
8:

9: quality = k1 * gDist + k2 * wDist + k3 * fDist;
10: return quality;

Algorithm 7 Computing FDist
1: procedure ComputeFDist
2: fDistances = new List();
3: for all fingers do
4: pos = new Position();
5: for all bones do
6: if bone.NREACHED <= nextbone.NREACHED then
7: pos = bone.endPoint;
8: fDist = Distance(hookCenter, pos);
9: fDistances.add(fDist);

10: fDistTotal = fDistances.Sum();
11: return fDistTotal;
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6.5.4 Fulfilling Hand Constraints

For what concern finger constraints we shouldn’t carry out any check
because we already provided to determine manually the starting pose
and the final pose of the grasp movements. The interpolation poses
never present incorrect finger positions or rotations. Instead we might
want to check whether the wrist position and rotation actually repre-
sent a possible hand pose which is reachable by the character. Although
this issue should be addressed by future pertinent projects (see Section
7.1) we want to add a simple check that approximates the real human
wrist constraints, when the character position is given. The algorithm
deletes from the comparison all those poses that aren’t included in a
range of possible poses. First of all we need to define that range: we
state that, starting from the basic pose described in Section 5.6.1 the
wrist can rotate at maximum:

• 145°clockwise around z-axis

• 70°counter-clockwise around z-axis

• 45°clockwise around x-axis

• 45°counter-clockwise around x-axis

• 30°clockwise around y-axis

• 30°counter-clockwise around y-axis

We also state that the hook center rotation range can be approximately
the same as the wrist one. So the check becomes quite straightforward:
in the QualityCheck() function, before the evaluation we check whether
the hook center actual rotation is included in the range of the possible
ones. If it isn’t, the quality of that pose is set to be equal to -Inf. In
this way that pose is never chosen by the algorithm unless all the poses
analyzed in one step correspond to incorrect hook center rotations (an
extremely rare event, inconsequential if we consider the amount of steps
performed per second). Notice that the starting position from which
the wrist constraint are computed changes together with the character
position, so the range must be updated after each frame rendering.
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6.5.5 Unidirectional Step

As explained in Section 5.6 in order to speed performances we might
want to use the unidirectional step. This will lighten the computa-
tion per frame but it will reduce the search power. In many situations
this strategy could be successful; for instance if the character takes a
long enough time to grasp an object, the computation finds a good
output without problems even using the unidirectional step, because
a sufficient number of iterations occurred. Algorithm 8 shows this al-
ternative, but it’s necessary to modify the iteration code as well: the
direction passed as a parameter to the unidirectional step must change
every time; in our tests we just let the directions alternate regularly in
the natural order x, y, z.

Algorithm 8 Unidirectional Step
1: procedure MakeStepUNI(direction, angle)
2: qualities = new List(value, rotation);
3: qualities.add(QualityCheck(), current);
4:

5: hookCenter.rotate(direction, +angle);
6: qualities.add(QualityCheck(), pos);
7: hookCenter.rotate(direction, -angle);
8:

9: hookCenter.rotate(direction, -angle);
10: qualities.add(QualityCheck(), neg);
11: hookCenter.rotate(direction, +angle);
12:

13: max = qualities.Max();
14: if (max != qualities(current)) then
15: hookCenter.rotate(rotation corresponding to max);

6.5.6 Character Movement During Optimization

One problem that arises from the combination of iterative optimization
and real time execution is the feeble validity of the starting position.
In fact the starting position depends on the position of the character
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and the character can move during the optimization. It’s important
that the starting position updates regularly because it is used both
as a landmark for the positions computed at each optimization step
and as a reference that defines the limits of the wrist rotation range.
However we can’t update it at every iteration or at every frame, because
this wouldn’t let the optimization proceeds, generating an output that
always corresponds to the initial position for the current frame. We
found a simple and effective solution that solves this issue. Let’s think
of our 3D environment as if it was a 2D environment with only x and
z axes. When the initial position is computed, we define a line a that
goes from the hook to the character and we store that x-z direction.
After every frame, we compute the same line using the new position
of the character and we call it b. While a doesn’t change, b varies
and if the convex angle between a and b is greater than 10° then we
update the starting position and the direction of a that becomes equal
to b. At this point the iterative optimization automatically starts again
from the new starting position. This strategy doesn’t allow to perform
correct grasps while the character moves but, if we consider the time
the character needs to point towards a target object and to prepare the
grasp, in the case of steady character most likely the optimization has
enough time to produce a correct output.

6.6 Performances

The algorithm only performs simple and common operations on enti-
ties: mainly translation, rotation and collision detection. Moreover,
the pure computation part shows no complex procedures: it exploits
the built-in functions for number, vector and quaternion manipulation.
The amount of simple actions and procedures may afflict performances
because everything needs to be executed within short time intervals.
For this reason it is worth analyzing the order of the number of exe-
cuted operations and procedures. Certain constants can be set by the
developer while others may depend on the hand structure:

• N : Number of interpolations for a grasp simulation

• nb: Number of hand bones
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• P: Number of poses evaluated in a step (7 in the normal step, 3
in the unidirectional step)

• vAV G: Average number of vertical translations performed in the
TranslateToFree() function

Considering one single step, P poses are evaluated; for each pose, the
TranslateToFree() function performs 1 rotation and computes nb cap-
sule collision detections for each vertical translation. The value vAV G

depends on the size of the target object and on the extent of a sin-
gle vertical translation (defined by the developer), but in general it’s
close to 10 and never greater than 100 (otherwise it would be better
to re-set the extent of vertical translations). Moreover, one simulation
is performed for the pose: it consists of N times nb capsule collision
detections and the same amount of rotations (at worse). About pure
computation, each one of the P evaluations requires the execution of
a series (3 in our case) of built-in functions that operate on numbers,
vectors and quaterinions. This last part doesn’t affect performances
because the computation time is much inferior to the frame rendering
time. The number of performed basic transformations such as trans-
lations and rotations is not big enough for those transformations to
interest performances. Collision detection is what really matters in
terms of computational time. Summarizing what we said before, the
average number of capsule collision detections performed in one step
is:

cdAV G = P ∗ nb ∗ (v +N)

In order to give an idea of the amount of capsule collision detections,
we use the values of our test case for the numbers:

• P = 7 (normal step)

• nb = 24

• vAV G = 10

• N = 20
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Using such values:

cdAV G = 7 ∗ 24 ∗ (10 + 20) = 5670

In the case of unidirectional step the number changes considerably:

cdAV G(uni) = 3 ∗ 24 ∗ (10 + 20) = 2430

With a smaller number of interpolations or vertical translation (N can
be set by the developer while a value for vAV G can be induced by chang-
ing the vertical translation extent) it’s possible to decrease cdAV G even
more but too small values for N and vAV G would reduce the correctness
of the output. For instance if N is not big enough the fingers might
not find the correct interpolation that allows them to touch the target
object and they could result as detached or penetrating. The number
of collision detections that an application can tolerate before lowering
its performances depends on the power of the machine where it is exe-
cuted and on the time interval between iterations.

Computation time of the algorithm bsically depends on cdAV G. We
show the results of some tests in which we tried different values, still
keeping an acceptable level of realism. In particular we used the values
7 and 10 for vAV G and the values 10 and 20 for N ; combinations in-
cludes both tests using the normal optimization step (P = 7) and the
unidirectional step (P = 3). T AV G is the average time that an itera-
tion takes to compute. Tests were performed on a Intel® Core™2 Quad
Processor Q6600 (2.4 GHz), RAM: 4GB. The following table contains
the values of T AV G corresponding to the different combinations of pa-
rameters.
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Combination P vAV G N T AV G (ms)
a 7 7 10 11
b 7 7 20 17
c 7 10 10 13
d 7 10 20 19.5
e 3 7 10 5.5
f 3 7 20 9.5
g 3 10 10 6.5
h 3 10 20 9.5

Tests were executed at 30 FPS so the available time for computation
between two consecutive frames was T F RAME = 1 [s] / 30 = 33.3 [ms].
Obviously the algorithm must not use all the available time because it’s
not the only process executed between frames. We considered T AV G

to be acceptable when T AV G < 1/2 * T F RAME. Indeed combinations b
and d resulted in a slight reduction of FPS (about 28 instead of 30). If
the computation requires more than half of the rendering time for any
combination of parameters (just think of our tests executed at 60 FPS
instead of 30) it’s possible to split even more the single unidirectional
step among frames using coroutines in Unity. Given that only a few
applications (mostly recent video games) execute at fixed 60 FPS, we
can consider the values of T AV G obtained from the tests appropriate.
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Chapter 7

Future Works and
Conclusions

This document shows a novel approach to the grasping hand problem
based on computer graphics methods. As all experimental projects,
it’s far from being a complete and flawless procedure and it represents
a starting point from where several future researches may take place.
We show some of the lines of development we intended our project
to follow and we give some examples of applications for which the
algorithm could be suitable.

7.1 Algorithm Improvements

We focused our efforts on developing the main phases of the algorithm
using a different approach from the ones presented by other studies.
There are many aspects that, if analyzed in details, could lead to sensi-
ble improvements of the procedure both in terms of performances and
complexity. The following aspects are the most relevant ones according
to our understanding of the whole problem:

• MORE GRASP MOVEMENTS:
The very first feature that could be improved is the number of
stored grasp movements. For our tests we only stored the spher-
ical power grasp movement and the thumb-index precision grasp
movement but if we follow the classification illustrated in Section
2.2.1 we could store fourteen other movements and we could chose
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different types of grasps for different target objects, improving the
realism. Plus, it’s possible to think of another way to store the
movements as we proceeded by saving all the rotation values for
all the fingers one by one while there may be another faster and
more reliable method. It would be even possible to change the
interpolation method used by the algorithm and to try integrat-
ing pre-defined animations in order to generate movements. We
couldn’t achieve that because of the limitations presented by the
Unity humanoid avatar (the one available in the Free edition)
which doesn’t include a complex enough hand structure. Cer-
tainly, those pre-defined animations must be quite flexible, such
that it should be possible to stop the animation for each bone
singularly.

• AUTOMATIC HOOK POSITIONING:
In our design process we decide to set the hooks manually for
each object, unless the hook was individual and it coincided with
the pivot point of the object. Instead, we could have designed a
part of the algorithm that decides automatically where to place
the hooks. This could be done by searching for all points in the
object structure which allow a stable grasp, like tubular elongated
parts or parts that would fit in a eventual power grasp.

• AUTOMATIC CHOICE OF GRASP MOVEMENT:
As the 3D shape of any target object is known from the start, one
might think of developing a system that, based on that 3D shape,
chooses automatically the grasp movement between the available
ones. An example could be the analysis of the size of the object:
if it’s small enough the character could choose a precision type
grasp. The study of the object structure is open to a huge variety
of approaches: it might be subdivided it in 3D primitives or some
graspable portions of it can be located in other ways. It’s even
possible to try out several grasp movements and see which one
fits better by defining an evaluation system between grasps with
different movements.
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• IMPROVING NATURALNESS OF POSTURE:
The weakest aspect of the algorithm is maybe the wrist constraint
definition. A much detailed system could be set up in order to
assure the naturalness of the whole grasp posture. We focused our
efforts on studying finger movements and grasp evaluation, but
the full-body posture might be a relevant factor for improving the
realism.

• MULTI-HAND GRASPS:
A natural evolution of the algorithm would be achieving the gen-
eration of multi-hand grasps. The approach could be the same,
with the difference that the grasp movements would be much
more complex because of the infinite possibilities; a study of new
evaluation parameters would be required as well.

7.2 Possible Applications

While designing the algorithm we had in mind an application field in
particular which is the video games field. In fact we exploited a game
engine for the implemntation and we focused on real-time execution.
It is easy to immagine how the algorithm could be used in such a field:
even in most modern video games ususally this problem is ignored and
characters don’t really grasp objects but they’re animated with pre-
defined animations. Our algorithm would make any grasping action
in modern video games more realistic. Of coruse it would also require
different set up operations and several ad-hoc optimizations for the spe-
cific video game. Remaining in the computer graphics-oriented appli-
cations it would be possible to integrate the algorithm in 3D modeling
softwares allowing to generate automatically grasp animations or sim-
ple grasp poses. This could be exploited both for 3D model production
and for animated 3D scene generation. Robotics might benefit from
this algorithm as well: many researchers are still facing the robotic
grasping hand problem and a way to direct their studies could be a
computer graphics-based approach. Most likely a grasp stability eval-
uation system would be needed in addition to the quality check. Plus,

95



the 3D model of the target object must be known completely; this
could be achieved by use of sensors or by image analysis techniques
(3D reconstruction from images).

7.3 Conclusions

With this work we wanted to deal with the grasping virtual hand prob-
lem following a computer graphics-based strategy. We proposed a real-
time executed algorithm that generates correct single hand grasp poses
with respect to a character and a target object through continuous
optimization. We focused on virtual human hands but the algorithm
supports a large variety of hand structures.

First of all we studied the hand skeleton and we analyzed the stan-
dard way of representing and manipulating hands in 3D interactive
environments. Virtual bones and joints are located and named accord-
ing to the real human hand anatomy; bone rotations are needed to
move fingers while the hand’s 3D mesh follows them. We also analyzed
and modeled some of the anatomical limits of the joints, understanding
how to generate natural grasp poses. After that, we defined a hand po-
sitioning system that allows the hand to move around the target object
while always pointing towards it. Hook and grasp center were intro-
duced in order to easily put that system to use. Hook, hand and grasp
center are connected in such a way that every transformation applied
on the hook is also applied on the others and every transformation ap-
plied on the grasp center is also applied on the hand.

At this point we began designing the core of the algorithm: starting
from an initial position, it should have iteratively analyzed the closer
positions and evaluated them in order to decide where to move the
hand for the next iteration. After a finite number of iteration the al-
gorithm should have moved the hand in a position that corresponded
to a correct grasp pose. In order to develop a grasp evaluation system
we introduced the possibility to simulate the grasp for a given position
and compute a quality value for the produced grasp pose by check-
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ing a series of relevant parameters. Comparison between poses was
then reduced to a comparison between quality values (real numbers).
Grasp simulation is achieved following this strategy: a grasp move-
ment was subdivided in an arbitrary number of interpolations and for
each interpolation a collision check was performed on each bone; if a
bone collided with the target object then it stopped moving together
with all the previous bones in the same chain. The quality value of a
grasp pose was computed as a weighted sum of arbitrary parameters;
we chose to use three parameters with negative weight: the distance
between grasp center and hook, the distance between the end points
of the first colliding bones of each finger and the distance between the
wrist and the shoulder of the character.

We designed the optimization step such that it can be split in several
ways among the frames. It consists of a quality evaluation (through
simulations) of the current hand position and of the six closer positions
(in terms of positive and negative hook rotations along the three axes);
at the end of the step, the hand moves to the position with maximum
quality. With high amount of computational resources it’s possible to
execute an entire step or more steps in one single frame. However,
in order to provide a solution that is less effective but requires less
computational effort, we illustrated the unidirectional step which only
analyzes three positions at the time.

The proposed algorithm shows an experimental method that can be
considered as a starting point for future researches which are meant to
use computer graphics-based strategies in order to approach the grasp-
ing hand problem. The algorithm works nicely with a standard human
hand model and with a discrete variety of graspable objects and its
performances are decent. We believe that with further work and sev-
eral optimizations and extensions this approach could be used in the
process of developing complete and complex applications such as video
games or 3D graphics software.
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