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Abstract

We show that when selection is extreme—the fittest strategy always repro-
duces or is mimicked—the unequivalence between evolutionary game dynamics
in finite and infinite populations resolves, in the sense that the three generic
outcomes—dominance, coexistence and mutual exclusion—emerge in well-mixed
populations of any size, though the outcome remains size-dependent. We consider
the simplest setting of a 2-players-2-strategies symmetric game and the two most
common microscopic definitions of strategy spreading— the frequency-dependent
Moran process and the imitation process by pairwise comparison—both in the case
in which any intensity of selection is allowed. We show that of the seven different
invasion and fixation scenarios that are generically possible in finite populations—
fixation being more or less likely to occur and rapid compared to the neutral
game—the three that are possible in large populations are the same three that
occur for sufficiently strong selection: (1) invasion and quick fixation of one strategy,
(2) mutual invasion and slow fixation of one strategy, (3) no invasion and no fixation.
Moreover (and interestingly), in the limit of extreme selection, (2) becomes mutual
invasion and no fixation, a case that is not possible for finite intensity of selection,
but that better matches the deterministic case of coexistence. In the extreme
selection limit, we also derive the large population deterministic limit of the two
considered stochastic processes.

xiii





Sommario

In questa tesi affrontiamo tematiche inerenti la teoria dei giochi evolutiva,
dove la dinamica della variazione in abbondanza delle strategie all’interno di una
popolazione è di interesse primario.

Ripercorriamo inizialmente il modello deterministico della replicator equation
per popolazioni infinite e ben mescolate, per poi approfondire l’approccio stocastico
in presenza di popolazioni finite. In quest’ultimo contesto consideriamo, tra i vari
metodi per definire il meccanismo di diffusione delle strategie, il processo di nascita
e morte di Moran e il processo di imitazione tramite confronto a due. Entrambi
sono caratterizzati da un parametro che rappresenta l’intensità di selezione, ovvero
quanto il successo di una strategia nel gioco sia determinante per renderla più
competitiva in termini di diffusione.

Le dinamiche evolutive sono state valutate nel caso di giochi simmetrici a 2-
giocatori-2-strategie. L’analisi in ambito deterministico è ormai ben nota dalla
letteratura e tre sono i generici scenari evolutivi: dominanza, coesistenza e mutua
esclusione. In ambito stocastico, invece, la varietà di metodi per modellare la
dinamica lascia ancora aperti molti spunti di studio. In questo contesto, gli
scenari evolutivi sono distinti in base al fatto che in un generico gioco un singolo
giocatore, con strategia diversa rispetto al resto della popolazione, possa, più o
meno probabilmente e velocemente in confronto a un individuo in un gioco neutro,
diffondere la propria strategia fino a uniformare l’intera popolazione. Allo stato
dell’arte, è stato ampiamente studiato il processo di Moran con fitness lineare e per
il quale sono stati individuati sette generici scenari di selezione, che si riducono a
tre nel caso del limite di grandi popolazioni: (1) invasione e rapido subentro di una
strategia (2) mutua invasione e lento subentro di una strategia (3) no invasione e
no sostituzione. Tuttavia, questo modello può imporre delle restrizioni sui valori
ammissibili dall’intensità di selezione.

In questo lavoro di tesi, consideriamo invece nel dettaglio gli scenari di invasione
e sostituzione per altri due meccanismi di diffusione delle strategie: il processo di
Moran a fitness esponenziale e il processo di imitazione con la funzione di Fermi,
che permettono entrambi al parametro di selezione di assumere un valore arbitrario.
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xvi Sommario

Come primo risultato, verifichiamo che i sette generici scenari di selezione identificati
in letteratura sono altrettanto gli unici validi per i processi da noi considerati. In
secondo luogo, confermiamo che di questi sette scenari, solo (1)-(3) sono ammissibili
in grandi popolazioni. Come terzo e principale risultato di questo lavoro, presentiamo
la classificazione per forte intensità di selezione, mostrando che, qualsiasi sia la
taglia della popolazione, gli scenari attendibili sono ancora (1)-(3). Inoltre, al limite
di selezione estrema, quando la strategia più performante si riproduce sempre o è
imitata, (2) diventa mutua invasione e no sostituzione, uno scenario che è vietato
per intensità di selezione finita, ma che meglio corrisponde al caso deterministico
di coesistenza. La selezione estrema pertanto riunifica la dinamica stocastica con
quella deterministica, mostrando tre scenari evolutivi qualitativamente assimilabili.
Tuttavia, la dinamica evolutiva di un gioco in ambito stocastico rimane comunque
dipendente dalla dimensione della popolazione, ovvero lo scenario ottenuto per
forte selezione può cambiare al variare della taglia della popolazione. Proseguiamo
l’analisi dei due processi stocastici con la derivazione, nel limite di selezione estrema,
del limite deterministico per grandi popolazioni. Per concludere, discutiamo i
risultati ottenuti tramite simulazioni Montecarlo su una serie di giochi estratti
casualmente e valutati rispetto allo scenario di selezione. L’obiettivo è quello
di identificare l’impatto che si ha con valori via via crescenti per la dimensione
della popolazione e per l’intensità di selezione. Stimiamo quindi numericamente
quanto grandi debbano essere questi parametri affinché i tre scenari ammessi dalle
dimostrazioni teoriche siano gli unici a essere osservati, mentre gli altri diventino
sempre più rari fino a scomparire.



Chapter 1

Introduction

In the realm of classical game theory [1, 2], a game is a formal mathematical
description of a strategic situation, where two or more rational agents interact with
each other. Every player faces with a set of strategies and it is able to take the
optimal decision in order to get the best for himself. This mathematical theory has
been widely studied and it has led to interesting developments in economics, politics
and computer engineering, mostly in the field of multi-agent systems. Starting
with the seventies of the last century, however, both theory and applications were
considerably stimulated by problems in evolutionary biology. It turned out that
the classical approach was not satisfactory and a radical shift in perspective was
required. Therefore, in 1973, Maynard-Smith and Price laid the foundations of
evolutionary game theory [3].

First of all, it is necessary to consider populations of agents who interact
generation after generation. There is still the concept of game, but the strategy
choice of a player does not rely any longer on rationality assumptions, instead it
is somewhat related to the individual’s genotype or behavior. Under these terms,
changes in the strategy mix within the population can be explained either by natural
selection, or by mechanisms of imitation and learning. Thus, evolutionary game
theory studies the behavior of systems in the long term, identifying which tactics will
persist in the population and which ones will be driven out. In absence of mutations,
once a strategy has been eliminated, it is not re-introduced. The reproductive
success of an individual, which is commonly named fitness, depends not only on
the relative payoff associated to its strategy in comparison with the others, but also
on the composition of the population (i.e. the relative abundance of each strategy,
hereafter also called frequency). This feature is usually referred as frequency
dependent selection [4]. At the very beginning, the theory has been developed for
well-mixed infinite populations. Such systems are traditionally described through
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2 1. Introduction

non-linear differential equations defined by the replicator equation [5–7]. Given the
initial composition of the population, the evolution of the system can be predicted
deterministically. Later, the lack of applicability of this model, because of the strict
assumption of infinite population, has motivated the introduction of the stochastic
game dynamics in finite populations. Here, the structure of the population is
modelled as the state of a Markov chain and the transition probabilities define
a random walk on the sites of the chain itself. This process may exhibit spite
effects, such as the possibility that the stochastic evolutionary process ends up in a
configuration consisting of a strategy which had not the highest performance [8].

For the aims of this thesis, only 2-players-2-strategies symmetric games have
been considered. In the deterministic background, the evolutionary dynamics can
show three generic outcomes: dominance, coexistence and mutual exclusion. The
system reaches a stable fixed point in which the population may consist either
of a single type or of a mixture of different types. Instead, in finite population,
the definition of specific parameters (invasion coefficient, fixation probability and
fixation time) induces a wider classification depending on whether strategy A/B
invades B/A, A and B fixate or not, and fixation is fast or slow. So far, some
results have been proved considering the Moran process with linear fitness [9, 10].
Seven generic scenarios are admissible and some of them do not really match any
of the three deterministic outcomes. For example, in a coexistence game, where the
replicator dynamics predicts a mixed stable state, fixation could ultimately occur
as a stochastic outcome for finite populations and the monomorphic state is shortly
reached thanks to the fact that the evolution of the process is very quick. It is
therefore interesting to better analyse, both theoretically and numerically, models
of stochastic evolutionary game dynamics in order to assess whether it is possible
or not to unify the selection scenarios in finite and infinite populations.

The thesis is organized as follows. In Chapter 2, we review the deterministic
evolutionary game dynamics with an insight into the replicator equation and its
feasible selection outcomes. Next, in Chapter 3, the background theory of stochastic
evolutionary game dynamics is introduced. First of all, we discuss the parameters
adopted to perform the classification of a game and then we look over the main
results on the Moran process with linear fitness, considering also the large N limit.
In Chapter 4, we present our theoretical results. In the former part, we show that
the same classification presented in Chapter 3 holds also for the Moran process
with exponential fitness and for the pairwise comparison with exponential imitation
probability. In the second part, we refine the classification, showing that only three
classes of selection scenarios are generically possible in large populations and they
can be matched with the outcomes of the deterministic dynamics. Furthermore,
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as a third and original result, we prove that, in case of strong selection, three
evolutionary scenarios survive and are exactly the same as in the framework of
large populations. Finally, the limit of extreme selection is examined. In chapter 5,
we present the results achieved with Monte Carlo simulations performed in order
to evaluate the trade-off between population size and intensity of selection in ruling
out some classes. At the end, in Chapter 6, we conclude with a summary of the
results that have been obtained.

To finalize this chapter, the following table gives a list of the main symbols used
in this thesis.

Symbol Definition
A,B Strategies in the population
a, b, c, d Payoffs
xA, xB Frequency of strategy A and B in the population
fA, fB Fitness of strategy A and B
f Average fitness of the population
N Population size
i Number of individuals of type A
λi Transition probability from state i to state i+ 1

µi Transition probability from state i to state i− 1

βi Ratio of the transition probabilities
PA,i, PB,i Expected payoff for players A and B
β1, βN−1 Invasion coefficients in i = 1 and i = N − 1

ρAB, ρBA Fixation probabilities
tfix Average fixation time
s Selection strength

Table 1.1: Symbols used in this thesis





Chapter 2

Deterministic Evolutionary Game
Dynamics

In this work, we particularly focus our attention on the evolutionary dynamics
of a symmetric game with two strategies, A and B. The corresponding matrix,
which easily describes the game, is

(A B

A a b

B c d

)
The matrix is simplified by writing only the payoffs of the row player, as those of
the column player are obtained by exploiting the symmetry of the game.

From time to time, two individuals of the population meet randomly and play
the game, using their strategies. The outcome of each encounter yields payoff values:
an A player receives payoff a when playing against another A player and payoff b
when playing against a B player; similarly, a B player would receive a reward c
from A and a reward d from the interaction with other Bs. Payoffs a, b, c, d can
assume any real value.

2.1 The replicator equation

In the traditional deterministic setting, the population is assumed to be infinite
and well-mixed, so that an individual can interact equally likely with each other.
The evolutionary dynamics points out how the abundance of strategic types changes
in the population over continuous time. The most popular description of such a
dynamics is based on the replicator equation [5, 7, 11, 12].

Let us assume that the population consists of n different strategies and xi is the
fraction of individuals which adopt type i. These densities are continuous variables

5



6 2. Deterministic Evolutionary Game Dynamics

(xi ∈ [0, 1]) and
n∑
i=1

xi = 1. The reproductive success of an individual is the fitness fi

and f =
n∑
i=1

fixi is the average fitness of the entire population. The relative spread

of a strategy is governed by how well this particular type is doing compared with
the population average. When the fitness of a tactic is greater than the average
fitness, the frequency of that tactic will increase within the population, otherwise it
will decrease. The convex set on which the dynamics takes place is the simplex Sn
and the replicator equation appears as follows:

ẋi = xi[fi(x)− f ]. (2.1)

This equation implies a non-innovative selection dynamics, because a strategy
missing in the initial population remains absent and, consequently, a strategy that
is extinct will never reappear. In addition, there is no random drift, this means
that the rate of change for each type cannot be interfered by random events, but it
only depends on the difference between the fitness of the given type and the average
fitness of the whole population. The interpretation of the replicator equation in a
genetic setting highlights the relationship of the reproductive rate of a heritable
trait with the fitness, while in cultural settings it results from individuals imitating
better performing behavior with a probability proportional to the expected increase
in the payoff.

Considering the 2-players-2-strategies symmetric game, the replicator equation
defines the evolution of the population through a system of two non-linear differential
equations on the simplex S2:

ẋA = xA[fA(x)− f ],

ẋB = xB[fB(x)− f ],

xA + xB = 1,

(2.2)

where xA and xB are the fraction of strategists A and B, respectively. A common
choice to settle the fitness is to take it equal to the expected payoff of the player
from the game, assuming many random encounters with other individuals. For
players A and B, fitness is accordingly given by:

fA = axA + bxB, (2.3)

fB = cxA + dxB, (2.4)
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while, of course, the average fitness of the population is computed as:

f = fAxA + fBxB. (2.5)

The system of non-linear differential equations can be analytically solved and the
location and stability of fixed points can be straightforwardly determined. The
equilibrium points are either on the boundary or in the interior of S2, which is
actually a line. More specifically, they are are at:

• xA = 0,

• xA = 1,

• and, possibly, xA = d−b
a−b−c+d .

These fixed points are stable or unstable. Given a small perturbation, if it is close
to a stable equilibrium, the system returns back to the equilibrium and, on the
contrary, if it is near an unstable equilibrium, the system runs away in the direction
of the perturbation itself.

2.2 Selection scenarios

A selection scenario is an evolutionary outcome of the game and it defines the
behavior of the system in the long term. There are three generic outcomes, plus a
non-generic result, predicted by the replicator equation for a 2x2 game [8]:

1. Dominance. In this scenario, one strategy is always better with respect of
the other, so in the end the whole population will consist of players of just
one type. If a > c and b > d, then we will observe that A dominates B, A
is an evolutionary stable strategy and xA = 1 is a stable fixed point, while
xA = 0 is unstable. Conversely, if a < c and b < d, we will have the symmetric
scenario with the dominance of B.

2. Coexistence. Strategies A and B coexist in the stable interior equilibrium
at xA = d−b

a−b−c+d . The system will converge to this point independently of the
original distribution, as long as the population is not made of all As or all Bs.
This happens when a < c and b > d. The fixed points at the boundaries are
unstable.

3. Mutual exclusion. Strategies A and B are bistable. The interior equilibrium
point is unstable, while the two monomorphic points are stable and attracting.
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This is the case for a > c and b < d. Depending on the initial composition of
the population, except for the interior equilibrium, either A or B vanishes,
while the other reaches fixation.

4. Neutrality. This is the non-generic scenario. Whenever in the payoff matrix
a = c and b = d, then fA = fB for all frequencies. This means that each
strategy fares as well as the other no matter its relative distribution in the
population. There are infinite stable equilibria, as every couple (xA, xB) is a
possible fixed point.

The following figure provides a graphical representation of the selection scenarios.

Dominance

B A

Mutual exclusion

B A

Coexistence

B A

Neutrality

B A

Figure 2.1: Summary of the four selection scenarios for a 2x2 game. The arrows
show the direction of natural selection, black circles are stable equilibria and white
circles are unstable equilibria. In the case of neutrality, the dashed line represents
infinite stable fixed points.

Even if the replicator equation, as analysed in this context, does not allow to
model the impact of mutations, a widespread approach in evolutionary games is to
investigate the influence of a new strategy without explicitly modelling its origin.
The new tactic is introduced with an initial frequency that is very small and it
could be eliminated under the effect of selection, or it could invade the population.
We want to stress the fact that, given the payoff matrix of a game, the selection
scenario is deterministically inferred: in the presence of dominance of A, an A

mutant does invade the resident population of B, but a mutant B does not invade
A players (or vice versa for the symmetric situation with the dominance of B),
with coexistence, A does invade B and B does invade A, and finally in the mutual
exclusion scenario, no mutant can invade the local population.



Chapter 3

Stochastic Evolutionary Game
Dynamics

Real populations are usually characterized by a finite number of individuals
and infrequently occurring strategies face a significant chance of being lost, even if
competitively superior. For these reasons, in the past few years, researchers have in-
troduced stochastic evolutionary game dynamics to model also these circumstances.

Here, we consider evolutionary games under frequency dependent selection
assuming a finite but constant population size. The analysis is performed over a
symmetric 2-players-2-strategies game identified by the square matrix:

(A B

A a b

B c d

)
Payoffs a, b, c, d can take any real value, although, according to the microscopic
mechanism of strategy spreading, there may be restrictions on these values (for
example, negative payoffs could not be allowed).

3.1 Stochastic model for finite populations

In the stochastic setting, a possible choice is to assume a population well-mixed
and composed of N individuals. Out of the total N players, i of them follow strategy
A and the remaining N − i follow strategy B. The evolutionary process is analysed
through discrete time steps and a one-dimensional Markov chain, with state space
{0, . . . , N}, is commonly used to characterize all the possible configurations in
which the population can be found. Each state in the chain is identified by means
of the number of A strategists, generically represented with i. It follows that 0

corresponds to the state with only B players and N with only A players.

9



10 3. Stochastic Evolutionary Game Dynamics

The system dynamics is stochastic and depicted as a random walk on the sites of
the chain. At each time step, the number of A players can either increase by one,
remain the same or fall by one. The stochastic process will sooner or later end up
in one of the two pure states, all A or all B and, when such an event occurs, the
population will remain in that configuration forever, because mutations are not
admitted in the model. Therefore, the transition matrix of the Markov process
appears like a tri-diagonal matrix. Denoting with Pi,j the transition probability
from state i to state j, we adopt, from here and throughout the rest of the thesis,
the following notation:

- Pi,i+1 = λi,

- Pi,i−1 = µi,

- Pi,i = 1− λi − µi.

With the symbols λ and µ, we easily identify the probability of a jump from
one state to a neighbour in the unit time. The precise form of these transition
probabilities reflects the nature of interactions in the system and the specific
microscopic mechanism of strategy spreading (see [13, 14] for examples of selection
dynamics in finite populations). The Markov chain with its basic quantities is
represented as follows:

i. . .10 . . . N − 1 Nµ1

λ1

µi

λi
µN−1

λN−1

1 1− λ1 − µ1 1− λi − µi 1− λN−1 − µN−1 1

Figure 3.1: Graphical illustration of a one-dimensional Markov chain for a pop-
ulation of size N . i represents a generic state, 0 can be replaced by B and N by
A to emphasize the presence of a uniform population. States 1 and N − 1 are
characterized by a single mutant in a population of wild-type players and they are
of interest for the analysis of the stochastic dynamics.

Computing the ratio of the hopping probabilities is a way for measuring where the
system is more likely to move. For this purpose, we define:

βi =
λi
µi
. (3.1)

This quantity describes the tendency to go from the state i to i± 1 depending on
whether βi ≷ 1.
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To evaluate the reproductive success of a strategy, it is first necessary to take
in account the expected payoff of a player in the game. Since self-interactions are
excluded and the population is well-mixed (i.e. there is no explicit population
structure and each individual can play with all the others), the average payoffs read
as follows:

PA,i = a
(i− 1)

N − 1
+ b

(N − i)
N − 1

, (3.2)

PB,i = c
i

N − 1
+ d

(N − i− 1)

N − 1
, (3.3)

for players of type A and B, respectively. It is worth mentioning that the average
payoffs depend on the term i (which is the number of players of type A in the
current population). This highlights the underlying frequency dependent process.
As mentioned before, the expected payoffs are key components to shape the success
of the propagation of a strategy. Players with higher average payoff will reproduce
(or will be imitated) with a higher probability. However, due to the occurrence
of a finite number of individuals, stochastic phenomena may affect the expected
evolutionary dynamics. For example, a system with a single mutant A in a resident
population of (N − 1) B strategists can be characterized by λ1 > µ1, i.e. in the
first time step there are better chances to go from the state 1 to the state 2 of
the Markov chain than from 1 to 0. Nonetheless, the transition from 1 to the
monomorphic state 0 has a finite probability µ1 to occur.

3.2 Classification Parameters

In order to compare the performance of the strategies in the long term (i.e.
identify the selection scenarios) some quantities that can fully characterize the
evolutionary process should be defined. In [9, 10, 15], it is mentioned that in finite
population the evolutionary stability of a strategy depends on the resistance against
the invasion of rare mutations, the probability that a single mutant can overtake
the resident population and the timescale of the evolutionary dynamics. Therefore,
three classification parameters are properly introduced. Each value should be
accordingly compared with a reference target. For the identification of these targets,
looking at the population genetics surroundings, the neutral evolution is picked as
the benchmark case to classify the strategy’s evolutionary success in a generic game.
Referring to the distinction made in section 2.2, we have remarked that the neutral
game is a non-generic outcome and it satisfies the conditions a = c and b = d in
the payoff matrix. However, in the stochastic setting, because of the structure of
the formulas (3.2) and (3.3), the previous conditions are not sufficient to observe a
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neutral evolution.

Example 1. Suppose N = 5 and the following payoff matrix:

( A B

A 10 2

B 10 2

)

Because a = c > b = d, it turns out that the expected payoff for a B player is greater
than the one of an A player, so strategy B is favoured.

On the opposite, when a = c < b = d, A players will have an advantage. The
requirement to meet the neutral game for finite population is instead to have
a = b = c = d. Under this constraint on the payoff values, βi = 1 for all i, because
λi = µi regardless the composition of the population. Moreover, the system is
totally symmetric as λi = λN−i and µi = µN−i. This property makes indifferent the
distinction between a mutant A or B, as the value for the classification quantities
will be equivalent.

In the following paragraphs, we review the parameters that mathematically
express the classification conditions, explaining the reference values holding for the
neutral case. Through the capital letters A and B we represent the absorbing states.
For each parameter we establish a graphical notation, using arrows, to put next to
A and B to make more intuitive the interpretation of the selection outcome. B is
written before A to have right/left arrows corresponding to increasing/decreasing i.

3.2.1 Invasion Coefficient

The invasion coefficient evaluates if a single mutant A, or B, has chances to
invade the population, namely it has a higher fitness than the resident population.
Mathematically, this corresponds to the estimation of the parameter βi, for i = 1

and i = N − 1. Considering the neutral game, where β1 = 1 and βN−1 = 1, random
fluctuations determine whether the system moves left or right in the chain. Given
a generic game, instead, depending on whether β is greater or less than 1, once can
say if selection acts to increase or reduce the number of A players. In particular,
if β1 > 1, we can say that selection favors A invading B and, if β1 < 1, we assert
selection opposes A invading B. The opposite holds for the mutant B and esteeming
βN−1.
The following graphical notation indicates the preferred direction of the walk at
each end of the chain, near the two absorbing states:
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β1 > 1 B→ βN−1 > 1 →A
β1 < 1 B← βN−1 < 1 ←A

Table 3.1: Graphical notation for the invasion dynamics.

3.2.2 Fixation Probability

Under stochastic dynamics, a single mutant will sooner or later take over the
entire population or go extinct. For this reason, every state of the Markov chain,
except 0 and N , is transient. In population genetics, the probability that a mutant
overcomes the wild-type players is called fixation probability.

In order to obtain a formula for the fixation probability, the variable xi is defined
as the likelihood to end up in state i = N when starting in state i. A balance
equation can be written for every intermediate state:

xi = λixi+1 + µixi−1 + (1− λi − µi)xi. (3.4)

Given λi, µi > 0 and the two boundary conditions x0 = 0 and xN = 1, the generic
solution is provided by [16, 17]:

xi =

1 +
i−1∑
j=1

j∏
k=1

β−1
k

1 +
N−1∑
j=1

j∏
k=1

β−1
k

. (3.5)

This approach is valid for all processes that evolve through a sequence of one-step
passages. Anyway, it is of primary importance the measure of how likely a single
mutant player can overcome the wild-type players. In the situation with a single A
player, the probability that he reaches fixation in a population of B is exactly x1

and we name it ρAB. It is given by:

ρAB =
1

1 +
N−1∑
j=1

j∏
k=1

β−1
k

. (3.6)

Conversely, the probability that a single B mutant reaches fixation in a population
of A individuals is 1− xN−1 and we call it ρBA. The formula reads as:

ρBA =
1

1 +
N−1∑
j=1

N−1∏
k=j

βk

. (3.7)



14 3. Stochastic Evolutionary Game Dynamics

We observe that the fixation probabilities are complex formulas expressed in terms
of the parameter β and they include information on all the transition probabilities
of the Markov chain.

A neutral mutant, whether it is of type A or type B, fixates with probability
equal to 1

N
. This is the reference value for the comparison, so we say that selection

favors A replacing B if ρAB > 1
N

and, in contrast, selection opposes A replacing B
if ρAB < 1

N
. Symmetrically, similar definitions with ρBA hold for the mutant B.

Again, we introduce a graphical notation, here with double arrows, to express the
fact that a mutant acting in a generic game has or not more chances of fixation
with respect of a neutral mutant.

ρAB >
1
N

B⇒ ρBA >
1
N
⇐A

ρAB <
1
N

B⇐ ρBA <
1
N
⇒A

Table 3.2: Graphical notation for the fixation probabilities.

3.2.3 Fixation Time

A single mutant can eventually overcome a resident population. Evaluating
also the timescale along which the process takes place provides valuable informa-
tion about the evolutionary dynamics. The conditional mean time to absorption,
hereafter named average fixation time or just fixation time, is the measure of the
average number of time steps until the strategy of a mutant wins over the other one
and the opposite absorbing state is reached, provided that such an event occurs.
This time is measured in elementary time steps and the stochastic dynamics of the
system is governed by the following master equation:

Pi(t+ 1) = λi−1Pi−1(t) + µi+1Pi+1(t) + (1− λi − µi)Pi(t), (3.8)

where Pi(t) is the probability of finding the system in state i at time t [18]. Solving
recursively the equation, it is possible to determine the expression for the fixation
time for a single A, or B, mutant. In [10], it is shown that, when there is just
one different player in a resident population, the mean time to absorption does
not depend on the peculiar side the walk starts. For this reason, we can call it
generically tfix and it reads as:

tfix =
N−1∑
n=1

s0,n−1sn,N−1

λnqns0,N−1

, (3.9)
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where sn,m =
m∑
k=n

qk and qk =
k∏
j=1

β−1
j with q0 = 1.

The time to reach fixation depends specifically on the microscopic mechanism
of strategy spreading. According to the method adopted, also for the neutral
game, different reference values subsist. Here, the target value is generically named
tfix−neutral. If a mutant, in a generic game, takes more time to fixate with respect
to a mutant in the neutral game, fixation is said to be slow, otherwise it is said to
be fast. We translate this condition in a graphical notation with a double head for
the fixation arrow when fixation is fast.

tfix > tfix−neutral ⇒
tfix < tfix−neutral ⇒⇒

Table 3.3: Graphical notation for the fixation time.

3.3 The Moran Process with linear fitness

The Moran process is a common model of population genetics [19]. In evolu-
tionary game theory, it is introduced as a microscopic dynamics for the strategy
spreading in finite population and the reproductive success of a strategy is com-
monly named fitness. The process basically consists of three events that will recur
continuously at each time step:

- selection: an individual is randomly chosen for reproduction with a probability
proportional to its fitness,

- reproduction: the selected individual produces one identical offspring that
will mature by the next time step,

- death: to keep the population size constant, a player taken at random from
the population of adult individuals is removed.

This stochastic one-step evolution, which overlaps the Markov chain, can be re-
ferred as a birth-death process. The classical Moran process ([19, 20]), however,
corresponds to the special case where selection is constant. In evolutionary game
theory, instead, it is preferable to examine models under frequency dependent
selection. The simplest approach to relate fitness with the distribution of players in
the population is to adopt a linear fitness. For players A and B, it is defined as
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follows:

fA,i = 1− s+ sPA,i, (3.10)

fB,i = 1− s+ sPB,i. (3.11)

The parameter s represents the intensity of selection, or selection strength. It
measures how the resulting payoff from the game influences the overall fitness.
The reproductive success appears then as a convex combination of the background
fitness, which is usually set to 1, and the average payoff of the player. Here, the
intensity of selection can possibly range between 0 and 1 and we can distinguish
three situations:

- s = 0: neutral drift, this means that updating is mostly casual due to random
fluctuations through the states of the Markov chain;

- 0 < s < 1: expected payoff and drift contribute both to the evolutionary
dynamics;

- s = 1: only the expected payoff determines fitness.

In [9, 10], a thorough analysis of the selection dynamics, subordinate to the
Moran process with this definition for the fitness, has been carried out. The authors
considered the special case with s = 1, limiting the payoffs of the game to positive
values, in order to be sure to obtain a positive fitness. We will deepen their results
in the next sections. Now, we conclude this part with the specific expressions for the
transition probabilities for this mechanism of strategy spreading. The probability
of adding an A-offspring is:

λi =
ifA,i

ifA,i + (N − i)fB,i
N − i
N

, (3.12)

while the probability of adding a B-offspring is:

µi =
(N − i)fB,i

ifA,i + (N − i)fB,i
i

N
. (3.13)

Obviously, 1− λi − µi is the probability that the population configuration does not
change, because the newborn replaces a player of the same type. Finally, in [10], it
is easily shown that under the Moran process the fixation probability of a single
neutral mutant, either of type A or B, is 1/N and its fixation time is N(N − 1).
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3.3.1 Selection Scenarios

The parameters introduced in section 3.2 are used for assessing the behaviour
of the system under a stochastic dynamics. There are ideally 32 combinations
depending on whether A/B invades B/A, A and B fixate or not, and fixation is
fast or slow.

In [9], three theorems exclude some arrangements. We briefly retrace them.

Theorem 3.1. If β1 > 1 and βN−1 > 1, then ρBA < 1/N < ρAB.

Literally, this means that if selection favors A invading B, but opposes B
invading A, then selection must favor A replacing B and oppose B replacing A. In
this scenario, A dominates B. Symmetrically, when β1 < 1 and βN−1 < 1, then
ρAB < 1/N < ρBA and B dominates A. Regarding the graphical notation, if the
single arrows of the invasion coefficients point to a certain direction (i.e. B→→A,
or B←←A), then the double arrows of the fixation probabilities must point in the
same direction (meaning, B→→⇒⇒A, or B←←⇐⇐A).

Theorem 3.2. If ρAB < 1/N and ρBA < 1/N , then β1 < 1 and βN−1 > 1.

Under these terms, if selection opposes A replacing B and B replacing A, then
selection must oppose A invading B and B invading A as well. This is the case
where selection opposes changes. It cannot happen that fixation is possible but the
selection does not favor the invasion. So, it is not admissible B←→⇒⇐A.

Theorem 3.3. If ρAB > 1/N and ρBA > 1/N , then β1 > 1 and βN−1 < 1.

The theorem states that if selection favors A and B replacing each other, then
selection must favor A and B invading each other as well. This is the case where
selection favors changes. Therefore, it is forbidden the scenario of mutual invasion
and no fixation, represented as B→←⇐⇒A.

In [10], two conjectures related to the fixation time are proposed for finite
population. These hypothesis are based on a numerical evaluation of the equation
(3.9) for numerous (∼ 50000) random simulations of 2-players-2-strategies games
and they allow to rule out some selection scenarios. According to their results:

1. If ρAB > 1
N

and ρBA > 1
N
, then tfix ≥ tfix−neutral. So, if mutual invasion and

mutual fixation are favored, then fixation is experienced to be slow.

2. If β1 < 1 and βN−1 > 1, then tfix ≤ tfix−neutral. Thus, if selection opposes
mutual invasion then fixation is fast, independently whether the selection
favors fixation or not.
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Based on the three theorems and the two conjectures, it is hence possible to
reduce the casuistries for the dynamics and the speed of the evolutionary process.
Only 12 qualitatively different types of game remain and the number of classes
drops to 7 if symmetric situations under the interchange of A and B are grouped
together. These selection scenarios actually define generic outcomes. With the
exception of the neutral game, we do not consider here, and in the following, the
other possible non-generic scenarios, where at least one of the five indicators (β1,
βN−1, ρAB, ρBA, tfix) is equal to the corresponding reference value of the neutral
game.

Below, we list the admissible selection scenarios in finite populations, for the
Moran process with linear fitness.

Class Symbol Invasion and fixation scenario
1.A B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B B←←⇐⇐⇐⇐A

2.A B→←⇒⇒A Mutual invasion and slow fixation of one strategy
2.B B→←⇐⇐A

3 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation
4.A B→→⇒⇒A Invasion and slow fixation of one strategy
4.B B←←⇐⇐A

5.A B→←⇒⇒⇒⇒A Mutual invasion and quick fixation of one strategy
5.B B→←⇐⇐⇐⇐A

6 B→←⇒⇐A Mutual invasion and slow fixation of both strategies
7.A B←→⇒⇒⇒⇒A No invasion and quick fixation of one strategy
7.B B←→⇐⇐⇐⇐A

Table 3.4: Selection scenarios under the Moran process with linear fitness.

The stochastic dynamics appears much more diversified than the deterministic
one. Looking carefully at the selection scenarios in the table, however, we recover
sometimes well-known outcomes. For example, it is still possible that a strategy
dominates the other, even if before reaching fixation it may take more or less time.
Other scenarios instead are totally new. Considering for example the case 7.A (or
symmetrically the 7.B), selection does not favor the invasion of the mutant, anyway
due to the fact that the process is stochastic, it turns out that it is very likely the
fixation of the mutant in the population. Another unexpected result contemplates
the mutual invasion but, in the end, one of the two strategies is favourite and,
eventually, it will fixate.
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As a final remark, we point out that the selection scenario that occurs in a
given game (i.e. for a given payoff matrix) typically depends on the size N of the
population. In [9], some numerical examples are reported to attest the fact that the
evolution in finite population is size-dependent and therefore best players will not
be necessarily able to overcome the entire population. Let consider one of them.

Example 2. The payoff matrix of the game is:

( A B

A 3.1 1.02

B 3 1

)

Because a > c and b > d, strategy A is the best reply to both A and B. In fact,
the deterministic replicator dynamics predicts the dominance of the A strategy.
Instead, surprisingly, in finite populations we can observe a variety of selection
scenarios depending on the size N . It is shown that for N ≤ 21, selection favors
just the invasion and the fixation of a mutant B and the corresponding scenario
is therefore B←←⇐⇐⇐⇐A. For an intermediate range of N values, different scenarios,
where selection opposes mutual invasion but can favor one of the two strategies,
succeed one another. In particular, for 21 < N ≤ 30 the scenario is B←→⇐⇐⇐⇐A, for
30 < N ≤ 50 it is B←→⇐⇐⇒⇒A and finally, for 50 < N ≤ 101 it becomes B←→⇒⇒⇒⇒A.
Then, only for N ≥ 102, strategy A has good chances to dominate and, indeed, the
expected outcome is B→→⇒⇒⇒⇒A.

3.3.2 Large N Limit

In this section, we briefly review the results for the large N limit under the
Moran process with linear fitness (for a deeper analysis see [10]). The main idea is
to derive the asymptotic approximation of the basic terms in the fixation probability
and fixation time formulas (3.6, 3.7, 3.9). First, let define qk:

qk =
k∏
i=1

β−1
i = exp(

k∑
i=1

ln β−1
i ). (3.14)

Considering a large N , the above sum can be written as an integral:

N

∫ y

0

dx ln
x(c− d) + d

x(a− b) + b
, (3.15)
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with y = k
N
. The evaluation of that integral leads to the following result:

q̃(y) = (d/b)y
(1 + y

c−d
d )y+d/(c−d)

(1 + y
a−b
b )y+b/(a−b)

, (3.16)

and it holds:
qk = q̃(y)N . (3.17)

In the N →∞ limit, it is possible to approximate qk at the ends of the chain as it
follows:

qk ≈

(d
b
)k , k � N,

q̃(1)N(a
c
)N−k , N − k � N.

(3.18)

In order to calculate the fixation probabilities and the fixation time when N →∞,
only the terms around the maximum of q̃(y) are relevant. According to the relative
value of the payoffs a, b, c, d, this maximum can possibly be in correspondence of:

• y = 0,

• y = 1,

• y = y∗ = d−b
a−b−c+d .

As in the replicator equation description, the relevant parameters in the large N
limit behavior are a − c and b − d. In table 3.5, an exhaustive summary of the
results obtained by the authors is reported.

Scenario Symbol Conditions ρAB ρBA tfix

a > c, b > d :

1.A B→→⇒⇒⇒⇒A q̃(1) < 1 1− d
b

∼ q̃(1)N ∼ N lnN

a < c, b < d :

1.B B←←⇐⇐⇐⇐A q̃(1) > 1 ∼ q̃(1)−N 1− a
c

∼ N lnN

a < c, b > d :

2.A B→←⇒⇒A q∗ < q̃(1) < 1 1− d
b

∼ q̃(1)N ∼ ( q̃(1)
q∗

)N

2.B B→←⇐⇐A q∗ < 1 < q̃(1) ∼ q̃(1)−N 1− a
c

∼ ( 1
q∗

)N

a > c, b < d :

3 B←→⇐⇐⇒⇒A 1 < q̃(1) < q∗ ∼ ( 1
q∗

)N ∼ ( q̃(1)
q∗

)N ∼ N lnN

Table 3.5: Fixation probabilities and times in the N → ∞ limit for different
scenarios. q∗ is the evaluation of q̃ in y = y∗.

Of the seven scenarios that are generically possible in finite populations, the
condition of N large excludes some of them, refining the classification to just three
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outcomes. The dynamics of this stochastic process is predicted through the same
assessment of the values in the payoff matrix as well as for infinite population under
the replicator equation. Nevertheless, the upshot is slightly different. In fact, we
can properly match the scenario 1.A and 1.B with the deterministic dominance of
A or B, and the scenario 3 with the mutual exclusion. On the contrary, scenarios
2.A and 2.B predict a mutual invasion, but in the end the fixation of one of the
two strategy occurs, even if this fixation is slow. This result does not well match
the coexistence deterministic case, which instead expects a system with a mix of
the two strategies.

According to the graphical notation, the admitted outcomes are shown in the
next table:

Class Symbol Invasion and fixation scenario
1.A B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B B←←⇐⇐⇐⇐A

2.A B→←⇒⇒A Mutual invasion and slow fixation of one strategy
2.B B→←⇐⇐A

3 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 3.6: Selection scenarios in the N →∞ limit under the Moran process with
linear fitness.





Chapter 4

Stochastic dynamics under arbitrary
intensity of selection

In order to specify how the strategies spread within a finite population, a
microscopic mechanism is required. At the state of the art, two different main
approaches have been defined: the fitness-based and the pairwise comparison. Often,
the former method is adopted when problems in evolutionary biology are handled,
while the second is more associated to phenomena of cultural evolution and imitation
learning related to the propagation of behaviours and ideas. In both typologies, the
relative influence of the expected payoff in determining the evolutionary success of
a strategy is controlled by an external parameter, the so called intensity of selection,
again denoted by s. When s = 0, the neutral evolution is recovered, even if the
general condition on the payoffs in the matrix (a = b = c = d) is not satisfied.

In this chapter, we extend the theory of stochastic evolutionary game dynamics
for 2-players-2-strategies games discussing our theoretical results. We present in
detail two evolutionary mechanisms: the Moran process with exponential fitness
and the pairwise comparison with the Fermi function. Both are structured so that
the parameter s can assume any positive real value and the payoffs in the matrix
have no restrictions. For each method we dedicate a specific section organized
in this way: after a brief description of the process, we illustrate the selection
scenarios that are generically possible. Then, we derive the behavior of the system
for the large N limit. Furthermore, as a more relevant result, we establish the
selection scenarios under strong and extreme selection, when the parameter s is
large and tends to infinity. Finally, we conclude the analysis with the derivation of
the deterministic limit under extreme selection.

23
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4.1 The Moran process with exponential fitness

As introduced in section 3.3, the Moran process is structured in three phases:
selection, reproduction and death. After this primary definition, a mapping from
expected payoffs to fitnesses should be defined. Of course, many choices are possible
and we have already explained the option with the linear fitness and the particular
case of s = 1. This method has been deeply investigated also in [21] for s � 1,
when the selection strength is very small, namely weak selection, and consequently
the resulting payoff from the game provides only small perturbations on the overall
fitness of a player. Anyway, this approach, although it enables an analytical
description of the evolutionary process, has some weaknesses. By definition the
fitness has to be positive, but if negative payoffs are present in the matrix of
the game, then it becomes necessary to restrict to certain values the intensity of
selection and put a maximum value smax. With this limitation, it could not be
possible any more to explore the case of strong selection, when fitness tends to
equal the average payoff for s → 1. This drawback can be overcome if fitness is
defined as an exponential function of the payoff. This mapping is introduced in
[22] and allows the selection intensity to take any positive real value. The Moran
process with exponential fitness turns out to be a very general model, not only
because theoretical results can be obtained for any intensity of selection, but also
because payoffs have no limitations in the values they assume.

In this section, we are going to show our analytical results for this mechanism
of strategy spreading. Specifically, the fitness of players A and B is defined as:

fA,i = exp(sPA,i), (4.1)

fB,i = exp(sPB,i), (4.2)

where PA,i and PB,i are the expected payoffs settled in (3.2), (3.3). The transition
probabilities appear like:

λi =
i exp(sPA,i)

i exp(sPA,i) + (N − i) exp(sPB,i)

N − i
N

, (4.3)

µi =
(N − i) exp(sPB,i)

i exp(sPA,i) + (N − i) exp(sPB,i)

i

N
. (4.4)

The relevant parameter βi, defined in formula (3.1), can be simplified as follows:

βi =
exp(sPA,i)

exp(sPB,i)
= exp(s(PA,i − PB,i)) = exp(s∆Pi), (4.5)
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where the difference between the average payoffs of two different players, given the
configuration of the population, is shorten with ∆Pi.

Lastly, to conclude the description of this process, we remind that for a neutral
game the fixation probability of a single mutant, either of type A or B, is 1/N ,
while the fixation time is N(N − 1).

4.1.1 Selection scenarios

In order to identify the selection scenarios that are generically possible in finite
populations under the Moran process with exponential fitness, we rely on the logic
of the proofs of theorems 3.1, 3.2 and 3.3 in Appendix of [9].

The payoff difference ∆Pi can be expressed in terms of ∆P1 and ∆PN−1:

∆Pi =
(N − 1− i)∆P1 + (i− 1)∆PN−1

N − 2
, (4.6)

for i = 1, . . . , N − 1. Considering that the expected payoffs are linear with respect
to i and the exponential function is an increasing function, the values of the ratio
βi are monotonically increasing, constant or decreasing depending on whether
∆PN−1 T ∆P1. Thanks to the properties of the exponential function, we rewrite,
for our purposes, the formulas for the fixation probabilities in this way:

1

ρAB
− 1 =

N−1∑
i=1

i∏
k=1

β−1
k =

N−1∑
i=1

exp(−sP1,i) = s1, (4.7)

1

ρBA
− 1 =

N−1∑
i=1

N−1∏
k=i

βk =
N−1∑
i=1

exp(sPN−i,N−1) = s2. (4.8)

The notations P1,i and PN−i,N−1 express the sum of the payoff differences and they
can be translated in terms of the payoffs in the game matrix as follows:

P1,i =
i∑

k=1

∆Pk

=
i

2(N − 1)
(2(b− d)(N − 1) + i(a− b− c+ d)− (a− b+ c− d)),

(4.9)
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PN−i,N−1 =
i∑

k=1

∆PN−k

=
i

2(N − 1)
(2(a− c)(N − 1)− i(a− b− c+ d)− (a− b+ c− d)).

(4.10)

It is evident that whenever P1,i is positive, since it appears as an argument of the
exponential function and it is multiplied by −s, it produces an addendum lower
than 1 in the sum s1; whereas when it is negative, it produces an addendum greater
than 1. The opposite for PN−i,N−1, because it is multiplied by +s. Finally, given
the above formulas, instead of comparing the fixation probabilities of a generic
game with the benchmark 1/N , we compare s1 and s2 with N − 1.

After these preliminaries, we can now list the theorems with their proofs.

Theorem 4.1. If β1 > 1 and βN−1 > 1, then ρBA < 1/N < ρAB.

Proof. β1 > 1 and βN−1 > 1 correspond to ∆P1 > 0 and ∆PN−1 > 0, this implies
that ∆Pi > 0 for all i = 1, . . . , N − 1. Therefore, the N − 1 elements in the sum s1

are lower than 1 (and positive). On the contrary, in the sum s2 they are greater
than 1. That is s1 < N − 1 < s2, from which it follows that ρBA < 1/N < ρAB.

B→→⇒⇒A is the only option when selection favors the invasion of A but not of B.
For β1 < 1 and βN−1 < 1 we have the symmetric version of this theorem, which

implies that ρAB < 1/N < ρBA. The proof is exactly the same as above, just
considering that now the elements in the sum s1 are greater than 1, while in the
sum s2 are lower than 1 and thus s2 < N − 1 < s1 allowing only B←←⇐⇐A.

Theorem 4.2. If ρAB < 1/N and ρBA < 1/N , then β1 < 1 and βN−1 > 1.

Proof. If ∆P1 < 0 and ∆PN−1 > 0, we have to distinguish two cases according to
the sign of P1,N−1, which is the sum of ∆Pi for all i,:

1. P1,N−1 < 0 =⇒ ρAB < 1
N
, because all elements in the sum s1 are greater

than 1.

2. P1,N−1 > 0 =⇒ ρBA < 1
N
, because all elements in the sum s2 are greater

than 1.

In conclusion, ρAB, ρBA cannot be both greater than 1/N . It is not admissible
the case B←→⇒⇐A, while all other combinations of the fixation probabilities, given
B←→A, are possible. In particular B←→⇐⇒A implies the above theorem.
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Theorem 4.3. If ρAB > 1/N and ρBA > 1/N , then β1 > 1 and βN−1 < 1.

Proof. If ∆P1 > 0 and ∆PN−1 < 0, we have to distinguish again two cases according
to the sign of P1,N−1:

1. P1,N−1 < 0 =⇒ ρBA >
1
N
, because all elements in the sum s2 are lower than

1.

2. P1,N−1 > 0 =⇒ ρAB >
1
N
, because all elements in the sum s1 are lower than

1.

We can conclude that ρAB, ρBA cannot be both lower than 1/N and the scenario
of mutual invasion but no fixation (B→←⇐⇒A) is forbidden. Of course, all other
combinations with B→←A are generically possible and B→←⇒⇐A implies the above
theorem.

To confirm that also the two conjectures made in [10] are still valid for the
Moran process with exponential fitness, we have performed similar Monte Carlo
simulations (see Chapter 5 for more details). Given the combinations of invasion
and fixation that are allowable by the three theorems, it turns out that:

1. for the scenario of mutual invasion and fixation of both strategies (B→←⇒⇐A),
the fixation cannot be fast, this means that we have always observed tfix <
N(N − 1);

2. when selection does not favor invasion (B←→A), then the fixation is experi-
enced to be fast (tfix > N(N − 1)), no matter whether the fixation is favored
or not. Thus, we can possibly have B←→⇐⇐⇒⇒A, B←→⇒⇒⇒⇒A or B←→⇐⇐⇐⇐A.

Given all these results, actually, we have exactly recovered the same selection
scenarios that are generically possible under the Moran process with linear fitness
(as reported in table 3.4). Hence, the stochastic dynamics is still characterized by
outcomes more or less in agreement with the deterministic results and outcomes
totally new.

In table 4.1, the generic selection scenarios are summarised with the correspond-
ing symbol and the description of the evolutionary dynamics.
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Class Symbol Invasion and fixation scenario
1.A B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B B←←⇐⇐⇐⇐A

2.A B→←⇒⇒A Mutual invasion and slow fixation of one strategy
2.B B→←⇐⇐A

3 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation
4.A B→→⇒⇒A Invasion and slow fixation of one strategy
4.B B←←⇐⇐A

5.A B→←⇒⇒⇒⇒A Mutual invasion and quick fixation of one strategy
5.B B→←⇐⇐⇐⇐A

6 B→←⇒⇐A Mutual invasion and slow fixation of both strategies
7.A B←→⇒⇒⇒⇒A No invasion and quick fixation of one strategy
7.B B←→⇐⇐⇐⇐A

Table 4.1: Selection scenarios under the Moran process with exponential fitness.

4.1.2 Large N limit

We now propose an analysis of the large N limit for the Moran process with
exponential fitness, in order to verify which selection scenarios are generically
possible for N →∞. We follow the procedure adopted in [10] and briefly discussed
in section 3.3.2.

Let us refresh how the formulas of the fixation probabilities and the fixation
time look like, with a slight change in the notation for the aims of this section:

ρAB =
1

1 +
∑N−1

j=1

∏j
k=1 β

−1
k

=
1

s0,N−1

, (4.11)

ρBA =
1

1 +
∑N−1

j=1

∏N−1
k=j βk

=
1

sN,0,N−1

, (4.12)

tfix =
N−1∑
n=1

s0,n−1sn,N−1

λnqns0,N−1

. (4.13)

Remember that sn,m =
m∑
k=n

qk, while sN,n,m =
m∑
k=n

qNk. We have to denote the basic

quantities qk and qNk. They read as:
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qk =
k∏
i=1

β−1
i = exp(−s

k∑
i=1

∆Pi) = exp(−sP1,k), (4.14)

qNk =
N−1∏
i=N−k

βi = exp(s
N−1∑
i=N−k

∆Pi) = exp(sPN−k,N−1), (4.15)

with the boundary conditions q0 = 1 and qN0 = 1.
In order to analyse the behavior of the system with a large population size, we

express the above sums, P1,k and PN−k,N−1, in terms of y = k
N
, obtaining:

P1,k =
k

2(N − 1)
[2(b− d)(N − 1) + k(a− b− c+ d)− (a− b+ c− d)]

≈ N
y

2

[
2(b− d) + y(a− b− c+ d)− 1

N
(a− b+ c− d)

]
≈ N

y

2
[2(b− d) + y(a− b− c+ d)] ,

(4.16)

and

PN−k,N−1 =
k

2(N − 1)
[2(a− c)(N − 1)− k(a− b− c+ d)− (a− b+ c− d)]

≈ N
y

2

[
2(a− c)− y(a− b− c+ d)− 1

N
(a− b+ c− d)

]
≈ N

y

2
[2(a− c)− y(a− b− c+ d)] .

(4.17)

Given the formula of P1,k, the term qk can be straightforwardly formulated as
qk = q̃(y)N , where q̃(y) = exp(−s

[
y
2
(2(b− d) + y(a− b− c+ d)

]
).

As suggested in the reference paper, when N →∞, the relevant terms in qk are
near k/N ≈ ymax, where q̃(y) takes its maximum at ymax. In particular, the value
ymax can be at:

• y = 0,

• y = 1,

• y = y∗ = d−b
a−b−c+d ,

depending on the payoff differences a− c and b− d. Therefore, we can approximate
P1,k and PN−k,N−1 as follows:
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P1,k ≈


(b− d) y = 0

N y∗

2
(b− d) y = y∗

N
2

(a+ b− c− d) y = 1

(4.18)

PN−k,N−1 ≈


(a− c) y = 0

N y∗

2
[2(a− c) + (b− d)] y = y∗

N
2

(a+ b− c− d) y = 1

(4.19)

and hence, ∆P1 ≈ (b− d) while ∆PN−1 ≈ (a− c). Finally, at the ends of the chain,
the term qk is simplified:

qk ≈

exp(−sk(b− d)) k � N,

exp(−sN
2

(a+ b− c− d)) exp(s(N − k)(a− c)) N − k � N.
(4.20)

Provided all these approximations, we can now discuss the behavior of the
evolutionary dynamics in the large N limit. The underlying idea, taken from the
paper [10], is to use the exact expressions for the fixation probabilities and the
fixation time, but to consider in the sums only those terms which mainly contribute
to the final result. As we have already mentioned, these terms would be possibly at
y = 0, y = y∗, y = 1.

Below, we report in details the generic cases and the evaluation of the parameters
relevant for the classification.

- case a>c and b>d -
Invasion coefficient. Given the relative values of the payoffs in the game matrix, it
follows that ∆P1 > 0 and ∆PN−1 > 0. This implies β1 > 1 and βN−1 > 1, meaning
that selection favors only the invasion of an A mutant (B→→A).
Fixation probability. In this scenario, given the payoffs, all ∆Pi are positive and as
a consequence ymax = 0. Therefore:

s0,N−1 ≈
∞∑
k=0

exp(−s(b− d))k =
1

1− exp(−s(b− d))
, (4.21)

sN,0,N−1 ≈ 1 + exp

(
s

(
(a− c)N

2
+ (b− d)

N

2

))
→∞. (4.22)

The fixation probabilities, evaluated with respect of the benchmark value 1/N ,
result:

ρAB =
1

s0,N−1

= 1− exp(−s(b− d)) = 1− exp(sd)

exp(sb)
>

1

N
, (4.23)
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and
ρBA =

1

sN,0,N−1

<
1

N
, (4.24)

because sN,0,N−1 goes to infinity exponentially. Selection favors only the fixation of
a mutant with strategy A (B→→⇒⇒A).
Fixation time. In the N →∞ limit, the transition probability from state i to state
i+ 1 can be expressed in terms of y in the following way:

λi =
y(1− y)

y + (1− y)α(y)
, (4.25)

where α(y = i/N) = fB,i/fA,i. This transition probability behaves asymptotically
as:

1

λi
=


exp(s(d−b))

y
y � 1,

1
1−y 1− y � 1.

(4.26)

In the formula of tfix, λi appears in fact in the denominator and develops singularities
at y = 0 and y = 1. Let see separately the asymptotic behaviour around the two
boundaries.

The ratio s0,n−1/s0,N−1 → 1 for any finite y = n/N and hence also for y = 0. In
addition, the ratio sn,N−1/qn is:

sn,N−1

qn
=

N−1∑
k=n

qk
qn

= exp(−s(b− d))0 + exp(−s(b− d))1 + exp(−s(b− d))2 + . . .

=
∞∑
k=0

exp(−s(b− d))k

=
1

1− exp(−s(b− d))

(4.27)

The overall contribution at y = 0 is then given by:

exp(s(d− b))
1− exp(−s(b− d))

∑
n=1

1

y
, (4.28)

the upper limit of the sum is not specified as we are considering just the terms close
to the lower limit. In particular, it results:

∑
n=1

1

y
∼ N

∫
1/N

1

y
dy ∼ N lnN. (4.29)
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For y = 1, again s0,n−1/s0,N−1 → 1, while sn,N−1/qn is:

sn,N−1

qn
=

N−1∑
k=n

qk
qn

= exp(s(a− c))0 + exp(s(a− c))−1 + exp(s(a− c))−2 + . . .

=
∞∑
k=0

exp(s(a− c))−k

=
exp(s(a− c))

exp(s(a− c))− 1

(4.30)

and the transition probability λ gives a contribution of N lnN .
Taking in account all the above formulas, we derive the large N asymptotic

expression for the fixation time:

tfix ≈
[

exp(−s(b− d))

1− exp(−s(b− d))
+

exp(s(a− c))
exp(s(a− c))− 1

]
N lnN ∼ N lnN. (4.31)

The fixation time is lesser than the benchmark value N(N − 1), hence it is
labelled as fast and in conclusion B→→⇒⇒⇒⇒A is the selection scenario for this case.

- case a<c and b<d -
Invasion coefficient. Here, ∆P1 and ∆PN−1 are both negative. As a consequence,
β1, βN−1 < 1 and selection favors exclusively the invasion of a mutant B (B←←A).
Fixation probability. The value for which q̃(y) takes its maximum is at ymax = 1

and it follows:

s0,N−1 ≈ 1 + exp

(
−s
(

(a− c)N
2

+ (b− d)
N

2

))
→∞, (4.32)

sN,0,N−1 ≈
∞∑
k=0

exp(s(a− c))N−k =
1

1− exp(s(a− c))
. (4.33)

The fixation probabilities for this scenario result:

ρAB =
1

s0,N−1

<
1

N
, (4.34)

and
ρBA =

1

sN,0,N−1

= 1− exp(s(a− c)) = 1− exp(sa)

exp(sc)
>

1

N
, (4.35)

allowing only the mutant B to have good chances to fixate (B←←⇐⇐A).
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Fixation time. Following the same considerations as in the previous case, but
interchanging the players A and B (switching a 
 d and b 
 c in the payoff
matrix) we can easily recover the following fixation time for this scenario:

tfix ≈
[

exp(−s(c− a))

1− exp(−s(c− a))
+

exp(s(d− b))
exp(s(d− b))− 1

]
N lnN ∼ N lnN. (4.36)

The sum in the square brackets is finite and the tfix ∼ N lnN < N(N − 1). The
fixation time is classified as fast and we conclude that B←←⇐⇐⇐⇐A is the selection
scenario for the case a < c and b < d.

- case a<c and b>d -

Invasion coefficient. Here, we observe ∆P1 > 0 and ∆PN−1 < 0. The invasion
coefficients turn out to be β1 > 1 and βN−1 < 1. Therefore, selection favors
strategies A and B invading each other (B→←A).

Fixation probability. To determine the fixation probabilities, we have to differentiate
two situations depending on whether q̃(1) ≶ 1.

q̃(1) < 1. In this case P1,N−1 > 0 and ymax = 0, then:

s0,N−1 ≈
∞∑
k=0

exp(−s(b− d))k =
1

1− exp(−s(b− d))
, (4.37)

sN,0,N−1 ≈ 1 + exp

(
s

(
(a− c)N

2
+ (b− d)

N

2

))
≈ exp(sP1,N−1)→∞. (4.38)

The fixation probabilities appear as:

ρAB =
1

s0,N−1

= 1− exp(−s(b− d)) = 1− exp(sd)

exp(sb)
>

1

N
, (4.39)

and
ρBA =

1

sN,0,N−1

<
1

N
. (4.40)

q̃(1) > 1. It this situation P1,N−1 < 0, while ymax = 1. We derive:

s0,N−1 ≈ 1 + exp

(
−s
(

(a− c)N
2

+ (b− d)
N

2

))
≈ exp(−sP1,N−1)→∞,

(4.41)

sN,0,N−1 ≈
∞∑
k=0

exp(s(a− c))N−k =
1

1− exp(s(a− c))
. (4.42)
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The fixation probabilities become:

ρAB =
1

s0,N−1

<
1

N
, (4.43)

and
ρBA =

1

sN,0,N−1

= 1− exp(s(a− c)) = 1− exp(sa)

exp(sc)
>

1

N
. (4.44)

As a result, we note that even if mutual invasion is observed, according to the
sign of q̃(1), one of the two strategies is favoured for the fixation. Scenarios B→←⇒⇒A
and B→←⇐⇐A are both plausible.

Fixation time. Also to evaluate the fixation time we make the same distinction as
above. The proofs is a little bit more complex, but we can safely follow the same
steps as in [10].

q̃(1) < 1. The ratio s0,n−1/s0,N−1 → 1 as N →∞. The function P1,k is concave
and therefore q̃(y) takes its minimum at y = y∗. The quantity 1/qn in the formula
of tfix develops singularity exactly in y∗, while the transition probability λn is
singular only in y = 0 and y = 1, where we have already seen that its contribution
is of ∼ N lnN . The last term to analyse is sn,N−1. It is approximated with q̃(1), as
it takes the main contribution in y = 1. Given all these asymptotic expressions,
the fixation time becomes:

tfix ∼
N−1∑
n=1

q̃(1)

q∗

N

∼
√
N
q̃(1)

q∗

N

. (4.45)

The contribution of λ has been neglected as it is irrelevant with respect of the
exponential growth of the tfix near y∗.

q̃(1) > 1. This case is totally similar to the previous with the exception that,
near y∗, the term s0,n−1 → 1/(1−exp(−s(b−d))), which is a constant finite number.
The fixation time can be reduced as:

tfix ∼
√
N

(
1

q∗

)N
. (4.46)

Both the tfix for this scenario are exponentially large in N , which tends to
infinity, and therefore the time to reach fixation is classified as slow. Graphically,
we represent this condition preserving the notation B→←⇒⇒A (when q̃(1) < 1) and
B→←⇐⇐A (when q̃(1) > 1).

- case a>c and b<d -

Invasion coefficient. According to the relative values of a and c, b and d, it follows
∆P1 < 0 and ∆PN−1 > 0. Therefore, β1 < 0 while βN−1 > 0 and no mutant is
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favored for the invasion (B←→A).
Fixation probability. In this framework, the main contributions to s0,N−1 and
sN,0,N−1 come to the terms around ymax = y∗. We observe:

s0,N−1 ≈ 1 + exp(−sP1,k∗) ≈ exp

(
−sN

2
y∗(b− d)

)
→∞, (4.47)

sN,0,N−1 ≈ exp(sPk∗,N−1) ≈ exp

(
s
N

2
y∗(a− c)

)
→∞. (4.48)

The fixation probabilities result:

ρAB =
1

s0,N−1

<
1

N
, (4.49)

and
ρBA =

1

sN,0,N−1

<
1

N
. (4.50)

According to this result, we can set the arrows in this way: B←→⇐⇒A.
Fixation time. To derive the fixation time in this case, we significantly rely on the
assumptions reported in [10] for the corresponding scenario. They remark that
singularities are present at y = 0, y = y∗ and y = 1. They provide arguments to
assert that close to y = 0 and y = 1 the contribution is in the order of magnitude
of ∼ N lnN , while in y = y∗ is ∼ N . The overall result leads to an asymptotic
behavior of the fixation time in the order of ∼ N lnN . Hence, the evolution of the
process is quick and the graphical notation becomes B←→⇐⇐⇒⇒A.

In summary, in the N →∞ limit, some generic selection scenarios are excluded,
reducing the evolutionary dynamics to the following options:

Class Conditions Symbol Invasion and fixation scenario
1.A a > c, b > d B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B a < c, b < d B←←⇐⇐⇐⇐A

2.A a < c, b > d B→←⇒⇒A Mutual invasion and slow fixation of one strategy
2.B a < c, b > d B→←⇐⇐A

3 a > c, b < d B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 4.2: Selection scenarios in the N →∞ limit under the Moran process with
exponential fitness.

This result is totally in agreement with the table 3.6 inherent the Moran process
with linear fitness, proving that also with the exponential fitness the evaluation of
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the payoff difference a− c and b− d is sufficient to deduce the qualitative behavior
of the system in the long term when N →∞.

In conclusion, comparing this stochastic framework with large N and the
deterministic outcome contemplated by the replicator equation, we can point out
similarities and differences. For example, the scenarios 1.A and 1.B properly reflect
the dominance of a strategy. Scenarios 2.A and 2.B may be partially matched with
the coexistence case. Here, in fact it is certain that the system will fixate in a state,
even if the absorbing time is exponentially large with N . Finally, scenario 3 recalls
the mutual exclusion outcome. In the deterministic dynamics it is impossible to
move from the neighbourhood of an absorbing state to the other one, because of
the repulsive unstable fix point in the middle. In the same way, the stochastic
dynamics predicts that the fixation probability of a mutant is exponentially small.
However, interestingly, due to the intrinsic stochasticity of the process, it is possible
for a mutant to reach its corresponding pure state and when such an event occurs,
the fixation is experienced to be fast.

4.1.3 Strong selection

In this section, we are going to present the main result of this thesis. The specific
choice of the mapping from payoff to fitness allows a strong selection analysis of
the process (i.e. when the intensity of selection is large but still finite). The basic
intuition, which underlines the following considerations, is founded on the fact that,
given a large s in the formula (4.5), if the payoff difference ∆Pi is negative then
βi → 0 and a B player is almost certainly selected for the reproduction, while,
on the opposite, if ∆Pi is positive then βi → ∞ and an A player almost surely
reproduces. Considering the expressions in (4.7) for the fixation probabilities and
the formulas (4.14), (4.15) of the basic quantities for the computation of the fixation
time, we can derive the behaviour of the aforementioned classification parameters.
Four generic scenarios are discriminated, according to the relative value of the
invasion coefficients β1 and βN−1.

- case β1 > 1 and βN−1 > 1 (B→→A) -

Fixation probability. In this case ∆Pi > 0 for all i. For this reason s1 → 0, whereas
s2 → ∞. The fixation probabilities turn out to ρAB → 1, ρBA → 0. It is almost
certain that a mutant A will fixate. We graphically represent this as B→→⇒⇒A.
Fixation time. Regarding the components in the formula of the fixation time, for
large s we observe that s0,n−1, s0,N−1 → 1, while sn,N−1 ≈ qn. The only relevant
variable remains λn. However, since fA,n � fB,n, this transition probability can be
approximated as (N − n)/N . In the end, it results:



4.1 The Moran process with exponential fitness 37

tfix =
N−1∑
n=1

1

λn

= N
N−1∑
n=1

1

N − n

= N

N−1∑
n=1

1

n
< N(N − 1)

(4.51)

The above relation holds for N > 2 and we can conclude that in this scenario the
fixation is fast and we represent it through B→→⇒⇒⇒⇒A.

- case β1 < 1 and βN−1 < 1 (B←←A) -

Fixation probability. Here, we observe ∆Pi < 0 for all i. It follows that s1 → ∞,
while s2 → 0. For this reason, the fixation probabilities tend to ρAB → 0, ρBA → 1.
A mutant B will fixate almost surely and the corresponding notation is B←←⇐⇐A.

Fixation time. In order to examine the fixation time in this scenario, we can rewrite
the formula (3.9) obtaining a sort of a dual formula:

tfix =
N−1∑
n=1

sN,0,n−1sN,n,N−1

µN−nqNnsN,0,N−1

, (4.52)

where sN,n,m =
m∑
k=n

qNk and qNk =
N−1∏
j=N−k

βj with qN0 = 1. It follows that sN,0,n−1,

sN,0,N−1 → 1, while sN,n,N−1 ≈ qNn. The transition probability µ is approximated
with n/N , because fB,n � fA,n, and it is the only component relevant for the
computation of the fixation time which turns out to be:

tfix =
N−1∑
n=1

1

µN−n

= N
N−1∑
n=1

1

N − n

= N
N−1∑
n=1

1

n
< N(N − 1)

(4.53)

Hence, when the mutant B is favored for the invasion and the fixation, the time
process is fast and the corresponding notation is B←←⇐⇐⇐⇐A. It holds for N > 2.

- case β1 > 1 and βN−1 < 1 (B→←A) -

Fixation probability. In this context, there exists an i∗ for which ∆Pi<i∗ > 0 and
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∆Pi≥i∗ < 0. As a consequence, the sum of the overall ∆Pi, represented as P1,N−1,
can be potentially greater or lower than zero. We have to consider separately these
cases.

1. P1,N−1 > 0: this implies s1 → 0 and s2 → ∞. It follows ρAB → 1 and
ρBA → 0. The scenario is B→←⇒⇒A.

2. P1,N−1 < 0: this implies s1 → ∞ and s2 → 0. It follows ρAB → 0 and
ρBA → 1. The scenario is B→←⇐⇐A.

Fixation time. Also for the fixation time, it is necessary to analyse case by case
what happens.

1. P1,N−1 > 0. Here, s0,n−1, s0,N−1 → 1. For the other two components we have
to made a distinction, because they behave differently in accordance to the
sign of ∆Pi. In particular, we denote with n∗ the first index for which the
payoff difference becomes negative and with k∗ the index which satisfies the
condition P1,k∗ > P1,N−1, P1,k∗−1 < P1,N−1. We derive:

sn,N−1 ≈

qn n < k∗

qN−1 n ≥ k∗
(4.54)

λn ≈

N−n
N

n < n∗

n
N

exp(s∆Pn) n ≥ n∗
(4.55)

The formula of the fixation time can be split with respect of k∗ and n∗:

tfix = N
k∗−1∑
n=1

1

N − n
+N

n∗−1∑
n=k∗

→∞︷ ︸︸ ︷
qN−1/qn

N − n
+N

N−1∑
n=n∗

→∞︷ ︸︸ ︷
qN−1/qn

exp(s∆Pn)︸ ︷︷ ︸
→0

1

n
. (4.56)

The last two addenda tend exponentially to infinity and it results tfix >
N(N − 1). The fixation is therefore slow and the corresponding scenario is
B→←⇒⇒A.

2. P1,N−1 < 0. As previously done, also in this situation it is better to adopt the
dual formula for the fixation time. Hence, the analysis is totally symmetric to
the above case and it confirms that also in this scenario the fixation is slow,
then the notation remains B→←⇐⇐A.
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- case β1 < 1 and βN−1 > 1 (B←→A) -
Fixation probability. Here, we can identify an i∗ for which ∆Pi<i∗ < 0 and ∆Pi≥i∗ >

0. Anyway, in this case we do not have to discriminate the sign of P1,N−1, as the
first element in s1 and s2 (determined respectively by (−s∆P1) and (s∆PN−1))
tends to infinity. So, both s1, s2 → ∞. This implies ρAB = 0 and ρBA = 0 and
B←→⇐⇒A is the only admissible scenario, while the cases with no invasion, but the
fixation of one strategy over the other are not possible any more.
Fixation time. The terms in the formula of the fixation time behave differently
depending on whether ∆Pi ≷ 0. Until ∆Pi < 0, we have s0,n−1 ≈ qn−1 = λn

µn
qn ≈

N
n
λnqn and sn,N−1 ≈ s0,N−1. As soon as ∆Pi > 0, we observe instead s0,n−1 ≈ qn∗−1,

sn,N−1 ≈ qn, so,N−1 ≈ qn∗−1 and λn = N−n
N

. The formula is therefore split in two
and the index n∗ corresponds to the moment when we observe the inversion in the
sign of the payoff difference. Given all the approximations above, the fixation time
is reduced as follows:

tfix = N
n∗−1∑
n=1

1

n
+N

N−1∑
n=n∗

1

N − n
< N(N − 1). (4.57)

It holds for N > 3 and states that fixation is fast. The final scenario is B←→⇐⇐⇒⇒A.
Grouping together all these results, we obtain the following table for the generic

selection scenarios:

Class Conditions Symbol Invasion and fixation scenario
1.A β1 > 0, βN−1 > 0 B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B β1 < 0, βN−1 < 0 B←←⇐⇐⇐⇐A

2.A β1 > 0, βN−1 < 0 B→←⇒⇒A Mutual invasion, slow fixation of one strategy
2.B β1 > 0, βN−1 < 0 B→←⇐⇐A

3 β1 < 0, βN−1 > 0 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 4.3: Selection scenarios with strong selection under the Moran process with
exponential fitness.

This is a significant result, as we have recovered the same three generic outcomes
admissible in the large N limit (see table 4.2), without imposing specific conditions
on the value of N . This means that even with a small and finite value for the
population size, the strong selection is able to reunify the stochastic dynamics with
the deterministic evolution. However, unlike the framework with large N , where
the selection scenarios are listed according to the relative value of the payoffs, as
it happens with the classification under the replicator equation, with the strong
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selection we can discriminate the outcome according to the invasion coefficients.
Moreover, given a generic game and the strong selection, different population sizes
may induce a different expected evolutionary scenario, as the invasion coefficients,
which allow to discriminate the outcome, depend both on the payoffs a,b,c,d and
on N .

4.1.4 Extreme selection

In the limit of s→∞ (i.e. for extreme selection), the fittest individual is always
selected for reproduction. Therefore, according to the sign of the payoff difference,
either λ or µ is 0. The transition probabilities can be approximated as follows:

λi =
ifA,i

ifA,i + (N − i)fB,i
N − i
N

≈

N−i
N

∆Pi > 0

i
i+(N−i) exp(−s∆Pi)

N−i
i
→ 0 ∆Pi < 0

(4.58)

µi =
(N − i)fB,i

ifA,i + (N − i)fB,i
i

N
≈

 N−i
i exp(s∆Pi)+(N−i)

i
N
→ 0 ∆Pi > 0

i
N

∆Pi < 0
(4.59)

In the following figures we analyse in more details what happens in the Markov
chain with respect to the sign of ∆Pi.

ii− 1 i+ 1

1− λi = i
N

λi = N−i
N

µi = 0

Figure 4.1: Vanishing µi for extreme selection and ∆Pi > 0 under the Moran process
with exponential fitness.

ii− 1 i+ 1

1− µi = N−i
N

λi = 0

µi = i
N

Figure 4.2: Vanishing λi for extreme selection and ∆Pi < 0 under the Moran process
with exponential fitness.
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ii− 1 i+ 1

1− λi − µi = N2−2i(N−i)
N2

λi = i(N−i)
N2

µi = i(N−i)
N2

Figure 4.3: Extreme selection and ∆Pi = 0 under the Moran process with exponential
fitness.

For s → ∞, the direction of the process becomes deterministic and thus the
fixation probabilities will be exactly either 0 or 1. However, the process is only
semi-deterministic as the fixation time remains stochastic. In fact, due to the
random death and consequently the non vanishing (1− λi − µi) probabilities, the
system can remain longer or shorter in a particular state. In [23], a variation of the
Moran process, where the player’s death is not random but it is proportional to the
inverse of its fitness, leads to a fully deterministic behaviour for extreme selection.

To conclude, it is worth noting that, whereas scenarios 1.A, 1.B and 3 are still
valid with the extreme selection, we lose scenarios 2.A and 2.B from the table 4.3
concerning the strong selection framework. In fact, given these implications:

- ∆P1 > 0 =⇒ µ1 = 0,

- ∆PN−1 < 0 =⇒ λN−1 = 0,

we set ρAB = ρBA = 0, since it is not possible to reach an absorbing state. The
Markov chain appears as:

. . .10 N − 1 N
0

N−1
N

N−1
N

0

1
1
N

1
N 1

Figure 4.4: Markov chain in the scenario of mutual invasion and no fixation under
the Moran process with exponential fitness.

The formulas for the fixation probabilities (3.6) and (3.7) are derived assuming
λi, µi > 0 for all i in the balance equations. For any finite and arbitrarily strong
selection strength, this is true, but it fails at the limit s→∞. Hence, we observe
that the scenario of "mutual invasion and slow fixation" becomes "mutual invasion
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and no fixation" at extreme selection. We have to stress that this scenario is
forbidden by the theorem 4.3, but it turns out to be allowed with extreme selection.
This result better matches the deterministic case of coexistence, where the two
strategies invade each other and in the long term they coexist with a certain
distribution in the population.

The following table summarises the evolutionary dynamics with extreme selec-
tion:

Class Symbol Invasion and fixation scenario
1.A B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B B←←⇐⇐⇐⇐A

2 B→←⇐⇒A Mutual invasion and no fixation
3 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 4.4: Selection scenarios in the s → ∞ limit under the Moran process with
exponential fitness.

4.1.5 The deterministic limit

In this last section, we want to discuss how the deterministic replicator dynam-
ics and the stochastic evolutionary game dynamics for the Moran process with
exponential fitness are related to each other. In order to perform this task, we
follow the arguments suggested in [24].

As we have seen in section 3.2.3, the stochastic process can be formulated in
terms of the Master equation in formula (3.8). We now consider it in this form:

Pi(τ + 1)− Pi(τ) = Pi−1(τ)λi−1 − Pi(τ)µi + Pi+1(τ)µi+1 − Pi(τ)λi, (4.60)

where Pi(τ) denotes the probability that the system is in state i at time τ . At this
point, introducing the notation x = i/N and t = τ/N , defining the probability
density ρ(x, t) = NPi(τ) and replacing λi and µi with λ(x) and µ(x), the Master
equation can be opportunely rewritten as follows:

ρ(x, t+
1

N
)− ρ(x, t) = ρ(x− 1

N
, t)λ(x− 1

N
) + ρ(x+

1

N
, t)µ(x+

1

N
)

− ρ(x, t)µ(x)− ρ(x, t)λ(x).
(4.61)

For N � 1, the left-hand side of the above equation becomes ∂
∂t
ρ(x, t), whereas the
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right-hand side can be Taylor expanded at (x, t) up to second order obtaining:

∂

∂t
ρ(x, t) = − ∂

∂x
[a(x)ρ(x, t)] +

1

2

∂2

∂x2

[
b2(x)ρ(x, t)

]
, (4.62)

that is equivalent to the following stochastic differential equation:

ẋ = a(x) + b(x)ξ, (4.63)

where a(x) = λ(x)− µ(x), b(x) =
√

(1/N) [λ(x) + µ(x)] and ξ is an uncorrelated
Gaussian noise. The selection term is represented by a(x), while b(x)ξ is the diffusion
term taking stochasticity into account. Both terms depend on the composition of
the population and on the game payoffs. Moreover, b(0) = b(1) = 0 for any N and
b(x) = 0 for any x in (0, 1) in the limit of N →∞. Thus, in this limit, we obtain
the deterministic differential equation:

ẋ = a(x) = λ(x)− µ(x). (4.64)

We can now examine the previous formula considering the specific transition
probabilities holding for the Moran process with exponential fitness. For this aim,
we suitably rewrite the formula of λ and µ, which are expressed in terms of i, in
order to obtain something in terms of x.

λi =
ifA,i

ifA,i + (N − i)fB,i
N − i
N

=
ifA,i

ifA,i+(N−i)fB,i

N

N − i
N2

=
fA,i
f

i

N

N − i
N

,

(4.65)

where f is the average fitness in the population. Remembering that x = i/N and
in the limit N →∞, it follows:

λ(x) =
fA,x
fx

x(1− x), (4.66)

with fx = xfA,x + (1− x)fB,x. Similarly, for µ we have:

µi =
(N − i)fB,i

ifA,i + (N − i)fB,i
i

N
=

(N − i)fB,i
ifA,i+(N−i)fB,i

N

i

N2

=
fB,i
f

N − i
N

i

N
,

(4.67)



44 4. Stochastic dynamics under arbitrary intensity of selection

and thus:
µ(x) =

fB,x
fx

(1− x)x. (4.68)

Replacing formula (4.66) and (4.68) in (4.64), we derive the deterministic limit for
the Moran process with exponential fitness and finite selection strength:

ẋ = x(1− x)
fA,x − fB,x

fx
. (4.69)

Through some maths, we can also recover the differential equations specifically for
players A and B:

ẋA = xA
fA,x − fx

fx
, (4.70)

ẋB = xB
fB,x − fx

fx
, (4.71)

These results are valid for any finite s. If we assume the extreme selection
framework where s→∞, the average fitness fx can be reduced as follows:

fx =

xfA,x fA,x > fB,x

(1− x)fB,x fA,x < fB,x
(4.72)

Consequently, the differential equation becomes:

ẋ =

1− x fA,x > fB,x

−x fA,x < fB,x
(4.73)

We graphically represent now in figure 4.5 the trend of ẋ considering the different
selection scenarios.

Graph (1) refers to the A-dominance scenario. When few A players are present
in the population, the system quickly moves away from the pure B state, whereas
it gradually slows down while approaching the pure A state (the convergence to the
pure A state is asymptotic). In graph (2), the coexistence scenario is represented.
When few mutants, either of type A or B, are present in the population, the system
converges in finite time toward the mixed state. Finally, in graph (3), with the
mutual exclusion scenario the system moves away from the interior mixed point,
converging asymptotically in one of the two pure states, depending on the initial
condition.



4.2 The pairwise comparison with Fermi function 45
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Figure 4.5: ẋ in the deterministic limit for the Moran process.

4.2 The pairwise comparison with Fermi function

In pairwise comparison processes, a pair of individuals is sampled at random at
each time step and subsequently one of these individuals may adopt the strategy
of the other. More precisely, one player is selected as a focal and evaluates its
success comparing its own payoff with the one of the other player, which acts as
a role model. The focal then adopts the strategy of the role with a probability
that increase with the payoff difference. One common choice for this imitation
probability, in order to allow any intensity of selection, is the Fermi function from
statistical physics [25, 26]. Naturally, this probability is rearranged to become a
function on the payoff difference between the role and the focal [27]. It takes the
following form:

pi =
1

1 + exp(−s(Prole,i − Pfocal,i))
. (4.74)

If the role player has a higher payoff, the focal one moves to its strategy with
probability pi > 1/2. Otherwise, it switches with pi < 1/2. In general, the more
a player fares better in the population, the more is likely to be imitated. It is
obvious that the composition of the population can change only if the focal and the
role are selected of the opposite type. The shape of the probability p is controlled
by the parameter s. From a physical point of view, s is interpreted as in inverse
temperature, while in evolutionary game theory, it represents the balance between
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selection and random fluctuations in finite populations. Since the selection strength
is an argument of the exponential function in the formula, it is possible to analyse
evolutionary game dynamics at all intensities of selection (from neutral selection
when s = 0, up to the extreme limit when s→∞) and for any game matrix.

At the state of the art, some results have been reported for the weak selection
framework, when s� 1. In [28], for example, the imitation probability is reduced
to a linear function in the payoff difference and analytical results are derived for the
fixation probabilities. Here, for the specific case of a 2-players-2-strategies game,
the transition probabilities are:

λi =
1

1 + exp(−s(PA,i − PB,i))
i

N

N − i
N

, (4.75)

µi =
1

1 + exp(−s(PB,i − PA,i))
N − i
N

i

N
. (4.76)

In the case of λ, the role is the A player and it could be imitated by the focal B,
increasing in this way the number of the A-strategists. In µ we observe respectively
the opposite. Expected payoffs are the same as defined in (3.2) and (3.3). The
fundamental quantity βi appears like:

βi =
1 + exp(−s(PB,i − PA,i))
1 + exp(−s(PA,i − PB,i))

= exp(s∆Pi). (4.77)

We mention here the exact correspondence of this final formula to compute β with
the formula (4.5), a remarkable result that will be deeply discussed in the following
section.

In conclusion, under this pairwise comparison process, when we get the condition
of the neutral game, no strategy has an advantage over the other in any state of the
population and pi = 1/2 for all i. As mentioned in [21], the probability of fixation
of a neutral mutant is 1/N , while the time to reach fixation is 2N(N − 1).

4.2.1 Selection scenarios

We want now to derive the selection scenarios for this process. As usual,
classification depends on the evaluation of the invasion coefficient, the fixation
probability and the fixation time with respect to the reference values of the neutral
game. First of all, we have to check whether the three theorems (4.1, 4.2, 4.3)
are still valid. Observing that the ratio between the transition probabilities in
formula (4.77) reads exactly the same as (4.5), we conclude that βi for the pairwise
comparison and the Fermi function is identical to βi for the Moran process and
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the exponential fitness, for all i. Since all the proofs in section 4.1.1 are based on
considerations on ∆Pi, which is obviously the same because the average payoffs are
defined both through the same formulas, and on βi, which turns out to be identical
as just shown, it follows that even in this pairwise comparison process the theorems
are confirmed. This is an amazing result, because despite the fact that the two
microscopic processes of strategy spreading are totally different (i.e. the transition
probabilities are different), the macroscopic properties of invasion and fixation in
the evolutionary dynamics are the same. Considering the two classes of stochastic
evolutionary dynamics, the birth-death processes and the imitation learning, it is
worth noting that the couple Moran process with exponential fitness and pairwise
comparison with the Fermi function is the unique pair leading to identical outcomes
in the fixation probabilities for arbitrary games and for any intensity of selection,
as pointed out in [29] through a formal proof.

Regarding the validity of the two conjectures, which impose constraints on the
match of some combinations of invasion and fixation with the fixation time, we
have performed Monte Carlo experiments checking that some selection scenarios,
contemplated by the theorems, appear only to be fast or slow. Again, as widely
shown in Chapter 5, the admissible configurations are the same as in the Moran
process. For convenience, we present once again the summary table of the generic
selection scenarios.

Class Symbol Invasion and fixation scenario
1.A B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B B←←⇐⇐⇐⇐A

2.A B→←⇒⇒A Mutual invasion and slow fixation of one strategy
2.B B→←⇐⇐A

3 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation
4.A B→→⇒⇒A Invasion and slow fixation of one strategy
4.B B←←⇐⇐A

5.A B→←⇒⇒⇒⇒A Mutual invasion and quick fixation of one strategy
5.B B→←⇐⇐⇐⇐A

6 B→←⇒⇐A Mutual invasion and slow fixation of both strategies
7.A B←→⇒⇒⇒⇒A No invasion and quick fixation of one strategy
7.B B←→⇐⇐⇐⇐A

Table 4.5: Selection scenarios under the pairwise comparison with the Fermi func-
tion.
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4.2.2 Large N limit

The analysis of the large N limit in the case of the pairwise comparison with the
Fermi function can be performed following the same arguments proposed in section
4.1.2 for the Moran process with exponential fitness, as all the approximations still
persist. We only have to check if the transition probability λ behaves asymptotically
in the same way when N →∞. Given y = i/N , we can write λi in terms of y:

λi = pi(y)y(1− y). (4.78)

Specifically, the imitation probability pi(y) appears as:

pi(y) =
1

1 + exp(−s((a− c)y + (b− d)(1− y)))
. (4.79)

The transition probability λ is at the denominator of the formula of the fixation
time, therefore it develops singularities at y = 0 and y = 1, exactly as in the case
of the Moran process. Hence, we can conclude that the asymptotic behavior of
the fixation time satisfies the same properties and we recover the same selection
scenarios. However, since:

1

λi
=


1+exp(−s(b−d))

y
y � 1,

1+exp(−s(a−c))
1−y 1− y � 1,

(4.80)

the multiplicative coefficients of the fixation time will be pretty different. As we
are considering the large N limit, what really matters for the classification is only
the order of magnitude and therefore we can safely neglect them. The selection
scenarios are listed in the following table:

Class Conditions Symbol Invasion and fixation scenario
1.A a > c, b > d B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B a < c, b < d B←←⇐⇐⇐⇐A

2.A a < c, b > d B→←⇒⇒A Mutual invasion and slow fixation of one strategy
2.B a < c, b > d B→←⇐⇐A

3 a > c, b < d B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 4.6: Selection scenarios in the N →∞ limit under pairwise comparison with
the Fermi function.
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4.2.3 Strong selection

We discuss now the strong selection surrounding for the pairwise comparison.
As we have already reported, for this process the analytical expressions for the
invasion coefficients and the fixation probabilities are totally identical to the ones
of the Moran process with exponential fitness. For this reason, to study how the
selection scenarios appear given a large s, we have to consider just the fixation time.
The variables s0,n−1, sn,N−1, s0,N−1 and qn behave in the same way, because their
main component is the quantity β. Therefore, the analysis can be widely reduced,
as we have only to verify if the definition of the transition probability λ (or µ in
the dual formula (4.52)) under the pairwise comparison process involves a different
classification. Again four cases are distinguished, suggesting in the parenthesis the
partial graphical notation of the scenario that we can already infer.

- case β1 > 1 and βN−1 > 1 (B→→⇒⇒A, or B→→⇒⇒⇒⇒A) -
Fixation time. The transition probability λn → n(N−n)

N2 . Then:

tfix =
N−1∑
n=1

1

λn
= N2

N−1∑
n=1

1

n(N − n)
< 2N(N − 1) (4.81)

The expression holds for N > 2 and the fixation is therefore fast. The scenario
is B→→⇒⇒⇒⇒A.

- case β1 < 1 and βN−1 < 1 (B←←⇐⇐A, or B←←⇐⇐⇐⇐A) -
Fixation time. By symmetry and using the dual formula of the fixation time, it
turns out that the fixation time is lower than the benchmark value 2N(N − 1).
Hence, also when we observe that selection favors the mutant B, the time scale of
the process is fast and the notation becomes B←←⇐⇐⇐⇐A.

- case β1 > 1 and βN−1 < 1 (B→←⇒⇒A or B→←⇐⇐A) -
Fixation time. This case have to be analysed considering that there exists k∗

for which P1,k∗ > P1,N−1, P1,k∗−1 < P1,N−1 and the index n∗ for which the payoff
difference changes sign. Again, we observe the following approximations:

sn,N−1 ≈

qn n < k∗

qN−1 n ≥ k∗
(4.82)

λn ≈


n(N−n)
N2 n < n∗

n(N−n)
N2

1
1+exp(−s∆Pn)

n ≥ n∗
(4.83)

We should also separate the scenarios according to P1,N−1 ≷ 0.

1. P1,N−1 > 0: under these conditions the fixation time results:
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tfix = N2

k∗−1∑
n=1

1

n(N − n)
+N2

n∗−1∑
n=k∗

→∞︷ ︸︸ ︷
qN−1/qn

n(N − n)
+N2

N−1∑
n=n∗

→∞︷ ︸︸ ︷
qN−1/qn

n(N − n)
(1+exp(−s∆Pn)).

(4.84)

The fixation is slow and the scenario remains B→←⇒⇒A.

2. P1,N−1 < 0: This is the case where the dual formula of the fixation time fits
better, because the analysis is straightforward as above with the corresponding
dual variables. It turns out that the fixation time is lower than 2N(N − 1),
so the fixation process is slow and B→←⇐⇐A is the outcome.

- case β1 < 1 and βN−1 > 1 (B←→⇐⇒A, or B←→⇐⇐⇒⇒A) -

Fixation time. We can easily approximate almost all the variables in the formula
and the only relevant component remains the transition probability λ. Hence the
time read as:

tfix = N2

n∗−1∑
n=1

1

n(N − n)
+N2

N−1∑
n=n∗

1

n(N − n)
< 2N(N − 1). (4.85)

It holds for N > 2 and it assert that the fixation is fast. We represent it as B←→⇐⇐⇒⇒A.
Given all these results, we have actually shown that also for the pairwise

comparison with the Fermi function the strong selection reduces the admissible
selection scenarios in the same way as the Moran process with the exponential
fitness. The fact that the transition probabilities are totally different does not
influence the time scale of the evolutionary process with a large intensity of selection.
Below, we summarise the outcomes.

Class Conditions Symbol Invasion and fixation scenario
1.A β1 > 0, βN−1 > 0 B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B β1 < 0, βN−1 < 0 B←←⇐⇐⇐⇐A

2.A β1 > 0, βN−1 < 0 B→←⇒⇒A Mutual invasion, slow fixation of one strategy
2.B β1 > 0, βN−1 < 0 B→←⇐⇐A

3 β1 < 0, βN−1 > 0 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 4.7: Selection scenarios with strong selection under the pairwise comparison
with the Fermi function.
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4.2.4 Extreme selection

For extreme selection, s→∞, the probability pi becomes a step function:

pi =
1

1 + exp(−s(Prole,i − Pfocal,i))
=


1 Prole,i > Pfocal,i

1
2

Prole,i = Pfocal,i

0 Prole,i < Pfocal,i

(4.86)

Only the sign of the difference between the payoff of the role player and the focal
player is important. Thus, if the role player fares better in the population, it will
be always imitated, no matter how better its strategy is, as even a small difference
in the payoffs implies a change in the tactic of the focal. Therefore, in the Markov
chain we can observe vanishing transition probabilities according to the sign of
∆Pi = Prole,i − Pfocal,i.

ii− 1 i+ 1

1− λi = N2−i(N−i)
N2

λi = i(N−i)
N2

µi = 0

Figure 4.6: Vanishing µi for extreme selection and ∆Pi > 0 under the pairwise
comparison and the Fermi function.

ii− 1 i+ 1

1− µi = N2−i(N−i)
N2

λi = 0

µi = i(N−i)
N2

Figure 4.7: Vanishing λi for extreme selection and ∆Pi < 0 under the pairwise
comparison and the Fermi function.

With an extreme imitation dynamics, the evolution reduces to a semi-deterministic
process, because the direction is deterministically inferred while the speed of the
process remains stochastic. In fact, the probability that the focal and the role have
the same strategy is not zero and thus the process may arbitrarily stay in the same
state for many time steps.

Finally, also in this context we notice that the two symmetric selection scenarios
of "mutual invasion and slow fixation of one strategy" disappear. It turns out that
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ii− 1 i+ 1

1− λi − µi = N2−i(N−i)
N2

λi = i(N−i)
2N2

µi = (N−i)i
2N2

Figure 4.8: Extreme selection and ∆Pi = 0 under the pairwise comparison and the
Fermi function.

when ∆P1 > 0 and ∆PN−1 < 0, then ρAB = ρBA = 0, because of the vanishing µ1

and λN−1. The Markov chain is the following:

. . .10 N − 1 N
0

N−1
N2

N−1
N2

0

1
N2−N+1

N2
N2−N+1

N2 1

Figure 4.9: Markov chain in the scenario of mutual invasion and no fixation under
the pairwise comparison with the Fermi function.

The table with the selection scenarios is therefore rewritten:

Class Symbol Invasion and fixation scenario
1.A B→→⇒⇒⇒⇒A Invasion and quick fixation of one strategy
1.B B←←⇐⇐⇐⇐A

2 B→←⇐⇒A Mutual invasion and no fixation
3 B←→⇐⇐⇒⇒A No invasion and no (quick) fixation

Table 4.8: Selection scenarios in the s→∞ limit under the pairwise comparison
and the Fermi function.

4.2.5 The deterministic limit

To conclude this chapter, we report our last result. Also for the pairwise
comparison it is possible to explore mathematically the transition from the stochastic
description of the evolutionary process in finite population towards the deterministic
theory of the replicator equation.
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We can start directly from the equation (4.64), as the background theory has
been already widely presented in the corresponding section.

In the limit of N →∞ the transition probabilities and the expected payoffs of
formulas (3.2) and (3.3) are rewritten in terms of x = i/N . They read as:

λ(x) =
1

1 + exp(−s(PA,x − PB,x))
x(1− x), (4.87)

µ(x) =
1

1 + exp(−s(PB,x − PA,x))
(1− x)x, (4.88)

In order to get the rate of change of the variable x, we have to perform the
subtraction between λ(x) and µ(x). Through some maths we obtain:

ẋ = λ(x)− µ(x) =
1− exp(−s(PA,x − PB,x))
1 + exp(−s(PA,x − PB,x))

x(1− x) (4.89)

In the limit of extreme selection, the multiplicative term can be reduced as follows:

1− exp(−s(PA,x − PB,x))
1 + exp(−s(PA,x − PB,x))

=

1 PA,x > PB,x

−1 PA,x < PB,x
(4.90)

The differential equation that governs the evolutionary dynamics becomes:

ẋ =

x(1− x) PA,x > PB,x

−x(1− x) PA,x < PB,x
(4.91)

We can now represent graphically the trend of ẋ in the different selection scenarios.

x

ẋ

x

ẋ

x

ẋ

10 10 0 1

(1) (2) (3)

Figure 4.10: ẋ in the deterministic limit for the pairwise comparison. Case (1)
refers to the dominance of strategy A, case (2) represents the coexistence scenario
and finally case (3) shows the mutual exclusion.





Chapter 5

Monte Carlo simulations

This chapter is structured in two parts: in the former, we briefly report some
theoretical hints on Monte Carlo methods, while in the latter we show our exper-
imental activities. We perform Monte Carlo simulations of random games from
the point of view of the expected selection scenario identified by means of the
evaluation of the classification parameters. First of all, we want to verify that
the corresponding selection outcome belongs to one of the seven scenarios eligible
for finite populations under the Moran process with exponential fitness and the
pairwise comparison with exponential imitation probability. Moreover, we want
to numerically estimate how large the parameters of the population size and the
intensity of selection should be in order that the three scenarios allowed by the
theoretical proofs for N and s large are the only ones to be observed, while all the
others become increasingly rare and eventually disappear.

5.1 Monte Carlo methods

Monte Carlo methods represent a significant class of computational algorithms
that can be adopted to obtain numerical results for problems in many application
fields. In [30], a distinction between a simulation, a Monte Carlo method and a
Monte Carlo simulation is proposed. A simulation is a fictitious representation
of reality, a Monte Carlo method is a technique that can be used to solve a
mathematical or statistical problem, and finally a Monte Carlo simulation uses
repeated sampling to determine the properties or the behavior of phenomena and
systems. For our purposes, we discuss more in detail the Monte Carlo simulations.
Typically, the general pattern to describe such simulations is arranged in the
following steps:

a. Definition of the domain of possible inputs.

55



56 5. Monte Carlo simulations

b. Random generation of inputs from a given probability distribution over the
domain. Each set of samples defines an iteration of the Monte Carlo simulation
and usually this step is performed hundreds or thousands of times.

c. According of the specific problem, a computation on every set of inputs is
performed and properly recorded.

d. Results are then aggregated to statistically infer properties on the system
taken in consideration.

Monte Carlo simulations not only supply a comprehensive view of what may happen,
but also how likely it is to happen, providing in this way a probability distribution
of possible outcomes.

We report now a theorem proposed in [31] and here revisited for our purposes:

Theorem 5.1. Given a violation parameter 0 < α < 1 and a confidence parameter
0 < β < 1, performing N simulations (i.e. extracting N set of samples), if

N ≥ 2

α

(
ln

1

β
+ 1

)
, (5.1)

then with probability no smaller than 1−β, a selection scenario, which should not be
present, exists in the set of all possible 2-players-2-strategies games, with population
size and selection strength fixed, at most in an α-fraction.

Therefore, this is the theoretical background of Monte Carlo simulations on which
we found our numerical results in order:

1. to support the two conjectures that exclude some combinations of invasion
and fixation probability with a certain fixation time,

2. to assess the order of magnitude of the population size and the intensity of
selection which allows to rule out some selection outcomes reducing to three
the only admissible scenarios.

As far as concerns the results of the theorems in the section 4.1.1 and 4.2.1,
respectively for the Moran process with exponential fitness and the pairwise compar-
ison with the Fermi function, we know that some selection scenarios are forbidden.
Then, we expect that such outcomes will never occur in the simulations, because
mathematical proofs already exclude them.
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5.2 Implementation and results

The code has been completely implemented in MATLAB. In the following, we just
point out the basic structure of the main variables (for a deeper analysis, part of
the code is reported in Appendix A).

Sampling of random games. As both the Moran process with exponential
fitness and the pairwise comparison with the Fermi function are characterized by
the main quantity βi and this quantity depends on the payoff difference, it follows
that the two processes are invariant to adding a constant to all entries of the
payoff matrix. For this reason, the variables a, b, c and d, which define the game
matrix, have been extracted randomly with a uniform distribution in [0, 1], without
loss of generality. We have performed 10000 random sampling of games and this
corresponds more or less to set α = β = 0.001. To completely identify a game
in the set of all possible games, we have also to establish the population size and
the selection strength. For this aim, we have not sampled random values, but we
have used deterministic, pseudo-random sequences. Hence, each game matrix has
been evaluated on a fixed grid of (Sv, Nv) values, where the variable Sv identifies 61

values for the selection strength, while Nv identifies 45 values for the population
size.

The next step consists in the computation of the classification parameters. We
briefly discuss each one.

Invasion coefficient. Formulas (4.9) and (4.10) have been easily implemented
defining a row vector containing the sums of the payoff differences for different
indices. In particular, variables Deltap1 and DeltapN1 represent respectively ∆P1

and ∆PN−1. Evaluating these variables with respect to 0 corresponds exactly to
evaluate the invasion coefficients β1 and βN−1 with respect to 1.

Fixation probability. Numerical implementations of the fixation probabilities
are more difficult to obtain, due to the sum of products. Instead of computing
exactly ρAB and ρBA, we use formulas (4.7), (4.8) which define s1 and s2. In the
code, they respectively correspond to sumAB and sumBA and have to be compared
with N − 1.

Until here, the implementation is totally identical for the two evolutionary
processes, since the above classification parameters turn out to be the same, as we
have seen from the theory in section 4.2.1. On the contrary, for the computation of
the last indicator, the tfix, it is also necessary to settle the transition probability λ
(or µ in the case the dual formula (4.52) is adopted). Since the definition of these
variables is different according to the microscopic method of strategy spreading,
we will distinguish the two situations. Anyway, in both cases, the transition
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probabilities have not been divided by N , in order to avoid too small numbers
when large population size or selection strength are analysed. As a consequence,
the fixation time has to be compared only with N − 1, in the case of the Moran
process, and with 2(N − 1), in the case of the pairwise comparison.

Fixation time. The most argue part refers the implementation of the fixation
time. With the more straightforward translation of the formula into the code,
whenever the intensity of selection or the population size becomes larger, we fare
problems of obtaining NaN in the overall result. This is due to the fact that the single
components in the formula may tend to 0 or Inf and subsequently indeterminate
forms may arise. It follows that we cannot discriminate the resulting time. For this
reason, in order to get always a finite results (or at least Inf that can be interpreted
as a very long fixation time which allows us to classify the process as slow), we turn
to the theory of large s in sections 4.1.3 and 4.2.3, considering which terms develop
singularities and which ones tend to infinity. According to the theoretical analysis,
we have to discriminate four cases, depending on the relative values of the invasion
coefficients. Therefore, in the code, the variable ftimeadj is computed differently
in accordance with the corresponding case. The underlying idea is to rearranged
the terms in order to manage the eventual indeterminate forms. Note that in the
case of the B-dominance or in the mutual exclusion scenario when P1,N−1 < 0, we
use the dual formula for the computation of the fixation time.

Once all the indicators have been obtained and compared with the reference
values, it is hence possible to associate to a game the corresponding expected
selection scenario.

We can now show the results achieved.
First of all, we have to say that the evaluation of the classification parameters

has always led to one of the seven generic selection scenario. In the figures 5.1 and
5.2, for each pair of values (s,N) for the selection strength and the population size,
a shade in greyscale represents the frequency of the sampled games which have an
expected selection scenario of type (4), (5), (6) or (7) (look at table 4.1 for the
description of the scenarios with the numbering). These outcomes are exactly those
that should disappear when s and N become larger. The more the color is dark,
the higher frequency of these four scenarios is found. We can then notice that for
low values of s and N , it is very likely to find a game in (4)-(7). However, we do not
observe totally black points, because, of course, a percentage of the games actually
falls in the classification (1)-(3).

Secondly, we can assert that the two conjectures proposed in [10] are still
valid, as in these simulations we have never observed some combinations of the
fixation time for some scenarios allowed by the theorems. In particular, the scenario
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Figure 5.1: Two-dimensional analysis for the Moran process with exponential fitness.

which predicts mutual invasion and the fixation of both strategies has been always
characterized by a slow fixation time and thus we can exclude its counterpart
with the fast time process. Instead, whenever the variables Deltap1 and DeltapN1

predict mutual exclusion, the corresponding fixation time turns out to be always
fast, i.e. we have never observed scenarios of mutual exclusion with slow fixation
time whatever the fixation probabilities are. Considering these results, we attest
that the two conjectures are still valid for the Moran process with exponential
fitness and the pairwise comparison with exponential imitation probability.

Figures inherent the two-dimensional analysis well show that increasing the
parameter s or N , the percentage of the games with selection scenario in (4)-(7)
dramatically decreases. When both are large enough, it is very likely to observe
just scenarios in (1)-(3) and the image appears almost totally white. We can also
numerically estimate how large these parameters should be: the three contour
lines, from left to right, correspond respectively to frequencies 0.1, 0.01 and 0.001,
which mean only 10%, 1% and 0.1% of games with expected selection scenario in
(4)-(7). In the case of the Moran process with exponential fitness, when the intensity
of selection is greater than about 103, we can approximately identify the strong
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Figure 5.2: Two-dimensional analysis for the pairwise comparison with exponential
imitation probability.

selection framework, while when the population has more than 104 individuals
this corresponds to large N limit. The overall result is in accordance with the
theoretical proofs, which state that with large population size or strong selection
only (1)-(3) are the admissible outcomes and now we have also seen, numerically
speaking, the order of magnitude of this term large for N and for s. In the case of
the pairwise comparison, the figure appears more or less the same as the one of
the Moran process. However, looking carefully at the contour lines, we can state
that a bigger value for the intensity of selection or the population size is required
to reduce the frequency of scenarios (4)-(7).

In the last set of figures, we show for a fixed population size how the frequency of
the selection scenarios changes. Each generic evolutionary outcomes is represented
through a color and we observe that with increasing selection strength only three
colors, which correspond exactly to scenarios (1)-(3), remains. Moreover, we note
a sort of trade-off between the population size and the intensity of selection, as
increasing N , a lower value of s is sufficient to rule out the scenarios (4)-(7).

The following figures are related to the Moran process with exponential fitness
and similar images apply also for the pairwise comparison.
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Figure 5.3: Numerical simulations for N = 10 under the Moran process.

Figure 5.4: Numerical simulations for N = 100 under the Moran process.
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Figure 5.5: Numerical simulations for N = 1000 under the Moran process.



Chapter 6

Conclusion and future research

Among the vastness of theoretical models of evolutionary games proposed in
the last years, in this thesis we have considered a very specific framework: a
2-players-2-strategies symmetric game in a well-mixed population. The results
concern a quantitative and qualitative description of the evolutionary dynamics for
two different recently introduced mechanisms of strategy spreading under frequency
dependent selection: the Moran process with exponential fitness and the pairwise
comparison with the Fermi function. The former belongs to the class of birth-death
processes, whereas the latter regards the imitation learning evolution. In both
methods, selection is parametrized by a quantity called intensity of selection.

As a first result, we have ascertained that the generic selection scenarios estab-
lished in the literature for the Moran process with linear fitness are also the only
ones admissible in the aforementioned processes.

After, through an approximation in the limit of large populations, we have
recovered the connection with the traditional description of the evolutionary dy-
namics defined by the replicator equation. As previously shown in other surveys
for the case of the linear fitness, also in this context the selection scenarios can be
discriminated just by the relative magnitude of the entries in each column of the
payoff matrix of the game.

The main result of this thesis, however, is the characterization of the evolutionary
outcomes under strong selection. We have proved that when the intensity of selection
is large, but still finite, some generic scenarios are excluded from the classification
and the remaining are the same as for the large N limit, then they can be matched
with the three generic outcomes known from the replicator equation. However, the
evolutionary dynamics of a given game with strong selection remains dependent
on the population size, i.e. the expected scenario can possibly change varying
the number of individuals. Finally, exploring the extreme selection limit, we have
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refined the classification obtaining a result that better matches the deterministic
description of the evolutionary outcomes.

To sum up all these results, we have challenged some of the key theoretical
issues frequently discussed while modelling stochastic dynamics and comparing it
with the deterministic background.

Regarding the experimental activities, by means of Monte Carlo simulations,
we have also performed a numerical analysis to esteem how large should be the
population size or the selection strength in order to observe the only three generic
selection scenarios expected by the theoretical proofs. The results obtained from
this analysis may be particularly useful at the time when real systems are modelled
and these parameters have to be set. Having a rough idea of which scenarios might
arise is an important starting point.

In the end, we can point out suggestions for future developments of this work.

- We have not deeply explored the non-generic selection scenarios, when at
least one of the five indicators for the classification is exactly equal to the
corresponding benchmark of the neutral game. A possible extension to this
work would be to better investigate also the behavior of the system in these
cases.

- We have admitted the presence of only two different strategies. In real systems
however, many more strategies are conceivable. At the state of the art, for
games with more than two strategies it has been shown that the dynamics
becomes much more complex in the deterministic model [32]. In the stochastic
setting, numerical examples through individual-based simulations have been
analysed rather than theoretical models, due to the tricky mathematical
description. However, it would be worthwhile to find conditions on the payoffs
in the game matrix also for a generic game with n strategies.

- Another restriction of the models we have studied is that they do not allow the
possibility to exit from an absorbing state once it has been reached. To better
describe genetic mutations, or exploration dynamics, it is possible to introduce
a variable which describes this phenomenon. At the start of the art, some
models with the mutation rate have been proposed, for example in [33] an
analysis under the Moran process with linear fitness and the strong selection,
when fitness equals the expected payoff, has been performed. It is worth
checking whether and how the dynamics changes with the two evolutionary
processes we have considered.
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- Finally, as last point, we have assumed a well-mixed population where players
interact through random encounters. This is unrealistic in many contexts,
as a player usually has the opportunity to interact only with its neighbours.
Overlapping a structure, as a graph or a grid for example, on the population
allows to deal with this feature. According to the system under examination,
one can hence identify the better shape. Expected payoffs for the players would
be possibly different and also the formulas for the transition probabilities in
the Moran process or in the pairwise comparison can change if constraints
on the population shape are imposed. This suggests that the analysis of the
selection scenarios may differ too.





Appendix A

Code

In this appendix, the relevant part of the Matlab code for computing the
classification parameters of a game is reported. All the necessary values are
properly saved in a specific file .txt which is subsequently read by another MATLAB
script (here not listed) to effectively perform the classification. In that script, a
mere comparison between the computed variables and the benchmark values is
then performed and it allows to discriminate between the selection scenarios. In
the following, we report both the code for the Moran process and the pairwise
comparison. Note that they are almost the same with the exception of the definition
of the transition probabilities which are different for the two processes.

A.1 Code for the Moran process

1 %%%%%%%%%%%%%%%%%%%%%%
2 % Parameters %
3 %%%%%%%%%%%%%%%%%%%%%%
4

5 ngames = 10000;
6

7 % Se l e c t i o n
8 s10min = -2 ;
9 s10max = 4 ;

10 sv = logspace ( s10min , s10max , 6 1 ) ;
11

12 % Populat ion
13 Nv = [4 , 5 , 6 , 8 , f l o o r ( l og space (1 , 5 , 41 ) ) ] ;
14

15 %%%%%%%%%%%%%%%%%%%%%%
16 % Code %
17 %%%%%%%%%%%%%%%%%%%%%%
18

19 % open f i l e
20 fd=fopen ( ' data . txt ' , 'wt ' ) ;
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21

22 f o r game = 1 : ngames
23

24 % game sample
25 a = rand ;
26 b = rand ;
27 c = rand ;
28 d = rand ;
29

30 % Populat ion loop
31 f o r N = Nv
32 N1 = N - 1 ;
33

34 % Delta p_{1 , k} , Delta p_{k ,N-1}
35 Deltap1k = (1 : N1 ) /2/N1 .∗ ( 2∗ ( b - d ) ∗N1 + (1 : N1 ) ∗(a - b - c+d ) - (a - b+c - d ) ) ;
36 DeltapNkN1 = (1 : N1 ) /2/N1 .∗ ( 2∗ ( a - c ) ∗N1 - ( 1 : N1 ) ∗(a - b - c+d ) - (a - b+c - d ) ) ;
37 Deltap1 = Deltap1k (1 ) ;
38 DeltapN1 = DeltapNkN1 (1 ) ;
39

40 % pr in t game
41 f p r i n t f ( fd , '%e %e %e %e %d %e %e ' ,a , b , c , d , N , Deltap1 , DeltapN1 ) ;
42

43 % Se l e c t i o n loop
44 f o r s = sv
45

46 % exp o f Delta p_{1 , k} , Delta p_{k ,N-1} / N1
47 eDeltap1k = exp ( - s∗Deltap1k ) ;
48 eDeltapNkN1 = exp ( s∗DeltapNkN1 ) ;
49

50 % f i x a t i o n p r o b a b i l i t i e s (sumAB, sumBA to be compared with N1)
51 sumAB = sum( eDeltap1k ) ;
52 sumBA = sum( eDeltapNkN1 ) ;
53

54 % f i t n e s s e s and t r a n s i t i o n p r o b a b i l i t i e s
55 Deltaf = exp ( s ∗( a ∗ ( 0 : N1 - 1 )+b ∗( N1 : - 1 : 1 ) -c ∗ ( 1 : N1 ) -d ∗( N1 - 1 : - 1 : 0 ) ) /N1 ) ;
56 lambda = (1 : N1 ) . / ( ( 1 : N1 )+(N1 : - 1 : 1 ) .∗ Deltaf . ^ ( - 1 ) ) . ∗ ( N1 : - 1 : 1 ) ; %/N; not ←↩

d iv ided by N to avoid too smal l numbers
57 mu = ( N1 : - 1 : 1 ) . / ( ( 1 : N1 ) .∗ Deltaf+(N1 : - 1 : 1 ) ) . ∗ ( 1 : N1 ) ; %/N; same as f o r ←↩

lambda
58 mu=flip ( mu ) ;
59

60 % f i x a t i o n time ( f t imead j to be compared with N1)
61 cumeDeltap1k = [0 cumsum( eDeltap1k ( 1 : N1 - 1 ) ) ] ;
62 cumeDeltapNkN1 = [0 cumsum( eDeltapNkN1 ( 1 : N1 - 1 ) ) ] ;
63

64 % case - s p e c i f i c computation
65 switch num2str ( ( [ Deltap1 , DeltapN1 ]>0) - ( [ Deltap1 , DeltapN1 ]<0) , '%2d ' )
66

67 case { ' 1 1 ' , ' 1 0 ' , ' 0 1 ' , ' 0 0 ' } % A-DOMINANCE
68 ftimeadj = (1+cumeDeltap1k ( N1 ) ) /( lambda ( N1 ) ∗(1+sumAB ) ) ;
69 f o r i = 1 : N1 -1
70 ftimeadj = ftimeadj + ←↩

(1+cumeDeltap1k ( i ) ) ∗(1+sum( exp ( - s ∗( Deltap1k ( i+1:N1 ) . . .
71 - Deltap1k ( i ) ) ) ) ) /( lambda ( i ) ∗(1+sumAB ) ) ;
72 end
73

74 case { ' -1 -1 ' , ' -1 0 ' , ' 0 -1 ' } % B-DOMINANCE
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75 ftimeadj = (1+cumeDeltapNkN1 ( N1 ) ) /( mu ( N1 ) ∗(1+sumBA ) ) ;
76 f o r i = 1 : N1 -1
77 ftimeadj = ftimeadj + ←↩

(1+cumeDeltapNkN1 ( i ) ) ∗(1+sum( exp ( s ∗( DeltapNkN1 ( i+1:N1 ) . . .
78 - DeltapNkN1 ( i ) ) ) ) ) /( mu ( i ) ∗(1+sumBA ) ) ;
79 end
80

81 case { ' -1 1 ' } % MUTUAL EXCLUSION
82 Deltap = (a - b - c+d ) /N1 ;
83 is = c e i l ( - Deltap1/Deltap ) ;
84 s1N1 = sum( exp ( - s ∗( Deltap1k ( 1 : N1 ) - Deltap1k ( is ) ) ) ) ;
85 ftimeadj = s1N1 /( mu ( N1 ) ∗( exp ( s∗Deltap1k ( is ) )+s1N1 ) ) ;
86 f o r i = 2 : N1
87 i f i <= is
88 ftimeadj = ftimeadj + ←↩

( exp ( s∗Deltap1k (i - 1 ) )+sum( exp ( - s ∗( Deltap1k ( 1 : i - 2 ) . . .
89 - Deltap1k (i - 1 ) ) ) )+1)∗sum( exp ( - s ∗( Deltap1k ( i : N1 ) . . .
90 - Deltap1k ( is ) ) ) ) /( mu (N - i ) ∗( exp ( s∗Deltap1k ( is ) )+s1N1 ) ) ;
91 e l s e
92 ftimeadj = ftimeadj + ←↩

( exp ( s∗Deltap1k ( is ) )+sum( exp ( - s ∗( Deltap1k ( 1 : i - 1 ) . . .
93 - Deltap1k ( is ) ) ) ) ) ∗(1+sum( exp ( - s ∗( Deltap1k ( i+1:N1 ) . . .
94 - Deltap1k ( i ) ) ) ) ) /( lambda ( i ) ∗( exp ( s∗Deltap1k ( is ) )+s1N1 ) ) ;
95 end
96 end
97

98 case { ' 1 -1 ' } % COEXISTENCE
99 i f Deltap1k ( N1 ) >= 0

100 ftimeadj = (1+cumeDeltap1k ( N1 ) ) /( lambda ( N1 ) ∗(1+sumAB ) ) ;
101 f o r i = 1 : N1 -1
102 ftimeadj = ftimeadj + ←↩

(1+cumeDeltap1k ( i ) ) ∗(1+sum( exp ( - s ∗( Deltap1k ( i+1:N1 ) . . .
103 - Deltap1k ( i ) ) ) ) ) /( lambda ( i ) ∗(1+sumAB ) ) ;
104 end
105 e l s e
106 ftimeadj = (1+cumeDeltapNkN1 ( N1 ) ) /( mu ( N1 ) ∗(1+sumBA ) ) ;
107 f o r i = 1 : N1 -1
108 ftimeadj = ftimeadj + ←↩

(1+cumeDeltapNkN1 ( i ) ) ∗(1+sum( exp ( s ∗( DeltapNkN1 ( i+1:N1 ) . . .
109 - DeltapNkN1 ( i ) ) ) ) ) /( mu ( i ) ∗(1+sumBA ) ) ;
110 end
111 end
112

113 end
114

115 % pr in t r e s u l t s
116 f p r i n t f ( fd , '%e %e %e ' , sumAB , sumBA , ftimeadj ) ;
117

118 % end s e l e c t i o n loop
119 end
120

121 % end populat ion loop
122 end
123

124 % end game loop
125 end
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A.2 Code for the pairwise comparison

1 %%%%%%%%%%%%%%%%%%%%%%
2 % Parameters %
3 %%%%%%%%%%%%%%%%%%%%%%
4

5 ngames = 10000;
6

7 % Se l e c t i o n
8 s10min = -2 ;
9 s10max = 4 ;

10 sv = logspace ( s10min , s10max , 6 1 ) ;
11

12 % Populat ion
13 Nv = [4 , 5 , 6 , 8 , f l o o r ( l og space (1 , 5 , 41 ) ) ] ;
14

15 %%%%%%%%%%%%%%%%%%%%%%
16 % Code %
17 %%%%%%%%%%%%%%%%%%%%%%
18

19 % open f i l e
20 fd=fopen ( ' data . txt ' , 'wt ' ) ;
21

22 f o r game = 1 : ngames
23

24 % game sample
25 a = rand ;
26 b = rand ;
27 c = rand ;
28 d = rand ;
29

30 % Populat ion loop
31 f o r N = Nv
32 N1 = N - 1 ;
33

34 % Delta p_{1 , k} , Delta p_{k ,N-1}
35 Deltap1k = (1 : N1 ) /2/N1 .∗ ( 2∗ ( b - d ) ∗N1 + (1 : N1 ) ∗(a - b - c+d ) - (a - b+c - d ) ) ;
36 DeltapNkN1 = (1 : N1 ) /2/N1 .∗ ( 2∗ ( a - c ) ∗N1 - ( 1 : N1 ) ∗(a - b - c+d ) - (a - b+c - d ) ) ;
37 Deltap1 = Deltap1k (1 ) ;
38 DeltapN1 = DeltapNkN1 (1 ) ;
39

40 % pr in t game
41 f p r i n t f ( fd , '%e %e %e %e %d %e %e ' ,a , b , c , d , N , Deltap1 , DeltapN1 ) ;
42

43 % Se l e c t i o n loop
44 f o r s = sv
45

46 % exp o f Delta p_{1 , k} , Delta p_{k ,N-1} / N1
47 eDeltap1k = exp ( - s∗Deltap1k ) ;
48 eDeltapNkN1 = exp ( s∗DeltapNkN1 ) ;
49

50 % f i x a t i o n p r o b a b i l i t i e s (sumAB, sumBA to be compared with N1)
51 sumAB = sum( eDeltap1k ) ;
52 sumBA = sum( eDeltapNkN1 ) ;
53
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54 % f i t n e s s e s and t r a n s i t i o n p r o b a b i l i t i e s
55 Deltaf = exp ( s ∗( a ∗ ( 0 : N1 - 1 )+b ∗( N1 : - 1 : 1 ) -c ∗ ( 1 : N1 ) -d ∗( N1 - 1 : - 1 : 0 ) ) /N1 ) ;
56 pBA=1./(1+Deltaf . ^ ( - 1 ) ) ;
57 pAB=1./(1+Deltaf ) ;
58 lambda = pBA . ∗ ( 1 : N1 ) . ∗ ( N1 : - 1 : 1 ) . / N ;
59 mu = pAB . ∗ ( 1 : N1 ) . ∗ ( N1 : - 1 : 1 ) . / N ;
60 mu=flip ( mu ) ;
61

62 % f i x a t i o n time ( f t imead j to be compared with 2∗N1)
63 cumeDeltap1k = [0 cumsum( eDeltap1k ( 1 : N1 - 1 ) ) ] ;
64 cumeDeltapNkN1 = [0 cumsum( eDeltapNkN1 ( 1 : N1 - 1 ) ) ] ;
65

66 % case - s p e c i f i c computation
67 switch num2str ( ( [ Deltap1 , DeltapN1 ]>0) - ( [ Deltap1 , DeltapN1 ]<0) , '%2d ' )
68

69 case { ' 1 1 ' , ' 1 0 ' , ' 0 1 ' , ' 0 0 ' } % A-DOMINANCE
70 ftimeadj = (1+cumeDeltap1k ( N1 ) ) /( lambda ( N1 ) ∗(1+sumAB ) ) ;
71 f o r i = 1 : N1 -1
72 ftimeadj = ftimeadj + ←↩

(1+cumeDeltap1k ( i ) ) ∗(1+sum( exp ( - s ∗( Deltap1k ( i+1:N1 ) . . .
73 - Deltap1k ( i ) ) ) ) ) /( lambda ( i ) ∗(1+sumAB ) ) ;
74 end
75

76 case { ' -1 -1 ' , ' -1 0 ' , ' 0 -1 ' } % B-DOMINANCE
77 ftimeadj = (1+cumeDeltapNkN1 ( N1 ) ) /( mu ( N1 ) ∗(1+sumBA ) ) ;
78 f o r i = 1 : N1 -1
79 ftimeadj = ftimeadj + ←↩

(1+cumeDeltapNkN1 ( i ) ) ∗(1+sum( exp ( s ∗( DeltapNkN1 ( i+1:N1 ) . . .
80 - DeltapNkN1 ( i ) ) ) ) ) /( mu ( i ) ∗(1+sumBA ) ) ;
81 end
82

83 case { ' -1 1 ' } % MUTUAL EXCLUSION
84 Deltap = (a - b - c+d ) /N1 ;
85 is = c e i l ( - Deltap1/Deltap ) ;
86 s1N1 = sum( exp ( - s ∗( Deltap1k ( 1 : N1 ) - Deltap1k ( is ) ) ) ) ;
87 ftimeadj = s1N1 /( mu ( N1 ) ∗( exp ( s∗Deltap1k ( is ) )+s1N1 ) ) ;
88 f o r i = 2 : N1
89 i f i <= is
90 ftimeadj = ftimeadj + ←↩

( exp ( s∗Deltap1k (i - 1 ) )+sum( exp ( - s ∗( Deltap1k ( 1 : i - 2 ) . . .
91 - Deltap1k (i - 1 ) ) ) )+1)∗sum( exp ( - s ∗( Deltap1k ( i : N1 ) . . .
92 - Deltap1k ( is ) ) ) ) /( mu (N - i ) ∗( exp ( s∗Deltap1k ( is ) )+s1N1 ) ) ;
93 e l s e
94 ftimeadj = ftimeadj + ←↩

( exp ( s∗Deltap1k ( is ) )+sum( exp ( - s ∗( Deltap1k ( 1 : i - 1 ) . . .
95 - Deltap1k ( is ) ) ) ) ) ∗(1+sum( exp ( - s ∗( Deltap1k ( i+1:N1 ) . . .
96 - Deltap1k ( i ) ) ) ) ) /( lambda ( i ) ∗( exp ( s∗Deltap1k ( is ) )+s1N1 ) ) ;
97 end
98 end
99

100 case { ' 1 -1 ' } % COEXISTENCE
101 i f Deltap1k ( N1 ) >= 0
102 ftimeadj = (1+cumeDeltap1k ( N1 ) ) /( lambda ( N1 ) ∗(1+sumAB ) ) ;
103 f o r i = 1 : N1 -1
104 ftimeadj = ftimeadj + ←↩

(1+cumeDeltap1k ( i ) ) ∗(1+sum( exp ( - s ∗( Deltap1k ( i+1:N1 ) . . .
105 - Deltap1k ( i ) ) ) ) ) /( lambda ( i ) ∗(1+sumAB ) ) ;
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106 end
107 e l s e
108 ftimeadj = (1+cumeDeltapNkN1 ( N1 ) ) /( mu ( N1 ) ∗(1+sumBA ) ) ;
109 f o r i = 1 : N1 -1
110 ftimeadj = ftimeadj + ←↩

(1+cumeDeltapNkN1 ( i ) ) ∗(1+sum( exp ( s ∗( DeltapNkN1 ( i+1:N1 ) . . .
111 - DeltapNkN1 ( i ) ) ) ) ) /( mu ( i ) ∗(1+sumBA ) ) ;
112 end
113 end
114

115 end
116

117 % pr in t r e s u l t s
118 f p r i n t f ( fd , '%e %e %e ' , sumAB , sumBA , ftimeadj ) ;
119

120 % end s e l e c t i o n loop
121 end
122

123 % end populat ion loop
124 end
125

126 % end game loop
127 end



Bibliography

[1] J von Neumann and O Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[2] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295,
1951.

[3] J Maynard Smith and GR Price. The logic of animal conflict. Nature, 246:15,
1973.

[4] Martin A Nowak. Evolutionary dynamics. Harvard University Press, 2006.

[5] Peter D Taylor and Leo B Jonker. Evolutionary stable strategies and game
dynamics. Mathematical biosciences, 40(1):145–156, 1978.

[6] John Maynard Smith. Evolution and the Theory of Games. Cambridge
university press, 1982.

[7] Josef Hofbauer and Karl Sigmund. Evolutionary games and population dynam-
ics. Cambridge University Press, 1998.

[8] Martin A Nowak and Karl Sigmund. Evolutionary dynamics of biological
games. science, 303(5659):793–799, 2004.

[9] Christine Taylor, Drew Fudenberg, Akira Sasaki, and Martin A. Nowak. Evolu-
tionary game dynamics in finite populations. Bulletin of mathematical biology,
66(6):1621–1644, 2004.

[10] Tibor Antal and Istvan Scheuring. Fixation of strategies for an evolutionary
game in finite populations. Bulletin of mathematical biology, 68(8):1923–1944,
2006.

[11] Josef Hofbauer, Peter Schuster, and Karl Sigmund. A note on evolutionary
stable strategies and game dynamics. Journal of Theoretical Biology, 81(3):609–
612, 1979.

73



74 BIBLIOGRAPHY

[12] Josef Hofbauer and Karl Sigmund. Evolutionary game dynamics. Bulletin of
the American Mathematical Society, 40(4):479–519, 2003.

[13] Arne Traulsen and Christoph Hauert. Stochastic evolutionary game dynamics.
Reviews of nonlinear dynamics and complexity, 2:25–61, 2009.

[14] Philipp M Altrock, Chaitanya S Gokhale, and Arne Traulsen. Stochastic
slowdown in evolutionary processes. Physical Review E, 82(1):011925, 2010.

[15] Martin A Nowak, Akira Sasaki, Christine Taylor, and Drew Fudenberg. Emer-
gence of cooperation and evolutionary stability in finite populations. Nature,
428(6983):646–650, 2004.

[16] Howard E Taylor and Samuel Karlin. A first course in stochastic processes.
Elsevier Science & Technology., 1975.

[17] Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry,
volume 1. Elsevier, 1992.

[18] Narendra S Goel and Nira Richter-Dyn. Stochastic models in biology. Elsevier,
1974.

[19] Patrick Alfred Pierce Moran et al. The statistical processes of evolutionary
theory. The statistical processes of evolutionary theory., 1962.

[20] Warren J Ewens. Mathematical Population Genetics. Springer, 1979.

[21] Philipp M Altrock and Arne Traulsen. Fixation times in evolutionary games
under weak selection. New Journal of Physics, 11(1):013012, 2009.

[22] Arne Traulsen, Noam Shoresh, and Martin A. Nowak. Analytical results for
individual and group selection of any intensity. Bulletin of mathematical biology,
70(5):1410–1424, 2008.

[23] Philipp M. Altrock and Arne Traulsen. Deterministic evolutionary game
dynamics in finite populations. Physical Review E, 80(1):011909, 2009.

[24] Arne Traulsen, Jens Christian Claussen, and Christoph Hauert. Coevolu-
tionary dynamics: from finite to infinite populations. Physical review letters,
95(23):238701, 2005.

[25] Christoph Hauert and György Szabó. Game theory and physics. American
Journal of Physics, 73(5):405–414, 2005.



BIBLIOGRAPHY 75

[26] Lawrence E Blume. The statistical mechanics of strategic interaction. Games
and economic behavior, 5(3):387–424, 1993.

[27] Arne Traulsen, Jorge M. Pacheco, and Martin A. Nowak. Pairwise comparison
and selection temperature in evolutionary game dynamics. Journal of theoretical
biology, 246(3):522–529, 2007.

[28] Arne Traulsen, Martin A Nowak, and Jorge M Pacheco. Stochastic dynamics
of invasion and fixation. Physical Review E, 74:011909, 2006.

[29] Bin Wu, Benedikt Bauer, Tobias Galla, and Arne Traulsen. Fitness-based mod-
els and pairwise comparison models of evolutionary games are typically different-
even in unstructured populations. New Journal of Physics, 17(2):023043, 2015.

[30] Shlomo S Sawilowsky and Gail C Fahoome. Statistics via monte carlo simulation
with fortran. Rochester Hills, MI, JMASM, 2003.

[31] Marco C Campi, Simone Garatti, and Maria Prandini. The scenario approach
for systems and control design. Annual Reviews in Control, 33(2):149–157,
2009.

[32] Brian Skyrms. Chaos in game dynamics. Journal of Logic, Language and
Information, 1(2):111–130, 1992.

[33] Drew Fudenberg, Martin A. Nowak, Christine Taylor, and Lorens A. Imhof.
Evolutionary game dynamics in finite populations with strong selection and
weak mutation. Theoretical population biology, 70(3):352–363, 2006.


	Abstract
	Sommario
	Introduction
	Deterministic Evolutionary Game Dynamics
	The replicator equation
	Selection scenarios

	Stochastic Evolutionary Game Dynamics
	Stochastic model for finite populations
	Classification Parameters
	Invasion Coefficient
	Fixation Probability
	Fixation Time

	The Moran Process with linear fitness
	Selection Scenarios
	Large N Limit


	Stochastic dynamics under arbitrary intensity of selection
	The Moran process with exponential fitness
	Selection scenarios
	Large N limit
	Strong selection
	Extreme selection
	The deterministic limit

	The pairwise comparison with Fermi function
	Selection scenarios
	Large N limit
	Strong selection
	Extreme selection
	The deterministic limit


	Monte Carlo simulations
	Monte Carlo methods
	Implementation and results

	Conclusion and future research
	Code
	Code for the Moran process
	Code for the pairwise comparison

	Bibliography

