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Introduction

Synthetic aperture radar (SAR) is a general method for generating high-resolution
radar maps from low-resolution aperture data which is based on using the relative
motion between the radar antenna and the image scene. A synthetic aperture is
formed using electromagnetic signals from a physical aperture located at different
space-time position. SAR can be seen as a particular case of side-looking radar in
which the angular resolution is inversely proportional to the aperture size so that
the spatial resolution degrades increasing the distance from the scene. Synthetic
aperture is obtained combining the data from the real antenna of a side-looking
real-aperture radar as we sample data of a bigger real antenna with size equal to
the real-antenna footprint . In this way SAR can observe the scene over a large
angular sector by moving the physical aperture to achieve a better resolution in
the along-track direction with results that are independent from the range to the
scene. The resolution of these system are limited by antenna illumination and
system bandwidth but also by other factors, e.g. accuracy of the antenna posi-
tioning, propagation perturbation, transmitted power, etc. The ultimate limit of
SAR spatial resolution is proportional to the wavelength. Signal processing play
a key role in SAR because it is necessary to process all the reiceved echo for all
the positions of the synethic aperture in order to obtain the final image and this
is why there are many different algorithms of focusing. There are two foundamen-
tal features in the focusing algorithms: resolution and computational efficiency.
Most of computationally efficient algorithms work in the Frequency-domain such
as the Rectangular format algorithm or thet Fourier-Hankel and range migra-
tion inversion method. A major shortcoming of the algorithms, however, is that
they are derived for a linear aperture and they are not easily extendible to the
common nonlinear case. It is possible to partly correct for nonlinear motion, i.e.
deviation from a linear track, but the image must be cut into subimages and pro-
cessed separately since the motion correction is only locally valid. This problem
becomes a major issue in wide-beam system e.g. low-frequency SAR where a
wide beam is necessary to obtain an acceptable along-track resolution. There is
cleary need for other processing algorithms which can be more easily adapted to
a general aperture geometry, and this leads to the image formation in the time-
domain. A way to consider such an algorithm is the back-projection integral used
in tomography. In the direct back-projection method, each received radar echo
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is processed and back-projected over spherical shells to all imaged ground pixels.
Each pixel is thus assigned a value by interpolating the pulse echo at the time
delay corresponding to the range beetwen the pixel and the antenna. The value
for each pixel is accumulated as more radar echoes are processed and the final re-
solution achieved. The main drawback of the direct back-projection algorithm is
the large number of required operations that are proportional to N3 for an image
with N ∗ N pixel and N aperture positions, since every aperture position must
be examined for every image pixel. The purpose of this thesys is to implement
a direct-back projection integral partitioning the integral in sub-integrals each
correspoding a sub-aperture. We divided the syntethic aperture in sub-apertures
and then we undersample each of them to increse the algorithm’s performance in
term of computational cost. The work presented here is structured as follows:

Chapter 1 In this chapter we talk about the generical SAR system and its most
important parameters related to the acquisition and focusing problem.

Chapter 2 Here we introduce the acquisition for SAR system in case of linear
trajectory and then we extend the problem to the nonlinear case. We also
talk about the frequency components of the raw data

Chapter 3 This chapter talk about the back-projection focusing method. We
introduce the common continuos time method and then we analyze the use
of the sub-apertures.

Chapter 4 After the previous chapters analysis, now we explain our implemen-
tation of the sub-apertures back-projetion algorithm introducing the sub-
sample stage to obtain the computational efficiency respect to the common
back-projection algoritmh.

Chapter 5 This is the last chapter, here we want study the performance of the
algorithm and we find a bound in the subsampling stage that guarantees
good results and low phase errors.
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Chapter 1

SAR Fundamentals

In the following we introduce basic concepts relative to Synthetic Aperture Radar
(SAR). First we introduce the geometry of the acquisition problem with the
assumption that the sensor flight path is a straight line and then we introduce
the non linear track motion that, in term of SAR, can be seen as a phase delay
in the received signal. In order to analyze the characteristics and properties of
the backscattered signal and received onboard, we consider an elementary scene
consisting of a single scatterer without loss in generality.
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1.1 SAR System

Figure 1.1: Sar system geometry

Consider a radar which trasmits pulses from an antenna with little directivity
and receives the back scattered echoes as a function of delay time. Let as refere
to figure 1.1, the sensor is moving in the along-track direction u = x with con-
stant velocity vs and is transmitting pulse p(t) with a constant rate PRF (Pulse
Repetition Frequency) that represent the sampling frequency in the azimuth di-
rection. This pulse modulates a carrier signal that is a complex sinuosid with
central frequency equal to f0 = ω0

2π
, so the trasmitted signal is

sT = p(t)ejωt

The way to transmit such signal is to use an IQ modulator and consequently an
IQ demodulator to receive the pulses scattered by the targets. As the sensor is
mounted over a plane or satellite usually there’s a single antenna used both to
transmit and receive so we need to switch the real antenna for the two phases.
This can be made introducing a system that switchs the circuit for transmission
when the time is an integer multiple of the TRI and put the system in ”listening”
for the other time. In this way we have a monostatic radar in which the trans-
mitter and the receiver are positioned in the same location. The scheme of such
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system is shown in figure 1.2 while the scheme of a generic IQ system is shown
in figure 1.3.

Figure 1.2: Basic block diagram of typical radar system.

Figure 1.3: IQ modulator-demodulator, xi and xq are the components of the
complex envelope of the generic trasmitted pulse

1.2 SAR Resolution
The target resolution of a radar is its ability to distinguish between targets that
are very close in either range or azimuth. With SAR we reconstruct images in 2
dimensions so we have a resolution for dimension, called azimuth resolution and
range resolution.

Range Is the dimension in the line-of-sight of the radar and range resolution is
the capability to resolve two close target in this direction. It depends on
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the bandwidth of the transmitted pulse, just as in digital communication
we say that the bandwidth of a signal is approximately inverse to the time
duration. In fact we can resolve two close targets if the pulsed echoes are
not overlapped in time, so we obtain:

ρr =
c

2Bp

(1.1)

The factor 2 in the denominator is due to the two way path travel of the
signal.

Figure 1.4: trasmitted radar pulse over time

Azimuht In SAR radar systems the azimuth resolution is the capability to dis-
tinguish targets that are close in azimuth, that is the moving direction of
the sensor. Like in real-aperture radar this resolution is governed by the
antenna but in SAR we synthesize a longer antenna through the sampling
of the real one. Starting from the theory of the antenna array we can de-
mostrate that the synthetic aperture is equal in length to the footprint of
the real antenna [1]. In fact we have to combine all the correlated samples
togheter to obtain a finer resolution. We start from the azimuth resolution
for a real-aperture radar; it depends on the range R and on the aperture
angle.

∆ψ =
λ

La
Adding the formula of the Synthetic aperture

Ls = R0
λ

La
(1.2)

instead of the real one and adding a factor 1/2 due to the double travelling
of the pulse, we arrive at the well known azimuth resolution formula for
SAR systems:

ρaz =
La
2

(1.3)
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where La[m] is the azimuth dimension of the real antenna. This is a key
formula for SAR because it tells us that to get better resolution we have to
decrease the size of the real antenna, i.e. increase the aperture of the real
one’s angle. The explanation is that the increases of the real azimuth aper-
ture corresponds to increase the synthetic aperture and this is the relation
that governs the resolution. An illustration of this is in figure 1.5.

Figure 1.5: Synthetic aperture ”on air” is equal to footprint on the ground
made by the real antenna; they have the same azimuth length L

1.3 Sampling the Array
Syntethic aperture is equivalent to any antenna array and so a critical factor is
the sampling interval. We have to respect the Nyquist criterion to avoid aliasing.
First assuming that each antenna limits the DOA within the range

−ψM < |ψ| < ψM

Where ψM is the maximum real antenna angle aperture. According to equation
1.6

ψM =
∆ψ

2
=

λ

2La
By the linear antenna array theory we know that a spatial frequency corresponds
to an angle of view, so we have a maximum spatial frequency

fxM = 2
sinψM
λ

For the Shannon theorem, for a spatial sampling interval dx given we obtain:

1

dx
> 2fxM ⇒ dx <

λ

4 sinψM
(1.4)
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Figure 1.6: Angular aperture for a real antenna of azimuth length La

whence the maximum spatial frequency occurs when sinψM = 1 so, sampling for
any angular direction, we have:

dx =
λ

4

The quantity dx cannot be set as small as we want because

dx = vs · TPRI =
vs

fPRF

Form the relation above fixed the platform velocity vs,dx cannot be set as small
as we want becaus it can reduce TPRI to an impossible value so there’s need a
tradeoff between real angular aperture, synthetic aperture, azimuth resolution
and sampling interval.

In equation 1.2 we introduce the syntethic aperture length for a generic SAR
system. It is important to observe how much this quantity is related to the
aperture length of the real antenna and this governs the SAR azimuth resolution.
This concept is the strength of SAR because if we want to get a given resolution
we have to fix the size of the real-antenna and from this parameter we get the
size of the synthetic aperture.

1.4 Data structure
SAR systems acquire a lot of data during the scan session and these data are
stored in memory after the sampling process. The processing stage works on
these bins to obtain final images. Data are sampled both in azimuth and range
dimensions so we obtain a matrix data structure, i.e. the raw data matrix. The
columns store the data of the backscattered echoes and each sample is taken with
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the range sampling frequency 1
dr
, so the raw index ”move” the column and marks

the fast time, i.e. the coordinate associated to the range direction. On the other
hand the column index mark the slow time that is the coordinate associated to
the azimuth position of any ”sensor” of the syntethic array.

Figure 1.7: Two-dimensional SAR data space.





Chapter 2

SAR Acquisition

In this chapter we talk about the data acquisition in SAR systems. We start from
the geometry of the problem using a linear fligth track and then we extend the
results to a non-linear motion. This passage is easy because in terms of model it
represents an additional phase term. In the following some assumption are made
in order to simplify and make clearer the reading but we don’t lose in generality.
We come to define a IRF (impulse Response function) that enterely describes the
SAR acquisition in order to have the tools to make the data focusing.

2.1 RAW DATA
Let us refer to figure 2.1, where the SAR system geometry is depicted, the trasmit-
ted signal is

sT (t) = p(t)ejω0t

where

p(t) is the transmitted pulse; in our simulation p(t) = sinc(t) ∗ rect( t
TR

)

ω0 is the central carrier frequency, in the raw data we will demodulate it.

The received signal from a single target positioned at coordinates (xp, yp), setting
R0 =

√
h2 + y2p as the minimum distance sensor-target and assuming that the

antenna beam is positioned broadside, is

sr(t, x−xp, y−yp, h) = γ(xp, yp)·p(t−
2RT (x)

c
)·w2(x−xp, y−yp)·exp(jω0(t−

2RT (x)

c
))

(2.1)
where:

γ(xp, yp) is a complex number that accounts both the RCS, the spherical diver-
gence and other attenuations. We put this term equal to δ(xp, yp), in order
to obtain the SAR response for a single point-like target.
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2RT (x) is the double distance beetwen the target and the antenna of the array
due to the double path made by the pulse. If a single target is fixed this
term depends only on the position x = u of the sensor along the azimuth
direction.

w2(x− xp, y − yp) is the illumination fuction of the real antenna, this term de-
pend on the target- sensor positioning too. We assume that the phase center
of the radar antenna is located at the coordinate (h, x = vt, R0)

Figure 2.1: Geometry of linear trajectory SAR system.

To obtain the raw data we have to demodulate eq. 2.1 multipling it with a com-
plex exponential e−jω0t. Taken account of the above mentioned approximation
and supposed that the start-and-stop approssimation applies, i.e. the system is
actually monostatic; the demodulated received signal is

sr(t, x−xp, y−yp, h) = p(t− 2RT (x)

c
)·w2(x−xp, y−yp)·exp(jω0(

2RT (x)

c
)) (2.2)

Equation 2.2 is a simplified continuous-time version of the Impulse Respone Func-
tion (IRF) h(x, t, x−xp, y−yp, h) for a point-like target δ(xp, yp). RT (x) is a very
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important variable in SAR, in fact the last term of eq. 2.2 shows that we have a
pure phase term that depend on this variable that is called hodograph. Moreover
we can see that the trasmitted pulse is received with a certain delay that depends
exactly from the hodograph. It is a crucial feature in focusing because we have
to take the sample at a distance equal to RT (x). In the picture below an example
of a raw data matrix is shown.
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Figure 2.2: Absolute value of raw data matrix for a single point-like target.

2.2 Hodograph and RAW Spectral Analysis
The spectral components of raw signals depend on the geometry acquisition. In
fact in equation 2.2 the last term is a pure phase term so it reprsents a complex
sinusoid with a space-variant phase. To study this term we start from figure
2.1 and we make a 2D observation of the geometry rembering the assumptions
made on the phase center of the antenna. RT (x) can obtained applying the
Pythagoras’s theorem according to figure 2.3

RT = RT (x) =
√
R2

0 + (x− xp)2 = R0

√
1 +

(x− xp)2
R2

0

(2.3)
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Figure 2.3: 2D geometry of linear trajectory SAR system.

Where R0 is the minimum target-sensor distance; in linear flight track we get
this when x = u = xp and so

R0 =
√
h2 + y2p

where h is the height of the sensor from the ground. Equation 2.3 shows that
in a stripmap SAR, the range between the radar and an arbitrary scatter varies
hyperbolically as the radar moves along the synthetic aperture. We said that the
received pulse has a delay that depends from RT (x), from eq. 2.3 it is clear that
there is an hyperbolic distribution as well. So In the fast-time of the raw matrix
we have the same pulse with a certain delay in every column of the matrix, like
shown in the picture below.
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Figure 2.4: Hyperbolic distribution of the delays in the slow-time.

The form of the range variation is invariant to the scatterer’s along-track position
xp, in the sense that the xp dependence of RT involves only the position of the
aircraft relative to the scatter, (u − xp), but, in contrast, the range variation
varies with the absolute slant range of the target, R0 that depends on position
yp. We now abserve that usually the range distance is greater than the distance
to the point in the array

R0 � (x− xp)

within a synthetic aperture and this is equal to say that the far-field approxima-
tion applies. After that we can use the Taylor series stopped at the first order
for the square root and we obtain:

RT ' R0 +
(x− xp)2

2R0

= R0 +
x2

2R0

− (x− xp)
R0

+
x2p

2R0

(2.4)

Equation 2.4 shows that the range from the radar to the target varies approxi-
mately quadratically as the data set is collected, like shown in figure 2.2, in which
we have only a slight quadratically trend. If we now put this result of the hodo-
graph in the last term of equation 2.1 we observe that the received phase of the
target echo is shifted by an amount proportional to range, namely φ = 4π

λ
R(x). It

follows that the absolute phase of the received echoes will also vary approximately
quadratically. We now derive the istantaneous frequency term corrisponding to
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this phase modulation, simply deriving the phase term:

Kxi =
dφ(x)

dx
=

4π

λ

(x− xp)
R0

[rads/m] (2.5)

In the above equation we obtain the istantaneous frequency expressed in term of
wavenumber, if we want to change in spatial frequency we have to divide by 2π.
From equation 2.4 and 2.5 we note that targets at the same range but in different
azimuth positions give the same frequency modulation so the raw data have the
same spectrum. Another information that we can see from eq. 2.5 is that the
azimuth component’s frequency of the raw data have a linear trend with slope
equal to Kxi, so in frequency we get an azimuth chirp like shown in figure 2.5.
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Figure 2.5: Abs of raw and fft signal for a single range and single synthetic
aperture.

Note that the curvature in DFT of the raw data in figure 2.5 is due to the
illumination function w(x, r) Fourier transform. From eq. 2.5 we can also see
that the spectrum components, as we said above, involves only the position of
the aircraft relative to the scatter. If we have more scatters in different x-position
and at different range positions, but if the range difference is small respect to the
the nominal R0, then they have approximately the same spectrum components,
i.e. the same absolute value of their Fourier Transform, like show in figure 2.6.
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Figure 2.6: Absolute value of the raw FFT with multiple targets, it can be seen
that they have approximately the same spectrum.

2.3 RAW data for non-linear trajectory
In case of airborne sensors, significant deviations from the ideal trajectory, due
to the presence of atmospheric turbulences may occur, so we want to extend our
model in order to describe this effect. The geometry of this case is showned in
figure 2.7. Assume that the sensor is moving only on the z − y plane, i.e. now
we have h = h(x), y = y(x). To determinate the non linear trajectory effects
we have to analize equation 2.3. Said R0 =

√
h2 + y2p the nominal target-sensor

minimum-distance and said ∆r(x) = f(h(x)− h, y(x)− yp) the distance between
the nominal sensor trajectory and the actual path, we have:

RTnl
(x) =

√
(R0 + ∆r(x))2 + (x− xp)2 (2.6)

2.6 shows that is convenient to rewrite the SAR acquisition expression in terms
of plane position x and sensor distance to the target r = r(x) that accounts the
deviation from the linear track.

sr(t, x− xp, y(x)− yp, h(x)) = sr(t, x− xp, r) =

= p(t− 2RTnl
(x)

c
) · w2(x− xp, r) · exp(jω0(

2RTnl
(x)

c
))

(2.7)
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Figure 2.7: Geometry of non linear trajectory SAR system.

Eq. 2.7 is more general than 2.2 and we can use this one to describe the acquisition
in all situations. The term ∆r(x) = f(h(x)−h, y(x)−yp) can be calculated using
the cosine theorem, knowing the angle between the nominal minimum range and
the actual x-position of the sensor. Certainly the result expressed in eq. 2.5 will
not hold on when the trajectory is non linear, so the spectrum will not be the same
as the ideal case. In fact in 2.5 we derive the istantaneus frequency components
of the raw signal, and we see that it has an approximate parabolic trend, that
depends upon the linear geometry. Now we have a non-linear geometry that
modifies the wavenumber component according to

Kxi =
dφ(x)

dx

where
φ =

4π

λ
RTnl

(x)

So now 2.5 doesn’t hold on and the closed form of the phase component is more
complex because the term ∆r(x) had a x dependence, so the exactly funtcion of
the trajectory has to be known in order to calculate the derivative. The equation
above shows that the trajectory modifies the spectrum component of the raw
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signal respect to the ideal linear case. In the following two figure the effect of
the non-linear trajectory in the raw data spectrum is shown. The same system
parameters are used and a single point like target is used.
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Figure 2.8: Absolute value of a raw signal spectrum for linear trajectory
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Figure 2.9: Absolute value of a raw signal spectrum for a non-linear sine like
trajectory
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It can be seen that the spectrum with a non linear trajectory has been modified
respect to the linear case. In the next figure we can observe how the raw data
matrix changes with a non-linear trajectory, according to equation 2.6. The
hodograph doesn’t have a parabolic trend like shown in figure 2.2 yet but now has
also a term due to the non linear track-motion, so from eq. 2.7 the pulse delays
don’t have a parabolic distribution yet.
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Figure 2.10: Absolute value of a raw data matrix for non-linear sine like trajec-
tory. The effect of the sensor motions can be valued respect to figure 2.2.



Chapter 3

SAR Focusing

The purpose of SAR is the capability to obtain better resolution by sampling a
bigger synthetic antenna to form a synthetic array. After the acquisition process
and the construction of the raw data some processing stages are required in order
to synthesize this antenna and get the higher resolution. The set of operations
that we do on the raw data, to obtain the image of the illuminated area, is
called focusing. Mathematically the focusing is the inversion of the acquisition,
represented by equation 2.2. The simpliest focusing method is the matched filter
of the IRF, that corresponds to the optimal estimation of an isolated target
[1]. Although that method is simple and guarantees good results also with non-
linear flight tracks, it’s very expensive in terms of computational cost as we
have to process, for all pixels in the final image, all the relative points in the
synthetic aperture. There are a lot of algorithms to speed up the focusing process,
usually based on the Fourier transorm like the Range doppler algorithm and the
ω − k algorithm. In the following we analyze the time-domain method called
back-projection that corresponds to the matched filter method. We propose an
accelerated version of that method dividing and sub-sampling the algorithm in
the so called sub-aperture in order to decrease the processing burden. We start
to talk about the general back-projection method like the inversion problem of
the acquisition and then, in the next chapter, we talk about our implementation.

3.1 Time domain focusing method

In eq. 2.7 we derive a continuos-time approximation of the IRF for a single
scatter point δ(xp, yp) with arbitrary flight trajectory. We first introduce the
direct problem that is the acquisition, obtained by convolving the above IRF
with the reflectivity model of the ground that we are observing. The reflectivity
is a continuos or discrete model of the ground; from the point of view of SAR it
is a complex function of (x, y) and we call this a(x, r). In this first analysis we
suppose to have a continuos function both in azimuth and range. The received
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radar signal can be expressed as a convolution between the IRF of 2.7 and the
reflectivity model a(x, r):

d(x, r) =

∫∫
a(x, r)hs(t, x, r) dx dr (3.1)

If the scene consists only by a single target the equation 3.1 and 2.7 coincide. To
obtain a figure that shows the target on the ground we have to focus the data, so
we have to invert eq. 3.1. Focusing defines a trasformation from the raw data to
focused data that minimize the distance ‖â(x, r)− â(x, r)‖ in some norme. The
simpliest solution consist on the use of the matched filter that corresponds to the
optimum estimation for an isolated target. It is implemented by convolving the
raw received signal with a complex conjugate model of the IRF:

â(x, r) = G(d(x, r)) =

∫∫
d(x, r) · h∗s(t, x, r) dx dr (3.2)

3.2 is very simple and gives very good results but it is very expensive in term of
computational costs, in fact we have to make a linear combination between all
the samples of the raw signal and all the points in the final image.

3.2 Back-projection method
We start now to talk about the method we use in this thesys, the back-projection
algorithm. The foundamental principle consist on generating a radar map in
which each object is located at its 2-parametric position (x, r). The radar map
is assumed to be a linear transformation from the radar echo data so that super-
position of imaged point object applies. We introduce the back-projected signal
y(x, r) as follows:

y(x, r) =

∫ ∞
−∞

d(x, r) · h∗s(t, x, r) dx (3.3)

For each image position (x, r) the along track integral sums the value from each
radar echo at the range corresponding to the distance between the antenna and
the image position. It can be demostrated [5] that for a single scattered point
located at (x0, r0) the back-projected and filtered radar echo data produces a
Dirac-function located at (x0, r0). Since superposition applies we may add an
arbitrary number of point objects at different location and with different ampli-
tudes and still have the exact scene inversion. In our case we work with sampled
signal, so we now derive the back-projected signal of equation 3.3 in a discrete
time way. To do that we first have to change the coordinates in time-azimuth
to the coordinates that we use in the raw data matrix, that are the slow-time,
fast-time. Given the sampling period both in range(time) and azimuth called
respectively dr and dx we get the discrete time variables of the two quantities:

nr =
ct

2
∗ dr , na = x ∗ dx (3.4)
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The expression above transforms the time-azimuth coordinates to the fast and
slow time coordinates that are those used in the raw data matrix. Putting these
discrete indices in equation 2.7 we get

sr(nr, na−xp, r) = p(nr− 2RTnl
(na)

c
)·w2(na−xp, r)·exp(jω0(

2RTnl
(na)

c
)) (3.5)

that is the discrete version of the received signal, so it is the signal stored in the
raw data. Now we can rewrite the formula of the back-projection integral in the
discrete time case as

y(na, nr) =
+∞∑

k=−∞

d(na+ k, nr) · h∗s(nr, na+ k, r) (3.6)

where r is the distance between the pixel that we want to focus and the sensor
azimuth position equal to na+ k. Formula 3.6 has to be applied for every image
points (na, nr), with

na ∈ [−N/2, N/2] and nr ∈ [−M/2,M/2] (3.7)

In the real case we don’t have to move all samples in the slow-time k as the
illumination fuction of the antenna w2(na − xp, r) bounds the samples that are
correlated to those that we want to focus. The number of samples that we have
to process is exactly the synthetic aperture length multipled by the sampling
interval.

k ∈ [−Ls
2
dx,

Ls
2
dx]

Next figure illustrates the logical mechanism made by eq. 3.6 to get a focused
pixel at a generic position (na, nr) in the final image.

Figure 3.1: Illustration on how the BPI integrates the contributing aperture
position to create one image position
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The next two figures show instead how a focused point-like target and its spec-
trum appears .
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Figure 3.2: Focused final image for a point like target positioned at the center of
the image
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Figure 3.3: Focused spectrum for a point like target positioned at the center of
the image
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3.3 Sub Aperture back projection integral
The first step to implement our algorithm is to divide a single synthetic aperture
in more sub-apertures. If we want to get S sub-apertures we have to divide the
expression 1.2 as:

Lssub =
Ls
S

Now we apply eq. 3.6 only for one sub-aperture, so we get a sub-focused image
due to the fact that we are combining only some point of the synthetic aperture:

y(na, nr)sub =
+l∑

k=−l

d(na+k, nr)·h∗s(nr, na+k, r) l ∈ [−Lssub
2

dx,
Lssub

2
dx] (3.8)

for every point (na, nr) with bounds expressed in eq. 3.7. Each sub-summation
takes into account only a portion of the synthetic aperture and gives a sub-image
with azimuth resolution equal to

ρazsub =
La
2S

because we are using a synthetic aperture S time smaller than the nominal one.
Now there is the problem to reconstruct the original back-projected signal, i.e.
the final focused image expressed in eq. 3.6, from the expression of eq. 3.8. This
can be done in a very simple way using the Fourier Transform. To understand
this, suppose to have a generic time discrete signal x(n) with N bins; its DTFT
is

X(ejω) =

+N
2∑

n=−N
2

x[n]ejωn

It is clear that we can obtain the same result if we break the expression above in
a sum of summation like

X(ejω) =
S−1∑
k=0

+ N
S2∑

n=− N
S2

x[n+ k
N

2S
]ejωn
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Figure 3.4: Logical flow to reconstruct the entirely back projected signal

If we apply the same concept to the sub-aperture problem, so if we sum coherently
the DFT of each sub-aperture we obtain the DFT calculated over the whole
synthetic aperture length. So the reconstruction formula is

y(na, nr) =
S−1∑
k=0

IFFT
( +Ls

S2
dx∑

na=−Ls
S2
dx

Ysub(ka+ k
LS
S
, kr)

)
(3.9)

Where Ysub(ka, kr) is the DFT of 3.8. In picture 3.5 there’s a plot of a single
range focalized spectrum and the spectrum obtained by summation of successive
sub-aperture spectrums.
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Figure 3.5: Effect of successive summation of sub apertures spectrum, the first
is the yellow one and the last application is the red one that overlaps the black
spectrum obtained using all synthethc aperture samples

The next figures illustrate how the sub-images of each sub-aperture appears in the
case of a point-like target positioned in the middle of the image coordinates and
S = 5 sub-apertures. To demostrate that the final image has the same resolution
and gives the same results, we compare the main lobe of the focused image
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using the two method and we plot the phase error of the reconstructed spectrum.
Obviously the same system parameters are used to make the matching.
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Figure 3.6: First sub-aperture focused sub-image.
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Figure 3.7: First sub-aperture focused sub-image spectrum.
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Figure 3.8: Second sub-aperture focused sub-image.
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Figure 3.9: Second sub-aperture focused sub-image spectrum.
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Figure 3.10: Third sub-aperture focused sub-image.
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Figure 3.11: Third sub-aperture focused sub-image spectrum.
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Figure 3.12: Fourth sub-aperture focused sub-image.
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Figure 3.13: Fourth sub-aperture focused sub-image spectrum.
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Figure 3.14: Fifth sub-aperture focused sub-image.
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Figure 3.15: Fifth sub-aperture focused sub-image spectrum.
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Figure 3.16: Main lobe of focused image using full back-projection method.

Figure 3.17: Main lobe of focused image using sub-aperture back-projection
method. The two image are equal and so they have the same resolution.
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Figure 3.18: Phase error between the two spectrums. The values are in order of
10−12, so we can say that the two spectrums are equivalent.





Chapter 4

Subsampling sub-aperture back
projection focusing

The sub-aperture back-projection algorithm shown in chapter 3 doesn’t give any
profit in terms of calculation cost respect to the standard algorithm because we
have only broken the summation in sub-summations but, in anyway, we make
exactly the same number of operations. The idea is to add a sub-sampling stage
to the previous algorithm in order to obtain a gain in computational cost.

4.1 Sub-aperture back-projection parameters

To obtain a computational performance gain we make a sub-sampling of the
imaged azimuth point in the focusing stage. The idea is that if we divide the
signal in S sub-apertures we can sub-sample each of them by a factor S and, in
anyway, we are able to reconstruct the orignal full synthetic aperture spectrum
and so the full resolution image. It is necessary to interpolate the data of each
sub-aperture before reconstructing the spectrum and it is also necessary to place
each sub-part of the spectrum in the correct position. In the following figure a
scheme of the logical signal processing is shown.
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Figure 4.1: Logical scheme of the processing that is used in our focusing algo-
rithm.
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As pointed out from figure 4.1 the first step of the algorithm is to divide a syn-
thetic aperture in S sub-apertures. The aperture length, like shown in equation
1.2, depends on the real azimuth size aperture, the wavelength λ and the range
R0. Now the range depends on the pixel that we want to focus and R0 is the
range refers to the middle range points in the final image. Saying that our image
range extension is M pixels and saying

r = nr · dr with nr ∈ [−M/2,M/2]

our synthetic aperture length is:

A =
λ

La
· (Ro + r) (4.1)

If we want to obtain S sub-apertures we have to divide 4.1 in S parts to get the
sub-aperture length.

Asub = A/S

It’s very important that each sub-aperture doesn’t contain the bins of the adjacent
sub-apertures beacuse, in this case, we overlap these bins leading us to make an
error in the focusing process. However the overlap between the sub-apertures isn’t
an error. In fact, if we make a windowed overlap, we can obtain some benefits.
In the simulation we made an overlap equal to half the sub-aperture length so,
in terms of antenna samples we have:

Noverlap =
Asub
2dx

In the next table there are the main parameters that are used to make the figures
that follow.

Parameter Symbol Value

Wavelength λ 0.25 [m]
Azimuth sampling dx 0.5 [m]
Range sampling dr 3 [m]
Antenna Length La 4 [m]
Nominal distance to ground R0 3 [km]

Table 4.1: Table of system parameters
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4.2 Sub-apertures Formation
The first step of the algorithm is the sub-apertures formation, i.e. the logical
division of the whole synthetic aperture. After fixing S, we can calculate the
already mentioned sub-aperture length:

Asub = A/S

after that we find the bounds of each sub-aperture, called Ainfi and Asupi . These
values specify the length and position of each i-th sub synthetic antenna. These
values are refered respect to the center of the synthetic antenna denoted as AC ;
the scheme of such division is explain in the next figure 4.2.

Figure 4.2: Logical scheme of the sub-aperture formation and division with S = 3.
AC is the middle point of the synthetic aperture of length LS

The next step of the algorithm is to decide how much overlap we want between
the sub-apertures. We refer to this quantity as Noverlap. This is an important
feature beacuse a ”clean cut” of the segments means to applies a square windows
in x (azimuth) coordinate and this produces a lot of side lobes in the Fourier
Transform domain. We decide to use a raised cosine window with

Noverlap =
Asub

2
in this way we get a more gentle segmentation, so we can reduce the effect of
these side lobes. It is also very important that the windows summation is always
unitary in order to prevent ”interference” between the spectrum components of
the sub-apertures:

N
2∑

n=−N
2

RC(n− k ∗ Asub) = 1 with k = 1, 2, ...S (4.2)
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With overlap the bounds Ainfi and Asupi are extended each for a quantity equal
to Noverlap. We now refere to this quantities as ASboti

and AStopi
. Note that the

sub-apertures at the edges of the array have only one direction, toward AC , on
which they can expand. An example of such windows in azimuth dimension are
shown in figures 4.3 and 4.4
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Figure 4.3: Window functions with S = 3, in blue the sum of the windows is
plotted.



54 Subsampling sub-aperture back projection focusing

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Azimuth samples

A
m

p
lit

u
d
e

Windowing functions

Figure 4.4: Window functions with S = 9, in blue the sum of the windows is
plotted.

4.3 Subsampling sub-aperture back projection
Now we have all the elements to talk about the sub-sampling process of the image
azimuth points. This stage is the one that allows to obtain the speed up in the
back-projection algorithm. What we do is simply to apply the equation 3.8 but
now, instead of back-projected every point in the image like in eq. 3.7, we focus
one point every S. This means that now the sampling interval dx is S time larger
than before. We can rescribe equation 3.8 as:

y(na, nr)sub =
+l∑

k=−l

d(na+ k, nr) · h∗s(nr, na+ k, r) for na = S · i

with i = −N/2,−N/2 + 1, ...,−1, 0, 1, ..., N/2− 1, N/2 + 1

0 elsewhere

(4.3)

in which:
l ∈ [ASboti

, AStopi
]

specifies the antenna samples used in the single sub-aperture focalization. The
focused data are stored in a matrix with dimensions MxN , so we can think to
initialize this matrix with all zeros and than focused a point every S. In this
way we obtain an undersampled version of 3.8 with S zeros between two samples.
This means that we have done a zero interleaving operation that is necessary to
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restore the sampling frequency at the nominal 1/dx value after the sub-sampling
stage. An example can be seen in the next figure, in which there is a focused
image for a fixed range and a single sub-aperture.
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Figure 4.5: Zoomed focused image for a single sub-aperture with S = 9, both
with and without sub-sampling.

In equation 3.9 we sum the spectral components of each sub-aperture to re-
construct the full spectrum. Now we have an under-sampled signal with zero-
interleaving so, when we make the DFT of such signal, we get a periodic spectrum
in the frequency domain with period 2π

dx·S [4]. To reconstruct the full spectrum we
take a single replica of the periodic spectrum and we put it in the right spectral
position. Each replica is shifted respect to the central wavenumber 2π

dx·S by a
quantity that can be derminated by eq. 2.5. In fact in the focusing operation
expressed in eq. 4.3 we have corrected all the phase terms due to the sensor
motion respect to the target and so, if R0 � (x − xp) then eq. 2.5 holds also
for the focused data. Fixed a certain sub-aperture, like expressed in figure 4.6,
knowing the distance between the image point we want to focus and the synthetic
aperture and knowing the distance between the image point azimuth position AC
and the central azimuth position of i-th sub-aperture ASUBCi

we get:

Kxi =
dφ(x)

dx
=

4π

λ

(AC − ASUBCi
)

R
[rads/m] (4.4)
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Figure 4.6: 2D geometry of the central wavenumber for a given sub-aperture. R
is the distance from the target and AC is the target azimuth coordinate equal to
the synthetic aperture central point.

Note that if the azimuth pixel position that we want to focus is equal to AC , i.e.
we center the synthetic aperture on that pixel, the azimuth distance between the
sub-aperture center and the synthetic aperture center is exactly ASUBCi

. From
equation 4.4 we can calculate the frequency shift of each sub-aperture respect
to the zero frequency component that occurs at the mid point in the synthetic
aperture. We suppose now that the zero frequency component is placed at the
middle position of the spectrum matrix, that is N/2. So from equation 4.4 the
frequency component at position AC is equal to zero and it is stored in spectrum
matrix at position N/2. The steps to obtain the full back-projected spectrum are
explained in the following.

Replica selection The DFT of a single sub-aperture, after the zero interleaving
interpolation, has a periodic spectrum so the first step is to take a single
replica of Ysub(ka, kr) that is the DFT of eq. 4.3. To do this we calculate the
central wavenumber relative to the center of the sub-aperture with formula
4.4. We convert this wavenumber into frequency samples by:

Nkxi =
Kxi

2π
dxN

(4.5)

where 2π
dxN

is the sampling period in wavenumber and N is the number of
azimuth samples and it is also the number of the sub-aperture DFT sam-
ples. If the whole sub-spectrum has N samples and a sub-aperture is taken
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dividing a synthetic aperture in S parts, so a single spectral replica has
N/S samples. So the spectrum of a single sub-aperture replica is obtained
taking N/S samples of its DFT centered on N/2 + Nkxi , where, as said
before, N/2 is the discrete index relative to the zero frequency component.{
Ysubw(ka, kr) = Ysub(ka, kr) for ka ∈ [N/2 +

Nkxi

2
−N/S,N/2 +

Nkxi

2
+N/S]

0 elsewhere

(4.6)
This operation is like to applying a square window of N/S samples centered
onN/2+Nkxi on the periodic sub-aperture spectrum. The next figure shows
an example of Ysub(ka, kr) with fixed kr and shows the replica selection.
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Figure 4.7: Example of focused DFT with sub-sampling factor S = 5. In
black the whole FFT is plotted, in red the selected replica relative to the
first sub-aperture.

Full spectrum reconstruction The second step constist of taking the selected
replica and putting it in the full spectrum matrix at the rigth spectral
postion. To get the full reconstructed spectrum we sum the actual recon-
structed spectrum with the selected replica placed in the positionN/2+Nkxi

that correspond to the central wavenumber of the i-th sub-aperture.

Yfull(ka+ k, kr) = Yfull(ka+ k, kr) + Ysubw(ka+ k, kr) (4.7)

We have to do this operation for the matrix points k ∈ [N/2 + Nkxi/2 −
N/S,N/2 + Nkxi/2 + N/S], kr ∈ [−M/2,M/2] and for all the S sub-
apertures.
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Figure 4.8: Example of full spectrum reconstruction for S = 5. In black
the whole FFT is plotted in red the selected replica, that, in this case, is
the one with Nkxi = 0

So the final image is obtained by applying the IFFT to 4.7 after adding all the
sub-aperture contributes. An example of focused image in the amplitude-azimuth
domain is plotted in the following figure.
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Figure 4.9: Zoom of focused final image with fixed range and S = 5.

The next figures show the final image obtained applying this algorithm with S = 5
and the image obtained using the ”classical” back-projection.A sine-like trajectory
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is used in both the two cases. The last figures shows the comparison between the
main lobe of the final images and the phase error between the spectrum obtained
in the two cases.
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Figure 4.10: Rawdata.
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Figure 4.11: Rawdata spectrum.
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Focused full resolution
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Figure 4.12: Focused image with full back-projection integral

Focused full resolution with sub−aperture
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Figure 4.13: Focused image with sub-sampled back-projection integral
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Focused full resolution spectrum
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Figure 4.14: Focused image spectrum with full back-projection integral
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Figure 4.15: Focused image spectrum with sub-sampled back-projection integral
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Figure 4.16: Zoom of the main lobe focused image obtained with the full back-
projection

Figure 4.17: Zoom of the main lobe focused image obtained with the sub-aperture
back-projection

To compare the performance of our algorithm respect to the full back-projection
one we calculate the phase error between the two spectrums. For a fixed range
we get this phase error
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Figure 4.18: Plot of the phase error for a fixed range.

From figure 4.18 can be seen that we have, at some point, a phase error that
vary from π and −π. This is because when we reconstruct the full spectrum
with the sub-apertures we take a portion of the spectrum according to 4.5 and
we sum it with other portions as in equation 4.7. A single spetral part is taken
with a window operation and, in particular, a square window of length N/S
centered on the right replica is applied. So the spectrum reconstruction is made
by summation of finite length portions of sub-spectrums. At the edge of the
spectrum, at a certain point, we have a reconstructed spectrum truncation due to
the finite length of the windows. This truncation causes an imperfect summation
of the side lobes and so it is like to have some ”noise” in the full reconstructed
spectrum. The effect of this ”noise” is the phase error in the truncation position,
like shown in figure 4.18.





Chapter 5

Performance analysis

After we talking about the subsampled back-projection algorithm and how it
works to obtain the final image a natural question rises, that is: how much
subsampling we can do? So we want to study the subsampling bound that ensures
a low phase error in the final image spectrum and also ensures low side lobes in
the final image.

5.1 Time-bandwidth product
In chapter 2 we talk about the frequency trend of the received signal. We derive
the phase term modulation for a linear trajectory in eq. 2.5, and if we compute
the derivative respect to the azimuth dimension we obtain a slope equal to

4π

λ ·R0

This relation tells us that the frequency components have a constant slope so we
get in frequency an azitmuh chirp. We can calculate the space-bandwidth product
of that chirp in order to obtain some informations about the maximum sub-
sampling factor we can use without gettin a phase error near the target position.
In chapter 1 we said, from the linear array theory, that the maximum observable
spatial frequency is:

fxM = 2
sinψM
λ

and the angular aperture is :

∆ψ = 2ψM =
λ

La

The bandwidth is double to the maximum view angle due to the symmtrety of the
problem, so the nominal bandwith, expressed in wavenumber, of the real antenna
is:

BLa =
2 · π
λ

(5.1)
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The space duration of that chirp is equal to the synthetic aperture LS, in fact
the received echoes out of this value are not correlated to the target that we are
observing. So we refer to this space duration as

D =
λ

La
R0 (5.2)

With this two elements we can derive the space-bandwidth product BT for an
ideal linear trajectory [4], and it is equal to the number of samples in azimuth
of that chirp. If we want to calculate the time-bandwidth product we have to
convert the chirp space duration to chirp time duration knowing the platform
velocity vs.

BT = D ·BLa =
λR0

L2
a

(5.3)

We consider now the sub-apertures case, sure that the eq. above has to be
modified to account the less duration of each sub-aperture. Now fixing the S
parameter we suppose that the sub-apertures are each of lenght

Asub = A/S

so a squared window is applied in space. In a first approximation the duration
of each sub-aperture is

Dsub =
D

S
and the bandwidth is

BLasub
=
BLa

S
If we invert this relation we get the sampling interval

dxs =
S

BLa

and the number of samples of each sub-band becames

NBTsamplessub
=
Dsub

dxs
=
BT

S2
(5.4)

This equation shows that in the ideal case the number of samples required of each
sub-band has a reduction factor of S2, that is the one we expected to obtain.
Consider now that each sub-band is taken applying a square window function
like

f(x) = rect(
x

Dsub

)

it is well known that its fourier transform is a sinc function as

F (f) = sinc(Dsubf)
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Figure 5.1: Square window and its fourier transform, the bandwidth of the main
lobe is 1/2D

A window operation in time becames a convolution operation in frequency, and
this cause an expansion of the bandwidth and so it cause a decrease in the sam-
pling period. In a first approximation we consider only the bandwidth of the main
lobe equal to 2S

D
. The rectangular bandwidth BLa

S
in frequency is now expanded

by that quantity and becames

BLasub
=
BLa

S
+

2S

D

so the sampling period is now

dxs =
1

BLa

S
+ 2S

D

and the number of samples for each sub-band, i.e. the space bandwidth product,
is

NBTsamplessub
= Dsub ·BLasub

=
BT

S2
+ 2 (5.5)

In chapter 1 we talked about the space sampling period in the azimuth direction
dx. The number of samples taken onboard for each aperture can be expressed as
the synthetic aperture length of eq. 1.2 over a factor dx:

A =
LS
dx

The number of samples processed for each sub-aperture is just

Asub =
A

S2
.

If we put this expression in 5.5 we obtain an estimation of the S parameter as

Smax =

√
A−BT

2
(5.6)

Equation 5.6 take into accounts only the first lobe of the sinc function and it is
only valid for a linear trajectory. During the focusing process the phase term due
to the fligth motion is corrects ans so we axpect that te equation 5.6 still holds
on.
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5.2 Simulation results

We want to extend now the speech of the previous section and compare it with
the Matlab simulation. We start now to consider that in time we use a rised
cosine window instead of a square one, so we have to analyze this effect. We use
an overlap equal to half of the sub-aperture length as Noverlap = Asub

2
, this means

that we have a rised cosine window with parameter β ' 1. Its fourier transform
is so approximated as a sinc function and we can take into account only two
secondary lobes as expressed in eq. 5.6 [3]. So we can think to use eq. 5.6 as
bound of S in our simulation.

Figure 5.2: Fourier transform of a raised cosine window for some values of β
parameter

In chapter 4 the table 4.1 explains the main parameters used in the simulations
to get the images. With these parameters we obtain an Smax value equal to:
12.8087. We fix S = 11 and we add a sine like fligth trajetoctory as

sin(2 ∗ pi ∗ (1 : N)/N)

the rawdata and its spectrum are the same as figures 4.10 and 4.11. Now we
apply the focusing algorithm and we get the following images.
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Figure 5.3: Final focused image with S = 11, the systems parameters are those
of table 4.1.
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Figure 5.4: Final focused image spectrum with S = 11, the systems parameters
are those of table 4.1.
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Figure 5.5: Phase error of the spectrum with S = 11 and the systems parameters
are those of table 4.1.

The results show that in this case the phase error is very low near the target
position. Now if we try to use a value of S above Smax, we obtain some errors in
the final image. The following figures show the results of the algorithm obtained
using S = 15.
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Figure 5.6: Final focused image with S = 15, the systems parameters are those
of table 4.1. It can be seen that there are some errors and so S is too big.
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Figure 5.7: Final focused image spectrum with S = 15.
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Figure 5.8: Phase error of the spectrum with S = 15.

In figure 5.6 can be seen that we have made an error in the final focused image
and the phase error of figure 5.8 is not equal to zero near the target position.
In this case we use a sub-sampling factor S = 15 too big and this brings us to
make some errors in the final focused image. The results above are compared
with the full back-projection algorithm results. The images obained with the full
algorithm are those of figures 3.2 and 3.3.
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Now we want to change the central carrier frequency of the SAR system to see
the differences respect to the previous case. Now we have this system parameters:

Parameter Symbol Value

Wavelength λ 0.5 [m]
Azimuth sampling dx 0.5 [m]
Range sampling dr 3 [m]
Antenna Length La 4 [m]
Nominal distance to ground R0 3 [km]
Maximum subsamping Smax 18.1142

Table 5.1: Table of system parameters

So now we have double the wavelength and so we have double the BT product,
but we hold the same sampling interval dx. The first images are taken using a
value of S equal to 19.
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Figure 5.9: Final focused image with S = 19 and the system parameters are those
of table 5.1.
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Focused full resolution spectrum with sub−aperture
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Figure 5.10: Final focused image spectrum with S = 19.
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Figure 5.11: Phase error of the spectrum with S = 19.

The image focused with the full back-projection integral and its spectrum are
shown in the next figures.
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Focused full resolution
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Figure 5.12: Final focused image with system parameters of table 5.1.

Focused full resolution spectrum
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Figure 5.13: Final focused image spectrum.

Here we have used a value of S slightly higher than Smax. The phase error is quiet
nosing at the center of the image, but the results are acceptable yet compared to
those of figures 5.12 and 5.13. If we take a value of S bigger than Smax we make
some errors in the final image as shown in the next figures.
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Figure 5.14: Final focused image with S = 23 and the system parameters are
those of table 5.1.
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Figure 5.15: Final focused image spectrum with S = 23.
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Figure 5.16: Phase error of the spectrum with S = 23.

5.3 Change the trajectory
Now we want to study the effect of the trajectory. We said that, due to the flight
motion, the linear slope of the frequency components doesn’t hold on for the raw
data. During the focusing this phase term is corrected and so we aspect to obtain
the same results as before even if we change the trajectory. Suppose to have a
trajectory like that of figure 5.17 and the system SAR parameters are those of
table 4.1 and S = 11.
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Figure 5.17: Fligth trajectory respect to the linear track centered on y = 0.
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The raw data matrix and the raw data spectrum are shows in the nex figures.
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Figure 5.18: Rawdata matrix

s
a
m

p
le

s

kx[rad/m]

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

0

20

40

60

80

100

120

140

160

180

Figure 5.19: Rawdata matrix spectrum.

The final image and the final image spectrum are:
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Figure 5.20: Focused full image, the phase due to the motion is corrected .
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Figure 5.21: Focused full image spectrum.

Now we use our algorithm to focusing the data with S = 11 like for the image
obtained in figure 5.3.
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Figure 5.22: Zoomed final focused image with S = 11.
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Figure 5.23: Phase error of the spectrum with S = 11.

Even if the rawdata and the rawdata spectrum are quiet different in figures 3.2
and 3.3 respect to those of figures 5.18 and 5.19 the final images 5.22 and 5.3 are
quiet equal. This means that if we know the trajectory we can correct it without
lose azimuth resolution.





Chapter 6

Conclusion

In this thesys we talk about the synthetic aperture radar data acquisition and
then we explain a time-domain algorithm to process the rawdata matrix to get
the final image.
We use a time domain method because it’s very robust against the non linear
trajectories of the airplain flights. The main drawback of this method is the
computational bourden due to the large number of samples collected by the radar
system.
In the time domain focusing algorithms the phase term due to the fligth trajectory
is corrected in a general way and we don’t have to derive some conditions only
locally valid like in the Fourier Transform algorithms based.
To decrease the computational cost we derive a time domain method based on
the divisions and subsamples of the whole synthetic aperture. In chapter four we
describe a method to reconstruct the full resolution images combining the sub-
apertures working on the spectrums. Thanks to the subsampling in the image
azimuth points we have reduced the computational burden by a factor near the
number of sub-apertures S.
We found the bounds of that algorithm based on the space-bandwidth product
and, if we stay inside these limits, we demonstrate that we can obtain good results
in term of phase error.
In chapter five we have established that this algorithm is very robust also in
non-linear trajectory, that is the common case of the airplain SAR missions.
This work is a base on which can be achieved a fast and robust time domain
algorithm for SAR focusing. An important feature on which can be work is the
change of the coordinates systems as polar coordinates instead of the cartesian
coordinates to improve the performance of this algorithm by reducing the phase
range and so increasing the subsampling factor S.
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