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Chapter 1

Introduction

As classical computers rapidly approach the full extent of their power as
allowed by the classical laws of physics, quantum information is likely to
become one of the most crucial areas of science in the next decades. The
groundbreaking work of Bell[1] has opened the way to an incredibly wide
world of possibilities, where the classical concept of locality no longer holds.
It was only in the last twenty years that physicists and engineers have man-
aged to overcome the daunting technological issue and successfully succeeded
in proving experimentally the potential of the quantum properties of mat-
ter and light, and even though a full-fledged quantum technology is still a
long way to go, fundamental progress have been made[2]. In the last ten
years quantum optics has emerged as one of the leading approach to quan-
tum information[3, 4] and quantum communication, since single photons are
largely free of noise, can be easily manipulated to create one qubit logic gates
and can be encoded in many different degrees of freedom. Although bulk op-
tics was used in the first experimental demonstrations, it has recently been
overtaken by integrated quantum optics[5, 6, 7, 8, 9] which offers previously
unmatched qualities in terms of stability and scalability, a key point for the
realization of, e.g., a quantum computer[10].
In this respect, the possibility of generating, manipulating and transmit-
ting entangled states in a reliable way and with a high visibility is a key
passage towards the development of mature quantum technologies, such as
large scale quantum networks and quantum cloud computing, but also quan-
tum simulators and computers might greatly benefit from a reliable quantum
photonic interconnect. An important requirement for such a device would
certainly be the possibility to coherently transmit and convert entangled
states within different types of encoding and media. If the generation and
the manipulation of entangles states has already been achieved in efficient
integrated circuits[11, 12, 13], long distance distribution of entangled states
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has been demonstrated[14, 15, 16], both in fibre and free space, only by
means of network nodes relying on bulk optical components, which suffer
of non-scalability and stability problems. In this thesis we report a high
fidelity demonstration of entanglement distribution between two integrated
Silicon on Insulator (SoI) chips connected with an optical fibre, by means of
a coherent interconversion between path encoding, on chip, and polarization
encoding, more suitable for free space and fibre propagation.



Chapter 2

Theoretical Background

The purpose of this chapter is to review those topics of quantum optics and
quantum information which are most relevant to this thesis. I shall therefore
introduce the notation and the key equations which I will use from here on. It
is not meant to be a complete or accurate description and a prior knowledge
of quantum mechanics is assumed. Nevertheless, I will try to be rigorous and
demonstrate in detail all the results which will play a significant part in the
following sections.

2.1 Elements of Quantum Information

In this section we review some basic concepts of quantum information [17, 18],
focusing our analysis to the topic of one qubit arbitrary operation, as it is
most significant in our work. Regardless of how it is physically realized, a
quantum bit of information, a qubit, is represented by a ket vector as follows:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
(2.1)

The vector notation is necessary since qubits, unlike classical bits, are not
constrained to be either |0〉 or |1〉 but can be in a superposition of these two:

|ψ〉 = a |0〉+ b |1〉 =

(
a
b

)
(2.2)

where a, b ∈ C with the requirement:

|a|2 + |b|2 = 1 (2.3)
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A useful and very popular way to visualize qubits is by drawing unit
vectors on a sphere called the Bloch sphere. We can see why if we rewrite
the coefficients a, b in Cartesian or polar coordinates:

a = xa + iya = rae
iφa

b = xb + iyb = rbe
iφb

(2.4)

one of the two phase is redundant:

|ψ〉 = xa + iya |0〉+ xb + iyb |1〉
= rae

iφa |0〉+ rbe
iφb |1〉 = ra |0〉+ rbe

i(φb−φa) |1〉
(2.5)

since we can drop the global phase as it has no observable consequence.
If we switch back to the Cartesian coordinates for b, and consider the nor-
malization condition:

|ra|2 + |x+ iy|2 = r2
a + x2 + y2 = 1 (2.6)

which is just the equation fo a sphere. If we switch to polar coordinates:

x = sin(θ) cos(φ)

y = sin(θ) sin(φ)

ra = z = cos(θ)

(2.7)

We can now easily write:

|ψ〉 = z |0〉+ (x+ iy) |1〉
= cos(θ) |0〉+ sin(θ) (cos(φ) + i sin(φ)) |1〉
= cos(θ) |0〉+ sin(θ)ei(φ) |1〉

(2.8)

But we want to map the different possible qubit states to a full sphere
(right now |0〉 and |1〉 differ for a 90◦ change in θ) and we thus make the
substitution θ

′
= 2θ:

|ψ〉 = cos(
θ

2
) |0〉+ sin(

θ

2
)eiφ |1〉 (2.9)

where we dropped the prime index for convenience. As a result of the
construction of the Bloch sphere, orthogonal states are represented by an-
tipodal points on the Bloch sphere.
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We now turn our attention to the description of quantum gates. Since we
must implement a quantum gate as the evolution of an isolated quantum
system, the transformation is governed by the Schroedinger equation:

i~
∂ψ

∂t
= Hψ (2.10)

The formal solution is of the form:

ψ(t) = exp

(−iH
~

)
ψ(0) = Uψ(0) (2.11)

where U is just a unitary matrix. Once again, we can forget about the
physical process, which is buried within H, and study the evolution of a state
in terms of unitary matrix, whose action is always logically reversible. The
first quantum gates we want to study are those acting on a single qubit, or
1-Qubit Gates. We start then fro the Pauli matrices, which are of particular
interest since any 1-qubit gate can be written as a weighted sum of these
matrices:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(2.12)

As an example, we show how the X acts on the qubits |0〉 and |1〉.

X |0〉 =

(
0 1
1 0

)
·
(

1
0

)
=

(
0
1

)
= |1〉

X |1〉 =

(
0 1
1 0

)
·
(

0
1

)
=

(
1
0

)
= |0〉

(2.13)

The Pauli X matrix is just the classical reversible NOT, although it is not
a universal gate, that is, it does only map the North pole of the Bloch sphere
to the South pole, but it does not map a generic qubit to its antipodal state.
We now show how to write any single qubit density operator in terms of the
Pauli matrix. Starting from equation (2.9) we compute the density matrix
of a generic pure state:

ρ =

(
cos( θ

2
)

eiφ sin( θ
2
)

)
·
(
cos( θ

2
) e−iφ sin( θ

2
)
)

=

(
cos2( θ

2
) e−iφ sin( θ

2
) cos( θ

2
)

eiφ sin( θ
2
) cos( θ

2
) sin2( θ

2
)

)
=

1

2

(
1 + cos(θ) e−iφ sin(θ)
eiφ sin(θ) 1− cos(θ)

)
=

1

2
(I + sin(θ) cos(φ)X + sin(θ) sin(φ)Y + cos(θ)Z)
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We can rewrite this last expression in a compact way by defining:

~n = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) (2.14)

Therefore:

ρ =
1

2
(1 + ~σ · ~n) (2.15)

Another important single qubit gate is the Hadamard gate. The Hadamard,
or H gate, is defined by the matrix:

H =
1√
2

(
1 1
1 −1

)
(2.16)

and its action on the |0〉 and |1〉 qubit is:

H |0〉 =
1√
2

(|0〉+ |1〉)

H |1〉 =
1√
2

(|0〉 − |1〉)
(2.17)

and conversely:

H
1√
2

(|0〉+ |1〉) = |0〉

H
1√
2

(|0〉 − |1〉) = |1〉
(2.18)

How can we write an arbitrary single qubit unitary operation, possibly in
terms of the Pauli matrices? If we consider the Bloch sphere, we can define
a rotation around an axis in the following way:

Rx = exp

(
−iθX

2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
X =

(
cos( θ

2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

)

Ry ≡ exp

(
−iθY

2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

(
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

)

Rz ≡ exp

(
−iθZ

2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

(
e(−i θ

2
) 0

0 e(i θ
2

)

)
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Which we can further generalize as a rotation around a generic real unit
vector n̂ = (nx, ny, nz) as follows:

Rn̂ ≡ exp (−iθn̂ · ~σ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
n̂ · ~σ (2.19)

Now, a generic 2 × 2 unitary matrix U must have the module of its
determinant unitary, i.e. |det(U)| = 1. If det(U) = 1 the matrix is said to
be special unitary. we can always decompose a generic unitary in terms of a
special unitary times a phase shift as follows:

U = eiδV = eiδ
(

1 0
0 1

)
V = Ph(δ) · V (2.20)

It is possible to show that an equivalent condition to being unitary is that
rows and columns must be orthogonal. Therefore, without loss of generality,
we can write:

V =

(
α −β∗
β α∗

)
(2.21)

with α and β are complex number that satisfy |α|2 + |β|2 = 1. A conve-
nient choice for α and β is the following:

α = eiµ cos(
θ

2
) β = eiξ sin(

θ

2
) (2.22)

so that

V =

(
eiµ cos( θ

2
) −e−iξ sin( θ

2
)

eiξ sin( θ
2
) e−iµ cos( θ

2
)

)
(2.23)

But we can easily obtain this as product of the following three rotations:

Rz(ξ − µ) ·Ry(θ) ·Rz(−ξ − µ) (2.24)

As it is straightforward to verify by applying the definition of the axis
rotation. Therefore a unitary 1-qubit gate can be decomposed into the form:

U = Ph(δ) ·Rz(ξ − µ) ·Ry(θ) ·Rz(−ξ − µ) (2.25)

The reason why an arbitrary rotation can be expressed without a Rx is
soon explained if we consider the following expansion:

Rx(θ) = exp

(
−iθX

2

)
= Rz(−

π

2
) ·Ry(θ) ·Rz(

π

2
) = Ry(

π

2
) ·Ry(θ) ·Rz(−

π

2
)
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The results we proved in this section will be extremely useful, since we
will be able to express the action of the integrated Mach-Zehnder (plus a
phase shifter) on a qubit in terms of the Pauli matrices and the Hadamard
gate.

2.2 Quantum Optics of the Beam Splitter

The beam splitter is one of the building blocks of every quantum circuit[19]
and is very useful for splitting single photons or bright light into different
paths, while the most interesting features are the possibility to interfere quan-
tum states of light[20, 21], using Mach Zehnder-like structures, or to create
path entangled states (or NOON state in general).

a

b

c

d

Figure 2.1: Scheme of a generic Beam Splitter.

The boundary conditions at surface of the beam splitter lead to the rela-
tions:

c = ta+ rb

d = ra+ tb
(2.26)

with

|t2|+ |r2| = 1

rt∗ + r∗t = 0
(2.27)

where the conditions on t and r directly come from the conservation of
energy (the beam splitter is supposed to be lossless). It is worth noting that
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we are considering an Heisenberg picture as we are propagating the operators.
Since in all practical cases we want to input a certain known state and then
calculate the output in this fashion:

|Ψout〉 = U |Ψin〉 (2.28)

the Schroedinger picture is more natural. The form of U can be calculated
explicitly, but since the equations (2.26) have the form of a rotation and one
can show that the rotation operator:

U = exp
[
iθ
(
a†b+ b†a

) ]
(2.29)

We want to show now how to obtain the equations (2.26) by computing
the expression c = U †aU , which is instead the Heisenberg Picture, in order
to connect the two different representations. This is done by means of a
Taylor expansion of the exponential matrix U. A generic expression for this
expansion is:

exp(−λA)B exp(−λA) =

= (I − λA+
1

2
λ2A+ . . .)B(I + λA+

1

2
λ2A+ . . .)

= B − λ [A,B] +
1

2
λ2 [A, [A,B]]

+
1

3!
λ3 [A, [A, [A,B]]]

(2.30)

where λ ∈ C and A,B are two generic analytical operators. We apply
this expansion to c = U †aU :

c = U †aU = exp
[
− iθ

(
a†b+ b†a

) ]
a exp

[
iθ
(
a†b+ b†a

) ]
= a− θb− 1

2
|θ|2 a+

1

3
θ |θ|2 b+ . . .

= a cos(|θ|)− eiφθ sin(|θ|)

(2.31)

Due to the conditions set by (2.26), we can choose the phase arbitrarily,
and a convenient choice is φθ = −π

2
. This way we can write, after a similar

process for d = U †bU :

c = U †aU = cos (θ) a+ i sin (θ) b

d = U †bU = i sin (θ) a+ cos (θ) b
(2.32)
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As we will see later, we are interested in writing the input operators
a, b in terms of the output c, d. We must therefore consider the inverse
transformation, which, for the creation operators, looks like:

Ua†U † = cos (θ) a† + i sin (θ) b† = cos (θ) c† + i sin (θ) d† (2.33)

Ub†U † = i sin (θ) a† + cos (θ) b† = i sin (θ) c† + cos (θ) d† (2.34)

Where the last equality in both lines follows from the fact that, in the
Schroedinger picture, the operators do not evolve. If cos (θ) = sin (θ) = 1√

2
the beam splitter is called balanced. The condition to obtain this state
depends on the physical realization of the beam splitter. Typically, in inte-
grated optics, this is done by means of directional couplers or MMIs. We
can now consider what happens when we input a single photon in one arm
of the beam splitter, that is when we input the state:

|Ψin〉 = |1a〉 |0b〉 (2.35)

We can now use the formalism we developed before as follows:

|ψout〉 = U |1a〉 |0b〉 = Ua† |0a〉 |0b〉 = Ua†U †U |0a〉 |0b〉
=
(
rc† + itd†

)
|0c〉 |0d〉 = r |1c〉 |0d〉+ it |0c〉 |1d〉

(2.36)

We can see that the single photon exits from either one or the other arm of
the beam splitter with probabilities proportional to r, t. So far the Quantum
description agrees with the classical one. In order to see any difference we
must inspect in closer detail Quantum Interference, which is the subject of
the next section.

2.3 Quantum Interference

2.3.1 Hong-Ou-Mandel Dip

We will now see how multimode fields lead to features which can be explained
only in terms of quantum interference of single photons. The simplest and
most famous case is the Hong-Ou-Mandel dip[22, 23]. Let us consider a
single photon input for each arm of the beam splitter as in figure. We start
by considering two completely distinguishable single photons ( that is two
photons which are in two different modes, besides the spatial one), so that
the input state is in the form:
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|Ψin〉 = |11〉 = a†ω1b
†
ω2 |0〉〉 (2.37)

|ψout〉 = Ua†ω1b
†
ω2 |0〉〉 = Ua†ω1U

†Ub†ω2U
† |0〉〉

=
(
rc†ω1 + itd†ω1

)(
+itc†ω2 + rd†ω2

)
|0〉〉

=
[
irt
(
c†ω1c

†
ω2 + d†ω1d

†
ω2

)
+ r2c†ω1d

†
ω2 − t2c†ω2d

†
ω1

]
|0〉〉

= irt (|1100〉+ |0011〉) + r2 |1001〉 − t2 |0110〉

(2.38)

If we now put a detector at the end of each arm of the beam splitter and
look for the probability of obtaining a coincidence count we find:

P dist
cc = r4 + t4 = R2 +

(
1−R2

)
(2.39)

where R = r2 is the reflectivity of the beam splitter. If we consider
R = 1

2
, then P dist

cc = 1
2
, in perfect agreement with a fully probabilistic de-

scription where the photon is half of the time transmitted and half reflected.
A completely different result is obtained if the two photons are indistinguish-
able as we now show following almost exactly the same reasoning above. The
input state this time is of the form:

|Ψin〉 = |11〉 = a†b† |0a〉 |0b〉 (2.40)

Thus, after the beam splitter we get:

|ψout〉 = U |1a〉 |1b〉 = Ua†b† |0a〉 |0b〉 = Ua†U †Ub†U † |0a〉 |0b〉

=
1

2

(
rc† + itd†

) (
+itc† + rd†

)
|0c〉 |0d〉

= irt
√

2 (|2c〉 |0d〉+ |0c〉 |2d〉) +
(
r2 − t2

)
|1c1d〉

(2.41)

If we now evaluate the probability to obtain a coincidence count:

P dist
cc =

(
r2 − t2

)2
= (1− 2R)2 (2.42)

If the beam splitter is balanced, the probability P indist
cc vanishes. This

result, which is highly non classical, reflects the bosonic nature of photons.
The output state is therefore:

|ψout〉 =
i√
2

(|2c〉 |0d〉+ |0c〉 |2d〉) (2.43)
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The beam splitter is therefore a key component to erase the ”which path”
information and the output state is just a path entangled quantum state.
A useful parameter[19] to characterize the quality of the interference is the
visibility, defined as:

V = 1− P indist
cc

P dist
cc

(2.44)

which, in the case where the photons are indistinguishable in all other
degrees of freedom, is limited by the reflectivity R as follows:

V = 1− (1− 2R)2

R2 + (1−R)2 (2.45)

As we can see from the Figure 2.2 the visibility of the fringes is very
robust to variations of the reflectivity R from 0.5. A reflectivity of R = 0.51
(which is a typical fabrication tolerance for MMIs coupler, see next chapter)
results in fringes with a visibility V = 0.9992.

0.6 0.7 0.8 0.9 1.0
R

0.2

0.4

0.6

0.8

1.0

V

Figure 2.2: Visibility of the quantum fringes as a function of the reflectivity
of the beam splitter.
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a

b

f

e

c

d

Figure 2.3: Schematic of an MZI. The beam splitters are usually balanced.

2.3.2 Mach-Zehnder Interferometer

We now turn our attention to a slightly more involved structure: a Mach-
Zender interferometer (MZI). As it apparent from the figure a MZI is just a
series of two beam splitters, with the addition of a phase shifter on one of
the two outputs after the first beam splitter.

We firstly consider a single photon input (we use the Heisenberg Picture
because is somewhat more practical in this case), thus, if we consider the
phase shifter matrix in the form:

ϕ =

(
1 0
0 e−iϕ

)
(2.46)

Then the input evolves as follows (we directly consider balanced beam
splitters):
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|ψin〉 = |1a〉 |0b〉
BS1−−→

(
c† + id†

)
√

2
|0c〉 |0d〉 =

1√
2
|1c〉 |0d〉+ i |0c〉 |1d〉

ϕ−→ 1√
2
|1c〉 |0d〉+ ie−iϕ |0c〉 |1d〉

BS2−−→ 1

2

[ (
1− e−iϕ

)
|1e〉 |0f〉+ i

(
1 + e−iϕ

)
|0e〉 |1f〉

]
(2.47)

So that the probabilities of obtaining on detector e, f are, respectively,
Pe = 1

2
(1− cos(ϕ)) and Pe = 1

2
(1 + cos(ϕ)). As we might expect from the

beam splitter analysis, this can still be seen as a classical interference, as the
detection probability will oscillate sinusoidally with phase ϕ. On the other
hand, if we do not aim to prove the quantum nature of light, we can regard
the MZI to create the following superposition of states:

|10〉 → cos(
ϕ

2
) |10〉+ i sin(

ϕ

2
) |01〉 (2.48)

We now turn our attention to the case the input of the first beam splitter
is the state:

|Ψin〉 = |1a〉 |1b〉 (2.49)

where the photons are completely indistinguishable (as usual, aside from
the spatial mode). Following the same calculations of the single input state:

|ψin〉 = |1a〉 |1b〉
BS1−−→

(
c† + id†

)
√

2

(
c† + id†

)
√

2
|0c〉 |0d〉 =

i√
2
|2c〉 |0d〉+ |0c〉 |2d〉

ϕ−→ i√
2
|2c〉 |0d〉+ e−i2ϕ |0c〉 |2d〉

BS2−−→ i
[(1− e−i2ϕ)

2

( |2e〉 |0f〉 − |0e〉 |2f〉√
2

)
+ i

(1 + e−i2ϕ)

2
|1e〉 |1f〉

]
(2.50)

If we now drop a global phase factor we get:

|ψout〉 = sin(ϕ)
( |2e〉 |0f〉 − |0e〉 |2f〉√

2

)
+ cos(ϕ) |1e〉 |1f〉 (2.51)

It is suggestive to rewrite the last equation as:
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|ψout〉 = sin(ϕ) |ψbunch〉+ cos(ϕ) |ψantibunch〉 (2.52)

This shows clearly that, by changing the phase ϕ, we can control whether
the output photons will bunch together in one of the two different paths, or
will split. By recording the coincidence counts, we will see a fringe with half
the period if compared to the single photon case (which is also the case for
classical light, e.g. a bright laser beam). We could have also computed all
the preceding calculations by computing the Mach-Zehnder matrix:

MZI = BS · Ph(φ) ·BS =

(
sin(ϕ

2
) cos(ϕ

2
)

cos(ϕ
2
) − sin(ϕ

2
)

)
(2.53)

where we dropped a global unobservable phase factor in the last inequal-
ity.
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Figure 2.4: Classical and Quantum Interference.

2.4 Bell’s Theorem

In 1935 Einstein, Podolsky and Rosenberg published a paper[24] entitled
”Can Quantum Mechanical Description of Reality Be Considered Complete?”,
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where they put under close investigation the assumptions of quantum me-
chanics. In their opinion, a physicist must ask himself two questions while
evaluating if a physical theory is valid or not:

1. Is the theory correct?

2. Is the description given by the theory complete?

In order to answer these questions in a precise way, they reckoned it was
necessary to better define two concepts, completeness and reality. They gave
the following definitions:

1. Complete: A theory can be considered complete only if every element
of physical reality has a counterpart in the theory.

2. Reality: If, without anyway of disturbing a system, we can predict with
certainty ( i.e. with probability equal to one) the value of a physical
quantity, then there exist an element of physical reality corresponding
to this physical quantity.

They regarded the first condition as a necessary one, while the second is
(obviously) only sufficient, but the considered it general enough to suffice for
their argument. With simple quantum mechanical considerations, they then
showed that, by considering an entangled state of two systems of the form:

Ψ (x1, x2) =
∞∑
i=1

φ (x1) υ (x2) (2.54)

one can predict with certainty the value of a physical quantity of the sec-
ond system only by measuring that quantity on the first system but without
interacting in anyway with the second. Following their second definition,
the measured quantity is therefore an element of reality. Moreover we can
imagine to measure the momentum P and the position Q of this entangled
state. Both this measurements will allow us to make predictions on the sec-
ond systems and therefore correspond to elements of reality. But Q and P
are non commuting operators that is:

[P,Q] = PQ−QP =
h

2πi
(2.55)

and quantum mechanics cannot predict the simultaneous values of both
these operators. The theory has not a counterpart for every element of reality
and thus it is not complete. The loophole in this reasoning is well-expressed
in the words of the authors:
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” Indeed, one would not arrive at our conclusion if one insisted
that two or more physical quantities can be regarded as simulta-
neous elements of reality only when they can be simultaneously
measured or predicted. On this point of view, since either one or
the other, but not both simultaneously of the quantities P and Q
can be predicted, they are not simultaneously real. This makes
the reality of P and Q depend upon the process of measurement
carried out on the first system, which does not disturb the second
system in any way. No reasonable definition of reality could be
expected to permit this”.

It is important to underline that the goal of this paper was not to prove
that quantum mechanics was wrong, but merely that it was an incomplete
theory. Moreover, there was no apparent disagreement on the correlations
predicted by the EPR Gedanken experiment and the debate on the reality
of Quantum Mechanics was only an epistemological one that could not eas-
ily be disproved by experiments. The situation changed only thirty years
later when J. Bell published his paper[1] ”On the Einstein Podolsky Rosen
Paradox”. In his paper, which was later defined as one of the most profound
discoveries of the century, Bell proposed a slightly modified EPR experiment
that predicted different results for Einstein’s point of view, ”local realism”,
and quantum mechanics. The issue was no longer a matter of philosophy,
but a very quantitative one which could be answered experimentally. We
will now illustrate a simple argument, where we rely heavily on [17], to un-
derstand the nature of the problem before addressing it in a more rigorous
way, following the approach [25] described by Clauser, Horne, Shimony, Holt
(CHSH).

We imagine to prepare two particles and then to send one to Bob and
one to Alice. It does not matter the way we prepare our particle, we must
only be able to repeat the experimental procedure with which we prepare
the particles. We now imagine that Alice has two different measurement
apparatuses with which she can measure either PQ or PR, which are two
different properties of the particle. She does not know in advance what she
will be measuring, instead she has a random process to decide between the
two possible measurements when she receives the particles. Let the outcome
of the PQ and PR be Q and R and furthermore let us assume for simplicity
that the outcome can only be +1 or -1. The same will be true for Bob’s
particle and we will call PS and PT , while S and T will be the outcome.
Alice and Bob will perform the measurement in the same time, so that no
physical signal propagating from Alice can influence Bob, as it is evident
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from relativistic arguments. If we now consider the quantity:

QS +RS +RT −QT = S (R +Q) + T (R−Q) (2.56)

it is easy to see that since Q,R = ±1, then either S (R +Q) = 0 or
T (R−Q) = 0. Therefore

QS +RS +RT −QT = ±2 (2.57)

Suppose next that, before the measurement, the system is in the state
where Q = q, R = r, S = s and T = t . We can now write the expectation
value of the quantity above as:

E (QS +RS +RT −QT ) =
∑
q,r,s,t

p (q, r, s, t) (qs+ rs+ rt− qt)

≤
∑
q,r,s,t

p (q, r, s, t) · 2 = 2
(2.58)

Moreover one can write:

E (QS +RS +RT −QT ) =
∑
q,r,s,t

p (q, r, s, t) qs+
∑
q,r,s,t

p (q, r, s, t) rs∑
q,r,s,t

p (q, r, s, t) rt−
∑
q,r,s,t

p (q, r, s, t) qt

= E (QS) + E (RS) + E (RT )− E (QT )

(2.59)

Comparing the two equations above we finally get the Bell’s inequality:

E (QS) + E (RS) + E (RT )− E (QT ) ≤ 2 (2.60)

We now put quantum mechanics back into the picture by supposing that
we prepare two qubits in an entangled state of the type:

|ψ〉 =
|01〉 − |10〉√

2
(2.61)

We then send one qubit to Alice, one to Bob. Assume they perform the
following measurements:
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Q = Z1 S =
−Z2 −X2√

2

Q = X1 T =
Z2 −X2√

2

(2.62)

If we calculate the quantum mechanical expectation value of the operators
which appear in the Bell’s inequality found before we find:

〈QS〉 =
1√
2
〈RS〉 =

1√
2
〈RT 〉 =

1√
2
〈QT 〉 = − 1√

2
(2.63)

Thus we easily find:

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√

2 (2.64)

We now face an apparent paradox: quantum mechanics predicts an exper-
iment results to be in striking disagreement with the Bell’s inequality. But
which are the assumptions of our first derivation that are not compatible
with the picture quantum mechanics gives us of nature? There are at least
two:

1. The assumption that the physical properties PQ, PR, PS, PT have defi-
nite values Q, R, S, T which exist independent of observation. This is
sometimes known as the assumption of realism.

2. The assumption that Alice performing her measurement does not in-
fluence the result of Bob’s measurement. This is sometimes known as
the assumption of locality

Together this two assumptions are known as local realism. We can now
perform an experiment of the type described above and based on the result of
the Bell’s inequality decide whether quantum mechanics is right or not. This
has been done with in order to satisfy strict relativist requirements and the
results were found to violate Bell’s inequality by 30 standard deviations[26].
Although some loopholes remain, it is difficult to expect a completely differ-
ent outcome from more sophisticated experiments.

2.5 CHSH’s Inequality

We will now show a more formal derivation[25, 27] of the CHSH’s Inequality
derived before. We start by considering an ensemble of correlated pairs of
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particle moving towards two different apparatus Ia and IIb, where a, b are
adjustable parameters for each setup. In each apparatus the particle can
choose between two channels, labeled respectively +1 and -1. Let the result
of this selection be A(a) and B(b) which, according to which channel is se-
lected, will have value +1 or -1. We now suppose that a statistical correlation
of A(a) and B(b) is due to information carried by and localized within each
particle. This information, which is not quantum mechanical, is part of a set
of hidden variables which are usually denoted by λ. One can assume that
the two particles were in contact some time in the past and could therefore
exchange communication regarding this hidden variable. It is a matter of
indifference for this argument whether λ is a single variable, a set or even a
set of functions and whether this variables are discrete or continuous. We
shall therefore follow the standard derivations which assume λ to be a single
continuous variable. The correlations one might find are now consequence of
the deterministic functions A(a, λ) and B(b, λ).
The key assumption we know make is that A(a, λ) and B(b, λ) are indepen-
dent of b and a respectively. This seems to be a natural consequence of
locality, since the experimental apparatus which perform the measurements
can be so far apart that, due to relativistic arguments, no signal from one ap-
paratus can physically influence the other one. The second key assumption
we make is that the probability distribution of the ensemble, which I will
call ρ (λ) is independent of both a, b since this two variables can be chosen
when the correlated pair is non longer in contact and therefore no longer in
condition to exchange information.
We can now define the correlation distribution as:

P (a, b) =

∫
ρ (λ)A(a, λ)B(b, λ)dλ (2.65)

with |A(a, λ)|, |B(b, λ)| ≤ 1. Now if a, a′ and b, b′ are different settings for
the experimental apparatus, we can write:

P (a, b)− P (a, b′) =

∫
ρ (λ) (A(a, λ)B(b, λ)− A(a, λ)B(b′, λ)) dλ (2.66)

If we now add and subtract the quantity A(a, λ)A(a′, λ)B(b′, λ)B(b, λ) to the
rhs of the equation:

P (a, b)− P (a, b′) =

∫
ρ (λ)A(a, λ)B(b, λ) (1± A(a′, λ)B(b′, λ)) dλ (2.67)

−
∫
ρ (λ)A(a, λ)B(b′, λ) (1± A(a′, λ)B(b, λ)) dλ (2.68)
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where the ± accounts for different grouping of the added quantity. If we now
apply the triangle inequality and use the fact that |A(a, λ)|, |B(b, λ)| ≤ 1 and
1± A(a′, λ)B(b′, λ) ≥ 0 we can write:

|P (a, b)− P (a, b′)| ≤
∫
ρ (λ) (1± A(a′, λ)B(b′, λ)) dλ (2.69)

+

∫
ρ (λ) (1± A(a′, λ)B(b, λ)) dλ (2.70)

Finally, using
∫
ρ (λ) dλ = 1 , we have:

|P (a, b)− P (a, b′)| ≤ 2± [P (a′, b′) + P (a′, b)] (2.71)

Which includes the CHSH inequality in the form:

S = P (a, b)− P (a, b′) + P (a′, b′) + P (a′, b)

−2 ≤ S ≤ 2
(2.72)

Since Ia and Ib can be an entire measurement system, we can think of it
as a filter followed by a detector, which in fact is our experimental apparatus
(see later chapters for details). In this case A(a) and B(b) would denote
detection or non-detection of the particle and we can think of applying the
inequality directly to the experimental counting rates.
In order to derive an experimental prediction from (2.72) we need to make an
additional assumption: the probability of joint detection of the two particles
must be independent of the particular setting of a and b. Now, if the flux into
each experimental apparatus is also a constant, then the rate of coincidence
detection, C(a, b), is proportional to p± (a, b)±, which is the probability to
have A(a) = ±1 and B(b) = ±1. If this is the case, we can write the
expectation value P (a, b) as follows:

P (a, b) = E (a, b) = p++ (a, b) + p−− (a, b)− p+− (a, b)− p−+ (a, b) (2.73)

Where, e.g., p++ (a, b) is the probability of obtaining +1 along a and +1
along b. From now on will call P (a, b) = E (a, b) since this number can
be negative and therefore is not a classical probability. It follows from the
previous assumptions a useful expression for the E (a, b) :

E (a, b) =
C++(a, b) + C−−(a, b)− C+−(a, b)− C−+(a, b)

C++(a, b) + C−−(a, b) + C+−(a, b) + C−+(a, b)
(2.74)
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2.6 Single Qubit Tomography

In this section we address the problem of reconstructing the density matrix
of an identical ensemble of a given quantum state. This problem is known as
quantum state tomography[28, 29, 30]. We will focus on the measurement of a
single qubit since it is most relevant to our work and refer to the bibliography
for further information.
We already demonstrated, Eq. 2.15 how it is possible to write the general
density matrix of a qubit in terms of the Pauli matrix:

ρ =
1

2

3∑
i=0

Siσi (2.75)

where the σi are just the Pauli matrix. The S parameters instead are
defined as follows:

Si = Tr {σiρ} (2.76)

The S parameter is therefore just the expectation value of the state ρ
on the observable σ (this is equivalent to the claim that the four σi form a
complete basis for the Hilbert space of the single qubit). For any pure state∑3

i=0 Si = 1 and ,as a necessary consequence for normalization, S0 = 1. Each
of these parameters corresponds to a specific pair of projective measurement:

S0 = P|0〉 + P|1〉

S1 = P 1√
2

(|0〉+|1〉) − P 1√
2
|1〉−|1〉

S2 = P 1√
2

(|0〉+i|1〉) − P 1√
2

(|1〉−|1〉)

S0 = P|0〉 − P|1〉

(2.77)

where Pφ is the probability to measure the state |φ〉. Since P|φ〉+P|φ⊥〉 =

1, we an write:

S0 = 1

S1 = 2P 1√
2

(|0〉+|1〉) − 1

S2 = 2P 1√
2

(|0〉+i|1〉) − 1

S0 = 2P|0〉 − 1

(2.78)

If we can measure the Si parameters experimentally, we can now recon-
struct the density matrix. We must therefore implement an arbitrary pro-
jective measurement stage and this is completely described in section 3.6.
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Silicon Photonics

3.1 The Silicon on Insulator Platform

Silicon photonics is the recent but rapidly growing field where silicon is used
as an optic medium[31, 32]. A standard semiconductor in electronic industry,
silicon is a well known material with complete compatibility with CMOS and
telecommunication technology. The use of telecommunication wavelengths
(≈ 1.55µm) has the advantage of allowing access to the developments of
classical photonics, such as very low loss optical fibres. In particular, the Sil-
icon on Insulator platform (SoI), where the silicon layer of interest lies on top
(and eventually is surrounded by) a layer of SiO2, is particularly interesting
as it enables the implementation of very compact single mode waveguides
(0.45 − 0.5µm) . This feature greatly enhances the degree of complexity of
integrated circuits, which are a current research topic.
In this section we first give a basic introduction of the classical and quantum
behaviour of the most important elements which build up our circuit: single
mode waveguides, MMI couplers, single photon sources and Mach-Zehnder
interferometers as a tomography stage. The design of the chip was based
upon previous studies and was not part of this thesis. Nevertheless, we will
give a rather detailed description of the criteria used to define the differ-
ent structures in the circuit, together with the design specification of each
building block.

3.2 Waveguides

The waveguides were designed to be single mode for TE input fields at 1550
nm. We use term single mode rather loosely here, since the waveguide profile
allows a single TM mode as well. This can be justified because the two modes

23
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are orthogonal and remain orthogonal even when bends are present. Note
that this is the case only if there is one possible TE mode, otherwise bends
would introduce crosstalk with random probabilities and phase, making the
system no longer suitable for single photon routing.

SiO2

Si

Si

2 μm

0.22 μm

0.5 μm

Figure 3.1: Cross section of a SoI waveguide

3.3 Multimode Interference Coupler

In this experiment MMIs were designed to be 2.8 µm x 27 µm in order to
equally split bright light into two different paths and to witness quantum
interference. We shall now describe the underlying physical principle, al-
though in the rest of the thesis we will always consider it a ”black box” with
a scattering matrix akin to the balanced beam splitter one. As a result, we
will thus be able to extend the results of chapter 1 to an MMI coupler.In the
remaining of the section, we will follow the treatment given in [33].
In general, an MMI is composed of three distinctive zones: a central uniform
slab, which is usually designed to support more than three modes, and an
arbitrary number of input and output waveguides, which are usually single
mode. An MMI with N input waveguides and M output ones, is usually
referred to as a NxM MMI coupler. The multimode waveguide we consider
is, as apparent from Fig. 3.2, a step index one, with the dimension on the
x-axis far smaller than the other two that can be normally considered single
mode, therefore reducing the dimensionality of the problem. As a result, it
is justified to assume that the modes have the same transverse behaviour
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everywhere in the waveguide.

 Ws=2.8 μm

 27 μm

 ns

 nc

 z

y

 z nc  ns

 y

Figure 3.2: Schematic of an MMI coupler

As the figure shows, we have a waveguide with refractive index ns and
width Ws which supports m later mode labelled as ν = 0, 1 · · · (m− 1) at an
arbitrary free space wavelength λ0. If we call the lateral wavenumber kyν and
βν the propagation constant, we can write the dispersion relation as follows:

k2
yν + β2

ν = k2
0n

2
s (3.1)

where k0 = 2π
λ0

and kyν = (ν+1)π
Weν

. In the expression for the lateral
wavenumber Wm is substituted by the effective width Weν which takes into
account the lateral penetration of the mode into the lower index medium.
This effective length is associated with the Goos-Hänchen shift and can be
evaluated, if one approximates Weν with We0 of the fundamental mode, as
follows:

Weν ' We = Ws +

(
λ0

π

)(
nc
ns

)2σ (
n2
s − n2

c

)− 1
2

= Ws + γ

(3.2)

where nc is the cladding refractive index and σ = 0 for TE and σ = 1 for
TM. If we evaluate the penetration depth (which is just the second part of
RHS of (3.2) ) in our system we find that γ = 156 nm. This is the 5.5% of
the MMI coupler width.
From (3.1) we can now evaluate the propagation constant βν :

βν =
√
k2

0n
2
s − k2

yν = k0ns

√
1− k2

yν

k2
0n

2
s

(3.3)

Now, since k2
yν � k2

0n
2
s we can use the binomial expansion and stop at

the first order to get:
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βν ' k0ns −
(ν + 1)2 πλ0

4W 2
eνns

(3.4)

With the help of the last equation we can now define a key parameter
of the MMI which, as we will show soon after, will help us to give a first
order estimation of the MMI length when working as a 2x2 beam splitter.
We define the beat length of the two lowest order modes as:

Lπ =
π

β0 − β1

' 4nsW
2
eν

3λ0

(3.5)

and express the propagation constants spacing as:

(β0 − βν) =
ν (ν + 2) π

3Lπ
(3.6)

We now turn our attention to a Guided-Mode Propagation Analysis. We
consider an input field Ψ (y, 0) at z = 0 (obviously totally contained in We) .
We want to decompose the input field as a sum of all the modal field inside
the multimode waveguide:

Ψ (y, 0) =
∑
ν

cνψν (y) (3.7)

where the summation should in principle include radiative as well as
guides modes. The coefficients of the expansion can be expressed in terms of
overlap integrals:

cν =

∫
Ψ (y, 0)ψν (y) dy√∫

ψ2
ν (y) dy

(3.8)

If the spatial spectrum of the input field is narrow enough to excite only
guided modes we can write:

Ψ (y, 0) =
m−1∑
ν=0

cνψν (y) (3.9)

At a generic distance z, the field will now be a superposition of all the
guided mode field distribution:

Ψ (y, z) =
m−1∑
ν=0

cνψν (y) exp [i (ωt− βνz)] (3.10)
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We now take out of the sum the phase of the fundamental mode, we drop
it, and assuming the time dependence of the exponential implicit from here
on we get:

Ψ (y, z) =
m−1∑
ν=0

cνψν (y) exp [i (β0 − βν) z] (3.11)

Finally, if we evaluate the last expression fro z = L and substitute (3.6)
we find:

Ψ (y, L) =
m−1∑
ν=0

cνψν (y) exp

[
i
ν (ν + 2) π

3Lπ
L

]
(3.12)

We can now easily see how, under certain circumstances, the field Ψ (y, L)
will be a reproduction, in single or multiple images, of the input field. This
effect is called self-imaging and is a property of multimode waveguides. We
can for example see that (3.12) will be an exact replica of the input field if
two conditions are satisfied. The first case is when:

exp

[
i
ν (ν + 2) π

3Lπ
L

]
= 1 (3.13)

In this case all the excited modes will interfere with same relative phase of
z = 0 and the image will be a direct replica of Ψ (y, 0). The second condition
is less obvious and is fulfilled when:

exp

[
i
ν (ν + 2) π

3Lπ
L

]
= (−1)ν (3.14)

In this case the replica will be a mirrored image with respect to the z-axis.
This is a consequence of the symmetry of the structure we are considering
with respect to the plane y = 0, which as a result implies:

ψν (−y) =

{
ψν (y) , for ν even

−ψν (y) for ν odd
(3.15)

Both conditions are satisfied when :

L = p (3Lπ) with p = 0, 1, 2 . . . (3.16)

Here, we considered p as an integer. This way, p denotes the nature of
the single replica, direct or mirrored, and can be used to design bar and cross
couplers. Furthermore we are indeed interested in design a beam splitter and
we must therefore consider the formation of multiple images. This is easily
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done by considering the images obtained half way between direct and mirror
image positions, i.e. at distances:

L =
p

2
(3Lπ) with p = 1, 3, 5 . . . (3.17)

If we evaluate the total field at these distances:

Ψ
(
y,
p

2
3Lπ

)
=

m−1∑
ν=0

cνψν (y) exp
[
iν (ν + 2) p

(π
2

)]
(3.18)

If we now make use of the fact that the factor ν (ν + 2)) is even for ν
even and odd for ν odd, together with symmetric properties of the field we
considered before, The output field can be written as:

Ψ
(
y,
p

2
3Lπ

)
=
∑
νeven

cνψν +
∑
νodd

(−i)p cνψν

=
1 + (−i)p

2
Ψ (y, 0) +

1− (−i)p
2

Ψ (−y, 0)

(3.19)

The last equation shows clearly that the output field is a pair of images,
in quadrature and with amplitudes 1√

2
, of the input field. We can now give

a first estimation of the length of the MMI when it must work as a 3-dB
coupler. In fact, if we set p = 1 :

L =
3

2
Lπ =

2nsW
2
eν

λ0

≈ 39µm (3.20)

Where we consider λ = 1.55 µm. This number significantly differs from
our design and should be regarded only as a first order approximation. This
is a consequence of the fact that we are using only the first two mode to
estimate Lπ, while the real device has more than two modes.

3.4 Diffraction Gratings

3.4.1 1-Dimensional

High refractive index contrast allows drastic reduction of the size of the op-
tical circuits, making the SoI platform a very promising candidate for the
production of large scale integrated optical circuits[34, 35, 36]. However,
interfacing a 10 µm diameter with a 500 nm waveguide becomes a serious
challenge, due to the huge mismatch between the respective modes. This
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problem can be solved with a range of different approach but in this ex-
periment we used one dimensional grating couplers. Grating couplers are
simple one-dimensional periodic structure etched on top of the silicon waveg-
uide. This way light can be directly coupled from a single mode fibre to the
grating, which can be anywhere on the chip, and diffracted directly into the
waveguide. An additional adiabatic taper laterally then slowly converts the
mode from roughly 10 µm to 500 nm.

 32 μm

 0.5 μm20 μm

 z

 x

 z

 y

 Λ=0.63 μm

10°Kin

βin

Figure 3.3: Geometry of a one dimensional grating coupler. The right image
is section in the x-z plane.

We will now outline the operation principle of the device. The period-
icity of the grating implies that the light will be diffracted in preferential
directions. This can be understood if we assume the structure to be infinite
and we analyse it from a bi-dimensional point of view, see Fig. 3.3. In this
respect, the structure is just a Bragg diffraction grating and can be fully
described by the relation:

kz,m = βmode +mK (3.21)

where m is an integer and describes the mth order of diffraction. kz,m is
z projection of the wave vector of the diffracted wave.
As a consequence of the high index contrast at Si/SiO2 interface, βmode is

not simply the mode wave vector, but one must consider an average between
the propagation constant of the guided mode in the etched and unetched
regions. We must therefore use an effective index neff (λ) instead of nSi.
K is the reciprocal lattice vector and its module is |K| = 2π

Λ
. The Bragg

condition directly determines the angle of diffraction since :

kz,m =
2πnSiO2 sin(θ0)

λ
(3.22)

We can now write:
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βin

 K=2π/Λ

Figure 3.4: Graphical representation of the Bragg condition

sin(θ0) =
neff (λ)

nSiO2

+m
λ

nSiO2Λ
(3.23)

Simulations can give us an estimation of the effective index, which is
found to be neff (λ) = 2.6963. Moreover, we constraint θ0 to be 10◦ so that
we can now calculate the pitch Λ = 634.1 nm (where we set m = −1). This
is already a very accurate approximation of the correct grating pitch and can
be further improve with numerical simulations. One might be puzzled by our
choice of the diffraction angle, as the vertical coupling might appear to be
the most natural solution. Let us consider then of perfect vertical coupling
to the chip:

βmode = K (3.24)

with m = −1. Although this condition produces a first order diffraction
directly into the superstrate, a second order diffraction also occurs back into
the waveguide:

kz,−2 = βmode − 2K = −βmode (3.25)

This second order of diffraction is highly unwanted and can drastically
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reduce the coupling efficiency of the grating, thus we opted for a detuned
configuration.
A last expedient was used in order to reduce the area of the device. In fact,
if a rectangular coupler would require only 10 µm x 10 µm, a very long
taper would still be needed (around 150 µm) to match the different size of
the modes, as already explained. This can be avoided by using a curved
grating lines instead of straight ones. Light coming from the fibre will now
not only be coupled to the waveguide plane but also focused directly onto the
waveguide aperture. It can be shown that a focusing grating can be obtained
by curving the grating lines according to:

qλ = neff
√
y2 + z2 − zn cos (θc) (3.26)

where θc is the angle between the fibre and the chip and q is a different
integer number for each line. This way the grating effective footprint can be
scaled down by a factor of eight without any drop in the performance.
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3.4.2 2-Dimensional

A key component of our experiment, as we will explain in greater details
in the following chapter, is the 2D grating coupler[37]. As we can see from
Fig 3.5 this is just a square photonic crystal structure, invariant for 90◦

rotations. The theory of this device, which can work either as a output or
input coupler, is readily explained in terms of a superposition of 1D grating
couplers. In fact, a 2D grating is just a square array of holes which satisfy the
Bragg condition in two perpendicular directions. In this fashion light with
different polarization is coupled to two nearly orthogonal waveguides. The
TM component will also be rotated to TE and the grating will incorporate
the functionality of a coupler, a polarization beam splitter and a rotator for
the TM component. The ratio of the incoming light coupled to each fibre
will be therefore polarization dependent, but the total coupling efficiency
considering both waveguides will not (aside for some polarization dependent
losses, which are negligible for this experiment).

We now have two different problems to solve in order to increase the
efficiency of the structure. Firstly, the access waveguides have to be tilted
inwards. This can be understood by rewriting the Bragg condition as follows:

kz,i = kin,proj +Ki (3.27)

where i = 1, 2 and K1 = 2π
Λ
~i, K2 = 2π

Λ
~j. Also:

kin,proj =
2πn

Λ
sin(θ0)

(
1√
2
~i+

1√
2
~j

)
(3.28)

so that kz,1 and kz,2 are no longer orthogonal as it is apparent from the
image. The access waveguides must therefore be tilted in order not to reduce
the coupling efficiency (for 10◦ fibre a 3◦ tilt was applied).
In the quantum regime, this device can be used to coherently couple a quan-
tum state from the ”path” basis, usually utilized in integrated circuits, to the
polarization basis, which is the most natural for transmitting quantum infor-
mation through a fibre. The fidelity of this ”Path to Polarization” converter
(PPC) has been analysed thoroughly and the experimental results obtained
are in the relative section.



CHAPTER 3. SILICON PHOTONICS 33

Kin,proj

 10 μm

 10 μm

K1

K2

Kz,1

Kz,2

 Λ=0.63 μm

 d=0.39 μm

Figure 3.5: Geometry of a two dimensional grating coupler. The two waveg-
uides are slightly tilted in order to accommodate for the new phase matching
condition.
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3.5 Integrated Single Photon Sources

In this section we will describe in some details the integrated single photon
sources we used, which were based on a previous study [13] and refer to
the Bibliography for further information. Before going into details we give
some general remarks about the χ3 effect in silicon, which is the underlying
physical process we use to generate correlated single photons.

3.5.1 Pair Generation in Silicon

Spontaneous four wave mixing is third order non linear effect whereby, in
the non-degenerate case we are interested, two photons of the pump are
annihilated in order to generate two photons, the signal and the idler, at
different wavelengths. Since the strength of χ3 processes is dependent on
the refractive index[19] of the material like χ3 ∝ (1− n)4, a rather strong
interaction is expected (nSi = 3.48). In literature the strength of the non
linearity is usually expressed in terms of n2 = 3

2n2
0ε0c

χ(3), where n2 is the self

focusing index effect n = n0 + n2I. For silicon the value oscillates between
n2 = 4−9×10−14 cm2W−1. In SoI platform the high index contrast requires
the waveguide core to be between 450 and 550 nm (for a thickness of 220
nm) and translates in an effective non-linear coupling constant far higher
than in bulk silicon. Typical values are γ ≈ 460m−1W−1 at communication
wavelength.

P
u
m

p
P
u
m

p
S
ig

n
a
l

Id
le

r

Non Degenerate 4WM

Figure 3.6: Energy diagram for non degenerate SFWM
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The hamiltonian is composed of two parts:

H = HL +HNL (3.29)

where

HL =

∫
dk~ωka†kak

HNL = −γ0

∫
dk1dk2dk3dk4~ωka†k1a

†
k2
ak3ak4 exp [i(k4 + k3 − k2 − k1)z] + h.c.

where γ0 is the effective non linear coupling constant. It can be shown[38,
39] that, starting with a coherent state |α〉, the output state in a straight
waveguide with the defined hamiltonian is, to first order:

|ψout〉 =
[
1 +

γ0α
2L√
2

∫
dk1dk2Φ(k1, k2)a†k1a

†
k2

]
|α〉 ⊗ |vac〉 (3.30)

with L the waveguide length and Φ is the joint spectral intensity of the bipho-
ton state. We will use this result in the next section, without demonstration,
in order to calculate the output state of our sources.

3.5.2 Theory of Operation

Before going into some technical details we give a qualitative description of
the state generation. In our device we have two photon pair sources, each
of which is composed by a spiralled waveguide 2 cm long. The bright pump
from an off-chip laser is equally split by a balanced MMI and both sources
are pumped simultaneously. In this region, the χ(3) spontaneous four wave
mixing non-degenerate pairs of photons, called signal and idler, are created
by annihilating two photons of the pump. By operating in the weak pump
regime, only one pair is likely to generated, and the sources yield the path
entangled NOON state:

|ψ〉 =
|2〉t |0〉b − |0〉t |2〉b√

2
(3.31)

A thermal phase shifter on one source only allows the dynamical control
of the relative phase:

|ψ〉 =
|2〉t |0〉b − e2θi |0〉t |2〉b√

2
(3.32)
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θ

Pump

Figure 3.7: Integrated single photon source.

where the phase applied to the single photons is doubled when compared
to the bright pump. We now give a demonstration of how the NOON state
is obtained, starting from the hamiltonian (3.30) of the SFWM processes for
a straight waveguide with χ(3) non linearity.

We assume the pump to be monochromatic (ωp, kp) and we call the filter
response with which we post select signal and idler (off-chip) fs(ks) and
fi(ki) = fi(2kp − ks). Thus:

|ψout〉 =
[
1+

γ0α
2L√
2

∫
dkidksfs(ks)fi(2kp−ks)sinc

(
∆kL

2

)
a†ksa

†
2kp−ks

]
|α〉⊗|vac〉

where

∆k = 2kp − ks − ki
We want to rewrite the output state with a lighter notation:

|ψout〉 =
[
1 + γeffα

2A†i,s

]
|α〉 ⊗ |vac〉 (3.33)

where γeff is the effective pair generation coefficient and A†i,s is the gen-
eration operator for signal and idler. The phase matching bandwidth is
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governed by the sinc() function, although in practice the narrow band filters
only select a very small and flat part of the sinc() itself. In this regime the
output state is proportional to L2, where L is the length of the spiral.
We can now demonstrate how the path entangled NOON state is generated,
starting from a coherent state which, after the first beam splitter, becomes:

|α〉 → |√ηα〉
∣∣∣i√1− ηα

〉
(3.34)

We now have pair generation in both sources:

|√ηα〉
∣∣∣i√1− ηα

〉
→
[
1 +

γ0α
2L√
2

∫
dk1dk2Φ(k1, k2)c†k1c

†
k2

]
|α〉[

1 +
γ0α

2L√
2

∫
dk1dk2Φ(k1, k2)d†k1d

†
k2

] ∣∣∣i√1− ηα
〉
|vac〉

We now neglect the second order term ∝ γ2
0 since this is negligible when

compared to the probability of generating one pair. Therefore:

|ψout〉 = 1+
γα2L√

2

∫
dk1dk2Φ(k1, k2)

[
ηc†k1c

†
k2
−(1− η) d†k1d

†
k2

] ∣∣∣i√1− η α
〉
|√η α〉 |vac〉

and after the phase shifter (on the d mode only):

|ψout〉 = 1+
γα2L√

2

∫
dk1dk2Φ(k1, k2)

[
ηc†k1c

†
k2
−e2θi (1− η) d†k1d

†
k2

] ∣∣∣i√1− η α
〉
|√η α〉 |vac〉

If we then post select the two single photons (which we relabel 1, 2→ s, i)
and get rid of the pump mode (and assuming η = 1

2
):

|ψout〉 =
γα2L

2
√

2

∫
dk1dk2Φ(k1, k2)fs(ks)fi(2kωp−ks)

[
|1s〉t |1i〉t |0s〉b |0i〉b−e2θi |0s〉t |0i〉t |1s〉b |1i〉b

]
where fs(ks) and fi(ki) are the transfer function of the filter used in the

post selection process. As we already mentioned, in practice the spectral
integral almost entirely depends on the bandwidth of the filters (usually 1
nm). For the rest of this thesis we will forget the spectral distribution of
the photons and consider only one wavelength (that is we will go back to a
discrete variable treatment). This is justified as long as we are in a flat zone
of the phase matching condition and the filters only select a small portion of
it, as it always the case in our experiments.
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3.6 Single Qubit Projective Measurement Stage

In order to implement an arbitrary projective measurement stage, a Mach-
Zehnder interferometer with an additional phase shifter on one input is
used[40, 41]. The phase control is implemented by two thermal phase shifter,
which take advantage of the thermo-optic coefficient of silicon. In literature
this coefficient is estimated to be around dn

dT
' 1 × 10−5K−1. The balanced

beam splitters are implemented by MMI couplers with same design described
in the relative section. The resistive heaters were made by a Ti/TiN metal
layer and were designed to be 50 µm long. The heaters were then connected
to the PCB with a wire-bonding technology.

ϕθ

 50 μm

Figure 3.8: Schematic of a Measurement stage, which consists of Mach-
Zehnder interferometer with an additional phase shifter.

The tomography stage characterisation will be detailed in the experimen-
tal section. From here on we will refer to this stage as A (θ, φ) (or as B (θ, φ)
for Bob’s one). We want to show how it is possible to decompose the action
of this stage in terms of the Pauli matrices and the Hadamard gate, so that
we can prove what is the action of the state on a generic qubit. From the
definition of Rx(θ) together with the expansion (2.1), we can easily write:

Rx(θ) = exp

(
−iθX

2

)
= Rz(−

π

2
) ·Ry(θ) ·Rz(

π

2
) (3.35)

But for θ = −π
2
, we simply have the matrix of a balanced beam splitter:

Rx(−
π

2
) = Rz(−

π

2
) ·Ry(−

π

2
) ·Rz(

π

2
) (3.36)

We can write this in terms of an Hadamard gate if we notice that:

H = −i Rz(−π)Ry(−
π

2
) (3.37)



CHAPTER 3. SILICON PHOTONICS 39

Then:

UBS = i Rz(
π

2
) ·H ·Rz(

π

2
) (3.38)

The Unitary matrix of the Mach-Zehnder is now easily found:

UMZI = BSeiφZBS (3.39)

and if we add the phase shifter and write all terms explicitly:

A (θ, φ) = −ei θ2Ze−iπ4ZHe−iπ4Zeiφ2Ze−iπ4ZHe−iπ4Z (3.40)

We can write the last expression in a simpler form with the aid of:

UMZI = ei
φ
2
Y ·X (3.41)

which can be verified by straightforward application of the previous defi-
nitions. Then:

A (θ, φ) = ei
φ
2
Y ·X · ei θ2Z = ei

φ
2
Y · e−i θ2Z ·X (3.42)

This unitary matrix allows arbitrary projective measurement from the
computational basis. In order to prove this, let us consider an arbitrary
state preparation starting from the computational basis, e.g. |0〉. The trans-
formation is the temporal inverse of the projective measurement, that is:

A† (θ, φ) = X · ei θ2Z · e−iφ2 Y (3.43)

If we apply this transformation to |0〉:

A† (θ, φ) |0〉 =e−
iθ
2 sin

(
φ

2

)
|0〉+ e

iθ
2 cos

(
φ

2

)
|1〉

= sin

(
φ

2

)
|0〉+ eiθ cos

(
φ

2

)
|1〉

(3.44)

Where in the last equality we dropped a global phase factor. Aside from
a change of reference for what concerns the φ angle, this is just the form of
a generic qubit on the Bloch sphere. The direct transformation is therefore
just a projection on the computational basis. Crucial to our experiment will
be the possibility of setting the projective stage as an Hadamard gate. This
can be easily implemented with the following choice of angles:

A
(

0,
π

2

)
=

1√
2

(
1 1
1 −1

)
(3.45)



Chapter 4

Concept of the Experiment

In this chapter we give a full description of the circuit theory. We give a some-
what simplified treatment which does not take into account the dissipations
inside the chip and full spectrum of the generated pairs (this last assump-
tion is without loss of generality, since we can extend the results found for a
single wavelength to the region of significant phase matching). Nevertheless,
this analysis can give a clearer understanding of the physics underneath the
experiment.

4.1 The Experiment in a Nutshell

Before going into the details we present the experiment with the intention of
clarifying, in a non rigorous way, the various steps which comprise the full
experiment.
Our goal is to demonstrate the possibility of generating, manipulating and
ultimately distribute an entangled state between two chips, linked by a single
mode fibre. We will refer to the first chip, where the entangled state is gener-
ated, as Alice’s chip. The second chip will be Bob’s chip, as it is traditional
in EPR experiments.
The bright light pumped into the chip is equally split by the MMI to simul-
taneously pump both the spiral sources. As discussed before the state after
the two sources and the thermal phase shifter is:

|ψ〉 =
|1s1i〉t |0s0i〉b − e(θs+θi)i |0s0i〉t |1s1i〉b√

2
(4.1)

where the subscripts s, i refer to the signal and idler photons while the
t, b refer to the top and bottom source. Since the idler and signal photons are
very close in wavelength (∼ 5nm, see next chapter for experimental details),

40
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the phase shift applied is almost exactly the same and we can approximate
θs ' θi ' θ. Thus we can write:

|ψ〉 =
|2〉t |0〉b − e2θi |0〉t |2〉b√

2
(4.2)

which is path entangled NOON state.

Top

Bottom

Top Top (tt)

Top Bottom (tb)

Bottom Top  (bt)

Bottom Bottom  (bb)

Figure 4.1: Labelling of the MMIs modes. (See also Fig. 4.2)

After the two MMI couplers and the cross, the state in the Fock basis is:

|ψout〉 =
1

2
√

2
|1s0i〉tt |0s0i〉tb |0s1i〉bt |0s0i〉bb−e(2θi) |0s0i〉tt |1s0i〉tb |0s0i〉bt |0s1i〉bb

where the modes are labelled after the Fig. 4.1. In the computational
basis we can write this as:

|ψout〉 =
1√
2

(
|0〉top |0〉bottom − e(2θi) |1〉top |1〉bottom

)
(4.3)

When we set θ to be equal to π
2

or π we obtain two Bell’s state :

|Φ±〉 =
1√
2

(
|0〉top |0〉bottom ± |1〉top |1〉bottom

)
(4.4)
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The bottom qubit is now converted in a polarization entangled state,
transmitted through a fibre to Bob’s chip and reconverted into a path entan-
gled state. The details of this conversion are explained in the experimental
section. With the help of two arbitrary single qubit measurement stages we
can now verify the violation of the Bell’s inequality (in the CHSH form) and
measure correlation fringes between the two chips.
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B(θb,ϕb)

θbϕb
D3

D4

ϕaθa

A(θa,ϕa)Source

Pump

D1

D2

SMF and PC

θ

Alice

Bob

PPC

Figure 4.2: Alice’s chip (top) and Bob’s chip (bottom). The two chips are
connected with 10 m single mode fibre (SMF) with an additional polarisation
controller (PC).
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4.2 Full State Evolution

We now describe the state evolution starting from the state generated by the
integrated sources. We must consider a total of eight modes, two different
wavelengths and four spatial mode, which are labelled after the Fig. 4.1. By
applying the beam splitter transformation, we obtain:

|ψout〉 = U |ψ〉 =
U√

2

(
a†tsa

†
ti |0s0i〉t |0s0i〉b − e(2θi) |0s0i〉t a†bsa†bi |0s0i〉b

)
=

1√
2

(
Ua†tsU

†Ua†tiU
† |0s0i〉t |0s0i〉b − e(2θi) |0s0i〉t Ua†bsU †Ua†biU † |0s0i〉b

)
=

1

2
√

2

[ (
a†tts + ia†tbs

)(
ia†tti + a†tbi

)
|0s0i〉tt |0s0i〉tb |0s0i〉bt |0s0i〉bb

− e(2θi) |0s0i〉t
(
a†bts + ia†bbs

)(
ia†bti + a†bbi

)
|0s0i〉tt |0s0i〉tb |0s0i〉bt |0s0i〉bb

]
The state after the MMIs and before the crossing is:

|ψout〉 =
1

2
√

2
i |1s1i〉tt |0s0i〉tb |0s0i〉bt |0s0i〉bb + |1s0i〉tt |0s1i〉tb |0s0i〉bt |0s0i〉bb

− |0s1i〉tt |1s0i〉tb |0s0i〉bt |0s0i〉bb + i |0s0i〉tt |1s1i〉tb |0s0i〉bt |0s0i〉bb
− e(2θi)

[
i |0s0i〉tt |0s0i〉tb |1s1i〉bt |0s0i〉bb + |0s0i〉tt |0s0i〉tb |1s0i〉bt |0s1i〉bb

− |0s0i〉tt |0s0i〉tb |0s1i〉bt |1s0i〉bb + i |0s0i〉tt |0s0i〉tb |0s0i〉bt |1s1i〉bb
]

The state after the intersection is found by formally substituting the index
tb −→ bt and vice versa. If we rearrange the terms for clarity, we finally get:

|ψout〉 =
1

2
√

2

[
i |1s1i〉tt |0s0i〉tb |0s0i〉bt |0s0i〉bb + |1s0i〉tt |0s0i〉tb |0s1i〉bt |0s0i〉bb

− |0s1i〉tt |0s0i〉tb |1s0i〉bt |0s0i〉bb + i |0s0i〉tt |0s0i〉tb |1s1i〉bt |0s0i〉bb
]

− e(2θi)
[
i |0s0i〉tt |1s1i〉tb |0s0i〉bt |0s0i〉bb + |0s0i〉tt |1s0i〉tb |0s0i〉bt |0s1i〉bb

− |0s0i〉tt |0s1i〉tb |0s0i〉bt |1s0i〉bb + i |0s0i〉tt |0s0i〉tb |0s0i〉bt |1s1i〉bb
]

This is the full state before the projective measurement stages. Depending
on how we actually perform the measurement, we look at different parts of the
full state. Our first aim is to test the quality of the entanglement produced
on Alice’s chip. In order to do this, we register the simultaneous detection of
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signal and idler at port D1 and D2 respectively. The photons are post selected
by means of an off-chip DWDM (see next chapter for information regarding
the experimental setup). Since we are interested only in the coincidence
detection, we can safely neglect all terms which have a photon in bt or bb
waveguide:

|ψout〉 =
i√
2

[(
|1s1i〉tt |0s0i〉tb |0s0i〉bt |0s0i〉bb

)
− e(2θi)

(
|0s0i〉tt |1s1i〉tb |0s0i〉bt |0s0i〉bb

)]

We now set the projective measurement stage A (θ, φ) as an Hadamard
gate by setting θ = 0 and φ = π

2
. Therefore:

H |ψout〉 =
i

2
√

2

[(c†s + d†s)√
2

(c†i + d†i )√
2
− e(2θi) (c†s − d†s)√

2

(c†i − d†i )√
2

]
|vac〉 =

=
i

2
√

2

[
|1s1i〉tt |0s0i〉tb + |0s0i〉tt |1s1i〉tb

] (
1− e(2θi)

)
+

+
[
|1s0i〉tt |0s1i〉tb + |0s1i〉tt |1s0i〉tb

] (
1 + e(2θi)

)
If we take out and drop a global phase factor, we obtain:

|ψout〉 = sin(θ) |ψbunch〉+ i cos(θ) |ψantibunch〉 (4.5)

This is, aside from an unobservable i factor, the same result we obtained
for a Mach-Zehnder and we report here for convenience the plot of the de-
tection probabilities.
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Figure 4.3: Classical and Quantum Interference.

After demonstrating the quality of the entanglement on Alice’s chip, we
need to prove the capability of our system to coherently transmit and dis-
tribute a Bell state. In order to do this, we replicate the scheme we consider
before on Alice’s side, but looking at the coincidences between port D1 and
D3. Once again, we post select the signal and idler photon, respectively on
port D1 and D3, with the aid of two off-chip DWDM. We can therefore ne-
glect all the terms where the idler is in the top waveguides and the signal in
the bottom ones. Furthermore, by looking at the detection coincidences, we
can neglect the case where idler and signal are bunching and the state we
have to consider is:

|ψout〉 =
1

2
√

2
|1s0i〉tt |0s0i〉tb |0s1i〉bt |0s0i〉bb−e(2θi) |0s0i〉tt |1s0i〉tb |0s0i〉bt |0s1i〉bb

We obtain this state with 25% (from here on we neglect the factor of 2 in
the first fraction). We can rewrite this in the computational basis, with the
convention that |0〉 maps to the cases |1s0i〉tt |0s0i〉tb and |0s1i〉bt |0s0i〉bb, as:

|ψout〉 =
1√
2

(
|0〉top |0〉bottom − e(2θi) |1〉top |1〉bottom

)
(4.6)

When we set θ to be equal to π
2

or π we obtain two Bell’s state :

|Φ±〉 =
1√
2

(
|0〉top |0〉bottom ± |1〉top |1〉bottom

)
(4.7)

We now apply the two projective operators A (0, φa) and B (0, φb) to the
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state in the Fock basis (the result is the same for the logic basis but is
somewhat less clearly understandable in terms of coincidence detection).

A (0, φa)⊗B (0, φb) |ψout〉 =
1√
2

[(
a†tt sin

(
φa

2

)
+ b†tb cos

(
φa

2

))
(
c†bt sin

(
φb

2

)
+ d†bb cos

(
φb

2

))
±
(
a†tt cos

(
φa

2

)
− b†tb sin

(
φa

2

))
(
c†bt cos

(
φb

2

)
− d†bb sin

(
φb

2

))]
|vac〉

Let us consider |Φ+〉. If we factorize the products in the parentheses and
apply the trigonometric identity for the difference of the angle φa − φb, we
can write:

A (0, φa)⊗B (0, φb) |Φ+〉 =

=
1√
2

[ (
a†ttc

†
bt + b†tbd

†
bb

)
cos

(
φa− φb

2

)
+
(
−b†tbc†bt + a†ttd

†
bb

)
sin

(
φa− φb

2

)]
|vac〉 =

=
1√
2

[
(|1s0i〉tt |0s1i〉bt + |1s0i〉tb |0s1i〉bb) cos

(
φa− φb

2

)
+

+ (|1s0i〉tt |0s1i〉bb − |1s0i〉tb |0s1i〉bt) sin

(
φa− φb

2

)]
After similar calculations for |Φ−〉 we can find:

A (0, φa)⊗B (0, φb) |Φ−〉 =

=
1√
2

[
(− |1s0i〉tt |0s1i〉bt + |1s0i〉tb |0s1i〉bb) cos

(
φa+ φb

2

)
+

+ (|1s0i〉tt |0s1i〉bb + |1s0i〉tb |0s1i〉bt) sin

(
φa+ φb

2

)]
The only factor which gives origin to a coincidence event (with our setup)

is |1s0i〉tt |0s1i〉bt. We can therefore express the probability of detection with
the following equations:

P (Φ+) ∝ cos2

(
φa− φb

2

)
P (Φ−) ∝ cos2

(
φa+ φb

2

) (4.8)
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If we set φa to be
{

0, π
2
, π, 3π

2

}
and scan φb continuously, we expect to see

for different correlation fringes as shown in the Fig. 4.4.
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Figure 4.4: Correlations Fringes for the Bell states Φ+ (up) and Φ− (down)



Chapter 5

Characterization of the
Components

5.1 Fabrication Details

The device we used for this experiment was fabricated using deep-UV lithog-
raphy (193 nm) at LETI ePIXfab. The circuits were printed on a Silicon-
on-Insulator wafer, with a 2 µm substrate of SiO2 (silica) and a 220 nm
silicon layer. The waveguide structures were 500 nm wide and fully etched
(except those that made up the spiral sources, which were 470 nm wide see
related section for further details). The nanometer scale of the waveguides
is allowed by the very high refractive index of Si (nSi = 3.48) compared to
silica (nSi = 1.45), which as a consequence enables the design of bending
radii as small as 10 µm with close to negligible radiation loss (< 0.01 dB).
As a result, the effective footprints of Alice’s and Bob’s chip are, respectively,
of 1.2 × 0.5 mm2 and 0.3 × 0.05 mm2.

5.2 Optical Characterization of the Grating

Couplers

Before moving to the full experiment we want to characterise the performance
of the grating couplers in terms of loss and bandwidth. Optical access was
achieved with an eight channels V-groove fibre array. The array was tilted
10◦ with respect to the normal axis of the chip in order to avoid a strong
second order reflection back into the waveguide (see section 3.3). The 1D
couplers were shallow etched, with a depth of 70 nm, and designed to have a
period of 630 nm with a duty cycle of 0.5. The 2D grating couplers were also
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shallow etched, with a period Λ of 630 nm and the diameters of the holes is
390 nm, while the full device has a footprint of 10 µm x 10 µm. The testing
structure in Fig.5.1 were accessible on Alice’s chip and we were therefore able
to characterize the gratings independently.

 10 μm

 10 μm

 d=0.39 μm

 Λ=0.63 μm

 Λ=0.63 μm

 32 μm

 0.5 μm 20 μm

Figure 5.1: Testing structures for the grating couplers.

We recorded the transmitted power for each wavelength in the interval
1530-1580 (with a resolution of 0.1 nm) and we were able to reconstruct the
transmission spectra of both 1D and 2D dimensional couplers, as shown in
Fig. 5.2. For 1D gratings the excess loss measured was of -4.8 dB at peak
wavelength, with a 1 dB bandwidth of 30 nm, as it is shown in Fig 5.2. 1D
gratings are extremely sensible to polarization and only work for TE fields.
The extinction ratio of TE with respect to TM modes was measured to be
over 20 dB. For 2D gratings instead the measured excess loss was of −7.6 dB
at the peak wavelength, with a 1 dB bandwidth of 30 nm.
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Figure 5.2: Spectrum of transmission of the 1D and 2D grating couplers.
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5.3 Tomography Stage Characterisation

In order to finely tune the induced phase shift in the waveguide, we had to
calibrate the thermal heaters, which were controlled by a homemade software
interface. In order to do this, the optical power was recorded as a function
of electrical power injected in the heater. A contour plot was obtained and
fitted with least-squares minimization method. This method allows a reliable
and direct map between the electrical power and the on chip projector. In
Fig. 5.3 we show an example of such a plot with the corresponding states.
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Figure 5.3: Contour Plot for A(θa, φa) and B(θb, φb)
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5.4 Path to Polarization Converter

An important feature of our experiment is the possibility of a coherent in-
terconversion between path entangled and polarization entangled states by
means of a 2D grating coupler. We rapidly repeat here the working princi-
ple while remanding to the relative section and to Bibliography for detailed
information. A 2D grating coupler integrates the functionalities of a polar-
ization beam splitter and a rotator for the TM mode. Randomly polarised
light coupled into the grating will therefore be split into two nearly orthogo-
nal waveguides, with a ratio proportional to the input state, whilst the TM
component will also be rotated into a TE mode, more suitable for propaga-
tion into SoI devices. Randomly polarised light is proportionally mapped to
either the top or the bottom waveguide. The final goal of our experiment is
to convert a state encoded in path to polarization, send it through a fibre,
reconvert it and then analyse it. In order to do this we must first charac-
terise the fidelity of the conversion process. We therefore prepared a set of
known polarization states with the help of a bulk tomography stage, shown
in Fig 5.4, comprised of a polarization beam splitter, an half wave plate and
a quarter wave plate.

B(θb,ϕb)

θb ϕb
D3

D4

PBS

HWP

QWP SMF and PC

Figure 5.4: Experimental setup to characterise the PPC device.

The following six states were generated: |H〉 , |V 〉 , |D〉 , |A〉 , |R〉 , |L〉. With
the help of a fibre and of a polarisation controller to compensate for random
rotations of the fibre, the state was then coupled to the grating and anal-
ysed on chip with full state tomography technique. Fig. (5.5) shows a Bloch
sphere representation of this process.

The quality of the conversion process was quantified by the following
definition of fidelity:

FPPC =
(
Tr
[√√

ρpol · ρpath
√
ρpol

])2

(5.1)

The fidelity obtained for each state is shown in Fig. (5.6), while the mean
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fidelity is FPPC = 98.82± 0.73%.

“Polarisation Bloch” “Path Bloch”

fstate = 98.82±0.73%

Figure 5.5: Coherent map between polarization and entangled states on a
Bloch sphere
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Figure 5.6: (a)-(f). Ideal density matrix for the polarization encoded states.
(g)-(i). Reconstructed density matrix of the path encoded states measured
on chip. The corresponding state fidelities for each conversion are also listed.



Chapter 6

On Chip Generation of
Entangled Qubits

6.1 On Chip Entanglement Generation

The next step was to verify the production of entangled states on Alice’s
chip. The visibility of quantum interference fringes, which we recorded as
a function of θ (which was controlled by the source phase shifter, see Fig.
4.2), is a very well know parameter for the quality of the photon number
entanglement. It is defined as follows:

V = 1− Nmin

Nmax

(6.1)

Therefore we monitored the coincidence counts at port D1 and D2, since,
as it was demonstrated in previous chapter, we expect to see a fringe with half
the period when compared to classical light. The signal and idler photons
were filtered before detection with the help of two DWDM. A 50 mW con-
tinuous way pump laser at 1555.5 nm was injected in the spiralled sources
and a mean rate of ∼ 500 − 800 Hz coincidences was recorded. The esti-
mated efficiency of the SNSPDs was of 50% with ∼ 800 Hz dark counts.
The pump was also simultaneously recorded with a commercial power me-
ter. The experimental results are shown in Fig. 6.1, where the classical
fringe was self-normalized for clarity. We obtained an on chip visibility of
Vλ = 99.99±0.01% for classical light and of Vλ = 99.36±0.17% for quantum
interference. The accidental coincidences were subtracted and the error bar
of each point was calculated assuming a poissonian statistics. The standard
deviation of the mean visibility is instead calculated by a standard propa-
gation error technique. The very high visibility occurs as a result of well
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balanced MMI couplers and good spectral overlap between the two photon
pair sources.
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Figure 6.1: Experimental data for the classical and quantum interference.



Chapter 7

Entanglement Distribution
between Two Chips

7.1 The Experimental Setup

The experimental setup used for demonstrating the distribution of the en-
tanglement is shown in Fig.7.1. Bright light at the wavelength of 1555.5
nm, coming from a laser (Tunics-BT) with a tunable diode source ( and a
resolution of 10 pm), is amplified by an high power EDFA (Pritel with 30
dBm maximum power). The amplified spontaneous emission was suppressed
with the aid of an off-chip DWDM (Openti). All the DWDMs used in this
experiment had a 200 GHz channels spacing and a 1 nm 1 dB bandwidth.
The bright light is then couple into the chip by means of an 8 channel, V-
groove, single mode fibre array (OZ-Optics). The fibres were 127 µm apart
and with a 10◦ angle with respect to the normal of the chip. A polarization
controller was used to maximise the transmission through the grating cou-
pler which supports only TE polarization. The on-chip sources, pump by
coherent bright light, produce a path entangled state (via spontaneous four
wave mixing) in two qubits. With the help of a 2D grating coupler we can
coherently map the path entangled state to a polarization entangled state,
send it through a 10 meters fibre, reconvert it by means of another 2D grating
coupler and analyse it. A polarization controller allows us to compensate for
random rotation of the polarization induced by the fibre. The temperature
was controlled on both chips with a temperature controller (Thorlabs).Before
detection, we filtered the signal and idler photons, on Alice’s and Bob’s side
respectively, with two additional DWDM, using a channel 600 GHz away
from the pump. The signal and idler photon were thus detuned of 4.8 nm
from the pump. This way we could achieve an extinction ratio above 100
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dB between our channels. Each DWDM introduces a 3 dB additional loss.
Single photons were generated using superconducting nanowires single pho-
ton detectors (SNSPD) with an efficiency close to 50%. The coincidences
events were then recorded by a time interval analyser (PicoHarp 300) with
an integration window of 450 ps, which was chosen accordingly to the jitter
time of the SNSPDs.
As it will be explained in the next sections, a rearranged version of the full
setup was built during the different steps of the experiment, although, if not
specified otherwise, the same basic components described here were used.

PCB

Heater driver

AA

PCB

Heater driver

EDFA

DWDM1

Tunable laser

DWDM2

DWDM0

TIA

classical & quantum channel

BB

“Photon tracking”

PD

Pump light

Signal photons

Idler photons

EDFA: Erbium-doped fibre amplifier

DWDM: dense wavelength demultiplexer

PC: polarisation controller

PEC: piezo-electronic controller

PD: photodetector 

SNSPD: superconducting nanowire single-photon detector

TIA: time-interval-analyser 

PC

PEC

PD

SNSPD 2

T controller T controller
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SNSPD 1

Figure 7.1: Full experimental apparatus
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7.2 Correlation Fringes

We now turn our attention to the generation and detection of correlation
fringes across the two chips. The photon number entangled state evolves to
one of the two path entangled states |Φ+〉 or |Φ−〉 when the phase θ is set to
π
2

or π. The entangled qubits were then separated and distributed between
the two chips by means of the PPC interface. We simultaneously operate
A (0, φa) and B (0, φb) in order to reproduce the theoretical outcome of Fig.
4.4, which is a consequence of Eq. 4.8:

P (Φ+) ∝ cos2

(
φa− φb

2

)
P (Φ−) ∝ cos2

(
φa+ φb

2

)
We therefore fixed φa at the values

{
0, π

2
, π, 3π

2

}
and scan φb continuously.

The angles were choose in order to maximize the violation of the Bell’s in-
equality in the CHSH form. The expected S parameter in this case is in fact
related to the visibility of the fringes as follows[42]:

Sfringes = V 2
√

2 (7.1)

It is apparent from the last formula that the critical visibility to violate
the Bell’s inequality is V = 1√

2
. The experimental results are shown in Fig.

7.2. A mean rate of 8-12 Hz was recorded after the two chips, while each
point was integrated for 30 seconds. The fringes exhibit a mean visibility
of V+ = 97.63 ± 0.39% and V− = 96.85 ± 0.51% respectively. Once again
the accidental coincidences were subtracted and error bars were calculated
assuming a Poissonian statistics. The estimated Sfringes, which is also the
maximum achievable, is S+ = 2.761± 0.011 and S− = 2.739± 0.015.
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7.3 CHSH’s Inequality Violation

The visibility of the correlation fringes is very high and the resulting Sfringes
parameter is very high[43, 44]. Notwithstanding, we want to confirm the
distribution of entanglement with a rigorous and direct measurement of the
CHSH inequality in the form:

S = |E (A1, B1)− E (A2, B2) + E (A1, B2) + E (A2, B1)| ≤ 2 (7.2)

where Ai = A (0, φai) with φai ∈
{

0, π
2

}
and Bi = B (0, φbi) with φbi ∈{

π
2
, 3π

4

}
. The correlation coefficients are written in the form:

E (Ai, Bi) =
C(φai, φbi) + C(φai + π, φbi + π)− C(φai + π, φbi)− C(φai, φbi + π)

C(φai, φbi) + C(φai + π, φbi + π) + C(φai + π, φbi) + C(φai, φbi + π)

As explained in the first chapter, the C(C, φbi) are directly the coincidence
obtained for the angles φai and φbi) after an integration time of 60 seconds.
As always, accidental coincidences are subtracted and the standard deviation
is calculated from a Poissonian distribution. The values obtained for the
different angles are listed in Fig. (7.3).

5

Figure S6: Measured correction coefficients of two Bell states |Φ〉+ and |Φ〉− after distributed across the chip-A and chip-
B chips. Coincidences of each measurement were accumulated for 60s. Accidental coincidences are subtracted for all data.
Standard deviation of the correction coefficients are calculated from an evolution of Poissonian photon statistics.

S =‖ 〈A1(θAY ), B1(θBY )〉+ 〈A1(θAY ), B2(θBY )〉+ 〈A2(θAY ), B1(θBY )〉 − 〈A2(θAY ), B2(θBY )〉 ‖ (D2)
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A straightforward application of (7.2) results in the parameters S+ =
2.638±0.039 and S− = 2.628±0.041 for the two Bell’s state considered. These
SCHSH values violate the classical limit by 16.4 and 15.3 standard deviations,
resulting in a strong confirmation of the entanglement distribution. The
standard deviations are calculated assuming a Poissonian distribution of the
single correlation coefficients. In Fig. 7.4 the experimental values of both
the S numbers are shown, illustrating a good agreement.
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Chapter 8

Conclusions

We have successfully demonstrated the generation, manipulation and distri-
bution of an entangled state between two integrated SoI chips. In fact, we
firstly witnessed high visibility quantum interference, a clear mark of high
quality photon-number entangled states. Secondly, we strongly violated Bell-
CHSH inequality, confirming the distribution of entanglement across the two
chips. Although in this experiment only 10 meters of single mode fibre were
used, an arbitrary distance can separate the two chips, as long as decoher-
ence can be neglected. A high fidelity polarization to path interconversion
was also shown, demonstrating the potential of this device as a quantum
photonic interconnect. Even though several challenges still remain, such as
the considerably high loss of the system, or the design of an architecture suit-
able for many qubits distribution, this experiments confirms the importance
of integrated silicon photonics for future real world quantum information
applications.
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