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Abstract

The widespread diffusion of the Java technology has encouraged the birth of new
programming languages on the Java Virtual Machine, languages that brings new
features to the Java environment, most of which taken from the functional paradigm.
Kawa is an implementation of the programming language Scheme on the Java
Virtual Machine. As a Scheme it provides a functional style of programming,
dynamic typing, and meta-programming facilities. However, being the Java Virtual
Machine devoid of stack manipulation primitives, Kawa lacks of one of the most
peculiar Scheme features: First-class continuations.
This dissertation describes an implementation of the call/cc control operator in
the Kawa compiler. In particular it shows how the exception handling feature,
common to many programming languages, can be exploited to implement first-
class continuations in an environment without stack manipulation primitives, and
how this can be realised in a real compiler. This thesis also shows how first-
class continuations and control operators like call/cc can be used to introduce
concurrency features and to implement new control flow constructs in programming
languages.
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Sommario

La grande diffusione della tecnologia Java ha favorito la nascita di nuovi linguaggi
di programmazione per la Java Virtual Machine, linguaggi che offrono nuove fun-
zionalità all’ecosistema Java, la maggior parte dei quali ispirati dal paradigma di
programmazione funzionale. Kawa è una implementazione del di linguaggio di
programmazione Scheme pel la Java Virtual Machine. Come ogni implementazione
di Scheme esso fornisce uno stile funzionale di programmazione, tipizzazione di-
namica, e strumenti per la metaprogrammazione. Tuttavia, essendo la Java Virtual
Machine priva di primitive per la manipolazione diretta dello stack, Kawa manca di
una delle caratteristiche più peculiari di Scheme: le continuazioni di prima classe.
Questa tesi descrive un’implementazione dell’operatore di controllo call/cc
all’interno del compilatore Kawa. In particolare si mostra come la gestione delle
eccezioni, comune a molti linguaggi di programmazione, può essere sfruttata per
implementare le continuazioni di prima classe in un ambiente senza primitive
di manipolazione dello stack, e come questo può essere messo in pratica in un
vero compilatore. Si mostra anche in questa trattazione come le continuazioni
di prima classe e gli operatori di controllo come la call/cc possono essere
usate per introdurre concorrenza e nuovi strutture di controllo nei linguaggi di
programmazione.
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Chapter 1

Introduction

“Programming languages are not just technology, but what programmers
think in. They’re half technology and half religion.”

Paul Graham, Beating the Averages

Context

Functional programming

It is well known that the modern computers are not improving their performance
like in the past decades, because frequency scaling, for silicon, has reached a limit.
For this reason, processors manufacturers increase the potential productivity of
their products by adding cores [1].
This implies that to benefit most from this architecture, programs have to be
parallellized. But parallel programming is quite harder than sequential program-
ming, due to several new challenges it brings. Functional programming (FP) helps
to get rid of some of these challenges, and it has recently risen in importance
because it is well suited for parallel, concurrent and event-driven (or “reactive”)
programming, thanks to the use of immutable variables and functions without side
effects. The learning curve for functional programming is often steep, but parallel
and concurrent programming with imperative languages is not intuitive and its
learning curve might be even steeper.
Functional programming is often used in synergy with other programming
paradigms, since the world is made of stateful objects, while FP uses a mainly
stateless computation model. FP has ways to model state, but there is an essential
mismatch in a stateless model trying to represent a stateful world.
However, there are several programming problems in the world that are easy to
map to the FP model. Problems involving concurrency, parallelism, large data sets
and multi-processing.
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Figure 1.1: Intel CPU Trends [1]
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Java

Java is a general-purpose programming language that is concurrent, class-based,
object-oriented, and specifically designed to have as few implementation dependen-
cies as possible. Java code can run on all platforms that support Java without the
need for recompilation. Java applications are typically compiled to bytecode that
can run on any Java Virtual Machine (JVM) regardless of computer architecture.
As of 2015, Java is one of the most popular programming languages in use [2]
(see Figures 1.2 and 1.3). Java was originally developed by James Gosling at Sun
Microsystems and released in 1995. The language derives much of its syntax from
C and C++, but it has fewer low-level facilities than either of them [3].
The reference implementation Java compilers, virtual machines, and class libraries
were open-sourced in May 2007 under the GNU General Public License.

Figure 1.2: TIOBE Index for June 2015 [2]
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Programming Language 2015 2010 2005 2000 1995 1990 1985
C 1 2 1 1 2 1 1
Java 2 1 2 3 - - -
Objective-C 3 12 39 - - - -
C++ 4 4 3 2 1 3 11
C# 5 5 9 8 - - -
PHP 6 3 4 25 - - -
Python 7 6 8 23 21 - -
JavaScript 8 8 10 6 - - -
Visual Basic .NET 9 - - - - - -
Perl 10 7 5 4 7 17 -
Pascal 16 14 41 13 3 9 5
Lisp 25 16 14 7 6 4 2
Fortran 29 24 15 18 4 2 4
Ada 30 26 16 16 5 8 3

Figure 1.3: Positions of the top 10 programming languages of many years back. [2]

Java 8

Starting from release 8, Java supports aspects of functional programming. Two
core concepts introduced in Java 8 are lambda expressions and functional interfaces
[4].
A lambda expression is an anonymous function that can be declared with a comma
separated list of the formal parameters enclosed in parentheses, an arrow token
(->), and a body. Data types of the parameters can always be omitted, as can
the parentheses if there is only one parameter. The body can consist of a single
statement or a statement block.
Syntax:

(arg1, arg2...) -> { body }

(type1 arg1, type2 arg2...) -> { body }

Examples:

(int x, int y) -> x + y

() -> 42

(String s) -> { System.out.println(s); }

() -> { return 2.7182 };

In Java, lambda expressions are represented as objects, and so they must be bound
to a particular object type known as a functional interface. A functional interface
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is an interface that defines exactly one abstract method. An extremely valuable
property of functional interfaces is that they can be instantiated using lambdas.
An example of a functional interface is java.lang.Runnable. It has only one
method void run() declared. Before Java 8, anonymous inner classes were used to
instantiate objects of functional interface. With Lambda expressions, this can be
simplified.
Each lambda expression can be implicitly assigned to one functional interface. For
example we can create Runnable interface’s reference from lambda expression like
below:

Runnable r = () -> System.out.println("running");

This type of conversion is automatically handled by the compiler when we dont
specify the functional interface. For example:

new Thread(
() -> System.out.println("running")

).start();

In above code, compiler automatically deduced that lambda expression can be
casted to Runnable interface from Thread class’s constructor signature public
Thread(Runnable r) { }.
Few examples of lambda expressions and their functional interface:

Consumer<Integer> c = (int x) -> { System.out.println(x) };

BiConsumer<Integer, String> b = (Integer x, String y)
-> System.out.println(x + y);

Predicate<String> p = (String s) -> { s == null };

With the addition of Lambda expressions to arrays operations, Java introduced
a key concept into the language of internal iteration. Using that paradigm, the
actual iteration over a collection on which a Lambda function is applied is now
carried out by the core library itself [5]. An relevant possibility opened by this
design pattern is to enable operations carried out on long arrays (such as sorting,
filtering and mapping) to be carried out in parallel by the framework. For example:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6);

// old way
for (int number : numbers) {

System.out.println(number);
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}

// new way
numbers.forEach(value -> System.out.println(value));

In Java 8 it is also possible to reference both a static and an instance method using
the new :: operator:

numbers.forEach(System.out::println);

Passing a lambda expression to another function allows to pass not only values but
also behaviours and this enables to project more generic, flexible and reusable API.
For instance declaring the following method:

public void evaluate(List<integer> list,
Predicate<integer> predicate) {

for(Integer n: list) {
if(predicate.test(n)) {

System.out.println(n + " ");
}

}
}

we can use the Predicate functional interface to create a test and print the elements
that pass the test:

System.out.println("Print all numbers:");
evaluate(numbers, (n)->true);

System.out.println("Print even numbers:");
evaluate(numbers, (n)-> n%2 == 0 );

System.out.println("Print odd numbers:");
evaluate(numbers, (n)-> n%2 == 1 );

Java 8 brings to developers another interesting feature from functional programming:
Streams, that is, lazy evaluation. Streams are a new abstraction that allows to
process data in a declarative way:

System.out.println(
numbers.stream()

.filter(Lazy::isEven)

.map(Lazy::doubleIt)

.filter(Lazy::isGreaterThan5)

.findFirst()
);

6



You can create a Stream from any Collection by invoking the stream() method
on it. A Stream provides an interface to a sequenced set of values of a specific
element type. However, streams don’t actually store elements; they are computed
on demand. They consume from a data-providing source such as collections, arrays,
or I/O resources and support common operations, such as filter, map, reduce, find,
match, sorted. Furthermore, many stream operations return a stream themselves.
This allows operations to be chained to form a larger pipeline, enabling also certain
optimisations.

The Java Virtual Machine

A Java Virtual Machine (JVM) is an abstract computing machine defined by a
specification. The specification formally describes what is required of a JVM
implementation. Having a single specification ensures all implementations are
interoperable. A JVM implementation is a software platform that meets the
requirements of the JVM specification in a compliant and preferably performant
manner [6].
One of the main goals of Java design is portability, and Java is indeed platform
independent. That is achieved by compiling the Java language code to an interme-
diate representation called Java bytecode, instead of directly to architecture-specific
machine code. Java bytecode instructions are analogous to machine code, but they
are intended to be executed by a virtual machine written specifically for the host
hardware. Moreover, Just-in-Time (JIT) compilers were introduced from an early
stage that compile bytecodes to machine code during runtime. Thus a JVM is
platform dependent, because it must convert Java bytecode into machine language
which depends on the architecture and operating system being used. End users
commonly use a Java Runtime Environment (JRE) installed on their own machine
for standalone Java applications, or in a web browser for Java applets [3].
The Oracle Corporation, which owns the Java trademark, distributes the Java
Virtual Machine implementation HotSpot together with an implementation of the
Java Class Library under the name Java Runtime Environment (JRE).

JVM based Languages

The JVM is not only for Java. Several hundred JVM programming languages are
available to be run on it. These languages ultimately compile to bytecode in class
files, which the JVM can then execute.
Some JVM languages include more features than Java and aim to let developers
write code in a more concise way. Features like collection literals, pattern matching,
and a more sophisticated type inference were the motivation for languages such as
Scala, Groovy, Xtend, Ceylon, Kotlin, and Fantom [7].
Then there are existing languages that were ported to the JVM. Python, Erlang,
Ruby, Scheme and Javascript, for instance, all have an implementation targeting
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the JVM (respectively Jython, Erjang, JRuby, Kawa and Rhino). Another popular
language ported to the JVM is Clojure, a dialect of Lisp with an emphasis on
functional and concurrent programming [6].
Many less-known JVM languages implement new research ideas, are suited only
for a specific domain, or are just experimental.

Scheme

Scheme is a dialect of the computer programming language Lisp. It follows a
minimalist design philosophy that specifies a small standard core accompanied by
powerful tools for meta-programming.
Scheme was created during the 1970s at the MIT AI Lab by Guy L. Steele and
Gerald Jay Sussman. It was the first dialect of Lisp to choose lexical scope and the
first to require implementations to perform tail-call optimisation. It was also one
of the first programming languages to support first-class continuations [8].
Scheme is a general-purpose computer programming language. It is a high-level
language, supporting operations on structured data such as strings, lists, and
vectors, as well as operations on more traditional data such as numbers and
characters. Scheme is a fairly simple language to learn, since it is based on a
handful of syntactic forms and semantic concepts and since the interactive nature
of most implementations encourages experimentation [9].
The storage required to hold the contents of an object is dynamically allocated
as necessary and retained until no longer needed, then automatically deallocated,
typically by a garbage collector. Simple atomic values, such as small integers,
characters, booleans, and the empty list, are represented as primitive types and
thus incur no allocation or deallocation overhead [9].
Scheme is homoiconic, i.e, programs share a common representation with Scheme
data structures. As a result, any Scheme program has an internal representation
as a Scheme object. For example, variables and syntactic keywords correspond to
symbols, while structured syntactic forms correspond to lists. This representation is
the basis for the syntactic extension facilities provided by Scheme for the definition
of new syntactic forms. It also facilitates the implementation of interpreters,
compilers, and other program transformation tools [9].
In Scheme, a procedure definition may appear within another block or procedure,
and the procedure may be invoked at any time thereafter, even if the enclosing
block has completed its execution. To support lexical scoping, a procedure carries
the lexical context (environment) along with its code.
Furthermore orover, Scheme provides anonymous procedures. Indeed procedures
are first-class data objects like strings or numbers, and variables are bound to
procedures in the same way they are bound to other objects.
The Scheme language is standardized in the Revisedn Report on the Algorithmic
Language Scheme (RnRS), where the n indicates the revision number. The last
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report is R7RS, released in 2013.

Scheme basics

Scheme syntax is essential, it provides a minimal set of special forms: define, quote,
lambda, cond, let/let*
define is used to define new names.

(define x 10)
(define square (lambda (x) (* x x)))

quote prevents the argument to be evaluated as an expression, returning it as
literal data (symbols or lists).

(quote hi!) => hi!
(quote (1 2 3)) => (1 2 3)

; the tick-mark ' is syntactic sugar
'(1 2 foo bar) => (1 2 foo bar)

lambda is used to create anonymous functions.

(lambda (x) (* x 10) ; anonymous function
(define times10 (lambda (x) (* x 10))) ; named the function now

cond is a general conditional.

(cond
((eq? 'foo 'bar) 'hello)
((= 10 20) 'goodbye)
(else 'sorry)) => sorry

let is used to declare/use temporary variables.

(let ((x 10)
(y 20))

(+ x y))

Built-in types are integers, rationals, floats, characters, strings, booleans, symbols,
lists, and vectors. A set of built-in functions we can use on these types:

9



;; arithmetic: +, -, *, /
;; relational: <, <=, >, >=, =
(+ 1 2) => 3
(= 1 2) => #f ; '=' is for numbers

Equality and identity tests:

(eq? 'hello 'goodbye) => #f ; eq? is an identity test
(eq? 'hello 'hello) => #t
(eq? '(1 2) '(1 2)) => #f
(define foo '(1 2))
(define bar foo)
(eq? foo bar) => #t
(equal? foo bar) => #t ; equality: they look the same
(equal? foo '(1 2)) => #t

Being a dialect of Lisp, Scheme provides a set of built-in functions for List manipu-
lation: cons, car, and cdr.

;; Three equivalent ways to create the list (1 2 3),
;; calling it foo
(define foo '(1 2 3))
(define foo (cons 1 (cons 2 (cons 3 ()))))
(define foo (list 1 2 3))

;; list precessing
(null? '(1 2)) => #f
(null? ()) => #t
(car '(1 2)) => 1
(cdr '(1 2)) => (2)

Iteration via recursion:

;; Exponentiation function x^n
(define (expt x n

(if (= n 0)
1
(* x (expt x (- n 1))))))

;; List length
(define (length lst

(if (null? lst)
0
(+ 1 (length (cdr lst))))))

10



It is straightforward to create and use higher order functions. Indeed functions are
first-class in Scheme, they can be passed as arguments to other functions:

(define compose
(lambda (f g x)

(f (g x))))

(compose even? (lambda (x) (- x 1)) 10) => #f

;; takes a function and applies it to every element of a list
(define (map f lst)

(let loop ((newlst lst))
(cond ((pair? newlst)

(cons (f (car newlst)) (loop (cdr newlst))))
((null? newlst)
'())

(else
(error "second argument is not a list:" lst)))))

(map even? '(1 2 3 4)) => (#f #t #f #t)

Continuations

Computer programs usually control the flow of execution via procedure calls
and returns; a stack of frames is how high-level programming languages keep
track of the point to which each active subroutine should return control when
it finishes executing. However, to solve real-world problems, procedure call and
primitive expressions are not enough. Thus most high-level programming languages
also provide other control-flow primitives, like conditionals, loops, and exception
handling.
Scheme also supports first-class continuations. A continuation is a Scheme function
that embodies “the rest of the computation”. The continuation of any Scheme
expression determines what is to be done with its value. This continuation is always
present, in any language implementation, since the system is able to continue from
each point of the computation. Scheme provides a mechanism for capturing this
continuation as a closure. The obtained continuation can be used to continue,
or resume, the computation from the point it was captured, whether or not the
computation has previously completed. This is useful for nonlocal exits in handling
exceptions, or in the implementation of complex control structures such as coroutines
or generators [10].
Considering a computation such as (* (+ 2 4) (+ 1 6)), there are several contin-
uations involved. The continuation for (+ 2 4) can be expressed in this way: take
this value (6), keep it aside; now add one and six, take the result and multiply it
with the value we had kept aside; then finish. The continuation for (+ 1 6) means:
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take this value, multiply it with the value (6) that was previously kept aside; then
finish. Notice in particular how the result of (+ 2 4) is part of the continuation
of (+ 1 6), because it has been calculated and kept aside. Continuations are not
static entities that can be determined at compile time: they are dynamic objects
that are created and invoked during program execution.
Using the syntactic form call-with-current-continuation (usually abbreviated
call/cc), a program can obtain its own continuation. This continuation is a
Scheme closure that may be invoked at any time to continue the computation
from the point of the call/cc. It may be invoked before or after the computation
returns; it may be invoked more than one time.1

The standard idiom for call/cc has an explicit lambda term as its argument:

(call/cc (lambda (current-continuation)
body))

During the execution of the expression body, the variable current-continuation is
bound to the current continuation. If invoked, current-continuation immediately
returns from the call to call/cc, and call/cc returns whatever value was passed
to current-continuation.
When applied to a function f, call/cc captures and aborts the entire continuation
k, reinstate a copy of k, and applies f to k.
Consider a first example:

(call/cc
(lambda (k)

(k 42)))

This applies call/cc to the function (lambda (k) (k 42)), which is called with
argument k, the current continuation. Being the body of the function (k 42), the
continuation is thrown the value 42. This makes the call/cc return the value 42.
Hence, the entire expression evaluates to 42.
Now consider

(call/cc
(lambda (k)

(+ (k 42) 100)))

In this case, the function throws the value 42 to the continuation, but there
is another computation afterwards. That computation has no effect, because
when a continuation is invoked with a value, the program reinstates the invoked

1For more explanation and examples on continuations see [11–13].
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continuation, and the continuation which was going to take a value x and perform
(+ x 100) has been aborted. The result is still 42.
On the other hand, consider

(call/cc
(lambda (k) 42))

Here, the function applied by call/cc does not make use of the current continuation.
It performs a real return, with the value 42.
Actually, although a continuation can be called as a procedure, it is not a real
function, which takes a value and returns another. An invoked continuation takes
a value and does everything that follows to it, never returning a value to the caller.
As an other example, consider the following code:

(display
(call/cc (lambda (k)

(display "This is executed.\n")
(k "Value passed to the continuation.\n")
(display "But not this.\n"))))

it will display:

This is executed.
Value passed to the continuation.

An interesting feature of first-class continuations is that the continuation may still
be called even after the call to call/cc is finished. When applied to a value v, a
continuation k aborts its entire execution context, reinstates k as the current entire
continuation, and returns the value v to the continuations k, which is “waiting
for a value” in order to perform some computation with it. In some Scheme
implementations, the value passed to a continuation can be a void one.
For example, the following causes an infinite loop that prints goto start forever:

(let ((start #f))
(if (not start)

(call/cc (lambda (cc)
(set! start cc))))

(display "goto start\n")
(start))
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Delimited Continuations

Continuations captured by call/cc is the whole continuation that includes all
the future computation. In some cases, we want to manipulate only a part of
computation. This is possible with a kind of continuations called delimited or
composable continuations [14].
A continuation is delimited when it produces an intermediate answer rather than the
final outcome of the entire computation. In other words, a delimited continuation
is a representation of the “rest of the computation” from the current computation
up to a designated boundary. Unlike regular continuations, delimited continuations
return a value, and thus may be reused and composed [15].
Various operators for delimited continuations have been proposed in the research
literature, such as prompt and control, shift and reset, cupto, fcontrol, and
others [16]. In this introduction we will consider only the shift and reset
operators.
The reset operator sets the limit for the continuation while the shift operator
captures or reifies the current continuation up to the innermost enclosing reset.
The shift operator passes the captured continuation to its body, which can invoke,
return or ignore it. Whatever result that shift produces is provided to the
innermost reset, discarding the continuation in between the reset and shift.
The continuation, if invoked, effectively reinstates the entire computation up to the
reset. When the computation is completed, the result is returned by the delimited
continuation [17]. For example, consider the following snippet in Scheme:

(* 2 (reset (+ 1 (shift k (k 5)))))

The reset delimits the continuation that shift captures. When this code is
executed, the use of shift will bind k to the continuation (+ 1 []) where []
represents the part of the computation that is to be filled with a value. This is
exactly the code that surrounds the shift up to the reset. Since the body of
shift immediately invokes the continuation, the previous expression is equivalent
to the following:

(* 2 (+ 1 5))

Once the execution of the shift’s body is completed, the continuation is discarded,
and execution restarts outside reset. For instance:

(reset (* 2 (shift k (k (k 4)))))

invokes (k 4) first, which produces 8 as result, and then (k 8), which returns
16. At this point, the shift expression has terminated, and the rest of the reset
expression is discarded. Therefore, the final result is 16.
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Kawa

Kawa is a language framework written in Java that implements an extended version
of the programming language Scheme. It provides a set of Java classes useful for
implementing dynamic languages, such as those in the Lisp family. Kawa is also an
implementation of almost all of R7RS Scheme (First-class continuations being the
major missing feature), and which compiles Scheme to the bytecode instructions of
the JVM [18]. The author and project leader of Kawa is Per Bothner, who started
its development in 1996.
Kawa gives run-time performance a high priority. The language facilitates compiler
analysis and optimisation, and most of the time the compiler knows which function
is being called, so it can generate code to directly invoke a method. Kawa also
tries to catch errors at compile time.
To aid with type inference and type checking, Kawa supports optional type specifiers,
which are specified using two colons. For example:

(define (add-int x::int y::int) :: String
(String (+ x y)))

This defines a procedure add-int with two parameters: x and y are of type Java
int; the return type is a java.lang.String.
The Kawa runtime start-up is quite fast for a language based on the JVM. This
allows Kawa to avoid using an interpreter. Each expression typed into the REPL
is compiled on-the-fly to JVM bytecodes, which may be compiled to native code
by the just-in-time (JIT) compiler.
Kawa Scheme has several extensions for dealing with Java objects. It allows to
call methods of Java objects/classes, create objects and implement classes and
interfaces.
For example, the following is Kawa code for an instance of a anonymous class:

(object (<java.lang.Runnable>)
((run) <void>
(display "running!\n")))

Here a simple class definition:

(define-simple-class Person ()
(last ::String)
(first ::String)
((*init* f l)
(set! first f)
(set! last l))

((sayHello)
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(display "Hello ")
(display (string-append first

" "
last
"!\n"))))

(let ((p (Person "Alyssa" "P. Hacker")))
(p:sayHello)) ; => Hello Alyssa P. Hacker!

Thesis Contributions

My main contribution is an implementation of call/cc in a Scheme compiler
targeting the JVM. The only other Scheme implementations targeting the JVM
are SISC, which is an heap based interpreter, and Bigloo, which is a compiler but
does not support continuations in the JVM back-end. Scala implements a different
type of control operator, shift and reset. Although Ruby has callcc, JRuby
does not support it.
I address the problem of providing a control operator that copies the stack in
an environment that prevents direct stack manipulation. Unlike other solutions
proposed to implement continuations on the JVM, we perform a transformation on
the syntax tree produced by Kawa, instead of a transformation at the bytecode
level. This make our transformation independent of the JVM version.
I present a variant of generalised stack inspection, described by Pettyjohn et al., as
an extension of the Kawa compiler. The transformation is global, thus has been
developed as an optional compiler pass, to avoid adding overhead to programs that
do not use continuations.

Outline

The following chapters are organized as follows. Chapter 2 provides a survey of
related work. It discusses common techniques for implementing call/cc present
in literature. Then it also compares different approaches to implement first-class
continuations on the JVM.
Chapter 3 presents the issues in delivering first-class continuations on the JVM. It
describes the details of the code transformation technique employed to enable the
capture and resume of first-class continuations.
Chapter 4 demonstrates the viability of the design by providing an implementation
of the entire transformation.
Chapter 5 shows how the proposed implementation can be used to add debugging
facilities to Kawa, and to implement new control flow constructs.
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Chapter 6 provides a performance evaluation and discusses some issues related this
approach. The advantages and limitations of this approach are also discussed in
detail.
Finally, Chapter 7 summarizes the contributions of this thesis and discusses possible
future work.
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Chapter 2

State of the art

“Objective reality is a synthetic construct, dealing with a hypothetical
universalization of a multitude of subjective realities.”

Philip K. Dick, The Electric Ant

Stack-based implementation techniques for first-
class continuations

The most common approach to implement first-class continuations is to use a
stack-based execution architecture and to reify the current continuation by making
a copy of the stack, which is reinstated when the continuation is invoked. This is
the approach taken by many language implementations that are in direct control of
the runtime system. This section describes the most used implementation strategies
for first class continuations.

The garbage-collection strategy

The simplest strategy for ensuring that continuations have unlimited extent is to
allocate them in the heap and to rely on garbage collection to recover their storage.
This is called the gc strategy. The gc strategy is not a zero-overhead strategy
and it is optimised for programs in which every continuation frame is captured.
Few real programs capture all continuations, however, so the gc strategy may not
perform as well as a zero-overhead strategy. The most important indirect cost of
the gc strategy is that the compiler must allocate a separate continuation frame for
each non-tail call, unless the compiler can prove that the continuation will not be
captured during the non-tail call. The gc strategy also suffers more cache misses
than the other strategies described in this section [19].
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The spaghetti strategy

This is a variation of the gc strategy. The spaghetti stack is in effect a separate heap
in which storage is reclaimed by reference counting rather than garbage collection.
Though complex, the spaghetti stack was at one time more efficient than using a
gc strategy with a non-generational garbage collector, because the spaghetti stack’s
storage management is optimised to support procedure call, return, and a host
of related operations. When all frames have dynamic extent, the spaghetti stack
behaves as a conventional stack. When a fast garbage collector is available, the
spaghetti strategy is probably slower than the gc strategy. Moreover captures and
throws require updating the reference counts, thus appears that the gc strategy
should always perform better than the spaghetti strategy [19].

The heap strategy

In the heap strategy, a one-bit reference count in each frame indicates whether the
frame has been captured. Continuation frames are allocated in a garbage-collected
heap, as in the gc strategy, but a free list of uncaptured frames is also used. When
a frame is needed by a procedure call, it is taken from the free list unless the free
list is empty. If the free list is empty, then the frame is allocated from the heap.
When a frame is returned through, it is linked onto the free list if its reference
count indicates that it has not been captured. Otherwise it is left for the garbage
collector to reclaim. The heap strategy is not a zero-overhead strategy and it is
most practical if all continuation frames are the same size; otherwise multiple free
lists may be required. This is an indirect cost of the heap strategy. Another indirect
cost is that, like the gc strategy, the heap strategy makes it difficult to reuse a
continuation frame for multiple non-tail calls [19].

The stack strategy

In the stack strategy, the active continuation is represented as a contiguous stack
in an area of storage called the stack cache. Non-tail calls push continuation
frames onto this stack cache, and returns pop frames from the stack cache, just
as in an ordinary stack-based implementation. When a continuation is captured,
however, a copy of the entire stack cache is made and stored in the heap. When a
continuation is thrown to, the stack cache is cleared and the continuation is copied
back into the stack cache. A first-class continuation thus resides in the heap, but
is cached in the stack cache whenever it is the active continuation. The stack
strategy is a zero-overhead strategy. Capturing, recapturing, and throwing to a
continuation take time proportional to the size of the continuation. An indirect cost
of the stack strategy is introduced by the fact that it repeatedly copies the same
continuation from the stack cache to the heap. This can increase the asymptotic
storage space required. The stack strategy prevents a compiler from allocating
storage for mutable variables within a continuation frame, because there are other
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copies of it. Mutable variables must generally be allocated in registers or in the
heap, that is another indirect cost of the stack strategy [19].

The chunked-stack strategy

By maintaining a small bound on the size of the stack cache, and copying portions
of the stack cache into the heap or back again as the stack-cache overflows and
underflows, the chunked-stack strategy reduces the worst-case latency of captures
and throws. This strategy works well with generational garbage collection because
limiting the size of the stack cache limits the size of the root set that the garbage
collector must scan on each garbage collection. The portion of the continuation
that resides in the heap will be scanned only when its generation is collected. The
chunked-stack strategy is a zero-overhead strategy, because the cost of stack-cache
overflows and underflows is usually negligible. On the other hand, the chunked-stack
strategy requires a stack cache that is large enough to avoid stack-cache overflows
and underflows, that degrade performance [19].

The stack/heap strategy

The stack/heap strategy is similar to the stack strategy. All continuation frames
are allocated in the stack cache. When a continuation is captured, however, the
contents of the stack cache are moved into the heap and the stack cache is cleared.
When a continuation is thrown to, the new active continuation is left in the heap
and the stack cache is cleared; this can be done in constant time. Since the current
continuation may reside in either the stack cache or in the heap, each procedure
return must test to see whether the frame should be popped off the stack cache.
The stack/heap strategy makes throwing and recapturing a previously captured
continuation very fast. A disadvantage of the stack/heap strategy is that it prevents
the compiler from reusing a single continuation frame for multiple non-tail calls
[19].

The incremental stack/heap strategy

The incremental stack/heap strategy is a variation of the stack/heap strategy:
When returning through a continuation frame that isn’t in the stack cache, a trap
occurs and copies the frame into the stack cache. The trap can be implemented
by maintaining a permanent continuation frame at the bottom of the stack cache.
This frame’s return address points to system code that copies one or more frames
from the heap into the stack cache, and immediately returns through the first of
those continuation frames. The incremental stack/heap strategy is a zero-overhead
strategy, with the same calling sequence as the stack strategy. Since the incremental
stack/heap strategy copies frames from the heap into the stack cache, mutable
variables cannot be kept within a continuation frame [19].
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The Hieb-Dybvig-Bruggeman strategy

A variation of the incremental stack/heap strategy that uses multiple stack segments
that are allocated in the heap. The stack segment that contains the current
continuation serves as the stack cache. When the stack cache overflows, a new stack
cache is allocated and linked to the old one. Stack-cache underflow is handled by an
underflow frame, as in the incremental stack/heap strategy. When a continuation is
captured, the stack cache is split by allocating a small data structure representing
the captured continuation. The data structure points to the current continuation
frame within the stack cache. The unused portion of the stack cache becomes the
new stack cache, and an underflow frame is installed at its base. A throw is handled
as in the incremental stack/heap strategy: the current stack cache is cleared, and
some number of continuation frames are copied into it. The underflow frame at the
base of the stack cache is linked to the portion of the new continuation that was
not copied. This is a zero-overhead strategy, in which mutable variables generally
cannot be allocated within a continuation frame, but continuation frames may be
reused for multiple non-tail calls [19].

First-class continuations on the JVM

The implementations described in the previous section require to directly manipulate
the stack, thus they are not suitable for being used on the Java Virtual Machine,
which do not permit direct access or modification of stack contents. This section
describes some implementation designed to implement first class continuations on
the Java Virtual Machine.

Heap based model

In a typical implementation of a programming language, a true stack is used to
record call frames. Each call frame consists at least of a return address, variable
bindings and a link to the previous frame. The variable bindings are the actual
parameters and local variables used by the called procedure. A call frame is
typically built by the calling procedure (caller). The caller pushes on the stack the
actual parameters, a link to its stack frame and the return address, then jumps to
the called procedure (callee). The callee augments the frame by pushing values of
local variables. If the callee in turn calls another routine, it creates a new stack
frame in the same way. When the callee has reached the end of its code, it returns
to the caller by resetting the frame link, removing the frame, and jumping to the
saved return address. The state of each active call is recorded on the stack, and it
is destroyed once the call has been completed [10].
Because of restricted access of stack content on the JVM, for languages that support
first-class continuations this structure is not sufficient. First-class continuations
require heap allocation of the call frames as well as the environment. This is
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because the natural implementation of a continuation is to retain a pointer into the
call stack. Because the continuation is a first-class object, there is no restriction
on when it may be invoked. In particular, it may be invoked even after control
has returned from the point where it was obtained. If so, the stack may have
since grown, overwriting some of the stack frames in the continuation. The natural
solution, then, is to maintain a linked list of heap-allocated stack frames. As the
stack grows, a new frame is allocated in an unused portion of the heap so that the
old stack frames remain intact [10].
The main disadvantage of heap allocation of call frames and environments is the
overhead associated with the use of a heap. This overhead includes the additional
cost of finding space in the heap when building the call frames and environments,
the cost of storage reclamation to deallocate those frames and environments and the
cost of following links instead of indexing a stack or frame pointer. The overhead
also includes the indirect cost of using excessive amounts of memory. Furthermore,
use of the heap rather than a stack prevents the use of some hardware-optimised
or microcode-supported instructions for managing the stack [10].
The heap-based model has been used by several implementations, including
Smalltalk, StacklessPython, Ruby, SML. On the JVM, this technique has been
utilised by SISC [20], a fully R5RS compliant interpreter of Scheme, with proper
tail-recursion and first-class continuations.

Continuations from continuation passing-style transform

An other approach to implement first-class continuations is to transform programs
into continuation passing-style (CPS) [21, 22]. The standard CPS-transform is a
whole-program transformation, in which all explicit or implicit return statements
are replaced by function calls and all state is kept in closures. One effect of CPS is
that the stack is completely bypassed during execution, and this is not ideal for a
stack-based architecture like the JVM.
Considering that manually written CPS code shows that only a small number of
functions in a program actually need to pass along continuations, Tiark Rompf
et al. developed a selective CPS transform for the Scala programming language
[23] that is applied only where it is actually needed, and allows to maintain a
stack-based runtime discipline for the majority of code. Thus, they made use of
Scala’s pluggable typing facilities and introduce a type annotation, so that the
CPS transform could be carried out by the compiler on the basis of expression
types (i.e. it is type-directed). An advantage of this technique is that by design
it avoids the performance problems associated with implementations of delimited
continuations in terms of undelimited ones. However, there are some drawbacks.
Because of the global transformation performed by the continuations compiler
plugin, there are some control constructs that can not be used when calling a CPS
function. For instance, using return statements in a CPS function may cause type
mismatch compiler errors, thus is better to avoid using them. The compiler plugin
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does not handle try blocks, so it is not possible to catch exceptions within CPS
code [24].
There are also some issues with looping constructs. Capturing delimited continua-
tions inside a while loop turns the loop into a general recursive function. Therefore
each invocation of shift within a looping construct allocates another stack frame,
so after many iterations it is possible to run into a stack overflow. Moreover, some
looping constructs can not be used with a shift inside them, because everything on
the call path between a shift and its enclosing reset must be CPS-transformed.
That means that a shift cannot be used into the regular foreach, map and filter
methods, because they are not CPS-transformed [24].

Continuations from generalized stack inspection

In [25], Pettyjohn et al. show how to translate a program into a form that allows it
to capture and restore its own stack without requiring stack manipulation primitives.
They demonstrate that the native exception handling mechanism can be used to
propagate captured control state down the stack. Their work is an extension of
previous work by Sekiguchi et al. [26] and Tao [27]. Variants of this technique has
been described in [28] for JavaScript, in [29] for a Scheme interpreter targeting
the .NET CLR and in Kilim [30, 31], a message-passing framework for Java. The
basic idea is to break up the code into fragments (as top level methods) where
the last instruction of any fragment is a call to the next fragment in the chain.
To achieve this result, they have specialised continuation objects that maintain
the state needed for each fragment and an overridden Invoke method to invoke
the corresponding fragment. Each fragment knows exactly which fragment to
invoke next [30]. The transform differs from continuation passing-style in that
the call/return stack continues to be the primary mechanism for representing
continuations; a heap representation of the continuation is only constructed when
necessary. This may result in better performance than CPS-conversion for those
programs that make only occasional use of first-class continuations [32].
This transformation preserves the calling signature of a procedure, but it augments
the behavior of the procedure when a continuation is to be captured [32]. We
therefore introduce into each method an additional control path that extracts the
dynamic state of the method and appends it to a data structure. To capture a
continuation, we throw a special exception to return control to the method along the
alternate control path. After appending the dynamic state, the method re-throws
the exception. This causes the entire stack to be emptied and the corresponding
chain of reified frames to be built. A handler installed at the base of the stack
is the ultimate receiver of the exception and it creates a first-class continuation
object in the heap using the chain of reified frames [29].
This implementation technique is substantially equivalent to the stack strategy
described in the first section of this chapter [32]. Moreover, it can nearly be a zero-
overhead technique, for platforms in which exception handlers are not expensive,
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especially when no exception is thrown. This is the case for the Java Virtual
Machine [33].
The process consists of six steps [29, 32]:

1. Assignment Conversion - Capturing and re-instating a continuation will cause
variables to be unbound and rebound multiple times. Variable bindings that
are part of a lexical closure must not be unshared when this occurs. To
avoid problems with unsharing that may occur when the stack is reified,
assignment conversion converts assigned variables into explicit heap-allocated
boxes, thereby avoiding problems with duplication of values. This conversion
is best explained by showing it in Scheme source code:

(lambda (x) ... x ... (set! x value) ...)
=>

(lambda (x)
(let ((y (make-cell x)))

... (contents y) ... (set-contents! y value) ...))

where (make-cell x) returns a new cell containing the value x, (contents
cell) returns the value in cell, and (set-contents! cell val) updates cell
with the new value val. After assignment conversion, the values of variables can no
longer be altered - all side-effects are to data structures. This greatly simplifies the
code transformation, because values may now be freely substituted for variables
without having to first check to see whether they are assigned [22]. 2. ANF
Conversion - The code is converted to administrative normal form (A-normal form
or ANF). Converting the code into A-normal form [34] gives names to the temporary
values and linearizes the control flow by replacing compound expressions with an
equivalent sequence of primitive expressions and variable bindings. After ANF
conversion, all procedure calls will either be the right-hand side of an assignment
statement or a return statement. For instance, the following Scheme code shows
the ANF transformation of a very simple expression:

(f (g x) (h y))
=>

(let ((v0 (g x)))
(let ((v1 (h y)))

(f v0 v1)))

The following snippet shows the transformation for a fibonacci function in Java,
considering as primitive subexpressions that can be evaluated without a method
call:
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int fib (int x) {
if (x < 2)

return x;
else

return fib (x - 2) + fib (x - 1);
}

=>
int fib_an (int x) {

if (x < 2)
return x;

else {
int temp0 = fib_an (x - 2);
int temp1 = fib_an (x - 1);
return temp0 + temp1;

}
}

3. Live variable analysis - We need to identify what variables are live at each
continuation, i.e. at each fragment call. We are only interested in those
variables that are live after a procedure or method call returns. For instance,
in the previous code snippet, just before the last statement, temp0 and
temp1 are alive, because they are used to compute the result to be returned.
Conversely, x is no more live (is dead) as it is not used in the last statement.
Unused or dead variables are not copied when the continuation is captured.

4. Procedure Fragmentation - For each actual procedure, we create a number
of procedures each of which has the effect of continuing in the middle of the
original procedure. This allows to restart execution right after each call site.
Each procedure fragment will make a tail-recursive call to the next fragment.
Fragmentation also replaces iteration constructs with procedure calls.

int fib_an (int x) {
if (x < 2)

return x;
else {

int temp0 = fib_an (x - 2);
return fib_an0 (temp0, x);

}
}

int fib_an0 (int temp0, int x) {
int temp1 = fib_an (x - 1);
return fib_an1 (temp1, temp0);

}

int fib_an1 (int temp1, int temp0) {
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return temp0 + temp1;
}

5. Closure conversion - A continuation is composed of a series of frames, that
are closed over the live variables in the original procedure. Each frame also
has a method that accepts a single value (the argument to the continuation)
and invokes the appropriate procedure fragment. These closures can be auto-
matically generated if the underlying language were to support anonymous
methods.

abstract class Frame {

abstract Object invoke(Object arg)
throws Throwable;

}

class fib_frame0 extends Frame {

int x;

fib_frame0(int x) {
this.x = x;

}

@Override
Object invoke(Object return_value)

throws ContinuationException, Throwable {
return fib_an0(x);

}

}

6. Code annotation - The fragmented code is annotated so that it can save
its state in the appropriate continuation frame. Each procedure call is
surrounded by an exception handler. This intercepts the special exception
thrown for reifying the stack, constructs the closure object from the live
variables, appends it to the list of frames contained by the special exception,
and re-throws the exception. The calls in tail position are not annotated.

int fib_an (int x) {
if (x < 2)

return x;
else {

int temp0;
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try {
temp0 = fib_an (x - 2);

} catch (ContinuationException sce) {
sce.extend (new fib_frame0 (x));
throw sce;

}
return fib_an0 (temp0, x);

}
}

int fib_an0 (int temp0, int x) {
int temp1;
try {

temp1 = fib_an (x - 1);
} catch (ContinuationException sce) {

sce.extend (new fib_frame1 (temp0));
throw sce;

}
return fib_an1 (temp1, temp0);

}

int fib_an1 (int temp1, int temp0) {
return temp0 + temp1;

}

Java frameworks implementing continuations

Kilim

The Kilim framework [30, 31] provides lightweight actors, a type system that
guarantees memory isolation between threads and a library with I/O support and
synchronisation constructs and schedulers. It uses a restricted form of continuations
that always transfers control to its caller but maintain an independent stack. Kilim
implements a variant of generalized stack inspection [25]. It transforms compiled
programs at the bytecode-level, inserting copy and restore instructions to save the
stack contents into a separate data structure (called a fiber) when a continuation
is to be accessed. Its implementation is based on threee main architectural choices:

Suspend-Resume
Kilim preserves the standard call stack, but provides a way to pause (suspend)
the current stack and to store it in a continuation object called fiber. The fiber
is resumed at some future time. Calling Fiber.pause() pops activation frames
until it reaches the method that initiated resume(). This pair of calls is similar to
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the shift and reset operator from the literature on delimited continuations; they
delimit the section of the stack to be saved.

Schedulable Continuations
Kilim actors are essentially thread-safe wrappers around Fibers. A scheduler
chooses which Actor to resume on which kernel thread. Kernel threads are treated
as virtual processors while actors are viewed as agents that can migrate between
kernel threads.

Generators
Generators are essentially iterators that returns a stream of values. Each time
we call a generator it gives us the next element. Kilim Generators are intended
to be used by a single actor at a time, and run on the thread-stack of that actor.
Even if the actor is running, it is prevented from executing any of its code until
the generator yields the next element.

JavaFlow

The Apache Commons JavaFlow [35] is a library providing a continuations API
for Java, accomplished via bytecode instrumentation which modifies the ordinary
control flow of method calls to accomodate the ability to suspend and resume code
execution at arbitrary points. JavaFlow transforms a method if it can reach a
suspend() invocation. It transforms all non-pausable methods reachable from there
as well, that are modified such that they can distinguish between normal execution,
continuation capturing, and continuation resuming. This leads to inefficiencies,
even when no continuations are used [36]. The instrumentation can be performed
in advance or by a special class loader, which adds complexity either to the build
process or to the application itself [30, 31].

RIFE

RIFE [37] is Java web application framework which allows web applications to
benefit from first-class continuations. RIFE’s pure Java continuation engine, which
uses Java bytecode manipulation to implement continuations, has been extracted
into a standalone Java library. It works similar to the Javaflow library, but it allows
continuation capturing only within a specific method (processElement), so that
there is always only one activation frame per continuation [36].

PicoThreads

A PicoThread is a lightweight, user-level Java thread that can be cooperatively-
scheduled, dispatched and suspended [38]. PicoThreads are implemented in the Java
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bytecode language via a Java class-to-class translation. The translation produces
threaded programs that yield control and a continuation sufficient to restart the
thread where it left off. A PicoThread continuation is a Java object which contains
a reference to the object and method in which it was created. Since Java’s procedure
call stacks do not have dynamic extent, PicoThread continuations also contain
extra state to store a method’s local variables. PicoThread continuations extend
Java exceptions, so that they can take advantage of Java’s zero-cost exception
mechanism to pass continuations from method to method. However the authors
PicoThreads were unable to find a Java implementation fast enough to use the
library effectively.

Matthias Mann’s continuations library

Matthias Mann’s continuations library implements continuations in Java using the
ASM bytecode manipulation and analysis framework. The library provides an API
allows to write coroutines and iterators in a sequential way [39].

Kawa’s continuations

Kawa provides a restricted type of continuations, that are implemented using Java
exceptions, and can be used for early exit, but not to implement coroutines or gen-
erators [40]. The following code, though different from the actual implementation,
explains the concept:

class callcc extends Procedure1 {
...;
public Object apply1(CallContext ctx) {

Procedure proc = (Procedure) ctx.value1;
Continuation cont

= new Continuation (ctx);
try {

return proc.apply1(ctx);
cont.invoked = true;

} catch (CalledContinuation ex) {
if (ex.continuation != cont)

throw ex; // Re-throw.
return ex.value;

}
}

}

The Procedure that implements call-with-current-continuation creates a
continuation object cont, that represents the current continuation, and passes it to
the incoming Procedure proc. If callcc catches a CalledContinuation exception

29



it means that proc invoked some Continuation. If it is the continuation of the
current callcc instance, the code returns the value passed to the continuation;
otherwise it re-throws the exception until a matching handler is reached.
The continuation is marked as invoked, to detect unsupported invocation of cont
after callcc returns. (A complete implementation of continuations would instead
copy the stack to the heap, so it can be accessed at a later time.)

class Continuation extends Procedure1 {
...;
public Object apply1(CallContext ctx) {

if (invoked)
throw new GenericError

("Continuation can only be used once");
throw new CalledContinuation (ctx.values, this, ctx);

}
}

A Continuation is the actual continuation object that is passed to callcc; when
it is invoked, it throws a CalledContinuation that contains the continuation and
the value returned.

class CalledContinuation
extends RuntimeException {
...;
Object value;
Continuation continuation;
CallContext ctx;
public CalledContinuation

(Object value, Continuation cont, CallContext ctx) {
this.value = value;
this.continuation = cont;
this.ctx = ctx;

}
}
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Chapter 3

Implementing first-class
continuations on the JVM

“I don’t care what anything was designed to do. I care about what it
can do.”

Apollo 13 (film, 1995)

The stack manipulation dilemma

The use of virtual machines for the implementation of programming languages has
become common in recent compiler developments. Unlike low-level languages, such
as C, that permit access to the stack through use of pointer arithmetic, higher level
languages, such as Java or C# do not provide instructions for installing and saving
the run-time stack. Compiling Scheme, or any other language that uses first-class
continuations, to the JVM thus poses a challenging problem. At first glance, the
implementers must either give up implementing continuations or manage a heap-
stored stack. The former choice limits the programmers of these languages, besides
automatically making the Scheme implementation non standard-compliant. The
latter choice precludes many of the advantages that these machines supposedly offer.
Indeed, the major problem with heap allocation of call frames and environments
is the overhead associated with the use of a heap. This overhead includes the
direct cost of allocating objects in the heap when building the call frames and
environments, and of following references instead of increasing and decreasing a
stack or frame pointer when accessing pieces of the frame or environment. The
overhead also includes the indirect cost of garbage collection to manage stack frames
and environments and the indirect cost of using significant amounts of memory.
Furthermore, the use of the heap rather than a stack prevents the exploitation of
commonly available hardware or microcode-supported stack push, pop and index
instructions and the use of function call and return instructions.
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A solution: generalises stack inspection

The idea is to fragment the original program in a sequence of atomic computations,
than to throw an exception to unwind the stack, and use the same exception to
store the list of computations that constitute the stack portion to be captured.
This list of computations can be later used to restate the entire continuation. As
an example, consider the stack of nested function calls in Figure 3.1. At top level
we call topLevel, that in turn calls f, which calls g, which call call/cc with h
as argument. h is a function that takes one argument. Each call is enclosed in an
exception handler that catches a ContinuationException.

try { topLevel() }
catch (ContinuationException ce) { k = ce.continuation; resume(k); }

try { ... f() ... }
catch (ContinuationException ce) { ce.extend(topLevel); throw ce; }

try { ... g() ... }
catch (ContinuationException ce) { ce.extend(f); throw ce; }

try { ... call/cc(h) ... }
catch (ContinuationException ce) { ce.extend(g); throw ce; }

ce.extend(h); throw ce;

topLevel:

f:

g:

call/cc:

Top level exception handler

Figure 3.1

When the call/cc is called, it creates a new ContinuationException object, adds
the computation associated to h to the list, and throws the exception. Just after
the throw, the execution stops and the JVM searches routines in the stack for an
exception handler. The first try/catch expression found, that is in g, extends the
list with an other computation and re-throws the exception.

try { topLevel() }
catch (ContinuationException ce) { k = ce.continuation; resume(k); }

try { ... f() ... }
catch (ContinuationException ce) { ce.extend(topLevel); throw ce; }

try { ... g() ... }
catch (ContinuationException ce) { ce.extend(f); throw ce; }

try { ... call/cc(h) ... }
catch (ContinuationException ce) { ce.extend(g); throw ce; }

ce.extend(h); throw ce;

Top level exception handler

topLevel:

f:

g:

call/cc:

save call to

continuation

save call to h

save call to g

save call to f

construct continuation object;

resume

h(k)

throw

exception

Figure 3.2

The exception goes past the try block to try blocks in an outer scope. At each step
a new computation is added to the ContinuationException, until the control goes
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to the top level exception handler, which assembles the actual exception object.
Searching in outer scopes for exception handlers is called a stack walk. While the
stack unwinds, the JVM pops the stack frames off of the stack, destroying all the
stack allocated variables. However, as all the computation steps are saved in the
ContinuationException, a copy of the stack is progressively created on the heap.
The exception always maintains a reference to the list of computations during the
stack walk, so that the continuation is not garbage-collected.
The top level handler, besides assembling the continuation object, resumes the
execution of h, the function passed to the call/cc, passing to it the continuation
as argument. If h does not invoke the continuation, the top level handler resumes
the continuation after h returns. Figure 3.2 illustrates the process.

Figure 3.3: Stack and heap during a continuation capture
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Figure 3.3 shows what happens in the stack and in the heap when a continuation is
captured by call/cc. When call/cc is called the stack frames belonging to the
continuation are under the call/cc’s one (assuming the stack growing bottom-up).
Throwing the ContinuationException, call/cc starts to unwind the stack, and
consequently the heap starts to be populated by the continuation frames. When
top level is reached, the handler creates the continuation object. At the end of the
process, the h function is resumed with the continuation object bound to its single
argument.

Figure 3.4: Stack and heap when reinstating a continuation

An interesting property of first-class continuations is that they can be invoked at any
time, provided that they are saved in an accessible variable. When a continuation
is invoked, it throws an ExitException. This causes the stack to be unwind, as
in the capture case. The top level handler in this case resumes the continuation
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frames stored in the continuation object. The final result is that the execution
restart where it was suspended by the call/cc, while the heap continues to store the
continuation object. This can be accessed other times, or can be garbage-collected
if it is no more used.

Generalised stack inspection for a JVM-based
Scheme

This section shows how the generalised stack inspection technique described by
Pettyjohn et al. can be adapted to be used on the JVM, and how it can be included
in a Scheme compiler. We will see also how some issues leaved open by the original
paper have been tackled.

Assignment conversion

In our case, this step is not necessary. Indeed, management of shared variable
bindings is an orthogonal issue with respect to our global transformation, and it
is shared between all the languages that provide lexical closures. Kawa already
supports lexical closures, so has its way of managing variable bindings. For
each closure, Kawa creates a new class to represent a function together with the
environment of captured variables.

A-Normalization

The first step of the process is to transform the source to A-normal form. ANF
was introduced by Flanagan et al. in [34] as an intermediate representation for
compilers. It encodes data flow explicitly by naming all sub-expressions within
the program and permitting only a single definition of any particular variable.
The paper by Flanagan et al. also presents a basic linear-time A-normalization
algorithm for a subset of Scheme. The algorithm can be easily extended to handle
top-level defines and side effects [41]. Being Kawa a super-set of R7RS Scheme and
having also many Java related extensions, the code of the original A-normalizer
must be further extended. Instead of performing the transformation directly on the
Scheme source, I opted for performing it on the abstract syntax tree, as it already
uses a reduced set of expression types.
The following code shows an instance of the transformation in three steps. The
return operation corresponds to the identity function, while the bind operation is a
function that constructs let bindings to make every atomic computation explicit
(the bind here has the same purpose as the normalizeName function in the Flanagan
et al. paper).
The syntax tree is traversed starting from the root, and each non-atomic expression
is passed to the bind with another parameter, called context (the very first context
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is the identity function that returns its argument). The context is a function that
can be invoked. When the visiting process reaches a non-atomic expression a new
context is created, and the passed context is called only inside the new one. The
bind function has two purposes:

1. to create a context, that generates a let expression to let-bind the expression
next to come in the traversing process;

2. to visit the passed expression, to continue the syntax tree traversing.

This chain finish when a leaf (an atomic expression) is encountered in the tree,
in this case the passed context is invoked (which in turn will invoke the previous
context and so on). At this point the chain of context invocations starts to wrap each
expression in a let binding, processing the expressions backward, and enclosing
them step by step in nested let expressions. This backward traversing stops when
the context called is the identity function. This happens in the leaves.
When the expression to normalize is a conditional, the bind is used on each branch
expression. Instead of creating a let binding for each branch, as they cannot be
evaluated before the test outcome, bind calls the visit method with the identity
context, restarting the normalization in each branch.
The following code shows the a-normalization process for a simple Scheme expression.
Note that the internal if expression should be further normalized, but we consider
it atomic here, to keep the example short. The algoritm performs a monadic
transformation combining three steps:

1. Monadic conversion:

(+ 1 (bind (if (>= x 0)
(if (>= x 0) (f x)

(f x) --> (return 0))
0)) (lambda (t) (+ 1 t)))

2. The result is interpreted in the identity monad:

(return a) => a

(bind a (lambda (x) b)) => (let ((x a)) b)

(bind (if (>= x 0) (let ((t (if (>= x 0)
(f x) --> (f x)
(return 0)) (return 0))))

(lambda (t) (+ 1 t))) (+ 1 t))

3. Nested let are flattened:
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(let ((x (let ((y a)) (let ((y a))
b))) --> (let ((x b))

c) c))

Code fragmentation

This transformation, working on code previously A-normalized, fragments the code
in a sequence of function calls. Each let-bind expression is enclosed in a lambda
closure that accepts one argument. The argument is an other lambda closure that
has in the body the call to the next code fragment. In this way the original source
is rewritten as a sequence of function calls, each call representing a computation
step. This way of fragmenting the source allows to avoid defining many top level
procedures, that would also require an additional pass to perform live variable
analysis.
An example of the entire transformation is showed below:

1. original source

(define incr #f)

(+ (call/cc
(lambda (k)

(set! incr k)
0))

1) ; => 1

2. after A-normalization

(let ((v1 (lambda (k) ; computation #1
(let ((v0 (set! incr k)))

0))))
(let ((v2 (call/cc v1))) ; computation #2

(+ v2 1)))) ; computation #3

3. after fragmentation

((lambda (incr_an1) ; fragment #1
(let ((v1 (lambda (k)

(let ((v0 (set! incr k)))
0))))

(incr_an1 v1)))
(lambda (v1)
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((lambda (incr_an2) ; fragment #2
(let ((v2 (call/cc v1)))

(incr_an2 v2)))
(lambda (v2)

(+ v2 1))))) ; fragment #3

Live variable analysis and closure conversion

Kawa’s support for lexical closures allows to completely avoid these steps. Each
fragment, created as described in the previous section, is closed over the values of
the variables that are live at that point.
A continuation will be composed of a series of frames. A frame is an object with a
method that accepts a single value (the argument to the continuation) and invokes
the appropriate procedure fragment, to continue the computation from the capture
point. Also these frames will be closed over the next fragment to call.

Code Instrumentation

Beside fragmentation, instrumentation is performed for installing exception handlers
around each computation step to enable the capture and resume of continuations.
Kawa supports try-catch expressions, which are translated directly to native
try/catch statements in Java bytecode. A try-catch expression is created around
each computation to capture a possible ContinuationException. The installed
exception handler adds a new frame (an invokable object enclosing a call the next
computation step) to the list of frames included inside the ContinuationException
object, than rethrows the exception.
The following code resembles the final result after instrumentation:

((lambda (incr_an1)
(let ((v1 (lambda (k)

(let ((v0 (set! incr k)))
0))))

(incr_an1 v1)))
(lambda (v1)

((lambda (incr_an2)
(let ((v2 (try-catch (call/cc v1) ; try/catch

(cex <ContinuationException> ; handler
(let ((f (lambda (continue-value)

(incr_an2 continue-value))))
(cex:extend (<ContinuationFrame> f))
(throw cex)))))) ; re-throw

(incr_an2 v2)))

38



(lambda (v2)
(+ v2 1)))))

Issues

call/cc in higher order functions

Since Kawa optimise some built-in procedures (like map, foreach and filter)
implementing them as Java methods, and because of the global transforma-
tion needed by the call/cc, continuations cannot be captured inside functions
passed to those higher order functions. Indeed, the Java implementation of
map (gnu.kawa.functions.Map) is not ‘aware’ of continuations, thus when you
use call/cc inside the lambda passed to map, it will not be able to handle a
ContinuationException, resulting in a runtime error.
In the next chapter, we will see a possible solution to this problem.

Code size

The creation of fragments will introduce a number of extra code. Although the
overhead should be small, there will be an increase in code size proportional to the
number of code fragments.
Code instrumentation introduces a number of try/catch blocks. This will also
increase code size proportional to the number of code fragments. Chapter 6 will
present an estimate of the code size increase.

Integration

Given that the code transformation needed to support continuations adds a overhead
to the compilation process and the generated bytecode, it is necessary to implement
A-normalization and instrumentation as optional passes, that can be enabled only
when we want to use call/cc. This adds the challenge of integrating such a global
transformation in Kawa, avoiding to make too many changes to the compiler.
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Chapter 4

A call/cc implementation for
Kawa

“Do. . . or do not. There is no try.”

The Empire Strikes Back (film, 1980)

An instance of the transformation in Java

As a first preliminary step, I ported the C# code in [32] to Java, to study the
feasibility of the technique on the JVM. The code represents a single instance of
the transformation for a simple fibonacci function, and implements some support
functions and data structures. Given that the global transformation fragments the
original source in many function calls, I produced four versions of the transformed
code, to compare the performance of different type of calls on the JVM:

1. The first one uses nested static classes to implement the continuation frames
of the function to be run:

class fib_frame0 extends Frame {

int x;

public fib_frame0(int x) { this.x = x; }
@Override
public Object invoke(Object return_value)

throws ContinuationException, Throwable {
// call to the next fragment
return fib_an0(x);

}
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}

public int fib_an(int x)
throws ContinuationException, Throwable {

try {
pause();

} catch (ContinuationException sce) {
sce.extend(new ContinuationFrame(new fib_frame0(x)));
throw sce;

}

return fib_an0(x);
}

2. the second version uses MethodHandles, that were introduced in Java 7. A
MethodHandle is a typed, directly executable reference to an underlying
method, constructor or field:

static Object fib_frame0_invoke(Object x, Object continue_value)
throws SaveContinuationException, Exception {

return fib_an0 ((int) x);
}

static MethodHandle fib_frame0(int x)
throws Exception {

MethodType mt = MethodType.methodType(Object.class,
Object.class,
Object.class);

MethodHandle handle = lookup.findStatic(fib_mh.class,
"fib_frame0_invoke",
mt);

return handle.bindTo(x);
}

public static int fib_an(int x)
throws SaveContinuationException, Exception {

try {
pause();

} catch (SaveContinuationException sce) {
sce.Extend(new ContinuationFrame(fib_frame0(x)));
throw sce;

}
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return fib_an0(x);
}

3. the third version uses Java 8 lambdas, specified with the new Java syntax:

static Object fib_frame0_invoke(Object x, Object continue_value)
throws SaveContinuationException, Exception {

return fib_an0 ((int) x);
}

static Frame fib_frame0(int x)
throws Exception {

Frame f = (Object continue_value)
-> {

return fib_frame0_invoke(x, continue_value);
};

return f;
}

public static int fib_an(int x)
throws SaveContinuationException, Exception {

try {
pause();

} catch (SaveContinuationException sce) {
sce.Extend(new ContinuationFrame(fib_frame0(x)));
throw sce;

}

return fib_an0(x);
}

4. the last version generates lambdas explicitly using LambdaMetafactory, an
API introduced in Java 8 to facilitate the creation of simple function objects.

fib_frame0_factory
= LambdaMetafactory

.metafactory(lookup,
"invoke",
invokedType,
methodType,
lookup.findStatic(fib_meta.class,

"fib_frame0_invoke",
implType),

methodType).dynamicInvoker();
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static Object fib_frame0_invoke(Object x, Object continue_value)
throws SaveContinuationException, Throwable {

return fib_an0 ((int) x);
}

static Frame fib_frame0(int x)
throws Throwable {

return (Frame) fib_frame0_factory.invoke(x);
}

I tested each type of method call with JMH [42, 43], a benchmarking framework
for the JVM. Figures 4.1 , 4.2 show the results. The lambda case is quite fast, if
compared with MethodHandles, but also the explicit use of LambdaMetafactory
gives good results, provided that the call to LambdaMetafactory.metafactory is
cached in a static field. However, the difference in performance between lambda
calls and regular method calls is negligible. Thus is not worth to re-design a
significant part of the compiler, and to loose the compatibility with previous version
of the JVM, for such a small improvement.

Figure 4.1: Performance comparison of different types of call in Java
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Figure 4.2: Performance comparison of different types of call in Java

Exceptions performance in Java

The capture of a continuation, and in particular the stack copying mechanism,
is driven by exception throwing and exception handling. Therefore, is crucial to
understand how the installation of exception handlers and the construction of an
Exception object impact the performance.
In Java, when throwing an exception, the most expensive operation is the con-
struction of the stack trace, that is useful for debugging reasons. As well as we
are not using exceptions with they original purpose, we can have rid of the stack
trace construction and optimise the Exception object. It is sufficient to override
the fillInStackTrace method of Throwable:

public static class FastException extends Exception {

@Override
public Throwable fillInStackTrace() {

return this;
}

}

I performed a straightforward benchmark, comparing the time spent by a regular
method call, a method call surrounded by an exception handler, a method call
throwing a caught exception and a method call throwing a FastException.

// case 1
t.method1(i);

// case 2
try {

t.method2(i);
} catch (Exception e) {
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// We will *never* get here
}

// case 3
try {

t.method3(i);
} catch (Exception e) {

// We will get here
}

// case 4
try {

t.method4(i);
} catch (FastException e) {

// We will get here
}

The results from 10 million iterations are shown in the following table.

time (ms)
regular 1225
no caught exception 1240
caught exception 35482
caught, optimised 1330

As you can see, to catch a FastException introduces a negligible overhead, while
instantiating an Exception with its stack trace is more than an order of magnitude
more expensive.

Support code

For capturing and resuming continuations we need a framework to support all the
required operations, such as construct an object that models the continuation, and
turn a continuation object back into an actual continuation.

public static class ContinuationFrame {

Procedure computation;
ArrayList<ContinuationFrame> continuation;

public ContinuationFrame(Procedure frame) {
computation = frame;
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}
}

The basic blocks of a continuation are its ContinuationFrames. A ContinuationFr-
ame (for brevity, a frame) is a simple data structure which contains a single compu-
tation (a Procedure that takes one argument), and a list of ContinuationFrames.
The list is used by the next capture of a continuation. All the frames needed to
assemble a continuation are collected using a ContinuationException. This class
extends FastException and stores the list of frames which is extended step by
step by the chain of throws. It contains also a list of frames that have been already
reloaded by a previously call to call/cc. When the exception reaches the top
level exception handler, this calls the method toContinuation that builds a new
Continuation object using the two lists.

public static class ContinuationException extends FastException {

ArrayList<ContinuationFrame>
newCapturedFrames = new ArrayList<ContinuationFrame>();

ArrayList<ContinuationFrame> reloadedFrames;

public void extend(ContinuationFrame extension) {
newCapturedFrames.add(extension);

}

public void append(ArrayList<ContinuationFrame> oldFrames) {
reloadedFrames = oldFrames;

}

public Continuation toContinuation() throws Exception {
return new Continuation(newCapturedFrames,

reloadedFrames);
}

}

The Continuation constructor takes the two lists and assembles the continuation.

public class Continuation extends Procedure0or1 {

ArrayList<ContinuationFrame> frames;

public Continuation(ArrayList<ContinuationFrame> newFrames,
ArrayList<ContinuationFrame> oldFrames) {

frames = (oldFrames != null)
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? new ArrayList<ContinuationFrame>(oldFrames)
: new ArrayList<ContinuationFrame>();

for(int i = newFrames.size()-1; i >= 0; i--) {
ContinuationFrame newFrame = newFrames.get(i);
if (newFrame.continuation != null) {

throw new Error("Continuation should be empty here");
}
newFrame.continuation

= new ArrayList<ContinuationFrame>(frames);
frames.add(newFrame);

}
}

When a continuation is invoked, we actually call the apply method of
Continuation. Here we create a new procedure which, when called, resumes the
continuation. We wrap the procedure in an exception so that, throwing it, we
unload the current continuation. The top level handler will receive this exception
and will use it to resume the invoked continuation.

public Object apply0() throws Throwable {
return apply1(Values.empty);

}

public Object apply1(final Object val) throws Throwable {

Procedure t = new Procedure1() {

public Object apply1(Object ignored) throws Throwable {
return reloadFrames(frames.size()-2, val);

}
};

throw new ExitException(t);
}

The Continuation object also contains the method to resume the continuation.
reloadFrames iterates over the list of frames in reverse order to re-establish the
saved continuation reconstructing the stack. The topmost frame gets the restart
value passed into it.

Object resume(final Object restartValue) throws Throwable {
return reloadFrames(frames.size()-1, restartValue);

}
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Object reloadFrames(int endIndex, Object restartValue)
throws Throwable {

Object continueValue = restartValue;
for (int i = endIndex; i >= 0; i -= 1) {

ContinuationFrame frame = frames.get(i);
try {

continueValue = frame.computation
.apply1(continueValue);

} catch (ContinuationException sce) {
sce.append(frame.continuation);
throw sce;

}
}
return continueValue;

}

}

TopLevelHandler deals with running top level calls in an exception handler
that catches instances of ContinuationException, thrown by call/cc, and
ExitException, thrown by a continuation invocation. In the first case it cre-
ates a continuation object and resumes the execution of the function passed to
call/cc. In the second case it calls the function enclosed in the ExitException,
which reinstates the continuation.

public class TopLevelHandler extends Procedure1 {

public Object apply1(Object arg1) throws Throwable {
return runInTopLevelHandler((Procedure) arg1);

}

public void compile(...) { ... }

public static Object runInTopLevelHandler(Procedure initialFrame)
throws Throwable {

while (true) {
try {

return invokeFrame(initialFrame);
} catch (ExitException rce) {

initialFrame = rce.thunk;
}

}
}

private static Object invokeFrame(final Procedure initialFrame)
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throws Throwable {
try {

return initialFrame.apply1(null);
} catch (ContinuationException sce) {

final Continuation k = sce.toContinuation();

Procedure f = new Procedure1() {

public Object apply1(Object arg) throws Throwable {
return k.resume(k);

}
};

throw new ExitException(f);
}

}
}

The CallCC procedure implements call/cc. It throws a new ContinuationException,
saving in it the call/cc argument (a Procedure object).

public class CallCC extends Procedure1 {

public Object apply1(Object arg1) throws Throwable {
return call_cc((Procedure) arg1);

}

public void compile(...) { ... }

public static Object call_cc(final Procedure receiver)
throws ContinuationException {

try {
throw new ContinuationException();

} catch (ContinuationException sce) {
sce.extend(new ContinuationFrame(receiver));
throw sce;

}
}

}

A significant variation with respect to the implementation proposed by Pettyjohn
et al. is that the function that resumes the stack frames is implemented using
iteration instead of recursion. This avoids using too much stack, as the JVM,
differently from the C# MSIL, does not support tail call optimisation. Another
difference is in the representation of the list of frames. Instead of using a linked
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list adding elements at the beginning, I used a Java ArrayList, adding elements
at the end of the list. This allows to avoid reversing a list at every capture, and
saves an object allocation at each list extension.
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A brief overview of Kawa’s compilation process

In Kawa there are mainly five compilation stages [40]:

1. Syntactic analysis - the first compilation stage reads the source input. The
result is one or more Scheme forms (S-expressions), represented as lists.

2. Semantic analysis - the main source form is rewritten into a set of nested
Expression objects, which represents Kawa’s abstract syntax tree (AST). For
instance, a QuoteExp represents a literal, or a quoted form, a ReferenceExp is
a reference to a named variable, an ApplyExp is an application of a procedure
func to an argument list and a LetExp is used for let binding forms. The
Scheme primitive syntax lambda is translated into a LambdaExp. Other sub-
classes of Expression are IfExp, used for conditional expressions, BeginExp,
used for compound expressions and SetExp, used for assignments. The top-
level Expression object is a ModuleExp and can be considered the root of
the AST. This stage also handles macro expansion and lexical name binding.

3. Optimisation - an intermediate pass performs type-inference and various
optimisation, such as constant folding, dead code elimination and function
inlining.

4. Code generation - the ModuleExp object is translated into one or more byte-
coded classes. This is done by invoking a compile method recursively on the
Expressions, which generates JVM instructions using the bytecode package,
writing out the resulting class files.

5. Loading - if the code is compiled and then immediately executed, the compiled
code can be immediately turned into Java classes using the Java ClassLoader
feature. Then the bytecode can be loaded into the Kawa run-time.

A-Normalization

I created a new ExpVisitor that manipulates the syntax tree implementing the
transformation to ANF, already described in chapter 3. An ExpVisitor is Java class
that can be extended to implement code that traverses the AST to apply a certain
transformation. The new visitor, called ANormalize, performs the A-normalization
pass just before the optimisation stage of the compiler.

[... parsing ...]

ANormalize.aNormalize(mexp, this); // <-- A-normalization
InlineCalls.inlineCalls(mexp, this);
ChainLambdas.chainLambdas(mexp, this);
FindTailCalls.findTailCalls(mexp, this);
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[... code generation ...]

At first, we call the visit function on root of the AST, passing as context the
identity function.

public static void aNormalize(Expression exp, Compilation comp) {
[...]
visitor.visit(exp, identity);

}

The core of the A-normalizer is the bind function, already introduced in Chapter 3,
here called normalizeName. normalizeName creates a new context, then it will visit
the expression with this new context. If the passed expression is atomic (cannot
be further normalized), like a literal or an identifier, the new context calls the old
context with the expression as input. Otherwise it creates a new let expression,
binds the expression to a new variable in the let (with genLetDeclaration), then
replaces every occurrence of the expression in the code with a reference to the just
created variable (with context.invoke(new ReferenceExp(decl))).

protected Expression normalizeName(Expression exp,
final Context context) {

Context newContext = new Context() {
@Override
Expression invoke(Expression expr) {

if (isAtomic(expr))
return context.invoke(expr);

else {
// create a new Let
LetExp newlet = new LetExp();

// create a new declaration in the let, using
// the new expression value
Declaration decl = genLetDeclaration(expr, newlet);

// occurrences of expr in the next computation are
// referenced using the new declaration
newlet.body = context.invoke(new ReferenceExp(decl));
return newlet;

}
}

};

return visit(exp, newContext);
}
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When the expression to normalize is a conditional, as its branches cannot be
evaluated before the test outcome, we use normalizeName on each branch expression.
Instead of creating a new variable for each branch, we restart the normalization in
each branch.

protected Expression visitIfExp(final IfExp exp,
final Context context) {

Context newContext = new Context() {

@Override
Expression invoke(Expression expr) {

exp.then_clause = normalizeTerm(exp.then_clause);
exp.else_clause = (exp.else_clause != null)

? normalizeTerm(exp.else_clause)
: null;

exp.test = expr;

return context.invoke(exp);
}

};
return normalizeName(exp.test, newContext);

}

When an atomic expression is encountered in the tree, the passed context is directly
invoked with expression passed as argument. At this point the chain of context
invocations starts to wrap each expression in a let binding, traversing the AST
backward, nesting each non atomic expression in a new let.

protected Expression visitQuoteExp(QuoteExp exp,
Context context) {

return context.invoke(exp);
}

protected Expression visitReferenceExp(ReferenceExp exp,
Context context) {

return context.invoke(exp);
}

Code fragmentation

Another ExpVisitor, FragmentAndInstrument, performs the fragmentation and
the instrumentation. As described in Chapter 3, the new visitor transforms the
code in a sequence function calls. At the same time it wraps in a try-catch
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expression every atomic computation it encounters in the traversing. This stage is
inserted between the A-normalization and the optimisation pass.

[... parsing ...]

ANormalize.aNormalize(mexp, this);
FragmentAndInstrument.fragmentCode(mexp, this);// <-- fragmentation

//and instrumentation
InlineCalls.inlineCalls(mexp, this);
ChainLambdas.chainLambdas(mexp, this);
FindTailCalls.findTailCalls(mexp, this);

[... code generation ...]

The transformation starts at the root of the AST (a ModuleExp), and contin-
ues analysing each node of the tree recursively. The most relevant method in
FragmentAndInstrument is visitLetExp, which deals with the transformation of
let expressions.

protected Expression visitLetExp(LetExp exp, Void ignored) {
Declaration letDecl = exp.firstDecl();
Expression nextExp = exp.body;
Expression continueValue = letDecl.getInitValue();

After A-normalization the code is mainly made by nested let expression that
bind to a variable every atomic computation. visitLetExp takes a LetExp and
transforms it in two closures, applying the first to the second one. The former
closure executes an atomic computation and calls the latter closure. The latter
closure contains the original body of the let expression, which will be further
fragmented. Using the example from Chapter 3:

((lambda (incr_an1) ; <-- closure #1
(let ((v1 (lambda (k)

(let ((v0 (set! incr k)))
0))))

(incr_an1 v1)))
(lambda (v1) ; <-- closure #2

((lambda (incr_an2)
(let ((v2 (call/cc v1)))

(incr_an2 v2)))
(lambda (v2)

(+ v2 1)))))

The following code creates the first closure. It simply generates a new lambda
expression that takes an argument. The original LetExp becomes the body of the
lambda.
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Declaration nextFragmentDecl = new Declaration("continue-fragment");
LambdaExp fragment = new LambdaExp(1);
fragment.body = exp;
fragment.addDeclaration(nextFragmentDecl);

We replace the let body with the call to the next fragment, that is (incr_an1 v1)
in the previous Scheme example.

exp.body = new ApplyExp(applyRef,
new ReferenceExp(nextFragmentDecl),
new ReferenceExp(letDecl));

The code that creates the second closure is very similar to which that generates
the first one. It is another new lambda expression that takes an argument. The
body this time is the body of the original LetExp.

Declaration continueValueDecl = new Declaration("continue-value");
LambdaExp nextFragment = new LambdaExp(1);
nextFragment.body = nextExp;
nextFragment.addDeclaration(continueValueDecl);

We create a new function call, which applies the first lambda to the second one.

((lambda (incr_an1) ; <-- closure #1
...)

(lambda (v1) ; <-- closure #2
...))

ApplyExp fragmentCall = new ApplyExp(fragment,
nextFragment);

Then we can move one to annotate with a try-catch the let binding (see next
section), and to traverse the rest of the tree calling visit on the body of the second
lambda.

Expression annotatedExp = visitAndAnnotate(continueValue,
nextFragmentDecl);

letDecl.setInitValue(annotatedExp);

// visit the rest of the code.
nextFragment.body = visit(nextFragment.body, ignored);

return fragmentCall;
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Code Instrumentation

First of all, each top level expression is wrapped inside a TopLevelHandler call,
which surrounds the expression with an exception handler, as seen in Chapter 3.

protected Expression visitModuleExp(ModuleExp exp, Void ignored) {

if (exp.body instanceof ApplyExp
&& ((ApplyExp)exp.body).isAppendValues()) {
ApplyExp body = ((ApplyExp)exp.body);
for (int i = 0; i < body.args.length; i++) {

body.args[i] = installTopLevelHandler(visit(body.args[i],
ignored));

}
return exp;

}

exp.body = installTopLevelHandler(visit(exp.body, ignored));

return exp;
}

Then we perform the main part of instrumentation in the visitAndAnnotate
method, which we call on every let binding, as shown in the previous section.
In visitAndAnnotate, we create a TryExp and an exception handler that catches
ContinuationExceptions.

private Expression visitAndAnnotate(Expression exp,
Declaration nextFragmentDecl) {

TryExp annotatedExp = new TryExp(exp, null);
Declaration handlerDecl = new Declaration((Object) null,

contExpceptionType);
ReferenceExp handlerDeclRef = new ReferenceExp(handlerDecl);

We also create the frame needed to extend the ContinuationException. The
frame computation is a lambda which contains the call to the next fragment. Then
we can generate the code to create a ContinuationFrame with the lambda just
created. The lambda will be translated to a Procedure object at runtime.

(try-catch (call/cc v1) ; try/catch
(cex <ContinuationException> ; handler

(let ((f (lambda (continue-value)
(incr_an2 continue-value))))

(cex:extend (<ContinuationFrame> f))
(throw cex)))) ; re-throw
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Declaration argDecl = new Declaration("continue-value");
ApplyExp nextFragmentCall = new ApplyExp

(new ReferenceExp(nextFragmentDecl),
new ReferenceExp(argDecl));

Expression frame = createFrame(argDecl, nextFragmentCall);

ApplyExp cframe = new ApplyExp(contFrameClass,
frame);

ApplyExp extend = new ApplyExp(new PrimProcedure("Helpers",
"extend", 2),

handlerDeclRef,
cframe);

The last thing to generate is the re-throw instruction for the caught
ContinuationException. Eventually, we visit the annotated exp to con-
tinue the tree traversing.

ApplyExp throwApply = new ApplyExp(primitiveThrow,
handlerDeclRef);

Expression begin = new BeginExp(extend, throwApply);
annotatedExp.addCatchClause(handlerDecl, begin);

// visit the wrapped expression
annotatedExp.try_clause = visit(annotatedExp.try_clause, null);
return annotatedExp;

Other control operators: delimited continuations

The transformation and the support code described in this Chapter is not only
suitable to implement call/cc, but it can also be employed to implement other
control operators.

Prompts and barriers

A prompt is a special kind of continuation frame that is annotated with a specific
tag. Some operations allow to save continuation frames from the capture position
out to the nearest enclosing prompt; such a continuation is sometimes called a
delimited continuation [44].
A continuation barrier is another kind of continuation frame that prohibits certain
replacements of the current continuation with another. A continuation can be
replaced by another only when the replacement does not introduce any continuation
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barriers. A continuation barrier thus prevents to jump into a continuation that is
protected by a barrier [44].

call-with-continuation-prompt

I implemented a simple version of the call-with-continuation-prompt procedure.
This function installs a prompt, and then it evaluates a given thunk under the
prompt. During the dynamic extent of the call to thunk, if a user calls call/cc,
the stack will be unwind until the prompt. Thus call/cc will capture a delimited
continuation, because it is not the whole continuation of the program; rather, just
the computation initiated by the call to call-with-continuation-prompt.
As an example, consider this simple expression:

(define c #f)

(* 2
(+ 3 4

(call/cc
(lambda (k)

(set! c k)
0)))) ; => 14

This code is straightforward, it captures a continuation and stores it in the global
binding c. The saved continuation looks like this:

(* 2 (+ 3 4 _))

We can apply the continuation as usual:

(c 3) ; => 20

To capture part of the continuation we can use a prompt. For instance, if we want
capture only (+ 3 4 _):

(* 2
(call-with-continuation-prompt

(lambda ()
(+ 3 4

(call/cc
(lambda (k)

(set! c k)
0)))))) ; => 14
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(c 3) ; => 10

The call-with-continuation-prompt procedure is semantically equivalent to the
TopLevelHandler previously described as part of the Kawa call/cc implementa-
tion, and can be expressed with a simple macro:

(define-namespace <TLH>
<gnu.expr.continuations.TopLevelHandler>)

(define (%tlh f)
(<TLH>:runInTopLevelHandler f))

(define-syntax call-with-continuation-prompt
(syntax-rules ()

((_ f)
(%tlh (lambda (x) (f))))))

Other Scheme implementations, such as Racket or Guile, provides an extended
version of this procedure that allows to set prompt tags and handlers. That extended
version could be in theory implemented in Kawa modifying TopLevelHandler to
support custom handlers.

call-with-continuation-barrier

Another procedure that we can provide is call-with-continuation-barrier. It
applies a function with a continuation barrier between the application and the
current continuation, than returns the result of the function call. Morover, it do
not allow the invocation of continuations that would leave or enter the dynamic
extent of the call to call-with-continuation-barrier. Such an attempt causes
an exception to be thrown.

(define-namespace <CH>
<gnu.expr.continuations.Helpers>)

(define-syntax call-with-continuation-barrier
(syntax-rules ()

((_ f)
(try-catch (f)

(cex <CH>:ContinuationException
(cex:extend (<CH>:ContinuationFrame

(lambda (x)
(throw (java.lang.Exception

"attempt to cross a
continuation barrier")))))

(throw cex))))))
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The macro replaces the call to call-with-continuation-barrier with an ex-
ception handler that intercepts ContinuationExceptions. The exception handler
extends the continuation with a new frame that when invoked throws an exception.
Than re-throws the original ContinuationException so that the original call/cc
call is not affected.
If we try the previous example using this time a continuation barrier, we get an
error:

(* 2
(call-with-continuation-barrier

(lambda ()
(+ 3 4

(call/cc
(lambda (k)

(set! c k)
0)))))) ; => 14

(c 3) ; => java.lang.Exception: attempt to cross a
; continuation barrier

shift and reset

I introduced shift and reset operators and delimited continuations in Chapter 1.
call/cc can be used to implement those two operators, as shown by Filinsky et al.
in [45]. The following code is a port of their SML/NJ implementation:

(define (escape f)
(call/cc (lambda (k)

(f (lambda x
(apply k x))))))

(define mk #f)

(define (abort x) (mk x))

(define (%reset t)
(escape (lambda (k)

(let ((m mk))
(set! mk (lambda (r)

(set! mk m)
(k r)))

(abort (t))))))

(define (shift h)
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(escape (lambda (k)
(abort (h (lambda v

(%reset (lambda ()
(apply k v)))))))))

(define-syntax reset
(syntax-rules ()

((reset exp ...)
(%reset (lambda () exp ...)))))

Native shift and reset

Although we can implement delimited continuations using call/cc, we can avoid
unnecessary overhead implementing shift and reset in Java, modifying the
existing call/cc implementation.
The reset function is semantically similar to the TopLevelHandler, while the
shift can be seen as a kind of call/cc. The main difference is that the continuation
captured by the shift has a limited extent and behaves as an actual function,
returning a value. So invoking the continuation inside the shift call does not have
the effect of escaping from the procedure.

public class Shift extends Procedure1 {

[...]

public static Object shift(final Procedure receiver)
throws ContinuationException {
try {

// begin unwind the stack
throw new DelimitedContinuationException();

} catch (DelimitedContinuationException sce) {
sce.extend(new ContinuationFrame(receiver));
throw sce;

}
}

}

The Shift class works like the CallCC one, bu it throws a different type of exception,
i.e. a DelimitedContinuationException, that does not interfere with the call/cc
calls.
The Reset extends TopLevelHandler to implement its functionality. In this case
there is no need to run the try/catch block in a loop, because of the different
nature of delimited continuations. As they can be considered regular functions
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this handler does not need to catch an ExitException, it only need to manage the
DelimitedContinuationException thrown by the shift call.

public class Reset extends TopLevelHandler {

[...]

public static Object runInTopLevelHandler(Procedure initialFrame)
throws Throwable {
try {

return initialFrame.apply1(null);
} catch (DelimitedContinuationException dce) {

final Continuation k = dce.toContinuation();
return k.resume(k);

}
}

}

The DelimitedContinuation object is different from a Continuation in that it
does not throw an exception, but it returns a value. Moreover, the apply method
reloads the frames inside a reset to handle possible future calls of shift inside
the original outer reset.

public class DelimitedContinuation extends Continuation {

[...]

public Object apply1(final Object val) throws Throwable {
Procedure1 t = new Procedure1() {

@Override
public Object apply1(Object arg1) throws Throwable {

return reloadFrames(0, frames.size() - 2, val);
}

};

return Reset.runInTopLevelHandler(t);
}

Selective transformation

Using delimited continuations instead of un-delimited ones, gives us the chance to
avoid transforming the whole source code. For instance, if we use reset/shift in
a small portion of a program, we can transform only that portion an leave the rest
untouched.
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The following code is a basic implementation of this idea. The two macros transform
the code starting from a call-with-continuation-prompt call. The first macro
marks the code to be processed by a successive pass. Than the call/cc-rewrite
macro operates on the syntax tree performing the A-normalization pass and the
instrumentation pass on the expression. This gives us continuation-enabled code
enclosed in the call-with-continuation-prompt.

(define-namespace <TLH> <gnu.expr.continuations.TopLevelHandler>)
(define-namespace <ANF> <gnu.expr.ANormalize>)
(define-namespace <FAI> <gnu.expr.FragmentAndInstrument>)
(define-namespace <COMP> <gnu.expr.Compilation>)

(define (%tlh f)
(<TLH>:runInTopLevelHandler f))

(define-syntax call-with-continuation-prompt
(syntax-rules ()

((_ f)
(%tlh (call/cc-rewrite (lambda (x) (f)))))))

(define-rewrite-syntax call/cc-rewrite
(lambda (x)

(syntax-case x ()
((_ sexp)
(let ((exp (syntax->expression (syntax sexp))))

(<ANF>:aNormalize exp (<COMP>:getCurrent))
(<FAI>:fragmentCode exp (<COMP>:getCurrent))
exp)))))

This concept can be further developed, to support nested prompts, and to achieve
something similar to what Rompf et al. did in [23] for the Scala compiler.

Higher order functions

To support the capture of continuations inside higher order functions, it is possible
to add them, or at least the most common ones, in a module that is transformed
for call/cc support end included in the compiler. I defined a Scheme version of
map and for-each, which I added in the standard library of Kawa to experiment
the applicability of this technique. The module in which those functions are
implemented is compiled with the continuations transformation enabled (this can be
done using (module-compile-options full-continuations: #t)). Moreover,
when a Scheme source file is compiled with the full call/cc enabled, the compiler
replaces the higher order functions with the instrumented version. This allows to
capture continuations inside those functions.
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Chapter 5

Case studies

“Who controls the past controls the future. He who controls the present
controls the past.”

George Orwell, 1984

Asynchronous programming: Async and Await

Asynchronous programming is a programming paradigm that facilitates fast and
responsive applications. Asynchronous programming is crucial to avoid the inef-
ficiencies caused by blocking activities, such as accesses to the web. Access to a
web resource or to a huge database can be slow or delayed. If such an activity is
blocked within a synchronous process, the entire application is stuck. You can avoid
performance bottlenecks and enhance the responsiveness of your application by
using asynchronous programming. In an asynchronous process, the application can
continue with other work that does not depend on the resource to be accessed until
the potentially blocking task finishes. However, traditional techniques for writing
asynchronous applications can be complicated, making them difficult to write, de-
bug, and maintain. In this section, I propose a syntax similar to the async/await
construct already introduced in C#, that allows to execute asynchronous tasks
during the normal execution of the program.

(define (<async-call> <arg>*)
... long running operation

that returns an int ...)

(async (<async-call> <arg>*)
... work independent to the

int result here ...
(await <var> ; <- wait for the result

... here you can use ...

... the result, contained in <var> ...))
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We will also see how asynchronous programming features can be added to Scheme
using coroutines and delimited continuations.

Coroutines

Coroutines are functions that can be paused and later resumed. They are necessary
to build lightweight threads because they provide the ability to change execution
context. Coroutines are considered challenging to implement on the JVM, as
they are usually implemented using bytecode instrumentation. However, first-
class continuations makes painless to implement coroutines. They can indeed
be obtained with few lines of code in Scheme. The following code is a port of
safe-for-space cooperative threads presented by Biagioni et al. in [46], where the
code for managing a queue has been omitted for brevity:

(define process-queue
(make-queue))

(define sync-cont #f)

(define (coroutine thunk)
(enqueue! process-queue thunk))

(define (dispatch)
(if (null? (car process-queue))

(when sync-cont
(sync-cont))

((dequeue! process-queue))))

(define (exit)
(dispatch))

(define (sync)
(call/cc
(lambda (k)

(set! sync-cont k)
(dispatch))))

(define (yield)
(call/cc
(lambda (parent)

(coroutine (lambda ()
(parent #f)))

(dispatch))))

(define (thread-activator)
(call/cc
(lambda (parent)

(let ((f (call/cc
(lambda (fc)
(parent fc)))))

(f)
(exit)))))

(define (fork f)
(call/cc
(lambda (parent)

(coroutine (lambda ()
(parent #f)))

((thread-activator) f))))

The function coroutine establishes a context for running the passed thunk; the
fork function starts the execution of a new coroutine. The implementation uses an
internal prompt (thread-activator) to establish the scope of the coroutine. The
state of a running coroutine is saved as a function in the queue when doing a yield,
than the next coroutine in the queue is started by dispatch. To end a process,
we can call the exit function, which calls dispatch without saving the current
process in the queue. sync allows to wait until all the processes are finished.
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Control operators like call/cc make the implementation of coroutines simpler
because one can separate the management of queues from the processes. Coroutines
are used in different applications, because they make certain concurrent compu-
tations much easier to express and easier to understand, and because, when the
number of threads is high, the can give a significant performance improvement over
native threads.

Async with coroutines

With the availability of coroutines and reset/shift we can implement an
async/await expression in Scheme with few lines of code:

(define-syntax async
(syntax-rules (await)

((async call during-exp ...
(await var after-exp ...))

(let ((var #f))
(reset

(shift (lambda (k)
(k)
(fork (lambda () ; <- start coroutine

(set! var call)
(exit)))))

(fork (lambda () during-exp ... (exit))))
(sync) ; <- wait until all coroutines finish
after-exp ...))))

Consider the following example. We need to execute a time consuming function
call, which can be a loop or a recursive function processing some data, but we
would like to do something else in the meantime.

(define (long-call)
(let loop ((x 1))

(if (< x 100)
(begin (yield)

(display x)
(newline)
(loop (+ x 1)))

42)))

Calling the long call with the async syntax it is possible to execute other code in a
concurrent way. We can put (yield) call inside the loop to suspend the execution
and resume the next coroutine in the queue. We do the same in the code to be
executed at the same time. The effect is that of running two tasks at the same
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time. The await keyword allows to wait for the result of the long call, which is
bound to the specified variable (x in this example).
The logic is implemented using coroutines, the two expressions to be run con-
currently are launched using a fork, while the result is awaited using sync.
reset/shift allows us to delimit the extent of the continuation to be captured,
and to change the order of the executed code.

(display "start async call")
(newline)
(async (long-call)

(display "do other things in the meantime...")
(newline)
(let loop ((x 0))

(when (< x 100)
(begin (yield)

(display (- x))
(newline)
(loop (+ x 1)))))

(newline)
(await x

(display "result -> ")
(display x)
(newline)))

The above code prints:

start async call
do other things in the meantime...
0
1
-1
2
-2
[...]
98
-98
99
-99

result -> 42

Async with threads

Using threads instead of coroutine we can avoid adding (yield) calls in our code,
maintaining the same syntax. Kawa provides a simple interface to create parallel
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threads: (future expression) creates a new thread that evaluates expression,
while (force thread) waits for the thread’s expression to finish executing, and
returns the result. Kawa threads are implemented using Java threads.
Thus we can remove (yield) calls from our code and redefine the async/await
syntax to use Kawa threads:

(define-syntax async
(syntax-rules (await)

((async call during-exp ...
(await var after-exp ...))

(let ((var #f))
(reset
(shift (lambda (k)

(set! var (future call)) ; <- start thread
(k)))

during-exp ...)
(set! var (force var)) ; <- wait for result
after-exp ...))))

Now the two tasks are run in parallel, and their printed output is not deterministic:

start async call
do other things in the meantime...
0
-1
1
2
-2
[...]
98
99
-98
-99

result -> 42
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Kawa debugger

Instrumentation allows to suspend the execution of a program, store its state, and
resume it, even multiple times. Thus, we can exploit the instrumentation performed
to obtain first-class continuations in Kawa to implement debugging features. I
extended the technique described in Chapters 3-4 to implement a simple debugger.
When you enable the debugging mode, the compiler instruments each atomic
expression with debugging calls, and generates code to store variable bindings in
an internal table. When the resulting code runs, it stops at breakpoints and lets
you step through the program and inspect variables.
As an example, suppose we need to debug this snippet of code:

1 (define (get-first pred lst)
2 (call/cc
3 (lambda (return)
4 (for-each (lambda (x)
5 (if (pred x)
6 (return x)))
7 lst)
8 #f)))
9

10 (get-first negative? '(1 2 3 4 -5 6 7 8 9)) ; => -5

We can add a pausing instruction simply calling the breakpoint function, as you
can see below:

...
(for-each (lambda (x)

(breakpoint) ; <--
(if (pred x)

...

Once the program is run the execution stops at the breakpoint line, opening a
terminal that accepts some predefined commands. The following commands are
supported:

command result
s(tep) run for one step
c(ontinue) run until the next breakpoint
p(rint) [var] print a variable
q(uit) exit the program

The following listing shows a session of the debugger. In this case the user prints
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some variable values, then steps forward two times, executing one atomic expression
at each step, then continues to stop at the breakpoint at each cycle of the for-each
until the function returns:

### suspended at line 5 ###
> print x
| x: 1
> print return
| return: #<continuation>
> step
### suspended at line 6 ###
### after expression
(Apply line:6:8 (Ref/24/Declaration[applyToArgs/2])

(Ref/23/Declaration[pred/101])
(Ref/25/Declaration[x/135]))

###
> step
### suspended at line 5 ###
> print x
| x: 2
> continue
### suspended at line 5 ###
> continue
### suspended at line 5 ###
> print x
| x: 4
> print #all
| get-first: #<procedure get-first>
| pred: #<procedure negative?>
| x: 4
| lst: (1 2 3 4 -5 6 7 8 9)
| return: #<continuation>
### suspended at line 5 ###
> continue
-5

Implementation details

The debugger works adding suspension instruction between each atomic expression.
After A-normalisation the code is already transformed in a form suitable for
instrumentation. During the fragmentation and instrumentation pass, needed by
call/cc, the syntax tree visitor adds the debug instructions. When the execution
reaches a breakpoint call the program is suspended and the user can insert his
commands.
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The breakpoint call also enables the step mode. Suspension instructions between
atomic expressions are disabled during the normal execution, but they are activated
when the user gives the step command. When the step mode is on, the program
stops at each atomic instruction running a simple REPL. When the user gives the
continue command, the step mode is disabled and the programs can run until the
next breakpoint call.

(define (breakpoint . args)
(dbg:enableStepMode)
(suspend (car args) (cadr args)))

(define (suspend line sourceLine)
(when dbg:stepMode

(begin
(dbg:printInfo line sourceLine (current-output-port))
(let loop ()

(let* ((in (read-line))
(cmds ((in:toString):split " "))
(cmd (string->symbol (cmds 0))))

(case cmd
((c continue) (dbg:disableStepMode))
((p print)
(if (> cmds:length 1)

(begin
(print (string->symbol (cmds 1)))
(loop))))

((s step) (void))
((q quit exit) (exit))
(else (display (string-append

"unknown command "
(cmds 0)))

(newline)
(loop))))))))

Regarding the debugging instrumentation, the main part is performed in the
visitLetExp method. I generate a new suspend expression, besides another
instruction to add the value of the bind variable to the debugger table at runtime.
For each let-bind expression, when the user calls the print command, he gets the
last value of that variable from the table.

protected Expression visitLetExp(LetExp exp, Void ignored) {
Declaration letDecl = exp.firstDecl();
Expression continueValue = letDecl.getInitValue();
String symbol = letDecl.getName();
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if (Compilation.enableDebugger) {
int lnum = continueValue.getLineNumber();
String codeLine = continueValue.print();;

// suspension instruction
ApplyExp suspend = new ApplyExp(applyRef,

suspendProc,
new QuoteExp(lnum),
new QuoteExp(codeLine));

// add binding to the debugger binding table
ApplyExp addVar = new ApplyExp(applyRef,

addBindingProc,
QuoteExp.getInstance(symbol),
new ReferenceExp(letDecl));

exp.body = new BeginExp(new Expression[]{addVar,
suspend,
exp.body});

}

...
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Chapter 6

Evaluation

“Extraordinary claims require extraordinary evidence.”

Carl Sagan, Encyclopedia Galactica

Transformation overhead

We saw in the previous chapters how we can implement call/cc in a JVM targeting
compiler, performing a transformation on the whole source to instrument the original
code. We would like to know how this global transformation impacts the overall
performances of the program when no continuations are captured. We already
observed that exception handlers are not expensive on the JVM, but there are other
variables to take in consideration. The code fragmentation implies an increase on
the number of function calls, which can reduce performance.
I used a set of benchmarks to analyse the behaviour of the running code in the
case of both transformed code and non-transformed code. All the benchmarks
were executed on an Intel i5 dual-core processor with 4GB of RAM (i5-2410M ,
2.30GHz).The operating system was Debian GNU/Linux. The table in Figure 6.1
and the chart in Figure 6.2 show the results.

Figure 6.1: Transformed vs non-transformed code, 10 iterations, values in seconds

The fib benchmark runs a simple Fibonacci function with 30 as input. tak
implements the Takeuchi function and runs it with 18, 12, 6. cpstak is a version of
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Figure 6.2: Transformed vs non-transformed code, performance comparison

tak rewritten in continuation passing style. We can observe that the transformation
introduces a considerable overhead, especially in the fib benchmark.
To understand from where this overhead comes from, I profiled the execution
of the fib benchmark using HPROF, a profiling tool provided by the Java
platform [47]. Considering the cpu usage data (Figure 6.3), we can observe
that approximately 10% of the cpu time is spent allocating Proceure objects
(gnu.mapping.Procedure.<init> and gnu.expr.ModuleMethod.<init>).

Figure 6.3: Most called Java methods in the fib benchmark

We can reach the same conclusions analysing the heap usage. Figure 6.6 shows
which objects are more often allocated during the execution of fib.
Almost 40% of the heap is used to store object of type ModuleMethodWithContext,
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Figure 6.4: Most allocated Java object during the execution of the fib benchmark

Figure 6.5: memory usage in transformed vs non-transformed code, values in Kbytes

that is the runtime object in which closures are allocated. This is not unexpected,
as the transformed code is fragmented in a set of closures. However, this suggest
that a possible improvement for the technique can be obtained optimising closure
allocation.

Figure 6.6: Transformed vs non-transformed code, memory usage comparison
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call/cc performance

I tested the new call/cc implementation on five continuation-intensive benchmarks.
fibc is a variation of fib with continuations. The loop2 benchmark corresponds
to a non-local-exit scenario in which a tight loop repeatedly throws to the same
continuation. The ctak benchmark is a continuation-intensive variation of the
call-intensive tak benchmark. The ctak benchmark captures a continuation on
every procedure call and throws a continuation on every return. In addition to fibc
loop2 and ctak, already used in [19], I used a benchmark based on coroutines, and
another implementing a generator.
I compared the modified version of Kawa with other Scheme implementations with
an interpreter or JIT compiler, targeting either native machine code or an internal
VM:

• Petite Chez Scheme is a sibling version of Chez Scheme, a proprietary Scheme
implementation. Petite is a threaded interpreter and can be used free of
charge.

• Chicken is a Scheme to C compiler, but also an interpreter.

• Gambit is a Scheme implementation, which has both and interpreter and a
compiler that produces C code.

• Guile is an interpreter and compiler for Scheme, using a virtual machine that
executes a portable instruction set generated by its optimizing compiler, and
integrates very easily with C and C++ application code.

• Racket is a programming language based on standard Scheme, but includes
way more features in the base language. It also offers an IDE and a large
number of built in libraries and tools.

• SISC is a Scheme interpreter written in Java, and running on the JVM. SISC
is also the only other JVM Scheme supporting call/cc.

Figure 6.7: Capturing benchmark (interpreted code), 10 iterations, values in seconds

Some of the Scheme implementations introduced above can pre-compile code to a
bytecode or binary format, which can be later executed without paying the cost for
translation. Figures 6.13 and 6.14 compares the execution time of code compiled
by five compilers, including the modified version of Kawa.
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Figure 6.8: Capturing benchmark (interpreted code), 10 iterations

Figure 6.9: Capturing benchmark (pre-compiled code), 10 iterations, values in seconds

Figure 6.10: Capturing benchmark (pre-compiled code), 10 iterations
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Looking at the benchmarks’ outcome we can see that Kawa with first-class con-
tinuations (Kawa fcc), despite the overhead we measured in the previous section,
performs slightly better then SISC. As expected, Kawa fcc performances are far
from the Scheme to C compilers, however, when compared with Guile and Racket
they are within the same order of magnitude.

call/cc memory usage

I measured peak memory usage of the same five benchmarks introduced in the
performance section, testing the same range of compilers. This time Kawa fcc
performs similarly to SISC, except for the fibc benchmark. Kawa fcc also uses a
similar amount of memory similar to Racket in the coroutines, generators and
ctak benchmarks. Chez and Scheme to C compilers have performances unreachable
for implementations using a VM, both in interpreted and compiled modes.

Figure 6.11: Peak memory usage (interpreted code), 10 iterations, values in Kbytes

Figure 6.12: Peak memory usage (interpreted code), 10 iterations

I repeated the same benchmarks using pre-compiled code. However, with relation
to memory usage, the differences between interpreted vs compiled code is negligible.
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Figure 6.13: Peak memory usage (pre-compiled code), 10 iterations, values in Kbytes

Figure 6.14: Peak memory usage (pre-compiled code), 10 iterations
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Code size

We saw in Chapter 3 that we expect an increase in code size proportional to
the number of code fragments, so we want to measure the actual difference in
size between a regular class file and an instrumented one. Figure 6.15 shows a
comparison of regular code and transformed code.

Figure 6.15: Code size comparison, values in bytes

We can observe that the size of transformed code can be 10 times larger than
the code compiled without first-class continuations enabled. Even if the code
size increase is proportional to the number of fragments, the difference in size is
significant. This indicates that would be better to limit the use of transformed code
to modules that needs call/cc, and use call/cc enabled code in combination
with non-transformed code.

Figure 6.16: Size of compiled classes in bytes
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Chapter 7

Conclusions and future work

This dissertation has presented an implementation of the call/cc control operator
in Kawa, a Scheme compiler targeting the JVM. Although the problem was delin-
eated in some works in literature, there was not a compiler providing first-class
continuations on the JVM in terms of call/cc.
I developed a variant of generalised stack inspection in the Kawa compiler, address-
ing the problem of defining an A-normalisation algorithm for the Kawa super-set of
Scheme, and realising a fragmentation and instrumentation pass using the existing
Kawa framework. The whole transformation has been designed to be optional and
separated from the existing passes, so that it does not add unnecessary overhead
to modules without continuations.
I explored variations of the technique to implement other control operators, such
as shift/reset and prompts, as well as continuation barriers. Moreover, the
two passes are flexible enough that could be used on a portion of the syntax tree,
instead of the entire program.
I showed the opportunities opened by the availability of call/cc, developing a
syntax for asynchronous programming, and exploiting the A-normalisation of the
syntax tree to create a simple debugger.
The evaluation of performance and memory usage revealed that this technique can
be a valid alternative to heap-based implementations of call/cc. Benchmarks also
showed that the bottleneck of the technique is not exception handling, but closure
allocation, leaving room for improvement.

Future work

This work can be further developed in several interesting directions. I will outline a
few possible applications and extensions, which can be based on this contribution to
implement new features and obtain improvements in other programming languages
or framework.
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• Variants of this technique can be employed in other JVM languages to
implement first-class delimited and un-delimited continuations and control
operators. Languages like Clojure, JRuby, Groovy, Bigloo and others could
take advantage of this work.

• The transformation described in the previous pages uses an intermediate
A-normalisation pass. ANF has been related in other works to Static Single
Assignment (SSA) form [48]. It is possible to exploit the formal properties of
ANF to implement in the compiler many optimisation present in literature.

• In the past few years several frameworks for concurrency appeared on the Java
scene. Many of them use bytecode instrumentation to implement coroutines
and provide lightweight threads with low memory and task-switching overhead.
Quasar [49], for instance, deliver the actor model on the JVM using bytecode
instrumentation. The transformation presented in this document can give an
alternative for those frameworks that aim to provide a concurrency API for
Java or JVM languages.

• Research has been done on the use of continuations in the context of web
applications [50, 51]. The support for first-class continuations developed in
the context of this thesis, can be utilised to implement continuation based
web frameworks in Kawa or in Java.

• The research field of Dynamic Software Updating (DSU) pertains to upgrading
programs while they are running [52, 53]. Different approaches for DSU has
been developed, nevertheless it is not currently widely used in industry. Some
of the approaches use a stack reconstruction technique similar in many aspects
to the call/cc implementation described in this dissertation [54]. Future
work can start from the achievements of this work to explore an alternative
implementation of DSU on the JVM.
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