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Abstract

In this thesis a study of the lattice dynamics of vanadium dioxide by means of Inelas-
tic X-ray Scattering (IXS) and Thermal Diffuse Scattering (TDS) is presented. The
project was conducted at the European Synchrotron Radiation Facility in Grenoble.
The main measurements were performed at beam line ID28 using the IXS technique,
while the TDS results were obtained at beam line ID23.

The study of lattice dynamics allows to obtain information about the collective ex-
citations (phonons) in a periodic lattice. Thanks to quantum mechanics, a phonon can
be seen as a quasiparticle, representing an excited state of the mode of vibrations of
a crystal. Knowing the phonon dispersion allows to access various material proper-
ties, such as sound velocities, elastic constants, phonon-phonon interactions, electron
phonon-interactions and dynamical instabilities. For example, phonons are respon-
sible for the spectacular phenomenon of superconductivity: electron-phonon coupling
is the driving mechanism of this process, allowing to explain the behaviour of BCS
superconductors.

Vanadium dioxide exhibits a Metal-Insulator Transition (MIT) at about 340 K, and
this material has been widely studied along the past decades, trying to understand
the mechanism driving this transformation. Here the low temperature phase is the
insulating phase, while the high temperature one is metallic. The VO2 is neither
the only vanadium oxide, nor the only transition metal oxide showing this kind of
property, but it is the only one being characterized by a transition temperature so
close to room temperature. In addition to being interesting from a fundamental point
of view, VO2 has recently drawn a lot of attention since it offers a novel route to novel
electronic and photonic applications.

Together with the MIT, a Structural Phase Transition (SPT) takes place, suggest-
ing that the lattice dynamics can play a crucial role across the transition. One pos-
sible model which allows to explain the MIT process is known as Peierls transition:
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this model attributes the radical transformation of this material to electron-lattice
interactions. Nevertheless, the MIT process can also originate from electron-electron
interactions, and this time the mechanism is referred to as Mott (or Mott-Hubbard)
transition. Different theoretical models and a lot of experimental results have been
presented to support both the explanations, but an accurate description of lattice dy-
namics was still missing.

The aim of this work is to provide a thorough description of the lattice dynamics of
VO2 in the metallic phase, thus above the transition temperature. Combining the IXS
and TDS techniques, it is possible to obtain direct dispersion relation measurements
and diffuse scattering maps. These results give a good picture of the phonon energy
(and intensity) landscape, highlighting the role that lattice dynamics plays within the
metal-insulator transition.

The experimental results show the undeniable presence of lattice instabilities
in the high temperature phase of vanadium dioxide. Indeed, low energy acoustic
phonons are present in more than one high-symmetry direction of the Brillouin zone.
From these results it is evident that electron-lattice interactions play an important
role across the MIT, but, of course, the results themselves do not allow to exclude the
presence of electron correlations.



Sommario

In questa tesi è presentato lo studio della dinamica vibrazionale del diossido di vana-
dio (VO2), grazie all’utilizzo delle tecniche sperimentali dell’Inelastic X-ray Scatter-
ing (IXS) e del Thermal Diffuse Scattering (TDS). Il progetto è stato svolto presso
l’European Synchrotron Radiation Facility (ESRF) di Grenoble, in particolare all’interno
del gruppo di ID28, beamline specializzata nell’utilizzo della tecnica IXS per lo stu-
dio della dinamica vibrazionale. Le misure di scattering diffuso, invece, sono state
realizzate nella beamline ID23.

Lo studio della dinamica vibrazionale permette di ottenere informazioni inerenti
alle eccitazioni collettive (fononi) di un reticolo periodico. Grazie alla meccanica quan-
tistica, è possibile descrivere un fonone come una quasi-particella, che rappresenta
uno stato eccitato dei modi vibrazionali di un cristallo. Le relazioni di dispersione
dei fononi costituiscono un importante mezzo per conoscere svariate proprietà di un
materiale, ed alcune di queste sono: velocità del suono, costanti elastiche interazioni
fonone-fonone, interazioni elettrone-fonone e instabilità del reticolo. Uno dei fenomeni
più famosi nel quale i fononi sono coinvolti è la superconduttività: infatti, l’interazione
elettrone-fonone è in grado di spiegare il comportamento dei superconduttori che ri-
entrano nella teoria BCS (tradizionali superconduttori a bassa temperatura di tran-
sizione).

Il VO2 è stato ampiamente studiato durante gli ultimi decenni, principalmente
grazie alla sua interessante caratteristica di mostrare una transizione metallo-isolante
(MIT) alla temperatura di circa 340 K, dove la fase a più basse temperature è quella
isolante, mentre quella ad alte temperature è la fase metallica. Il VO2 non è né l’unico
ossido di vanadio, né l’unico ossido di metalli di transizione a mostrare una MIT, ma è
l’unico tra questi a possedere una temperatura di transizione così vicina alla temper-
atura ambiente. Inoltre, il diossido di vanadio sta recentemente attirando ulteriori
attenzioni grazie a diverse applicazioni tecnologiche nelle quali può essere impiegato,
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sia nel campo dell’elettronica che della fotonica.
Ulteriore caratteristica di questo materiale, è la presenza di un cambiamento nella

struttura reticolare in concomitanza con la transizione metallo-isolante. Questo fatto
porta a pensare che la dinamica vibrazionale possa giocare un ruolo importante nella
MIT, grazie a interazioni elettrone-fonone che porterebbero ad una transizione ben de-
scritta nel modello proposto da Peierls. Ciononostante, un secondo meccanismo è stato
proposto per spiegare il processo di MIT: questo è il modello di Mott (o Mott-Hubbard),
e si basa sull’idea di una transizione guidata da interazioni elettrone-elettrone. Molti
risultati sperimentali sono stati presentati a favore di entrambi i modelli proposti,
dividendo la comunità scientifica per lungo tempo.

Il principale scopo di questo lavoro è quello di applicare le tecniche sopra citate,
di IXS e TDS, in modo tale da fornire una accurata desrizione della dinamica vi-
brazionale del diossido di vanadio nella fase metallica. La combinazione di queste
due tecniche sperimentali, permette di ottenere misure dirette di relazioni di dis-
persione e mappe di scattering diffuso. Da queste è possibile ricavare importanti
informazioni inerenti al ruolo della dinamica vibrazionale nel processo di transizione
metallo-isolante.

I risultati sperimentali mostrano in modo innegabile la presenza di instabilità
reticolari nella fase metallica del VO2. Fononi acustici caratterizzati da basse energie
sono presenti in più di una direzione di alta simmetria all’interno della zona di Bril-
louin. Risulta quindi evidente da questi risultati che interazioni elettrone-fonone sono
presenti all’interno di questo sistema, prendendo parte al processo di MIT, ma ciò non
permette di escludere la presenza di correlazioni elettroniche.
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Chapter 1

Theoretical Basis

1.1 Introduction

It is useful to start with a brief overview concerning the theoretical basis, in order
to get familiar with the standard formalism of lattice dynamics. The study of lattice
vibrations is very important, since it can give a lot of information about a material
properties, such as sound velocities, elastic constants, interatomic force constants,
phonon-phonon interactions, phonon-electron coupling and dynamical instabilities. A
lot of references exist dealing with these topics, which provide different approaches
for describing the formalism (for example [1, 2, 3] ). Here we follow the formalism of
Willis and Prior [4].

The phrases ’lattice dynamics’ or ’lattice vibrations’ refer to the collective modes,
which are modes of vibrations, of the entire crystalline solid. The most important in-
formation regarding the lattice dynamics are contained within the dynamical matrix;
to get there, we start by considering the simplified problem of the vibration of atoms
in an isolated molecule.
Suppose our molecule is composed by n atoms, then 3n coordinate are needed to de-
scribe their displacements from the equilibrium position. If the symbol κ is used to
label each atom, then we may exploit a single 3n-vector u (with 3n components) to
represent the atomic displacements in the entire molecule. In terms of matrix no-
tation, u vector can be seen as a 3n×1 column matrix; to show that in a compact
notation we can use the transposed quantity uT

uT = (u1(1)u2(1)u3(1) . . . u1(n)u2(n)u3(n)), (1.1.1)

1
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where uα(κ) represents the components of the displacement of the κ-th atom, along
the three Cartesian axes α (α = 1, 2, 3).
Now we can proceed introducing the interatomic forces, which must be functions of
the atomic displacement. Let’s assume that the force on atom κ arising from its inter-
action with another atom κ’ can be written as a simple linear function of the displace-
ments

F(κ) = −Φ(κκ′) u(κ′). (1.1.2)

This formula represents a set of three linear equations, and it tells us that the force
exerted on atom κ in any arbitrary direction, is proportional to the displacement of
atom κ’ in any other arbitrary direction. Moreover, the quantity Φ(κκ’) is the 3 × 3

force-constant matrix of the form

Φ(κκ′) =

 Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

 , (1.1.3)

where the subscripts refer to axis directions; for example, the element Φ32(κκ′) is the
negative of the force on atom κ in the z-direction, when atom κ′ is displaced along the
y-direction by one unit. These force-constant matrices can also be related directly to
the potential energy of the whole molecule, in fact, writing the Taylor expansion of
the potential energy in the atomic displacement gives

2V = 2V0 + 2
∑
κα

(
∂V

∂uα(κ)

)
0

uα(κ) +

+
∑
κα

∑
κ′α′

(
∂2V

∂uα(κ) ∂uα′(κ′)

)
0

uα(κ)uα′(κ′) + .... , (1.1.4)

where α and α′ both refer to the three axes, and the 0 outside each derivative, means
that they have to be evaluated at the equilibrium atomic positions (null displace-
ment). It is obvious that the energy is at its minimum value when all the atoms are
at their equilibrium positions, so that all the first derivative of terms in Equation
1.1.4 are zero. Now it is possible to introduce two more approximation, which allow
to simplify a lot the previous expression:

1. zero-energy is chosen so that the energy of the equilibrium configuration is zero
(V0 = 0);
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2. harmonic approximation allows to cut the Taylor expansion at the second-order
derivative of the potential energy; the physical meaning of this approximation
is that the atoms of the system vibrate with a simple harmonic motion.

Thus, noticing that the α component of the force acting on atom κ when it is moved
from its equilibrium position is −∂V/∂uα(κ), and exploiting a simplified form of Equa-
tion 1.1.4, we can get

Fα(κ) = −
(

∂2V

∂uα(κ) ∂uα′(κ′)

)
0

uα′(κ′), (1.1.5)

which represents the interaction of κ with just one of the others κ′ atoms inside the
molecule. This way, it is straightforward to write

Φαα′(κκ′) =

(
∂2V

∂uα(κ) ∂uα′(κ′)

)
0

, (1.1.6)

thanks to Equation 1.1.2.
Until now we have used a very powerful object without even talking about it,

but now it is necessary to introduce it: this is the adiabatic (or Born-Oppenheimer)
approximation. This model is based on the fact that the mass of nuclei is much bigger
that the mass of an electron. Thus, it is possible to decouple the nuclei and electrons
motions, and, more generally, it allows to split the whole complex system into an
electronic and a nuclear part to be solved separately. Together with the harmonic
approximation, they represent the starting point to talk about molecular (and lattice)
vibrations:

• thanks to the harmonic approximation we can write the potential energy in the
quadratic form, and force as a linear function of the displacements (see Equation
1.1.2);

• adiabatic approximation allows us to write the potential energy without the spe-
cific involvement of the electron coordinates. This means that the electrons in-
stantaneously take up a configuration appropriate to the displaced nuclei, be-
ing the electron dynamics much faster than the nuclei dynamics because of the
masses involved.
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1.2 Equations of motion

Newton’s classical equations of motion can be used to describe the displacement of
atoms out of their equilibrium positions, so that motion of atom κ of mass m(κ) can be
written in the form

m(κ) ü(κ, t) = −
∑
κ′

Φ(κκ′) u(κ′, t), (1.2.1)

which represents three equations, one for each Cartesian direction. Since we are
talking about atomic shifts from their equilibrium positions, it is valid to assume an
oscillatory solution, like

u(κ, t) = U(κ) e−iωt, (1.2.2)

where ω is the frequency of vibration, and U(κ) represents the amplitude of vibration
of atom κ. Substituting this possible solution in Equation 1.2.1 we get

m(κ)ω2 U(κ) =
∑
κ′

Φ(κκ′) U(κ′). (1.2.3)

Thus, if the summation over κ runs over all n atoms, Equation 1.2.3 represents a set
of 3n equations. A compact notation is needed to represent this problem in a simple
way; this is done by means of a matrix notation. The displacements of all atoms
are contained in the 3n×1 column matrix U0, and a ’mass matrix’ is also introduced,
which is a simple 3n×3n diagonal matrix m. The last step consists in assembling
all the 3×3 Φ(κκ′) matrices as blocks of a big 3n×3n matrix called M0. Here the
subscript 0 is used to indicate that a particular matrix is not mass-adjusted. Using
this compact notation we can rewrite Equation 1.2.3 in the succinct form

ω2 m U0 = M0 U0, (1.2.4)

where we still miss the mass-adjustment to get to a standard eigenvalue problem.
Thus, multiplying both sides by m−

1
2 we reach U and M, the mass-adjusted forms of

U0 and M0 respectively. This way, the final shape of our problem becomes

ω2 U = M U, (1.2.5)
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where M is a real symmetrical 3n×3n square matrix. Using standard matrix meth-
ods, it is possible to reach the characteristic equation of the matrix M

det(M − ω2I) = 0, (1.2.6)

where I is a 3n×3n unit matrix. Thus, because of the dimensions of our system (a
molecule in this case), we get an equation of the 3n-th degree, whose roots give 3n
eigenvalues, which are the values of the squared frequency ω2. We are sure that the
eigenvalues are real, thanks to the fact that matrix M is real symmetric; moreover,
we need all the eigenvalues to be positive in order to have dynamical stability of
our system, for the set of force constants employed. Of course, by substituting the
eigenvalues inside Equation 1.2.5, we get the set of eigenvectors; each eigenvalue
has its correspondent eigenvector describing the relative displacement of the atoms
vibrating with that particular frequency. It is convenient at this point, to introduce
a new symbol, j (with j = 1, 2, 3, ..., 3n), in order to label the eigenvalues and eigen-
vectors. Thanks to the orthonormality condition on the eigenvectors, it is possible
to picture them as a set of independent harmonic oscillators; these 3n independent
modes are known as the NORMAL MODES OF VIBRATION of our system. In this simple
picture, matrix M is the one containing all the information about our system, that is
the molecule; to reach the dynamical matrix we need to do some more steps.

1.3 Born - von Karman theory

Now we will switch the concepts shown above from the molecular description to the
more complex crystalline solid structure. The starting point to do so, is the theory
introduced by Born and von Karman, which carry in two new ideas of fundamental
importance:

1. we can suppose our crystal to be finite, but unbounded, an assumption also
known as the cyclic boundary conditions. We can imagine our crystal to be suf-
ficiently large so that the atoms at the surface comprise a very small portion of
the total; this way, the cyclic boundary conditions allow us to neglect completely
the surface. Let’s picture a crystal with N1 unit cells along a particular axis: the
conditions state that the N1-th cell is linked around to the first cell in a loop (and
so the same for the other two directions);

2. the vibrations are no longer considered as simple oscillating stationary modes,
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but as travelling waves running through the whole crystal.

These two concepts bring us to introduce a new kind of solution of the equations of
motion (replacing Equation 1.2.2), with the following shape

u(κl, t) = U(κ|q) exp [i (q · r(κl)− ω(q)t+ φ(κ|q))] , (1.3.1)

where it is important to highlight that now κ refers to a particular atom in the unit
cell, and l labels a unit cell. Even if the formalism for the description remains the
same, there is a different behaviour of our system: the equilibrium position of one
atom is r(κl), and its displacement u(κl, t) depends on the wave vector q of the trav-
elling wave. The vector U(κ|q) expresses the amplitude and the direction of the dis-
placement of atom κ, as produced by the travelling wave (with wave vector q); it is
important to notice that this vector is the same for all unit cells due to Bloch’s theo-
rem, which states that for corresponding atoms in different unit cells, the movements
are identical as regards their amplitude and direction, with the only difference being
the phase. Let’s suppose to have a crystal with N unit cells and n atoms per unit
cell, for a total number of 3nN atoms: thanks to Bloch’s theorem our problem can be
reduced from studying 3nN equations (one for each atom), to study just 3n equations
of motion, restricting our attention to just the atoms within a unit cell. This means
that the n atoms within a unit cell play the same role of the n atoms of a molecule.
Now, because of the wave picture, we can find two different configurations:

1. longitudinal waves: the atomic displacements are parallel to the propagation
direction of the wave itself (so they are parallel to q);

2. transverse waves: U(κ|q) is perpendicular to q.

We note from Equation 1.3.1 that the frequency is a function of the wave vector, and
this dependence of ω on q, ω(q), gives the dispersion relation for the propagation
direction defined by q. Dispersion relations give direct insights about the vibrational
energies across the reciprocal space, highlighting some important features like lattice
instabilities and possible electron-phonon interactions. The only term left is the phase
factor φ(κ|q), which is usually embedded inside the vector U in order to rewrite the
last equation as

u(κl, t) = U(κ|q) exp [i (q · r(κl)− ω(q)t)] , (1.3.2)

where the vector U(κ|q) is now complex.
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From this new starting point, it is possible to develop the formalism for lattice
dynamics following the same steps introduced above. The equations of motion for the
κ-th atom in the l-th unit cell are

m(κ) ü(κl, t) = −
∑
κ′l′

Φ

(
κ κ′

l l′

)
u(κ′l′, t), (1.3.3)

where the elements of the force-constant matrix are now related to the potential en-
ergy of the crystal, by the same expression as before (just adding the unit cell index
l in the formula). Thus, substituting Equation 1.3.2 inside the equations of motion,
and applying the mass-adjustment, we can get the eigenvalue equation

ω2 U = D U, (1.3.4)

where U is the mass-adjusted displacement vector as before, defined by the relation
U = m

1
2 U0. Here m is the mass matrix previously defined, and U0 is the column

matrix assembled from the elements of the U(κ|q)

UT
0 (q) = (U1(1|q)U2(1|q)U3(1|q) . . . U1(n|q)U2(n|q)U3(n|q)). (1.3.5)

Finally, D(q) is the mass-adjusted 3n×3n dynamical matrix defined by

D = m−
1
2 D0 m−

1
2 , (1.3.6)

and a typical element has the following shape

Dαα′(κκ′|q) =
(
m(κ)m(κ′)

)− 1
2
∑
l′

Φαα′

(
κ κ′

0 l′

)
exp

[
iq · (r(κ′l′)− r(κ0))

]
, (1.3.7)

where the interactions expressed in the last formula are between atom κ within the
unit cell 0, and all the atoms κ′ inside every unit cell of the crystal. Thus, the dynam-
ical matrix is the (mass-reduced) Fourier transform of the force-constant matrix. The
last exponential term represents the phase factor, which rise from the different posi-
tions of the atoms we are considering; because of it, the dynamical matrix results to
be complex, unless every atom is at a center of symmetry. Nevertheless, the D matrix
is Hermitian by construction, meaning that D = (D∗)T , and thanks to this the eigen-
values of Equation 1.3.4 are always real, but the eigenvectors can be complex anyway.
As before, we can use the symbol j to label the eigenvalues (j = 1, 2, ..., 3n), but it
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now refers to a branch of the dispersion relation. Each branch contains N frequencies
corresponding to the N q-vectors in the Brillouin zone. Because of this new represen-
tation, for each q-vector in the zone there is a normal mode frequency ωj(q), with a
corresponding eigenvector. As previously mentioned about the simplified system con-
cerning a molecule vibrations, the eigenvectors U( jq) just give the relative amplitude
of the atomic vibrations; it is convenient, therefore, to use normalized eigenvectors
e( jq) such that ∑

ακ

e∗α(κ|jq) e(κ|j′q) = δjj′ . (1.3.8)

Consequently, the column matrices U( jq) become

U( jq) = |A(jq)| e(jq), (1.3.9)

where |A(jq)| is a scalar constant, characterizing the amplitude of excitation of the
mode ( jq). This way the eigenvector e( jq) is a column matrix like this

eT (jq) = (e1(1|jq) e2(1|jq) e3(1|jq) . . . e1(n|jq) e2(n|jq) e3(n|jq)), (1.3.10)

where a single 3×1 component of e( jq)

e(κ|jq) =

 e1(κ|jq)

e2(κ|jq)

e3(κ|jq)

 (1.3.11)

is known as polarization vector of atom κ, when vibrating in mode ( jq). Using this
new notation, we get to the final equation

ω2
j (q) e(jq) = D(q) e(jq) (1.3.12)

that has to be solved in order to determine the 3n eigenvalues and the corresponding
eigenvectors.

To end this theoretical introduction, we can very briefly highlight the most impor-
tant results:

• through the square root of the eigenvalues, we get the vibrational frequency
(and so the energy) associated to each vibrational mode;

• the eigenvectors correspondent to each eigenvalue, give us the pattern of atomic
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displacements belonging to each vibrational mode;

• the dynamical matrix D(q) contains the complete information of the lattice dy-
namics of our system.



Chapter 2

Experimental Techniques

In this thesis, two different experimental techniques are going to be used in order to
study the lattice dynamics of vanadium dioxide. The two techniques are the Inelastic
X-ray Scattering (IXS) and the Thermal Diffuse scattering (TDS). Here they are going
to be introduced, starting from a general description, then going deeper in order to
highlight the power of both these tools.

2.1 Inelastic X-ray Scattering

This is an X-ray spectroscopy technique in which high energy, X-ray photons are
inelastically scattered off matter. It is a photon-in photon-out process, where both
the energy and momentum change of the scattered photon are measured. Generally
speaking, it is a versatile technique, since choosing the right energy change range
it is possible to study the different elementary excitations in condensed matter (see
Figure 2.1.1): starting from the low energy excitations, phonons and magnons can
be inspected (∼1-100 meV), then there are valence electron excitations and plasmons
(∼1-10 eV) and finally the core electron excitations, up to 1 keV. In this work we exploit
the IXS technique to study phonon vibrations, thus the order of magnitude we are in-
terested in for the energy loss is 1 meV. Comparing the very small energy change that
needs to be detected with the energy of the incident photon which is around 10 keV,
the resulting relative energy resolution needed is at least ∆E

E = 10−7. This is the rea-
son why such experiments are so challenging, and they cannot be accomplished using
a conventional X-ray tube because of its intrinsic characteristics. Indeed, before the
advent of high intensity X-rays produced thanks to the modern synchrotrons (in the

10



CHAPTER 2. EXPERIMENTAL TECHNIQUES 11

Figure 2.1.1: Schematic representation of the elementary excitations being studied
with the inelastic X-ray scattering technique.

1990’s), the inelastic neutron scattering method (INS) was the leading technique to
obtain direct measurements of dispersion curves, since the 1960’s. Neutrons fit very
well for this kind of application, thanks to their properties:

• the study of phonon vibrations requires an incident wavelength of the order of
the interparticle distances, and neutrons with λ ∼ 0.1nm have an energy o about
100 meV, which is close enough to typical phonon energies;

• the neutron-nucleus scattering cross-section is small enough to allow for a large
penetration depth.

Other experimental methods that allow to study the vibrational properties of a ma-
terial (with energy resolution up to 10−8 eV) are the Brillouin and Raman scattering,
but they can only determine acoustic and optical modes, respectively, with a momen-
tum transfer limited to an area close to the center of the Brillouin zone. Thanks
to the appearance of third generation synchrotron radiation sources, providing very
high photon flux and brilliance, direct measurements of phonon dispersions were pos-
sible. By the end of the 1990’s the technique of inelastic X-ray scattering for phonons
reached its full maturity, allowing to reach an energy resolution of 1.5 meV. Moreover,
X-rays has some advantages with respect to neutrons:

• X-rays allow to successfully study elements with a large incoherent cross-section,
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which do not permit to get good results with neutrons;

• INS experiments typically require volumes of several mm3, while IXS measure-
ments can be successful on samples of very small sizes, until 10−5 mm3, thus
consenting to study materials only available in very small quantities and the in-
vestigation of materials in extreme thermodynamic conditions (for example very
high pressure).

2.1.1 The Scattering Process

The geometry of a general inelastic scattering process is displayed in Figure 2.1.2.
Here the incident monochromatic beam possesses well known wavevector ki, energy

Figure 2.1.2: Schematic picture of a scattering process [6].

Ei and polarization unit vector ei; after hitting the target, it is scattered into the solid
angle element dΩ, and the angle 2θ is known as scattering angle. The scattered beam
is defined by the wavevector kf , the energy Ef and the polarization vector ef , thus,
thanks to the conservation of both energy and momentum, it is possible to extract
information about the momentum and energy transfer

Q = ki − kf , (2.1.1)

E = Ei − Ef . (2.1.2)

In these two formulae E is the energy transferred to the system in order to create (or
annihilate) a phonon, and Q is referred to as the scattering vector. In the frame of IXS
for phonons, the energy losses (or gain) associated with phonon excitations are always
much smaller than the incident photon energy (E�Ei), and this allows to simplify the
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expression for the scattering vector like this

Q = 2 ki sin(θ) , (2.1.3)

since the relation between energy and momentum for photons is E (k) = ~ c k . Here
it is possible to highlight that for IXS, at a given momentum transfer, there are no
limitations in the energy transfer for phonon excitations, in contrast to INS where
energy and momentum transfer are strongly coupled.

2.1.2 Scattering Cross-Section

The physical quantity that can be experimentally measured is the double differential
cross-section

d2σ

dΩ dEf
, (2.1.4)

and it is proportional to the number of incident probe particles (photons for IXS) scat-
tered into the solid angle element dΩ within the energy range Ef and Ef + dEf . Before
proceeding with a detailed description of the cross-section, one needs to introduce the
Hamiltonian that describes the system under study. In order to model the electron-
photon interaction in a scattering process, within the weak relativistic limit, a four
terms Hamiltonian is used [5]. Now, it is possible to neglect resonance phenomena
close to X-ray absorption thresholds and even weaker magnetic couplings, just leav-
ing the term arising from the Thomson interaction Hamiltonian

HTh =
1

2
r0

∑
j

A2(rj , t) , (2.1.5)

where r0 = e2

me c2
is the classical electron radius and A2(rj , t) is the vector potential of

the electromagnetic field in the rj coordinate of the j-th electron, and the sum extend
over all electrons inside the system. Starting from the situation previously introduced
for the scattering process, the probability to transmit a plane-wave state |ki〉 to the
plane-wave state |kf 〉 is given by the Fermi’s Golden Rule, thanks to the application of
the first order perturbation theory. By using the Dirac bra-ket notation, it is possible
to express the initial and final states describing the electron system of the sample
as |I〉 and |F 〉, respectively. Combining all the ingredients (see [6, 7]), the scattering
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cross-section can be expressed as

d2σ

dΩdEf
= r2

0(ef · ei)2

(
kf
ki

)∑
I,F

PI

∣∣∣∣∣∣
〈
F

∣∣∣∣∣∣
∑
j

eiQrj

∣∣∣∣∣∣ I
〉∣∣∣∣∣∣

2

δ(E + Ef − Ei) . (2.1.6)

At this point, a couple of considerations can be introduced; the first is the validity of
the adiabatic approximation. This allows separating the general quantum state |S〉
into the product of an electronic and nuclear part: |S〉 = |Se〉 |Sn〉. This approximation
is particularly suitable when the exchanged energies are small with respect to the
electron excitation energies, and it is just the case for phonons. The contribution to
the total scattering coming from the valence electrons close to the Fermi level is small
compared to the contribution coming from the core electrons. Thus, it is possible
to assume that the electronic part of the total wavefunction is not changed by the
scattering process, and therefore the difference between the initial and final state
is substantially due to the excitations of the ion system. This way, it is possible to
rewrite the second part of Equation 2.1.6, starting from the first summation

∑
In,Fn

PIn

∣∣∣∣∣
〈
Fn

∣∣∣∣∣∑
k

fk(Q)eiQRk

∣∣∣∣∣ In
〉∣∣∣∣∣

2

δ(E + Ef − Ei) , (2.1.7)

where fk(Q) is the atomic form factor of the atom k, representing the Fourier trans-
form of the electron density, and Rk is the position vector of the k-th atom. Since
the scattering process occurs from the electronic cloud of the atom, f(Q) is equal to
the atomic number Z for Q → 0 and it decays almost exponentially with increasing
momentum transfer. The sum k extends over all atoms of the system. Thus, the
differential cross-section can be separated into two parts

d2σ

dΩdEf
=

(
dσ

dΩ

)
Th

· S(Q, E) . (2.1.8)

The first factor is known as Thomson scattering cross-section(
dσ

dΩ

)
Th

= r2
0(ef · ei)2

(
kf
ki

)
, (2.1.9)

and it describes the coupling of the electromagnetic field of the incident photons, to
the electrons of the system. In this case, it results to be weak, since r2

0 is of the order
of 10−25 cm2, and because of the very small energy transfer with respect to the energy
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of the incoming photons (more than 10 keV), the term
(
kf
ki

)
is about equal to one. Pro-

ceeding with the second factor, that is displayed in Equation 2.1.7, it is known as scat-
tering function S(Q, E). The scattering function describes the properties of the sample
in the absence of the perturbing probe, and it gives direct information about the dy-
namics of the system from an inelastic scattering experiments. In order to switch
from X-ray to neutron cross-section, the Thomson factor and the atomic form factor
have to be replaced by the coherent neutron scattering length b of the element under
study. Thanks to the adiabatic approximation previously introduced, the electrons are
expected to follow the motions of the nuclei instantaneously, therefore phonons, which
represents low frequency movements of the nuclei, will cause electron charge density
variations, which can be directly observed by inelastic X-ray scattering. Indeed, the
scattering function S(Q, E) can be expressed as the time and space Fourier transform
of the density-density correlation function

S(Q, E) =
1

2π~N

∞̂

−∞

dt e−
iEt
~

ˆ
dr eiQ·r

〈
ρ(r′, t = 0) ρ(r′ + r, t)

〉
, (2.1.10)

with
ρ(r, t) ,

∑
j

δ(r− rj(t)) . (2.1.11)

Equation 2.1.10 contains information about the particle fluctuation inside the target
system, in different states at different times. Here, N is the number of particle in the
system, and 〈ρ(r′, t = 0) ρ(r′ + r, t)〉 is the time dependent two-particle pair correla-
tion function, where the 〈...〉 denotes the ground state expectation value of the density
operator product. The summation j (Equation 2.1.11) runs over all the target particle
of the system. In the classical limit, the pair correlation function gives the probability
of finding a particle belonging to the target at time t and at r′ + r, if there was any
particle at time t = 0 and at the position r′. Now, in the case of single phonon studies
for a single crystal sample, and within the harmonic approximation, the scattering
function can be further divided into two factors

S(Q, E) =
∑
j

G(Q, j)F (E, T, Q, j) . (2.1.12)
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Here, the first term is the dynamical structure factor

G(Q, j) =

∣∣∣∣∣∑
k

M
− 1

2
k fk(Q)

[
ejk(q) ·Q

]
eiQ·rke−Wk

∣∣∣∣∣
2

, (2.1.13)

where Mk is the mass of atom k, e−Wk is the Debye-Waller factor, rk is the position
of atom k in the unit cell and the summation k runs over all atoms inside the unit
cell. The vector ejk(q) represents the phonon eigenvector with wavevector q of atom
k in mode j, thus the scalar product ejk(q) · Q imposes selection rules for detecting
phonons. It is important to remind that Q represents the total momentum transfer,
and a proper choice of the Brillouin zone is fundamental. The previous scalar product
underlines that only phonons with a component of polarization parallel to the scatter-
ing vector contribute to the scattering intensity. The second term of Equation 2.1.12
is known as thermal factor

F (E, T, Q, j) =

〈
n (Ej(Q), T ) + 1

2 ±
1
2

〉
Ej(Q)

δ (E ∓ Ej(Q)) , (2.1.14)

which specifies the probability of creation or annihilation of a phonon. In Equation
2.1.14 the upper sign holds for energy loss and the lower one for energy gain by the
X-rays, and the term 〈n(E, T )〉 is the thermal occupation (or Bose) factor

〈n(E, T )〉 =
1

e
E

kBT − 1
. (2.1.15)

One last important aspect concerns the scattering intensity. The flux of scattered
photons into the solid angle 4Ω and energy interval 4E can be written as

N = N0
d2σ

dΩdE
4Ω4E nLe−µL, (2.1.16)

where N0 is the incident photon flux, n is the number of scattering units per unit vol-
ume, L is the sample thickness and µ the total absorption coefficient. The maximum
IXS signal is obtained for L = 1

µ . The main responsible for intensity attenuation is the
photoelectric absorption process, for energies above 10 keV. It is roughly proportional
to Z4 (becoming quite relevant for Z > 3), far away from the electron absorption edges.
Since, for small scattering vectors Q, the cross-section for Thomson scattering is more
or less proportional to Z2, N results to be proportional to 1

Z2 . Thus, thanks to these
approximation, an estimate for the inelastic X-ray scattering intensity is provided by
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Sinn [8]

I ∝ Le−µLρZ2

Θ2
DM

2
, (2.1.17)

where ΘD and ρ are the Debye temperature and density, respectively.

2.2 Thermal Diffuse Scattering

Thermal motion of the atoms in a crystal gives rise to a reduction in the intensities
of the Bragg reflections, and to a diffuse distribution of non-Bragg scattering in the
rest of the reciprocal space. This distribution is known as thermal diffuse scatter-
ing (TDS) [9]. Thus, X-ray TDS can be exploited to study the lattice dynamics of
crystals. It is an indirect method, since diffuse scattering measurements only pro-
vide information about the phonon intensities, and a detailed model for calculations
is needed to extract dispersion relations. Even so, this technique can be quite valu-
able if combined together with inelastic X-ray scattering results, as it will be shown
later in this work. The connection between this experimental technique and lattice
vibrations was established around 1940, and a few years later the TDS results were
used as a means to reconstruct the dispersion relations for the first time. Because
of the very small TDS cross-section and the relatively low flux produced by X-ray
tubes, such experiments resulted to be quite challenging from a technologically point
of view, being characterized by a very slow data acquisition rate. Therefore, in the
1950’s these measurements were limited to high symmetry directions. Thanks to the
third generation synchrotrons, providing highly collimated beams with outstanding
brilliance, and to modern two-dimensional X-ray detectors (such as image plate and
CCD), allowing parallel measurements over a large solid angle, thermal diffuse scat-
tering measurements are now feasible with high precision and efficiency. Moreover,
the exceptional computational power now available enables the use of very effective
and sophisticated models. With respect to the direct measurements of phonon disper-
sion by inelastic X-ray or neutron scattering, TDS has the advantages of a high data
acquisition rate and a simple experimental setup.

2.2.1 TDS Geometry

As it can be seen in Figure 2.2.1(a), the geometry of a diffuse X-ray scattering exper-
iment is practically identical to a X-ray diffraction experiment. The monochromatic
X-ray beam is scattered from the sample in transmission geometry, and the scattered
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intensity distribution is recorded by an area detector. The primary beam is absorbed
by a beam stop, and because of the relatively weak signal, reduction of the background
can help improving the quality of the collected data, for example using a collimator
in front of the sample. The incoming X-rays possess a wavevector ki, with modu-
lus |ki| = 2π

λi
, and they are scattered by the sample and diffracted onto the Ewald

sphere, which represents the accessible section of reciprocal space for a given crystal
orientation. The incident beam hits the origin (0 0 0) of the reciprocal space, that is
represented by a red dot in Figure 2.2.1(a). Thinking about a conventional elastic scat-
tering process, all Bragg reflections with positions on the Ewald sphere with radius
2π
λi

become visible. Since the monochromaticity of the incident beam is not perfect, the
energy uncertainty ∆E results in a thickness ∆k of the Ewald sphere (as highlighted
in Figure 2.2.1(b)), and their connection is given by ∆E

E = ∆k
k . As displayed in Fig-

ure 2.2.1(b), it is possible to fill up a large volume in reciprocal space by rotating the
sample around an axis perpendicular to the incoming X-rays and collecting the data
in small angular steps.

2.2.2 Scattering Intensity

Here, a detailed description of the scattering intensity valid for both TDS and IXS is
presented. The following formalism (summarized by Xu and Chiang [9]) is developed
within the adiabatic approximation regime, and letting the incident beam change
only the ion part of the total wave function of the system. The starting point are the
results from Chapter 1, where the dynamical D matrix together with its eigenvalues
and eigenvectors have been introduced. Just to refresh, we are considering a crystal
with N unit cells, each with n atoms. The vector rm,s = Rm + τ s + um,s gives the
position of the s-th atom in the m-th unit cell, where Rm is a lattice vector, and τ s is
a atomic basis vector within a unit cell. Finally, um,s is the displacement of the atom
from its equilibrium position. Now, the time-averaged intensity of the scattered wave
by the crystal, at scattering vector Q is

I(Q) = Ie
∑

m,m′,s,s′

fsfs′e
−iQ·(Rm,m′+τ s,s′ )

〈
eiQ·(um,s−um′,s′ )

〉
, (2.2.1)

where fs is the atomic scattering factor (previously introduced in section 2.1.2), the
〈...〉 denotes averaging over time and the general vector notation vn,n′ stands for vn′ −
vn. The term Ie is the intensity of scattering from a single electron, and it is given by
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Figure 2.2.1: (a)Sketch of the diffraction geometry for a diffuse scattering experiment.
(b) Large reciprocal space volume obtained from the rotation of the crystal around an
axis perpendicular to the incident beam [10].
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the Thomson scattering formula for a linearly polarized incident beam

Ie = Iinc
e4

m2
ec

4d2

[
sin2(φ) + cos2(φ)cos2(2θ)

]
, (2.2.2)

where Iinc is the intensity of the incoming beam, d is the distance from the scattering
center to the detector, me is the electron mass, φ is the azimuthal angle between
the plane of polarization of the incident beam and the scattering plane and 2θ is the
scattering angle. Thanks to the harmonic approximation, it is possible to simplify
Equation 2.2.1, introducing the following equivalence

〈
eiQ·u

〉
= e−

1
2〈(Q·u)2〉, (2.2.3)

which leads to

I(Q) = Ie
∑

m,m′,s,s′

fsfs′e
−iQ·(Rm,m′+τ s,s′ )e

− 1
2

〈
[Q·(um,s−um′,s′ )]

2
〉
. (2.2.4)

In order to proceed, it is helpful to refresh the expression for the atomic displacement
um,s, that is given by the superposition of all lattice vibration modes

um,s = Re

 1
√
µs

∑
k,j

ak,jek,je
i[k·(Rm+τ s)−ωk,jt+ϕk,j]

 , (2.2.5)

where µs is the mass of the s-th atom, k is the wavevector, j represents a single
vibrational mode, ωk,j is the frequency of vibration, ak,j is the vibration amplitude
and ek,j the polarization vector. The phases ϕk,j can be considered as independent
variables for different modes, and this assumption brings their time average to zero.
Now, using Equations 2.2.4 and 2.2.5 together with the last simplification, we get

1

2

〈[
Q · (um,s − um′,s′)

]2〉
= Ws +Ws′ −

∑
k,j

{
|ak,j |2

2
√
µsµs′

(2.2.6)

× (Q · ek,j,s)∗
(
Q · ek,j,s′

)
eik·(Rm,m′+τ s,s′ )

}
,
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where Ws is the Debye-Waller factor, previously introduced talking about the dynam-
ical structure factor, and it is defined as

Ws =
1

4µs

∑
k,j

|ak,j |2 |Q · ek,j,s|2 . (2.2.7)

Thanks to two different ways to express the energy of the system, it is possible to
evaluate the amplitude of vibrations. According to a classical description, the mean
kinetic energy of the system is

〈EK〉 =
N

4

∑
k,j

|ak,j |2 ω2
k,j . (2.2.8)

Whereas, following the quantum theory of harmonic oscillator, the mean total energy
is given by

〈E〉 = 2 〈EK〉 =
∑
k,j

~ωk,j

 1

e
~ωk,j
kBT − 1

+
1

2

 . (2.2.9)

Combining Equations 2.2.8 and 2.2.9 it is possible to get this expression for the am-
plitude

|ak,j |2 =
~

Nωk,j
coth

(
~ωk,j

2kBT

)
, (2.2.10)

and using it together with Equation 2.2.6, allows to obtain a new formula for the
scattering intensity

I(Q) = NIe
∑
m,s,s′

fsfs′e
−Ws−Ws′e−iQ·(Rm+τ s,s′ )eGm,s,s′ (Q), (2.2.11)

where the term G of the last exponential is

Gm,s,s′(Q) =
~

2N
√
µsµs′

∑
k,j

[
1

ωk,j

]
(Q · ek,j,s)∗

(
Q · ek,j,s′

)
×coth

(
~ωk,j

2kBT

)
eik·(Rm+τ s,s′ ). (2.2.12)

In Equation 2.2.11, the summation over m′ has been replaced by N , only leaving the
summation over m, thanks to the translational invariance of the crystal. Thus, it rep-
resents the general formula for the evaluation of IXS and TDS intensity, but it results
to be too computationally demanding because of the two nested three-dimensional
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summation, both in real and reciprocal space. One more simplification can be in-
troduced by treating the term G as a small quantity, and proceeding with a Taylor
expansion of the exponential ex = 1 + x+ x2

2 + . . ., which allows to obtain

I(Q) = I0 + I1 + I2 + . . .. (2.2.13)

Here the first term, I0, corresponds to Bragg diffraction, where the Debye-Waller
factor accounts for the intensity reduction due to the temperature influence. Using
the identity ∑

m

eik·Rm = N
∑
l

δ(Q−Kl),

where Kl denotes the reciprocal lattice vectors, it is possible to write the first-order
term I1 as

I1 =
~NIe

2

∑
j

{[
1

ωk,j
coth

(
~ωk,j

2kBT

)]
k=Q−KQ

(2.2.14)

×

∣∣∣∣∣∑
s

fs√
µs
e−Ws(Q · ek,j,s)e−iKQ·τ s

∣∣∣∣∣
2

k=Q−KQ

 .

The vector KQ is the nearest reciprocal lattice vector to Q, and k = Q − KQ is the
reduced wavevector of Q in the first Brillouin zone. Now it is useful to exploit the
following relation

ek+K,j,s = ek,j,se
−iK·τ s , (2.2.15)

which represents the fact that the polarization vectors are not periodic in recipro-
cal space within the dynamical D matrix formalism. It allows to introduce the one-
phonon structure factor as

Fj(Q) =
∑
s

fs√
µs
e−Ws(Q · eQ,j,s). (2.2.16)

Thus, the final result for the first-order term for the scattering intensity is

I1 =
~NIe

2

∑
j

[
1

ωQ,j
coth

(
~ωQ,j

2kBT

)
|Fj(Q)|2

]
. (2.2.17)

It describes the process of single phonon scattering, which is often the dominant con-
tribution, particularly at modest or low temperatures. An important property of the
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first-order scattering intensity is that at a given scattering vector Q, it involves one
phonon of any of the 3n branches at the same wavevector, because of momentum
conservation. The total TDS is given by the sum of the scattering produced by all
branches. Equation 2.2.17 does not involve nested three-dimensional summation any
more, therefore being easy for numerical evaluation. Here a strong influence by the
thermal population factor is present inside the coth function, thus the low energy
phonons (in particular the acoustic phonons close to Bragg peaks) contribute the most
to the diffuse scattering signal.



Chapter 3

Experimental Facility

The main experiments that will be described in this thesis were conducted at ID28
beam line of European Synchrotron Radiation Facility (ESRF) in Grenoble. ID28 is
the inelastic X-ray scattering beam line dedicated to the study of lattice dynamics in
condensed matter. Currently ID28 is not equipped for TDS measurements, therefore
the ID23 beam line was used for the diffuse scattering measurements. ID23 is the
highly automatized macromolecular crystallography beam line. Before proceeding
with the description of the beam lines instrumentation, a brief description of syn-
chrotron radiation is introduced.

3.1 Synchrotron Radiation

Charged particles moving at relativistic speed, which are forced to follow curved tra-
jectory by magnetic fields, emit electromagnetic radiation in the direction of their
motion, which is known as synchrotron radiation (for more details, see [11]). It was
observed for the first time in 1947 at the General Electric synchrotron in the USA, but
it was only at the end of the 1960’s that it was realized its usefulness for condensed
matter research. In our case of interest (ESRF), the charged particles are electrons;
they are generated by an electron gun, and the first step consists in accelerating
the electron in a linear accelerator, or ’linac’, where they reach an energy of about
200 MeV. As the electrons reach the desired energy, they are injected in the booster
stage, which is a 300 m circular accelerator in which electrons get to their final energy
of 6 GeV. The final step is the injection inside the storage ring, where electrons follow
a many sided polygon path under the action of magnets placed along the circumfer-

24
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Figure 3.1.1: Schematic view of a synchrotron radiation facility [11].

ence (bending magnets). Figure 3.1.1 shows a schematic representation of the above
described facility. Of course, once in the storage ring, electrons lose some of their
energy during the process of light emission: thus, the storage ring is equipped with
radio frequency cavities, which allow to restore the energy of electrons after an en-
ergy loss event. While it is possible to obtain X-ray radiation from a bending magnet,
a much more efficient way is through the use of insertion devices. Here the inser-
tion devices are placed on straight sections of the storage ring, between the bending
magnets. They consist of a periodic of magnets which produce an alternating mag-
netic field, and inducing the electrons to oscillate perpendicularly to their direction
of motion in the horizontal plane, allowing the electron to emit X-rays as it changes
velocity. A specific type of insertion device, known as an undulator, is designed so
that the oscillations of a single electron will be in phase, hence producing a cone of
emitted radiation that is orders of magnitude more intense, and much narrower than
the one produced by a bending magnet. Moreover, the undulators can be easily tuned
changing the gap between the magnets.

The synchrotron radiation produced by undulators, possesses the following pecu-
liar properties:

• narrow spectral range, that can be adjusted by changing gap and periodicity of
the magnets;
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• high photon flux, which is fundamental for phonon experiments, because of low
counting rates;

• pulsed time structure (general for synchrotron light);

• high brilliance, allowing to obtain spot size on the target of the order of a few
µm, so that very small sample can be investigated with outstanding spatial res-
olution;

• high level of linear (horizontal) polarization can be achieved.

3.2 Beam Line ID28

Beam line ID28 is dedicated to the study of phonon dispersion in condensed matter
at total momentum transfers, Q, and energy transfers, E, characteristic of collective
atom motions. It operates in the hard X-rays regime, in fact choosing the appropriate
geometry for the monochromator it is possible to obtain six different incident energies
of 13840, 15817, 17794, 21747, 23725 and 25704 eV. The scientific cases which can be
studied in ID28 are divided into three groups:

1. determination of phonon dispersions in crystalline materials;

2. study of the high-frequency collective dynamics in disordered systems (such as
quantum liquids, glass formers and biological materials);

3. determination of dispersion relations under extreme conditions: pressure up to
100 GPa and temperature of 1000 K can be achieved.

Thanks to phonon dispersions it is possible to access various material properties, like
elastic constants, phonon-phonon interaction, electron-phonon coupling and dynami-
cal instabilities.

The instrumentation of ID28 is based on the triple-axis spectrometer, previously
developed by Brockhouse for inelastic neutron scattering. As it can be noticed in Fig-
ure 3.2.1, in the first axis the energy of the incident X-rays from the undulators is
selected. Afterwards, the monochromatic beam hits the sample, whose position, ori-
entation and scattering angle are selected, this is the second axis. After choosing
the scattering angle, the third and last axis is the crystal analyzer, which specifies
the scattered photon energy to be detected. Of course, this three-steps description
is just a simplified version of the real and entire path of the beam. Before reaching
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Figure 3.2.1: Beam line ID28 schematic layout.
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the main monochromator, the X-rays (initial bandwidth 4E
E ≈ 10−2) undergo a pre-

monochromator stage. It is composed by a pre- and a post-monochromator, which im-
prove the energy resolution to 4EE ≈ 10−4 and 4EE ≈ 10−5, and they consist of Si(1 1 1)
and Si(400) channel-cut single crystals (kept in high vacuum), respectively. The main
goal of this stage is to reduce the heat load on the main monochromator, thus pre-
venting thermal expansion and damages on the main-crystal monochromator. Then
the beam reaches the backscattering monochromator, that is a Si(h h h) crystal, with
h =7, 8, 9, 11, 12 and 13, each corresponding to the energy values previously listed,
respectively: it finally provides the wanted energy resolution of 4EE ≈ 10−7 − 10−8.
Now the highly monochromatic beam needs to be properly focused onto the sample,
and this can be achieved in different ways. Both horizontal and vertical focusing
can be obtained using the platinum-coated toroidal mirror, placed just after the main
monochromator, at 25 m from the target. This configuration allows to obtain a beam
size of 500 × 80µm2 (on the sample) in the horizontal and vertical direction, respec-
tively. For a smaller focal spot, the toroidal shape of the mirror is switched to cylin-
drical one. To improve the horizontal focusing, the cylindrical mirror configuration is
used in conjunction with a platinum-coated mirror at 2.5 m from the sample. With
this configuration the beam is focused to a size of 25× 80µm. After hitting the sample
the sample, the energy of the scattered photons are analyzed by the spherical sili-
con crystal analyzers at the end of the 7 m spectrometer arm. ID28 is equipped with
9 analyzers, which are arranged in the horizontal plane with a fixed angular offset.
These silicon crystals Bragg-reflect the beam onto 9 corresponding detectors: this is
quite challenging, since the analyzers must be built in such a way that the Bragg an-
gles are identical for all the incident photons. It can be realized using crystals with a
spherical surface whose radius equals the sample-analyzer distance. This is known as
Rowland condition, and it is schematically displayed in Figure 3.2.2. Of course, it is
not possible to get a high quality crystal with such a shape, without deformations and
high level of stress. Thus, it consists of a spherical substrate on which approximately
12000 perfect silicon crystals (0.6×0.6mm2 surface size, and 3mm thick) are attached.
Finally, the analyzed photons reach the silicon diode detector with an active area of
3× 8mm2; the detector has a very low dark noise level of about 1 count in 30 minutes.
Before proceeding, it is important to underline a very important thing. The analyzers
are mounted on a 7 meters arm, which can be rotated between 0 and 45° around a
vertical axis passing through the sample position. Moving this arm corresponds to
a motion of the scattering angle 2θ, and it allows to choose the momentum transfer
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Figure 3.2.2: Sketch of the Rowland condition for crystal analyzers.

during an experiment.

3.2.1 High Energy Resolution

As discussed in Chapter 2, the scattering geometry defines the momentum and energy
transfer resulting from the scattering process at the sample. Now, in order to perform
an IXS experiment, we are interested in measuring the energy transfer at constant
scattering angle, thus keeping fixed the 2θ angle. It is achieved by changing the lat-
tice parameter of the analyzer or the main monochromator, that means changing the
temperature of the crystals. Since there are nine crystal analyzers, it is much more
reliable to act on the temperature of the monochromator (only one crystal), where
the relationship between energy and lattice parameter is 4EE = 4d

d = α4T , with
α = 2.58× 10−6K−1 the thermal expansion coefficient of silicon at room temperature.
This means that in order to obtain an energy step of about one tenth of the energy res-
olution, we need to control the monochromator temperature with a precision of about
0.5mK. A high-order Bragg reflection and a perfect crystal are mandatory to obtain
the desired energy resolution. The resolving power is connected to the order of Bragg
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reflection by 4EE = dhkl
πΛext

, where dhkl is the lattice spacing associated with the (hkl)

reflection order, and Λext denotes the primary extinction length (from the dynamical
theory of X-ray diffraction, [7]). The quantity Λext increases with increasing reflection
order, which has to be high enough to achieve the required energy resolution. The
other fundamental ingredients to reach the very low value of 4E, is the backscatter-
ing configuration. The relation of energy to wavevector for X-rays leads to a simple
expression for the energy resolution

δE

E
=
δk

k
. (3.2.1)

Now, assuming that an incoming beam with wavevector k hits the sample with a
Bragg angle θ, the Bragg’s law is

2 k sin(θ) = τ , (3.2.2)

where τ represents the length of a reciprocal lattice vector. Thus, it is possible to
associate an uncertainty δθ to the scattering angle, which represents the angular
divergence of the beam. It produces an uncertainty δk on the wavevector, that affects
the energy as well. From Equation 3.2.2, it is possible to obtain(

δk

k

)
θ

= cot(θ) δθ , (3.2.3)

that represents the contribution of the scattering geometry on the energy resolution
[6]. From Equation 3.2.3, it is possible to notice that this contribution can be mini-
mized using a scattering angle close to 90°: this is the reason to operate close to the
backscattering geometry.

3.3 Beam Line ID23

The beam line is composed of two independent end-stations which operate concur-
rently. We are interested in ID23-1, a macromolecular crystallography beam line, that
has a tunable energy in the range of 5 - 20 keV. It is a highly automatized beam line, in
fact it allows remote semi-automatic sample alignment, and thanks to an automated
sample changer the users can also run their experiment even not being physically
present at ESRF. The main applications of this laboratory, it the intense study of
fundamental protein structures. As previously mentioned, thermal diffuse scattering
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measurements share the same experimental configuration of a diffraction measure-
ment, thus allowing to exploit the ID23-1 experimental setup for TDS. A sketch of

Figure 3.3.1: Beam line ID23-1 schematic layout. (a) Optic hutch and (b) experiment
hutch.

ID23-1 is displayed in Figure 3.3.1. The white beam coming from the undulators gets
attenuated before hitting the monochromator, which is a silicon (1 1 1) channel-cut
crystal: it is kept under high vacuum and cooled by liquid nitrogen. Of course the
monochromator is fully motorized in order to rotate it and change the energy of the
resulting monochromatic beam. The slits are placed just after the monochromator de-
fine size and position of the monchromatic beam, and they also reduce the background
coming from the white beam. The other fundamental component of the optic hutch is
the rhodium-coated toroidal mirror; thanks to it the beam is properly focused. Inside
the experimental hutch, a cryostream device is always present very close to the sam-
ple holder, and it allows to control the sample temperature with very high accuracy,
and to keep it steady during the measurements. The fluorescence detector is mainly
used to center the beam. Thanks to the very user-friendly interface this procedure is
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very fast, as it is the procedure to find the center of rotation of the sample. In order
to reduce the air scattering, improving the quality of the acquired signal, a collimator
in front of the sample (not always used) and a beam stop just behind the sample are
exploited. The X-rays diffracted from the target are finally detected from the area
detector, that in this case is a PILATUS detector, based on the silicon hybrid pixel
detector system [12]. It currently represents the best option available for TDS studies
with X-ray energies up to 20 keV. This detector operates in single photon counting
mode and has practically zero dark current and zero read-put noise. The active area
is 423.6 × 434.6mm2, the pixel size is 172 × 172µm2 for a total of 2463 × 2527 pixels.
Finally, the read-out time is 3ms and the frame rate is 25Hz. All these properties
characterize a very powerful detector, which allows to obtain extremely high quality
data.



Chapter 4

Vanadium Dioxide

4.1 Introduction

Vanadium dioxide has been widely studied along the past decades, mainly thanks
to its spectacular metal-insulator transition. It is neither the only vanadium oxide
compound, nor the only transition metal oxide to show such an interesting behaviour,
we can think about V2O5, V2O3, NbO2, and many others [13, 14, 15, 16], but VO2 is
attracting much more attention with respect to the others because of its transition
temperature (TMIT ≈340K), which is relatively close to the room temperature. From
the scientific point of view, metal-insulator transition (MIT) is a topic of long-standing
interest in condensed matter physics. Experimental and theoretical studies of the
MIT phenomenon in VO2 have been active for more than half a century. Despite
this large amount of research, the mechanism responsible for the metal-insulator
transition in VO2 has yet to be clearly identified. In addition to being interesting from
a fundamental viewpoint, vanadium dioxide has recently drawn a lot of enthusiasm
thanks to the wide range of possible technological applications for which it can be
exploited.

4.1.1 Properties

This impressive MIT process is also accompanied by a structural phase transition
(SPT), where a high temperature metallic tetragonal lattice (rutile structure) trans-
forms to a low temperature insulating monoclinic one. Anyway, the VO2 crystal struc-
ture topic deserves a more detailed discussion, which will be provided later in this
chapter; now I am going to focus on the charming properties of this material, which

33
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are possibly linked to different technological applications. Of course, the first one that
needs to be underlined, is the 4 to 5 order abrupt decreasing (depending on the sample
as described by Ruzmetov & Ramanathan [17]) of the resistance across the transition,
as it has been highlighted in the work done by Mun et al. [18], and shown in Figure
4.1.1.

Figure 4.1.1: Resistance as a function of the temperature across the metal-insulator
transition [18].

These results were accomplished by studying a single crystal VO2 sample, but
it is possible to obtain slightly different values for the transition temperature, the
resistance variations and the hysteresis width, depending on:

• the kind of sample we are talking about, for example if it is a single crystal
needle, or a thin film;

• the experimental technique utilized for the sample growth.

Another feature of VO2 is that the MIT can be tuned through external applications:
for example, the proper choice of the substrate for a thin film growth, can induce a
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compressive (or tensile) strain along the rutile c-axis which produces a decrease (or
increase) in the transition temperature, allowing to bring it as low as 300K as pointed
out by Muraoka and Hiroi [19]. Furthermore, there is also another way to change the
properties of vanadium dioxide, which exploits the role of substituents like tungsten
and titanium in order to tune both the TMIT and the hysteresis width.

Of course, electrical properties are not the only ones which undergoes a drastic
variation across the transition as discussed by Soltani et al.: a study of the infrared
transmittance in the heating cycle (see Figure 4.1.2) reveals that VO2 optical charac-
teristics are changing too [20].

Figure 4.1.2: Infrared transmittance as a function of the temperature across the tran-
sition, for VO2 on quartz substrate [20].

In order to introduce the next section, it is useful to spend a few words about one
last quality about the MIT: the metal to insulator transformation (and vice versa) is
an ultrafast process that makes this material an extremely powerful tool. Indeed,
the phase transition can be triggered at subpicosecond timescales, as it is resumed by
Yang et al., who collected the results obtained by different experimental techniques
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[16].

4.1.2 Technological Applications

Before proceeding, it does worth to talk about a couple of examples concerning real
world enforcement of vanadium dioxide. From all the characteristics briefly intro-
duced above, it is straightforward to notice that we are talking about a material that
has a lot of intriguing qualities. Indeed, VO2 has being studied during these years
for a very different set of technological applications, thus it can be quite interesting
to give a short panoramic about them. Of course, a central theme in devices explor-
ing metal-insulator transition is the realization of an ultrafast switch: combining the
significant change in resistance with the superfast transformation which lasts only
few hundreds of femtoseconds, makes VO2 a perfect candidate for this kind of devices.
The only problem is the MIT triggering mechanism, since a temperature change does
not match very well with electronic switch devices: this obstacle was solved by Ste-
fanovich et al., who reported that an electric field or electron injection in VO2 can
trigger the metal-insulator transition (E-MIT), opening the path for a new family of
field effect transistors (see Figure 4.1.3(a) for a schematic representation of the appa-
ratus) [21].

Figure 4.1.3: Two examples of devices. (a) Schematics of a VO2 electronic switch
device [16]. (b) Electro-optical switch device, for λ= 1.55µm [20].

Of course, it is possible to think about some other kind of application, exploiting the
optical properties of vanadium dioxide. An example is shown in Figure 4.1.3(b) from
the work of Soltani et al., whose group built an electro-optical switch apparatus, uti-
lizing the E-MIT as above mentioned. Instead, without the help of any electrical
triggering mechanism, it is possible to get a thermochromic coating which is based
only on the natural characteristics of this material, and results to be attractive as a
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passive smart radiator device for spacecrafts [20].

4.2 VO2 Structure

As previously noted, the metal-insulator transition is accompanied by a structural
phase transition, but the situation is much more complicated than it has been intro-
duced before. Two different monoclinic phases, known as M1 and M2, can be recog-
nized, moreover a third insulating triclinic T phase also exists, while in the metallic
phase the only structure is the rutile R (tetragonal) one. Here I will mainly focus on
the most important ones, which are M1, M2 and obviously the rutile.

4.2.1 Rutile Phase

The rutile phase appears above approximately 340 K, depending on the quality and
the kind of sample as already remarked. The vanadium dioxide metallic structure
is simply based on a traditional tetragonal lattice, with space group P42/mnm. The
Wyckoff positions of the atoms within the unit cell displayed in Figure 4.2.1 are [22]:

• (2a): (0, 0, 0) and (1
2 , 1

2 , 1
2 ) for the metal atoms;

• (4f): ±(u, u, 0) and ±(1
2 +u, 1

2 -u, 1
2 ) for the oxygen atoms.

According to McWhan et al. [23], the lattice constants are

aR = 4.5546 Å,

cR = 2.8514 Å

and the internal oxygen parameter is u = 0.3001. From Figure 4.2.1 it is rather easy
to visualize the rutile structure as a body centered tetragonal pattern formed by the
metal atoms, each of them surrounded by an oxygen octahedron. Octahedra centered
at the corners and the center of the cell are rotated by 90° about the tetragonal c-axis
relative to each other, and because of this feature the lattice translational symme-
try reduces to simple tetragonal. It is interesting to put the attention on the VO2

tetragonal c-axis: comparing its length with neighboring rutile systems, it emerges
that it is slightly shorter than the other ones, and this behaviour can be linked to the
insulating structure, as we will see. A possible explanation is given by Goodenough
[24], who suggested the d electrons to be responsible for this short distance, since
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Figure 4.2.1: The tetragonal metallic structure. The big, red spheres represents the
metal atoms, while the small blue ones are the oxygen atoms. It is possible to notice
the oxygen octahedron which surrounds each vanadium [22].

they are able to provide additional binding either through direct overlap of d orbitals
of adjacent vanadium atoms, or thanks to the oxygen atoms on the shared edge of
contiguous oxygen octahedra. It is useful to spend a few words about the vanadium
d orbitals, which are shown in Figure 4.2.2. This choice of Cartesian axes is consis-
tent with the choice displayed in Figure 4.2.1, where it is possible to notice that there
exist two differently oriented octahedra: because of the orientation, it is possible to
define two distinct z axes. Here, in contrast to the traditional orientation of the x and
y axes towards the metal-ligand bonds, the coordinate systems have been rotated by
45° about the local z axis such that they are parallel and perpendicular, respectively,
to the rutile c axis. Now we focus on the octahedra at the center of the tetragonal cell.
The angular parts of the d orbitals which are exhibited in Figure 4.2.2(a) and (b) rep-
resent the eg states, resulting from the octahedral crystal field splitting of the metal
d orbitals. Instead, the t2g states are built from the orbitals from Figure 4.2.2(c), (d)
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Figure 4.2.2: Angular parts of the d orbitals. (a) d3z2−r2 , (b) dxy, (c) dx2−y2 , (d) dxz and
(e) dyz [22].

and (e). Starting from these last three pictures, it is possible to observe the following
remarks:

• the dx2−y2 orbitals point along the cR and the local y axes, thus these orbitals
provide a σ-type overlap between metal sites along the vertical chains formed
by the octahedra;

• the dyz states point forward the 〈100〉 directions. As a consequence, they mediate
π-type overlap between metal atoms on the vertical chains;

• the dxz give a small σ-type overlap with their counterparts at metal sites trans-
lated by the vectors 〈1, 0, 0〉.

These statements are due to the particular choice of coordinate system; as follow the
overlap of both the dx2−y2 and dyzorbitals with orbitals of the same type at neigh-
bouring sites connects atoms, which are separated by vectors of the simple tetragonal
lattice. On the other hand, coupling between atoms, which are located at the corner
and in the center of the cell, is provided by the dxz parts.

4.2.2 M1 Phase

At standard condition of pressure and below approximately 340 K, the vanadium diox-
ide shows the well known M1 phase. The first significant experimental results about
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this structure, had been provided by Andersson in 1956; indeed, before this year, the
room temperature phase of VO2 was thought to be a simple tetragonal one. Thanks to
his work, Andersson proved that assertion to be wrong, since the M1 phase is a simple
monoclinic structure (as displayed in Figure 4.2.3), with space group P21/c [25].

Figure 4.2.3: M1 structure of vanadium dioxide. Distinction between two types of
oxygen atoms is underlined [22].

A structural refinement study of VO2 was done by Longo and Kierkegaard, and it has
led to the following values for the lattice parameters [26]

aM1 = 5.7517 Å,

bM1 = 4.5378 Å,

cM1 = 5.3825 Å,

βM1 = 122.646°.

The general Wyckoff positions (4e) of both the vanadium and oxygen atoms are±(x, y, z)

and ±(x, 1
2 − y,

1
2 + z), and the atomic positions determined by Longo & Kierkegaard

(in agreement with the results by Andersson) are listed in Table 4.2.1. Now, a compar-
ison between the phases examined so far, can bring to some interesting observations.
The monoclinic phase can be seen as a distortion of the high-temperature tetragonal
one. Indeed, inspecting the two different structures of Figure 4.2.1 and Figure 4.2.3
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Atomic Wyckoff positions Parameters
x y z

V (4e) 0.23947 0.97894 0.02646
O1 (4e) 0.10616 0.21185 0.20859
O2 (4e) 0.40051 0.70258 0.29884

Table 4.2.1: Atomic positions of the monoclinic M1 structure of VO2 [26].

together with the lattice constants, it is possible to find simple relations between the
unit cell vectors:

aM1 ≈ 2 cR , bM1 ≈ aR , cM1 ≈ bR − cR ,

resulting in a monoclinic unit cell that is twice the size of the tetragonal one [27]. Ob-
serving Figure 4.2.3 it is possible to notice a striking feature of this monoclinic phase,
the metal-metal pairing along the rutile c-axis (dimerization process), as discussed by
Goodenough [24]. This leads to two different V-V distances of 2.619 and 3.164 Å. In
addition to this coupling, the vanadium atoms are also tilted with respect to the cR
direction, resulting in a zigzag-like pattern, and together these two anomalies bring
to the following modifications:

• there are two different apical vanadium-oxygen bond lengths of 1.77 and 2.01 Å;

• two short and two long equatorial V-O bond lengths of 1.86, 1.89, 2.03 and 2.06 Å
arise.

This quite big variety of distances is also due to the fact that the oxygen atoms forming
an octahedra, do not strictly follow the vanadium shifts, and stay almost at their
original position.

4.2.3 M2 Phase

This time vanadium dioxide crystallizes in a centered monoclinic lattice, with a space
group C2/m. The first reliable results are from Marezio et al. measurements on
V0.976Cr0.024O2 (the reason of chromium substituents is explained later) in 1972, when



CHAPTER 4. VANADIUM DIOXIDE 42

they got the following values for the lattice constants [27]

aM2 = 9.0664 Å,

bM2 = 5.7970 Å,

cM2 = 4.5255 Å,

βM2 = 91.88°.

It is possible to notice from Figure 4.2.4 that there exist two different types of vana-
dium atoms and three different types of oxygen atoms within this structure. Here,

Figure 4.2.4: Monoclinic M2 phase of VO2 [22].

because of their locations inside the unit cell, these five kind of atoms will occupy sub-
sets of the general Wyckoff position (8j): ±(x, y, z), ±(x, −y, z), (1

2 ,
1
2 0)± (x, y, z) and

(1
2 ,

1
2 0) ± (x, −y, z). All the values are listed in Table 4.2.2. From Figure 4.2.4 it is

possible to identify V1 and V2 as the metal atoms at the corners and centers, respec-
tively, of the hidden rutile cell. For what concerns oxygen atoms, O1 are placed at the
apices of the octahedra centered about V1 atoms, in contrast O2 and O3 are equatorial
atoms for V1 and apical atoms for V2. Another couple of discriminating features of
this phase can be distinguished:

• only the V1 chains dimerize, without showing the zigzag-like pattern;
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Atomic Wyckoff positions Parameters
x y z

V1 (4g) 0.0 0.7189 0.0
V2 (4i) 0.2312 0.0 0.5311
O1 (8j) 0.1460 0.2474 0.2865
O2 (4i) 0.3975 0.0 0.2284
O3 (4i) 0.0980 0.0 0.7862

Table 4.2.2: Crystal structure parameters of the M2 phase [27].

• the other half (composed by the V2 atoms) of the chains experiences the zigzag-
like displacement, but no pairing appears.

Thus, there exist three different metal-metal distances along these chains direction,
with 2.538 and 3.259 Å within the V1 chains, and uniform spacing of 2.933 Å along the
V2 chains.

Before closing this section, it is mandatory to shortly discuss a fundamental char-
acteristic of the M2 monoclinic phase: it does not exist without strain. Indeed, in
the earlier experiments done to study this structure, Marezio et al. and Ghedira et
al. had to use substituents like chromium and aluminium in order to induce inter-
nal stress, that allows to see the M2 phase at room temperature [27, 28]. A recent
work by Mun et al. shows that it is also possible to obtain this monoclinic structure
in pure VO2 samples, because of internal strain inside the large-size single crystals
[29]. Thus they discovered that a second structural phase transition occurs at about

Figure 4.2.5: (a) The IIT transition involving M1 and M2 phases is visible between 45
and 50° [6]. (b) Stress-temperature phase diagram of VO2 [30].



CHAPTER 4. VANADIUM DIOXIDE 44

320 K (heating process) accompanied by a slight increase of resistance, as shown in
Figure 4.2.5(a): this is the evidence of the insulator-insulator transition from M2 to
M1 phase. Another very nice experiment is discussed by Park et al. with the goal of
studying the boundaries between the different structures [30]. Thanks to the improv-
ing in sample growth techniques, they were able to get VO2 nanobeams allowing high
level control of the metal-insulator transition: this way it was possible to obtain the
phase diagram displayed in Figure 4.2.5(b).

4.3 Peierls vs Mott Mechanism

As previously introduced, the process which lies below the metal-insulator transition
is still a subject of debate, although many efforts have been done to study vanadium
dioxide. There are two different mechanisms which can explain the opening of the
energy gap starting from the metallic phase. The first one is the so called Mott mech-
anism, which takes into account the role of the electron-electron interaction within
the energy bands formation of a crystal. It happens, indeed, that the conventional
band theory, which considers the band structure to be formed solely due to the peri-
odic crystal structure, fails in the description of the band structure of some materials.
This is the case of some transition metal oxides which show to be insulator (or bet-
ter, semiconductor) materials, while the band theory predicts them to be metals. The
reason for this behaviour can be addressed to the electron-electron correlation, which
consists in a strong Coulomb repulsion between the electrons. Mott gave a simple pic-
ture in order to describe this phenomenon: where we expect the formation of a single
band from the overlap of atomic orbitals, the presence of strong Coulomb interaction
is responsible for the splitting of the single band into two different bands, so that the
lower one is completely occupied and the upper is empty, resulting as an insulator
system. When this is the process which leads to the metal-insulator transition, the
compound is named Mott (or Mott-Hubbard) insulator.

It is not the only possible option to explain the energy gap opening of a metal.
The MIT process can also originate from electron-lattice interactions, in which case
the compound is referred to as Peierls insulator. A Peierls transition is due to struc-
tural changes inside the material, that is a lattice deformation. This means that
the periodic structure of the compound changes, bringing to an energy band struc-
ture modification and to the opening of the gap. The first experimental evidence of
the Peierls mechanism leading a metal-insulator transition was found in the 1960’s,
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trying to follow Little’s idea that some organic materials could possibly show to be
superconductor at high temperature thanks to the almost one-dimensional chains
conduction. Instead of revealing superconducting behaviour, such metallic materials
(like TTF-TCNQ) undergo an insulating transition decreasing the temperature [31].
Thus, this kind of process results to be particularly effective on low dimensional sys-
tems: because of this, a simple model based on a one-dimensional system can help
to understand how the Peierls transition works. Let’s think about a one-dimensional
metal with a half-filled band and in the absence of any electron-electron or electron-
phonon interactions, so that the situation is like it is displayed in Figure 4.3.1(a).
After the electron-lattice interaction comes into play, it results to be energetically fa-

Figure 4.3.1: One-dimensional metal undistorted and with lattice parameter a (a),
and after Peierls distortion (b) [32].

vorable to insert a lattice distortion with period λ, that is directly connected to the
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Fermi wave vector kF by the following relationship

λ =
π

kF
,

thus, resulting in a sort of dimerization process of the atoms [32]. In this case, this
process brings to a new lattice constant being the double of the initial one-dimensional
chain as displayed in Figure 4.3.1(b). Of course, the decrease of the electronic energy
is not the only change happening across the transition: the rearrangement of the
atoms along the chain brings to an increase of the elastic energy, consequently, a
condition of energy gain for the coupled electron-phonon system has to be fulfilled.

Experimental results supporting both the mechanisms have been collected, thus
creating two groups of supporters within the scientific community, following either
one theory or the other one. Here it can be helpful to briefly cite a couple of examples.
One of the arguments used in favor of the Mott process is based on the fact that either
with little quantities of chromium substitution or applying external uniaxial pressure
to pure VO2, it is possible to obtain another two other different insulating phases:

1. the M2 phase, with a monoclinic structure as previously described;

2. T, a triclinic structure that works as intermediate phase between the two mono-
clinic phases.

Thus, the existence of three different vanadium dioxide structures with different char-
acteristics and very similar electrical properties, could be seen as a proof that the
lattice transformation is not the main responsible for the metal-insulator transition.
Inside their paper, Zylbersztejn and Mott introduced this idea in order to support
their main discussion [33]. They believe that the distortion introduced by the struc-
tural phase transition it not enough to open the energy gap of the insulating phase,
and in order to explain this feature, it is needed to consider the picture in which the
electrons are placed in states localized by the Hubbard U , so that the electron-electron
correlation is the mechanism responsible for the gap opening.

On the other hand, Cavalleri et al. provided one simple proof that a Peierls mech-
anism is involved in the transition [34]. Thanks to ultrafast pump-probe reflectivity
experiments, it was possible to study the dynamics of the reflectivity change due to
the metal-insulator transition, with femtosecond resolution. The experimental results
revealed that the lower limit for the transition time is 80 fs, while according to the-
oretical previsions it should have been much shorter if the MIT were caused by pure
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electronic effects. Of course, this is neither a proof that the electron-lattice interaction
is the main responsible, nor it means that a Mott process is completely absent, and
indeed, the situation could not be as black and white as it has been thought for many
years. Now, before proceeding with some existing results about VO2 lattice dynamics,
it is very important to give a complete picture of the electronic band structure.

4.4 Band Structure

The first convincing model about vanadium dioxide energy band structure was pro-
vided by Goodenough in 1971, and it is based on a molecular orbital picture [24]. The
most important atomic orbitals that have to be considered are the vanadium 3d and
the oxygen 2p orbitals. Together with these orbitals, there are two features playing
a central role in the band structure formation, and they are the hybridization of the
two orbitals just mentioned, and the symmetries of the crystal lattice. In fact, as pre-
viously discussed the octahedral crystal field is responsible for the removing of the
degeneracy of the five V 3d orbitals: in more details, the cubic component provided
by the V4+-ion splits the 3d levels into two degenerate eg states and three degenerate
t2g states. Now, it still remains an orthorhombic part of the crystal field, such that
the degeneracies are further removed in the following final states (very small energy
discrepancies from the previous step):

• the two eg orbitals are split into two dσ orbitals (following Goodenough notation);

• the three t2g orbitals are split into two dπ orbitals and a d|| orbital.

As it can be noticed in Figure 4.2.2 the two dσ orbitals point towards the oxygen atoms
of the octahedra surrounding a vanadium atom: because of this configuration, the
two eg orbitals are connected between themselves through the oxygen (working like
ligand) 2p orbitals, forming a σ-type bond. Of course it results in the formation of a σ-
band thanks to the periodic structure of the crystal, and together with its antibonding
counterpart (σ∗), they lie further away from the Fermi level (see Figure 4.4.1). Now,
the two dπ orbitals are mainly responsible for the formation of the π and π∗ bands,
again thanks to the hybridization with the ligand 2p orbitals. For what concern the
remaining d|| orbital, it has a strong component lying along the rutile c-axis, providing
a direct overlap with other orbitals of the same kind. In the metallic phase, no direct
bond is present between vanadium along the cR direction, so that the final result is
the rising of a d|| band around the Fermi level. Within the rutile structure, the π∗ band
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also lies around the Fermi level, but with a slightly higher energy with respect the d||,
because of the hybridization process. The final result in this situation is the presence
of a d|| and a π∗ both band providing the electron density of state around the Fermi
level, giving the material its characteristic metallic behaviour, as it is displayed in
Figure 4.4.1(b). Starting from the situation introduced for the metal band structure,

Figure 4.4.1: Band structure diagram of VO2 in the insulating phase (a) and in the
metallic one (b), according to the Goodenough model [7].

following Goodenough’s idea, there are two features characterizing the band structure
changes:

1. the raising of the π∗ band above the Fermi level;

2. the splitting of the d|| band into bonding and antibonding bands, so that no states
remain around the Fermi level.

They both find good agreement with some structural changes which happen going
from the rutile to the monoclinic lattice. The displacement of the vanadium atoms
in the direction perpendicular to the rutile c-axis (so the zig-zag pattern) allows to
explain the uplift of the π∗ band to higher energies, since this distortion is responsible
for important changes in the V-O bond distances. The second feature can be addressed
to the dimerization process involving the vanadium atoms along the rutile c-axis, that
occurs going from the high to the low-temperature phase of VO2. The presence of
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bonds between vanadium atoms can explain the splitting of the d||, previously not
related to actual bonds between the metal atoms: this way the bonding band will
decrease its energy, going below the Fermi level, while the antibonding one is moved
at higher energies, above the bottom of the π∗ band.

A simple way to see what happens across the transition is finally resumed: the
zig-zag distortion brings the π∗ band above the Fermi level, leaving the d|| band half-
occupied and, at the end, the V-V dimerization process splits this band in two parts,
pushing below the Fermi level the full-occupied band, and raising the empty one above
the Fermi level, opening a gap between the top of the d|| band and the bottom of the
π∗ one.

4.5 Existing Results

Before proceeding with the next chapter about the experimental results, it can be
useful to briefly introduce some existing experimental results concerning the lattice
dynamics of vanadium dioxide. A deep inspection of the lattice dynamics of metallic
VO2 is needed in order to understand the role that a Peierls mechanism could actually
have across the metal-insulator transition.

In 1970, Brewes introduced a free-energy expansion model, and together with rel-
atively simple symmetry consideration connecting the two different structures in-
volved in the transition, he did manage to find out that a lattice instability at the
〈101〉 zone-edge (that matches to the R point of the Brillouin zone) can be addressed
as the responsible phenomenon leading the transition [35].

The first results about vanadium dioxide vibrational properties were obtained
thanks to Raman scattering measurements. This technique is not perfectly suitable
to produce a very detailed picture of the lattice dynamics, or better, it does not allow to
get undeniable proofs supporting a Peierls mechanism based on the Brewes’s model,
but it permits to gather some precious hints about what happens inside vanadium
dioxide. Srivastava and Chase inspected both the insulating and the metallic phases
[36]. Their results reveal quite strong and sharp modes for the low-temperature
phase, without any unusual temperature dependence of the positions, intensities and
widths of the lines. On the other hand, the high-temperature phase mainly shows
a strong and broad band, while the weaker lines expected for this phase are proba-
bly broadened. Thus, the principal conclusion of this work is the presence of heavily
damped phonons in the metallic phase. Thanks to Schilbe [37], refinements of the
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Figure 4.5.1: (a) Constant-Q IXS scans as a function of temperature for the R point.
(b) Phonon dispersions from experimental results (points) and calculations (red and
blue lines) [38].
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Raman spectra were introduced, and he pointed out the similarities of the metallic
phase spectra with TiO2 results.

Until the end of 2014 there were not direct dispersion relation measurements;
before the existence of the extreme powerful third generation synchrotron facilities,
there was one insurmountable difficulty preventing the direct studies of phonon dis-
persions with neutrons, that is the large incoherent cross section of vanadium. Any-
way, Budai et al. [38] provided the first direct results which are able to explain the
role of lattice vibrations in VO2. They did manage to supply a quite complete pic-
ture of the phonon landscape, together with valid ab initio calculations as displayed
in Figure 4.5.1; here it is possible to see that softened phonons are found within the
dispersion relations, and there is good agreement between the experimental data and
the calculations results, even if the experiments reveal little lower energies with re-
spect to the theoretical predictions. Then, Budai et al. pointed out the role of the
soft mode at the R point of the Brillouin zone, underlining frequency dependence on
temperature above the transition. Unusual large widths characterize the measured
phonons, with very weak temperature dependence; according to Budai et al. this fea-
ture is to be addressed to the anharmonicity, that plays a very important role in VO2

lattice dynamics [38]. Another interesting finding is about the role of the phonons
within the entropy change across the transition: both experiments and calculations
show that almost the 70% of this change is given by a phonon contribution, and most
of the remaining 30% is due to the electrons, being any other contribution negligible
(for example, from magnetism). To conclude, simulations have been carried out sup-
porting the orbital polarization that takes place across the transition, an interesting
feature that was previously discovered thanks to experimental results in 2005.



Chapter 5

Experimental Results

5.1 Sample Growth

The VO2 single crystal was grown by P. Strobel and P. Rodierre at the Néel Institute
(CNRS) of Grenoble, using the chemical vapour transport technique [39, 40]. The
basic concept of this growth technique is the following: a condensed phase (usually
solid in this case) does not have a sufficient pressure for its own volatilization, but it
can be volatilized in the presence of a gaseous reactant, known as transport agent,
which allows to deposit the starting material elsewhere in the form of crystals. In
order to make this process feasible, it is necessary to have different external condi-
tions for the chemical equilibrium at the two different positions of volatilization and
crystallization: this is done by applying unequal temperatures for volatilization and
crystallization. For a complete description of the vanadium dioxide growth, please
refer to [41].

5.2 Some Details

Here both the IXS and the diffuse scattering results are reported and combined in
order to give a full description of the lattice dynamics of vanadium dioxide.

Inelastic X-ray scattering measurements were performed at beam line ID28 at
the ESRF. The Si (9 9 9) reflection order of the backscattering monochromator was
used, which provides an incoming energy Ei = 17.794 keV (corresponding to 0.6968 Å
of incident wavelength) with an energy resolution 4Ei w 3.0meV . The multilayer
setup has been exploited: in this configuration a multilayer system situated in the

52
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experimental hutch is used in conjunction with the cylindrical part of the toroidal
mirror (placed in the optical hutch 3) in order to get a good focus in the horizontal and
vertical direction, respectively, with a resulting beam size of approximately 50×50µm.
During the measurements analyzer number 2 was the one aligned with the 2θ angle,
because it shows the best performances among the nine analyzers. It was aligned
with the beam also during the second run of measurements, even if analyzer number
7 was out of business because of temperature control problems: the temperature was
quite off of the elastic temperature, that means having the same temperature on both
the analyzer and the main monochromator. Since we were only interested in acoustic
phonons, the energy range of each scan was between ±25.28meV , which corresponds
to a temperature scan of the monochromator of T0 ± 0.555K. The whole area of each
scan was covered with 74 points and a variable counting time of 60, 75 and 90 s, where
longer times were utilized for points out of high symmetry directions.

X-ray diffuse scattering data were taken on beam line ID23. Since other samples
had to be measured, a common incident wavelength of 0.7 Å (very close to the value of
ID28) was chosen, in order to be far enough to the fluorescence threshold. The beam
dimensions at the sample position are 30µm vertically and 40µm horizontally. The
sample is rotated over 360◦ with constant step of 0.1◦, and for each step an image was
acquired, with an exposure time of 0.1 s per image.

5.3 IXS Experiment

5.3.1 Preparation

Before starting with the real measurements, it was needed to prepare the experiment,
which basically concerns the sample alignment. The vanadium dioxide single crystal,
with needle shape, was mounted on a goniometer head, in order to be able to move
it freely towards the desired geometrical configuration. After mounting the sample,
the first step is to drive it in the center of rotation, so that rotating the sample along
the z-axis (small theta angle, θ) it does not cause the sample to precess with respect
to the incident X-ray beam. The next step consists in mounting the CCD camera and
observe the diffraction signal from our VO2 single crystal, in order to identify the
two diffraction spots needed for the UB matrix construction: this matrix is able to
reconstruct the reciprocal lattice, allowing to move across the reciprocal space and to
take measurements in the desired regions [42].

After an initial inspection of the elastic diffraction from the room temperature
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Figure 5.3.1: Photograph of the sample mounted on the goniometer head in its final
geometry.

monoclinic phase, the temperature was increased to above the structural and MIT
transitions by the use of a Oxford Cryostream 700 system [43], which uses a blow of
nitrogen gas to increase the temperature of the sample: the nozzle of this apparatus
was positioned at rust a few millimeters from the sample. Inspecting the diffraction
pattern while changing the temperature allows for an approximation of the transition
temperatures of our crystal, that in our case were about 339K heating up, and 337K

cooling down, showing just a couple of degrees of hysteresis. During the alignment of
the tetragonal structure, the temperature was kept fixed at 350K, and more than one
manual adjustment action of the goniometer head was needed. The final geometry
of the sample is displayed in Figure 5.3.1. In this configuration we were finally able
to have the HHL plane accessible in the scattering plane, finding the (1 1 1) and the
(2 2 0) Bragg spots. At this point, everything is ready to start the measurements,
and after deciding the zones of interest only one last thing has to be checked: in
order to reach all the interesting points in the reciprocal space, different geometrical
configurations of the entire experimental setup are obtained. Particular attention is
needed not to cross the hard limits moving the instrumentation, where Figure 5.3.2
shows a schematic representation of the laboratory reference system [42].
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Figure 5.3.2: Schematic representation of a 4-circle diffractometer [42].

5.3.2 First Run

During the first experiment, also taking advantage of a previous work done on TiO2

[44], that shows an anomalous instability along the rutile A-M direction, we started
taking data along the A-M direction, where the Brillouin zone is shown in Figure
5.3.3. The other direction initially inspected is the A-Z direction, being the most rel-

Figure 5.3.3: Brillouin zone of the rutile VO2.

evant direction still unexplored. After the sample alignment, we started acquiring
data at the temperature of 350K, and a quite evident softening at the M point of the



CHAPTER 5. EXPERIMENTAL RESULTS 56

Brillouin zone and in the middle of the A-Z direction have been found. This softening
is displayed in Figure 5.3.4, where the first data already available during the experi-
ment are presented.The main goal during this first experiment was to carry on a study
as a function of temperature along these two directions: thus, we proceeded acquiring
data at 400K and very close to the transition temperature at 340K, which means just
one degree above the TMIT of our sample. The data analysis mainly consists of two

Figure 5.3.4: Experimental points at 350 K along the A-M-A direction (a), and along
the A-Z direction (b).

different step:

1. conversion of the temperature scale into an energy scale: indeed, the spectra
resulting from the data acquisition, are given as a function of temperature at
first. As already mentioned at the beginning of this chapter, the desired en-
ergy transfer range is achieved scanning the temperature of the backscattering
monochromator. The high quality of the crystal allows to connect 4T to 4E
with an excellent level of confidence, through the expansion coefficient α(T );

2. fit of the spectra: it allows to get the values of energy, width and intensity (with
errors) for each spectrum, thus for each phonon.
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At first sight, the results for the other two temperatures were in good agreement
with the results presented in Figure 5.3.4, and after the data treatment it has been
possible to plot the dispersion relations along the two directions studied, as we can
see in Figure 5.3.5. In Figure 5.3.5(a) we can notice an energy lowering of about 8meV

at the M point, which corresponds to the scattering vector Q = (2.5 2.5 1). Instead,
in Figure 5.3.5(b) an energy softening is evident in the middle of the A-Z direction,
at the point Q = (2.25 2.25 1.5). In the latter dispersion relation, it does worth to
underline that the points at H = 2.4 and H = 2.5 are not very trustful, since their
behaviour does not fit perfectly with the general trend of the dispersion curve. This
problem is due to the quality of the spectra at those Q-points, which were not of high
quality, resulting in a difficult, but still exploitable, fit. From Figure 5.3.5, it is also
possible to observe that a common tendency of energy decreasing is present, thus it
can be useful to proceed with a direct inspect the spectra from which these data are
extracted. A closer look of these results is displayed in Figure 5.3.6: here we show
the temperature dependence of the measured high symmetry points of the Brillouin
zone, and the spectra at the soft point between the A and Z points. It is clear that an
energy softening occurs during the cooling down process for each Q-fixed scan, even
if it can be pointed out that this energy lowering is quite modest. This is true, but we
also need to take into account that the temperature range exploited in our study is not
very wide, especially if we compare it with the temperature range considered by Budai
et al. (more than 400 degrees!) [38]. Moreover, after a more accurate inspection, a
very interesting feature can be highlighted: apart from the M point, both the A, Z and
Q = (2.25 2.25 1.5) points show a larger phonon energy softening going from 350K to
340K than between 400K and 350K (see Figure 5.3.6(e)).

Another particular issue can be revealed in all the spectra in Figure 5.3.6: en-
ergy scans at constant Q show very broad phonon peaks (with an average value of
the widths of about 5meV over these twelve scans), and their shapes are well fit-
ted by damped harmonic oscillator lines. These results are in quite good agreement
with the model introduced by Budai et al., where the lattice dynamics of vanadium
dioxide is driven by an anharmonic mechanism, which leads to this stiffening with
increasing temperature, and large phonon widths. Moreover, these broad peaks are
almost temperature independent: this phenomena can be addressed to a competition
between electron-phonon interactions (higher importance approaching the transition
temperature) and increasing phonon-phonon coupling interactions on heating (anhar-
monicity).
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Figure 5.3.5: Dispersion relations as a function of temperature with error bars, along
the A-M-A direction (a) and the A-Z direction (b).
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Figure 5.3.6: Constant-Q IXS scans as a function of temperature for the points Z (a),
A (b), Q = (2.25 2.25 1.5) (c) and Z (d). (e) Summary of the energies of these points as
a function of temperature.
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One last discussion about the intensities of spectra present in Figure 5.3.6 is
needed; this is possible since there is just a constant shift between different spec-
tra, leaving the height of the peak trustful for a comparison. Like for the energies,
the M point shows an anomalous behaviour with respect the other points also for the
intensities: approaching the transition temperature, the intensity characterizing this
point decreases, leading us to think that it does not play a crucial role within the
Peierls mechanism. On the other hand, the Z point does not reveal big changes with
temperature, while both the A and the soft point situated in the middle way between
A and Z, reveal an enhancement of intensity on decreasing the temperature. These
last remarks match with the results reported about the R point of the Brillouin zone,
meaning that the inspected points within this work, can also play an important role
across the transition. It can be interesting to proceed showing directly the intensities
along the A-Z direction, and their behaviour as a function of temperature: this is done
in Figure 5.3.7. As previously noticed talking about the energies for the points with
H values of 2.4 and 2.5, also the intensities are not completely trustful because of not
perfect spectra (see also bigger error bars). Looking at the last mentioned plot, we
can also notice that the intensity is quite higher in the middle of the A-Z direction
Q = (2.25 2.25 1.5), and this feature can be explained in two different ways:

1. there is a big softening driving the transition within the whole HK1.5 plane,
which can be addressed to a soft line connecting the two R points of the Brillouin
zone;

2. as suggested by DFT ab initio calculations, two degenerate phonons are present
in that region [45].

It is important to underline that these values directly take into account the correc-
tion for the Bose. As explained in Chapter 2 the experimental intensity is roughly
proportional to the term

n(E) +
1

2
± 1

2

where n(E) represents the Bose occupation factor, the + sign stands for energy loss
(phonon creation) and the − sign stands for energy gain (annihilation). Thus, consid-
ering the phonon creation process, the correction is obtained by dividing the experi-
mental value of the intensity by the factor n(E) + 1. This way, it is possible remove
the influence of the phonons population due to the temperature, getting a direct eval-
uation of the scattering function S(Q, ω).
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Figure 5.3.7: Intensity values with error bars obtained through the fitting process.

5.3.3 Second Run

During the second IXS experiment we mainly explored the line connecting the soft
point in the middle of the A-Z direction and the M point and the line connecting al-
ways that soft point to the R point, together with a grid Q-points belonging to the HHL
and the HK1.5 planes. The goal was to inspect these two different planes, searching
for possible soft lines. Since there was not enough time to proceed with a complete
study as a function of temperature, we decided to acquire these data at the temper-
ature of 340K, as it is the most interesting temperature, just one degree above the
transition. Of course, the same procedure for data analysis has been followed after
their acquisition. The first results are displayed in Figure 5.3.8, where the phonon
energy variation across the HHL plane is presented. Unfortunately, some good points
in the region delimited by H = 2.2−2.25 and L = 1.2−1.3 are missing, mainly because
of bad quality spectra, which provide untrustworthy values. Apart from that zone, it
is possible to observe the presence of a low energy line going from the M point, to the
Q = (2.25 2.25 1.5) point: it does not appear so clearly, but it is due to the intrinsic
difference of in energy between the two soft points just cited. Indeed, it is possible to
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Figure 5.3.8: Phonon energy landscape on HHL plane.

notice this feature within Figure 5.3.5(a) and (b), where we can identify an offset of al-
most 3meV . Moreover, there exists one point along the soft line, which doesn’t match
perfectly with the others, even if it is obtained from a good quality spectrum; this is
Q = (2.3 2.3 1.4), with an energy of 13.008meV , slightly higher than the neighbors
along the line. Anyway, apart from the soft point at Q = (2.25 2.25 1.5), there are no
evidences for these low energy phonons to play a significant role across the transition.

As previously introduced, the other studied plane is the HK1.5, and the output is
revealed in Figure 5.3.9. Here the low energy phonons line is much more clear than
what has been found for the HHL plane. This is not a really unexpected result, since
this line lies in between of two R points (see Figure 5.3.3), where the main lattice
instability that leads the transition is located. Thus, these results allow us to confirm
that the high intensity revealed from the Q = (2.25 2.25 1.5) point can be explained
thanks to a soft line in the energy landscape of the HK1.5 plane. This feature can
also bring to the following interpretation: the low energy phonons we are talking
about, may be involved in the transition process, having energies comparable with
the energy of the R point phonon and high intensities, which increase with deceasing
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Figure 5.3.9: Phonon energy landscape on HK1.5 plane.

the temperature toward the TMIT .

5.4 Thermal Diffuse Scattering

5.4.1 Preparation

In this case the preparation phase of the experiment is much faster with respect to the
IXS experiment. Indeed, beam line ID23 is a highly automatized laboratory, where
the only manual action is to place the sample on the appropriate sample-holder. The
beam is centered thanks to a visual interface which exploits the fluorescence screen,
and this is done using a standard sample, available inside the Experimental Hutch.
The next step is to replace the standard sample with the sample we want to measure,
and proceed with the automated procedure to find the center of rotation of the needle-
like sample: this is simply done by clicking with the cursor on three different position
of the screen (the process can be repeated a few times to be sure that the sample
does not move off of the beam upon rotation). After selecting the parameters (such as
exposure time, rotation velocity...) everything is ready to start the acquisition.
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5.4.2 TDS Data

As above mentioned, the step width is 0.1° to get a full rotation of 360°for our vana-
dium dioxide needle; data are recorded for each step. As discussed in Chapter 2,
with this technique it is possible to obtain classical information about the diffraction
pattern together with diffuse scattering signal, which mainly contain information
about the lattice vibrations of the system, in term of phonon intensities. After the
experiment, data treatment consists in running reconstructions exploiting the data
acquired, in order to get as final results pictures representing the intensity distribu-
tion across high symmetry planes in the reciprocal space. Figure 5.4.1(a) shows the

Figure 5.4.1: Thermal diffuse scattering across the HK0 plane at 340K (a) and 295K
(b).

HK0 plane for the tetragonal structure just above the transition temperature, while
in Figure 5.4.1 it is possible to visualize the plane corresponding to the rutile HK0 for
the monoclinic phase. Here we use the HK0 label to name the monoclinic plane too
(thus, the rutile reference system): this choice has been made mainly because our VO2

sample was twinned in the M1 phase, making much more difficult to individuate the
correct labels. Moreover, no direct interest is present to label each Bragg spot in the
low temperature phase, since we do not have IXS results for a direct comparison. For
what concern this plane, we did non measure directly this plane during the inelastic
scattering experiment, but we can exploit the results presented by Budai et al. [38]
for a brief discussion: even if they don’t show a complete energy landscape (like in
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Figure 5.3.8 and 5.3.9) across the HK0 plane, the streaks prevailing in Figure 5.4.1
(for example between (2 0 0) and (0 2 0)) can be addressed to strong TA mode along
the Γ −M direction. It is easy to see that this intense diffuse scattering signal be-
comes much weaker below the transition temperature, suggesting that the monoclinic
structure is the stable one.

The second interesting plane is the HHL, which is displayed in Figure 5.4.2. As

Figure 5.4.2: Thermal diffuse scattering across the HHL plane at 340K (a) and 295K
(b).

already explained, the rutile reference system is used to label the monoclinic struc-
ture too. The situation is very similar to the HK0 plane: here the TDS signal is a bit
weaker even for the metallic phase, resulting in an almost complete disappearance of
the diffuse scattering signal below the transition temperature, in perfect agreement
with the results revealed by Figure 5.4.1. This time it is possible to do a direct compar-
ison between the diffuse and inelastic scattering experimental data. The highlighted
zone in Figure 5.4.2(a) represents the region displayed in Figure 5.3.8: the intensity
distribution is in very good agreement with the phonons energy landscape, proving
that the low energy phonons that possess these high intensities are responsible for
the diffuse scattering pattern revealed in Figure 5.4.2(a). Thus, even if these spe-
cific phonons are not directly involved within the transition process, it is possible
to notice the presence of strong vibrations across the whole intensity pattern of the
metallic phase. Proceeding with the analysis of the results, it is interesting to show
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Figure 5.4.3: TDS data across the HK1.5 plane at 340K.

the thermal diffuse scattering pattern across the HK1.5 plane (see Figure 5.4.3). The
white circle surrounds the area studied also with the IXS technique, and the high
intensities line perfectly matches with the soft line present in the energy landscape of
Figure 5.3.9. Moreover, as previously mentioned, the phonons populating this region
can play an important role for the transition, having a similar behaviour as the R
point (darkest zone inside the white circle) of the Brillouin zone.
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Conclusions

As a starting point it is useful to resume the main points of the experimental results:

• the thermal diffuse scattering above and below the TMIT shows instability in the
tetragonal structure with intense signal across all the high symmetry (and not)
planes. This general instability of the structure disappears in the insulating
phase, revealing just weak TDS signal below 337K;

• anomalous energy softening in the lattice dynamics of the metallic phase, ex-
hibiting soft lines in the energy landscape of the HHL and HK1.5 planes, that
suggest strong lattice instability. These measurements are in very good agree-
ment with the TDS results, proving that the low energy phonons are responsible
for the diffuse scattering too;

• hardening of the phonon energy with increasing temperature (stronger for the
340− 350K step) testify that anharmonicity plays an important role within the
lattice dynamics processes in the metallic phase;

• an accurate analysis of the intensities reveals that for the points A, Z and Q =

(2.25 2.25 1.5), the signal gets stronger approaching the transition temperature
(340 − 350K with respect 400K). It suggests that these vibrations, together
with the whole soft line lying on the HK1.5 plane, can play a role across the
transition. Nevertheless, the most interesting point remains the soft point in
the middle of the A-Z direction, since its intensity is much stronger than the
neighbors intensities.

Of course, the last point represents the most interesting result among the others.
Unfortunately, we did not manage to get good quality ab initio calculations: the sim-

67
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ulations produced a lot of negative energy phonon modes, and it can probably be ad-
dressed to the anharmonicity characterizing VO2 lattice dynamics. Thus, to perform
a direct comparison with the experimental data and to represent the normal modes, it
is mandatory to exploit existing results. A very interesting feature is the lack of agree-
ment between the experimental data and the calculations along the A-Z direction [45]
(not displayed by Budai et al. [38]). Indeed, if we look at the dispersion relations
obtained by the DFT method, just a weak energy softening of about 1 − 1.5meV is
revealed in the middle of the A-Z direction, while the experimental results show a de-
crease of 3−4meV . Instead, looking at the DFT+U calculations, which better describe
the lattice dynamics of the rutile VO2, the softening is completely absent. In contrast,
the results presented by Budai et al., show that experimental points and ab initio
phonon dispersions are in good agreement, apart from a constant energy shift: this
means that existing calculations are not able to predict properly the energy softening
at Q = (2.25 2.25 1.5).

At this point it can be useful to introduce a few information about the phonon
eigenvectors, through their graphical representation within the rutile unit cell. This
is done in Figure 6.0.1, where the normal modes at q = A and Z are displayed. Fig-
ure 6.0.1(e) shows the linear combination of the two degenerate modes at the R point
of the Brillouin zone, where two softened phonons are enough to explain both the
vanadium atoms dimerization and the zig-zag pattern happening in the monoclinic
structure. It is true that they are enough to explain these features, but the lattice
instability at this point has been labelled as the only responsible for the transition
so far. Nevertheless, from Figure 6.0.1(a), (b), (c) and (d) it is possible to see that the
two degenerate acoustic modes at both A and Z points may represent a contribution
to the dimerization process across the transition, supported by the results previously
discussed. Unfortunately, no information about the soft point in the middle of the A-Z
direction are available, thus remaining unrevealed the actual role across the transi-
tion for these phonon modes.

The most important features of our study are the following:

• anomalous softened phonons;

• higher phonon intensities decreasing the temperature;

• intense thermal diffuse scattering in the metallic phase, disappearing below the
transition.
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Figure 6.0.1: Normal phonon modes at q = A and Z. (a), (b) Two degenerate modes
at q = A. (c), (d) Two degenerate modes at q = Z. (e) Linear combination of the two
degenerate modes at q = R. The blue and red balls represent vanadium and oxygen
atoms, respectively [45].
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All these results describing the vanadium dioxide metallic phase, reveal that struc-
tural instabilities play an important role across the metal-insulator transition. Thus,
our study together with the results by Budai et al. give unambiguous proves that
a Peierls mechanism is in part responsible for the gap opening going from the high
temperature tetragonal structure, to the low temperature monoclinic structure. Even
if the conclusions provided by the lattice dynamics studies are quite exhaustive, it is
not possible to assert that a lattice instability is the only responsible for the transi-
tion; as previously discussed a Mott mechanism can be considered. The work done by
Haverkort et al. is very clear in explaining the role that an electronic correlation can
play in the process we are talking about [46]. It is helpful to briefly resume their work,
in order to introduce one final idea about the metal-insulator triggering mechanism.
The VO2sample has been studied using the X-ray absorption spectroscopy (XAS) tech-
nique, in order to study the vanadium L2,3 edges with different light polarization, in
both the metallic and insulating phases. Inspecting the spectra it is possible to no-
tice that the polarization affects the spectra in the monoclinic structure, while the
rutile structure is almost independent on the polarization of the incident light. Thus
these features reveal that the vanadium 3d orbitals are almost isotropically occupied
in the metallic phase, while they are not below the transition temperature. Com-
pleting these studies with simulations and following the formalism of decomposing
the orbitals into three different parts (σ, π, δ), it is possible to obtain the following
results:

• in the monoclinic structure, the orbitals have a strong σ character, while the π
and δ parts are almost unoccupied;

• in the rutile structure the orbitals are indeed almost isotropically occupied.

This orbital polarization change across the transition can take place only considering
the role of the strong electron correlation within the system under study, thus a Mott
mechanism has to be taken into account.

This, of course, doesn’t mean that the Peierls process plays a weaker role than
the Mott one, but it probably means that the two different mechanisms cooperate to
lead the metal-insulator transition. One possible idea, that is becoming more likely
with the recent results about lattice dynamics, is that the electron correlation start-
ing the orbital polarization triggers the Peierls mechanism. This model exploits the
electron-electron interaction to bring the starting three-dimensional system to an al-
most one-dimensional system, being in quite good agreement with the discussion at
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the end of Chapter 4. A better model of the system, in order to perform trustful ab
initio calculations, should be developed, since it will provide an enormous help to un-
derstand the importance of the mode at Q = (2.25 2.25 1.5) and the role of the whole
soft line on the HK1.5 across the metal-insulator transition.
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