
 

 

POLITECNICO DI MILANO  

Scuola di Ingegneria Industriale e dell'Informazione 

Corso di Laurea Magistrale in Ingegneria Elettrica 

 
 

  

  

  

POWER SYSTEM STABILIZER OPTIMIZATION ON LARGE 

ELECTRICAL NETWORKS 

  

  

  

Relatore: Prof. Alberto Berizzi 

Correlatore: Ing. Vincenzo Asceri 

   Ing. Davide Stefano Piccagli 

 

Tesi di Laurea Magistrale di: 

Ali Rahimzadeh 

Matr. 798375 

  

Anno Accademico 2014-2015 



 

 

 

 



i 

 

Abstract 

Electromechanical oscillations were detected in power systems as soon as synchronous 

generators were interconnected to deliver more power capacity and supply reliability. 

These oscillations are manifested in the relative motions of generator mechanical axes 

accompanied by power and voltage oscillations. Some characteristics of modern large-

scale electric power systems, such as long transmission distances over weak grids, highly 

variable generation patterns and heavy loading, tend to increase the probability of 

appearance of sustained electromechanical oscillations. Both local and inter-area 

oscillation modes of different frequencies might appear simultaneously in different parts of 

large-scale systems. Such oscillations threaten the secure operation of power systems and 

if not controlled efficiently can lead to generator outages, line tripping and even large-scale 

blackouts. 

In general, an insufficient system damping can be the usual reason of electromechanical 

oscillations. Since the development of current network structures is limited -due to both 

available resources and environmental considerations- most of the efforts for 

electromechanical oscillations damping focus on setting different controllers such as Power 

System Stabilizers (PSSs), Thyristor Controlled Series Compensators (TCSCs) and so on. 

These damping controllers mostly use local measurements as their inputs. Then, their 

control rules and parameters are determined in offline studies using time-domain 

simulations, eigenvalue analysis, and usually remain fixed in practice. Between different 

controllers available for damping of electromechanical oscillations, PSSs are widely used 

in power plants. Having the knowledge of limited possible reinforcement in the network 

together with the fact that PSSs are already accessible in most of the plants, lead us to the 

idea of maximizing the effect of PSSs by fine-tuning of their parameters. 

To this end, this thesis proposes a software development for PSS parameters optimization 

on large electrical networks with the aim of maximizing the damping of electromechanical 

oscillations. In particular, this software application is able to import the results of the 

modal analysis carried out on a large electrical network (e.g. Italian network), and use 

these outputs as the inputs for the process of optimization of PSSs. 
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In Italiano: 

Nei sistemi di trasmissione di energia elettrica si sono rilevate oscillazioni 

elettromeccaniche sin da quando, alla ricerca di maggiore capacità produttiva e affidabilità,  

sono state introdotte le macchine sincrone come sistemi di generazione. Tali oscillazioni si 

manifestano in moti relativi rispetto all’asse meccanico del generatore, corredati da 

oscillazioni di tensione e di potenza. Alcune caratteristiche dei moderni sistemi di 

trasmissione su larga scala, quali ad esempio la trasmissione di energia su lunghe distanze 

nel caso di reti deboli, la produzione altamente variabile e il forte caricamento delle linee, 

tendono ad aumentare la probabilità di comparsa di oscillazioni elettromeccaniche. 

Entrambi i modi di oscillazione locali e inter-area possono apparire contemporaneamente e 

per varie frequenze in diverse parti del sistema di trasmissione, andando pertanto a   

influenzarne il funzionamento e la sicurezza. Di fatto, se non controllate in modo efficace, 

tali oscillazioni possono portare al fuori servizio dei generatori, a scatti intempestivi delle 

linee e persino blackout su larga scala della rete. 

In generale, un insufficiente smorzamento può essere la tipica causa dell’insorgere di 

oscillazioni elettromeccaniche all’interno della rete di trasmissione. Dal momento che 

attualmente lo sviluppo delle infrastrutture di rete è limitata, sia dalle risorse disponibili 

che da considerazioni di carattere ambientale, la maggior parte degli sforzi per poter 

smorzare le oscillazioni elettromeccaniche è focalizzata sulla taratura dei diversi sistemi di 

controllo, quali ad esempio i Power System Stabilizer (PSS) o Thyristor Controlled Series 

Compensator (TCSC). Tali sistemi utilizzano come ingresso per lo più misure locali, 

avendo inoltre regole di controllo e parametri determinati in studi fuori linea attraverso 

simulazioni nel dominio del tempo e analisi agli autovalori. Tra i diversi sistemi di 

controllo disponibili per lo smorzamento delle oscillazioni elettromeccaniche, i PSS sono 

quelli più ampiamenti utilizzati nel caso di centrali elettriche. Pertanto la limitata 

possibilità di installazione dei rinforzi nella rete di trasmissione unitamente al fatto che i 

PSS sono già accessibili nella maggior parte delle centrali, ci portano all'idea di dover 

massimizzare il loro effetto in modo da ridurre le oscillazioni mediante una corretta  

configurazione dei parametri. 

A tal fine, questa tesi propone lo sviluppo di un tool e di metodologie per l’ottimizzazione 

dei parametri dei PSS, nel caso di reti elettriche fortemente magliate, con l'obiettivo di 

massimizzare lo smorzamento delle oscillazioni elettromeccaniche. In particolare, la 
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soluzione adottata è in grado di importare i risultati dell’analisi modale effettuata su una  

rete elettrica di grandi dimensioni (quale ad esempio può essere la rete di trasmissione 

nazionale italiana), e utilizzare tali dati come ingressi per il processo di ottimizzazione dei 

PSS. 
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1 Introduction 

 

Recently, the number of bulk power exchanges over long distances has increased as a 

consequence of deregulation of the electrical energy markets worldwide and the extensions 

of large interconnected power systems. Moreover, the power transfers have also become 

somewhat unpredictable as dictated by market price fluctuations. The integration of 

offshore wind generation plants into the existing network is also expected to have a 

significant impact on the power flow of system as well as the dynamic behavior of the 

network. The expansion of the transmission grids, on the other hand, is very little due to 

environmental and cost restrictions. The result is that the available transmission and 

generation facilities are highly utilized with large amounts of power interchanges taking 

place through tie-lines and geographical regions. The tie lines operate near their maximum 

capacity, especially those connected to the heavy load areas. As a result, the system 

operation can find itself close to or outside the secure operating limits under severe 

contingencies. Therefore, stressed operating conditions can increase the possibility of 

electromechanical oscillations between different control areas and even breakup of the 

whole system  [1]. 

Reliability and good performance are necessary in power system operation to ensure a 

safe and continuous energy supply. However, weakly damped electromechanical 

oscillations (both local and inter-area oscillations), inherent to large interconnected power 

systems during transient conditions, are not only dangerous for the reliability and 

performance of such systems but also for the quality of the supplied energy. The power 

flows over certain network branches resulting from generator oscillations can take peak 

values that are dangerous from the point of view of secure system operation and lead to 

limitations in network control. 

Electromechanical oscillations may cause, in certain cases, operational limitations 

(due to the restrictions in the power transfers across the transmission lines) and/or 
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interruption in the energy supply (due to loss of synchronism among the system 

generators). Also, the system operation may become difficult in the presence of these 

oscillations. 

With the heavier power transfers ahead, the damping of electromechanical oscillations 

will decrease unless new lines are built or other heavy and expensive high-voltage 

equipment such as series-compensation is added to the grid substations. The construction 

of new lines, however, is restricted by environmental and cost factors. Therefore, 

achievement of maximum available transfer capability as well as a high level of power 

quality and security has become a major concern. This concern requires the need for a 

better system control, leading to damping improvement. 

Simulation studies have shown a high sensitivity of electromechanical oscillations to 

generator voltage controller and hydro turbine governor settings  [6]. Therefore, and 

because of the relatively low cost, measures to alleviate electromechanical oscillations 

should be focused on power system controllers. The use of a supplementary control added 

to the Automatic Voltage Regulator (AVR) is a practical and economic way to supply 

additional damping to electromechanical oscillations. The first supplementary control for 

such task was proposed at the end of 1960’s  [7], and is usually known as Power System 

Stabilizer (PSS). PSS units have long been regarded as an effective way to enhance the 

damping of electromechanical oscillations in power system  [7]. The PSS provides 

supplementary control action through the excitation system of generators and thus aids in 

damping the oscillations of synchronous machine rotors via modulation of the generator 

excitation. The supplemental damping is provided by an electric torque, applied to the 

rotor, which is in phase with the speed variation. The action of PSS, in this way, extends 

the angular stability limits of a power system. 

For damping of local generator swings, PSSs have been established in the past  [8],  [1]. 

To maximize damping of electromechanical oscillations likewise with PSS, special control 

structures with additional signal inputs and well adapted parameter tunings are necessary. 

Since the first proposal of PSS at the end of 1960’s, various control methods have been 

proposed for PSS design to improve overall system performance. Among the classical 

methods used are the phase-compensation method and the root-locus method. Among 

these, conventional PSS of the lead-lag compensation type  [7],  [9],  [9]  has been adopted 
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by most utility companies because of its simple structure, flexibility and ease of 

implementation. Since power systems are highly nonlinear, conventional fixed-parameter 

PSSs cannot cope with changes in the operating conditions during normal operation and 

the system sometimes tends to be unstable. Proper design of any control system that takes 

into account the continual changes in the structure of the network is, therefore, necessary to 

guarantee robustness over wide operating conditions in the system. 

This research mainly focuses on the problem of improving the performance of 

conventional PSS, for a better damping of electromechanical oscillations, by using 

instantaneous measurements from synchronous generators of the grid as its supplementary 

inputs. 

The subsequent chapters of this dissertation are organized as follows: 

Chapter 2 provides a general description of the power system dynamics and stability 

phenomena including fundamental concepts, classification, and definitions of associated 

terms. 

Chapter 3 presents the exploited techniques for PSS tuning. 

Chapter 4 describes an example of using ALICE as the optimization tool, for the case 

of a single power plant. 

Chapter 5 is the main chapter of this thesis, in which the local optimization of a large 

network is obtained through using described methods. 

In chapter 6, the possible practical modifications on the network will be clarified.   

And finally in chapter 7, the results of simulations and their related figures are 

illustrated.  
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2 Power System Stability: Electromechanical 

Oscillation 

 

The purpose of this chapter is to provide a general introduction to the power system 

stability problem including classification, physical concepts and definition of the related 

terms. After discussing the general aspects of power system stability and dynamics, the 

focus is on “rotor angle stability”, because the electromechanical oscillation problem is a 

subset of this kind of instability. A good knowledge of the problem and its causes can 

directly lead us to the solution and a better understanding of different methods to solve it.  

The electromechanical stability is related to the dynamic interaction between the 

turbine-alternators and the network. Regarding this interaction, there are electromechanical 

oscillations of the rotor of the synchronous generators. The weakly damped oscillations 

can be pronounced for example during the peak loading periods, but can occur even under 

light loading conditions. The problems coming from these oscillations are of crucial 

importance to ensure, mainly within an energy market, a full usability of production plants 

in their entire design field, as well as to guarantee a behavior consistent with security 

requirements, in the face of possible network contingencies.   

 

Power System Dynamics and Stability 

A power system can be studied, in an intuitive way, as working in two different 

states, steady-state and dynamic state –considering the variation of generated power and 

load demands.  

   One of the characteristic features of power system operation is the continual need to 

adjust system operating conditions in order to meet the ever-changing load demand. 

Although the demand from any particular load can vary quite significantly, the total 



19 

 

demand, consisting of a very large number of individual loads changes rather more slowly 

and in a predictable manner. This characteristic is important as it means that within any 

small time period the transmission and subtransmission systems can be regarded as being 

in the steady state and, as time progresses, considered to move slowly from one steady-

state condition to another. The steady-state operation is studied to perform the so called 

“power (or load) flow” calculations of the power system and it is not the case of interest 

for this thesis, because we want to deal with the stability problem that is discussed when 

the power system is in a dynamic state. 

 Separation of stability and dynamics of a power system is difficult, because after a 

contingency the power system moves to dynamic state, and it is the point where the 

stability of the system becomes a discussable issue. Thus, stability and dynamics of a 

power system are two inseparable concepts. However for the sake of simplicity and being 

clear, first, power system dynamics’ concepts and categories are discussed. Then a brief 

explanation about power system stability is given. In the end, the focus is on a particular 

case with a specified range of frequency, that is, the electromechanical phenomena. 

 

2.1 Power System Dynamics
1
 

An electrical power system consists of many individual elements connected 

together to form a large, complex and dynamic system capable of generating, transmitting 

and distributing electrical energy over a large geographical area. Because of this 

interconnection of elements, a large variety of dynamic interactions are possible, some of 

which will only affect some of the elements, others are fragments of the system, while 

others may affect the system as a whole. As each dynamic effect displays certain unique 

features, power system dynamics can be conveniently divided into groups characterized by 

their cause, consequence, time frame, physical character or the place in the system where 

they occur. 

                                                
1
 It is worthy to notice that in North American literature, the term dynamic stability has been used mostly to 

denote small-signal stability in the presence of automatic control devices, but here it is simply denoting the 

state of the electric power system following any kind of variation in the system, including physical 

configuration or connection changes, contingencies, load demand increments and etc. In other words, it refers 

to the dynamic response of power systems to these variations.  
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Of prime concern is the way the power system will respond to both a changing 

power demand and to various types of disturbance, that are the two main causes of power 

system dynamics. A changing power demand introduces a wide spectrum of dynamic 

changes into the system each of which occurs on a different time scale. In this context the 

fastest dynamics are due to sudden changes in demand and are associated with the transfer 

of energy between the rotating masses in the generators and the loads. Slightly slower are 

the voltage and frequency control actions needed to maintain system operating conditions 

until finally the very slow dynamics corresponding to the way in which the generation is 

adjusted to meet the slow daily demand variations take effect. Similarly, the way in which 

the system responds to disturbances also covers a wide spectrum of dynamics and 

associated time frames. In this case the fastest dynamics are those associated with the very 

fast-wave phenomena that occur in high-voltage transmission lines. These are followed by 

fast electromagnetic changes in the electrical machines themselves before the relatively 

slow electromechanical rotor oscillations occur. Finally the very slow prime mover and 

automatic generation control actions take effect. 

 

 General Classification of Power System Dynamics – considering the time 2.1.1

frame 

Based on their physical character, the different power system dynamics may be 

divided into four groups defined as: wave, electromagnetic, electromechanical and 

thermodynamic. This classification also corresponds to the time frame involved and is 

shown in Figure 2-1. Although this broad classification is convenient, it is by no means 

absolute, with some of the dynamics belonging to two or more groups while others lie on 

the boundary between groups. Figure 2-1 shows the fastest dynamics to be the wave 

effects, or surges, in high-voltage transmission lines and correspond to the propagation of 

electromagnetic waves caused by lightning strikes or switching operations. The time frame 

of these dynamics is from microseconds to milliseconds. Much slower are the 

electromagnetic dynamics that take place in the machine windings following a disturbance, 

operation of the protection system or the interaction between the electrical machines and 

the network. Their time frame is from milliseconds to a second. Slower still are the 

electromechanical dynamics due to the oscillation of the rotating masses of the generators 
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and motors that occur following a disturbance, operation of the protection system and 

voltage and prime mover control. 

The time frame of these dynamics is from seconds to several seconds. The slowest 

dynamics are the thermodynamic changes which result from boiler control action in steam 

power plants as the demands of the automatic generation control are implemented. Careful 

inspection of Figure 2-1 shows the classification of power system dynamics with respect to 

time frame to be closely related to where the dynamics occur within the system. For 

example, moving from the left to right along the time scale in Figure 2-1 corresponds to 

moving through the power system from the electrical RLC circuits of the transmission 

network, through the generator armature windings to the field and damper winding, then 

along the generator rotor to the turbine until finally the boiler is reached. 

 

               Figure 2-1 Time Frame of the Basic Power Dynamic Phenomena[2] 

 

The fast wave phenomena, due to lightning and switching overvoltages, occur 

almost exclusively in the network and basically do not propagate beyond the transformer 

windings. The electromagnetic phenomena mainly involve the generator armature and 

damper windings and partly the network. These electromechanical phenomena, namely the 

rotor oscillations and accompanying network power swings, mainly involve the rotor field 

and damper windings and the rotor inertia. As the power system network connects the 

generators together, this enables interactions between swinging generator rotors to take 

place. An important role is played here by the automatic voltage control and the prime 

mover control. Slightly slower than the electromechanical phenomena are the frequency 

oscillations, in which the rotor dynamics still play an important part, but are influenced to a 
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much greater extent by the action of the turbine governing systems and the automatic 

generation control. Automatic generation control also influences the thermodynamic 

changes due to boiler control action in steam power plants. 

 

2.2 Power System Stability 

As electric power systems have evolved over the last century, different forms of 

instability have emerged as being important during different periods. The methods of 

analysis and resolution of stability problems were influenced by the prevailing 

developments in computational tools, stability theory, and power system control 

technology. A review of the history of the subject is useful for a better understanding of the 

electric power industry’s practices with regard to system stability. 

 

 Historical Review of Power System Stability Problems 2.2.1

As electric power systems have evolved over the last century, different forms of 

instability have emerged as being important during different periods. The methods of 

analysis and resolution of stability problems were influenced by the prevailing 

developments in computational tools, stability theory, and power system control 

technology. A review of the history of the subject is useful for a better understanding of the 

electric power industry’s practices with regard to system stability. [2] 

Power system stability was first recognized as an important problem in the 1920s 

(Steinmetz, 1920; Evans and Bergvall, 1924; Wilkins, 1926). The early stability problems 

were associated with remote power plants feeding load centers over long transmission 

lines. 

With slow exciters and non-continuously acting voltage regulators, power transfer 

capability was often limited by steady-state as well as transient rotor angle instability due 

to insufficient synchronizing torque. 
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To analyze system stability, graphical techniques such as the equal area criterion 

and power circle diagrams were developed. These methods were successfully applied to 

early systems which could be effectively represented as two machine systems. 

As the complexity of power systems increased, and interconnections were found to 

be economically attractive, the complexity of the stability problems also increased and 

systems could no longer be treated as two machine systems. This led to the development in 

the 1930s of the network analyzer, which was capable of power flow analysis of multi-

machine systems. System dynamics, however, still had to be analyzed by solving the swing 

equations by hand using step-by-step numerical integration. Generators were represented 

by the classical ‘‘fixed voltage behind transient reactance’’ model. Loads were represented 

as constant impedances. 

Improvements in system stability came about by way of faster fault clearing and 

fast acting excitation systems. Steady-state aperiodic instability was virtually eliminated by 

the implementation of continuously acting voltage regulators. With increased dependence 

on controls, the emphasis of stability studies moved from transmission network problems 

to generator problems, and simulations with more detailed representations of synchronous 

machines and excitation systems were required. 

The 1950s saw the development of the analog computer, with which simulations 

could be carried out to study in detail the dynamic characteristics of a generator and its 

controls rather than the overall behavior of multi-machine systems. 

Later in the 1950s, the digital computer emerged as the ideal means to study the 

stability problems associated with large interconnected systems. In the 1960s, most of the 

power systems in the U.S. and Canada were part of one of two large interconnected 

systems, one in the east and the other in the west. In 1967, low capacity HVDC ties were 

also established between the east and west systems. At present, the power systems in North 

America form virtually one large system. There were similar trends in growth of 

interconnections in other countries. 

While interconnections result in operating economy and increased reliability 

through mutual assistance, they contribute to increased complexity of stability problems 

and increased consequences of instability. The Northeast Blackout of November 9, 1965, 
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made this abundantly clear; it focused the attention of the public and of regulatory 

agencies, as well as of engineers, on the problem of stability and importance of power 

system reliability. 

Until recently, most industry effort and interest has been concentrated on transient 

(rotor angle) stability. Powerful transient stability simulation programs have been 

developed that are capable of modeling large complex systems using detailed device 

models. Significant improvements in transient stability performance of power systems 

have been achieved through use of high-speed fault clearing, high-response exciters, series 

capacitors, and special stability controls and protection schemes. 

The increased use of high response exciters, coupled with decreasing strengths of 

transmission systems, has led to an increased focus on small signal (rotor angle) stability. 

This type of angle instability is often seen as local plant modes of oscillation, or in the case 

of groups of machines interconnected by weak links, as inter-area modes of oscillation. 

Small signal stability problems have led to the development of special study techniques, 

such as modal analysis using eigenvalue techniques (Martins, 1986; Kundur et al., 1990). 

In addition, supplementary control of generator excitation systems, static Var 

compensators, and HVDC converters is increasingly being used to solve system oscillation 

problems. 

Present-day power systems are being operated under increasingly stressed 

conditions due to the prevailing trend to make the most of existing facilities. Increased 

competition, open transmission access, and construction and environmental constraints are 

shaping the operation of electric power systems in new ways that present greater 

challenges for secure system operation. This is abundantly clear from the increasing 

number of major power-grid blackouts that have been experienced in recent years; for 

example, Brazil blackout of March 11, 1999; Northeast USA-Canada blackout of August 

14, 2003; Southern Sweden and Eastern Denmark blackout of September 23, 2003; and 

Italian blackout of September 28, 2003. Planning and operation of today’s power systems 

require a careful consideration of all forms of system instability. 
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 Basic Concepts 2.2.2

Power system stability is the ability of the system, for a given initial operating 

condition, to regain a normal state of equilibrium after being subjected to a disturbance. 

Stability is a condition of equilibrium between opposing forces; instability results 

when a disturbance leads to a sustained imbalance between the opposing forces. 

The power system is a highly nonlinear system that operates in a constantly 

changing environment; loads, generator outputs, topology, and key operating parameters 

change continually. 

When subjected to a transient disturbance, the stability of the system depends on 

the nature of the disturbance as well as the initial operating condition. The disturbance may 

be small or large. Small disturbances in the form of load changes occur continually, and 

the system adjusts to the changing conditions. The system must be able to operate 

satisfactorily under these conditions and successfully meet the load demand. It must also 

be able to survive numerous disturbances of a severe nature, such as a short-circuit on a 

transmission line or loss of a large generator. 

Following a transient disturbance, if the power system is stable, it will reach a new 

equilibrium state with practically the entire system intact; the actions of automatic controls 

and possibly human operators will eventually restore the system to normal state. On the 

other hand, if the system is unstable, it will result in a run-away or run-down situation; for 

example, a progressive increase in angular separation of generator rotors, or a progressive 

decrease in bus voltages. An unstable system condition could lead to cascading outages 

and a shut-down of a major portion of the power system. 

The response of the power system to a disturbance may involve much of the 

equipment. For instance, a fault on a critical element followed by its isolation by protective 

relays will cause variations in power flows, network bus voltages, and machine rotor 

speeds; the voltage variations will actuate both generator and transmission network voltage 

regulators; the generator speed variations will actuate prime mover governors; and the 
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voltage and frequency variations will affect the system loads to varying degrees depending 

on their individual characteristics. 

Further, devices used to protect individual equipment may respond to variations in 

system variables and thereby affect the power system performance. A typical modern 

power system is thus a very high-order multivariable process whose dynamic performance 

is influenced by a wide array of devices with different response rates and characteristics. 

Hence, instability in a power system may occur in many different ways depending on the 

system topology, operating mode, and the form of the disturbance. 

Traditionally, the stability problem has been one of maintaining synchronous 

operation. Since power systems rely on synchronous machines for generation of electrical 

power, a necessary condition for satisfactory system operation is that all synchronous 

machines remain in synchronism or, colloquially, “in step.” 

This aspect of stability is influenced by the dynamics of generator rotor angles and 

power-angle relationships. Instability may also be encountered without the loss of 

synchronism. For example, a system consisting of a generator feeding an induction motor 

can become unstable due to collapse of load voltage. In this instance, it is the stability and 

control of voltage that is the issue, rather than the maintenance of synchronism. This type 

of instability can also occur in the case of loads covering an extensive area in a large 

system. 

In the event of a significant load/generation mismatch, generator and prime mover 

controls become important, as well as system controls and special protections. If not 

properly coordinated, it is possible for the system frequency to become unstable, and 

generating units and/or loads may ultimately be tripped possibly leading to a system 

blackout. This is another case where units may remain in synchronism (until tripped by 

such protections as under-frequency), but the system becomes unstable. 

Because of the high dimensionality and complexity of stability problems, it is 

essential to make simplifying assumptions and to analyze specific types of problems using 

the right degree of detail of system representation.  
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 Different Types of Power System Stability: nature of disturbance 2.2.3

The synchronous stability of a power system can be of several types depending 

upon the nature of disturbance, and for the purpose of successful analysis it can be 

classified into the following 3 types as shown below: 

1) Steady state stability, 

2) Transient stability, 

3) Dynamic stability. 

 

Figure 2-2 Power System Stability Category[1] 

 

Steady-state or Small-signal Stability 

The steady state stability of a power system is defined as the ability of the system to 

bring itself back to its stable configuration following a small disturbance in the network 

(like normal load fluctuation or action of automatic voltage regulator). It can be considered 

only during a very gradual and infinitesimally small power change. 

  In case the power flow through the circuit exceeds the maximum power 

permissible, then there are chances that a particular machine or a group of machines will 

cease to operate in synchronism, and result in yet more disturbances. In such a situation, 
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the steady state limit of the system is said to have reached. Or in other words the steady 

state stability limit of a system refers to the maximum amount of power that is permissible 

through the system without loss of its steady state stability. 

 

 

Transient or Large-Disturbance Stability 

 Transient stability of a power system refers to the ability of the system to reach a 

stable condition following a large disturbance in the network condition. In all cases related 

to large changes in the system like sudden application or removal of load, switching 

operations, line faults or loss due to excitation the transient stability of the system comes 

into play. In fact, it deals in the ability of the system to retain synchronism following a 

disturbance sustaining for a reasonably long period of time. 

The maximum power that is allowed to flow through the network without loss of 

stability following a sustained period of disturbance is referred to as the transient stability 

of the system. Going beyond that maximum permissible value for power flow, the system 

would temporarily be unstable. 

Dynamic Stability 

Dynamic stability of a system denotes the artificial stability given to an inherently 

unstable system by automatic controlled means. It is generally concerned to small 

disturbances lasting for about 10 to 30 seconds. 

Particularly in the thesis, we want to focus on the steady-state or small signal 

stability, so we just consider the system conditions following a small disturbance. 

 

 Different Types of Power System Stability: quantities of interest 2.2.4

 In the previous section we classified power system stability depending on the 

nature of disturbance. But there is another category for stability of the power system that 
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can be reached if we consider the parameter of the interest. Three quantities are important 

for power system operation: (i) angles of nodal voltages δ, also called power or load 

angles; (ii) frequency f ; and (iii) nodal voltage magnitudes V. These quantities are 

especially important from the point of view of defining and classifying power system 

stability. Hence power system stability can be divided into: (i) rotor (or power) angle 

stability; (ii) frequency stability; and (iii) voltage stability. (Figure 2-2) 

So if we combine these two categories, we can reach a unique classification of 

power system stability, shown in Figure 2-3, that is useful to lead us to the final point of 

interest. 

 

Figure 2-3 Classification of Power System Stability (based on CIGRE No.325) 

In the previous section, the dynamics of the power system were discussed and also 

classified according to the time frame of their occurrence. In the case of electromagnetic 

phenomenon, as the duration of the disturbance is very short, the generator rotational speed 

can be considered constant. In this thesis, a longer time scale will be discussed during 

which the rotor speed will vary and interact with the electromagnetic changes to produce 

electromechanical dynamic effects. The time scale associated with these dynamics is 

sufficiently long for them to be influenced by the turbine and the generator control 

systems. As you can see in Figure 2-3, angle stability following small disturbances is our 

interest.    

At this point we know that we need to focus on angle stability, so in the next 

section a brief description is given and then we will see how the regulation of voltage with 

AVR can endanger angle stability. 
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 Rotor Angle Stability 2.2.5

 Rotor angle stability is the ability of interconnected synchronous machines of a 

power system to remain in synchronism. The stability problem involves the study of the 

electromechanical oscillations inherent in power systems. A fundamental factor in this 

problem is the manner in which the power outputs of synchronous machines vary as their 

rotors oscillate. 

Each synchronous machine has two essential elements: the field and the armature 

windings. When the rotor is driven by a prime mover (turbine), the rotating magnetic field 

of the field winding induces alternating voltages in the three-phase armature windings of 

the stator. The frequency of the induced alternating voltages and of the resulting currents 

that flow in the stator windings when a load is connected depends on the speed of the rotor. 

The frequency of the stator electrical quantities is thus synchronized with the rotor 

mechanical speed: hence the designation “synchronous machine.” 

When two or more synchronous machines are interconnected, the stator voltages 

and currents of all the machines must have the same frequency and the rotor mechanical 

speed of each is synchronized to this frequency. Therefore, the rotor of all interconnected 

synchronous machines must be in synchronism. 

The physical arrangement (spatial distribution) of the stator armature winding is 

such that the time-varying alternating currents flowing in the three-phase windings produce 

a rotating magnetic field that, under steady-state operation, rotates at the same speed as the 

rotor. The stator and rotor fields react with each other and an electromagnetic torque 

results from the tendency of the two fields to align themselves. In a generator, this 

electromagnetic torque opposes rotation of the rotor, so that mechanical torque must be 

applied by the prime mover to sustain rotation. The electrical torque (or power) output of 

the generator is changed only by changing the mechanical torque input by the prime 

mover. The effect of increasing the mechanical torque input is to advance the rotor to a 

new position relative to the revolving magnetic field of the stator. Conversely, a reduction 

of mechanical torque or power input will retard the rotor position. Under steady-state 

operating conditions, the rotor field and the revolving field of the stator have the same 
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speed. However, there is an angular separation between them depending on electrical 

torque (or power) output of the generator.     

An important characteristic that has a bearing on power system stability is the 

relationship between interchange power and angular positions of the rotors of synchronous 

machines. This relationship is highly nonlinear. Consider Figure 2-4. It consists of two 

synchronous machines connected by a transmission line. Let us assume that machine 1 

represents a generator feeding power to asynchronous motor represented by machine 2. 

 

Figure 2-4  Two Machine System 

As we already know, the power transferred between these machines has the 

following relationship: 

                                  𝑃 =  
𝐸𝐺𝐸𝑀

𝑋𝑇
𝑠𝑖𝑛𝛿                           ( 2-1) 

where, δ is the rotor angle difference between two machines and:  

                                  𝑋𝑇 = 𝑋𝐺 + 𝑋𝐿 + 𝑋𝑀                     ( 2-2) 

The corresponding power versus angle relationship is plotted in Figure 2-5. 
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Figure 2-5 Power-angle Characteristic 

So we see that the power varies as a sine of the angle: a highly nonlinear 

relationship. As the angle is increased, the power transfer increases up to a maximum. 

After a certain angle, nominally 90º, a further increase in angle results in a decrease in 

power transferred. There is a maximum steady-state power that can be transmitted between 

the two machines. 

 

 Stability Phenomena 2.2.6

 Stability is a condition of equilibrium between opposing forces. The mechanism by 

which interconnected synchronous machines maintain synchronism with one another is 

through restoring forces, which act whenever there are forces tending to accelerate or 

decelerate one or more machines with respect to other machines. Under steady-state 

conditions, there is equilibrium between the input mechanical torque and the output 

electrical torque of each machine, and the speed remains constant. If the system is 

perturbed this equilibrium is upset, resulting in acceleration or deceleration of the rotors of 

the machines according to the laws of motion of a rotating body. If one generator 

temporarily runs faster than another, the angular position of its rotor relative to that of the 

slower machine will advance. The resulting angular difference transfers part of the load 

from the slow machine to the fast machine, depending on the power-angle relationship. 

This tends to reduce the speed difference and hence the angular separation. The power-

angle relationship, as discussed above, is highly nonlinear. Beyond a certain limit, an 
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increase in angular separation is accompanied by a decrease in power transfer; this 

increases the angular separation further and leads to instability. For any given situation, the 

stability of the system depends on whether or not the deviations in angular positions of the 

rotors result in sufficient restoring torques. 

 When a synchronous machine loses synchronism or “falls out of step” with the rest 

of the system, its rotor runs at a higher or lower speed than that required to generate 

voltages at system frequency. The “slip” between rotating stator field (corresponding to 

system frequency) and the rotor field results in large fluctuations in the machine power 

output, currents, and voltage; this causes the protection system to isolate the unstable 

machine from the system. 

Loss of synchronism can occur between one machine and the rest of the system or 

between groups of machines. In the latter case synchronism may be maintained within each 

group after its separation from the others. 

The synchronous operation of interconnected synchronous machines is in some 

ways analogous to several cars speeding around a circular track while joined to each other 

by elastic links or rubber bands. The cars represent synchronous machine rotors and the 

rubber bands are analogous to transmission lines. When all the cars run side by side, the 

rubber bands remain intact. If force applied to one of the cars causes it to speed up 

temporarily, the rubber bands connecting it to the other cars will stretch; this tends to slow 

down the faster car and speed up the other cars. A chain reaction results until all the cars 

run at the same speed once again. If the pull on one of the rubber bands exceeds its 

strength, it will break and one or more cars will pull away from the other cars. 

With electric power systems, the change in electrical torque of a synchronous 

machine following a perturbation can be resolved into two components: 

         𝛥𝑇𝑒 = 𝑇𝑠𝛥𝛿 + 𝑇𝐷𝛥𝜔                          ( 2-3) 

where 
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𝑇𝑠𝛥𝛿 is the component of torque change in phase with the rotor angle perturbation 

𝛥𝛿 and is referred to as the synchronizing torque component; 𝑇𝑠 is the synchronizing 

torque coefficient. 

𝑇𝐷𝛥𝜔 is the component of torque in phase with the speed deviation 𝛥𝜔 and is 

referred to as the damping torque component; 𝑇𝐷 is the damping torque coefficient. 

System stability depends on the existence of both components of torque for each of 

the synchronous machines. Lack of sufficient synchronizing torque results in instability 

through an aperiodic drift in the rotor angle. On the other hand, lack of sufficient damping 

torque results in oscillatory instability. This is our case of interest. 

We can characterize the rotor angle stability phenomena in terms of the following 

two categories: 

(1) Small-signal (or small-disturbance) angle stability is the ability of 

the      power system to maintain synchronism under small 

disturbances. Such disturbances occur continually on the system 

because of small variations in loads and generation. The 

disturbances are considered sufficiently small for the linearization 

of the system equations during the analysis. Instability that may 

result can be of two forms: (i) steady increase in rotor angle due to 

lack of sufficient synchronizing torque, or (ii) rotor oscillations of 

increasing amplitude due to lack of sufficient damping torque. The 

nature of system response to small disturbances depends on a 

number of factors including the initial operating, the transmission 

system strength, and the type of generator excitation controls used. 

For a generator connected radially to a large power system, in the 

absence of automatic voltage regulators (i.e., with constant field 

voltage) the instability is due to lack of sufficient synchronizing 

torque. This results in instability through a non-oscillatory mode. 

With continuously acting voltage regulators (AVRs), the small-

disturbance stability problem is one of ensuring sufficient damping 
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of system oscillations. Instability is normally through oscillations of 

increasing amplitude. (Figure 2-6) 

 

Figure 2-6 Oscillations with Excitation Control 

In today’s practical power systems, small-signal stability is largely 

a problem of insufficient damping of oscillations. So in this thesis 

we are interested in optimization of the mentioned oscillations by 

using power system stabilizers (PSSs). Later in this chapter we will 

see how voltage controllers can cause the increasing amplitude of 

oscillations, and following that we show how the usage of PSS can 

prevent this increment and even help to damp it sufficiently. But 

before that, we introduce the following types of oscillations that are 

of concern: 

 Local modes or machine-system modes are associated with 

the swinging of units at a generating station with respect to 

the rest of power system. The term local is used because the 

oscillations are localized at one station or a small part of the 

power system. 

 Inter-area modes are associated with swinging of many 

machines in one part of the system against machines in other 

parts. They are caused by two or more groups of closely 

coupled machines being interconnected by weak ties. 
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(2) Transient stability is the ability of the power system to maintain 

synchronism when subjected to a severe transient disturbance. This 

is not the case for this thesis, so we do not go in details. [1] 

 

2.3 Electromechanical Oscillations Problem in the 

presence of AVR 

It is very important to perfectly understand the process in which we find out the 

necessity of utilization of power system stabilizers. Seeking this goal, it is useful to see 

some basic concepts of mechanical turbine movements and the related equations, because 

following that we reach the problem that is caused by the usage of AVRs, and of course the 

solution to the problem. 

When considering free-body rotation the shaft of the synchronous machine can be 

assumed to be rigid when the total inertia of the rotor J is simply the sum of the individual 

inertias. According to Newton’s second law: 

  𝐽
𝑑𝜔𝑚

𝑑𝑡
+ 𝐷𝑑𝜔𝑚 = 𝜏𝑡 − 𝜏𝑒                                ( 2-4) 

where J is the total moment of inertia of the turbine and generator rotor (𝑘𝑔 𝑚2), 

𝜔𝑚 is the rotor shaft velocity (mechanical rad/s), 𝜏𝑡 is the torque produced by the turbine 

(N m), 𝜏𝑒 is the counteracting electromagnetic torque and 𝐷𝑑 is the damping-torque 

coefficient (Nms) that accounts for the mechanical rotational loss due to windage and 

friction. 

Then remembering that the mechanical speed of the rotor is 

𝜔𝑚 = 𝜔𝑠𝑚 + 𝛥𝜔𝑚 = 𝜔𝑠𝑚 +
𝑑𝛿𝑚

𝑑𝑡
                      ( 2-5) 

where 𝛿𝑚 is the rotor angle expressed in mechanical radians, 𝛥𝜔𝑚 =
𝑑𝛿𝑚

𝑑𝑡
 is the 

speed deviation in mechanical radians per second and 𝜔𝑠𝑚 is the synchronous speed of the 

rotor.  
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Now we can reach to a fundamental equation governing the rotor dynamics, that is, 

the swing equation 

                𝑀𝑚
𝑑2𝛿𝑚

𝑑𝑡2
= 𝑃𝑚 − 𝑃𝑒 −𝐷𝑚

𝑑𝛿𝑚

𝑑𝑡
                           (2-6) 

where 𝐷𝑚 = 𝐷𝑑𝜔𝑠𝑚 is the damping coefficient. Considering δ and 𝜔𝑠 as the 

electrical angle and electrical synchronous speed, respectively, we can re-write the swing 

equation as the following equation 

                𝑀
𝑑2𝛿

𝑑𝑡2
= 𝑃𝑚 − 𝑃𝑒 − 𝑃𝐷 = 𝑃𝑎𝑐𝑐                            ( 2-7) 

where 𝑃𝑎𝑐𝑐 is the net accelerating power. The time derivative of the rotor angle 

𝑑𝛿

𝑑𝑡
= 𝛥𝜔 = 𝜔 − 𝜔𝑠 is the rotor speed deviation in electrical radians per second. Often it is 

more convenient to replace the second-order differential equation by two first-order 

equations: 

         𝑀
𝑑𝛥𝜔

𝑑𝑡
= 𝑃𝑚 − 𝑃𝑒 − 𝑃𝐷 = 𝑃𝑎𝑐𝑐,           

𝑑𝛿

𝑑𝑡
= 𝛥𝜔               ( 2-8) 

 This equation shows that for small deviations in rotor speed the damper windings 

produce a damping power 𝑃𝐷 = 𝐷𝛥𝜔 that is proportional to the rotor speed deviation. To 

help explain the effect of the damper windings on the system behavior it is convenient to 

rewrite the swing equation, 

               𝑀
𝑑2𝛿

𝑑𝑡2
= 𝑃𝑚 − [𝑃𝑒(𝛿) + 𝑃𝐷],                             ( 2-9) 

when the damping power is seen either to add to, or to subtract from, the electrical 

air-gap power 𝑃𝑒(𝛿) depending on the sign of the speed deviation. If Δω < 0, then 𝑃𝐷 is 

negative, effectively opposing the air-gap power and shifting the resulting (𝑃𝐸′ + 𝑃𝐷) 

characteristic downwards. If Δω > 0, then 𝑃𝐷 is positive, effectively assisting the air-gap 

power and shifting the resultant characteristic upwards. The rotor will therefore move 

along a modified power–angle trajectory such as that shown in Figure 2-7. To help 

increase clarity, this diagram shows an enlarged part of the power–angle diagram in the 

proximity of the equilibrium point. 
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               Figure 2-7 Rotor and Power Oscillations with Damping Included[2] 

As before, the rotor is initially disturbed, with a stepwise change, from equilibrium 

point 1 to point 2. At point 2 the driving mechanical power is less than the opposing 

electrical power and the decelerating torque will force the rotor back towards the 

equilibrium point. On deceleration the rotor speed drops and 𝑃𝐷 becomes negative, 

decreasing the resulting decelerating torque. The rotor therefore moves along the line 2–6 

when the work done by the decelerating torque is equal to the area 2–4–6. This is less than 

the area 2–4–1 in Figure 2-7 which represents the work that would have been done if no 

damping were present. At point 6 the rotor speed reaches a minimum and, as it continues to 

move along the curve 6–3, the accelerating torque counteracts further movement of the 

rotor and is assisted by the negative damping term. The rotor again reaches synchronous 

speed when the area 6–3–5 is equal to the area 2–4–6 which is achieved earlier than in the 

case without damping. The rotor then starts to swing back, still accelerating, so that the 

speed increases above synchronous speed. The damping term changes sign, becoming 

positive, and decreases the resulting accelerating torque. The rotor moves along the curve 

3–7 and the work performed during the acceleration is equal to the small area 3–5–7. As a 

result the rotor reaches synchronous speed at point 8, much earlier than in the case without 

damping. The rotor oscillations are damped and the system quickly reaches equilibrium 

point 1. 
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Steady-state Stability of the Regulated System 

This section considers steady-state stability when the action of an AVR is included. 

It is important for us to see the influence of the voltage regulation on the angular steady-

state stability. But before that, it can be useful if we derive the modified steady-state 

power–angle characteristic. 

Type equation here. 

 Steady-State Power-Angle Characteristic of Regulated Generator 2.3.1

Assuming the unregulated generator, the static power-angle characteristic, 𝑃𝐸𝑞(𝛿), 

can be derived considering the fact that in this condition the excitation e.m.f. is constant, 

𝐸𝑓 = 𝐸𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. But, in practice every generator is equipped with an AVR which 

tries to maintain the voltage at the generator terminals constant (or at some point behind 

the terminals) by adjusting the value of the excitation voltage and, consequently, 𝐸𝑓. As the 

resulting formulae for the active and reactive power are more complicated than when 𝐸𝑓 = 

constant, the following discussion will be restricted to the case of a round-rotor generator 

(𝑥𝑑=𝑥𝑞) with resistance neglected (r = 0). For this case the steady-state equivalent circuit 

and phasor diagram are shown in Figure 2-8. The coordinates of 𝐸𝑞 in the (a, b) reference 

frame are: 

  𝐸𝑞𝑎 = 𝐸𝑞𝑐𝑜𝑠𝛿,            𝐸𝑞𝑏 = 𝐸𝑞𝑠𝑖𝑛𝛿.                 ( 2-10) 

 

Figure 2-8 Generator Operating on the Infinite Busbars: (a) Schematic and Equivalent Circuit; (b) Phasor 

Diagram in the (d,q) and (a,b) Reference Frames.[2] 
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Starting from Pythagoras’s theorem, we can reach the following equation: 

(𝐸𝑞𝑎 +
𝑋𝑑

𝑋
𝑉𝑠)

2 + 𝐸𝑞𝑏
2 = [

𝑋𝑑+𝑋

𝑋
𝑉𝑔]

2                         ( 2-11) 

This equation describes a circle of radius 𝜌 = (
𝑋𝑑

𝑋
+ 1)𝑉𝑔 with center lying on the a-

axis at a distance 𝐴 = −𝑋𝑑𝑉𝑠/𝑋 from the origin. This means that with 𝑉𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

and 𝑉𝑠 = 𝑐𝑜𝑠𝑡𝑎𝑛𝑡, the tip of 𝐸𝑞 moves on this circle. Figure 2-9 shows the circular locus 

centered on the origin made by the phasor 𝑉𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and another circular locus 

(shifted to the left) made by phasor 𝐸𝑞.  

The circle defined by the previous equation can be transformed into polar 

coordinates 

 𝐸2𝑞 + 2
𝑋𝑑

𝑋
𝐸𝑞𝑉𝑠𝑐𝑜𝑠𝛿 + (

𝑋𝑑

𝑋
𝑉𝑠)

2 = [
𝑋𝑑+𝑋

𝑋
𝑉𝑔]

2.              ( 2-12) 

One of the roots of this equation is: 

  𝐸𝑞 = √(
𝑋𝑑+𝑋

𝑋
𝑉𝑔)2−(

𝑋𝑑

𝑋
𝑉𝑠𝑠𝑖𝑛𝛿)2 −

𝑋𝑑

𝑋
𝑉𝑠𝑐𝑜𝑠𝛿,              ( 2-13) 

which corresponds to the 𝐸𝑓 = 𝐸𝑞 points that lie on the upper part of the circle. 

Substituting this equation into the round-rotor power-angle equation, gives the generated 

power as 

𝑃𝑉𝑔(𝛿) =
𝑉𝑠

𝑋𝑑+𝑋
𝑠𝑖𝑛𝛿√(

𝑋𝑑+𝑋

𝑋
𝑉𝑔)2−(

𝑋𝑑

𝑋
𝑉𝑠𝑠𝑖𝑛𝛿)2 −

1

2

𝑋𝑑

𝑋

𝑉𝑠
2

𝑋𝑑+𝑋
𝑠𝑖𝑛2𝛿.     2-14) 

This equation describes the power-angle characteristic 𝑃𝑉𝑔(𝛿) with 𝑉𝑔 = 𝑐𝑜𝑛𝑠𝑡. and 

is shown, together with 𝑃𝐸𝑞, in Figure 2-9. A comparison between them shows that the 

AVR can significantly increase the amplitude of the steady-state power-angle 

characteristic. 
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Figure 2-9 The Circle Diagrams and the Power-Angle Characteristic for the Round-Rotor Generator 

Operating on the Infinite Busbars 

On the other hand we know that   

             𝑃𝑉𝑔(𝛿) =
𝑉𝑠

𝑋𝑑+𝑋
𝐸𝑞𝑏,                                         ( 2-15) 

indicating that the generated power is proportional to the projection of 𝐸𝑞 on the b-axis. 

This function reaches its maximum value when 𝐸𝑞𝑏is a maximum. As it can be seen from 

the Figure 2-9, this occurs at the point on the 𝐸𝑞 locus that corresponds to the center of the 

circle. So the corresponding angle is 𝛿𝑀. 

 The angle 𝛿𝑀 at which 𝑃𝑉𝑔(𝛿) reaches maximum is always greater than 
𝜋

2
 

irrespective of the voltages  𝑉𝑠 and 𝑉𝑔. This is typical of systems with active AVRs.  

         𝑃𝑉𝑔𝑀 = 𝑃𝑉𝑔(𝛿)⃒𝛿 = 𝛿𝑀 =
𝑉𝑔𝑉𝑠

𝑋
,                         ( 2-16) 

showing that the amplitude of the power-angle characteristic of the regulated system is 

independent of the generator reactance. It does, however, depend on the equivalent 

reactance of the transmission system. The steady-state synchronizing power coefficient of 

the regulated system is 𝐾𝑉𝑔 =
𝜕𝑃𝑉𝑔(𝛿)

𝜕𝛿
  and 𝐾𝑉𝑔 > 0 when δ < 𝛿𝑀. 
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The 𝑠𝑖𝑛2𝛿 component in the equation of power-angle characteristic has negative 

sign, making the maximum of the 𝑃𝑉𝑔(𝛿) characteristic shown in Figure 2-9 occur at 

𝛿𝑀 > 
𝜋

2
 . For small rotor angles δ ≪  

𝜋

2
 the characteristic is concave, while for 𝛿 >  

𝜋

2
  the 

characteristic is very steep. The sin 2𝛿 component has nothing to do with the reluctance 

power (as the case with 𝑃𝐸𝑞(𝛿)) because the equation of power-angle characteristic has 

been derived assuming 𝑥𝑑 = 𝑥𝑞 . The distortion of the characteristic is entirely due to the 

influence of the AVR. 

 Physically the shape of the 𝑃𝑉𝑔(𝛿) characteristic can be explained using 

Figure 2-10. Assume that initially the generator operates at point 1 corresponding to the 

characteristic shown by the dashed curve 1. An increase in the generator load causes an 

increase in the armature current, an increased voltage drop in the equivalent network 

reactance 𝑋, Figure 2-8, and therefore a decrease in the generator voltage 𝑉𝑔. The resulting 

voltage error forces the AVR to increase the excitation voltage so that 𝐸𝑞is increased to a 

value 𝐸𝑞2  >  𝐸𝑞1and a new operating point is established on a higher characteristic 

𝑃𝐸𝑞2 = 𝑃𝐸𝑞(𝛿)⃒𝐸𝑞 = 𝐸𝑞2 denoted by 2. Subsequent increases in load will cause the 

resulting 𝑃𝑉𝑔(𝛿) characteristic to cross at the points 2, 3, 4, 5 and 6 lying on consecutive 

𝑃𝐸𝑞(𝛿) characteristics of increased amplitude. Note that starting from point 5 (for δ > π/2) 

the synchronizing power coefficient 𝐾𝐸𝑞 =
𝜕𝑃𝐸𝑞(𝛿)

𝜕𝛿
 is negative while 𝐾𝑉𝑔 =

𝜕𝑃𝑉𝑔(𝛿)

𝜕𝛿
  is still 

positive.   

 

Figure 2-10 Creation of the 𝑃𝑉𝑔(𝛿) Characteristic from a Family of 𝑃𝐸𝑞(𝛿) Characteristics. 
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If the AVR is very slow acting (i.e. it has a large time constant) then it may be 

assumed that following a small disturbance the AVR will not react during the transient 

state and the regulated and unregulated systems will behave in a similar manner. The 

stability limit then corresponds to point 5 when δ = π/2 (for a round-rotor generator). If the 

AVR is fast acting so that it is able to react during the transient state, then the stability limit 

can be moved beyond δ = π/2 to a point lying below the top of the 𝑃𝑉𝑔(𝛿) curve. In this 

case stability depends on the parameters of the system and the AVR, and the system 

stability is referred to as conditional stability.  

A fast-acting AVR may also reverse the situation when the stability limit is lowered 

(with respect to the unregulated system) to a point δ < π/2, for example to point 4, or even 

3, in Figure 2-10. In this situation the system may lose stability in an oscillatory manner 

because of the detrimental effect of the AVR. Such a situation, and the conditional stability 

condition, will be discussed later in this section. And here is the reason that using the AVR 

leads us to use PSS to compensate effect of AVR. 

Effect of AVR Action on Damper Winding 

As shown before in the swing equation one component is 𝑃𝐷 = 𝐷𝛥𝜔, that 

corresponds to the damping power introduced by the damper windings. Remember that a 

change in the rotor angle δ result in the speed deviation Δω. According to Faraday’s law, 

an emf is induced which is proportional to the speed deviation. The current driven by this 

emf interacts with the air-gap flux to produce a torque referred to as the natural damping 

torque. To simplify considerations, only the d-axis damper winding will be analyzed. 

Figure 2-11a, shows a phasor diagram for the d-axis damper winding, similar to 

that shown in Figure 2-10. The emf induced in the winding 𝑒𝐷(𝛥𝜔) is shown to be in phase 

with Δω. The damper winding has a large resistance, which means that the current due to 

speed deviation, 𝑖𝐷(𝛥𝜔), lags 𝑒𝐷(𝛥𝜔) by an angle less than π/2. The component of this 

current which is in-phase with Δω gives rise to the natural damping torque. The quadrature 

component, which is in phase with Δδ, enhances the synchronizing power coefficient. 

Now consider the influence of the AVR on the damper windings. The d-axis 

damper winding lies along the path of the excitation flux produced by the field winding. 
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This means that the two windings are magnetically coupled and may be treated as a 

transformer Figure 2-11b, supplied by 𝛥𝐸𝑓 and loaded with the resistance 𝑅𝐷 of the 

damper winding. Consequently, the additional current 𝑖𝐷(𝛥𝐸𝑓) induced in the damper 

winding must lag 𝛥𝐸𝑓 . Figure 2-11c shows the position of phasors. The horizontal 

component of 𝑖𝐷(𝛥𝐸𝑓) directly opposes the horizontal component of 𝑖𝐷(𝛥𝜔). As the former is 

due to the AVR while the latter is due to speed deviation and is responsible for the natural 

damping, it may be concluded that voltage regulation weakens the natural damping. This 

weakening effect is referred to as artificial damping. 

Artificial damping is stronger for larger 𝑖𝐷(𝛥𝐸𝑓) currents. This current is, in turn, 

proportional to the variations in 𝛥𝐸𝑓 and ΔV caused by Δδ. Some of the factors influencing 

this effect were described in the previous subsection and are: generator load, reactance of 

the transmission network and gain of the voltage controller. 

 

Figure 2-11 PhasorDiagramofIncreasingOscillatingwiththeSwingFrequencyΩ(inrad/s)forthe

Damper Windings: (a) Natural Damping Only; (b) Field and Damper Windings as a Transformer; (c) 

Natural and Artificial Damping 

The main conclusion from the previous sections is that a voltage controller, which 

reacts only to the voltage error, weakens the damping introduced by the damper and field 

windings. In the extreme case of a heavily loaded generator operating on a long 

transmission link, a large gain in the voltage controller gain may result in net negative 

damping leading to an oscillatory loss of stability. This detrimental effect of the AVR can 

be compensated using a supplementary control loop referred to as a power system 
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stabilizer (PSS), which is our main field of interest in this thesis, as we will discuss 

different techniques for PSS tuning in the next chapter. 
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3 Techniques for PSS Tuning 

 

As it was discussed in the previous chapter, an inadequate excitation control (AVR), 

as a wrong choice of its parameters setting, can lead to instability conditions that appears 

as growing oscillations of electrical and mechanical turbine-generator variables. Such 

oscillations can reach amplitudes so high to prevent the operation of the unit in the 

working point under consideration. In contrast, a correct excitation control, together with a 

proper fine-tuning of the regulation parameters, in particular the parameters of the 

additional power system stabilizer (PSS) for damping the electromechanical oscillations, 

can ensure a stable operation of the generator and adequate dynamic responses across the 

full allowable working range and for all the normal network conditions. 

In contrast, a correct excitation control, together with a proper fine-tuning of the 

regulation parameters, in particular the parameters of the additional power system 

stabilizer for damping the electromechanical oscillations, can ensure a stable operation of 

the generator and adequate dynamic responses across the full allowable working range and 

for all the normal network conditions. 

It is possible to conduct stability analysis through the calculation of system 

eigenvalues and the study of the dependence of their location on the complex plan, 

depending on units operating point and AVR and PSS parameters. A particular and 

important point of view for stability analysis is the phase evaluation of transfer function 

between some system variables. The crucial feature is the availability of different 

optimization procedures capable to determine, in the excitation control of synchronous 

generators, the most appropriate calibration of the gains of additional stabilizing feedbacks 

in order to achieve an adequate damping of electromechanical oscillations. 

To understand the methods of PSS tuning it is useful to see the model definition of 

power system elements for different frequencies of oscillations. But before that there is a 
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short discussion about eigenvalue analysis that is the basic technique, used in this thesis, to 

observe both the frequency modes which have increasing amplitude of oscillations 

(oscillatory instability) and the effect of different power plants on those modes. Therefore 

eigenvalue analysis is a kind of tool for our case of study, and it is discussed in this 

chapter, because well understanding of the concepts behind different PSS tuning 

techniques is effectively dependent on having enough knowledge about eigenvalue 

analysis.     

It is worth mentioning that the main software -to analyze the electromechanical cycle 

and then to find the best optimization technique- used in this thesis is ALICE, that is a 

software package developed by CESI and Terna in MATLAB®, that creates an integrated 

environment for linearized analysis of the electromechanical cycle. ALICE uses data of 

synchronous generators AVRs and PSSs to build a model of the power plant-network 

system.  

 

3.1 Eigenvalue Analysis 

As we know the disturbances in a power system can be of two kinds: small or large. 

After having any kind of disturbances, the system is in its dynamic state, and we are 

interested to study the stability of the system in this condition. Stability after a large 

disturbance is called large perturbation stability and following a small disturbance is small 

perturbation stability. Since our focus is just on small disturbances, we need to find a 

method that is optimized for this condition. Eigenvalue and modal analysis describe the 

small signal behavior of the system – the behavior linearized around one operating point – 

and do not take into account the non-linear behavior of, for instance, controllers during 

large perturbations. Therefore, time domain simulation and modal analysis in the 

frequency domain complete each other in the analysis of power systems. 
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Table  3-1 Stability Studies 

Large perturbation Stability Small perturbation Stability 

dynamic transition dynamic transition 

from one working point to another around an operating point 

non-linear linear 

 

Eigenvalue analysis investigates the dynamic behavior of a power system under 

different characteristic frequencies (“modes”). In a power system, it is required that all 

modes be stable. Moreover, it is desired that all electromechanical oscillations be damped 

out as quickly as possible. The results of an Eigenvalue analysis are given as frequency and 

relative damping for each oscillatory mode. 

 

 Linear Stability Analysis 3.1.1

Equilibria are not always stable. Since stable and unstable equilibria play quite 

different roles in the dynamics of a system, it is useful to be able to classify equilibrium 

points based on their stability. 

Suppose that we have a set of autonomous ordinary differential equations, written 

in vector form: 

�̇� = 𝑓(𝑥)               ( 3-1) 

Suppose that 𝑥∗ is an equilibrium point. By definition, f(𝑥∗) = 0. Now suppose that 

we take a multivariate Taylor expansion of the right-hand side of our differential equation: 

�̇� = 𝑓(𝑥∗ ) +
𝜕𝑓

𝜕𝑥
 ⃒𝑥∗ (𝑥 − 𝑥∗) + ⋯ 

                    = 
𝜕𝑓

𝜕𝑥
 ⃒𝑥∗ (𝑥 − 𝑥∗) + ⋯                        ( 3-2) 
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The partial derivative in the above equation is to be interpreted as the Jacobian 

matrix. If the components of the state vector x are (𝑥1, 𝑥2, … , 𝑥𝑛) and the components of 

the rate vector f are (𝑓1, 𝑓2, … , 𝑓𝑛), then the Jacobian is: 

   𝓙 =  

[
 
 
 
 
 
𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
…

𝜕𝑓1

𝜕𝑥𝑛
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
…

𝜕𝑓2

𝜕𝑥𝑛

⁞ ⁞ … ⁞
𝜕𝑓𝑛

𝜕𝑥1

𝜕𝑓𝑛

𝜕𝑥2
…

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 
 
 

                    ( 3-3) 

Now defining 𝛥𝑥 = 𝑥 − 𝑥∗ and taking a derivative of this definition, we get 

Δ�̇� = �̇�. If 𝛥𝑥 is small, then only the first term in the above equation is significant since the 

higher terms involve powers of our small displacement from equilibrium. If we want to 

know how trajectories behave near the equilibrium point, e.g. whether they move toward 

or away from the equilibrium point, it should therefore be good enough to keep just this 

term. Then we have 

       Δ�̇� = 𝒥∗𝛥𝑥                                          ( 3-4) 

where 𝒥∗ is the Jacobian evaluated at the equilibrium point. The matrix 𝒥∗ is a 

constant, so this is just a linear differential equation. According to the theory of linear 

differential equations, the solution can be written as a superposition of terms of the form 

𝑒𝜆𝑗𝑡 where {𝜆𝑗} is the set of eigenvalues of the Jacobian. 

The eigenvalues of the Jacobian are, in general, complex numbers. Let 𝜇𝑗+𝑖𝑣𝑗, 

where 𝜇𝑗 and 𝑣𝑗  are, respectively, the real and imaginary parts of the eigenvalue. Each of 

the exponential terms in the expansion can therefore be written as 

       𝑒𝜆𝑗𝑡 = 𝑒𝜇𝑗𝑡𝑒𝑖𝑣𝑗𝑡                                  ( 3-5) 

The complex part of the eigenvalue therefore only contributes an oscillatory 

component to the solution. It’s the real part that matters: If 𝜇𝑗 > 0 for any 𝑗, 𝑒𝜇𝑗𝑡 grows 

with time, which means that trajectories will tend to move away from the equilibrium 

point. This leads us to a very important theorem: 
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Theorem 1 An equilibrium point 𝑥∗ of the differential equation 1 is stable if all the 

eigenvalues of 𝒥∗, the Jacobian evaluated at 𝑥∗, have negative real parts. The equilibrium 

point is unstable if at least one of the eigenvalues has a positive real part. 

Because we are only keeping a locally linear approximation to the vector field, an 

analysis based on this theorem is called a linear stability analysis. 

Note that the theorem is silent on the issue of what happens if some of the 

eigenvalues have zero real parts while the others are all negative. This case can’t be 

decided based on linear stability analysis. The nonlinear terms we left out of equation 2 in 

fact determine the stability in this case. Dealing with this case requires a nonlinear theory 

which we do not discuss here. 

In the following there is a Figure 3-1 summarizing the visual representations of 

stability that the eigenvalues represent: 
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Figure 3-1 Stability Representation with Eigenvalues 

 

 

3.2 Model Definition 

 Type of Electromechanical Oscillation Modes 3.2.1

Electromechanical oscillations affecting power systems are reported in range 0.1-2 

Hz and divided in two types: 

 

Figure 3-2 Types of electromechanical oscillation modes. 



52 

 

 Local Oscillations: they concern single (or coherent group of) machines 

against the rest of the system (usually 1-2 Hz). 

 Inter-area Oscillations: they are dynamic modes typically between 

coherent groups of generators (usually 0.1-1 Hz). 

For both the types of oscillations, damping depends on the operating point of the 

units (i.e. actual power flows, reactive point on the capability plan), as well as on the 

external lines conditions (i.e. network meshing, lack of interconnections). 

We want to analyze stability of the power plant-network system both in local and in 

inter-area frequency interval, evaluating damping of oscillation modes and tuning of PSS 

according to the typical damping objectives. 

 

      Figure 3-3 Oscillations damping evaluation scale 

 

 Local Oscillation Modes Modelling 3.2.2

To analyze the interaction between the turbine-alternator and the network it is 

possible to build a model where a synchronous generator is connected with an infinite 

power network through an equivalent reactance. 

 

          Figure 3-4 Model representation of a synchronous generator connected with an infinite power 

network. 

It is how ALICE models the network for analyzing the local oscillation modes. 

Because PSS works based on a feedback control loop, it is useful to model the whole 
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power plant, including synchronous generator, AVR and PSS, with equivalent block 

diagrams. 

The system modelling is organized into different modules, so it’s quite easy to 

change the models of AVR and PSS or to create a custom model as close as possible to the 

real one. Into this linearized environment the user can analyze the electromechanical cycle 

and verify the behavior of the generator towards the local oscillation modes. 

 

Figure 3-5 Block diagram of the control model of a synchronous generator with AVR and additional 

PSS 

Using the same model of the generators, it’s also possible to simulate a small 

network where the different machines are connected by equivalent reactances and loads. 
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Figure 3-6 Representation of the multi-machine model 

Furthermore in a multi-machine environment there are not only local oscillation 

modes, but also inter-area oscillations ones, determined by the units parameters and by the 

connection lines between different generators. 

 Inter-area Oscillation Modes Modelling 3.2.3

The generic multi-machine model available in ALICE can be specifically tailored 

to simulate a particular inter-area mode that affects a generator. The objective is reached 

calculating the parameters of the loads and the values of the reactance necessary to obtain 

the desired frequency and damping. 
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Figure 3-7 Model representation capable to simulate a particular inter-area mode that affects a 

generator 
 

In the configuration shown in Figure 3-7, all the parameters of the plant remain 

unchanged and the variables to be calibrated are: 

 Xe: the external reactance determines the length of the "rope" that connects the 

power plant and the dominant network, its value decreases with the increase of the 

system oscillation frequency. 

 Pto: (the initial value of 𝑃𝑡) the active power absorbed by the load in the operating 

point (the reactive powers are determined by the load flow solution), its value 

increases with the increase of the system oscillation damping. 

This model changes only the connection parameters (Xe, Pto) with the external 

network, so it could be very useful to evaluate the behavior of the generator towards inter-

area modes. 

 

3.3 Stability Analysis Criteria 

To evaluate the stability of the linearized system, ALICE allows two possible 

approaches; a) the analysis of the system eigenvalues position in the complex plan; b) the 

analysis of the transfer function phase between some system variables. 

 



56 

 

 Precise Criterion: Analysis of Eigenvalues Position in the Complex Plan 3.3.1

The simplest technique to evaluate the stability of a system is to observe the 

position of its eigenvalues in the complex plan, ensuring that all of them are located in the 

left part and, in particular, on the left of the two half-lines which represent the minimum 

acceptable damping (i.e. 20%). This criterion gives an overview of the stability of the 

system in the operating point under consideration, for example: 

 

            Figure 3-8 Representation of system eigenvalues and minimum acceptable damping in the complex 

plan. 

 

 Simplified Criterion: Analysis of Transfer Function Phase Between Some 3.3.2

System Variables 

This criterion analyses the phase of a certain number of open-loop transfer 

functions among some system variables; the most significant of them is the one between 

unit speed and electrical active power. This method is not as precise as the previous one, 

but reveals to be very useful for evaluating the effectiveness of PSS parameterization. The 

objective of the optimization of the PSS, in fact, can also be expressed by saying that this 

must be calibrated so that its phase contribution is sufficient to compensate, totally or at 

least in part, the phase difference between speed and electric active power. In particular, 

this compensation should be effective in the electromechanical oscillations frequency 
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range (0.1-2 Hz) to smooth them. As shown in Figure 3-9 the compensation can be 

considered satisfying when the phase of the transfer function is between +/-30° around 0° 

in the band of interest.  

 

Figure 3-9 Phase of the open-loop transfer function phase 

between speed and electrical active power (in this example 

the compensation can be considered satisfying). 

 

3.4 PSS Optimization Methods 

For stabilizers calibration, different methods are available in ALICE, so it is possible 

to have different options to improve system stability. Depending on the situation (i.e. 

position of the power plant in the network, measurements accuracy, typical points of 

operation, etc.) and, in particular, on AVR and PSS models, one of them can be better than 

the others. For a more detailed explanation and formulas, about the following methods, the 

reader can refer to  [11]. 

 

 Residuals Method on Double Feedback PSS 3.4.1

This technique aims to optimize stabilizers gains searching a compromise between 

the requirements of stability and energy containment associated with the control stabilizing 



58 

 

signal called 𝑣𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 or 𝑣𝑟𝑒𝑡 in Italian.
1
 This setting guideline is influenced also by the 

need to limit the measurement noises introduced through the additional feedbacks in the 

voltage loop. There is the need to identify the criteria for the analytical determination of 

the “optimal” gains and it is possible to use only one feedback channel or a couple of them 

(𝐾𝑝 for electrical power channel with 𝐾𝑓 for frequency channel or 𝐾𝑤 for speed channel) 

for the optimization. A cost function can be defined as follows: 

𝐽(𝐾𝑝, 𝐾𝑓) = 𝐾𝑝
2 + 𝛼2 ∗ 𝐾𝑓

2                     ( 3-6) 

The function 𝐽 in (3-6) represents the weight of each feedback channel according to 

value α which is defined later. This function can be minimized leading to a choice of 

“optimal” gains in compliance with a constraint that imposes a satisfying value of the 

electromechanical damping. In other words, it moves the eigenvalues of the 

electromechanical system from the original position (𝜆,𝜆∗) - without stabilizing feedbacks - 

to the new location (𝜆𝑜𝑡𝑡,𝜆𝑜𝑡𝑡
∗ ) - characterized by the desired damping value (𝜉𝑜𝑡𝑡). The 

determination of the optimal gains can be entrusted to an iterative procedure that aims to 

place the electromechanical eigenvalues associated in the left-half plan defined by the half-

lines representing the minimum acceptable damping. Firstly it is needed to identify 

residues which are associated with complex eigenvalues: 

𝐺𝑃
𝑖 (𝑠) =

𝛥𝑃𝑒

𝛥𝑣𝑟𝑒𝑡
= ⋯+

𝐶𝑃
𝑖

𝑠−𝜆𝑖
+

𝐶𝑃
𝑖∗

𝑠−𝜆𝑖
∗ +⋯              ( 3-7) 

𝐺𝑓
𝑖(𝑠) =

𝛥𝑓

𝛥𝑣𝑟𝑒𝑡
= ⋯+

𝐶𝑓
𝑖

𝑠−𝜆𝑖
+

𝐶𝑓
𝑖∗

𝑠−𝜆𝑖
∗ +⋯               ( 3-8) 

where the superscript 𝑖 indicates the initial values of variables’ gains of stabilizing 

feedback and transfer function, 𝑃𝑒 is the electrical power, 𝑣𝑟𝑒𝑡 is the feedback voltage, s is 

the Laplace variable, 𝜆 is the eigenvalue or poles of 𝐺(𝑠) and 𝐶 is the corresponding 

residue. The displacement of the pair of electromechanical eigenvalues (𝜆𝑖, 𝜆𝑖
∗) from the 

original position to the optimal one: 

𝜆𝑜𝑡𝑡 = 𝜌𝑜𝑡𝑡 ∗ (−𝜉𝑜𝑡𝑡 + 𝑗√1 − 𝜉𝑜𝑡𝑡
2 ),      𝜆𝑜𝑡𝑡

∗ = 𝜌𝑜𝑡𝑡 ∗ (−𝜉𝑜𝑡𝑡 − 𝑗√1 − 𝜉𝑜𝑡𝑡
2 )            ( 3-9) 

                                                
1
 due to using ALICE in this thesis, the Italian symbols and abbreviations are used 
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is obtained by applying an appropriate change to the gains. The deviation of 𝐾𝑝 and 

𝐾𝑓 can be determined by evaluating the sensitivity of the eigenvalues of the dynamic 

system using the following approximate expression: 

𝛥𝜆 = 𝜆𝑜𝑡𝑡 − 𝜆
𝑖 = −(𝜌𝑜𝑡𝑡𝜉𝑜𝑡𝑡 + 𝜎

𝑖) + 𝑗 (𝜌𝑜𝑡𝑡√1 − 𝜉𝑜𝑡𝑡
2 − 𝑤𝑖)  

 

      ≅ −𝐶𝑃
𝑖𝛥𝐾𝑝 + 𝐶𝑓

𝑖𝛥𝐾𝑓                         ( 3-10) 

and separating the equalities written in real and imaginary components, a linear 

expression of 𝛥𝐾𝑝 and 𝛥𝐾𝑓 is obtained depending on the parameter 𝜌𝑜𝑡𝑡. These 

expressions are substituted in the function (3-6) of which the minimum is sought by 

requiring the cancellation of the derivative part with respect to 𝜌𝑜𝑡𝑡, then the value of 𝜌𝑜𝑡𝑡 

allows to identify the optimal gains of the stabilizing feedback. Due to the simplifications 

introduced in equation (3-9), it is necessary to iterate the procedure, because its validity is 

limited to small deviations of 𝐾𝑝 and 𝐾𝑓, defining an appropriate test to evaluate the 

optimal convergence of the solution obtained in every iteration. If the coefficient α is set 

equal to the modules of the residues associated with eigenvalues of the electromechanical 

transfer function 𝐺𝑃(𝑠) and 𝐺𝑓(𝑠) defined in absence of feedback stabilizers, the function 

in (3-6) is directly proportional to the energy associated with stabilizing signal 𝑣𝑟𝑒𝑡. 

In the multi-machine case, the stabilizing signal 𝑣𝑟𝑒𝑡, acting on a machine has also 

effect on other generators: thus, the system is characterized by complex residues matrices. 

So a new quadratic cost function can be defined: 

min (0.5𝑥′𝑯𝑥 + 𝑓′𝑥)   with    𝑨𝑥 ≤ 𝐵                         ( 3-11) 

where 𝐻 is an identity matrix of size 𝑁𝑥𝑁 (where 𝑁 is the generators number), if it 

is used only one feedback channel for stabilization, vice-versa is a 2𝑁𝑥2𝑁 diagonal matrix 

whose generic element 𝐻(𝑖, 𝑖) is defined by: 

𝐻(𝑖, 𝑖) = {

1

∑ 𝐶𝑃
2(𝑖,𝑗)𝑁

𝑗=1

      𝑖𝑓     1 ≤ 𝑖 ≤ 𝑁

1

∑ 𝐶𝑓
2(1,𝑗)𝑁

𝑗=1

   𝑖𝑓      𝑁 + 1 ≤ 𝑖 ≤ 2𝑁
               ( 3-12) 
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𝐶𝑃(𝑖, 𝑗) is the residue associated with 𝑖′𝑡ℎ electromechanical eigenvalue and the 

𝑗′𝑡ℎ stabilizing signal. The vector 𝑓 is unitary if it’s used only one feedback channel for 

stabilization; vice-versa introduces a normalization of optimized gains. Finally the vector 𝑥 

contains the gains and the terms 𝐴 and 𝐵, which define the constraints of the problem, 

given by the equation: 

⌊√1 − 𝜉𝑜𝑡𝑡
2 . 𝑅𝑒(𝐶𝑃

′ ) − 𝜉𝑜𝑡𝑡. 𝐼𝑚(𝐶𝑃
′ )⌋ . 𝛥𝐾𝑃 ≤ ⌊√1 − 𝜉𝑜𝑡𝑡

2 . 𝑅𝑒(𝜆) − 𝜉𝑜𝑡𝑡. 𝐼𝑚(𝜆)⌋              

( 3-13) 

 

 Lead-lags Method on Single Feedback PSS 3.4.2

This method optimizes the gain and lead-lags time constants for one feedback 

channel; it is very useful when only one input of PSS is available or one of the input 

measurement is not enough accurate. For simplicity here the speed channel is considered 

and the lead-lags time constants 𝑇1 (the zero) and 𝑇2 (the pole); the procedure is the same 

for the other two channels (electric power and frequency). This methods is iterative like the 

previous, even if, in this case, it’s necessary to optimize not a gain, but the transfer 

function that is:  

    𝐾𝑤.
(1+𝑗𝑤𝑇1)

(1+𝑗𝑤𝑇2)
                                  ( 3-14) 

So (3-10) becomes: 

𝛥𝜆 = 𝜆𝑜𝑡𝑡 − 𝜆
𝑖 = −(𝜌𝑜𝑡𝑡𝜉𝑜𝑡𝑡 + 𝜎

𝑖) + 𝑗(𝜌𝑜𝑡𝑡√1 − 𝜉𝑜𝑡𝑡
2 − 𝑤𝑖) 

≅ 𝐶𝑤
𝑖 . 𝛥 (𝐾𝑤

𝑖 .
(1 + 𝑗𝑤𝑇1

𝑖)

(1 + 𝑗𝑤𝑇2
𝑖)
) 

                                   = 𝐶𝑤𝐾
𝑖 𝛥𝐾𝑤 + 𝐶𝑤𝑇1

𝑖 𝛥𝑇1 + 𝑉𝑤𝑇2
𝑖 𝛥𝑇2             ( 3-15) 

Having to calculate the three contributions due to the gain and time constants by 

calculating: 
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𝛥(𝐾𝑤
𝑖
(1 + 𝑗𝑤𝑇1

𝑖)

(1 + 𝑗𝑤𝑇2
𝑖)
) = 𝛥𝐾𝑤. [

(1 + 𝑗𝑤𝑇1)

(1 + 𝑗𝑤𝑇2)
] + 𝐾𝑤. 𝛥 [

(1 + 𝑗𝑤𝑇1)

(1 + 𝑗𝑤𝑇2)
] 

=  𝛥𝐾𝑤 . [
(1+𝑗𝑤𝑇1)

(1+𝑗𝑤𝑇2)
] + 𝛥𝑇1. [

𝑗𝑤𝐾𝑤

(1+𝑗𝑤𝑇2)
] + 𝛥𝑇2. [

𝑗.𝑤.(1+𝑗𝑤𝑇1)𝐾𝑤

(1+𝑗𝑤𝑇2)
2
]         ( 3-16) 

Equating real and imaginary parts separately we obtain two equations, but another 

one is necessary, because there are three unknown variables. So, in order to maximize the 

contribution of lead-lags filters at the electromechanical oscillation pulse (𝑤 ⃘), while 

leaving as much as possible PSS transfer function phase the same in the rest of the 

spectrum, we chose to center the pole-zero pair precisely around 𝑤 ⃘. 

This constraint is expressed by: 

√(𝑇1 + 𝛥𝑇1)(𝑇2 + 𝛥𝑇2) =
1

𝑤 ⃘
                     ( 3-17) 

There are cases where the contribution of a single lead-lag filter could not be 

sufficient; it is therefore possible to optimize a transfer function which includes two lead-

lags in cascade. Following the same principle used to write equation (3-17), the chain of 

two filters is constructed as a double multiplicity filter centered around 𝑤 ⃘, namely:  

𝐾𝑤
(1+𝑗𝑤𝑇1)

(1+𝑗𝑤𝑇2)
.
(1+𝑗𝑤𝑇3)

(1+𝑗𝑤𝑇4)
= 𝐾𝑤

(1+𝑗𝑤𝑇1)
2

(1+𝑗𝑤𝑇2)2
          ( 3-18) 

where 𝑇3and 𝑇4 are respectively the time constants for the zero and the pole of the second 

lead-lags filter. Using two lead-lags the equations for residues calculation are modified, but 

the optimization procedure remains unchanged. 

This optimization technique is very useful also when the residual method using a 

couple of channel for stabilization is not able to reach the desired damping value. In this 

case, in fact, it’s possible to fix the value of one of the gains calculated by the residual 

method and to apply lead-lags calibration on the other channel. 
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 Lead-lags Method for Inter-area Mode Damping 3.4.3

In real cases could happen that the measurement of frequency and/or speed is not 

accurate or that the gain necessary to damp oscillation is too high. In this situation ALICE 

can optimize electric power channel gain and lead-lags to replace the contribution of 

frequency or speed channel and to aid inter-area mode damping. Assuming the use of one 

lead-lag filter, the stabilizing signal can be expressed as: 

𝑣𝑟𝑒𝑡 = −𝐾𝑝𝐾𝑠
1+𝑠𝑇1

1+𝑠𝑇2
𝑃𝑒 = 𝐾𝑃𝐾𝑠 (

𝑇1

𝑇2
+

1−
𝑇1
𝑇2

1+𝑠𝑇2
)𝑃𝑒           ( 3-19) 

where 𝐾𝑠 is the global gain of the PSS, after the algebraic sum of all inputs. Considering 

that: 

𝑃𝑒 = −2𝐻𝑠𝑤                        ( 3-20) 

where 𝐻 is the inertia constant of the unit under consideration, s is showing the Laplacian 

domain, thus, the second term of the third member of equation (3-19) becomes: 

𝐾𝑤𝑒𝑞𝑤 = 2𝐾𝑃𝐾𝑠𝐻𝑠(
1−

𝑇1
𝑇2

1+𝑠𝑇2
)𝑤          ( 3-21) 

 

showing the equivalent gain 𝐾𝑤𝑒𝑞on speed channel. Then, by choosing: 

𝑠𝑇2 ≫ 1                ( 3-22) 

that is: 

𝑇2 ≫
1

𝑤 ⃘
                  ( 3-23) 

where 𝑤 ⃘ is the electromechanical oscillation pulse to damp. Therefore we can assert that 

the overall gain on electric power channel (that remains unchanged) and the equivalent 

gain on speed channel are: 
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{

𝐾𝑝𝑒𝑞 = 𝐾𝑃𝐾𝑠
𝑇1

𝑇2
= 𝐾𝑃

𝐾𝑤𝑒𝑞 =
𝐾𝑃𝐾𝑠2𝐻(1−

𝑇1
𝑇2
)

𝑇2

                         ( 3-24) 

So we have: 

    {
𝐾𝑠

𝑇1

𝑇2
= 1

𝐾𝑠 = 1 +
𝑇2

2.𝐻

𝐾𝑤𝑒𝑞

𝐾𝑃

                               3-25) 

and the equations necessary to design the lead-lag filter are: 

{
 
 

 
 𝑇2 ≫

1

𝑤 ⃘

𝐾𝑠 = 1 +
𝑇2

2𝐻

𝐾𝑤𝑒𝑞

𝐾𝑃
> 1

𝑇1 =
𝑇2

𝐾𝑠
< 𝑇2

                       3-26) 

It is possible to implement the dual method where the use of lead-lags of frequency 

or speed channel replaces the contribution of the electric power channel, which is the same 

objective of the technique described in 4.2. 

 

 Quadratic Programming Method 3.4.4

Finally, to develop another technique for gain and lead-lag time constants 

optimization, we can exploit the quadratic programming used for the residual method in 

the multi-machine situation. Differing from the technique described in  3.4.2, in this case it 

is not either required that pole and zero lags of leads are centered on the electromechanical 

oscillation pulse or that in the case of two lead-lags (𝑇1 = 𝑇3 and 𝑇2 = 𝑇4). In addition, this 

method, in the case of optimization with two feedback channel, does not force the gain of 

one channel to be constant. So, no external constrains are necessary and it is sufficient to 

write the generic problem (3-12), where the inequality system, in case of speed channel 

with one lead-lag, becomes: 
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√1 − 𝜉𝑜𝑡𝑡
2  𝑅𝑒(𝐶𝑤𝐾

𝑖 )𝛥𝐾𝑤 + 𝜉𝑜𝑡𝑡 𝐼𝑚(𝐶𝑤𝐾
𝑖 )𝛥𝐾𝑤 +√1 − 𝜉𝑜𝑡𝑡

2  𝑅𝑒(𝐶𝑤𝑇1
𝑖 )𝛥𝑇1 +

𝜉𝑜𝑡𝑡 𝐼𝑚(𝐶𝑤𝑇1
𝑖 )𝛥𝑇1 + √1 − 𝜉𝑜𝑡𝑡

2  𝑅𝑒(𝐶𝑤𝑇2
𝑖 )𝛥𝑇2 + 𝜉𝑜𝑡𝑡 𝐼𝑚(𝐶𝑤𝑇2

𝑖 )𝛥𝑇2 ≤ √1 − 𝜉𝑜𝑡𝑡
2  𝑅𝑒(𝜆) +

𝜉𝑜𝑡𝑡 𝐼𝑚(𝜆)                 ( 3-27) 

While to write the matrix 𝐻 and the vector 𝑓 is necessary to express a quadratic 

cost function: 

𝐽𝑖 = [𝐾𝑤
𝑖 (1+𝑗𝑤𝑇1

𝑖)

(1+𝑗𝑤𝑇2
𝑖)
+ 𝛥 (𝐾𝑤

𝑖 (1+𝑗𝑤𝑇1
𝑖)

(1+𝑗𝑤𝑇2
𝑖)
)]
′

[𝐾𝑤
𝑖 (1+𝑗𝑤𝑇1

𝑖)

(1+𝑗𝑤𝑇2
𝑖)
+ 𝛥 (𝐾𝑤

𝑖 (1+𝑗𝑤𝑇1
𝑖)

(1+𝑗𝑤𝑇2
𝑖)
)]
′

                            

( 3-28) 

where the quadratic terms make up the diagonal of the matrix 𝐻, whereas the first order 

ones the vector 𝑓.  
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4 Applications and Examples on Real Power Plants 

 

The final objective of this chapter is to show how the PSS parameters tuning is 

achieved for a single power plant by using ALICE. The result is an optimized
1
 damping 

ratio of local electromechanical oscillations for the mentioned power plant, and following 

that a better rotor angle stability regarding to it. So our general approach is to reach the 

maximum damping of electromechanical oscillations, first for an individual power plant, 

that is the local optimization of a single power plant, and then in the next chapter we will 

try to develop it to a large network with different kinds of AVRs and PSSs, that is the local 

optimization of the whole network –that will be a large network- and as a result, to prepare 

the network for the global optimization discussed in chapter six. 

Starting from a single power plant, it is useful to divide it into three different parts 

including, synchronous generator (SCR), automatic voltage regulator (AVR) and power 

system stabilizer (PSS). In this way, it is easier to see the effect of each section separately. 

 

4.1 Dynamic model of a mono-machine system, 

alternator-network 

For the purpose of local optimization that is our goal in this chapter, the synchronous 

generator is assumed to be connected to an infinite busbar with a simple transmission line. 

Except for the considered generator, the rest of the network is assumed to have a prevailing 

voltage that is independent from this generator and always with a constant voltage value. 

Therefor we have a nonlinear dynamic system, whose equilibrium condition is defined as 

the operation of the generator in synchronism with the frequency and voltage of the infinite 

network. 

                                                
1
 In the whole thesis, by optimization we mean ‘tuning the parameters of the PSS in such way that the 

damping of electromechanical oscillations is maximized’. 



66 

 

As discussed in the previous chapter, the analysis of the stability of a nonlinear 

dynamic system can be done by linearization of the system itself around a certain 

equilibrium point, and using the instruments provided by the theory of linear dynamic 

systems (e.g. superposition principle…). So the electrical model used for this discussion is 

as shown in Figure  4-1. 

 

Figure  4-1 mono-machine system, alternator-infinite busbar 

   

 Mathematic Model of the Synchronous Machine 4.1.1

For the purpose of stability and control, it is not enough to model a synchronous 

machine with a simple first or second order model. The most useful models used in this 

topic are fifth or sixth order model.  

As established by the Unified Theory of Electrical Machines, a synchronous machine 

can be represented in a reference system with two axes dq, rotating at the synchronous 

speed and having the q axis perpendicular to the vector of the excitation voltage - or 

defining an equivalent machine obtained by a transformation operation of the electrical 

quantities (Park's transformation) originating from the three-phase system to that of two 

orthogonal axes. The transform operation is conservative from the point of view of energy 

balances, and the synchronous machine in the dq axis system is described by the following 

set of equations of state: 
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𝑑𝑒𝑞
′

𝑑𝑡
   =    

1

𝑇𝑑𝑜
′ (−𝑒𝑞

′ − 𝑥𝑑𝑞
′ 𝑖𝑑 + (1 −

𝑇𝐴𝐴

𝑇𝑑𝑜
′ ) 𝑣𝑓)  

𝑑𝑒𝑞
′′

𝑑𝑡
   =    

1

𝑇𝑑𝑜
′′ (𝑒𝑞

′ − 𝑒𝑞
′′ − 𝑥𝑑𝑞

′′ 𝑖𝑑 +
𝑇𝐴𝐴

𝑇𝑑𝑜
′ 𝑣𝑓)  

𝑑𝑒𝑑
′

𝑑𝑡
   =    

1

𝑇𝑞𝑜
′ (−𝑒𝑑

′ + 𝑥𝑞𝑑
′ 𝑖𝑞)  

𝑑𝑒𝑑
′′

𝑑𝑡
   =    

1

𝑇𝑞𝑜
′′ (𝑒𝑑

′ − 𝑒𝑑
′′ + 𝑥𝑞𝑑

′′ 𝑖𝑞)  

𝑑

𝑑𝑡
.
Ω

Ω𝑛
   =    

1

𝑇𝑚
(𝑃𝑚 − 𝑃𝑒 − 𝐷Ω

Ω

Ω𝑛
)  

𝑑𝛿

𝑑𝑡
   =    Ω𝑛(

Ω

Ω𝑛
−

Ω𝑟

Ω𝑛
)                                                                                  ( 4-1) 

 

Where 

𝑥𝑑𝑞
′ = 𝑥𝑑 − 𝑥𝑑

′ −
𝑇𝑑
′′

𝑇𝑑𝑜
′ (𝑥𝑑 − 𝑥𝑑

′ )           𝑥𝑑𝑞
′′ = 𝑥𝑑

′ − 𝑥𝑑
′′ +

𝑇𝑑
′′

𝑇𝑑𝑜
′ (𝑥𝑑 − 𝑥𝑑

′ )      4-2) 

𝑥𝑞𝑑
′ = 𝑥𝑞 − 𝑥𝑞

′ −
𝑇𝑞
′′

𝑇𝑞𝑜
′ (𝑥𝑞 − 𝑥𝑞

′ )           𝑥𝑞𝑑
′ = 𝑥𝑞

′ − 𝑥𝑞
′′ +

𝑇𝑞
′′

𝑇𝑞𝑜
′ (𝑥𝑞 − 𝑥𝑞

′ )       4-3) 

With 

𝑥𝑑
′ = 𝑥𝑑    

𝑇𝑑
′

𝑇𝑑𝑜
′           𝑥𝑑

′′ = 𝑥𝑑
′    

𝑇𝑑
′′

𝑇𝑑𝑜
′′           4-4) 

𝑥𝑞
′ = 𝑥𝑞

𝑇𝑞
′

𝑇𝑞𝑜
′             𝑥𝑞

′′ = 𝑥𝑞
′    

𝑇𝑞
′′

𝑇𝑞𝑜
′′             4-5) 

d and q components of the armature voltage, 𝑣𝑑 , 𝑣𝑞 are: 

    𝑣𝑑 = 𝑒𝑑
′′ + 𝑥𝑞

′′𝑖𝑞             𝑣𝑞 = 𝑒𝑞
′′ − 𝑥𝑑

′′𝑖𝑑       ( 4-6) 

while the active and reactive electrical power, 𝑃𝑒 𝑎𝑛𝑑  𝑄𝑒, are calculated as follow: 

    𝑃𝑒 = 𝑣𝑑 . 𝑖𝑑 + 𝑣𝑞𝑖𝑞             𝑄𝑒 = 𝑣𝑞 . 𝑖𝑑 − 𝑣𝑑𝑖𝑞            ( 4-7) 

Finally, the absolute value of the voltage and armature current is: 
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        𝑣 = √𝑣𝑑
2 + 𝑣𝑞2                   𝑖 = √𝑖𝑑

2 + 𝑖𝑞2                     ( 4-8) 

In the case of the mono-machine system, as shown in Figure  4-1, where the equivalent 

reactance 𝑥𝑡𝑒 = 𝑥𝑡 + 𝑥𝑒 , represents the transformer-line system, the components of the 

armature current 𝑖𝑑  𝑎𝑛𝑑 𝑖𝑞 are given by the following equations: 

       𝑖𝑑 =
𝑒𝑞
′′−𝑣𝑟 .cos𝛿

𝑥𝑡𝑒+𝑥𝑑
′′                      𝑖𝑞 =

𝑣𝑟 .sin𝛿−𝑒𝑑
′′

𝑥𝑡𝑒+𝑥𝑞
′′                  4-9) 

where 𝑣𝑟 is the (ideal) voltage of the infinite busbar, where the generator is connected to. 

So the dynamic model of the system, described with the above equations, is illustrated as in 

Figure  4-2. 

 

Figure  4-2 block diagram of the mono-machine alternator-network system 
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The meaning of the quantities that appear in previous equations is given in Table  4-1. 

Table  4-1 characteristic quantities of a synchronous machine 

symbol Description unit 

𝑒𝑞
′  quadrature axis component of transient emf p.u. 

𝑒𝑞
′′ quadrature axis component of subtransient emf p.u. 

𝑒𝑑
′  direct axis component of transient emf p.u. 

𝑒𝑑
′′ direct axis component of subtransient emf p.u. 

𝑣𝑓 field voltage supplied by the excitation system p.u. 

𝑇𝐴𝐴 leakage time constant of the additional damper along direct axis s 

𝑥𝑑 operational reactance along direct axis p.u. 

𝑥𝑞 operational reactance along quadrature axis p.u. 

𝑇𝑑
′  transient time constant along direct axis s 

𝑇𝑑
′′ subtransient time constant along direct axis s 

𝑇𝑑𝑜
′  open-circuit transient time constant along direct axis s 

𝑇𝑑𝑜
′′  open-circuit subtransient time constant along direct axis s 

𝑇𝑞
′ transient time constant along quadrature axis s 

𝑇𝑞
′′ subtransient time constant along quadrature axis s 

𝑇𝑞𝑜
′  open-circuit transient time constant along quadrature axis s 

𝑇𝑞𝑜
′′  open-circuit subtransient time constant along quadrature axis s 

𝑖𝑑 armature current along direct axis p.u. 

𝑖𝑞 armature current along quadrature axis p.u. 

𝑖 absolute value of the armature current p.u. 

𝑣𝑑 armature voltage along direct axis p.u. 

𝑣𝑞 armature voltage along quadrature axis p.u. 

𝑣 absolute value of the armature voltage p.u. 

𝑃𝑚 mechanical power of the rotor p.u. 

𝑃𝑒 active power generated by the alternator p.u. 

𝑄𝑒 reactive power generated by the alternator p.u. 

 

 



70 

 

 Voltage Regulator 4.1.2

The above mentioned dynamic system will be completed by adding a voltage 

regulator that can be modeled with the following second order transfer function: 

𝐺𝑣(𝑠) = 𝜇  ⃘.
1+𝑠𝑇𝑐

(1+𝑠𝑇𝑏)(1+𝑠𝑇𝑎)
             ( 4-10) 

It is taking into account, the gain of the voltage transducer and the effects of 

filtering (pole in (−
1

𝑇𝑎
) )  in high frequency, in the control loop; the selected transfer 

function allows to correctly present the intervention of the regulator in the frequency range 

of interest for the study of electromechanical phenomena (1∶ 10 𝑟𝑎𝑑/𝑠). 

 

 Dynamic Friction 4.1.3

In the Figure  4-2, the feedback element 𝐷Ω represents the mechanical friction 

phenomena: it can suitably be replaced by an element of dynamic friction described by a 

transfer function 𝐺𝑑(𝑠): 

𝐺𝑑(𝑠) = 𝐷Ω
𝑠𝑇𝑑

1+𝑠𝑇𝑑
                      ( 4-11) 

In Figure  4-3, the effect of voltage regulator and dynamic friction is also added: 
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Figure  4-3 block diagram of a mono-machine alternator-network system with dynamic friction element 𝐺𝑑(𝑠) 

and voltage regulator 𝐺𝑣(𝑠) 

 

 Linearization: electromechanical and voltage cycle 4.1.4

Proceeding to the linearization of non-linear mathematical model of the system 

described (mono-machine), around an appropriate point of equilibrium, leads us to a 

formulation of the same which allows a block representation presented in Figure  4-4. 
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Figure  4-4 linearized block diagram of the mono-machine alternator-network system: with presence of the 

electromechanical and voltage cycles 

It can be seen, in particular, an electromechanical cycle and a voltage cycle. As it is 

shown in Figure  4-4, it is possible to simplify the block diagram, by combining the effects 

of the cycle of voltage on the variation of active electric power 𝑃𝑒 in a single term as K(s), 

which makes it easier to evaluate the stabilizing and destabilizing effects as a whole. 
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             Figure  4-5 linearized block diagram of the mono-machine alternator-network system 

The linearized model of Figure  4-5, is therefore a mono-machine alternator-

network system without additional feedback stabilizers. In the absence of the term of 

dynamic friction, the electromechanical cycle is characterized by two poles in the origin, 

the first associated with the rotational dynamics (with time constant 𝑇𝑚), the second one is 

the load angle δ, the sign of which determines the direction of the active power injected or 

absorbed by the network. 

First, one can observe that, with open loop voltage, or with manual adjustment of 

the excitation voltage (assumed constant 𝛥𝑣𝑓 = 0), the linearized system has two complex 

poles purely imaginary 

𝜆  , 𝜆 ∗ = ±𝑗√
Ω𝑛

𝑇𝑚
  (

𝛥𝑃𝑒

𝛥𝛿
)  ⃘                    ( 4-12) 

which corresponds, as it is known, an oscillatory behavior without damping. 

However, it is necessary to emphasize that the real part of the poles is zero because of the 
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adopted simplification: in fact they have negative real parts, although they are still 

positioned very close to the imaginary axis. 

The algebraic block K, in Figure  4-5, represents the partial derivative of the 

electrical power with respect to the load angle δ and is referred to as synchronizing power 

coefficient. The electromechanical cycle therefore, consists of two integrators in series and 

by the gain in the negative feedback K, it has zero phase margins. 

The corresponding transfer function of the block K is the following: 

𝐾(𝑠) =  −
(
𝛥𝑣

𝛥𝛿
) ⃘.(

𝛥𝑃𝑒

𝛥𝑒𝑞
′ ) ⃘

(
𝛥𝑣

𝛥𝑒𝑞
′ ) ⃘

  
1

1+
𝑠𝑇𝑑𝑜
′

𝐺𝑣(𝑠)
(
𝛥𝑣

𝛥𝑒𝑞
′ ) ⃘

                 ( 4-13) 

It represents the characteristics of a low-pass system and therefore provides a 

negative contribution to the phase of the electromechanical cycle: evaluating the sign of the 

partial derivatives that appear in the expression of K(s), it can be shown that the sign of 

that transfer function is always positive, and therefore the effect of the voltage regulation 

on the electromechanical cycle is always destabilizing. 

This effect is irrelevant only in particular operating conditions: 

 In the case of very slow voltage regulators, in which the effect of K(s) is 

interested in the field of low frequency oscillations. 

 At open-circuit, with 𝑃𝑒 = 0, or without contribution of K(s). 

 

4.2 Stabilization of the system through additional 

feedback 

The analysis of the stability of a mono-machine dynamic system, briefly discussed 

in the previous paragraph, highlights the need to introduce additional feedback loops that 

provide a correction to the voltage reference in order to ensure stability margins broader, 

namely running conditions safer and a field of usability of the machine more extended. 
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 Characterization of additional stabilizing feedback 4.2.1

A signal stabilizer𝛥𝑣𝑟𝑒𝑡, which is added to the voltage reference, is obtainable as a 

proportional contribution to the speed of mechanical rotation (or to the derivative of the 

load angle) according to a transfer function 𝐾Ω(s), to be defined, as indicated below 

𝛥𝑣𝑟𝑒𝑡 = 𝐾Ω(𝑠)𝛥Ω = 𝐾Ω(𝑠)
𝑠

Ω𝑛
𝛥𝛿                 ( 4-14) 

This contribution may be represented, in the block diagram, through an equivalent 

block 𝐾Ω(𝑠), which represents the effect on the generated active power rather than on the 

voltage reference: this is illustrated in Figure  4-6. 

It can be shown that, the above introduced additional feedback allows both to 

increase the reduced phase margin, intrinsic in the electromechanical cycle and, above all, 

to compensate the destabilizing effect introduced by the voltage loop. This is possible 

through an appropriate choice of the transfer function 𝐾Ω(s): in particular, in order to 

compensate the integral action exerted by the voltage loop in the pulse characteristics of 

the electromechanical phenomena, it is appropriate to provide through 𝐾Ω(s) an opposite 

derivative action, i.e. 

𝐾Ω(𝑠) = 𝐾Ω + 𝑠𝐾Ω
′                                      ( 4-15) 

Since the introduction of derivative regulating contributions is related to the 

implementation issues that can increase the risk of disturbances of measurement, the 

derivative term of 𝐾Ω(s) can be more conveniently reconstructed through the measurement 

of the generated active power, by observing that 

𝛥𝑃𝑒 = −𝑠𝑇𝑚𝛥Ω                                          ( 4-16) 

we then obtain 

𝛥𝑣𝑟𝑒𝑡 = (𝐾Ω + 𝑠𝐾Ω
′ )𝛥Ω = 𝐾Ω𝛥Ω − 𝐾𝑝𝛥𝑃𝑒       with     𝐾𝑃 =

𝐾Ω
′

𝑇𝑚
                ( 4-17) 

In addition, it is useful to add a high-pass filter with unity gain on the introduced 

stabilizing signal, in order to cancel the steady state effect, namely in order not to influence 

the static performance of the voltage regulation loop. 
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Figure  4-6 block diagram of a linearized mon-machine alternator-network with additional stabilizing 

feedback 

 

And the final block diagram that can be useful for our case and carries more related 

data in as below 
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Figure  4-7 another representation of the mono-machine block diagram with voltage regulator and additional 

feedback 

 

4.3 Practical examples of PSS tuning: single power 

plant 

As it was mentioned in the beginning of this chapter, to analyze the optimization of 

a single power plant it was divided it into three different parts, which are synchronous 

generator, automatic voltage regulator and power system stabilizer. In the previous 

sections the focus was on the definition of these different parts and to describe each of 

them using block diagrams, that are useful from the control point of view and in particular 

for PSS (that is the main block that we want to work on). 

In the following section some practical applications are discussed. The procedure is 

as explained below: 
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 First, a typical power plant
1
 with the default values of the parameters is 

chosen. (This power plant is one of the plants of the large network that will 

be discussed in the next chapter). For the selection of the examined power 

plant some considerations are important. It is better that the selected power 

plant has the most general type of the AVR and PSS, because any special 

case can be useless to be used as the example. Thus, the aim is to choose a 

plant with the most common types of AVR and PSS. (While in the process 

of doing the thesis, different kinds of power plants with different level of 

difficulty were considered, but just one of them is mentioned individually in 

this chapter). 

  Then, different optimization methods, described in chapter 3, are applied to 

the selected power plant, in order to see the result of the optimization on the 

eigenvalues (or similarly poles) of the system. These poles and consequently 

damping ratios and their frequency can give us very useful information 

about the quality of the damping of electromechanical oscillations. 

 The final step is to compare the oscillating modes of the power plant, both 

before and after optimization, and to check if the optimization could be 

effective or not. 

It is already mentioned that the main tool for PSS tuning, used in this thesis, is the 

software named ALICE. The available AVR and PSS types in ALICE are given in the 

following: 

PSS types: standard, PSS1A, PSS2B, PSS3B, PSS4B, Ansaldo, ABBeGE2, ELIN 

and Toshiba. 

AVR types: standard, DC1A, DC3A, DC4B, AC1A, AC2A, AC3A, AC4A, AC5A, 

AC6A, AC7B, AC8B, ST1A, ST2A, ST3A, ST4B, ST5B. ST6B, ST7B, Alstom, Ansaldo, 

ELIN, SEMIPOL.  

                                                
1
 By “power plant”, it is simply meant the composite model consists of SCR, AVR and PSS. Of course in a 

real power plant there are other devices such as prime mover, governor and so on, but for the purpose of this 

thesis they are not directly considered.  
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According to the type of the PSS, it is possible to use one or more methods of PSS 

tuning, described in the previous chapter. Therefore, the most general type should be 

chosen in this chapter, since we will be able to imply different methods of optimization.  

The first power plant that is discussed here is named “car01”. This plant is one of 

the plants of the large network (i.e. Chilean network) that will be shown in the next 

chapter. Different parameters of this plant including the parameters of SCR, AVR and PSS 

are given. (Please note that the values of the parameters of the PSS are the pre-optimization 

values). The values of the parameters are as shown in Table 4-2. 

It can be helpful to demonstrate the block diagram of this kind of PSS, because the 

position of each parameter and its influence on the final output signal of the PSS can be 

seen. Figure  4-8 depicts the IEEE standard model of PSS1A, while Figure 4-9 is the 

linearized block diagram around the operating point. In the case of this thesis, the small 

signal stability is discussed; therefore, the linearized model is used. 

 

 

Figure  4-8 block diagram of PSS PSS1A 
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Table 4-2 valueoftheparametersofSCR,AVRandPSSfortheplant“car01” 

SCR 

6
th

 order machine  

AVR 

Type: ST1A 

PSS 

Type: PSS1A 

Tdop=𝑻𝒅𝒐
′ =6.5

1
  Tc=10.00 kp=0.000 

Tdos=𝑻𝒅𝒐
′′ =0.023  Tb=0.2200 kw=0.000 

Tdp=𝑻𝒅
′ =0.7731  Ta=2.000 kf=0.000 

Tds=𝑻𝒅
′′=0.0177  ka=100.000 ks5=2.000 

Tdop=𝑻𝒅𝒐
′ =0.70  Tc1=1.000 T6=0.0002 

Tqos=𝑻𝒒𝒐
′′ =0.030  Tb1=1.000 T5=3.500 

Tqp=𝑻𝒒
′ =.1508  ksf=0.0787 A2=0.0017 

Tqs=𝑻𝒒
′′ =. 𝟎𝟏𝟑𝟔  Tsf=3.5300 A1=0.0610 

xd=2.186  CVretf=1 T1=1.000 

xq=2.043  --- T2=1.000 

Tm=9.00  --- T3=1.000 

xt=.1250  --- T4=1.000 

xe=.2500  --- --- 

Td=3.00  --- --- 

dw=0.00  --- --- 

 

 

                                                
1
 Time constants are given in seconds, and reactances are per unit values.   
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Figure 4-9 linearized block diagram of PSS PSS1A, as explained and used in ALICE 

There are different kinds of analyses that can be done on this power plant in 

ALICE, such as: 

1) Calculating the poles and damping ratios of the power plant for different 

frequencies, especially for the frequency range of interest, i.e. 1-2 Hz. 

2) Depicting the open loop bode diagram of the system. (to analyze the phase of 

the transfer function between speed and active power) 

3) Doing a time domain simulation to track the transition, following a step change 

in the reference voltage. 

All of these analyses are done, both before and after optimization of the PSS 

parameters. The result of the calculation of the poles before optimization for the plant 

“car01”, is shown in Table 4-3. (Notice that the damping ratios less than 1 are just shown).  
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Table 4-3 dampingratiosofplant“car01”,beforeoptimization 

damping ratio or zita or ζ Frequency 

0.0300 1.1318 

0.7397 2.5974 

 

As it was mentioned before, the minimum acceptable damping is 20%, thus, it is 

clear that in this plant, there is an oscillatory mode with the damping of 3%, which should 

be increased after optimization. To emphasize the effect of these oscillations, the phase of 

the open loop transfer function and also time domain simulations (for the load angle and 

the generated active power) are depicted in Figure 4-10 to Figure 4-12, respectively. As it 

is demonstrated in Figure 4-10, the phase diagram is not in the satisfying area in the 

frequency range of interest, i.e. 0.1 to 1 Hz.  

 

 

Figure 4-10 Phaseoftheopenlooptransferfunctionbetweenspeedandactivepowerforplant“car01”,

without PSS 
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Figure 4-11 transient response of the load angle to a step change in the reference voltage, before 

optimization 

 

Figure 4-12 transient response of the active power to a step change in the reference voltage, before 

optimization 
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Thus, according to exact and simplified criteria of stability analysis, this plant has 

to be optimized. 

Figure 4-11 illustrate the electromechanical oscillations caused by the above-

mentioned pole –with frequency of 1.1318 Hz. As it is seen, the amplitude of the first 

oscillation is pretty high, that can cause enormous stability problems, and even in some 

cases, to trigger protective breakers in the network. Furthermore, following the first 

oscillation, the other oscillations are not effectively damped. 

 According to the results of the preceding stability analyses that are performed for 

the plant “car01”, the necessity of a tuning of the PSS parameters is clear. In the following, 

ALICE will be used to optimize the plant “car01”. 

In the Figure 4-13, the interface of ALICE is illustrated. As it is shown, the 

calculation mode of the PSS gain can be i) approximate or ii) iterative. To be more 

accurate, it is better to choose the iterative choice. 

It is also possible to choose the desirable damping ratio that will be reached after 

optimization, (that is 20% for our purpose).  

The optimization can be performed in two general ways, i) only by using one gain, 

like kp, kf or kw. ii) it can be done in the “multi-obiettivo” mode which means “multi-

objective”. In this mode, there is the possibility to choose the first or second method of 

PSS tuning, described in chapter 3. Therefore, the user has the chance to have two different 

channels at the same time, such as kp-kf or kp-kw, or by considering the second method; it 

is possible to have one gain together with one or two lead-lags. This is the case for plants 

in which by only exploiting the gains, we cannot reach the desirable damping ratio, and 

consequently, it is better to fix the value of one of the gains calculated by the residual 

method and then to apply lead-lags calibration on the other channel. 

In the following diagram, the possible optimization methods –as described before- 

are shown.  
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                                               Single-objective: with ‘kp’ or ‘kf’ or ‘kw’  

 

Optimization Methods                                                       Residuals: ‘kp-kf’ or ‘kp-kw’    

 

                                                          Multi-objective  

                                                                                      

                                                                                          One gain with lead-lag(s): 

                                                            ‘kp-lead-lag(s)’ or ‘kf-lead-lag(s)’ or ‘kw-lead-lag(s)’ 

 

Note: in the case of power plant “car01”, the PSS is PSS1A, and it is the most 

general case, so all of the mentioned methods are available. But in some PSS types such as 

PSS2B, the residuals method is not accessible. 
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Figure 4-13 ALICEinterface,fortheplant“car01” 
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 Application of optimization methods for a typical plant 4.3.1

In this section, the results of application of two different PSS tuning methods are 

given.  

 For the stated power plant (car01) in the previous section, the results are as 

following: 

Table 4-4 resultsofdifferentoptimizationmethodson“car01” 

case Optimization 

type 

Zita 

(ζ) 

kp kf kw T1 T2 T3 T4 

1 kp-kf 0.200 0.1261 2.15 0 1 1 1 1 

2 kp-kw 0.200 0.1332 0 1.51 1 1 1 1 

3 kp-1lead-lag 0.130 2.000 0 0 0.2403 4.1204 1 1 

4 kp-2lead-lags 0.200 1.6937 0 0 0.5582 1.7741 0.5582 1.7741 

 

Regarding the results of the Table 4-4, it can be seen that in three cases, the damping 

ratio, ζ, has reached to the desirable value, i.e. 20%, and in one case it has been improved 

(case 3). Thus, it is meaningful to say that the optimization of this plant is not only 

possible, but also useful. The analyses of each case are taken into account in the following 

sections. 

 Case 1: 

In this case, the aim is to optimize the stabilizers’ gains using the residuals method. 

kp and kf are the selected channels for the first case. In Figure 4-14 to Figure 4-16, the 

same analyses as before optimization are done, and as it can be seen the response of the 

angle is not oscillating anymore. Furthermore, the active power oscillations are 

significantly damped. In Figure 4-14, the phase of the open loop transfer function is 

shown. It is possible to compare the phase diagram before and after optimization. 

Comparing the green and red lines in this Figure 4-14, the optimization outcome is clearly 

shown.  
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Figure 4-14 Phaseoftheopenlooptransferfunctionbetweenspeedandactivepowerforplant“car01”,

without PSS(green line), with PSS but without lead-lag(with just gain)(red line), case 1 

 

 

Figure 4-15 transient response of the load angle to a step change in the reference voltage, after optimization, 

case 1 
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Figure 4-16 transient response of the active power to a step change in the reference voltage, after 

optimization, case 1 

 

Case 2: 

Similar to the case 1, the residuals method is utilized, but instead of kf (that is the 

frequency gain), kw has been used. kw is the gain that is applied on the speed feedback 

coming from the synchronous generator. With regard to this case, the results of the 

analyses are shown in Figure 4-17 to Figure 4-19. 

As we expected, the results are quit the same as the case 1, because in both cases, 

residuals method is used. Therefore, it is possible to apply each of them for the same 

purpose, but we have to notice that the difference between them is the feedback channel 

coming from the synchronous machine. Thus, it is necessary to check if it is easier to 

measure the frequency or the speed of the generator. In some plants, the measurement of 

the frequency of the rotor is not permissible; in this case the speed is a good substitution.  
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Figure 4-17 Phase oftheopenlooptransferfunctionbetweenspeedandactivepowerforplant“car01”, 

without PSS(green line), with PSS but without lead-lag(with just gain)(red line), case 2 

 

Figure 4-18 transient response of the load angle to a step change in the reference voltage, after optimization, 

case 2 
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Figure 4-19 transient response of the active power to a step change in the reference voltage, after 

optimization, case 2 

 

Case 3 and 4: 

In these cases, the optimization is performed by using one gain and lead-lags time 

constants for one feedback channel. This method is very useful when only one input of 

PSS is available or one of the input measurements is not enough accurate.  

The difference between case 3 and 4 is the number of lead-lags used in each case. In 

case 3, just one lead-lag is used, while in case 4, there are two lead-lags. As it is obvious, 

employment of two lead-lags in case 4 can considerably improve the damping ratio. In 

fact, the selection of case 3 in this section was just to show the influence of the second 

lead-lag to optimize the PSS parameters. The same analyses are done for the cases 3 and 4, 

and the results are illustrated in Figure 4-20 to Figure 4-25.   

By comparing the case 3 with the case 4, the effect of reaching a damping ratio lower 

than 20% is completely clear, since in the case 3, ζ is 13%. Thus, in this case, the damping 

of the oscillations in both the active power and load angle responses is lower than the case 

4, as we expected. On the other hand, the comparison between case 4 and case 2 tells us 
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that in both cases the desirable damping and phase diagram is reached. From the practical 

point of view, this is important, because it means that: if both cases reach a damping ratio 

of at least 20%, these two methods are alternatives. Thus, in some power plants that just 

one input of the PSS is available, it is possible to use lead-lags to satisfy the limitation of ζ 

and phase diagram. 

 

Figure 4-20 Phaseoftheopenlooptransferfunctionbetweenspeedandactivepowerforplant“car01”,

without PSS(green line), with PSS but without lead-lag(with just gain)(red line), with PSS and lead-lag(blue 

line) , case 3 
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Figure 4-21 transient response of the load angle to a step change in the reference voltage, after optimization, 

case 3 

 

Figure 4-22 transient response of the active power to a step change in the reference voltage, after 

optimization, case 3 
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Figure 4-23 Phase of the open loop transfer function betweenspeedandactivepowerforplant“car01”,

without PSS(green line), with PSS but without lead-lag(with just gain)(red line), with PSS and lead-lag(blue 

line) , case 4 

 

 

Figure 4-24 transient response of the load angle to a step change in the reference voltage, after optimization, 

case 3 
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Figure 4-25 transient response of the active power to a step change in the reference voltage, after 

optimization, case 4 
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5 Application of Local Optimization Techniques on a 

Real Network 

 

The optimization of an individual power plant was carried out in the previous chapter. 

Referring to the results achieved in chapter 4, it is possible to optimize a single power plant 

by using ALICE as the optimization tool. In this chapter, the aim is to develop a software 

product for the optimization of the parameters of the PSS of the electrical power plants of 

large networks, with the objective of maximizing the damping of electromechanical 

oscillations.  

The practical difficulty that this goal is confronted with is the fact that almost all of the 

large real networks, like the network of a country, are represented in software like 

DigSilent or PSSE. Thus, all of the data of the network are stored in this software. While, 

the available application used for the optimization of PSS parameters is ALICE that is 

developed in MATLAB. It means that all of the data coming from the network, and 

consequently DigSilent, must be readable for MATLAB. 

Therefore, even if the main goal of this chapter is to optimize PSS parameters of a 

large network, during this process we will have to deal with other issues, such as exporting 

the data of the power plants from DigSilent, converting them into readable data for 

MATLAB, importing them in MATLAB and so on. As a result, the best way to go on with 

this chapter is to, first explain a work flow of the process, and then go into the details with 

each part, and finally the results of the optimization can be reached. The optimization 

results consist of the tuned parameters of PSSs and also the outcome of simulations as are 

shown in different figures. 
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5.1 Outline of the Optimization Process 

The optimization process can be cast in different steps as follows: 

 Load the network in DigSilent 

 The “Modal Analysis” followed by “Initial Conditions” 

 Calculate “eigenvalues” and “eigenvectors” of the system 

  Analyze the controllability and participation factor of each power plant in 

each eigenvalue, in order to identify the plants that have to be optimized 

 Export the data of power plants as .CSV files 

 Conversion of .CSV files into .MAT files to be readable for MATLAB and 

consequently for ALICE 

 Local optimization and pre-global optimization using ALICE 

 Export the optimized parameters from ALICE to have them in .MAT files 

 Conversion of .MAT files into .CSV files to be readable for DigSilent 

 Import the optimized parameters into DigSilent and change the previous 

parameters 

 Execute  “Modal Analysis” again to check the results of the eigenvalues after 

optimization 

Before we go into details with each step and see the whole process, it can be 

beneficial if we visualize this process in a flow chart, as it is depicted in Figure 5-1. 
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Figure 5-1 optimization process flow chart 
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5.2 Real Network Optimization 

As it was mentioned before, the activity involves the development of a software 

product for the optimization of the PSS parameters of the electrical power plants of large 

networks. The large network used in this thesis is the Chilean network.
1
 All of the data of 

the network, such as the network diagram (transmission and distribution lines and etc.), 

parameters of SCR, AVR and PSS, future developments and etc. are given in DigSilent.  

According to the section  3.1, “eigenvalue analysis” is a very powerful tool to 

investigate the stability of a power system. Eigenvalues and eigenvectors of a dynamic 

multi-machine system can be calculated by the “Modal Analysis” command in DigSilent.
2
  

 

 Network details 5.2.1

In the Chilean network, used in this thesis, there are 70 power plants. Between these 

plants, 12 of them are facilitated with PSSs that are in service, and in 15 power plants AVR 

is available and in service.  

Regarding to the network, the very first concern that comes up is that some of the 

AVRs and PSSs that are utilized are not the IEEE standard types whereas as it was already 

mentioned, there are 23 types of AVRs and 9 types of PSSs in ALICE that are all standard 

types. Thus, for our purpose it was better to modify the ones in the network in accordance 

with the IEEE standards. The best way is to match the real controllers in the network with 

the most similar IEEE standard one. As a result, after matching all of the existing AVRs 

and PSSs in the network, there are 12 PSSs including four different standard types. The 

same modifications was applied to the AVRs resulting in 15 AVRs with two different 

standard types. 

In Table 5-1, different types of PSSs and AVRs that are utilized in the Chilean 

network are presented. 

                                                
1
 Note that the first network used for the optimization was another large network, but due to copy right issues 

we report only the results of the Chilean network that is publicly shared in internet. 
2
 A brief explanation about modal analysis and eigenvalue calculation in DigSilent is given in Appendix A. 
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Table 5-1 AVR and PSS types in Chilean network 

PSS types AVR types 

standard standard 

PSS2B AC4A 

Ansaldo --- 

ABBeGE2 --- 

 

 Modal analysis and eigenvalues calculation: pre-optimized network 5.2.2

To analyze the stability of the network, the modal analysis is executed and 

following that the calculation of eigenvalues of the system is carried out. According to the 

first step of the process, it is required to analyze the eigenvalues of the system. The 

eigenvalue presentation of the network, before optimization, is shown in Figure 5-2. In this 

Figure 5-2, there are two pink lines that are representing the damping ratio limitations of 5 

and 20%. As it is explained in  3.3, for inter-area oscillation modes, the minimum 

acceptable value of ζ is 5%, but for local modes this value is 20%. Thus, the oscillating 

modes with the frequency range of 0.1 to 1Hz must be in the left side of the line 

corresponding to 5% damping ratio, and the modes with the frequency range of 1 to 2Hz 

must be in the left side of the line which is representing 20% damping ratio.  
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Figure 5-2 Eigenvalues of the Chilean network, before optimization 

 

Figure 5-2 shows that between the local modes, just two of them are in the left side 

of the 20% line; therefore, all of the other eigenvalues must be shifted to the left side, after 

optimization. This is the reason which states that the optimization is compulsory for this 
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network. The next step is to check which power plants are mostly participating in those 

eigenvalues. This participation together with the controllability of that eigenvalue can give 

us very useful and effective information about the power plants that their PSS parameters 

must be tuned. 

Consequently, after understanding the fact that the network has to be optimized, the 

eigenvalue analysis will inform us about the PSSs which must be optimized. According to 

Figure 5-2, there are 10 eigenvalues that are in the right side of the 20% line. In Figure 5-3 

to Figure 5-6, the participation factors of some
1
 of these local modes are given. 

 

Figure 5-3 participation factor of different plants for the frequency mode of 1.023Hz, before optimization 

In Figure 5-3 to Figure 5-6 the participation factors are shown in a polar plane. The names 

written on the figures are the names of the plants which are contributing in that frequency 

mode. As it can be seen, there are some circles with different radii depicted by dots and 

one circle with a bold line which has unity radius. The radius shows the amplitude of 

participation of each plant that is normalized to the biggest participation amplitude. 

                                                
1
 In reality and in the course of the thesis, the participation factors for all local modes are calculated with the 

related profiles achieved. But since the number of figures for all modes exceeds 20, here, for the sake of 

brevity, a group of them are reported. 
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The phase of participation factor represents the direction of each contribution. For 

example, in Figure 5-5, plants U12 and U13 have 180° phase difference. It means that they 

have exactly opposite signs, so they affect in opposite directions. 

 

Figure 5-4 participation factor of different plants for the frequency mode of 1.239Hz, before optimization 

 

Figure 5-5 participation factor of different plants for the frequency mode of 1.463Hz, before optimization 
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Figure 5-6 participation factor of different plants for the frequency mode of 1.211Hz, before optimization 

According to participation factors, all eigenvalues that are highlighted in Figure 5-2 

are actually due to only 11 power plants in the network. It means that from 70 power plants 

in the network, just 11 of them are affecting these local modes. Thus, in some power 

plants, PSS is not necessary (at least at the moment, with existing generators and loads). 

Between the power plants that have a participation in the local mode oscillations of poor 

damping, some of them have PSS (5 plants), and the rest are realized without any PSS in 

the reality. 

Consequently, our process of optimization can be divided into two phases. First, the 

network will be optimized using the existing PSSs of the real network, and the results will 

be illustrated. Then, it will be shown that following the first phase, there are still some 

modes of local oscillations that are not shifted to the left side, since their correspondent 

plants do not have any PSS to be optimized. As a result, the second phase of the 

optimization that will be discussed in the next section is to add some hypothetical PSSs to 

the power plants in which there is no PSS, but we know -by eigenvalue analysis- that they 

have a high participation in the local oscillation modes of poor damping. In Table  5-2, the 

names of the power plants which are participating in local oscillations are reported together 

with availability of PSS in that power plant.  
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Before starting the optimization of existing PSSs, it is worthwhile to remark that 

some of the essential functions for converting the data from .CSV to .MAT and vice versa, 

together with the main function of local optimization are represented in Appendix B.  

 

Table  5-2 power plants participating in local oscillations and their PSS availability 

Power Plant PSS availability 

U-12 No 

U-13 No 

U-14 No 

U-15 No 

U-16 Yes 

NTO1 Yes 

NTO2 Yes 

CTTAR No 

CHAP No 

CTM1 Yes 

CTM2 Yes 

    

 Modal analysis and eigenvalues calculation: optimized network 5.2.3

Starting from the first phase of optimization, the existing PSSs of the network will 

be optimized to have the tuned parameters. After accomplishment of optimization, 

eigenvalues of the system are calculated as a result of modal analysis performance. 

Eigenvalues of the optimized network are depicted in Figure 5-7.  
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Figure 5-7 eigenvalue of the Chilean network, after optimization of existing PSSs 
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A better eye-casting on Figure 5-7 reveals the ensued major points: 

 After the first phase of optimization, five eigenvalues are shifted to the 

green area, which means that now they have a damping ratio of more than 

20%. 

 There are still six eigenvalues that are oscillating with local frequency, and 

damping ratio of less than 20%. 

The occurrence of these latter points can be well justified by the participation 

factors corresponding to each eigenvalue. Similar to the previous case, it is possible to 

calculate participation of power plants into each eigenvalue. Considering these 

participations, the eigenvalues that are shifted to the left side of the line are those in which 

the corresponding power plants have PSS inside, and in contrary, those eigenvalues that 

did not shift to the green area are due to power plants in which PSS is not available. It can 

be proved by looking at the figures of participation factors of local modes after 

optimization. Again for the sake of brevity some of the figures are represented in this 

thesis. Figure 5-8 and Figure 5-9 illustrate both participation factors and controllability of 

two oscillating modes.  
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Figure 5-8 participation factor and controllability of different plants for the frequency mode of 1.3209Hz, 

after optimization of existing PSSs 
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Figure 5-9 participation factor and controllability of different plants for the frequency mode of 1.0907Hz, 

after optimization of existing PSSs 
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 Finalization of the results  5.2.4

The optimization of existing PSSs in the Chilean network leads us to the following 

results: 

 Improvement of those damping ratios which their eigenvalue is due to the power 

plants equipped with PSS. 

  Recognition of the power plants in which PSS is necessary in order to maximize 

the damping ratios of the system. 

 Necessity of adding some new PSSs to the power plants that are participating in the 

local oscillating modes. Thus, this investigation is able to address future 

intervention on the network to enhance stability. 

 

5.3 Stability Enhancement: hypothetical new PSSs 

As it has been declared in the previous section, the optimization of the network using 

the existing PSSs cannot be sufficient, since there are still some eigenvalues that are not 

influenced by current PSSs. As a result, an advantageous modification that can be done in 

this network is to add new PSSs to the power plants that are recognized in the former 

section. 

According to the participation factors after optimization, the power plants in which a 

PSS is beneficial, but it is not available, are as follows: 

Power plants without PSS installation: U-12, U-13, U-14, U15, CTTAR, CHAP. 

To be sure that this procedure leads us to the stability enhancement, first of all just two 

PSSs are added to the plants U-12 and U-13. In Figure 5-10, it is exposed that the 

eigenvalue with frequency of 1.46Hz is just controllable by the plants U-12 and U-13, and 

at the same time its damping ratio is 17% which must be increased. Consequently, by 

adding two PSSs to these two plants, we expect that this eigenvalue will be shifted to the 

left side of the 20% line. 
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Figure 5-10 controllability of the plants U-12 and U-13 on the eigenvalue with frequency of 1.463Hz 

 

In Figure 5-11, the result of eigenvalue calculations after adding two PSSs to the 

plants U-12 and U-13 is shown. Of course, also these PSSs are tuned in the same way as 

the other ones. Figure 5-11 is perfectly proving the fact that just by adding PSSs to the 

plants that are participating in an eigenvalue, maximization of the damping ratio –

correspondent to that eigenvalue- can be achieved.  
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Figure 5-11 eigenvalues representation after optimization of existing PSSs and implementation of PSSs to 

plants‘U-12’and‘U-13’ 

This claim is truly verified thanks to Figure 5-11. As it can be seen in this figure, not 

only the mentioned eigenvalue with frequency of 1.46Hz is shifted to the left side of the 

20% line, but also other eigenvalues which were totally or partially controlled by these 

plants, are improved completely or moderately, respectively.  
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 So far the efficiency of adding new PSSs to those plants that are participating in the 

poorly damped modes is clarified. Thus, the procedure can be continued until all of the 

eigenvalues with damping ratio of less than 20% will be shifted to the left side. 

This method has been applied to the rest of the plants in which PSS is not realized, but 

according to the modal analysis, it is needed. The new modal analysis with the presence of 

added PSSs will result in a completely optimized network as the point of view of the local 

oscillations. The eigenvalue representation after the final optimization is given in 

Figure 5-12. This figure is illustrating that all of the local modes are shifted to the left side 

of the 20% limitation line; therefore we can assert that the Chilean network is entirely 

locally optimized. 
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Figure 5-12 eigenvalues representation after optimization of existing PSSs and implementation of six new 

PSSs 
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6 Conclusion 

 

This thesis addressed some methods of tuning of power system stabilizers for the damping 

of the electromechanical oscillations in power systems. The thesis work focused on three 

key issues, namely: the electromechanical oscillations problem which is worsened by using 

fast automatic voltage controllers, adding PSS to increase the damping of these oscillations 

and fine-tuning of the present PSSs to maximize the damping.  

In the two first chapters the problem together with its cause and the solution to decrease it 

was discussed. Although this thesis dealt with all of the above-mentioned issues, the main 

goal was to maximize the damping of oscillations by finding the best tuning of the PSS 

parameters. This goal was sought in chapter 3 and 4. Finally in chapter 5, a practical 

network was optimized. The importance of the maximization of the damping was 

represented by observing the response of the rotor angle and active power of the 

synchronous generator to a step increment of the reference voltage. Eigenvalue analysis of 

pre-optimized and optimized network together with the participation factors of different 

power plants in each oscillating mode indicates that the optimization of PSS parameters 

could lead us to have well-damped electromechanical oscillations which were due to power 

plants with available PSS. On the other hand for those oscillation modes which are due to 

power plants without any PSS to decrease their influence in that mode, it was necessary to 

first, add a PSS in that plant, and then to optimize its parameters. 

Considering the mentioned conclusion and the results of the optimization of the PSSs in 

the results provided for the Chilean network, it is possible to notice that in a real case 

sometimes the installation of a non-adequate power system stabilizer for a power plant 

with a certain type of controllers does not provide the expected results in terms of 

damping, since they are not affecting any oscillating mode. Thus, in Chilean network, in 

some power plants PSS are installed even if from our analysis it results that it is 

unnecessary (at least with the current power generation and demand and configuration of 

the network). Instead, it is needed in some other power plants, while it is unavailable.  
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According to the previous conclusion about Chilean network, in this thesis, we tried to add 

also some hypothetical PSSs to those power plants which are participating to the oscillating 

modes. The eigenvalue analysis perfectly demonstrates that with the new PSSs all of the 

eigenvalues are shifted to the left side of the 20% limitation line. 

Therefore, a feasible conclusion has to consider both the electrical and economical aspects 

as seen for the Chilean network. Since this thesis clarifies that, to have a completely 

optimized network, PSS is not required in all power plants but they can be installed only in 

specific ones identified by the modal analysis. Thus, knowing which plants are 

participating in each oscillating mode, it is possible to find the minimum number of PSSs 

in order to have an “optimized” network. 

This thesis focused its attention in particular on the optimization of local oscillation modes, 

but the next step for further improvements and developments in the proposed method for 

the optimization of electromechanical oscillations is to develop the methodology for the 

global optimizations, in order to increase also the damping on the inter-area modes. It is 

worthwhile to mention that the aim of this thesis was to increase the damping of the local 

modes but without neglecting completely the inter-area modes. 

To analyse the inter-area oscillation it has been used the criterion of the analysis of transfer 

function phase between the generating unit speed and the electrical active power. This 

method is very useful for evaluating the effectiveness of the PSS parameterization. The 

objective of the optimization of the PSS, in fact, can also be expressed by saying that this 

must be calibrated so that its phase contribution is sufficient to compensate, all or at least 

in part, the phase difference between speed and electric active power. In particular, this 

compensation should be effective in the electromechanical oscillations frequency range 

(0.1-2 Hz) to smooth them. Therefore, while performing the local mode optimization it was 

also set the phase of the transfer function between +/-30° around 0° in the band of interest, 

in order to consider also the inter-area modes and prepare the network for the global 

optimization. 
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Appendix A 

 

 

Modal Analysis / Eigenvalue Calculation 

 

Introduction 

The Modal Analysis command calculates the eigenvalues and eigenvectors of a 

dynamic multi-machine system including all controllers and power plant models. This 

calculation can be completed at the beginning of a transient simulation and at every time 

step when the simulation is stopped. Note that sometimes, in the literature, Modal Analysis 

is referred to as Eigenvalue Calculation or Small Signal Stability. Throughout, this 

appendix the calculation will generally be referred to as Modal Analysis. This appendix 

provides a brief background on the theory of Modal Analysis. 

 

Theory of Modal Analysis 

The calculation of eigenvalues and eigenvectors is the most powerful tool for 

oscillatory stability studies. When doing such a study, it is highly recommended to first 

compute the “natural" system oscillation modes. These are the oscillation modes of the 

system when all controller and power plant models are deactivated so every synchronous 

machine will have constant turbine power and constant excitation voltage. After 

determining these ’natural’ modes, the effects of controllers (structure, gain, time constants 

etc.) and other models can be investigated. 
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After the initial conditions have been calculated successfully, which means that all 

time-derivatives of the state variables should be zero (the system is in steady state), or the 

simulation has been stopped at a point in time, the modal analysis calculates the complete 

system A-matrix using numerical, iterative algorithms. The representation of the electro-

dynamic network model is equivalent to the representation used for the balanced RMS 

simulation, except for the general load model, for which the frequency dependencies are 

neglected. 

The computation time for the Modal Analysis is approximately proportional to the 

number of state space variables to the power of three. Considering, that most power system 

objects and models will contain several (perhaps up to a dozen or more for some complex 

controllers), the calculation time can rapidly increase as the size of the system being 

considered increases. For this reason, alternative methods for calculating the system 

eigenvalues and eigenvectors must be used when the system grows very large.  

A multi-machine system exhibits oscillatory stability if all conjugate complex 

eigenvalues making up the rotor oscillations have negative real parts. This means that they 

lie in the left complex half-plane. Electromechanical oscillations for each generator are 

then stable. 

More formally, assuming that one of the conjugate complex pair of eigenvalues is 

given by: 

𝜆𝑖 = 𝜎𝑖 ± 𝑗𝑤𝑖 

then the oscillatory mode will be stable, if the real part of the eigenvalue is negative 

𝜎𝑖 < 0 

The period and damping of this mode are given by: 

 

𝑇𝑖 =
2𝜋

𝑤𝑖
 

𝑑𝑖 = −𝜎𝑖 =
1

𝑇𝑝
 ln(

𝐴𝑛
𝐴𝑛+1

) 
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where 𝐴𝑛 and 𝐴𝑛+1 are amplitudes of two consecutive swing maxima or minima 

respectively. 

The oscillatory frequencies of local generator oscillations are typically in the range 

of 0.5 to 5 Hz. Higher frequency natural oscillations (those that are not normally 

regulated), are often damped to a greater extent than slower oscillations. The oscillatory 

frequency of the between areas (inter-area) oscillations is normally a factor of 5 to 20 times 

lower than that of the local generator oscillations. 

The absolute contribution of an individual generator to the oscillation mode which 

has been excited as a result of a disturbance can be calculated by: 

𝑤(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝑐𝑖  𝜙𝑖⃗⃗⃗⃗  ⃗ 𝑒
𝜆𝑖.𝑡

𝑛

𝑖=1

 

where: 

𝑤(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗       generator speed vector 

𝜆𝑖            i’th eigenvalue  

𝜙𝑖⃗⃗  ⃗           i’th right eigenvector 

𝑐𝑖            magnitude of excitation of the i’th mode of the system (at t=0) 

(depending on the disturbance) 

𝑛             number of conjugate complex eigenvalues (i.e. number of generators-1)   

 

In the following c is set to the unit vector, i.e. c = [1,...,1], which corresponds to a 

theoretical disturbance which would equally excite all generators with all natural resonance 

frequencies simultaneously. 

The elements of the eigenvectors 𝜙𝑖⃗⃗  ⃗ then represents the mode shapes of the 

eigenvalue i and shows the relative activity of a state variable, when a particular mode is 

excited. For example, the speed amplitudes of the generators when an Eigen-frequency is 

excited whereby those generators with opposite signs in 𝜙𝑖⃗⃗  ⃗ oscillate in opposite phase. 
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The right eigenvectors 𝜙𝑖⃗⃗  ⃗ can thus be termed the “observability vectors". The left 

eigenvectors 𝜙𝑖⃗⃗  ⃗ measures the activity of a state variable x in the i’th mode, thus the left 

eigenvectors can be termed the “relative contribution vectors". 

Normalization is done by assigning the generator with the greatest amplitude 

contribution the relative contribution factor 1 or -1 respectively. 

For a n-machine power system, n-1 generator oscillation modes will exist and n-1 

conjugate complex pairs of eigenvalues 𝜆𝑖 will be found. The mechanical speed 𝜔 of the n 

generators will then be described by: 

 

[

𝑤1
𝑤2…
𝑤𝑛

]  = 𝑐1 . [

𝜙11
𝜙12…
𝜙1𝑛

] .  𝑒𝜆1.𝑡  +  𝑐2  .  [

𝜙21
𝜙22…
𝜙2𝑛

] .  𝑒𝜆2.𝑡 +⋯+ 𝑐2 . [

𝜙𝑛1
𝜙𝑛2…
𝜙𝑛𝑛

] . 𝑒𝜆𝑛.𝑡 

 

The problem of using the right or left eigenvectors for analyzing the participation of a 

generator in a particular mode i is the dependency on the scales and units of the vector 

elements. Hence the eigenvectors 𝜙𝑖 and 𝜓𝑖 are combined to a matrix P of participation 

factor by: 

 

𝑃𝑖 = [

𝑃1𝑖
𝑃2𝑖…
𝑃𝑛𝑖

] =  [

𝜙1𝑖 . 𝜓𝑖1
𝜙2𝑖 . 𝜓𝑖2…
𝜙𝑛𝑖  . 𝜓𝑖𝑛

] 

 

The elements of the matrix 𝑝𝑖𝑗 are called the participation factors. They give a good 

indication of the general system dynamic oscillation pattern. They can be used to 

determine the location of eventually needed stabilizing devices to influence the system 

damping efficiently. Furthermore, the participation factor is normalized so that the sum for 

any mode is equal to 1. 

 

When are modal analysis results valid? 

A modal analysis can be started when a balanced steady-state condition is reached 

in a dynamic calculation. Normally, such a state is reached by a balanced load-flow 

calculation, followed by a calculation of initial conditions. However, it is also possible to 
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do a balanced RMS simulation and start a modal analysis after the end of a simulation or 

during a simulation when you have manually stopped it. 

Although, the modal analysis can be executed at any time in a transient simulation it is 

not recommended that you do so when the system is not in a quasi-steady state. This is 

because each modal analysis is only valid for a unique system operating point. 

Furthermore, the theory behind modal analysis shows that the results are only valid for 

’small’ perturbations of the system. So although you can complete a modal analysis during 

a large system transient, the results obtained would change significantly if the analysis was 

repeated a short time step later when the operating point of the system would be 

significantly different. 
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Appendix B 

 

 

Essential Functions for Local Optimization 

 

According to chapter  5.1, the process of optimization includes export of the data 

from DigSilent, a conversion process from .CSV to .MAT and so on. In this chapter the 

main functions that are written in MATLAB are represented. Those functions written in 

DigSilent are skipped for the sake of brevity. 

Conversion from .CSV to .MAT
1
: 

function csv_or_xls2parmodel_iter(use_csv,default_folders,input_folder,output_folder) 

  

if ~default_folders 

    input_folder = uigetdir; 

elseif default_folders && nargin < 4 

    input_folder = 'csv_input'; 

    output_folder = 'mat_input'; 

end 

  

if use_csv 

    path(input_folder,path); 

    path(output_folder,path); 

     

    D = dir([input_folder, '\*.csv']); 

     

    for i = 1:size(D,1) 

        filename_p = eval(['D(i,1).','name']); 

        filename = filename_p(end-6:end); 

        if strcmp(filename,'SCR.csv') 

            main_filename = filename_p(1:end-8); 

            for j = 1:size(D,1) 

                filename_p1 = eval(['D(j,1).','name']); 

                name_len = length(main_filename)+4; 

                if length(filename_p1) >= name_len 

                    filename1 = filename_p1(1:name_len); 

                    if strcmp([main_filename '_avr'],filename1) 

                        AVR_data = importdata(filename_p1); 

                        %% getting AVRType 

                        SCR_name_length = length(main_filename)+6; 

                        AVRType_char = filename_p1(SCR_name_length:end-4); 

                        AVR_Type = {{AVRType_char}}; 

                         

                    elseif strcmp([main_filename '_pss'],filename1) 

                                                
1
 This function is also able to convert .XLSX files to .MAT files. 
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                        PSS_data = importdata(filename_p1,';'); 

                        %% getting PSSType 

                        SCR_name_length = length(main_filename)+6; 

                        PSSType_char = filename_p1(SCR_name_length:end-4); 

                        PSS_Type = {{PSSType_char}}; 

                    elseif strcmp([main_filename '_SCR'],filename1) 

                        SCR_data = importdata(filename_p1); 

                    end 

                end 

            end 

             

            %% SCR structure 

            nums_SCR_doub = SCR_data.data; 

            fieldnames_SCR = SCR_data.rowheaders; 

            nums_SCR_cell = num2cell(nums_SCR_doub); 

            SCR = cell2struct(nums_SCR_cell,fieldnames_SCR); 

             

            %% AVR structure 

            nums_AVR_doub = AVR_data.data; 

            fieldnames_AVR = AVR_data.rowheaders; 

            nums_AVR_cell = num2cell(nums_AVR_doub); 

            AVR1 = cell2struct(nums_AVR_cell, fieldnames_AVR); 

            AVR = struct(AVRType_char,AVR1); 

             

            %% PSS structure 

            nums_PSS_doub = PSS_data.data; 

            fieldnames_PSS = PSS_data.rowheaders; 

            if strcmp(PSSType_char,'PSS2B') 

                fieldnames_PSS(18) = {'MM'}; 

                fieldnames_PSS(19) = {'NN'}; 

                fieldnames_PSS(20) = {'w_in'}; 

                fieldnames_PSS(21) = {'kw'}; 

                fieldnames_PSS(22) = {'kf'}; 

                fieldnames_PSS(23) = {'kp'}; 

                nums_PSS_doub(20) = 1; 

                nums_PSS_doub(21) = 0; 

                nums_PSS_doub(22) = 0; 

                nums_PSS_doub(23) = 0; 

            end 

            if strcmp(PSSType_char,'PSS4B') 

                fieldnames_PSS(52) = {'kt'}; 

                fieldnames_PSS(53) = {'w_in'}; 

                fieldnames_PSS(54) = {'RR'}; 

                fieldnames_PSS(55) = {'FL'}; 

                fieldnames_PSS(56) = {'FI'}; 

                fieldnames_PSS(57) = {'FH'}; 

                fieldnames_PSS(58) = {'kw'}; 

                fieldnames_PSS(59) = {'kf'}; 

                fieldnames_PSS(60) = {'kp'}; 

                nums_PSS_doub(52) = 1; 

                nums_PSS_doub(53) = 1; 

                nums_PSS_doub(54) = 1.2; 

                nums_PSS_doub(55) = 1/(2*pi*nums_PSS_doub(2)*nums_PSS_doub(54)); 

%%nums_PSS_doub(2) is the value of Tl2 

                nums_PSS_doub(56) = 1/(2*pi*nums_PSS_doub(19)*nums_PSS_doub(54)); 

%%nums_PSS_doub(19) is the value of Ti2 

                nums_PSS_doub(57) = 1/(2*pi*nums_PSS_doub(36)*nums_PSS_doub(54)); 

%%nums_PSS_doub(36) is the value of Th2 

                nums_PSS_doub(58) = 1; 

                nums_PSS_doub(59) = 0; 

                nums_PSS_doub(60) = 0; 

            end 

            nums_PSS_cell = num2cell(nums_PSS_doub); 

            PSS1 = cell2struct(nums_PSS_cell, fieldnames_PSS); 

            PSS = struct(PSSType_char,PSS1); 

             

            %% building sat_guad 

            sat_guad = 

struct('kwmin',0,'kwmax',5,'kfmin',0,'kfmax',10,'kpmin',0,'kpmax',5); 

             

            %% building par 

            par1 = struct('SCR',SCR,'sat_guad',sat_guad,'AVR',AVR,'PSS',PSS); 

            par = {par1}; %%we need a structure inside a cell 
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            %% getting AVR type 

            AVRType = {AVR_Type}; 

             

            %% getting PSS type 

            PSSType = {PSS_Type}; 

             

            %% finding the order of the machine 

            if (par{1}.SCR.Tqp==0 && par{1}.SCR.Tqop==0 && par{1}.SCR.Tds==0 && 

par{1}.SCR.Tdos==0 && par{1}.SCR.Tqs==0 && par{1}.SCR.Tqos==0) 

                macch_type = '3° ordine'; 

            elseif (par{1}.SCR.Tqp==0 && par{1}.SCR.Tqop==0 && par{1}.SCR.Tds==0 && 

par{1}.SCR.Tdos==0) 

                macch_type = '4° ordine'; 

            elseif (par{1}.SCR.Tqp==0 && par{1}.SCR.Tqop==0) 

                macch_type = '5° ordine modello B'; 

            elseif (par{1}.SCR.Tqp==0 && par{1}.SCR.Tds==0 && par{1}.SCR.Tdos==0) 

                macch_type = '5° ordine modello A'; 

            else 

                macch_type = '6° ordine'; 

            end 

             

             

            %% building parmodel_1 

            parmodel = struct('macch_type',macch_type,'cen',[NaN],'gen',[1 1],... 

                'par',par,'xe',[0.2500],'AVRType',AVRType,'PSSType',PSSType); %#ok<NBRAK> 

             

            %% completing the par structure for synchronous machines 

            sub_handles_tmp = struct('env_type','mono','parmodel',parmodel); 

            xe = 0.25; 

            gen1 = 1; 

            par2 = calcola_var_dipendenti(sub_handles_tmp,par,xe,gen1); 

            par{1} = par2; 

             

            %% building parmodel_2 

            parmodel = struct('macch_type',macch_type,'cen',[NaN],'gen',[1 1],... 

                'par',par,'xe',[0.2500],'AVRType',AVRType,'PSSType',PSSType); 

%#ok<NBRAK,NASGU> 

             

            sub_handles.use_hmi=0; 

            sub_handles.AVRType=parmodel.AVRType; 

            sub_handles.PSSType=parmodel.PSSType; 

            parmodel.par = check_AVR_par(sub_handles, parmodel.par, parmodel.gen); 

            parmodel.par = check_PSS_par(sub_handles, parmodel.par, parmodel.gen); 

         

            %% writing the .mat file 

            main_filename_with_par = [main_filename '_par']; 

            if default_folders 

                currentFolder = pwd; 

                cd(output_folder); 

                save(main_filename_with_par,'parmodel'); 

                cd(currentFolder) 

            elseif ~default_folders 

                save (main_filename_with_par,'parmodel'); 

            end 

        end 

    end 

     

else 

    path(input_folder,path); 

    D = dir([input_folder, '\*.xls']); 

    for i = 1:size(D,1) 

        SCR_name = eval(['D(i,1).','name']); 

        xls_data = importdata(SCR_name); 

         

        %% getting sheets names that are actually AVR and PSS types 

        [status,sheets] = xlsfinfo(SCR_name); %#ok<ASGLU> 

        AVR_Type_char = sheets{1,1}; 

        PSS_Type_char = sheets{1,2}; 

        AVR_Type_char_new = AVR_Type_char(5:end); 

        PSS_Type_char_new = PSS_Type_char(5:end); 

        AVR_Type = {{AVR_Type_char_new}}; 

        PSS_Type = {{PSS_Type_char_new}}; 

         

        %% SCR structure 



126 

 

        nums_SCR_doub = xls_data.data.SCR; 

        fieldnames_SCR = xls_data.textdata.SCR; 

        nums_SCR_cell = num2cell(nums_SCR_doub); 

        fieldnames_SCR_trans = transpose(fieldnames_SCR); 

        nums_SCR_cell_trans = transpose(nums_SCR_cell); 

        SCR = cell2struct(nums_SCR_cell_trans,fieldnames_SCR_trans); 

         

        %% AVR structure 

        nums_AVR_doub = eval(['xls_data.data.' , AVR_Type_char]); 

        fieldnames_AVR = eval(['xls_data.textdata.' AVR_Type_char]); 

        nums_AVR_cell = num2cell(nums_AVR_doub); 

        fieldnames_AVR_trans = transpose(fieldnames_AVR); 

        nums_AVR_cell_trans = transpose(nums_AVR_cell); 

        AVR1 = cell2struct(nums_AVR_cell_trans, fieldnames_AVR_trans); 

        AVR = struct(AVR_Type_char_new,AVR1); 

         

        %% PSS structure 

        nums_PSS_doub = eval(['xls_data.data.' , PSS_Type_char]); 

        fieldnames_PSS = eval(['xls_data.textdata.' PSS_Type_char]); 

        nums_PSS_cell = num2cell(nums_PSS_doub); 

        fieldnames_PSS_trans = transpose(fieldnames_PSS); 

        nums_PSS_cell_trans = transpose(nums_PSS_cell); 

        PSS1 = cell2struct(nums_PSS_cell_trans, fieldnames_PSS_trans); 

        PSS = struct(PSS_Type_char_new,PSS1); 

         

        %% building sat_guad 

        sat_guad = struct('kwmina',0,'kwmax',20,'kfmin',0,'kfmax',10,'kpmin',0,'kpmax',1); 

         

        %% building par 

        par1 = struct('SCR',SCR,'sat_guad',sat_guad,'AVR',AVR,'PSS',PSS); 

        par = {{par1}}; %%we need a structure inside a cell 

         

        %% getting AVR type 

        AVRType = {AVR_Type}; 

         

        %% getting PSS type 

        PSSType = {PSS_Type}; 

         

        %% building parmodel 

        parmodel = struct('macch_type','6° ordine','cen',[NaN],'gen',[1 

1],'par',par,'xe',[0.2500],'AVRType',AVRType,'PSSType',PSSType); %#ok<NBRAK,NASGU> 

        sub_handles.use_hmi=0; 

        sub_handles.AVRType=parmodel.AVRType; 

        sub_handles.PSSType=parmodel.PSSType; 

        parmodel.par = check_AVR_par(sub_handles, parmodel.par, parmodel.gen); 

        parmodel.par = check_PSS_par(sub_handles, parmodel.par, parmodel.gen); 

         

        %% getting the filename 

        SCR_name_new = [SCR_name(1:end-4) '_par']; 

         

        %% writing the .mat file 

        if default_folders 

            currentFolder = pwd; 

            cd([currentFolder '\mat_intput']); 

            save(main_filename_with_par,'parmodel'); %#ok<NODEF> 

            cd .. 

        elseif ~default_folders 

            save (SCR_name_new,'parmodel'); 

        end 

    end 

end 

 

 

Conversion from .MAT to .CSV
1
: 

function parmodel2csv_or_xls_iter(use_csv, default_folders,input_folder,output_folder) 

  

if ~default_folders 

                                                
1
 This function is also able to convert .MAT files into .XLSX files. 
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    input_folder = uigetdir; 

elseif default_folders && nargin < 4 

    input_folder = 'mat_output'; 

    output_folder = 'csv_output'; 

end 

  

path(input_folder,path); 

  

%% counting the number of files inside the folder 

D = dir([input_folder, '\*.mat']); 

  

%% getting the file names 

for i = 1 : size(D,1) 

    filename = eval(['D(i,1).','name']); 

    load(filename); 

    parmodel_name = filename(1:end-8); 

     

    %% suffix 

    if use_csv 

        suffix = '.csv'; 

    elseif ~use_csv 

        suffix = '.xls'; 

    end 

     

    SCRsuffix  = '_SCR'; 

    AVRsuffix  = '_avr_'; 

    PSSsuffix  = '_pss_'; 

     

    %% struct 

    SCR_struct = parmodel.par{1}.SCR; 

    AVR_struct = eval(['parmodel.par{1}.AVR.', cell2mat(parmodel.AVRType{1})]); 

    PSS_struct = eval(['parmodel.par{1}.PSS.', cell2mat(parmodel.PSSType{1})]); 

     

    %% filename for .csv 

    SCR_filename = [parmodel_name SCRsuffix suffix]; 

    AVR_filename = [parmodel_name AVRsuffix cell2mat(parmodel.AVRType{1}) suffix]; 

    PSS_filename = [parmodel_name PSSsuffix cell2mat(parmodel.PSSType{1}) suffix]; 

     

    %% filename for .xls 

    xls_filename = [parmodel_name suffix]; 

     

    %% cells 

    SCR_cell = struct2cell(SCR_struct); 

    AVR_cell = struct2cell(AVR_struct); 

    PSS_cell = struct2cell(PSS_struct); 

     

    names_SCR_struct = fieldnames(SCR_struct); 

    names_AVR_struct = fieldnames(AVR_struct); 

    names_PSS_struct = fieldnames(PSS_struct); 

     

    %% some special modifications 

    if strcmp(parmodel.PSSType{1},'PSS2B') 

       names_PSS_struct(18) = {'M'}; 

       names_PSS_struct(19) = {'N'}; 

    end 

     

    outSCR1 = [names_SCR_struct'; SCR_cell']; 

    outAVR1 = [names_AVR_struct'; AVR_cell']; 

    outPSS1= [names_PSS_struct'; PSS_cell']; 

     

    outSCR = transpose(outSCR1); 

    outAVR = transpose(outAVR1); 

    outPSS = transpose(outPSS1); 

     

    %% AVR and PSS type 

    AVRType = cell2mat(parmodel.AVRType{1}); 

    PSSType = cell2mat(parmodel.PSSType{1}); 

     

    %% choosing between .xls or .csv 

    if use_csv 

        %% Csv writing 

        if default_folders 

            currentFolder = pwd; 

            addpath(currentFolder); 
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            cd(output_folder);  

            cell2csv(AVR_filename,outAVR,';'); 

            cell2csv(PSS_filename,outPSS,';'); 

            cell2csv(SCR_filename,outSCR,';'); 

            cd(currentFolder) 

        elseif ~default_folders 

            cell2csv(AVR_filename,outAVR,';'); 

            cell2csv(PSS_filename,outPSS,';'); 

            cell2csv(SCR_filename,outSCR,';'); 

        end 

    else 

        %% xls writing 

        xlswrite(xls_filename,outAVR,['AVR_' AVRType]); 

        xlswrite(xls_filename,outPSS,['PSS_' PSSType]); 

        xlswrite(xls_filename,outSCR,'SCR'); 

        xls_delete_sheets(xls_filename); 

    end 

end 

 

The main optimization function: 

function local_optimization(gain1,gain2,backup_gain) 

  

%% case of not having lead-lags 

if nargin < 3 

    if ~strcmp(gain2,'1ll') && ~strcmp(gain2,'2ll') 

        backup_gain = gain2; 

    else 

        backup_gain = 'kf'; 

    end 

end 

  

%% path 

root_dir=pwd; 

lib_alice = [root_dir '\lib_alice\']; 

path(lib_alice,path); 

src_alice = [root_dir '\src_alice\']; 

path(src_alice,path); 

init_PSS = [root_dir '\src_alice\init_PSS\']; 

path(init_PSS,path); 

src_mono = [root_dir '\src_alice\src_mono\']; 

path(src_mono,path); 

sist_alice = [root_dir '\sist_alice\']; 

path(sist_alice,path); 

sist_mono = [root_dir '\sist_alice\sist_mono\']; 

path(sist_mono,path); 

parmodel2csv = [root_dir '\parmodel2csv_alice\']; 

path(parmodel2csv,path); 

mat_input = [root_dir '\parmodel2csv_alice\mat_input']; 

path(mat_input,path); 

mat_output = [root_dir '\parmodel2csv_alice\mat_output']; 

path(mat_output,path); 

csv_input = [root_dir '\parmodel2csv_alice\csv_xls_input']; 

path(csv_input,path); 

csv_output = [root_dir '\parmodel2csv_alice\csv_xls_output']; 

path(csv_output,path); 

errors = [root_dir '\parmodel2csv\errors']; 

  

%% csv -> parmodel (csv_input > mat_input) 

csv_or_xls2parmodel_iter(1,1,csv_input,mat_input); 

  

%% single_parmodel_PSS_opt from mat_input 

D = dir([mat_input, '\*.mat']); 

for i = 1:size(D,1) 

    filename = eval(['D(i,1).','name']); 

    try 

        single_parmodel_PSS_opt(gain1,gain2,backup_gain,[mat_input '\' 

filename],mat_output); 

    catch ME 

        disp(['Local Optimization failed for ' filename]); 

        disp(ME); 
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        disp(ME.message); 

        disp(ME.stack); 

        disp(ME.cause); 

        copyfile([mat_input '\' filename],[errors '\' filename]); 

    end 

end 

  

%% csv -> parmodel (mat_output > csv_output) 

parmodel2csv_or_xls_iter(1,1,mat_output,csv_output); 
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