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Abstract

Electromechanical oscillations were detected in power systems as soon as synchronous
generators were interconnected to deliver more power capacity and supply reliability.
These oscillations are manifested in the relative motions of generator mechanical axes
accompanied by power and voltage oscillations. Some characteristics of modern large-
scale electric power systems, such as long transmission distances over weak grids, highly
variable generation patterns and heavy loading, tend to increase the probability of
appearance of sustained electromechanical oscillations. Both local and inter-area
oscillation modes of different frequencies might appear simultaneously in different parts of
large-scale systems. Such oscillations threaten the secure operation of power systems and
if not controlled efficiently can lead to generator outages, line tripping and even large-scale
blackouts.

In general, an insufficient system damping can be the usual reason of electromechanical
oscillations. Since the development of current network structures is limited -due to both
available resources and environmental considerations- most of the efforts for
electromechanical oscillations damping focus on setting different controllers such as Power
System Stabilizers (PSSs), Thyristor Controlled Series Compensators (TCSCs) and so on.
These damping controllers mostly use local measurements as their inputs. Then, their
control rules and parameters are determined in offline studies using time-domain
simulations, eigenvalue analysis, and usually remain fixed in practice. Between different
controllers available for damping of electromechanical oscillations, PSSs are widely used
in power plants. Having the knowledge of limited possible reinforcement in the network
together with the fact that PSSs are already accessible in most of the plants, lead us to the

idea of maximizing the effect of PSSs by fine-tuning of their parameters.

To this end, this thesis proposes a software development for PSS parameters optimization
on large electrical networks with the aim of maximizing the damping of electromechanical
oscillations. In particular, this software application is able to import the results of the
modal analysis carried out on a large electrical network (e.g. Italian network), and use

these outputs as the inputs for the process of optimization of PSSs.






In Italiano:

Nei sistemi di trasmissione di energia elettrica si sono rilevate oscillazioni
elettromeccaniche sin da quando, alla ricerca di maggiore capacita produttiva e affidabilita,
sono state introdotte le macchine sincrone come sistemi di generazione. Tali oscillazioni si
manifestano in moti relativi rispetto all’asse meccanico del generatore, corredati da
oscillazioni di tensione e di potenza. Alcune caratteristiche dei moderni sistemi di
trasmissione su larga scala, quali ad esempio la trasmissione di energia su lunghe distanze
nel caso di reti deboli, la produzione altamente variabile e il forte caricamento delle linee,
tendono ad aumentare la probabilita di comparsa di oscillazioni elettromeccaniche.
Entrambi i modi di oscillazione locali e inter-area possono apparire contemporaneamente e
per varie frequenze in diverse parti del sistema di trasmissione, andando pertanto a
influenzarne il funzionamento e la sicurezza. Di fatto, se non controllate in modo efficace,
tali oscillazioni possono portare al fuori servizio dei generatori, a scatti intempestivi delle
linee e persino blackout su larga scala della rete.

In generale, un insufficiente smorzamento pud essere la tipica causa dell’insorgere di
oscillazioni elettromeccaniche all’interno della rete di trasmissione. Dal momento che
attualmente lo sviluppo delle infrastrutture di rete & limitata, sia dalle risorse disponibili
che da considerazioni di carattere ambientale, la maggior parte degli sforzi per poter
smorzare le oscillazioni elettromeccaniche é focalizzata sulla taratura dei diversi sistemi di
controllo, quali ad esempio i Power System Stabilizer (PSS) o Thyristor Controlled Series
Compensator (TCSC). Tali sistemi utilizzano come ingresso per lo piu misure locali,
avendo inoltre regole di controllo e parametri determinati in studi fuori linea attraverso
simulazioni nel dominio del tempo e analisi agli autovalori. Tra i diversi sistemi di
controllo disponibili per lo smorzamento delle oscillazioni elettromeccaniche, i PSS sono
quelli piu ampiamenti utilizzati nel caso di centrali elettriche. Pertanto la limitata
possibilita di installazione dei rinforzi nella rete di trasmissione unitamente al fatto che i
PSS sono gia accessibili nella maggior parte delle centrali, ci portano all'idea di dover
massimizzare il loro effetto in modo da ridurre le oscillazioni mediante una corretta
configurazione dei parametri.

A tal fine, questa tesi propone lo sviluppo di un tool e di metodologie per 1’ottimizzazione
dei parametri dei PSS, nel caso di reti elettriche fortemente magliate, con I'obiettivo di

massimizzare lo smorzamento delle oscillazioni elettromeccaniche. In particolare, la



soluzione adottata e in grado di importare i risultati dell’analisi modale effettuata su una
rete elettrica di grandi dimensioni (quale ad esempio puo essere la rete di trasmissione

nazionale italiana), e utilizzare tali dati come ingressi per il processo di ottimizzazione dei
PSS.
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1 Introduction

Recently, the number of bulk power exchanges over long distances has increased as a
consequence of deregulation of the electrical energy markets worldwide and the extensions
of large interconnected power systems. Moreover, the power transfers have also become
somewhat unpredictable as dictated by market price fluctuations. The integration of
offshore wind generation plants into the existing network is also expected to have a
significant impact on the power flow of system as well as the dynamic behavior of the
network. The expansion of the transmission grids, on the other hand, is very little due to
environmental and cost restrictions. The result is that the available transmission and
generation facilities are highly utilized with large amounts of power interchanges taking
place through tie-lines and geographical regions. The tie lines operate near their maximum
capacity, especially those connected to the heavy load areas. As a result, the system
operation can find itself close to or outside the secure operating limits under severe
contingencies. Therefore, stressed operating conditions can increase the possibility of
electromechanical oscillations between different control areas and even breakup of the
whole system [1].

Reliability and good performance are necessary in power system operation to ensure a
safe and continuous energy supply. However, weakly damped electromechanical
oscillations (both local and inter-area oscillations), inherent to large interconnected power
systems during transient conditions, are not only dangerous for the reliability and
performance of such systems but also for the quality of the supplied energy. The power
flows over certain network branches resulting from generator oscillations can take peak
values that are dangerous from the point of view of secure system operation and lead to

limitations in network control.

Electromechanical oscillations may cause, in certain cases, operational limitations

(due to the restrictions in the power transfers across the transmission lines) and/or
15



interruption in the energy supply (due to loss of synchronism among the system
generators). Also, the system operation may become difficult in the presence of these

oscillations.

With the heavier power transfers ahead, the damping of electromechanical oscillations
will decrease unless new lines are built or other heavy and expensive high-voltage
equipment such as series-compensation is added to the grid substations. The construction
of new lines, however, is restricted by environmental and cost factors. Therefore,
achievement of maximum available transfer capability as well as a high level of power
quality and security has become a major concern. This concern requires the need for a

better system control, leading to damping improvement.

Simulation studies have shown a high sensitivity of electromechanical oscillations to
generator voltage controller and hydro turbine governor settings [6]. Therefore, and
because of the relatively low cost, measures to alleviate electromechanical oscillations
should be focused on power system controllers. The use of a supplementary control added
to the Automatic Voltage Regulator (AVR) is a practical and economic way to supply
additional damping to electromechanical oscillations. The first supplementary control for
such task was proposed at the end of 1960’s [7], and is usually known as Power System
Stabilizer (PSS). PSS units have long been regarded as an effective way to enhance the
damping of electromechanical oscillations in power system [7]. The PSS provides
supplementary control action through the excitation system of generators and thus aids in
damping the oscillations of synchronous machine rotors via modulation of the generator
excitation. The supplemental damping is provided by an electric torque, applied to the
rotor, which is in phase with the speed variation. The action of PSS, in this way, extends

the angular stability limits of a power system.

For damping of local generator swings, PSSs have been established in the past [8], [1].
To maximize damping of electromechanical oscillations likewise with PSS, special control
structures with additional signal inputs and well adapted parameter tunings are necessary.
Since the first proposal of PSS at the end of 1960’s, various control methods have been
proposed for PSS design to improve overall system performance. Among the classical
methods used are the phase-compensation method and the root-locus method. Among

these, conventional PSS of the lead-lag compensation type [7], [9], [9] has been adopted
16



by most utility companies because of its simple structure, flexibility and ease of
implementation. Since power systems are highly nonlinear, conventional fixed-parameter
PSSs cannot cope with changes in the operating conditions during normal operation and
the system sometimes tends to be unstable. Proper design of any control system that takes
into account the continual changes in the structure of the network is, therefore, necessary to

guarantee robustness over wide operating conditions in the system.

This research mainly focuses on the problem of improving the performance of
conventional PSS, for a better damping of electromechanical oscillations, by using
instantaneous measurements from synchronous generators of the grid as its supplementary

inputs.
The subsequent chapters of this dissertation are organized as follows:

Chapter 2 provides a general description of the power system dynamics and stability
phenomena including fundamental concepts, classification, and definitions of associated

terms.
Chapter 3 presents the exploited techniques for PSS tuning.

Chapter 4 describes an example of using ALICE as the optimization tool, for the case

of a single power plant.

Chapter 5 is the main chapter of this thesis, in which the local optimization of a large

network is obtained through using described methods.
In chapter 6, the possible practical modifications on the network will be clarified.

And finally in chapter 7, the results of simulations and their related figures are

illustrated.
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2 Power System Stability: Electromechanical

Oscillation

The purpose of this chapter is to provide a general introduction to the power system
stability problem including classification, physical concepts and definition of the related
terms. After discussing the general aspects of power system stability and dynamics, the
focus is on “rotor angle stability”, because the electromechanical oscillation problem is a
subset of this kind of instability. A good knowledge of the problem and its causes can

directly lead us to the solution and a better understanding of different methods to solve it.

The electromechanical stability is related to the dynamic interaction between the
turbine-alternators and the network. Regarding this interaction, there are electromechanical
oscillations of the rotor of the synchronous generators. The weakly damped oscillations
can be pronounced for example during the peak loading periods, but can occur even under
light loading conditions. The problems coming from these oscillations are of crucial
importance to ensure, mainly within an energy market, a full usability of production plants
in their entire design field, as well as to guarantee a behavior consistent with security

requirements, in the face of possible network contingencies.

Power System Dynamics and Stability

A power system can be studied, in an intuitive way, as working in two different
states, steady-state and dynamic state —considering the variation of generated power and

load demands.

One of the characteristic features of power system operation is the continual need to
adjust system operating conditions in order to meet the ever-changing load demand.

Although the demand from any particular load can vary quite significantly, the total

18



demand, consisting of a very large number of individual loads changes rather more slowly
and in a predictable manner. This characteristic is important as it means that within any
small time period the transmission and subtransmission systems can be regarded as being
in the steady state and, as time progresses, considered to move slowly from one steady-
state condition to another. The steady-state operation is studied to perform the so called
“power (or load) flow” calculations of the power system and it is not the case of interest
for this thesis, because we want to deal with the stability problem that is discussed when

the power system is in a dynamic state.

Separation of stability and dynamics of a power system is difficult, because after a
contingency the power system moves to dynamic state, and it is the point where the
stability of the system becomes a discussable issue. Thus, stability and dynamics of a
power system are two inseparable concepts. However for the sake of simplicity and being
clear, first, power system dynamics’ concepts and categories are discussed. Then a brief
explanation about power system stability is given. In the end, the focus is on a particular

case with a specified range of frequency, that is, the electromechanical phenomena.

2.1 Power System Dynamics’

An electrical power system consists of many individual elements connected
together to form a large, complex and dynamic system capable of generating, transmitting
and distributing electrical energy over a large geographical area. Because of this
interconnection of elements, a large variety of dynamic interactions are possible, some of
which will only affect some of the elements, others are fragments of the system, while
others may affect the system as a whole. As each dynamic effect displays certain unique
features, power system dynamics can be conveniently divided into groups characterized by
their cause, consequence, time frame, physical character or the place in the system where

they occur.

1t is worthy to notice that in North American literature, the term dynamic stability has been used mostly to
denote small-signal stability in the presence of automatic control devices, but here it is simply denoting the
state of the electric power system following any kind of variation in the system, including physical
configuration or connection changes, contingencies, load demand increments and etc. In other words, it refers
to the dynamic response of power systems to these variations.
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Of prime concern is the way the power system will respond to both a changing
power demand and to various types of disturbance, that are the two main causes of power
system dynamics. A changing power demand introduces a wide spectrum of dynamic
changes into the system each of which occurs on a different time scale. In this context the
fastest dynamics are due to sudden changes in demand and are associated with the transfer
of energy between the rotating masses in the generators and the loads. Slightly slower are
the voltage and frequency control actions needed to maintain system operating conditions
until finally the very slow dynamics corresponding to the way in which the generation is
adjusted to meet the slow daily demand variations take effect. Similarly, the way in which
the system responds to disturbances also covers a wide spectrum of dynamics and
associated time frames. In this case the fastest dynamics are those associated with the very
fast-wave phenomena that occur in high-voltage transmission lines. These are followed by
fast electromagnetic changes in the electrical machines themselves before the relatively
slow electromechanical rotor oscillations occur. Finally the very slow prime mover and

automatic generation control actions take effect.

2.1.1 General Classification of Power System Dynamics - considering the time

frame

Based on their physical character, the different power system dynamics may be
divided into four groups defined as: wave, electromagnetic, electromechanical and
thermodynamic. This classification also corresponds to the time frame involved and is
shown in Figure 2-1. Although this broad classification is convenient, it is by no means
absolute, with some of the dynamics belonging to two or more groups while others lie on
the boundary between groups. Figure 2-1 shows the fastest dynamics to be the wave
effects, or surges, in high-voltage transmission lines and correspond to the propagation of
electromagnetic waves caused by lightning strikes or switching operations. The time frame
of these dynamics is from microseconds to milliseconds. Much slower are the
electromagnetic dynamics that take place in the machine windings following a disturbance,
operation of the protection system or the interaction between the electrical machines and
the network. Their time frame is from milliseconds to a second. Slower still are the

electromechanical dynamics due to the oscillation of the rotating masses of the generators
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and motors that occur following a disturbance, operation of the protection system and

voltage and prime mover control.

The time frame of these dynamics is from seconds to several seconds. The slowest
dynamics are the thermodynamic changes which result from boiler control action in steam
power plants as the demands of the automatic generation control are implemented. Careful
inspection of Figure 2-1 shows the classification of power system dynamics with respect to
time frame to be closely related to where the dynamics occur within the system. For
example, moving from the left to right along the time scale in Figure 2-1 corresponds to
moving through the power system from the electrical RLC circuits of the transmission
network, through the generator armature windings to the field and damper winding, then

along the generator rotor to the turbine until finally the boiler is reached.
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Figure 2-1 Time Frame of the Basic Power Dynamic Phenomena[2]

The fast wave phenomena, due to lightning and switching overvoltages, occur
almost exclusively in the network and basically do not propagate beyond the transformer
windings. The electromagnetic phenomena mainly involve the generator armature and
damper windings and partly the network. These electromechanical phenomena, namely the
rotor oscillations and accompanying network power swings, mainly involve the rotor field
and damper windings and the rotor inertia. As the power system network connects the
generators together, this enables interactions between swinging generator rotors to take
place. An important role is played here by the automatic voltage control and the prime
mover control. Slightly slower than the electromechanical phenomena are the frequency
oscillations, in which the rotor dynamics still play an important part, but are influenced to a
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much greater extent by the action of the turbine governing systems and the automatic
generation control. Automatic generation control also influences the thermodynamic

changes due to boiler control action in steam power plants.

2.2 Power System Stability

As electric power systems have evolved over the last century, different forms of
instability have emerged as being important during different periods. The methods of
analysis and resolution of stability problems were influenced by the prevailing
developments in computational tools, stability theory, and power system control
technology. A review of the history of the subject is useful for a better understanding of the

electric power industry’s practices with regard to system stability.

2.2.1 Historical Review of Power System Stability Problems

As electric power systems have evolved over the last century, different forms of
instability have emerged as being important during different periods. The methods of
analysis and resolution of stability problems were influenced by the prevailing
developments in computational tools, stability theory, and power system control
technology. A review of the history of the subject is useful for a better understanding of the

electric power industry’s practices with regard to system stability.[2]

Power system stability was first recognized as an important problem in the 1920s
(Steinmetz, 1920; Evans and Bergvall, 1924; Wilkins, 1926). The early stability problems
were associated with remote power plants feeding load centers over long transmission

lines.

With slow exciters and non-continuously acting voltage regulators, power transfer
capability was often limited by steady-state as well as transient rotor angle instability due

to insufficient synchronizing torque.
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To analyze system stability, graphical techniques such as the equal area criterion
and power circle diagrams were developed. These methods were successfully applied to

early systems which could be effectively represented as two machine systems.

As the complexity of power systems increased, and interconnections were found to
be economically attractive, the complexity of the stability problems also increased and
systems could no longer be treated as two machine systems. This led to the development in
the 1930s of the network analyzer, which was capable of power flow analysis of multi-
machine systems. System dynamics, however, still had to be analyzed by solving the swing
equations by hand using step-by-step numerical integration. Generators were represented
by the classical ‘‘fixed voltage behind transient reactance’” model. Loads were represented

as constant impedances.

Improvements in system stability came about by way of faster fault clearing and
fast acting excitation systems. Steady-state aperiodic instability was virtually eliminated by
the implementation of continuously acting voltage regulators. With increased dependence
on controls, the emphasis of stability studies moved from transmission network problems
to generator problems, and simulations with more detailed representations of synchronous

machines and excitation systems were required.

The 1950s saw the development of the analog computer, with which simulations
could be carried out to study in detail the dynamic characteristics of a generator and its

controls rather than the overall behavior of multi-machine systems.

Later in the 1950s, the digital computer emerged as the ideal means to study the
stability problems associated with large interconnected systems. In the 1960s, most of the
power systems in the U.S. and Canada were part of one of two large interconnected
systems, one in the east and the other in the west. In 1967, low capacity HVDC ties were
also established between the east and west systems. At present, the power systems in North
America form virtually one large system. There were similar trends in growth of

interconnections in other countries.

While interconnections result in operating economy and increased reliability
through mutual assistance, they contribute to increased complexity of stability problems

and increased consequences of instability. The Northeast Blackout of November 9, 1965,
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made this abundantly clear; it focused the attention of the public and of regulatory
agencies, as well as of engineers, on the problem of stability and importance of power

system reliability.

Until recently, most industry effort and interest has been concentrated on transient
(rotor angle) stability. Powerful transient stability simulation programs have been
developed that are capable of modeling large complex systems using detailed device
models. Significant improvements in transient stability performance of power systems
have been achieved through use of high-speed fault clearing, high-response exciters, series

capacitors, and special stability controls and protection schemes.

The increased use of high response exciters, coupled with decreasing strengths of

transmission systems, has led to an increased focus on small signal (rotor angle) stability.

This type of angle instability is often seen as local plant modes of oscillation, or in the case
of groups of machines interconnected by weak links, as inter-area modes of oscillation.
Small signal stability problems have led to the development of special study techniques,
such as modal analysis using eigenvalue techniques (Martins, 1986; Kundur et al., 1990).
In addition, supplementary control of generator excitation systems, static Var
compensators, and HVDC converters is increasingly being used to solve system oscillation

problems.

Present-day power systems are being operated under increasingly stressed
conditions due to the prevailing trend to make the most of existing facilities. Increased
competition, open transmission access, and construction and environmental constraints are
shaping the operation of electric power systems in new ways that present greater
challenges for secure system operation. This is abundantly clear from the increasing
number of major power-grid blackouts that have been experienced in recent years; for
example, Brazil blackout of March 11, 1999; Northeast USA-Canada blackout of August
14, 2003; Southern Sweden and Eastern Denmark blackout of September 23, 2003; and
Italian blackout of September 28, 2003. Planning and operation of today’s power systems

require a careful consideration of all forms of system instability.
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2.2.2 Basic Concepts

Power system stability is the ability of the system, for a given initial operating

condition, to regain a normal state of equilibrium after being subjected to a disturbance.

Stability is a condition of equilibrium between opposing forces; instability results
when a disturbance leads to a sustained imbalance between the opposing forces.

The power system is a highly nonlinear system that operates in a constantly
changing environment; loads, generator outputs, topology, and key operating parameters

change continually.

When subjected to a transient disturbance, the stability of the system depends on
the nature of the disturbance as well as the initial operating condition. The disturbance may
be small or large. Small disturbances in the form of load changes occur continually, and
the system adjusts to the changing conditions. The system must be able to operate
satisfactorily under these conditions and successfully meet the load demand. It must also
be able to survive numerous disturbances of a severe nature, such as a short-circuit on a

transmission line or loss of a large generator.

Following a transient disturbance, if the power system is stable, it will reach a new
equilibrium state with practically the entire system intact; the actions of automatic controls
and possibly human operators will eventually restore the system to normal state. On the
other hand, if the system is unstable, it will result in a run-away or run-down situation; for
example, a progressive increase in angular separation of generator rotors, or a progressive
decrease in bus voltages. An unstable system condition could lead to cascading outages
and a shut-down of a major portion of the power system.

The response of the power system to a disturbance may involve much of the
equipment. For instance, a fault on a critical element followed by its isolation by protective
relays will cause variations in power flows, network bus voltages, and machine rotor
speeds; the voltage variations will actuate both generator and transmission network voltage

regulators; the generator speed variations will actuate prime mover governors; and the
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voltage and frequency variations will affect the system loads to varying degrees depending
on their individual characteristics.

Further, devices used to protect individual equipment may respond to variations in
system variables and thereby affect the power system performance. A typical modern
power system is thus a very high-order multivariable process whose dynamic performance
is influenced by a wide array of devices with different response rates and characteristics.
Hence, instability in a power system may occur in many different ways depending on the

system topology, operating mode, and the form of the disturbance.

Traditionally, the stability problem has been one of maintaining synchronous
operation. Since power systems rely on synchronous machines for generation of electrical
power, a necessary condition for satisfactory system operation is that all synchronous

machines remain in synchronism or, colloquially, “in step.”

This aspect of stability is influenced by the dynamics of generator rotor angles and
power-angle relationships. Instability may also be encountered without the loss of
synchronism. For example, a system consisting of a generator feeding an induction motor
can become unstable due to collapse of load voltage. In this instance, it is the stability and
control of voltage that is the issue, rather than the maintenance of synchronism. This type
of instability can also occur in the case of loads covering an extensive area in a large

system.

In the event of a significant load/generation mismatch, generator and prime mover
controls become important, as well as system controls and special protections. If not
properly coordinated, it is possible for the system frequency to become unstable, and
generating units and/or loads may ultimately be tripped possibly leading to a system
blackout. This is another case where units may remain in synchronism (until tripped by

such protections as under-frequency), but the system becomes unstable.

Because of the high dimensionality and complexity of stability problems, it is
essential to make simplifying assumptions and to analyze specific types of problems using

the right degree of detail of system representation.
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2.2.3 Different Types of Power System Stability: nature of disturbance

The synchronous stability of a power system can be of several types depending
upon the nature of disturbance, and for the purpose of successful analysis it can be

classified into the following 3 types as shown below:

1) Steady state stability,

2) Transient stability,

3) Dynamic stability.

Power System

Stability
Steady State Transient Dynamic
Stability Stability Stability

Figure 2-2 Power System Stability Category[1]

Steady-state or Small-signal Stability

The steady state stability of a power system is defined as the ability of the system to
bring itself back to its stable configuration following a small disturbance in the network
(like normal load fluctuation or action of automatic voltage regulator). It can be considered
only during a very gradual and infinitesimally small power change.

In case the power flow through the circuit exceeds the maximum power
permissible, then there are chances that a particular machine or a group of machines will

cease to operate in synchronism, and result in yet more disturbances. In such a situation,
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the steady state limit of the system is said to have reached. Or in other words the steady
state stability limit of a system refers to the maximum amount of power that is permissible

through the system without loss of its steady state stability.

Transient or Large-Disturbance Stability

Transient stability of a power system refers to the ability of the system to reach a
stable condition following a large disturbance in the network condition. In all cases related
to large changes in the system like sudden application or removal of load, switching
operations, line faults or loss due to excitation the transient stability of the system comes
into play. In fact, it deals in the ability of the system to retain synchronism following a

disturbance sustaining for a reasonably long period of time.

The maximum power that is allowed to flow through the network without loss of
stability following a sustained period of disturbance is referred to as the transient stability
of the system. Going beyond that maximum permissible value for power flow, the system

would temporarily be unstable.

Dynamic Stability

Dynamic stability of a system denotes the artificial stability given to an inherently
unstable system by automatic controlled means. It is generally concerned to small

disturbances lasting for about 10 to 30 seconds.

Particularly in the thesis, we want to focus on the steady-state or small signal

stability, so we just consider the system conditions following a small disturbance.

2.2.4 Different Types of Power System Stability: quantities of interest

In the previous section we classified power system stability depending on the

nature of disturbance. But there is another category for stability of the power system that
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can be reached if we consider the parameter of the interest. Three quantities are important
for power system operation: (i) angles of nodal voltages o, also called power or load
angles; (ii) frequency f ; and (iii) nodal voltage magnitudes V. These quantities are
especially important from the point of view of defining and classifying power system
stability. Hence power system stability can be divided into: (i) rotor (or power) angle
stability; (ii) frequency stability; and (iii) voltage stability. (Figure 2-2)

So if we combine these two categories, we can reach a unique classification of

power system stability, shown in Figure 2-3, that is useful to lead us to the final point of

Iinterest.
power system stability ]
Il
[ I ]
our interest rotor angle frequency voltage
stability stability stability
small \ large small
transient

disturbance disturbance
voltage stability | | voltage stability

disturbance
angle Sl.’lhl]ll}'}

N

stability

Figure 2-3 Classification of Power System Stability (based on CIGRE No0.325)

In the previous section, the dynamics of the power system were discussed and also
classified according to the time frame of their occurrence. In the case of electromagnetic
phenomenon, as the duration of the disturbance is very short, the generator rotational speed
can be considered constant. In this thesis, a longer time scale will be discussed during
which the rotor speed will vary and interact with the electromagnetic changes to produce
electromechanical dynamic effects. The time scale associated with these dynamics is
sufficiently long for them to be influenced by the turbine and the generator control
systems. As you can see in Figure 2-3, angle stability following small disturbances is our

interest.

At this point we know that we need to focus on angle stability, so in the next
section a brief description is given and then we will see how the regulation of voltage with

AVR can endanger angle stability.
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2.2.5 Rotor Angle Stability

Rotor angle stability is the ability of interconnected synchronous machines of a
power system to remain in synchronism. The stability problem involves the study of the
electromechanical oscillations inherent in power systems. A fundamental factor in this
problem is the manner in which the power outputs of synchronous machines vary as their

rotors oscillate.

Each synchronous machine has two essential elements: the field and the armature
windings. When the rotor is driven by a prime mover (turbine), the rotating magnetic field
of the field winding induces alternating voltages in the three-phase armature windings of
the stator. The frequency of the induced alternating voltages and of the resulting currents
that flow in the stator windings when a load is connected depends on the speed of the rotor.
The frequency of the stator electrical quantities is thus synchronized with the rotor

mechanical speed: hence the designation “synchronous machine.”

When two or more synchronous machines are interconnected, the stator voltages
and currents of all the machines must have the same frequency and the rotor mechanical
speed of each is synchronized to this frequency. Therefore, the rotor of all interconnected

synchronous machines must be in synchronism.

The physical arrangement (spatial distribution) of the stator armature winding is
such that the time-varying alternating currents flowing in the three-phase windings produce
a rotating magnetic field that, under steady-state operation, rotates at the same speed as the
rotor. The stator and rotor fields react with each other and an electromagnetic torque
results from the tendency of the two fields to align themselves. In a generator, this
electromagnetic torque opposes rotation of the rotor, so that mechanical torque must be
applied by the prime mover to sustain rotation. The electrical torque (or power) output of
the generator is changed only by changing the mechanical torque input by the prime
mover. The effect of increasing the mechanical torque input is to advance the rotor to a
new position relative to the revolving magnetic field of the stator. Conversely, a reduction
of mechanical torque or power input will retard the rotor position. Under steady-state

operating conditions, the rotor field and the revolving field of the stator have the same
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speed. However, there is an angular separation between them depending on electrical
torque (or power) output of the generator.

An important characteristic that has a bearing on power system stability is the
relationship between interchange power and angular positions of the rotors of synchronous
machines. This relationship is highly nonlinear. Consider Figure 2-4. It consists of two
synchronous machines connected by a transmission line. Let us assume that machine 1

represents a generator feeding power to asynchronous motor represented by machine 2.

Machine 1 Machine 2
: Line :
XG X.[. XM
1 YY"\ ]
T — 1
E I E
E, TI 12 E,,

Figure 2-4 Two Machine System

As we already know, the power transferred between these machines has the

following relationship:

P = M sins (2-1)

T
where, § is the rotor angle difference between two machines and:
XT=XG +XL +XM (2'2)

The corresponding power versus angle relationship is plotted in Figure 2-5.
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Figure 2-5 Power-angle Characteristic

So we see that the power varies as a sine of the angle: a highly nonlinear
relationship. As the angle is increased, the power transfer increases up to a maximum.
After a certain angle, nominally 90°, a further increase in angle results in a decrease in
power transferred. There is a maximum steady-state power that can be transmitted between

the two machines.

2.2.6 Stability Phenomena

Stability is a condition of equilibrium between opposing forces. The mechanism by
which interconnected synchronous machines maintain synchronism with one another is
through restoring forces, which act whenever there are forces tending to accelerate or
decelerate one or more machines with respect to other machines. Under steady-state
conditions, there is equilibrium between the input mechanical torque and the output
electrical torque of each machine, and the speed remains constant. If the system is
perturbed this equilibrium is upset, resulting in acceleration or deceleration of the rotors of
the machines according to the laws of motion of a rotating body. If one generator
temporarily runs faster than another, the angular position of its rotor relative to that of the
slower machine will advance. The resulting angular difference transfers part of the load
from the slow machine to the fast machine, depending on the power-angle relationship.
This tends to reduce the speed difference and hence the angular separation. The power-
angle relationship, as discussed above, is highly nonlinear. Beyond a certain limit, an
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increase in angular separation is accompanied by a decrease in power transfer; this
increases the angular separation further and leads to instability. For any given situation, the
stability of the system depends on whether or not the deviations in angular positions of the

rotors result in sufficient restoring torques.

When a synchronous machine loses synchronism or “falls out of step” with the rest
of the system, its rotor runs at a higher or lower speed than that required to generate
voltages at system frequency. The “slip” between rotating stator field (corresponding to
system frequency) and the rotor field results in large fluctuations in the machine power
output, currents, and voltage; this causes the protection system to isolate the unstable

machine from the system.

Loss of synchronism can occur between one machine and the rest of the system or
between groups of machines. In the latter case synchronism may be maintained within each

group after its separation from the others.

The synchronous operation of interconnected synchronous machines is in some
ways analogous to several cars speeding around a circular track while joined to each other
by elastic links or rubber bands. The cars represent synchronous machine rotors and the
rubber bands are analogous to transmission lines. When all the cars run side by side, the
rubber bands remain intact. If force applied to one of the cars causes it to speed up
temporarily, the rubber bands connecting it to the other cars will stretch; this tends to slow
down the faster car and speed up the other cars. A chain reaction results until all the cars
run at the same speed once again. If the pull on one of the rubber bands exceeds its

strength, it will break and one or more cars will pull away from the other cars.

With electric power systems, the change in electrical torque of a synchronous

machine following a perturbation can be resolved into two components:
AT, = T,A6 + Tpdw (2-3)

where
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T, A6 is the component of torque change in phase with the rotor angle perturbation

A§ and is referred to as the synchronizing torque component; T is the synchronizing

torque coefficient.

TpAw is the component of torque in phase with the speed deviation 4w and is

referred to as the damping torque component; T, is the damping torque coefficient.

System stability depends on the existence of both components of torque for each of

the synchronous machines. Lack of sufficient synchronizing torque results in instability

through an aperiodic drift in the rotor angle. On the other hand, lack of sufficient damping

torque results in oscillatory instability. This is our case of interest.

We can characterize the rotor angle stability phenomena in terms of the following

two categories:

1)

Small-signal (or small-disturbance) angle stability is the ability of
the power system to maintain synchronism under small
disturbances. Such disturbances occur continually on the system
because of small variations in loads and generation. The
disturbances are considered sufficiently small for the linearization
of the system equations during the analysis. Instability that may
result can be of two forms: (i) steady increase in rotor angle due to
lack of sufficient synchronizing torque, or (ii) rotor oscillations of
increasing amplitude due to lack of sufficient damping torque. The
nature of system response to small disturbances depends on a
number of factors including the initial operating, the transmission
system strength, and the type of generator excitation controls used.
For a generator connected radially to a large power system, in the
absence of automatic voltage regulators (i.e., with constant field
voltage) the instability is due to lack of sufficient synchronizing
torque. This results in instability through a non-oscillatory mode.
With continuously acting voltage regulators (AVRs), the small-

disturbance stability problem is one of ensuring sufficient damping
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of system oscillations. Instability is normally through oscillations of
increasing amplitude. (Figure 2-6)

Ad Oscillatory Aw A
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Figure 2-6 Oscillations with Excitation Control

In today’s practical power systems, small-signal stability is largely
a problem of insufficient damping of oscillations. So in this thesis
we are interested in optimization of the mentioned oscillations by
using power system stabilizers (PSSs). Later in this chapter we will
see how voltage controllers can cause the increasing amplitude of
oscillations, and following that we show how the usage of PSS can
prevent this increment and even help to damp it sufficiently. But
before that, we introduce the following types of oscillations that are

of concern:

e Local modes or machine-system modes are associated with
the swinging of units at a generating station with respect to
the rest of power system. The term local is used because the
oscillations are localized at one station or a small part of the
power system.

e Inter-area modes are associated with swinging of many
machines in one part of the system against machines in other
parts. They are caused by two or more groups of closely

coupled machines being interconnected by weak ties.
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2 Transient stability is the ability of the power system to maintain
synchronism when subjected to a severe transient disturbance. This

is not the case for this thesis, so we do not go in details.[1]

2.3 Electromechanical Oscillations Problem in the
presence of AVR

It is very important to perfectly understand the process in which we find out the
necessity of utilization of power system stabilizers. Seeking this goal, it is useful to see
some basic concepts of mechanical turbine movements and the related equations, because
following that we reach the problem that is caused by the usage of AVRs, and of course the

solution to the problem.

When considering free-body rotation the shaft of the synchronous machine can be
assumed to be rigid when the total inertia of the rotor J is simply the sum of the individual

inertias. According to Newton’s second law:
Ao
]7 + Dgwy =Tt — Te (2-4)

where J is the total moment of inertia of the turbine and generator rotor (kg m?),
w,y, 1S the rotor shaft velocity (mechanical rad/s), 7, is the torque produced by the turbine
(N m), 7, is the counteracting electromagnetic torque and D, is the damping-torque
coefficient (Nms) that accounts for the mechanical rotational loss due to windage and

friction.

Then remembering that the mechanical speed of the rotor is

dbm
dt

Wy = Wem + AWy, = Wgy, + (2-5)

. . . . dém -
where &, is the rotor angle expressed in mechanical radians, Aw,,, = d—;” is the

speed deviation in mechanical radians per second and wy,, is the synchronous speed of the

rotor.
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Now we can reach to a fundamental equation governing the rotor dynamics, that is,

the swing equation

ASm

d?s
M m
m de

m a2

=P,—P,—D (2-6)
where D, = Djws, is the damping coefficient. Considering & and wg as the
electrical angle and electrical synchronous speed, respectively, we can re-write the swing
equation as the following equation
s

Mﬁ_Pm_Pe_PD:Pacc (2'7)

where P,.. is the net accelerating power. The time derivative of the rotor angle

dés

— = Ao =w—ows Is the rotor speed deviation in electrical radians per second. Often it is

more convenient to replace the second-order differential equation by two first-order

equations:

) s _

MZ2 =Py — P, — Pp = P, = = Aw (2-8)

This equation shows that for small deviations in rotor speed the damper windings
produce a damping power P, = DAw that is proportional to the rotor speed deviation. To
help explain the effect of the damper windings on the system behavior it is convenient to
rewrite the swing equation,

ML = by — [R.(5) + Py), (2-9)

when the damping power is seen either to add to, or to subtract from, the electrical
air-gap power P,(&) depending on the sign of the speed deviation. If Aw < 0, then Py, is
negative, effectively opposing the air-gap power and shifting the resulting (Pg, + Pp)
characteristic downwards. If Aw > 0, then P, is positive, effectively assisting the air-gap
power and shifting the resultant characteristic upwards. The rotor will therefore move
along a modified power—angle trajectory such as that shown in Figure 2-7. To help
increase clarity, this diagram shows an enlarged part of the power—angle diagram in the

proximity of the equilibrium point.
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Figure 2-7 Rotor and Power Oscillations with Damping Included[2]

As before, the rotor is initially disturbed, with a stepwise change, from equilibrium
point 1 to point 2. At point 2 the driving mechanical power is less than the opposing
electrical power and the decelerating torque will force the rotor back towards the
equilibrium point. On deceleration the rotor speed drops and P, becomes negative,
decreasing the resulting decelerating torque. The rotor therefore moves along the line 2—6
when the work done by the decelerating torque is equal to the area 2—4-6. This is less than
the area 2-4-1 in Figure 2-7 which represents the work that would have been done if no
damping were present. At point 6 the rotor speed reaches a minimum and, as it continues to
move along the curve 6-3, the accelerating torque counteracts further movement of the
rotor and is assisted by the negative damping term. The rotor again reaches synchronous
speed when the area 6-3-5 is equal to the area 2-4-6 which is achieved earlier than in the
case without damping. The rotor then starts to swing back, still accelerating, so that the
speed increases above synchronous speed. The damping term changes sign, becoming
positive, and decreases the resulting accelerating torque. The rotor moves along the curve
3-7 and the work performed during the acceleration is equal to the small area 3-5-7. As a
result the rotor reaches synchronous speed at point 8, much earlier than in the case without
damping. The rotor oscillations are damped and the system quickly reaches equilibrium

point 1.
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Steady-state Stability of the Regulated System

This section considers steady-state stability when the action of an AVR is included.
It is important for us to see the influence of the voltage regulation on the angular steady-
state stability. But before that, it can be useful if we derive the modified steady-state

power—angle characteristic.
Type equation here.

2.3.1 Steady-State Power-Angle Characteristic of Regulated Generator
Assuming the unregulated generator, the static power-angle characteristic, P, (6),
can be derived considering the fact that in this condition the excitation e.m.f. is constant,
Ef = E, = constant. But, in practice every generator is equipped with an AVR which
tries to maintain the voltage at the generator terminals constant (or at some point behind
the terminals) by adjusting the value of the excitation voltage and, consequently, Ef. As the
resulting formulae for the active and reactive power are more complicated than when E; =
constant, the following discussion will be restricted to the case of a round-rotor generator
(xq=x4) with resistance neglected (r = 0). For this case the steady-state equivalent circuit

and phasor diagram are shown in Figure 2-8. The coordinates of E in the (a, b) reference

frame are:

Eqq = E4c056, E

b = Eqsind. (2-10)

/ -rc f
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.

Figure 2-8 Generator Operating on the Infinite Busbars: (a) Schematic and Equivalent Circuit; (b) Phasor

Diagram in the (d,q) and (a,b) Reference Frames.[2]
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Starting from Pythagoras’s theorem, we can reach the following equation:

Xa+X
X

X
(Bqa + 5 VO)? + Eqy” = [F5= Vo’ (2-11)

This equation describes a circle of radius p = (% + 1)V, with center lying on the a-
axis at a distance A = —XV;/X from the origin. This means that with 1, = constant,
and V; = costant, the tip of E;, moves on this circle. Figure 2-9 shows the circular locus
centered on the origin made by the phasor V; = constant, and another circular locus

(shifted to the left) made by phasor E,.

The circle defined by the previous equation can be transformed into polar

coordinates

E24 + 272 E Vicoss + (F21,)? = [F22 V)2 (2-12)
One of the roots of this equation is:
E, = \/ (FL2V,)?— (C2V,sind)? — ~LV;cos6, (2-13)

which corresponds to the Ef = E; points that lie on the upper part of the circle.

Substituting this equation into the round-rotor power-angle equation, gives the generated

power as

Vs . Xa+X N0 Xdys o o 1Xg V& . i
Xd+Xsm6\/(—X V) (X Vesing) > X—d+Xsm26. 2-14)

PVg(5) =

This equation describes the power-angle characteristic P, (&) with V; = const. and
g
is shown, together with Pg,, in Figure 2-9. A comparison between them shows that the

AVR can significantly increase the amplitude of the steady-state power-angle

characteristic.
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Figure 2-9 The Circle Diagrams and the Power-Angle Characteristic for the Round-Rotor Generator

Operating on the Infinite Busbars

On the other hand we know that

Vs
Xat+X

Py, (8) = Eqp, (2-15)

indicating that the generated power is proportional to the projection of E,; on the b-axis.
This function reaches its maximum value when E,is a maximum. As it can be seen from
the Figure 2-9, this occurs at the point on the E, locus that corresponds to the center of the

circle. So the corresponding angle is &y,.

The angle 6, at which Pvg(5) reaches maximum is always greater than g

irrespective of the voltages V; and ;. This is typical of systems with active AVRs.

_ Vs

Pogwt = Py, 8) |6 = 5, =22, (2-16)

showing that the amplitude of the power-angle characteristic of the regulated system is
independent of the generator reactance. It does, however, depend on the equivalent

reactance of the transmission system. The steady-state synchronizing power coefficient of

9Py, (8)
26

the regulated system is Ky, = and Ky, > 0 when & < Sy
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The sin26 component in the equation of power-angle characteristic has negative

sign, making the maximum of the PV9(6) characteristic shown in Figure 2-9 occur at

Sy > g . For small rotor angles & < g the characteristic is concave, while for § > g the

characteristic is very steep. The sin 26 component has nothing to do with the reluctance
power (as the case with Pg, (6)) because the equation of power-angle characteristic has
been derived assuming x; = x,. The distortion of the characteristic is entirely due to the
influence of the AVR.

Physically the shape of the Py, (6) characteristic can be explained using
Figure 2-10. Assume that initially the generator operates at point 1 corresponding to the
characteristic shown by the dashed curve 1. An increase in the generator load causes an
increase in the armature current, an increased voltage drop in the equivalent network
reactance X, Figure 2-8, and therefore a decrease in the generator voltage V. The resulting
voltage error forces the AVR to increase the excitation voltage so that Ejis increased to a

value E,, > Egand a new operating point is established on a higher characteristic

Pg,, = PEq(8) |Eq = E4, denoted by 2. Subsequent increases in load will cause the
resulting Py, (6) characteristic to cross at the points 2, 3, 4, 5 and 6 lying on consecutive

Pg, (6) characteristics of increased amplitude. Note that starting from point 5 (for & > 7/2)

OPE,(8) . . . 0Py (&) . .
2 s negative while Ky, = ‘;‘; is still

the synchronizing power coefficient Kg, =

a8

positive.

Figure 2-10 Creation of the Py, (6) Characteristic from a Family of Pg, (6) Characteristics.
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If the AVR is very slow acting (i.e. it has a large time constant) then it may be
assumed that following a small disturbance the AVR will not react during the transient
state and the regulated and unregulated systems will behave in a similar manner. The
stability limit then corresponds to point 5 when & = /2 (for a round-rotor generator). If the
AVR is fast acting so that it is able to react during the transient state, then the stability limit

can be moved beyond & = m/2 to a point lying below the top of the Py, (&) curve. In this

case stability depends on the parameters of the system and the AVR, and the system

stability is referred to as conditional stability.

A fast-acting AVR may also reverse the situation when the stability limit is lowered
(with respect to the unregulated system) to a point 6 < 7t/2, for example to point 4, or even
3, in Figure 2-10. In this situation the system may lose stability in an oscillatory manner
because of the detrimental effect of the AVR. Such a situation, and the conditional stability
condition, will be discussed later in this section. And here is the reason that using the AVR

leads us to use PSS to compensate effect of AVR.

Effect of AVR Action on Damper Winding

As shown before in the swing equation one component is P, = DAw, that
corresponds to the damping power introduced by the damper windings. Remember that a
change in the rotor angle 6 result in the speed deviation A®w. According to Faraday’s law,
an emf is induced which is proportional to the speed deviation. The current driven by this
emf interacts with the air-gap flux to produce a torque referred to as the natural damping

torque. To simplify considerations, only the d-axis damper winding will be analyzed.

Figure 2-11a, shows a phasor diagram for the d-axis damper winding, similar to

that shown in Figure 2-10. The emf induced in the winding ep 4, is shown to be in phase

with A@. The damper winding has a large resistance, which means that the current due to

speed deviation, ip(aq), 1agS epae) by an angle less than /2. The component of this

current which is in-phase with A gives rise to the natural damping torque. The quadrature

component, which is in phase with Ag, enhances the synchronizing power coefficient.

Now consider the influence of the AVR on the damper windings. The d-axis

damper winding lies along the path of the excitation flux produced by the field winding.
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This means that the two windings are magnetically coupled and may be treated as a

transformer Figure 2-11b, supplied by AE, and loaded with the resistance R, of the
damper winding. Consequently, the additional current ipg.y induced in the damper
winding must lag AE; . Figure 2-11c shows the position of phasors. The horizontal

component of Ip(akp) directly opposes the horizontal component of ipg4,,y. As the former is

due to the AVR while the latter is due to speed deviation and is responsible for the natural
damping, it may be concluded that voltage regulation weakens the natural damping. This

weakening effect is referred to as artificial damping.

Artificial damping is stronger for larger ip(agy) Currents. This current is, in turn,

proportional to the variations in AE; and AV caused by Ag. Some of the factors influencing

this effect were described in the previous subsection and are: generator load, reactance of
the transmission network and gain of the voltage controller.

. Q.-
d-axis damper
winding /

|'l
=D Awm)

Tl !
Die) __
_ —J field winding T

B _ AW ep positive negative
positive damping damping components
component

(a) (b) (c)

Figure 2-11 Phasor Diagram of Increasing Oscillating with the Swing Frequency Q (in rad/s) for the
Damper Windings: (a) Natural Damping Only; (b) Field and Damper Windings as a Transformer; (c)

Natural and Artificial Damping

The main conclusion from the previous sections is that a voltage controller, which
reacts only to the voltage error, weakens the damping introduced by the damper and field
windings. In the extreme case of a heavily loaded generator operating on a long
transmission link, a large gain in the voltage controller gain may result in net negative
damping leading to an oscillatory loss of stability. This detrimental effect of the AVR can

be compensated using a supplementary control loop referred to as a power system
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stabilizer (PSS), which is our main field of interest in this thesis, as we will discuss
different techniques for PSS tuning in the next chapter.
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3 Techniques for PSS Tuning

As it was discussed in the previous chapter, an inadequate excitation control (AVR),
as a wrong choice of its parameters setting, can lead to instability conditions that appears
as growing oscillations of electrical and mechanical turbine-generator variables. Such
oscillations can reach amplitudes so high to prevent the operation of the unit in the
working point under consideration. In contrast, a correct excitation control, together with a
proper fine-tuning of the regulation parameters, in particular the parameters of the
additional power system stabilizer (PSS) for damping the electromechanical oscillations,
can ensure a stable operation of the generator and adequate dynamic responses across the

full allowable working range and for all the normal network conditions.

In contrast, a correct excitation control, together with a proper fine-tuning of the
regulation parameters, in particular the parameters of the additional power system
stabilizer for damping the electromechanical oscillations, can ensure a stable operation of
the generator and adequate dynamic responses across the full allowable working range and

for all the normal network conditions.

It is possible to conduct stability analysis through the calculation of system
eigenvalues and the study of the dependence of their location on the complex plan,
depending on units operating point and AVR and PSS parameters. A particular and
important point of view for stability analysis is the phase evaluation of transfer function
between some system variables. The crucial feature is the availability of different
optimization procedures capable to determine, in the excitation control of synchronous
generators, the most appropriate calibration of the gains of additional stabilizing feedbacks

in order to achieve an adequate damping of electromechanical oscillations.

To understand the methods of PSS tuning it is useful to see the model definition of

power system elements for different frequencies of oscillations. But before that there is a
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short discussion about eigenvalue analysis that is the basic technique, used in this thesis, to
observe both the frequency modes which have increasing amplitude of oscillations
(oscillatory instability) and the effect of different power plants on those modes. Therefore
eigenvalue analysis is a kind of tool for our case of study, and it is discussed in this
chapter, because well understanding of the concepts behind different PSS tuning
techniques is effectively dependent on having enough knowledge about eigenvalue
analysis.

It is worth mentioning that the main software -to analyze the electromechanical cycle
and then to find the best optimization technique- used in this thesis is ALICE, that is a
software package developed by CESI and Terna in MATLAB®, that creates an integrated
environment for linearized analysis of the electromechanical cycle. ALICE uses data of
synchronous generators AVRs and PSSs to build a model of the power plant-network
system.

3.1 Eigenvalue Analysis

As we know the disturbances in a power system can be of two kinds: small or large.
After having any kind of disturbances, the system is in its dynamic state, and we are
interested to study the stability of the system in this condition. Stability after a large
disturbance is called large perturbation stability and following a small disturbance is small
perturbation stability. Since our focus is just on small disturbances, we need to find a
method that is optimized for this condition. Eigenvalue and modal analysis describe the
small signal behavior of the system — the behavior linearized around one operating point —
and do not take into account the non-linear behavior of, for instance, controllers during
large perturbations. Therefore, time domain simulation and modal analysis in the

frequency domain complete each other in the analysis of power systems.
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Table 3-1 Stability Studies

Large perturbation Stability Small perturbation Stability

dynamic transition dynamic transition
from one working point to another around an operating point
non-linear linear

Eigenvalue analysis investigates the dynamic behavior of a power system under
different characteristic frequencies (“modes™). In a power system, it is required that all
modes be stable. Moreover, it is desired that all electromechanical oscillations be damped
out as quickly as possible. The results of an Eigenvalue analysis are given as frequency and

relative damping for each oscillatory mode.

3.1.1 Linear Stability Analysis

Equilibria are not always stable. Since stable and unstable equilibria play quite
different roles in the dynamics of a system, it is useful to be able to classify equilibrium
points based on their stability.

Suppose that we have a set of autonomous ordinary differential equations, written

in vector form:

%= f(0) (3-1)

Suppose that x* is an equilibrium point. By definition, f(x*) = 0. Now suppose that

we take a multivariate Taylor expansion of the right-hand side of our differential equation:

5c=f(x*)+% X (x—x*)+ -

of
ax

x*(x—x")+ (3-2)
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The partial derivative in the above equation is to be interpreted as the Jacobian
matrix. If the components of the state vector x are (xy, x5, ..., x,) and the components of

the rate vector f are (f3, f2, ..., fn), then the Jacobian is:

EZENCES O]
0x; 0x, = 0xp
Of 0f2 of
J = |0x1 0xp; T oxy (3-3)
O Ofn Ofn
[ 0x, 0x, = 0xpd

Now defining 4x = x —x* and taking a derivative of this definition, we get
Ax = x. If Ax is small, then only the first term in the above equation is significant since the
higher terms involve powers of our small displacement from equilibrium. If we want to
know how trajectories behave near the equilibrium point, e.g. whether they move toward
or away from the equilibrium point, it should therefore be good enough to keep just this

term. Then we have
Ax = J Ax (3-4)

where J* is the Jacobian evaluated at the equilibrium point. The matrix J* is a
constant, so this is just a linear differential equation. According to the theory of linear

differential equations, the solution can be written as a superposition of terms of the form

e*it where {4;} is the set of eigenvalues of the Jacobian.

The eigenvalues of the Jacobian are, in general, complex numbers. Let u;+iv;,
where u; and v; are, respectively, the real and imaginary parts of the eigenvalue. Each of

the exponential terms in the expansion can therefore be written as
e/-{jt — e[ijteib"jt (3_5)

The complex part of the eigenvalue therefore only contributes an oscillatory
component to the solution. It’s the real part that matters: If u; > 0 for any j, etit grows
with time, which means that trajectories will tend to move away from the equilibrium
point. This leads us to a very important theorem:
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Theorem 1 An equilibrium point x* of the differential equation 1 is stable if all the
eigenvalues of J*, the Jacobian evaluated at x*, have negative real parts. The equilibrium

point is unstable if at least one of the eigenvalues has a positive real part.

Because we are only keeping a locally linear approximation to the vector field, an

analysis based on this theorem is called a linear stability analysis.

Note that the theorem is silent on the issue of what happens if some of the
eigenvalues have zero real parts while the others are all negative. This case can’t be
decided based on linear stability analysis. The nonlinear terms we left out of equation 2 in
fact determine the stability in this case. Dealing with this case requires a nonlinear theory
which we do not discuss here.

In the following there is a Figure 3-1 summarizing the visual representations of

stability that the eigenvalues represent:
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Eigenvalues
Allreal and negative

Allreal and one or more
are positive

Allreal eigenvalues are
negative and there are
imaginary parts

One or more eigenvlaues
have a positive real part
and there are imaginary
parts

Real parts of the
eigenvlaues are zero and
there are imaginary parts

Figure 3-1 Stability Representation with Eigenvalues

3.2 Model Definition

3.2.1 Type of Electromechanical Oscillation Modes
Electromechanical oscillations affecting power systems are reported in range 0.1-2
Hz and divided in two types:

0 Inter-area 1 Local 2 frequency [Hz)

Figure 3-2 Types of electromechanical oscillation modes.
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e Local Oscillations: they concern single (or coherent group of) machines
against the rest of the system (usually 1-2 Hz).
e Inter-area Oscillations: they are dynamic modes typically between

coherent groups of generators (usually 0.1-1 Hz).

For both the types of oscillations, damping depends on the operating point of the
units (i.e. actual power flows, reactive point on the capability plan), as well as on the

external lines conditions (i.e. network meshing, lack of interconnections).

We want to analyze stability of the power plant-network system both in local and in
inter-area frequency interval, evaluating damping of oscillation modes and tuning of PSS

according to the typical damping objectives.

excellent

——unstable__, sufficient good :
0 §% 15% 25% damping

Figure 3-3 Oscillations damping evaluation scale

3.2.2 Local Oscillation Modes Modelling
To analyze the interaction between the turbine-alternator and the network it is
possible to build a model where a synchronous generator is connected with an infinite

power network through an equivalent reactance.

X,
\ ® 1 i Infinite power

[.--.. I

- network
Generator

Figure 3-4 Model representation of a synchronous generator connected with an infinite power

network.

It is how ALICE models the network for analyzing the local oscillation modes.

Because PSS works based on a feedback control loop, it is useful to model the whole
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power plant, including synchronous generator, AVR and PSS, with equivalent block

diagrams.

The system modelling is organized into different modules, so it’s quite easy to
change the models of AVR and PSS or to create a custom model as close as possible to the
real one. Into this linearized environment the user can analyze the electromechanical cycle

and verify the behavior of the generator towards the local oscillation modes.

Pu| t - * 1 o | 4
4 = 5T, T I3
AP: Gils)
] R
. K
A

FLECTROMECANTCAL LOOP

FTOLTAGE REGULATIONLOOF

e, Kis) [

POWER STSTEM STABILYZER

Kois) 1€

Figure 3-5 Block diagram of the control model of a synchronous generator with AVR and additional
PSS

Using the same model of the generators, it’s also possible to simulate a small

network where the different machines are connected by equivalent reactances and loads.
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Figure 3-6 Representation of the multi-machine model

Furthermore in a multi-machine environment there are not only local oscillation
modes, but also inter-area oscillations ones, determined by the units parameters and by the

connection lines between different generators.

3.2.3 Inter-area Oscillation Modes Modelling

The generic multi-machine model available in ALICE can be specifically tailored
to simulate a particular inter-area mode that affects a generator. The objective is reached
calculating the parameters of the loads and the values of the reactance necessary to obtain

the desired frequency and damping.
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Figure 3-7 Model representation capable to simulate a particular inter-area mode that affects a
generator

In the configuration shown in Figure 3-7, all the parameters of the plant remain

unchanged and the variables to be calibrated are:

e Xe: the external reactance determines the length of the "rope™ that connects the
power plant and the dominant network, its value decreases with the increase of the
system oscillation frequency.

e Pto: (the initial value of P;) the active power absorbed by the load in the operating
point (the reactive powers are determined by the load flow solution), its value
increases with the increase of the system oscillation damping.

This model changes only the connection parameters (Xe, Pto) with the external

network, so it could be very useful to evaluate the behavior of the generator towards inter-

area modes.

3.3 Stability Analysis Criteria

To evaluate the stability of the linearized system, ALICE allows two possible
approaches; a) the analysis of the system eigenvalues position in the complex plan; b) the

analysis of the transfer function phase between some system variables.

55



3.3.1 Precise Criterion: Analysis of Eigenvalues Position in the Complex Plan

The simplest technique to evaluate the stability of a system is to observe the
position of its eigenvalues in the complex plan, ensuring that all of them are located in the
left part and, in particular, on the left of the two half-lines which represent the minimum
acceptable damping (i.e. 20%). This criterion gives an overview of the stability of the

system in the operating point under consideration, for example:
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Figure 3-8 Representation of system eigenvalues and minimum acceptable damping in the complex
plan.

3.3.2 Simplified Criterion: Analysis of Transfer Function Phase Between Some

System Variables

This criterion analyses the phase of a certain number of open-loop transfer
functions among some system variables; the most significant of them is the one between
unit speed and electrical active power. This method is not as precise as the previous one,
but reveals to be very useful for evaluating the effectiveness of PSS parameterization. The
objective of the optimization of the PSS, in fact, can also be expressed by saying that this
must be calibrated so that its phase contribution is sufficient to compensate, totally or at
least in part, the phase difference between speed and electric active power. In particular,

this compensation should be effective in the electromechanical oscillations frequency
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range (0.1-2 Hz) to smooth them. As shown in Figure 3-9 the compensation can be
considered satisfying when the phase of the transfer function is between +/-30° around 0°

in the band of interest.
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Figure 3-9 Phase of the open-loop transfer function phase
between speed and electrical active power (in this example
the compensation can be considered satisfying).

3.4 PSS Optimization Methods

For stabilizers calibration, different methods are available in ALICE, so it is possible
to have different options to improve system stability. Depending on the situation (i.e.
position of the power plant in the network, measurements accuracy, typical points of
operation, etc.) and, in particular, on AVR and PSS models, one of them can be better than
the others. For a more detailed explanation and formulas, about the following methods, the

reader can refer to [11].

3.4.1 Residuals Method on Double Feedback PSS
This technique aims to optimize stabilizers gains searching a compromise between

the requirements of stability and energy containment associated with the control stabilizing
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signal called veeeqpack OF Vyer IN Italian.! This setting guideline is influenced also by the
need to limit the measurement noises introduced through the additional feedbacks in the
voltage loop. There is the need to identify the criteria for the analytical determination of
the “optimal” gains and it is possible to use only one feedback channel or a couple of them
(K, for electrical power channel with K, for frequency channel or K, for speed channel)

for the optimization. A cost function can be defined as follows:
J(Kp Kp) = K + a® x K? (3-6)

The function J in (3-6) represents the weight of each feedback channel according to
value a which is defined later. This function can be minimized leading to a choice of
“optimal” gains in compliance with a constraint that imposes a satisfying value of the
electromechanical damping. In other words, it moves the eigenvalues of the
electromechanical system from the original position (4,4™) - without stabilizing feedbacks -
to the new location (4,:¢45::) - Characterized by the desired damping value (,.). The
determination of the optimal gains can be entrusted to an iterative procedure that aims to
place the electromechanical eigenvalues associated in the left-half plan defined by the half-
lines representing the minimum acceptable damping. Firstly it is needed to identify

residues which are associated with complex eigenvalues:

AP, ch

i — . -
Gp(s) = AVpet s=Al  s=ar + (3-7)
T U SN S -
Gf (s) = AVper + s=Al + =AY + (3-8)

where the superscript i indicates the initial values of variables’ gains of stabilizing
feedback and transfer function, P, is the electrical power, v,..; is the feedback voltage, s is
the Laplace variable, 1 is the eigenvalue or poles of G(s) and C is the corresponding
residue. The displacement of the pair of electromechanical eigenvalues (1;, ;) from the

original position to the optimal one:

Aott = Pott * (ot + /1 — Egtt)' Aott = Pott * (—Sott —J/ 1 — Egtt) (3-9)

! due to using ALICE in this thesis, the Italian symbols and abbreviations are used
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is obtained by applying an appropriate change to the gains. The deviation of K, and
Ky can be determined by evaluating the sensitivity of the eigenvalues of the dynamic

system using the following approximate expression:

AL = Aore — A= _(Pott'fott + Ui) +J (Pott‘/l - fgtt - Wi)

= —CLAK, + CHAK, (3-10)

and separating the equalities written in real and imaginary components, a linear
expression of AK, and AKy is obtained depending on the parameter p,.. These
expressions are substituted in the function (3-6) of which the minimum is sought by
requiring the cancellation of the derivative part with respect to p,;, then the value of p,;;
allows to identify the optimal gains of the stabilizing feedback. Due to the simplifications
introduced in equation (3-9), it is necessary to iterate the procedure, because its validity is
limited to small deviations of K,, and K, defining an appropriate test to evaluate the
optimal convergence of the solution obtained in every iteration. If the coefficient a is set
equal to the modules of the residues associated with eigenvalues of the electromechanical
transfer function Gp(s) and G¢(s) defined in absence of feedback stabilizers, the function

in (3-6) is directly proportional to the energy associated with stabilizing signal v,..;.

In the multi-machine case, the stabilizing signal v,.;, acting on a machine has also
effect on other generators: thus, the system is characterized by complex residues matrices.

So a new quadratic cost function can be defined:
min(0.5x'Hx + f'x) with Ax <B (3-11)

where H is an identity matrix of size NxN (where N is the generators number), if it
is used only one feedback channel for stabilization, vice-versa is a 2Nx2N diagonal matrix

whose generic element H (i, i) is defined by:

1
NI

H(i,i) = :
—_— 1 I ] < B <
Z?{—-l C}%(l,j) if N <i<2N

if 1<i<N
(3-12)
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Cp(i,j) is the residue associated with i'th electromechanical eigenvalue and the
j'th stabilizing signal. The vector f is unitary if it’s used only one feedback channel for
stabilization; vice-versa introduces a normalization of optimized gains. Finally the vector x
contains the gains and the terms A and B, which define the constraints of the problem,

given by the equation:

l\/ 1- Eoztt' Re(Cp) — fott-lm(CF”)J AKp < l\/ 1- Egtt- Re(4) — fott-lm(A)J

(3-13)

3.4.2 Lead-lags Method on Single Feedback PSS

This method optimizes the gain and lead-lags time constants for one feedback
channel; it is very useful when only one input of PSS is available or one of the input
measurement is not enough accurate. For simplicity here the speed channel is considered
and the lead-lags time constants T; (the zero) and T, (the pole); the procedure is the same
for the other two channels (electric power and frequency). This methods is iterative like the
previous, even if, in this case, it’s necessary to optimize not a gain, but the transfer
function that is:

(1+jwTy)
W (14jwTy)

(3-14)

So (3-10) becomes:

AL = Aote — A= _(Pottfott + Ui) +j(Pott,/1 - fgtt - Wi)

. - (14 jwTf
ECQA(K;%;:EE§>

== C\;/KAKW + C\::VTIATl + VV{ITZATZ (3'15)

Having to calculate the three contributions due to the gain and time constants by

calculating:
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y ( (1 +ij1i)> _ (1 +ij1) (1 + jwT,)
V(1 + jwTy) Yl +jWT2)_ (1 + jwTy)

_ (1+ij1)] [ JWKy, ] 'j.w.(1+ij1)Kw] )
- AKW.[—(1+ij2) AT, [ |+ AT, [P (3-16)

Equating real and imaginary parts separately we obtain two equations, but another
one is necessary, because there are three unknown variables. So, in order to maximize the
contribution of lead-lags filters at the electromechanical oscillation pulse (w,), while
leaving as much as possible PSS transfer function phase the same in the rest of the

spectrum, we chose to center the pole-zero pair precisely around w,.

This constraint is expressed by:

VT + AT (T, + 4T) = (3-17)

There are cases where the contribution of a single lead-lag filter could not be
sufficient; it is therefore possible to optimize a transfer function which includes two lead-
lags in cascade. Following the same principle used to write equation (3-17), the chain of

two filters is constructed as a double multiplicity filter centered around w,, namely:

(1+jwTy) (1+jwTs) (1+jwT;)?
W (14jwTy) " (1+jwTy) W (1+jwTy)?

(3-18)

where T;and T, are respectively the time constants for the zero and the pole of the second
lead-lags filter. Using two lead-lags the equations for residues calculation are modified, but

the optimization procedure remains unchanged.

This optimization technique is very useful also when the residual method using a
couple of channel for stabilization is not able to reach the desired damping value. In this
case, in fact, it’s possible to fix the value of one of the gains calculated by the residual

method and to apply lead-lags calibration on the other channel.
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3.4.3 Lead-lags Method for Inter-area Mode Damping

In real cases could happen that the measurement of frequency and/or speed is not
accurate or that the gain necessary to damp oscillation is too high. In this situation ALICE
can optimize electric power channel gain and lead-lags to replace the contribution of
frequency or speed channel and to aid inter-area mode damping. Assuming the use of one

lead-lag filter, the stabilizing signal can be expressed as:

1 T1
Vrer = —KpKs 1P, = KpK (Tl + L2 ) P, (3-19)

1+ST2 Tz 1+ST2

where K is the global gain of the PSS, after the algebraic sum of all inputs. Considering
that:

P, = —2Hsw (3-20)

where H is the inertia constant of the unit under consideration, s is showing the Laplacian

domain, thus, the second term of the third member of equation (3-19) becomes:

T
1—-1

Kyeqw = 2KpK Hs(—2)w (3-21)

1+ST2

showing the equivalent gain K,,.,0n speed channel. Then, by choosing:
sT, > 1 (3-22)
that is:
1
T, » ” (3-23)

where w, is the electromechanical oscillation pulse to damp. Therefore we can assert that
the overall gain on electric power channel (that remains unchanged) and the equivalent

gain on speed channel are:
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erq = KPKST_: = Kp
KPKSZH(l—%) (3-24)

Kieq = ———2

So we have:
Ko =1
2 3-25)
T, Kwe
K,=1+ ﬁ_qu

and the equations necessary to design the lead-lag filter are:

( Ty » -
KW@
!&=1+%7f>1 3-26)
T.
T1 = K_i < Tz

It is possible to implement the dual method where the use of lead-lags of frequency

or speed channel replaces the contribution of the electric power channel, which is the same

objective of the technique described in 4.2.

3.4.4 Quadratic Programming Method

Finally, to develop another technique for gain and lead-lag time constants
optimization, we can exploit the quadratic programming used for the residual method in
the multi-machine situation. Differing from the technique described in 3.4.2, in this case it
is not either required that pole and zero lags of leads are centered on the electromechanical
oscillation pulse or that in the case of two lead-lags (T; = T5 and T, = T,). In addition, this
method, in the case of optimization with two feedback channel, does not force the gain of
one channel to be constant. So, no external constrains are necessary and it is sufficient to
write the generic problem (3-12), where the inequality system, in case of speed channel

with one lead-lag, becomes:
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V1 =84, Re(CLi)AK,, + &ope Im(CLy)AK,, + /1 — &2, Re(Clry)AT, +

Sott Im(C\fvn)ATl +V1 =85, Re(cvisz)ATz + $ott Im(C\fsz)ATz <J1—¢&% Re() +
ot Im(A) (3-27)

While to write the matrix H and the vector f is necessary to express a quadratic

cost function:

ji =k (1+ij{:)+ ( (1+}WT1))] [ Ki (1+]le) (Ki (1+ijll:)>:|'

W a+jwTh W (1+jwT}) w (1+]wT2‘) W (1+jwTi)

(3-28)

where the quadratic terms make up the diagonal of the matrix H, whereas the first order

ones the vector f.
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4 Applications and Examples on Real Power Plants

The final objective of this chapter is to show how the PSS parameters tuning is
achieved for a single power plant by using ALICE. The result is an optimized* damping
ratio of local electromechanical oscillations for the mentioned power plant, and following
that a better rotor angle stability regarding to it. So our general approach is to reach the
maximum damping of electromechanical oscillations, first for an individual power plant,
that is the local optimization of a single power plant, and then in the next chapter we will
try to develop it to a large network with different kinds of AVRs and PSSs, that is the local
optimization of the whole network —that will be a large network- and as a result, to prepare

the network for the global optimization discussed in chapter six.

Starting from a single power plant, it is useful to divide it into three different parts
including, synchronous generator (SCR), automatic voltage regulator (AVR) and power
system stabilizer (PSS). In this way, it is easier to see the effect of each section separately.

4.1 Dynamic model of a mono-machine system,
alternator-network

For the purpose of local optimization that is our goal in this chapter, the synchronous
generator is assumed to be connected to an infinite busbar with a simple transmission line.
Except for the considered generator, the rest of the network is assumed to have a prevailing
voltage that is independent from this generator and always with a constant voltage value.
Therefor we have a nonlinear dynamic system, whose equilibrium condition is defined as
the operation of the generator in synchronism with the frequency and voltage of the infinite

network.

! In the whole thesis, by optimization we mean ‘tuning the parameters of the PSS in such way that the
damping of electromechanical oscillations is maximized’.
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As discussed in the previous chapter, the analysis of the stability of a nonlinear
dynamic system can be done by linearization of the system itself around a certain
equilibrium point, and using the instruments provided by the theory of linear dynamic

systems (e.g. superposition principle...). So the electrical model used for this discussion is

vy Vr
X; Xa
‘ transmission line o

as shown in Figure 4-1.

transformer
synchronous mfinite
generator busbar

~00000°

equivalent
reactance

|
|
|
|
|
|
|
Xie ‘

Figure 4-1 mono-machine system, alternator-infinite busbar

4.1.1 Mathematic Model of the Synchronous Machine
For the purpose of stability and control, it is not enough to model a synchronous
machine with a simple first or second order model. The most useful models used in this

topic are fifth or sixth order model.

As established by the Unified Theory of Electrical Machines, a synchronous machine
can be represented in a reference system with two axes dq, rotating at the synchronous
speed and having the g axis perpendicular to the vector of the excitation voltage - or
defining an equivalent machine obtained by a transformation operation of the electrical
quantities (Park's transformation) originating from the three-phase system to that of two
orthogonal axes. The transform operation is conservative from the point of view of energy
balances, and the synchronous machine in the dq axis system is described by the following
set of equations of state:
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de, 1 T
q — ( ! [ AA
— = —(—e; —X4,l4 + ( - —) v )
T dqgtd !
dt ), q q T, ) T
deC,I’ — i(e/ _ eII _ xlI i+ TAAv )
T A I A A
de"l 1 ’ ;.
— = ——(—e X,al
de(,i’ 1 I " "o
= —(e;—e; +x,,41
dt Té:,( d d qd q)
da Q 1 Q
—— = —(Pp—FP—Dg—
dt Qn Tm Qn
s Q (Q Qr
ac MY, 0,
Where
TII TII
! ! d ! n - ! " d !
Xgq = Xa = Xg — 71~ (Xa — Xq) Xgq = Xg = Xg + 5~ (Xa — Xq)
do do
TII TII
! _ a9 A A B -q Al
Xga = X%q — Xq — 71~ (%q — Xg Xga = xg = xg + = (xq — xq)
qu qu
With
_ Ty n_ 0 T4
Xg =Xqa 71— Xg =Xg nr 44)
do do
TI TII
I q " o_ q
Xg = XqTT Xqg = Xq TT 4-5)

d and g components of the armature voltage, vg, v, are:

Vg =eq + x4l

Vg =eq —x4iq  (4-6)

(4-1)

4-2)

4-3)

while the active and reactive electrical power, P, and Q,, are calculated as follow:

Pe = vd'id + vqiq

Qe = vq. id — Udiq (4'7)

Finally, the absolute value of the voltage and armature current is:
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v = /vé+v§ i = ’i§+i§ (4-8)

In the case of the mono-machine system, as shown in Figure 4-1, where the equivalent

reactance x;, = x; + x, , represents the transformer-line system, the components of the

armature current iy and i, are given by the following equations:

eq' —vyr.cos 8 . vy .sin§—ey
lg = " lg = 17 4'9)
xte+xd xte+xq

where v, is the (ideal) voltage of the infinite busbar, where the generator is connected to.
So the dynamic model of the system, described with the above equations, is illustrated as in

Figure 4-2.
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Figure 4-2 block diagram of the mono-machine alternator-network system
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The meaning of the quantities that appear in previous equations is given in Table 4-1.

Table 4-1 characteristic quantities of a synchronous machine

symbol Description unit
eq quadrature axis component of transient emf p.u.
eq quadrature axis component of subtransient emf p.u.
e, direct axis component of transient emf p.u.
ey direct axis component of subtransient emf p.u.
vy field voltage supplied by the excitation system p.u.
Tya leakage time constant of the additional damper along direct axis S
Xq operational reactance along direct axis p.u.
Xq operational reactance along quadrature axis p.u.
Ty transient time constant along direct axis S
Ty subtransient time constant along direct axis S
Tgo open-circuit transient time constant along direct axis S
Tgo open-circuit subtransient time constant along direct axis S
Ty transient time constant along quadrature axis S
T, subtransient time constant along quadrature axis S
Tyo open-circuit transient time constant along quadrature axis S
Tyo open-circuit subtransient time constant along quadrature axis S
iq armature current along direct axis p.u.
Iq armature current along quadrature axis p.u.
i absolute value of the armature current p.u.
Vg armature voltage along direct axis p.u.
Vg armature voltage along quadrature axis p.u.
v absolute value of the armature voltage p.u.
P, mechanical power of the rotor p.u.
P, active power generated by the alternator p.u.
Q. reactive power generated by the alternator p.u.
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4.1.2 Voltage Regulator
The above mentioned dynamic system will be completed by adding a voltage

regulator that can be modeled with the following second order transfer function:

1+sT,
°" (1+sTp)(1+5T,)

Gy(s) = (4-10)

It is taking into account, the gain of the voltage transducer and the effects of

filtering (pole in (— Ti) ) in high frequency, in the control loop; the selected transfer
a

function allows to correctly present the intervention of the regulator in the frequency range

of interest for the study of electromechanical phenomena (1: 10 rad/s).

4.1.3 Dynamic Friction

In the Figure 4-2, the feedback element Dy represents the mechanical friction
phenomena: it can suitably be replaced by an element of dynamic friction described by a
transfer function G4 (s):

sTq
1+sTg

Ga(s) = Dq

(4-12)

In Figure 4-3, the effect of voltage regulator and dynamic friction is also added:
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Figure 4-3 block diagram of a mono-machine alternator-network system with dynamic friction element G ;(s)

and voltage regulator G,(s)

4.1.4 Linearization: electromechanical and voltage cycle
Proceeding to the linearization of non-linear mathematical model of the system
described (mono-machine), around an appropriate point of equilibrium, leads us to a

formulation of the same which allows a block representation presented in Figure 4-4.

71



L J

+\...f_“" Y
> ) >

AP, L 1 Gas) I(— A2y

dynamic friction

P + EPW
LK &s
ELECTROMECHANICAL
CYCLE
VOLTAGE CYCLE
cv +
Adgy’ > — >
ce’ +
1
8 Iga ! Ay
Mgy

vy 4
Gifs) I( — (=
_|_

voltage regulator

Figure 4-4 linearized block diagram of the mono-machine alternator-network system: with presence of the

electromechanical and voltage cycles

It can be seen, in particular, an electromechanical cycle and a voltage cycle. As it is
shown in Figure 4-4, it is possible to simplify the block diagram, by combining the effects
of the cycle of voltage on the variation of active electric power P, in a single term as K(s),

which makes it easier to evaluate the stabilizing and destabilizing effects as a whole.
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Figure 4-5 linearized block diagram of the mono-machine alternator-network system

The linearized model of Figure 4-5, is therefore a mono-machine alternator-
network system without additional feedback stabilizers. In the absence of the term of
dynamic friction, the electromechanical cycle is characterized by two poles in the origin,
the first associated with the rotational dynamics (with time constant T,,,), the second one is
the load angle 8, the sign of which determines the direction of the active power injected or

absorbed by the network.

First, one can observe that, with open loop voltage, or with manual adjustment of
the excitation voltage (assumed constant Av; = 0), the linearized system has two complex

poles purely imaginary

L=+ f—; (52)e (4-12)

which corresponds, as it is known, an oscillatory behavior without damping.

However, it is necessary to emphasize that the real part of the poles is zero because of the
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adopted simplification: in fact they have negative real parts, although they are still

positioned very close to the imaginary axis.

The algebraic block K, in Figure 4-5, represents the partial derivative of the
electrical power with respect to the load angle 6 and is referred to as synchronizing power
coefficient. The electromechanical cycle therefore, consists of two integrators in series and

by the gain in the negative feedback K, it has zero phase margins.

The corresponding transfer function of the block K is the following:

(g AP,

A8/ Ae{] 1
Av 1+ST&0 Av
Aefl Gy(s) Ae&

It represents the characteristics of a low-pass system and therefore provides a

K(s) = — (4-13)

negative contribution to the phase of the electromechanical cycle: evaluating the sign of the
partial derivatives that appear in the expression of K(s), it can be shown that the sign of
that transfer function is always positive, and therefore the effect of the voltage regulation

on the electromechanical cycle is always destabilizing.
This effect is irrelevant only in particular operating conditions:

e In the case of very slow voltage regulators, in which the effect of K(s) is
interested in the field of low frequency oscillations.

e At open-circuit, with P, = 0, or without contribution of K(s).

4.2 Stabilization of the system through additional
feedback

The analysis of the stability of a mono-machine dynamic system, briefly discussed
in the previous paragraph, highlights the need to introduce additional feedback loops that
provide a correction to the voltage reference in order to ensure stability margins broader,

namely running conditions safer and a field of usability of the machine more extended.
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4.2.1 Characterization of additional stabilizing feedback
A signal stabilizerdv,.., which is added to the voltage reference, is obtainable as a
proportional contribution to the speed of mechanical rotation (or to the derivative of the

load angle) according to a transfer function Kq(s), to be defined, as indicated below
Avyer = Ko(s)AQ = Ko(s) - 46 (4-14)

This contribution may be represented, in the block diagram, through an equivalent

block EQ (s), which represents the effect on the generated active power rather than on the

voltage reference: this is illustrated in Figure 4-6.

It can be shown that, the above introduced additional feedback allows both to
increase the reduced phase margin, intrinsic in the electromechanical cycle and, above all,
to compensate the destabilizing effect introduced by the voltage loop. This is possible
through an appropriate choice of the transfer function K (s): in particular, in order to
compensate the integral action exerted by the voltage loop in the pulse characteristics of
the electromechanical phenomena, it is appropriate to provide through K,(s) an opposite

derivative action, i.e.
KQ(S) = KQ + SK(II (4'15)

Since the introduction of derivative regulating contributions is related to the
implementation issues that can increase the risk of disturbances of measurement, the
derivative term of K(S) can be more conveniently reconstructed through the measurement

of the generated active power, by observing that
AP, = —sT,,AQ (4-16)
we then obtain
Ao = (Ko + SKDAQ = KgAQ — K, AP, with Kp = 5—7: (4-17)

In addition, it is useful to add a high-pass filter with unity gain on the introduced
stabilizing signal, in order to cancel the steady state effect, namely in order not to influence

the static performance of the voltage regulation loop.
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Figure 4-6 block diagram of a linearized mon-machine alternator-network with additional stabilizing
feedback

And the final block diagram that can be useful for our case and carries more related

data in as below
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Figure 4-7 another representation of the mono-machine block diagram with voltage regulator and additional
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4.3 Practical examples of PSS tuning: single power
plant

As it was mentioned in the beginning of this chapter, to analyze the optimization of
a single power plant it was divided it into three different parts, which are synchronous
generator, automatic voltage regulator and power system stabilizer. In the previous
sections the focus was on the definition of these different parts and to describe each of
them using block diagrams, that are useful from the control point of view and in particular

for PSS (that is the main block that we want to work on).

In the following section some practical applications are discussed. The procedure is

as explained below:
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e First, a typical power plant' with the default values of the parameters is
chosen. (This power plant is one of the plants of the large network that will
be discussed in the next chapter). For the selection of the examined power
plant some considerations are important. It is better that the selected power
plant has the most general type of the AVR and PSS, because any special
case can be useless to be used as the example. Thus, the aim is to choose a
plant with the most common types of AVR and PSS. (While in the process
of doing the thesis, different kinds of power plants with different level of
difficulty were considered, but just one of them is mentioned individually in
this chapter).

e Then, different optimization methods, described in chapter 3, are applied to
the selected power plant, in order to see the result of the optimization on the
eigenvalues (or similarly poles) of the system. These poles and consequently
damping ratios and their frequency can give us very useful information
about the quality of the damping of electromechanical oscillations.

e The final step is to compare the oscillating modes of the power plant, both
before and after optimization, and to check if the optimization could be

effective or not.

It is already mentioned that the main tool for PSS tuning, used in this thesis, is the
software named ALICE. The available AVR and PSS types in ALICE are given in the

following:

PSS types: standard, PSS1A, PSS2B, PSS3B, PSS4B, Ansaldo, ABBeGE2, ELIN
and Toshiba.

AVR types: standard, DC1A, DC3A, DC4B, AC1A, AC2A, AC3A, AC4A, AC5A,
AC6A, AC7B, AC8B, ST1A, ST2A, ST3A, ST4B, ST5B. ST6B, ST7B, Alstom, Ansaldo,
ELIN, SEMIPOL.

! By “power plant”, it is simply meant the composite model consists of SCR, AVR and PSS. Of course in a
real power plant there are other devices such as prime mover, governor and so on, but for the purpose of this
thesis they are not directly considered.
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According to the type of the PSS, it is possible to use one or more methods of PSS
tuning, described in the previous chapter. Therefore, the most general type should be

chosen in this chapter, since we will be able to imply different methods of optimization.

The first power plant that is discussed here is named “carO1”. This plant is one of
the plants of the large network (i.e. Chilean network) that will be shown in the next
chapter. Different parameters of this plant including the parameters of SCR, AVR and PSS
are given. (Please note that the values of the parameters of the PSS are the pre-optimization

values). The values of the parameters are as shown in Table 4-2.

It can be helpful to demonstrate the block diagram of this kind of PSS, because the
position of each parameter and its influence on the final output signal of the PSS can be
seen. Figure 4-8 depicts the IEEE standard model of PSS1A, while Figure 4-9 is the
linearized block diagram around the operating point. In the case of this thesis, the small

signal stability is discussed; therefore, the linearized model is used.

V5| > ! .’KS& > 1
1+5sTg 1+5T;5 (1+A{s+A,s%)
VRMax

1+sT 1+sT /
> L > 3 p Vst
1+ ST2 1+ ST4 /

VRMin

Figure 4-8 block diagram of PSS PSS1A
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Table 4-2 value of the parameters of SCR, AVR and PSS for the plant “car01”

SCR AVR PSS
6" order machine Type: ST1A Type: PSS1A
Tdop=T/,=6.5" Tc=10.00 kp=0.000
Tdos=T4,=0.023 Tbh=0.2200 kw=0.000
Tdp=T;=0.7731 Ta=2.000 kf=0.000
Tds=T;=0.0177 ka=100.000 ks5=2.000
Tdop=T,,=0.70 Tc1=1.000 T6=0.0002
Tqos=T ¢,=0.030 Th1=1.000 T5=3.500
Tqp=T,=.1508 ksf=0.0787 A2=0.0017
Tgs=Tq =.0136 Tsf=3.5300 A1=0.0610
xd=2.186 CVretf=1 T1=1.000
xq=2.043 --- T2=1.000
Tm=9.00 --- T3=1.000
xt=.1250 --- T4=1.000
xe=.2500 ---
Td=3.00 ---
dw=0.00

! Time constants are given in seconds, and reactances are per unit values.
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Figure 4-9 linearized block diagram of PSS PSS1A, as explained and used in ALICE

There are different kinds of analyses that can be done on this power plant in
ALICE, such as:

1) Calculating the poles and damping ratios of the power plant for different
frequencies, especially for the frequency range of interest, i.e. 1-2 Hz.

2) Depicting the open loop bode diagram of the system. (to analyze the phase of
the transfer function between speed and active power)

3) Doing a time domain simulation to track the transition, following a step change

in the reference voltage.

All of these analyses are done, both before and after optimization of the PSS
parameters. The result of the calculation of the poles before optimization for the plant

“car01”, is shown in Table 4-3. (Notice that the damping ratios less than 1 are just shown).
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Table 4-3 damping ratios of plant “car01”, before optimization

damping ratio or zita or ¢ Frequency
0.0300 1.1318
0.7397 2.5974

As it was mentioned before, the minimum acceptable damping is 20%, thus, it is
clear that in this plant, there is an oscillatory mode with the damping of 3%, which should
be increased after optimization. To emphasize the effect of these oscillations, the phase of
the open loop transfer function and also time domain simulations (for the load angle and
the generated active power) are depicted in Figure 4-10 to Figure 4-12, respectively. As it
is demonstrated in Figure 4-10, the phase diagram is not in the satisfying area in the
frequency range of interest, i.e. 0.1 to 1 Hz.
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Figure 4-10 Phase of the open loop transfer function between speed and active power for plant “car01”,
without PSS
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Thus, according to exact and simplified criteria of stability analysis, this plant has

to be optimized.

Figure 4-11 illustrate the electromechanical oscillations caused by the above-
mentioned pole —with frequency of 1.1318 Hz. As it is seen, the amplitude of the first
oscillation is pretty high, that can cause enormous stability problems, and even in some
cases, to trigger protective breakers in the network. Furthermore, following the first

oscillation, the other oscillations are not effectively damped.

According to the results of the preceding stability analyses that are performed for
the plant “car01”, the necessity of a tuning of the PSS parameters is clear. In the following,
ALICE will be used to optimize the plant “car01”.

In the Figure 4-13, the interface of ALICE is illustrated. As it is shown, the
calculation mode of the PSS gain can be i) approximate or ii) iterative. To be more

accurate, it is better to choose the iterative choice.

It is also possible to choose the desirable damping ratio that will be reached after

optimization, (that is 20% for our purpose).

The optimization can be performed in two general ways, i) only by using one gain,
like kp, kf or kw. ii) it can be done in the “multi-obiettivo” mode which means “multi-
objective”. In this mode, there is the possibility to choose the first or second method of
PSS tuning, described in chapter 3. Therefore, the user has the chance to have two different
channels at the same time, such as kp-kf or kp-kw, or by considering the second method; it
is possible to have one gain together with one or two lead-lags. This is the case for plants
in which by only exploiting the gains, we cannot reach the desirable damping ratio, and
consequently, it is better to fix the value of one of the gains calculated by the residual

method and then to apply lead-lags calibration on the other channel.

In the following diagram, the possible optimization methods —as described before-

are shown.
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Single-objective: with ‘kp’ or ‘kf* or ‘kw’

Optimization Methods/> /A Residuals: ‘kp-kf” or ‘kp-kw’
\ Multi-objective
\VOne gain with lead-lag(s):

‘kp-lead-lag(s)’ or ‘kf-lead-lag(s)’ or ‘kw-lead-lag(s)’

Note: in the case of power plant “car01”, the PSS is PSSIA, and it is the most
general case, so all of the mentioned methods are available. But in some PSS types such as
PSS2B, the residuals method is not accessible.
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Figure 4-13 ALICE interface, for the plant “car01”
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4.3.1 Application of optimization methods for a typical plant
In this section, the results of application of two different PSS tuning methods are

given.

For the stated power plant (carOl) in the previous section, the results are as

following:
Table 4-4 results of different optimization methods on “car01”
case Optimization Zita kp kf kw T1 T2 T3 T4
type ©
1 kp-kf 0.200 0.1261 2.15 0 1 1 1 1
2 kp-kw 0.200 0.1332 0 1.51 1 1 1 1
3 kp-llead-lag 0.130 2.000 0 0 0.2403 4.1204 1 1
4  kp-2lead-lags 0.200 1.6937 O 0 0.5582 1.7741 0.5582 1.7741

Regarding the results of the Table 4-4, it can be seen that in three cases, the damping
ratio, , has reached to the desirable value, i.e. 20%, and in one case it has been improved
(case 3). Thus, it is meaningful to say that the optimization of this plant is not only
possible, but also useful. The analyses of each case are taken into account in the following

sections.
Case 1:

In this case, the aim is to optimize the stabilizers’ gains using the residuals method.
kp and kf are the selected channels for the first case. In Figure 4-14 to Figure 4-16, the
same analyses as before optimization are done, and as it can be seen the response of the
angle is not oscillating anymore. Furthermore, the active power oscillations are
significantly damped. In Figure 4-14, the phase of the open loop transfer function is
shown. It is possible to compare the phase diagram before and after optimization.
Comparing the green and red lines in this Figure 4-14, the optimization outcome is clearly

shown.
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Figure 4-14 Phase of the open loop transfer function between speed and active power for plant “car01”,
without PSS(green line), with PSS but without lead-lag(with just gain)(red line), case 1
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Figure 4-15 transient response of the load angle to a step change in the reference voltage, after optimization,

case 1
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Figure 4-16 transient response of the active power to a step change in the reference voltage, after

optimization, case 1

Case 2:

Similar to the case 1, the residuals method is utilized, but instead of kf (that is the
frequency gain), kw has been used. kw is the gain that is applied on the speed feedback
coming from the synchronous generator. With regard to this case, the results of the
analyses are shown in Figure 4-17 to Figure 4-19.

As we expected, the results are quit the same as the case 1, because in both cases,
residuals method is used. Therefore, it is possible to apply each of them for the same
purpose, but we have to notice that the difference between them is the feedback channel
coming from the synchronous machine. Thus, it is necessary to check if it is easier to
measure the frequency or the speed of the generator. In some plants, the measurement of

the frequency of the rotor is not permissible; in this case the speed is a good substitution.
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Figure 4-17 Phase of the open loop transfer function between speed and active power for plant “car01”,

without PSS(green line), with PSS but without lead-lag(with just gain)(red line), case 2
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Figure 4-18 transient response of the load angle to a step change in the reference voltage, after optimization,

case 2
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Figure 4-19 transient response of the active power to a step change in the reference voltage, after

optimization, case 2

Case 3 and 4:

In these cases, the optimization is performed by using one gain and lead-lags time
constants for one feedback channel. This method is very useful when only one input of

PSS is available or one of the input measurements is not enough accurate.

The difference between case 3 and 4 is the number of lead-lags used in each case. In
case 3, just one lead-lag is used, while in case 4, there are two lead-lags. As it is obvious,
employment of two lead-lags in case 4 can considerably improve the damping ratio. In
fact, the selection of case 3 in this section was just to show the influence of the second
lead-lag to optimize the PSS parameters. The same analyses are done for the cases 3 and 4,

and the results are illustrated in Figure 4-20 to Figure 4-25.

By comparing the case 3 with the case 4, the effect of reaching a damping ratio lower
than 20% is completely clear, since in the case 3, C is 13%. Thus, in this case, the damping
of the oscillations in both the active power and load angle responses is lower than the case
4, as we expected. On the other hand, the comparison between case 4 and case 2 tells us
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that in both cases the desirable damping and phase diagram is reached. From the practical
point of view, this is important, because it means that: if both cases reach a damping ratio
of at least 20%, these two methods are alternatives. Thus, in some power plants that just
one input of the PSS is available, it is possible to use lead-lags to satisfy the limitation of

and phase diagram.
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Figure 4-20 Phase of the open loop transfer function between speed and active power for plant “car01”,
without PSS(green line), with PSS but without lead-lag(with just gain)(red line), with PSS and lead-lag(blue

line) , case 3
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5 Application of Local Optimization Techniques on a

Real Network

The optimization of an individual power plant was carried out in the previous chapter.
Referring to the results achieved in chapter 4, it is possible to optimize a single power plant
by using ALICE as the optimization tool. In this chapter, the aim is to develop a software
product for the optimization of the parameters of the PSS of the electrical power plants of
large networks, with the objective of maximizing the damping of electromechanical

oscillations.

The practical difficulty that this goal is confronted with is the fact that almost all of the
large real networks, like the network of a country, are represented in software like
DigSilent or PSSE. Thus, all of the data of the network are stored in this software. While,
the available application used for the optimization of PSS parameters is ALICE that is
developed in MATLAB. It means that all of the data coming from the network, and
consequently DigSilent, must be readable for MATLAB.

Therefore, even if the main goal of this chapter is to optimize PSS parameters of a
large network, during this process we will have to deal with other issues, such as exporting
the data of the power plants from DigSilent, converting them into readable data for
MATLAB, importing them in MATLAB and so on. As a result, the best way to go on with
this chapter is to, first explain a work flow of the process, and then go into the details with
each part, and finally the results of the optimization can be reached. The optimization
results consist of the tuned parameters of PSSs and also the outcome of simulations as are

shown in different figures.
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5.1 Outline of the Optimization Process

The optimization process can be cast in different steps as follows:

e Load the network in DigSilent

e The “Modal Analysis” followed by “Initial Conditions”

e Calculate “cigenvalues” and “eigenvectors” of the system

e Analyze the controllability and participation factor of each power plant in
each eigenvalue, in order to identify the plants that have to be optimized

e Export the data of power plants as .CSV files

e Conversion of .CSV files into .MAT files to be readable for MATLAB and
consequently for ALICE

e Local optimization and pre-global optimization using ALICE

e Export the optimized parameters from ALICE to have them in .MAT files

e Conversion of .MAT files into .CSV files to be readable for DigSilent

e Import the optimized parameters into DigSilent and change the previous
parameters

e Execute “Modal Analysis” again to check the results of the eigenvalues after

optimization

Before we go into details with each step and see the whole process, it can be

beneficial if we visualize this process in a flow chart, as it is depicted in Figure 5-1.
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5.2 Real Network Optimization

As it was mentioned before, the activity involves the development of a software
product for the optimization of the PSS parameters of the electrical power plants of large
networks. The large network used in this thesis is the Chilean network.! All of the data of
the network, such as the network diagram (transmission and distribution lines and etc.),
parameters of SCR, AVR and PSS, future developments and etc. are given in DigSilent.

According to the section 3.1, “eigenvalue analysis” is a very powerful tool to
investigate the stability of a power system. Eigenvalues and eigenvectors of a dynamic

multi-machine system can be calculated by the “Modal Analysis” command in DigSilent.?

5.2.1 Network details
In the Chilean network, used in this thesis, there are 70 power plants. Between these
plants, 12 of them are facilitated with PSSs that are in service, and in 15 power plants AVR

is available and in service.

Regarding to the network, the very first concern that comes up is that some of the
AVRs and PSSs that are utilized are not the IEEE standard types whereas as it was already
mentioned, there are 23 types of AVRs and 9 types of PSSs in ALICE that are all standard
types. Thus, for our purpose it was better to modify the ones in the network in accordance
with the IEEE standards. The best way is to match the real controllers in the network with
the most similar IEEE standard one. As a result, after matching all of the existing AVRs
and PSSs in the network, there are 12 PSSs including four different standard types. The
same modifications was applied to the AVRs resulting in 15 AVRs with two different

standard types.

In Table 5-1, different types of PSSs and AVRs that are utilized in the Chilean

network are presented.

! Note that the first network used for the optimization was another large network, but due to copy right issues
we report only the results of the Chilean network that is publicly shared in internet.
2 A brief explanation about modal analysis and eigenvalue calculation in DigSilent is given in Appendix A.
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Table 5-1 AVR and PSS types in Chilean network

PSS types AVR types
standard standard
PSS2B AC4A

Ansaldo
ABBeGE2 ---

5.2.2 Modal analysis and eigenvalues calculation: pre-optimized network

To analyze the stability of the network, the modal analysis is executed and
following that the calculation of eigenvalues of the system is carried out. According to the
first step of the process, it is required to analyze the eigenvalues of the system. The
eigenvalue presentation of the network, before optimization, is shown in Figure 5-2. In this
Figure 5-2, there are two pink lines that are representing the damping ratio limitations of 5
and 20%. As it is explained in 3.3, for inter-area oscillation modes, the minimum
acceptable value of { is 5%, but for local modes this value is 20%. Thus, the oscillating
modes with the frequency range of 0.1 to 1Hz must be in the left side of the line
corresponding to 5% damping ratio, and the modes with the frequency range of 1 to 2Hz

must be in the left side of the line which is representing 20% damping ratio.
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Figure 5-2 Eigenvalues of the Chilean network, before optimization

Figure 5-2 shows that between the local modes, just two of them are in the left side
of the 20% line; therefore, all of the other eigenvalues must be shifted to the left side, after

optimization. This is the reason which states that the optimization is compulsory for this
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network. The next step is to check which power plants are mostly participating in those
eigenvalues. This participation together with the controllability of that eigenvalue can give
us very useful and effective information about the power plants that their PSS parameters

must be tuned.

Consequently, after understanding the fact that the network has to be optimized, the
eigenvalue analysis will inform us about the PSSs which must be optimized. According to
Figure 5-2, there are 10 eigenvalues that are in the right side of the 20% line. In Figure 5-3

to Figure 5-6, the participation factors of some* of these local modes are given.

Freq: 1.0234
Damp: 0.087491

270

Figure 5-3 participation factor of different plants for the frequency mode of 1.023Hz, before optimization

In Figure 5-3 to Figure 5-6 the participation factors are shown in a polar plane. The names
written on the figures are the names of the plants which are contributing in that frequency
mode. As it can be seen, there are some circles with different radii depicted by dots and
one circle with a bold line which has unity radius. The radius shows the amplitude of

participation of each plant that is normalized to the biggest participation amplitude.

1 In reality and in the course of the thesis, the participation factors for all local modes are calculated with the
related profiles achieved. But since the number of figures for all modes exceeds 20, here, for the sake of
brevity, a group of them are reported.
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The phase of participation factor represents the direction of each contribution. For
example, in Figure 5-5, plants U12 and U13 have 180° phase difference. It means that they
have exactly opposite signs, so they affect in opposite directions.

Freq: 1.2394
Damp: 0.1461

270
Figure 5-4 participation factor of different plants for the frequency mode of 1.239Hz, before optimization

Freq: 1.4634
Damp: 017658

270

Figure 5-5 participation factor of different plants for the frequency mode of 1.463Hz, before optimization
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Freg: 1.2115
Damp: 0.10756

270

Figure 5-6 participation factor of different plants for the frequency mode of 1.211Hz, before optimization

According to participation factors, all eigenvalues that are highlighted in Figure 5-2
are actually due to only 11 power plants in the network. It means that from 70 power plants
in the network, just 11 of them are affecting these local modes. Thus, in some power
plants, PSS is not necessary (at least at the moment, with existing generators and loads).
Between the power plants that have a participation in the local mode oscillations of poor
damping, some of them have PSS (5 plants), and the rest are realized without any PSS in

the reality.

Consequently, our process of optimization can be divided into two phases. First, the
network will be optimized using the existing PSSs of the real network, and the results will
be illustrated. Then, it will be shown that following the first phase, there are still some
modes of local oscillations that are not shifted to the left side, since their correspondent
plants do not have any PSS to be optimized. As a result, the second phase of the
optimization that will be discussed in the next section is to add some hypothetical PSSs to
the power plants in which there is no PSS, but we know -by eigenvalue analysis- that they
have a high participation in the local oscillation modes of poor damping. In Table 5-2, the
names of the power plants which are participating in local oscillations are reported together
with availability of PSS in that power plant.
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Before starting the optimization of existing PSSs, it is worthwhile to remark that
some of the essential functions for converting the data from .CSV to .MAT and vice versa,

together with the main function of local optimization are represented in Appendix B.

Table 5-2 power plants participating in local oscillations and their PSS availability

Power Plant PSS availability

U-12 No
U-13 No
U-14 No
U-15 No
U-16 Yes
NTO1 Yes
NTO2 Yes
CTTAR No
CHAP No
CTM1 Yes
CTM2 Yes

5.2.3 Modal analysis and eigenvalues calculation: optimized network

Starting from the first phase of optimization, the existing PSSs of the network will
be optimized to have the tuned parameters. After accomplishment of optimization,
eigenvalues of the system are calculated as a result of modal analysis performance.

Eigenvalues of the optimized network are depicted in Figure 5-7.

105



; i i

34 -3 25 -2 -1 -1 04 0

Figure 5-7 eigenvalue of the Chilean network, after optimization of existing PSSs
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A better eye-casting on Figure 5-7 reveals the ensued major points:

e After the first phase of optimization, five eigenvalues are shifted to the
green area, which means that now they have a damping ratio of more than
20%.

e There are still six eigenvalues that are oscillating with local frequency, and

damping ratio of less than 20%.

The occurrence of these latter points can be well justified by the participation
factors corresponding to each eigenvalue. Similar to the previous case, it is possible to
calculate participation of power plants into each eigenvalue. Considering these
participations, the eigenvalues that are shifted to the left side of the line are those in which
the corresponding power plants have PSS inside, and in contrary, those eigenvalues that
did not shift to the green area are due to power plants in which PSS is not available. It can
be proved by looking at the figures of participation factors of local modes after
optimization. Again for the sake of brevity some of the figures are represented in this
thesis. Figure 5-8 and Figure 5-9 illustrate both participation factors and controllability of

two oscillating modes.
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Partecipation Factor
Eigenvalue: 0.96237+8.2995i
Freq: 1.3209
Damp: 0.11518

270
Controllability
Eigenvalue: 0.96237+8.2995i

Freqg: 1.3209
Damp: 0.11518

270

Figure 5-8 participation factor and controllability of different plants for the frequency mode of 1.3209Hz,

after optimization of existing PSSs
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Partecipation Factor
Eigenvalue: 0.92264+6.8532i
Freq: 1.0907
Damp: 0.13343

270

Controllahility
Eigenvalue: 0.92264+6.8532i
Freq: 1.0907
Damp: 0.13343

270

Figure 5-9 participation factor and controllability of different plants for the frequency mode of 1.0907Hz,

after optimization of existing PSSs
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5.2.4 Finalization of the results
The optimization of existing PSSs in the Chilean network leads us to the following

results:

e Improvement of those damping ratios which their eigenvalue is due to the power
plants equipped with PSS.

e Recognition of the power plants in which PSS is necessary in order to maximize
the damping ratios of the system.

e Necessity of adding some new PSSs to the power plants that are participating in the
local oscillating modes. Thus, this investigation is able to address future

intervention on the network to enhance stability.

5.3 Stability Enhancement: hypothetical new PSSs

As it has been declared in the previous section, the optimization of the network using
the existing PSSs cannot be sufficient, since there are still some eigenvalues that are not
influenced by current PSSs. As a result, an advantageous modification that can be done in
this network is to add new PSSs to the power plants that are recognized in the former

section.

According to the participation factors after optimization, the power plants in which a
PSS is beneficial, but it is not available, are as follows:

Power plants without PSS installation: U-12, U-13, U-14, U15, CTTAR, CHAP.

To be sure that this procedure leads us to the stability enhancement, first of all just two
PSSs are added to the plants U-12 and U-13. In Figure 5-10, it is exposed that the
eigenvalue with frequency of 1.46Hz is just controllable by the plants U-12 and U-13, and
at the same time its damping ratio is 17% which must be increased. Consequently, by
adding two PSSs to these two plants, we expect that this eigenvalue will be shifted to the
left side of the 20% line.
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Controllability
Eigenvalue: -1.6496+9.195i
Freq: 1.4634
Damp: 0.17658

0

1

270

Figure 5-10 controllability of the plants U-12 and U-13 on the eigenvalue with frequency of 1.463Hz

In Figure 5-11, the result of eigenvalue calculations after adding two PSSs to the
plants U-12 and U-13 is shown. Of course, also these PSSs are tuned in the same way as
the other ones. Figure 5-11 is perfectly proving the fact that just by adding PSSs to the
plants that are participating in an eigenvalue, maximization of the damping ratio —

correspondent to that eigenvalue- can be achieved.
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Figure 5-11 eigenvalues representation after optimization of existing PSSs and implementation of PSSs to
plants ‘U-12" and ‘U-13°

This claim is truly verified thanks to Figure 5-11. As it can be seen in this figure, not
only the mentioned eigenvalue with frequency of 1.46Hz is shifted to the left side of the
20% line, but also other eigenvalues which were totally or partially controlled by these

plants, are improved completely or moderately, respectively.
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So far the efficiency of adding new PSSs to those plants that are participating in the
poorly damped modes is clarified. Thus, the procedure can be continued until all of the
eigenvalues with damping ratio of less than 20% will be shifted to the left side.

This method has been applied to the rest of the plants in which PSS is not realized, but
according to the modal analysis, it is needed. The new modal analysis with the presence of
added PSSs will result in a completely optimized network as the point of view of the local
oscillations. The eigenvalue representation after the final optimization is given in
Figure 5-12. This figure is illustrating that all of the local modes are shifted to the left side
of the 20% limitation line; therefore we can assert that the Chilean network is entirely

locally optimized.
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Figure 5-12 eigenvalues representation after optimization of existing PSSs and implementation of six new
PSSs
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6 Conclusion

This thesis addressed some methods of tuning of power system stabilizers for the damping
of the electromechanical oscillations in power systems. The thesis work focused on three
key issues, namely: the electromechanical oscillations problem which is worsened by using
fast automatic voltage controllers, adding PSS to increase the damping of these oscillations

and fine-tuning of the present PSSs to maximize the damping.

In the two first chapters the problem together with its cause and the solution to decrease it
was discussed. Although this thesis dealt with all of the above-mentioned issues, the main
goal was to maximize the damping of oscillations by finding the best tuning of the PSS
parameters. This goal was sought in chapter 3 and 4. Finally in chapter 5, a practical
network was optimized. The importance of the maximization of the damping was
represented by observing the response of the rotor angle and active power of the
synchronous generator to a step increment of the reference voltage. Eigenvalue analysis of
pre-optimized and optimized network together with the participation factors of different
power plants in each oscillating mode indicates that the optimization of PSS parameters
could lead us to have well-damped electromechanical oscillations which were due to power
plants with available PSS. On the other hand for those oscillation modes which are due to
power plants without any PSS to decrease their influence in that mode, it was necessary to

first, add a PSS in that plant, and then to optimize its parameters.

Considering the mentioned conclusion and the results of the optimization of the PSSs in
the results provided for the Chilean network, it is possible to notice that in a real case
sometimes the installation of a non-adequate power system stabilizer for a power plant
with a certain type of controllers does not provide the expected results in terms of
damping, since they are not affecting any oscillating mode. Thus, in Chilean network, in
some power plants PSS are installed even if from our analysis it results that it is
unnecessary (at least with the current power generation and demand and configuration of

the network). Instead, it is needed in some other power plants, while it is unavailable.
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According to the previous conclusion about Chilean network, in this thesis, we tried to add
also some hypothetical PSSs to those power plants which are participating to the oscillating
modes. The eigenvalue analysis perfectly demonstrates that with the new PSSs all of the

eigenvalues are shifted to the left side of the 20% limitation line.

Therefore, a feasible conclusion has to consider both the electrical and economical aspects
as seen for the Chilean network. Since this thesis clarifies that, to have a completely
optimized network, PSS is not required in all power plants but they can be installed only in
specific ones identified by the modal analysis. Thus, knowing which plants are
participating in each oscillating mode, it is possible to find the minimum number of PSSs

in order to have an “optimized” network.

This thesis focused its attention in particular on the optimization of local oscillation modes,
but the next step for further improvements and developments in the proposed method for
the optimization of electromechanical oscillations is to develop the methodology for the
global optimizations, in order to increase also the damping on the inter-area modes. It is
worthwhile to mention that the aim of this thesis was to increase the damping of the local

modes but without neglecting completely the inter-area modes.

To analyse the inter-area oscillation it has been used the criterion of the analysis of transfer
function phase between the generating unit speed and the electrical active power. This
method is very useful for evaluating the effectiveness of the PSS parameterization. The
objective of the optimization of the PSS, in fact, can also be expressed by saying that this
must be calibrated so that its phase contribution is sufficient to compensate, all or at least
in part, the phase difference between speed and electric active power. In particular, this
compensation should be effective in the electromechanical oscillations frequency range
(0.1-2 Hz) to smooth them. Therefore, while performing the local mode optimization it was
also set the phase of the transfer function between +/-30° around 0° in the band of interest,
in order to consider also the inter-area modes and prepare the network for the global

optimization.
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Appendix A

Modal Analysis / Eigenvalue Calculation

Introduction

The Modal Analysis command calculates the eigenvalues and eigenvectors of a
dynamic multi-machine system including all controllers and power plant models. This
calculation can be completed at the beginning of a transient simulation and at every time
step when the simulation is stopped. Note that sometimes, in the literature, Modal Analysis
is referred to as Eigenvalue Calculation or Small Signal Stability. Throughout, this
appendix the calculation will generally be referred to as Modal Analysis. This appendix

provides a brief background on the theory of Modal Analysis.

Theory of Modal Analysis

The calculation of eigenvalues and eigenvectors is the most powerful tool for
oscillatory stability studies. When doing such a study, it is highly recommended to first
compute the “natural" system oscillation modes. These are the oscillation modes of the
system when all controller and power plant models are deactivated so every synchronous
machine will have constant turbine power and constant excitation voltage. After
determining these 'natural’ modes, the effects of controllers (structure, gain, time constants

etc.) and other models can be investigated.
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After the initial conditions have been calculated successfully, which means that all
time-derivatives of the state variables should be zero (the system is in steady state), or the
simulation has been stopped at a point in time, the modal analysis calculates the complete
system A-matrix using numerical, iterative algorithms. The representation of the electro-
dynamic network model is equivalent to the representation used for the balanced RMS
simulation, except for the general load model, for which the frequency dependencies are
neglected.

The computation time for the Modal Analysis is approximately proportional to the
number of state space variables to the power of three. Considering, that most power system
objects and models will contain several (perhaps up to a dozen or more for some complex
controllers), the calculation time can rapidly increase as the size of the system being
considered increases. For this reason, alternative methods for calculating the system

eigenvalues and eigenvectors must be used when the system grows very large.

A multi-machine system exhibits oscillatory stability if all conjugate complex
eigenvalues making up the rotor oscillations have negative real parts. This means that they
lie in the left complex half-plane. Electromechanical oscillations for each generator are

then stable.

More formally, assuming that one of the conjugate complex pair of eigenvalues is
given by:

A = oy X jw;
then the oscillatory mode will be stable, if the real part of the eigenvalue is negative
g; <0

The period and damping of this mode are given by:

21
Ti:_
w;
d 1 l (An )
=—0; == In
' ' Tp An+1
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where A, and A4,,,; are amplitudes of two consecutive swing maxima or minima

respectively.

The oscillatory frequencies of local generator oscillations are typically in the range
of 0.5 to 5 Hz. Higher frequency natural oscillations (those that are not normally
regulated), are often damped to a greater extent than slower oscillations. The oscillatory
frequency of the between areas (inter-area) oscillations is normally a factor of 5 to 20 times

lower than that of the local generator oscillations.

The absolute contribution of an individual generator to the oscillation mode which

has been excited as a result of a disturbance can be calculated by:

n
m — Z Cia phit
i=1
where:
m generator speed vector
A i’th eigenvalue
a: 1’th right eigenvector
Ci magnitude of excitation of the 1’th mode of the system (at t=0)
(depending on the disturbance)
n number of conjugate complex eigenvalues (i.e. number of generators-1)

In the following c is set to the unit vector, i.e. ¢ = [1,...,1], which corresponds to a
theoretical disturbance which would equally excite all generators with all natural resonance

frequencies simultaneously.

The elements of the eigenvectors E then represents the mode shapes of the
eigenvalue i and shows the relative activity of a state variable, when a particular mode is

excited. For example, the speed amplitudes of the generators when an Eigen-frequency is

excited whereby those generators with opposite signs in 5{ oscillate in opposite phase.
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The right eigenvectors E can thus be termed the “observability vectors”. The left

eigenvectors a)? measures the activity of a state variable x in the i’th mode, thus the left
eigenvectors can be termed the “relative contribution vectors".

Normalization is done by assigning the generator with the greatest amplitude
contribution the relative contribution factor 1 or -1 respectively.

For a n-machine power system, n-1 generator oscillation modes will exist and n-1
conjugate complex pairs of eigenvalues A; will be found. The mechanical speed w of the n

generators will then be described by:

W1 $11 $21 bOn1
WZ =C1. P12 et 4 cy . b22 ettt 44 cy . On2 et
Wn ¢1n ¢2n ¢nn

The problem of using the right or left eigenvectors for analyzing the participation of a
generator in a particular mode i is the dependency on the scales and units of the vector

elements. Hence the eigenvectors ¢; and vy; are combined to a matrix P of participation

factor by:
Py; b1 -Vin
P, = |P2i| = |P2i - Yiz
Pni ¢ni -lpin

The elements of the matrix pij are called the participation factors. They give a good
indication of the general system dynamic oscillation pattern. They can be used to
determine the location of eventually needed stabilizing devices to influence the system
damping efficiently. Furthermore, the participation factor is normalized so that the sum for

any mode is equal to 1.

When are modal analysis results valid?

A modal analysis can be started when a balanced steady-state condition is reached
in a dynamic calculation. Normally, such a state is reached by a balanced load-flow

calculation, followed by a calculation of initial conditions. However, it is also possible to
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do a balanced RMS simulation and start a modal analysis after the end of a simulation or

during a simulation when you have manually stopped it.

Although, the modal analysis can be executed at any time in a transient simulation it is
not recommended that you do so when the system is not in a quasi-steady state. This is
because each modal analysis is only valid for a unique system operating point.
Furthermore, the theory behind modal analysis shows that the results are only valid for
’small” perturbations of the system. So although you can complete a modal analysis during
a large system transient, the results obtained would change significantly if the analysis was
repeated a short time step later when the operating point of the system would be
significantly different.
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Appendix B

Essential Functions for Local Optimization

According to chapter 5.1, the process of optimization includes export of the data
from DigSilent, a conversion process from .CSV to .MAT and so on. In this chapter the
main functions that are written in MATLAB are represented. Those functions written in
DigSilent are skipped for the sake of brevity.

Conversion from .CSV to .MAT*:

function csv_or xls2parmodel iter (use csv,default folders,input folder,output folder)

if ~default folders
input folder = uigetdir;

elseif default folders && nargin < 4
input_ folder = 'csv_input';
output_folder = 'mat input';

end

if use csv
path (input_ folder,path) ;
path (output folder,path);

D = dir([input folder, '\*.csv'l);

for i = 1l:size(D,1)
filename p = eval(['D(i,1)."', "'name']);
filename = filename p(end-6:end);
if strcmp(filename, "SCR.csv')
main filename = filename p(l:end-8);
for j = l:size(D,1)
filename pl = eval(['D(j,1).", 'name']);
name_len = length(main_ filename)+4;
if length(filename pl) >= name len
filenamel = filename pl(l:name len);
if strcmp([main filename ' avr'],filenamel)
AVR data = importdata(filename pl);
%% getting AVRType
SCR _name length = length(main filename)+6;
AVRType char = filename pl (SCR name length:end-4);
AVR Type = {{AVRType char}};

elseif strcmp([main_filename ' pss'],filenamel)

! This function is also able to convert .XLSX files to .MAT files.
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PSS data
%% getting
SCR_name_le
PSSType_ cha
PSS Type

elseif strcmp
SCR_data

end

end

(

end

o9

SCR structure
nums_SCR_doub
fieldnames_SCR SCR_da
nums_SCR_cell num2cel
SCR cell2struct (nums_.

SCR dat

%% AVR structure
nums_AVR_doub
fieldnames AVR = AVR da
nums_AVR cell num2cel
AVR1 cell2struct (nums
AVR = struct (AVRType ch

AVR dat

%% PSS structure

nums_PSS_doub PSS _dat

fieldnames_PSS PSS_da

if strcmp (PSSType char,
fieldnames PSS (18)
fieldnames PSS (19)
fieldnames_ PSS (20)
fieldnames PSS (21)
fieldnames PSS (22)
fieldnames_ PSS (23)
nums_PSS_doub (20)
nums_PSS doub (21)
nums_PSS doub (22)
nums_PSS doub (23)

end

if strcmp (PSSType_ char,
fieldnames PSS (52)
fieldnames PSS (53)
fieldnames_ PSS (54)
fieldnames_ PSS (55)
fieldnames PSS (56)
fieldnames PSS (5

o O o

7)
fieldnames PSS (58)
fieldnames PSS (59)
fieldnames PSS (60)
nums_PSS doub (52)
nums_PSS_doub (53)
nums_PSS_doub (54)
nums_PSS doub (55)
$%nums_PSS doub(2) is the value of
nums_PSS_doub (56)
$%nums_PSS doub(19) is the value of
nums_PSS doub (57)
$%nums_PSS doub(36) is the value of
nums_PSS_doub (58)
nums_PSS_doub (59)
nums_PSS_doub (60)
end
nums_PSS_cell num2cel
PSS1 = cell2struct (nums
PSS struct (PSSType_ch

(
(
(
(
(
(
(

%% building sat guad
sat_guad
struct ('kwmin', 0, "kwmax"',5, "kfmin",

%% building par
1

par
par {parl};

[main_filename

importdata (filename pl,';");

PSSType

ngth length (main_filename) +6;

r filename pl(SCR name length:end-4);
{{PSSType char}};

' SCR'"],filenamel)
importdata (filename pl);

a.data;

ta.rowheaders;

1 (nums_SCR doub) ;
SCR_cell, fieldnames_ SCR);

a.data;

ta.rowheaders;

1 (nums_AVR doub) ;

_AVR cell, fieldnames AVR);
ar,AVR1) ;

a.data;
ta.rowheaders;
'PSS2B")
{'MM"'};
{'NN"};

{'w in'"};
{"kw'};
{"kE'};
{"kp"};

’

7
7

7

'PSS4B"')
{'kt'};
{'w in"};
{'RR"};
{'FL"};
{'FI'};
{'FH"};
{kw'};
{"kE'}s;
{'kp"}:

1/ (2*pi*nums_PSS doub (2) *nums_PSS doub (54)) ;
T12

Ti2
Th2
1;
0;
0;

1/ (2*pi*nums_ PSS doub (19) *nums_PSS doub (54));

1/ (2*pi*nums_PSS doub (36) *nums_PSS doub (54)) ;

1 (nums_PSS doub) ;
PSS cell, fieldnames PSS);
ar,PSS1);

0, 'kfmax',10, "kpmin', 0, 'kpmax"',5) ;

struct ('SCR',SCR, 'sat guad',sat_guad, 'AVR',AVR, 'PSS',PSS);
$%we need a structure inside a cell
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%)

%% getting AVR type
AVRType = {AVR Type};

%% getting PSS type
PSSType = {PSS Type};

%% finding the order of the machine

par{l}.SCR.Tdos==0)

if (par{l}.SCR.Tgp==0 && par{l}.SCR.Tqgop== && par{l}.SCR.Tds== &&
par{l}.SCR.Tdos==0 && par{l}.SCR.Tgs==0 && par{l}.SCR.Tgos==0)
macch_type = '3° ordine';
elseif (par{l}.SCR.Tgp== && par{l}.SCR.Tgop== && par{l}.SCR.Tds== &&
macch type = '4° ordine';
elseif (par{l}.SCR.Tgp==0 && par{l}.SCR.Tgop==0)
macch_type = '5° ordine modello B';
elseif (par{l}.SCR.Tgp==0 && par{l}.SCR.Tds==0 && par{l}.SCR.Tdos==0)
macch_type = '5° ordine modello A';
else
macch type = '6° ordine';
end

%% building parmodel 1
parmodel = struct('macch type',macch type,'cen', [NaN],'gen',[1 1],...
'par',par, 'xe', [0.2500], '"AVRType',AVRType, 'PSSType',PSSType) ; %H#0k<NBRAK>

%% completing the par structure for synchronous machines

sub_handles_tmp = struct('env type', 'mono', 'parmodel',parmodel);
xe = 0.25;
genl = 1;

par2 = calcola var_dipendenti (sub_handles tmp,par,xe,genl);
par{l} = par2;

%% building parmodel 2
parmodel = struct('macch type',macch type, 'cen', [NaN], 'gen', [1 1],...
'par',par, 'xe', [0.2500], "AVRType ', AVRType, 'PSSType', PSSType) ;

%#0k<NBRAK, NASGU>

end

else

end

sub_handles.use_hmi=0;

sub_handles.AVRType=parmodel .AVRType;
sub_handles.PSSType=parmodel.PSSType;

parmodel.par = check AVR par (sub_handles, parmodel.par, parmodel.gen);
parmodel.par = check PSS par (sub_handles, parmodel.par, parmodel.gen);

%% writing the .mat file
main filename with par = [main filename ' par'];
if default folders
currentFolder = pwd;
cd (output folder);
save (main filename with par, 'parmodel');
cd(currentFolder)
elseif ~default folders
save (main filename with par, 'parmodel');
end

path (input folder,path) ;

D =
for

dir
i =

([input folder, '"\*.xls']);
l:size (D, 1)

SCR name = eval(['D(i,1).", 'name']);
xls data = importdata (SCR_name) ;

$% getting sheets names that are actually AVR and PSS types
[status,sheets] = xlsfinfo (SCR name); %#0k<ASGLU>

AVR Type char = sheets{l,1};

PSS Type char = sheets{1l,2};

AVR Type char new = AVR Type char (5:end);

PSS_Type char new = PSS _Type char (5:end) ;

AVR Type = {{AVR Type char new}};

PSS Type = {{PSS_Type char new}};

SCR structure
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nums_ SCR doub = xls data.data.SCR;

fieldnames SCR = xls data.textdata.SCR;

nums_SCR cell = num2cell (nums_SCR _doub) ;
fieldnames SCR trans = transpose (fieldnames_ SCR) ;

nums SCR cell trans = transpose (nums SCR cell);

SCR = cell2struct (nums SCR cell trans,fieldnames SCR trans);

%% AVR structure

nums_ AVR doub = eval(['xls data.data.' , AVR Type char]);
fieldnames AVR = eval(['xls data.textdata.' AVR Type char]);
nums_AVR cell = num2cell (nums_AVR doub) ;

fieldnames AVR trans = transpose(fieldnames AVR);
nums_AVR cell trans = transpose(nums AVR cell);

AVR1 = cell2struct (nums AVR cell trans, fieldnames AVR trans);
AVR = struct (AVR Type char new,AVR1);

oo

PSS structure

nums_PSS doub = eval(['xls data.data.' , PSS Type char]);
fieldnames PSS = eval(['xls data.textdata.' PSS Type char]);
nums_PSS cell = num2cell (nums_PSS doub) ;
fieldnames PSS trans = transpose(fieldnames PSS);

nums_PSS cell trans = transpose (nums PSS cell);
PSS1 = cell2struct (nums_ PSS cell trans, fieldnames PSS trans);
PSS = struct (PSS _Type char new,PSSl);

%% building sat guad

sat guad = struct('kwmina',O0, 'kwmax',20,'kfmin',0, 'kfmax',10, "kpmin',0, 'kpmax"',1);

%% building par
parl = struct('sSCR',SCR, 'sat guad',sat guad, 'AVR',AVR, 'PSS',PSS);
par = {{parl}}; %$%we need a structure inside a cell

%% getting AVR type
AVRType = {AVR Type};

%% getting PSS type
PSSType = {PSS_Type};

%% building parmodel

parmodel = struct('macchitype','6° ordine', 'cen', [NaN], "gen
11, 'par',par, 'xe', [0.2500], 'AVRType',AVRType, 'PSSType',PSSType); $#0k<NBRAK, NASGU>

sub_handles.use hmi=0;

sub_handles.AVRType=parmodel .AVRType;

sub_handles.PSSType=parmodel.PSSType;

parmodel.par = check AVR par (sub_handles, parmodel.par, parmodel.gen);

parmodel.par = check PSS par (sub_handles, parmodel.par, parmodel.gen);

%% getting the filename
SCR _name new = [SCR name(l:end-4) ' par'];

$% writing the .mat file

if default folders
currentFolder = pwd;
cd([currentFolder '\mat intput']);
save (main_filename with par, 'parmodel'); %#ok<NODEEF>
cd ..

elseif ~default folders
save (SCR_name_new, 'parmodel');

end

end
end

Conversion from .MAT to .CSV:

function parmodel2csv_or xls iter (use csv, default folders,input folder,output folder)

if ~default folders

! This function is also able to convert .MAT files into .XLSX files.

"1
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input folder = uigetdir;
elseif default folders && nargin

input folder = 'mat output';

output folder = 'csv output';
end

path (input folder,path) ;

%% counting the number of files i
D = dir([input folder, '\*.mat'])

%% getting the file names

for i =1 size (D, 1)
filename = eval(['D(i,1)."','n
load(filename) ;
parmodel name = filename(l:en

%% suffix
if use_csv

suffix = '".csv';
elseif ~use csv
suffix = '.xls';
end
SCRsuffix = ' SCR';
AVRsuffix = ':avri',
PSSsuffix = ' pss ';

0
Q
o]
9]
pr
K
[
Q
o
I

- = parmodel.par{l}.
AVR struct eval ([ 'parmodel.
PSS _struct = eval(['parmodel.

%% filename for
SCR_filename =
AVR filename =
PSS filename =

.Csv
[parmodel name
[parmodel name
[parmodel name

.x1ls
[parmodel name

% filename for
xls filename =

SCR_cell = struct2cell (SCR_st
AVR cell = struct2cell (AVR_ st
PSS cell = struct2cell (PSS_st

names_SCR_struct fieldnames
names_AVR struct fieldnames
names PSS struct = fieldnames

%% some special modifications
if strcmp (parmodel.PSSType{l}
names PSS struct (18) =
names PSS struct(19) = {'N
end

outSCR1
outAVR1l =
outPSSl=

[names SCR struct';
[names AVR struct';
[names PSS _struct';

outSCR = transpose (outSCR1) ;
OUtAVR = transpose (outAVR1) ;
outPSS = transpose (outPSS1);

%% AVR and PSS type

< 4

nside the folder

’

ame']);

d-8);

SCR;

par{l}.AVR.', cell2mat (parmodel.AVRType{l})]1);
par{l}.PSS."', cell2mat (parmodel.PSSType{l})1);

SCRsuffix suffix];
AVRsuffix cell2mat (parmodel.AVRType{l})
PSSsuffix cell2mat (parmodel.PSSType{l})

suffix];

ruct) ;
ruct) ;
ruct) ;

(SCR_struct) ;

(AVR_struct);
(PSS_struct);

, 'PSS2B'")

("M}

"}

SCR cell'];
AVR cell'];
PSS cell'];

AVRType = cellZmat (parmodel.AVRType{l});

PSSType = cellZmat (parmodel.P
%% choosing between .xls or
if use csv
%% Csv writing
if default folders
currentFolder = pwd;
addpath (currentFolder

SSType{l});

.CsVv

)

suffix];
suffix];
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cd (output folder);
cell2csv (AVR filename,outAVR, ';");
cell2csv (PSS _filename,outPss,';");
cell2csv (SCR _filename,outSCR, ';");
cd (currentFolder)
elseif ~default folders
cell2csv (AVR filename,outAVR, ';");
cell2csv (PSS _filename,outPss,';");
cell2csv (SCR filename,outSCR, ';");
end
else
%% xls writing
xlswrite(xls_filename, outAVR, ['AVR ' AVRType]l);
xlswrite(x1ls_ filename,outPSS, ['PSS ' PSSTypel);
xlswrite(x1ls_ filename, outSCR, 'SCR'");
xls delete sheets(xls filename);
end
end

The main optimization function:

function local optimization(gainl,gain2,backup_gain)

%% case of not having lead-lags
if nargin < 3
if ~strcmp(gain2,'111'") && ~strcmp(gain2, '211")
backup _gain = gain2;
else
backup_gain = 'kf';
end
end

%% path

root dir=pwd;

lib alice = [root dir '\lib alice\'];

path(lib alice,path);

src_alice = [root_dir '\src alice\'];
path(src_alice,path);

init PSS = [root dir '\src alice\init PSS\'];
path(init PSS, path);

src_mono = [root_dir '\src_alice\src_mono\'];

path (src_mono, path) ;

sist _alice = [root dir '\sist alice\'];

path(sist alice,path);

sist_mono = [root_dir '\sist_alice\sist_mono\'];
path(sist _mono,path);

parmodel2csv = [root dir '\parmodelZcsv alice\'];

path (parmodel2csv, path) ;

mat_input = [root dir '\parmodelZcsv alice\mat input'];
path (mat input,path);

mat output = [root dir '\parmodelZcsv alice\mat output'];
path (mat output,path);

csv_input = [root_dir '\parmodelZcsv _alicel\csv_xls input'];
path(csv_input,path);

csv_output = [root dir '\parmodelZcsv alice\csv xls output'];
path(csv_output,path);

errors = [root dir '\parmodel2csv\errors'];

%% csv -> parmodel (csv_input > mat input)
csv_or xls2parmodel iter(l,1,csv_input,mat_ input);

%% single parmodel PSS opt from mat input
D = dir([mat_input, '\*.mat']);
f

or i = l:size(D,1)
filename = eval(['D(i,1).", "name']);
try

single parmodel PSS opt(gainl,gain2,backup gain, [mat input
filename],mat output);
catch ME
disp(['Local Optimization failed for ' filename]);
disp (ME) ;
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disp (ME.message) ;

disp (ME.stack) ;

disp (ME.cause) ;

copyfile([mat input '\' filename], [errors '\' filename]);

end

end
%% csv —-> parmodel (mat output > csv_output)
parmodel2csv_or xls iter(l,1,mat output,csv_output);
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