
POLITECNICO DI MILANO
SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

Polo Territoriale di Como

Model Driven Data Synchronization
for Mobile Applications

Relatore: Prof. Piero FRATERNALI
Correlatore: Prof. Marco BRAMBILLA

Tesi di laurea di:
Jacopo MOSSINA
Matr. 804790

Anno Accademico 2014 - 2015

POLITECNICO DI MILANO
SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

Polo Territoriale di Como

Model Driven Data Synchronization
for Mobile Applications

Relatore: Prof. Piero FRATERNALI
Correlatore: Prof. Marco BRAMBILLA

Tesi di laurea di:
Jacopo MOSSINA
Matr. 804790

Anno Accademico 2014 - 2015

Acknowledgments

Sentiti ringraziamenti vanno al Prof. Piero Fraternali, Relatore, al
Prof. Marco Brambilla, Correlatore e all’Ing. Felix Javier Acero Salazar, Assistente:
senza il loro assiduo supporto e la loro guida sapiente, questo lavoro non sarebbe
stato realizzabile.

Un ringraziamento particolare va poi a WebRatio s.r.l, per l’interesse dimostrato
verso questa attività di ricerca e per il supporto concreto, manifestato anche
attraverso la concessione di software in fase di sviluppo.

v

Alla mia famiglia
Ai miei amici
A Francesca

vii

Abstract

The pervasiveness of mobile applications in the software engineering industry
has been introducing a remarkable set of problems, among which the deployment-
related ones stand out, due to the multitude of platforms and devices to serve. The
Model Driven Engineering (MDE) approach, proposing a platform independent
design methodology taking on these difficulties, requires enhanced models and
sophisticated code generation techniques. In this model-centered study, we aim at
introducing new design patterns joining the concepts of User Experience (UX) and
software business logic: data synchronization patterns associated to interaction.
The transverse nature of these artifacts allows us to feature them in front-end designs
models, augmenting their expressive power and providing continuity with the back-
end logic. As the definition of patterns requires a profound preliminary examination,
our research starts by analyzing some complex real-world applications to infer
the triggering dynamics of data synchronization, underscoring their implications
on user interaction. Eventually, we present some interaction-centered patterns
derived from the results of this inquiry. Subsequently, the main thread of our
work deviates to data synchronization in mobile applications, introducing its core
aspects, different specializations and their adoption criteria. Since the domain-
specific complexities have already inspired the conception of data synchronization
patterns for mobile applications in literature, our objective is to combine these
patterns with the outcomes of the aforementioned examination over user interaction.
The resulting artifacts of this stage are finally shown at work into a real-world
application modeling scenario, followed by a detailed explanation of design choices,
impact on expressive power of the model and encountered or potential issues.

ix

Sommario

La pervasività delle applicazioni mobili nell’industria dell’ingegneria del software
ha causato l’introduzione di un notevole insieme di problematiche, tra cui spiccano
quelle relative al deployment, a causa della moltitudine di piattaforme e dispositivi
da servire. L’approccio Model Driver Engineering, fondato su una metodologia di
design indipendente dalla piattaforma in grado di affrontare tali criticità, richiede
modelli avanzati e sofisticate tecniche di generazione di codice. In questo studio,
incentrato sulla modellazione, miriamo ad introdurre nuovi pattern di design ca-
paci di conciliare concetti di User Experience (UX) e logica di business, ovvero
pattern di sincronizzazione dati associati all’interazione. La natura trasversale di
questi artefatti ci permette di integrarli nei modelli di design front-end, poten-
ziandone la forza espressiva e introducendo continuità con la logica di back-end.
Dal momento che la definizione dei pattern esige un’approfondita esaminazione
preliminare, la nostra ricerca è avviata dall’analisi di alcune applicazioni complesse
già presenti sul mercato, atta alla deduzione delle dinamiche scatenanti degli eventi
di sincronizzazione dati, con particolare attenzione alle implicazioni sull’interazione
dell’utente. Di seguito, presentiamo alcuni pattern centrati sull’interazione, ottenuti
dalla valutazione dei risultati dell’indagine. Successivamente, il filo conduttore del
lavoro devia verso la sincronizzazione dati in applicazioni mobili, introducendone
gli aspetti fondamentali e le diverse specializzazioni associate ai rispettivi criteri
di adozione. Poiché le complessità specifiche di tale dominio hanno già ispirato la
concezione di pattern di sincronizzazione dati per applicazioni mobili, la nostra
ambizione consiste nel combinare questi pattern con quelli ottenuti dalla già citata
esaminazione sull’interazione dell’utente. Gli artefatti risultanti da questo stadio
sono infine mostrati nell’integrazione in uno scenario reale di modellazione software,
accompagnato da spiegazioni esaustive su scelte di progettazione, impatto sulla
potenza espressiva del modello e problematiche incontrate o potenziali.

xi

Contents

Introduction 1

1 Analysis of Data Sync in Commercial Applications 5
1.1 Motivation and Goals . 5
1.2 Modus Operandi . 6
1.3 Methodology . 6
1.4 Case Study 1: Evernote . 7

1.4.1 Triggering Dimension . 7
1.4.2 Storage and Transfer Dimensions 7
1.4.3 Special Features . 7
1.4.4 Behavioral analysis . 8

1.5 Case study 2: Dropbox . 10
1.5.1 Triggering Dimension . 10
1.5.2 Storage and Transfer Dimensions 10
1.5.3 Special Features . 11
1.5.4 Behavioral analysis . 11

1.6 Case study 3: Instagram . 13
1.6.1 Triggering Dimension . 13
1.6.2 Storage and Transfer Dimensions 13
1.6.3 Special Features . 13
1.6.4 Behavioral analysis . 13

1.7 Analysis Report – Tabular View . 15

2 User Interaction Patterns 17
2.1 The Interactional Perspective . 17
2.2 Interaction Flow Modeling Language 18
2.3 Patterns Identification and Analysis 19

2.3.1 Pattern: Content Scrolling 20
2.3.2 Pattern: Context Change 21
2.3.3 Pattern: Pull-To-Refresh . 23
2.3.4 Pattern: Form Submission 24

xiii

2.3.5 Pattern: Application Launch 26

3 Data Synchronization Logic 29
3.1 Synchronization Types and Elements 30

3.1.1 The Synchronization Grid 30
3.1.2 Change Tracking . 32
3.1.3 Conflict Resolution . 32

3.2 Client-Server Communication . 34
3.2.1 Directional Aspects . 34
3.2.2 Temporal Aspects . 35

4 Data Synchronization Patterns 37
4.1 Patterns By Time . 40

4.1.1 Asynchronous Data Synchronization 40
4.1.2 Synchronous Data Synchronization 43

4.2 Patterns By Storage Strategy . 46
4.2.1 Partial Storage . 46
4.2.2 Complete Storage . 48

4.3 Patterns By Transfer Logic Sophistication 51
4.3.1 Full Transfer . 51
4.3.2 Timestamp Transfer . 53
4.3.3 Mathematical Transfer . 55

5 Patterns Composition 59
5.1 Building the Big Picture . 59

5.1.1 Tabular Synthesis . 60
5.2 Composite Patterns Conception . 61

5.2.1 Application Launch Synchronous Sync 62
5.2.2 Content Scrolling Asynchronous Sync 68
5.2.3 Context Change Asynchronous Sync 71
5.2.4 Pull-To-Refresh Asynchronous Sync 74
5.2.5 Form Submission Synchronous Sync 77
5.2.6 Push-Triggered Sync . 80

6 Application of the Patterns in Mobile Front-end Modeling 85
6.1 Software Requirements . 85
6.2 Model Realization . 87

6.2.1 Design of Data Synchronization Logic 88
6.2.2 Patterns Application . 89
6.2.3 Resulting Complete Model 93

7 Conclusions and Future Work 97

8 Related Work 99
8.1 Design Patterns in Software Development 99
8.2 MDE, IFML and Mobile Applications 101

Bibliography 105

List of Figures

2.1 Content Scrolling pattern rendition in IFML 20
2.2 Context Change pattern rendition in IFML 22
2.3 Pull-To-Refresh pattern rendition in IFML 23
2.4 Form submission pattern rendition in IFML 25
2.5 Application launch pattern rendition in IFML 27

4.1 UML s.d. for Asynchronous Data Sync 41
4.2 UML s.d. for Synchronous Data Sync 44
4.3 UML s.d. for Partial Storage . 47
4.4 UML s.d. for Complete Storage . 49
4.5 UML s.d. for Full Transfer . 52
4.6 UML s.d. for Timestamp Transfer 54
4.7 UML s.d. for Mathematical Transfer 56

5.1 IFML d. of Application Launch Synchronous Sync 63
5.2 UML s.d. for Application Launch Synchronous Sync 64
5.3 IFML d. of Application Launch Asynchronous Sync 66
5.4 UML s.d. for Application Launch Asynchronous Sync 67
5.5 IFML d. of Content Scrolling Asynchronous Sync 69
5.6 UML s.d. for Content Scrolling Asynchronous Sync 70
5.7 IFML d. of Context Change Asynchronous Sync 72
5.8 UML s.d. for Context Change Asynchronous Sync 73
5.9 IFML d. of Pull-To-Refresh Asynchronous Sync 75
5.10 UML s.d. for Pull-To-Refresh Asynchronous Sync 76
5.11 IFML d. of Form Submission Synchronous Sync 78
5.12 UML s.d. for Form Submission Synchronous Sync 79
5.13 IFML d. for Push-Triggered Sync 81
5.14 UML s.d. for Push-Triggered Sync 82

6.1 Application Front-end model in IFML 87
6.2 Push-Triggered Sync variant application 89
6.3 Push-Triggered Sync variant application 90

xvii

6.4 Application Launch Asynchronous Sync 91
6.5 Application Launch Asynchronous Sync variant application 91
6.6 Combination of C.S. and P.T.R. asynchronous sync 92
6.7 Form Submission Synchronous Sync application 93
6.8 App Front-end model integrating patterns - part 1 94
6.9 App Front-end model integrating patterns - part 2 95

List of Tables

1.1 Triggering Dimension . 15
1.2 Storage and Data Transfer Dimensions 15
1.3 Special Features . 15

3.1 Grid classifying the existing synchronization technologies 30

5.1 Compatibility between U.I. and D.S. patterns 60

xix

Introduction

The mobile ecosystem is undergoing an outstanding expansion, affecting not
only existing industry segments, but planting the seeds for new realities. Enabled by
the overcoming of constraints related to computational power, reduced memory and
storage of mobile devices, the enterprises exploring the mobile world are challenging
the idea of ameliorating users’ lives exploiting the possibilities provided by the
pervasiveness of mobile devices. New disciplines and trends are rapidly growing on
top of this idea, intersecting multiple areas of interests: many leading hardware
and software companies are extending, reviewing their research scope to deepen
their knowledge and provide better integrated solutions for users in mobility. This
enthusiastic impulse has been introducing a huge amount of novelties reshaping
the existing ecosystem: let us mention, for instance, the spread of wearable devices
and the vision of the Internet of Everything.

On the other hand, the general demand over software quality and complexity
has been increased as well. Today, applications designed to run on mobile devices
feature rich interfaces implying convoluted interaction mechanisms and impressive
business logic implementations, allowed by the technological evolution of the target
devices. Additionally, thinking to all of the latest trends characterizing the mobile
software environment, like Connected Living, Advertising, Digital Commerce and
Security, the relevance of data-intensive services is undeniable.
Critical tasks like data synchronization, contextual information retrieval and the
activation of communication paths to access external service providers are difficult
to orchestrate, and having to consider them at design time is not a trivial software
engineering problem.

1

Introduction

In this problematic context, coping with functional and non-functional require-
ments of mobile applications serving multiple platforms on different devices results
in the emergence of the need of a systematic approach. Matter of fact, in the
typical front-end development of mobile applications manual coding still remains
a predominant practice, with all the liabilities it involves: low reuse, inefficient
maintainability, problems of portability, risks of inconsistencies are just some of
them.
Approaches like Model Driven Engineering (MDE), conversely, leverage the in-
troduction of the abstraction relying on their core discipline, software modeling.
However, using a model driven approach to produce quality software introduces
controversies related to the sophistication level of models and the complexity of
their implementation through code generation techniques (exploited to produce
actual code).

In this thesis we are focusing on the front-end modeling perspective, trying
to introduce some novel artifacts to cope with the requirements over data. In
particular, data synchronization is a recurring assignment, abstracting a huge
amount of scenarios that must be covered by applications relying on remote data
access and processing. The approach we adopt is purposely pattern-based, given
the correlation between the problem-solving nature of data synchronization and
the problem-solution structure of design patterns. Since patterns proposal requires
an accurate understanding of the dynamics to represent, we move towards data
synchronization with a bottom-up analysis of the state of the art, resulting from
the study of real-world applications. The solution that our patterns are meant
to provide combines aspects of user interaction with the business logic implied
by data synchronization. Given the heterogeneous nature of these artifacts, they
are expressed using two different languages: Interaction Flow Modeling Language
(IFML), representing front-end concepts, and Unified Modeling Language (UML),
modeling the behavior of the application components. Both IFML and UML have
been adopted as standards by the Object Management Group (OMG). The most
valuable goal we are pursuing with this experimental work is to demonstrate the
effectiveness of our introductions in terms of expressive power of front-end models,
which are usually not covering transverse processes like data alignment.

2

Introduction

The thesis is structured as follows:

• Chapter 1 describes the analysis performed on real-world applications, aiming
at the individuation of some standard approaches to data synchronization.

• Chapter 2 focuses on the triggering nature of interaction over data synchro-
nization events, proposing a list of patterns in IFML.

• Chapter 3 illustrates the core elements of data synchronization, emphasizing
its communication-related features.

• Chapter 4 presents some known-in-literature patterns on data synchronization,
reviewed to adopt a more recognizable notation.

• Chapter 5 illustrates the patterns resulting from the composition of artifacts
presented in Chapters 2 and 4.

• Chapter 6 demonstrates the applicability of patterns presented in Chapter 5
in a real-world modeling scenario.

• Chapter 7 comprises the conclusions and the potential future work.

3

Chapter 1

Analysis of Data Synchronization
in Commercial Applications

1.1 Motivation and Goals
In this first chapter of our research study, we are adopting a learning strategy

based on observation and analysis. This approach has several advantages: above
any other, the reports are not contaminated by literature, previous researches and
studies; conversely, they are the authentic outcomes of an experimental work. The
need for this kind of analysis as an opening for the subject is witnessed by the lack of
documented knowledge on standardized practices for data synchronization in mobile
environment, but also by the mutation-prone shaped nature of the environment
itself. Furthermore, investigating applications behaviors according to scenarios
based on our interest satisfies our need for flexibility over research parameters and
method.

In terms of goals, the analysis aims at profiting from the collected observations
and aid the definition of some innovative patterns, under two different perspectives:
user interaction and synchronization methodology. Additionally, we try to identify
some best practices and understand the impact of requirements on both subjects.

5

1. Analysis of Data Sync in Commercial Applications

1.2 Modus Operandi
The analysis is performed by observing the functionality of some Android

commercial applications, whose selection criterion is the likeliness of deducing
synchronization mechanisms and their interactional implications. The investigation
starts by the most trivial scenarios, like the launch of the application, to evolve
towards the study of some significant use cases. To better understand some
mechanism involving data transfer, we monitor write operations on the device’s
internal memory, also relying on “superuser” privileges for a deeper exploration. In
addition, we try to infer some unexposed logic by examining the applications’ logs
at runtime using the Android Device Monitor, a tool included in the Android SDK.

1.3 Methodology
Reporting is organized by separating observations according to their context:

Triggering dimension
Everything that concurs in firing the synchronization event.

Storage and transfer dimensions
How data is replicated, cached and transferred.

Special features
Unique characteristics of the application associated to data synchronization.

Analysis of the application behavior in meaningful use cases
Description of the applications’ feedbacks in terms of user experience and
"under-the-hood" logic to notable scenarios in which data synchronization is
involved.

Finally, the outcomes of the analysis are synthesized into tabular views, to emphasize
similarities, identify common practices and ad-hoc features.

6

1.4. Case Study 1: Evernote

1.4 Case Study 1: Evernote

1.4.1 Triggering Dimension
Synchronization happens as a response to some interactions: launching or re-

suming the application, opening a note, starting or leaving edit mode, deleting a
note, adding tags or renaming a notebook and finally, forcing it by touching the
dedicated voice in the menu.

Automated synchronization is performed periodically, having the time interval
set by the user, who is able to furtherly restrict the process actuation based on the
type of network connectivity.

1.4.2 Storage and Transfer Dimensions
Storage strategy. Evernote1 relies on its own cache portion (where “cache”
stands for actual application data), as most Android applications do: data is
cached in a directory in the /data partition. Thumbnails and attachments are
cached in dedicated subdirectories.

Data transfer. Transfers are ruled by events and interaction, as underscored
describing the triggering dimension: at app launch all notes previews are down-
loaded and displayed in the main view, while actual contents are downloaded (and
eventually stored) when opening notes for the first time. Clearly, this design choice
aims at providing the best user experience possible, trying to minimize latency
times.

1.4.3 Special Features
Offline mode. The above-mentioned storage strategy is sensible, because it
allows working with stale data without connectivity, which is almost crucial in a
note-taking framework. Intuitively, storing the entire dataset would be even more
convenient under this perspective, but it would be too much demanding in terms
of storage.

Clean/Dirty flags. By inspecting the log, we note that changes are reflected on
all nodes using “clean/dirty” strategy, presumably recalling the snooping protocols
mechanics used in cached-based multiprocessors. This suggests that, probably,

1Published by Evernote Corporation, version 6.3.3.1, tested on Android 4.4.4

7

1. Analysis of Data Sync in Commercial Applications

when a resource is modified within a node it is flagged as dirty, so that any other
linked endpoint notifies the change when synchronizing data.

1.4.4 Behavioral analysis
Scenario 1: Data Read at Mobile-side
By Logcat inspection, we observe that “EvernoteProvider” (which is, intuitively,
an Android Content Provider instance) object is designed to perform CRUD2 and
control operations on files. Resources are accessed by default in read mode: to
enter the edit mode, there is a dedicated button triggering the UI and logic change.
From this simple use case, let us observe that each resource accessed is read from
the local storage: it seems to be a design choice to empower offline mode and to
grant UI responsiveness.

Scenario 2: Posting (Data Created or Modified at Mobile-side)
The editor works in offline mode, allocating a draft copy in cache, without triggering
events until the user chooses to save the note (and, subsequently, leaves the editor
returning to the list of notes). When this happens, the draft is saved locally and,
if network connectivity is available, a synchronization process starts: most likely,
the operations are performed in asynchronous way, with visual feedbacks in the
UI. In particular, notes whose modifications are to be updated are flagged with
a dedicated icon, while the running synchronization process is emphasized by an
animated indeterminate progress-bar under the application ActionBar3. Before
synchronizing, the application makes sure it already has the latest version of the
edited note: this operation prevents conflictual updates and seems to be asymmetric
with respect to the logic implemented by Evernote web application (refer to scenario
4 for conflictual editing). The sync process works as follows:

1. Upload metadata (notebooks, tags changes)

2. Upload actual note changes

3. Request lock to perform transaction

4. Open (or create) remote note file

5. Copy draft note content to remote note file and to local cache (to ensure
consistency)

6. Mark note as dirty on server (to allow update propagation on other linked
devices)

2Acronym for Create Read Update Delete.
3Name for the standard application menu-bar in Android.

8

1.4. Case Study 1: Evernote

7. Release lock and refresh the UI

Scenario 3: Data Created or Modified via Backend Services
Modifying a note via another client, being it the web one or a desktop variation,
does not affect the behavior of the mobile application at all. Let us underscore that
no push notifications seem to be adopted to guarantee real-time updates: rather,
the synchronization triggering mechanism provided is a combination of interaction-
based and automated. The latter handles remote changes as well, capturing conflicts
and determining the policy to solve them. Summarizing, assuming that network
connectivity is available, resources are updated re-launching the application or
forcing the synchronization manually, otherwise not intervening forces to wait for
the automated process to start.

Scenario 4: Data Conflicts Induction
As a note is accessed in edit mode, the application generates a new empty draft
and stores it within its dedicated cache. Then the draft is filled with the existing
content of the note, which the “EvernoteProvider” reads from the local copy (i.e.
from the device storage): this is very interesting, because a concurrent modification
of the same resource from another client results in a conflict, managed by note
duplication. This scenario is easily verifiable: both resources are successfully saved,
but the most recently submitted one gets the prefix “Conflict note” before its
actual name. The saving process is thoroughly described in scenario 2. The story
is different when deleting an entry via mobile application: the resource is obviously
deleted on the server, so any concurrent changes to the same resource coming from
other clients are discarded. If the deleted resource was already outdated, instead,
the delete operation erases only the outdated note (on the local cache), but the
subsequent synchronization event catches the new version and performs a simple
transfer – in practice, deletion of outdated entries prevents merges and conflicts.

9

1. Analysis of Data Sync in Commercial Applications

1.5 Case study 2: Dropbox

1.5.1 Triggering Dimension
Synchronization is triggered by both navigation events and actions performed

on data, locally. Dropbox4 for Android is essentially a client structured as a fully
functional file manager, thus exploration is based on a layered (tree-based) structure,
in which every change of context (i.e. browsing directory) requires the knowledge
of the internal structure of the context itself (content and subdirectories). Data
refresh is performed for each navigation event. Local actions on data are triggers for
synchronization processes, since they are handled as transactions: CRUD operations
fire data refresh. Additionally, on-demand data synchronization is available as an
option in the UI, and data refresh is performed at each application launch.

Automated Synchronization via “long polling” (inferred via log inspection):
it is a variation of the traditional polling technique, still categorized as pull
technology, since the initial request for data originates from the client, and then
is responded to by the server. Long polling allows emulating a push mechanism
under circumstances where such push is not possible, such as sites with security
policies that require rejection of incoming HTTP/S requests. Functionally, the
client requests information from the server exactly as in traditional polling, except
it issues its requests (polls) at a much slower frequency. If the server does not have
any information available for the client when the poll is received, instead of sending
an empty response, it holds the request open and waits for response information to
become available: once it does, the server immediately sends a network response to
the client, completing the open request. Long polling not only has the advantage
of consistently reducing the frequency of requests over polling, but it permits the
elimination of the response latency associated to such technique, due to the time
interval between requests.

1.5.2 Storage and Transfer Dimensions
Storage strategy. At the very first launch the application performs the setup
of its caching structure, which relies on both private data (path: /data/com.drop-
box.android/app_DropboxSyncCache/<id>/) and internal storage (path: /storage/
Android/data/com.dropbox.android/cache/<id>/) resources: the former stores
databases, while the latter is intended to store actual files.

4Published by Dropbox Inc., version 2.4.9.00, tested on Android 5.0.2

10

1.5. Case study 2: Dropbox

Data transfer. It essentially exploits timestamps, but it is ruled by precise
policies that appear to be differentiated based not only on user interaction, but also
on data type. Pre-fetching is performed to ensure an acceptable tradeoff between
data availability and user experience, following the logic of look-ahead applied on
user interaction.

1.5.3 Special Features
Offline mode. The offline experience is very limited: read operations are allowed
given that target data is already cached, data creation fails (even though it appears
to be designed to resume when connectivity is available) while deletion is denied.

1.5.4 Behavioral analysis
Scenario 1: Data Read at Mobile-side
SSL sockets are opened to establish the connection required by long polling tech-
nique. The log also exposes the start of a service named “DbxSyncService”, as well
as the functional logic of long polling: while Dropbox is running (in foreground or
background), a request is periodically sent to the server (approximately one every
30 seconds). When connectivity drops, to each long polling failure (request not
received by the server) fires a change to the frequency of requests, which appears
to be doubled (until the upper bound of 300000 milliseconds is not reached). The
very first read operation on data happens at application launch, when the top
level of directories is fetched and displayed: it is easy to observe, by turning
connectivity off, that actually the synchronization mechanism fetches not only
the current level, but also the subsequent one, guessing user navigation. This is
a clear implementation of look-ahead technique. The application behaves differ-
ently with respect to data types: the analysis spans over media files and generic
documents. Thumbnails associated to supported media file types are not cached
directly when performing pre-fetching, as instead are downloaded following a lazy
loading policy: more precisely, this is done as a response to scrolling event and only
if the associated entry becomes visible in the UI. Cached thumbnails are stored in
“/storage/Android/data/com.dropbox.android/cache/<id>/thumbs/”, embracing
the standard storage directory structure in Android. It is worthy to analyze the
behavior of the application when opening pictures: the original definition versions
are cached together with the associated thumbnails, but applying look ahead policy.
Matter of fact, when browsing images in directories comprising more than one
media file, pictures are cached two at a time: the selected one, and the subsequent.
We can conclude that this policy is datatype-specific. Touching documents entries
triggers the download of an instantly server-side generated preview (Dropbox calls

11

1. Analysis of Data Sync in Commercial Applications

this feature “Quick Preview”), a pdf file cached to “/storage/. . . /cache/<id>/
docpreviews/”: in this case, there is no look-ahead policy implemented.

Scenario 2: Posting (Data Created or Modified at Mobile-side)
Currently, two posting options are available: creating a new text document or
uploading generic files. The former option opens the editor, whose behaves as
follows: the application “watches” the open file to be notified of changes, which fire
the upload task. The updated document is uploaded only after user interaction
(via “Save” button), however this operation does not force the user to leave edit
mode, so the file stays in “watch” state and the “updateIfChanged” flag is reset,
waiting for the next “Save” action. Uploading a generic file is more straightforward:
the upload operation is monitored using a progress bar. This process is likely
asynchronous, since it does not appear to block the main thread of the application,
so that the user is able to use the application while uploads are completed. Data
deletion at mobile side leaves no evidence in the log; however, it should behave in a
transactional way: note that, if the document to delete is cached, the corresponding
file is deleted.

Scenario 3: Data Created or Modified via Backend Services
Even though long polling provides an update mechanism that is close to be
instantaneous, the UI does not react immediately to changes to data performed
via backend services. The only way to refresh the displayed elements is to trigger
on-demand synchronization interacting with the “Refresh” button or to navigate
back and forth to reload the browsing context.

Scenario 4: Data Conflicts Induction
Concurrent changes to documents are handled in a simple way: the file is duplicated
and the most recent copy is labelled as “conflictual copy of <user name>”.

12

1.6. Case study 3: Instagram

1.6 Case study 3: Instagram

1.6.1 Triggering Dimension
Synchronization happens as a response to some triggering interactions: launching

the application, posting a picture or video, modifying or deleting a post and finally,
forcing it by performing a specific associated gesture (i.e. pulling down the list of
posts from its top entry and releasing it).

Automated synchronization is handled by push notifications, which are used
to notify the user in various situations: however, their configuration is deeply
customizable using the dedicated settings menu. By inspecting the add-ons used
by the application, it appears that – as most of Android applications do – it adopt
Google Cloud Messaging to send data from servers to client.

1.6.2 Storage and Transfer Dimensions
Storage strategy. Instagram5 stores its entire cache in the system /data partition
(path: “/data/com.instagram.android”): images, videos, and databases.

Data transfer. Transfer is differential and ruled by timestamps, as the nature
of this kind of client would suggest; functionally, it is very similar to a feed reader.
Actually, it is even simpler, because it does not feature real-time post streaming.

1.6.3 Special Features
History of changes. Instagram features a fragment of its UI containing a
timeline of the notifications the user received. This is a considerable aspect in
terms of synchronization because it adds some complexity to the implementation.

1.6.4 Behavioral analysis
Scenario 1: Data Read at Mobile-side
Launching the application triggers the first synchronization event, whose goal is to
load the main feed page: since the log does not expose anything, let us analyze
the behavior of Instagram in terms of file system operations. When loading the
feed for the first time, by default the synchronization process caches the media of
exactly 9 posts: after that, a lazy loading policy is adopted to load the rest of the
stream in response to user interaction. More precisely, as the user scrolls down,

5published by Instagram, version 6.17.1, tested on Android 5.0.2

13

1. Analysis of Data Sync in Commercial Applications

for each post she /he exceeds with the gesture, the most recent post not loaded in
the list is pre-fetched: this kind of strategy allows the total elimination of latency,
making synchronization practically invisible and enhancing the user experience.
Thanks to this observation, it is even possible to estimate the size of Instragam’s
cache directory, given by the formula “cache.size = 9 + position”, where to the
head of the list (the topmost post) is at position 0. However, when connectivity
is not available, Instagram shows only a few posts with complete metadata and
comments, even though cache contains more files: the explanation is given by the
fact that the application uses a file in json format to build the main feed. This file
(“MainFeed.json.0001” in the case analyzed) is stored in cache and continuously
modified as the user interacts with the UI: it even contains all metadata associated
to the posts, as well as comments (evidence of the fact that Instagram does not
store them on mobile devices, preferring to load needed data on-demand). Code
inspection would be needed to determine how frequently this file is modified (and
the size threshold triggering its partial deletion), but this overshoots the goals of
this behavioral analysis.

Scenario 2: Posting (Data Created or Modified at Mobile-side)
Posting on Instagram is a multi-step process, in which most of the tasks are
executed at mobile-side: picking a picture or a video, apply adjustments and /or
filters, set a description and even tags followed users (so there must be a database
table locally listing them). Of course, the upload task requires connectivity and it
is performed most likely in asynchronous way: a fixed unobtrusive dialog is pinned
on top of the feed while the upload is performed, and it is dismissed at completion.
Let us observe that, by default, the application saves original photos and videos on
the internal storage right after publication, but this feature can be turned off.

Scenario 3: Data Created or Modified via Backend Services
The application notifies the user in various scenarios: likes to owned post, comments
to owned posts, new followers, follow requests approvals, Facebook friends opening
an Instagram account, Instagram direct requests, Instagram direct activities, tags
received, reminders of unread notifications, first post of a friend. By default,
all of the aforementioned events will trigger Google Cloud Messaging to send a
push notification, having two effects: a system notification is displayed and the
application’s UI is decorated with notification bubbles comprising counters.

Scenario 4: Data Conflicts Induction
Due to the architectural design of Instagram, currently it is impossible to perform
or induce conflictual operations: for instance, the web client does not provide the
possibility to edit or remove an owned post.

14

1.7. Analysis Report – Tabular View

1.7 Analysis Report – Tabular View

Table 1.1: Triggering Dimension

Evernote Dropbox Instagram

Automated periodic synchronization X
Automated instantaneous synchronization X X
Interaction-based synchronization X X X
Lazy loading of data X X X
Forced on demand synchronization X X X
Gesture-based synchronization X

Table 1.2: Storage and Data Transfer Dimensions

Evernote Dropbox Instagram

Storage of the entire dataset X
Storage of a subset of the dataset X X X
Transfer of all needed data at once
Differential transfer X X X
Transfer based on datatype X
Look-ahead policy over transfers X X
Conflict resolution X X

Table 1.3: Special Features

Evernote Dropbox Instagram

Offline mode X
Immediate feedbacks X
History of changes X
In-app notifications X
Clean/dirty flags X

15

Chapter 2

User Interaction Patterns

2.1 The Interactional Perspective
When speaking about mobile applications, user experience – and, more in

general, front-end design – has a central role. As extensively reported in [7], “A
successful user experience is crucial for successful application adoption”. User
experience and synchronization mechanisms are closer than we would think in the
first place in the mobile environment, since they are hand in glove with performance,
which is a major parameter in determining the optimality of a well-thought software.
Sometimes the combination of good user interface and satisfactory performance
leads to a successful commercial outcome regardless of the originality of the idea
inspiring the application; in fact, users tend to prefer applications that look fancy
and reactive, even if they are not the best when it comes to fulfil their necessities.
To produce such positive outcome, user-centered design is a sensible option to serve
development of mobile applications. As stated in [9], for mobile devices this means
users need to feel a continuous thread between the interactors they are maneuvering
and the software working. Furthermore, the experience must be delightful, possibly
rich and uninterrupted: animated transitions, uncluttered and minimalistic menus
and visual elements are frequently cited in design guidelines of the main mobile
operating systems. Depending on the functionalities and goals of the application,
data-flow events may play a crucial role in terms of interactional limitations: for this
reason, even when designing the synchronization logic, considering its correlation
with the front-end as a fundamental factor may represent a good advice.

In this chapter, we combine the above considerations over interaction with the
triggering dimension of synchronization processes analyzed in the previous chapter,
aiming at the definition some interactional patterns. Later in our study, we will
link these patterns to other ones modeling the core of synchronization processes to
build exhaustive models.

17

2. User Interaction Patterns

2.2 Interaction Flow Modeling Language
As we have been stating so far, we want to express the patterns we are going to

present in the most abstract way possible, to preserve the platform-independence of
our study. Under this perspective, the Interaction Flow Modeling Language (IFML)
—adopted by the Object Management Group (OMG) as a standard in July 2014—
appears to be an excellent technology, being a modeling language that “supports
the specification of the front-end of applications, independently of the technological
details of their realization” [4]. In fact, IFML addresses several questions related
to front-end modeling, such as view composition and content, commands, actions,
effects of interaction and parameter binding. IFML syntax is visual, based on OMG
standards and very close to the one characterizing Unified Modeling Language, thus
it results familiar to developers. Its expressive power is empowered by extensibility,
supported by the language thanks to its incorporated standard means for defining
new concepts. Practically, this quality is being exploited to propose a model-driven
approach for Mobile Application development, as portrayed in [6] and witnessed by
innovative commercial solutions like WebRatio Mobile Platform [2]. Considering all
of the abovementioned advantages, the use of IFML to satisfy our inquiry is a logical
consequence. In the next section, we are introducing the patterns depicting the
front-end implications of data synchronization triggering using the IFML notation,
fully referenced in [4]. More details on IFML are available in the Related Work
chapter.

18

2.3. Patterns Identification and Analysis

2.3 Patterns Identification and Analysis
Pattern Form. Pattern are illustrated in compliance with the Coplien Form by
James O. Coplien, “one of the founders of the Software Pattern discipline, a pioneer
in practical object-oriented design in the early 1990s and is a widely consulted
authority, author, and trainer in the areas of software design and organizational
improvements” [1]. We slightly alter the pattern form by adding a visual explanation
expressed in IFML, so the resulting structure is arranged as follows:

Problem
Statement of the problem(s) that the pattern works to solve.

Context
Definition and constraints of the specific context of applicability of the pattern.

Forces
Scenarios and motivations supporting the pattern logic or application.

Visual Explanation
A diagram or graphical representation explaining the pattern and a descrip-
tion of the interaction between the different elements of the pattern.

Solution
Explanation of how the pattern solves the problem considering the constraints
of the context.

Resulting Context
Definition and constraints of the context resulting from the application of
the pattern.

Rationale
Philosophy inspiring the pattern.

19

2. User Interaction Patterns

2.3.1 Pattern: Content Scrolling
Problem
Lazy loading is a requirement to preserve performance when scrolling long lists.
When data in the list has to be synchronized, the problem becomes more complex,
and the event must fire without interrupting the interaction.

Context
Browsing a list – or, more generically, a scrollable container – comprising contents
to be synchronized.

Forces

• When browsing lists containing a notable amount of elements to be loaded
with a lazy policy, synchronization events are inevitably very frequent

• Requesting additional input to the user to perform synchronization annoys
her/him and worsens the user experience

• In the same way, alerting dialogues and obtrusive feedbacks distract the user
from its goal (i.e. exploring, browsing)

• The user does not expect the synchronization event to be needed

Visual Explanation

Figure 2.1: Content Scrolling pattern rendition in IFML

20

2.3. Patterns Identification and Analysis

Solution
Triggering a synchronization process in a very transparent way, seamlessly and
without requiring a dedicated visual element to interact with. The event fires when
reaching a certain relative position in the list with respect to an entry (represented
by the attribute exceeded_entries in fig. 2.1 on the facing page). For convenience,
we are naming step the amount of entries to be exceeded.

Resulting Context
The context remains unaltered, as the user would expect it. New content is loaded
and displayed.

Rationale
Loading content is a responsibility of the application components: users should
not be requested to perform ad-hoc actions, so this pattern exploit the natural
interaction as a trigger.

2.3.2 Pattern: Context Change
Problem
In some applications, the User Interface is layered, with tree-structured contents.
Exploration is required, and content refresh has to be performed at each step.

Context
The context resembles a hypertext: interacting with elements in the container
mimics the behavior of navigation links in a web page.

Forces

• Load all the data at once can be rather inconvenient when the application
does not need to display all of its contents in a single view

• Exploring tree structures implies the frequent invalidation of the on-screen
content

• Displaying obtrusive elements to start synchronization events interrupts the
user experience

• Exploiting transition times to load content makes the experience continuous
and smooth

21

2. User Interaction Patterns

Visual Explanation

Figure 2.2: Context Change pattern rendition in IFML

Solution
Selecting an entry within a nested structure triggers the data alignment event and
the subsequent refresh of the entire content displayed. Information on the change
is passed to the container, as represented by the data flow connecting the selection
event to the screen in fig. 2.2. As the action starts (event onStart), the focus is
given back to the screen displaying the list.

Resulting Context
The frame does not change and, ideally, the interaction pattern remains unaltered
and applied to the new content.

Rationale
Applications adopting the “explorer” paradigm often have to deal with large
amounts of data. If synchronization is involved, then downloading everything
at in a single transfer can be critical in terms of performance and bandwidth.
Synchronizing the minimum amount of needed data at each step may be eased by
the application of the context change interactional pattern.

22

2.3. Patterns Identification and Analysis

2.3.3 Pattern: Pull-To-Refresh
Problem
On-demand synchronization has to be featured as an option, but classical implemen-
tations like buttons in menu-bars look outdated and disrupt the user experience.

Context
Usually a scrollable view container, but it can be a generic one.

Forces

• This pattern is becoming a standard for synchronized lists (e.g. timelines)
and, more in general, scrollable components

• A vertical gesture requires less effort compared to the selection of a traditional
entry in a menu, given the morphology of most of mobile devices: as a result,
the user experience is more continuous

• This pattern can replace the “refresh button” in user interfaces, helping to
keep them minimal

Visual Explanation

Figure 2.3: Pull-To-Refresh pattern rendition in IFML

23

2. User Interaction Patterns

Solution
The functionality is straightforward: the synchronization process is triggered by the
completion of the gestural combination. Specifically, given that the user is pointing
at the first element of the list, a fling down gesture makes the list “draggable”
from the top to the bottom; to complete the action, the list must be released after
having been dragged for a certain vertical distance(scroll_amount): we have named
threshold the minimum distance to exceed to make it functional. These conditions
are collapsed in an ActivationExpression associated to the Scroll event in fig. 2.3
on the preceding page.

Resulting Context
The pattern makes the target view container “pullable”.

Rationale
This pattern combines some key elements of user interaction in mobile devices and
applications and offers a straightforward solution to keep the experience as natural
as possible. As a downside, affordance of the gesture-outcome pair is not very
intuitive, but its recall is continuously growing as many popular applications are
adopting it.

2.3.4 Pattern: Form Submission
Problem
After filling a generic form, a synchronization event has to be started, so the
interactor must be unambiguous and recognizable.

Context
The view comprises a form and a submit interactor, whose layout depends on the
implementation variant.

Forces

• When user input is required, the most serviceable way to register it is to
commit it after manual confirmation

24

2.3. Patterns Identification and Analysis

Visual Explanation

Figure 2.4: Form submission pattern rendition in IFML

Solution
Keeping the interaction mode as simple as possible to trigger a synchronization
process.Typically it relies on a simple touch on a self-explanatory submit button.
A ParameterBinding handles the dependencies needed to perform the action, as
shown in fig. 2.4.

Resulting Context
The resulting context may vary according to the implementation logic. For instance,
it can comprise a modal pop-up or a visual element pinned to the parent view
signaling the operations in progress.

Rationale
Committing an operation requires the complete consciousness of the user, whose
first concern is typically about performing a wrong action on data. The easiest way
to letting her/him know of the synchronization process is indeed the application of
this pattern.

25

2. User Interaction Patterns

2.3.5 Pattern: Application Launch
Problem
Data alignment needs to be performed to achieve the basic functionality of the
application.

Context
Application is launching its landing activity and loading the corresponding view.

Forces

• Having up to date content displayed at application launch improves the
perception over user experience

• Occasionally some functionalities are inhibited without fresh data, so – if it
is the case – the soon it is obtained, the better the application works

• Having data aligned at application launch gives the user the opportunity not
to refresh manually

26

2.3. Patterns Identification and Analysis

Visual Explanation

Figure 2.5: Application launch pattern rendition in IFML

Solution
Exploiting the application launch event to trigger the synchronization process start.
As all the tasks are completed, depending on the implementation, the resulting
view is refreshed or populated for the first time. To emphasize the action starting
as the screen is created, in fig. 2.5 we put an onCreate event on the boundary of
the screen element.

Resulting Context
Main activity context of the application, populated with up to date content.
Rationale

Rationale
If the application is based on data that needs to synchronized, performing alignment
on start is a good way to improve the overall experience and let the user out of the
underlying logic.

27

Chapter 3

Data Synchronization Logic

In the previous chapter, we have been discussing the interactional aspects of
the triggering dimension of data synchronization. As our studies are centered on
mobile applications, this perspective is certainly one of the most interesting and
dense of consequences over the whole modeling process. On the other hand, we
inevitably have to deal with other technical aspects characterizing the core phase
of data alignment mechanisms.

In this chapter, we want to portrait the possible choices in terms of implementa-
tion when designing the alignment logic between two data stores. In particular, we
will focus on the aspect of communication, to emphasize the “directional” dimension
of synchronization. Finally, this reasoning will lead us across some reflections about
the rise of conflicts and their resolution techniques.

Eventually, we will focus on Client-Server communication to review some already
analyzed dimensions of data synchronization under a different perspective, bound
to the aspects discussed in this chapter. In this way, we will understand how
architectural choices, goals and requirements affect data alignment policies in
mobile applications. This in-depth analysis will help us in understanding how to
integrate front-end modeling with data synchronization design, which takes place
between front-end and back-end.

29

3. Data Synchronization Logic

3.1 Synchronization Types and Elements
In this section we clarify how the data synchronization problem is faced at

different levels, eventually underlining the inner complexity introduced by its
elements. All of the considerations reported below refer to [10] by Drew McCormack.

3.1.1 The Synchronization Grid
We start by categorize data synchronization technologies according to their

most characterizing features: synchronicity and “end” profile. The resulting grid is
featured in [10] and is thought to collocate all existing technologies according to
the aforementioned parameters.

Synchronous Asynchronous

Client-Server

Parse
StackMob

Windows Azure Mobile
Services
Helios

Custom Web Service

Dropbox Datastore
TouchDB

Wasabi Sync
Zumero

Peer-to-Peer iTunes/iPod
Palm Pilot

Core Data with iCloud
TICoreDataSync

Core Data Ensembles

Table 3.1: Grid classifying the existing synchronization technologies

Data alignment uses Synchronous Communication (SC) when each request
by the client (or peer) expects to receive a response in real-time. Asynchronous
Communication (AC) instead provides a framework acting as a proxy between
client and server (peer and peer), where data transfers are not bound to real-
time responses; at contrary, they are performed in the background. Orthogonally
with respect to synchronicity, the Client-Server communication usually provides
a “smart” end encapsulating most of the synchronization logic, while with Peer-
to-Peer the client apps handle all of the complexities. In terms of trends, we
are moving towards Asynchronous Peer-to-Peer, which is easily the most complex
combination in terms of architectural design, but also the most interesting thanks
to the architectural-independence it provides to mobile application developers.

30

3.1. Synchronization Types and Elements

It is important to underline, quoting [10], that “history of sync does not follow
a single linear path. Each stage overlaps with those that follow, continuing to be
utilized even as new approaches evolve. Today, all of these techniques still exist
and are in active use, and each may be an appropriate solution to your particular
problem”.

Let us now picture the main characteristics of each of the approaches resulting
from previous the tabular synthesis, to give an idea of their logic and possible
implementations. The following overviews are summarizing the in-depth reports
presented in [10].

Synchronous Communication, Client-Server. This is probably the most
common approach to synchronization in use today. From an implementation
standpoint, it recalls web services: in fact, typically, a custom cloud app is developed
in a language, and with a programming stack unrelated to the client app, such
as Ruby on Rails, Django, or Node.js. Communication with the cloud is slower
than using a local network, but of course, S-CS has the advantage of being “always
on” so that the client can synchronize from any location, if network connectivity is
available. Costs are evaluated in terms of data transfer and storage, consequently
we need to reduce the communications overhead as much as possible.
The solution is given by differential transfers based on change tracking: one device
sends changes to the other, and the receiver merges and sends back a set of changes
incorporating the results of the merge.

Synchronous Communication, Peer-to-Peer. This approach was actually
the first to be broadly adopted, and used for peripheral devices like iPods and
PDAs. S-P2P tends to be simpler to implement, and exploits the fast connections
of local networks.
A synchronization operation involves one device transferring its store to another
device, which determines what has changed, merges, and sends back the resulting
store. This flow scheme guarantees that both devices have the same data after a
synchronization process, with great robustness.
An example is given by the implementations of iTunes, still based on this approach
due to the large quantities of media transfer involved.

Asynchronous Communication, Client-Server. With A-CS, the developer
adopts an API for data storage, which gives access to a local copy of the data.
Synchronization occurs transparently in the background, with the application code
being informed of changes via a callback mechanism. Examples of this approach
include the Dropbox Datastore API, and – for Core Data developers – the Wasabi

31

3. Data Synchronization Logic

Sync service.
The main difference between A-CS and S-CS is that the extra layer of abstraction
provided by the framework in A-CS shields the client code from direct involvement
in alignment logic. It also means that the same service can be used for all data
models, not just one particular model.

Asynchronous Communication, Peer-to-Peer. A-P2P places the full burden
of alignment logic on the client app, without any recourse to direct communication.
As with A-CS, each device has a full copy of the data store. The stores are
kept synchronized by communicating changes between devices via a series of files,
typically referred to as transaction logs. The logs are moved to the cloud, and from
there to other devices by a basic file handling server (e.g. iCloud, Dropbox), which
has no insight into the file content.
A-P2P is challenging to implement, since it has to deal with several complexities,
the most critical of which are the lack of “truth” convergence and subsequent tricky
change tracking (due to the idiosyncrasies related to timestamps and out-of-order
operation processing).

3.1.2 Change Tracking
Change Tracking is the practice of registering within the synchronization algo-

rithm what properties of data have changed since latest alignment event, aiming
at determining what should be altered in the local store. Note that every change
affecting and object is generally handled as a CRUD operation and labelled as a
“delta” (term emphasizing the differential nature).

The granularity of change tracking is one of the first parameter to define when
designing: in fact, according to our requirements or constraints we should determine
whether it might be useful to update all properties in an entity as a response to a
single property change. Otherwise, recording the individual changed property is
the choice, to reduce overhead at the cost of raising complexity.

The need for a mean to record changes is unquestioned, anyway. It may be just
a Boolean attribute in the local store to indicate whether the object is new or has
been updated since the last alignment. Adding some sophistication, changes could
be recorded outside the main store as a dictionary of changed properties with an
associated timestamp.

3.1.3 Conflict Resolution
The potential for conflicts exists on every occasion we are dealing with two or

more stores representing the same logical set of data. A change to an object in one

32

3.1. Synchronization Types and Elements

store could fire at about the same time as a change to the corresponding object in
a second store, without intervening synchronization. These changes are labelled as
concurrent, and some action may be necessary to leave the conflicting objects in a
consistent and valid state across all stores once they are aligned.

Simplifying this scenario as much as possible, reading and writing a store can
be considered an atomic operation and resolving conflicts purely means choosing
which version of the store to keep – this is actually more common than we might
think.
Otherwise, changes precedence when resolving conflicts can be thought according
to multiple criteria. When a central server is involved, the most straightforward
approach is just to assume the latest synchronization operation takes priority. Any
change present in the operation overwrites previously stored values. With a more
complex procedure, change precedence is determined by means of the comparison
of creation timestamps of conflicting operations.
Although approaches to conflict resolution may vary, it is critical that the resolution
stays deterministic. This means that if the same scenario occurs on two different
devices, they should end up taking the same action.

Conceiving a model that cannot become invalid because of concurrent changes,
if possible, is the best choice, since it avoids us the complexity brought by conflict
resolution. Of course, this is much easier when starting a new project, because
reasoning on potential invalid states may be a difficult, time-consuming task.

33

3. Data Synchronization Logic

3.2 Client-Server Communication
Across the previous section, we distinguished architectures built upon the client-

server communication schema from the ones in which each host (peer) has the same
functional role with respect to data synchronization.
In this section, we concentrate on the former, scrutinizing communication between
client and server to better understand how it may shape according to functional
and non-functional software requirements.

3.2.1 Directional Aspects
When referring to C-S synchronization so far, we have been focused on the

synchronicity of the process and on the differential nature of transfers. Nevertheless,
like any other communication, it features a directional property.
By inspecting the Data Synchronization API of Tizen (convenient to analyze since
it exposes its functionality very clearly), mobile OS based on the Linux kernel
and governed, among the others, by Samsung and Intel, we can observe how this
property defines the roles of sender and recipient and the reciprocity of the messages.
Below we report the possibilities the aforementioned API provides.

Two Way. Indicates a symmetric synchronization type in which the client and
the server exchange information about modified data in these devices.

One Way from Client. Indicates a synchronization type in which the client
sends its modifications to the server, but the server does not send its modifications
back to the client.

Refresh from Client. Indicates a synchronization type in which the client sends
all of its data from its store to the server (backup). The server is then expected to
replace all data in the target store with the data received from the client.

One Way from Server. Indicates a synchronization type in which the client
gets all modifications from the server, but the client does not send its modifications
to the server.

Refresh from Server. Indicates a synchronization type in which the server
sends all its data from a store to the client (restore). The client is then expected
to replace all data in the target store with the data received from the server.

34

3.2. Client-Server Communication

3.2.2 Temporal Aspects
Periodic Synchronization
Running data synchronization as a scheduled task may represent a fundamental
feature. The idea is to force the process start every certain time interval, which,
optionally, may be configurable by the user.
The key software requirements leading to the implementation of periodic synchro-
nization are the high need for fresh data, content refresh in background and, more in
general, automation. In terms of non-functional requirements, the User Experience
benefits from the independence of the process from user input. Furthermore, if
configuration is provided, it increases the user’s possibilities. Finally, a smart
implementation, maybe in coordination with the back-end services, can positively
affect battery and mobile data consumption.
Speaking of applicability, periodic synchronization well fits the needs of informative,
data-intensive applications, especially if featuring dynamic widgets. Among the
examples, we can collocate weather or transportation forecasting applications and
widgets, but also connected personal to-do lists and portfolios. Some impediments
may be represented by OS-logic related environmental conflicts, which arise from
various conditions, such as battery level, connectivity or system preferences.
From a technical point of view, operational asynchronicity is almost a requirement
due to the background processing needs of this implementation.
As already mentioned when introducing client-server communication, differential
transfer is the preferred choice to reduce overhead, being able to leverage both
communication and processing.
A good example of periodic synchronization, as underlined in Chapter 1, is given
by Evernote’s data alignment policy, which also provides configuration settings.

On-Demand Synchronization
The concept of on-demand process start is very common when it comes to synchro-
nization events. It is even mandatory when data alignment is a component in a
larger business process.
The idea is to bind the triggering of the synchronizing action to some specific
events and conditions (in the typical Event-Condition-Action scheme). Adopting
on-demand synchronization, the front-end designer is able to set the opacity of the
process according to non-functional requirements, deciding if the user should be
acknowledged of triggering or running state of data alignment. On-demand data
synchronization is essential when aiming at realize a responsive UI in applications
based on layered-structured content to be browsed, like clients for cloud-based web
applications.
In opposition to periodic synchronization, this temporal scheme provides that most
of the complexity is handled by the client, in a way that queries respond to the

35

3. Data Synchronization Logic

restrictions dictated by the application context (obviously unknown to the server).
In accordance with this hypothesis, transfers are often differential with a dual
purpose: exploiting the client-side complexity level and keeping the experience
responsive and continuous thanks to negligible processing effort requested.
Privileging on-demand synchronization over other temporal scheme may provide
better battery, bandwidth and mobile data consumption. As a downside, if it is
designed to be the only scheme to be implemented, its failure becomes slightly
more critical, as obsolescence rate of data is increased with respect to periodic
refreshing, for instance.
In conclusion, on-demand synchronization is widely used in mobile applications,
being almost necessary to provide a decent user experience. In fact, in our in-
vestigation reported in Chapter 1, we identified it in all the applications under
inspection.

Instantaneous Synchronization
The concept of instantaneous synchronization is the result of the merge of the ideas
of notifying the client of changes and aligning data.
The adoption of this temporal scheme must meet the functional requirements,
among which the immediate update of contents with the minimum delay possible
must be a priority. Otherwise, the need for notifications falls, and with it, the idea
of bind them to a synchronization event.
The typical approach to this implementation involves push notifications (i.e. mes-
sages sent from the server to a push notifications provider, which dispatches them
to the client application), but it can be used with pull mechanisms as well (less
efficient in terms of computational resources used and battery consumption).
Data synchronization is triggered by the notification messages, so the complexity
is balanced on client and server, while transfer are mostly differential, thanks to
the information sent by the server.
Instantaneous synchronization is the choice when mobile applications have to notify
the user about important changes, like social interactions, critical updates and
reminders.
As an example, we can cite the notifying implementation observed in Instagram,
as reported in Chapter 1.

36

Chapter 4

Data Synchronization Patterns

Synchronization Patterns. The core phase of data synchronization encapsu-
lates the most complex and diverse logic of the entire process. As we have seen in
the previous chapters, there are several factors to consider when trying building a
model to describe data alignment. Furthermore, modeling the dynamic behavior
adopted during the client-server communication would be not only impossible, but
also pointless. What is interesting is instead abstracting the logic of the process
under three specific dimensions: time, amount of data to store and sophistication
of the transfer.

This three-headed inquiry helps us to identify some typical patterns that are
already adopted and implemented in real-world applications, and not only within the
mobile ecosystem. Actually, the abovementioned investigation has been successfully
achieved by McCormick and Schmidt in [11], which features a valid set of patterns
to analyze. As explained in the original study, most of the recognized patterns
are architectural patterns, which means that they should be viewed as structural
organization schemas addressing the problems of synchronization in a variety of
different contexts.

37

4. Data Synchronization Patterns

Pattern Form and Grouping. In [11], data synchronization patterns are thor-
oughly classified using a variant of the Gang of Four and POSA pattern forms.
In this chapter we cite and credit the aforementioned study, trying to improve
patterns’ visual representations and to classify them in a more compact depiction.
We reviewed the pattern representation to adopt the Coplien Form already used to
present User Interaction Patterns. We slightly altered the pattern form by adding
the pattern’s intent and a visual explanation expressed by UML diagrams, so the
resulting structure is arranged as follows:

Intent
Statement of the intent of the pattern.

Problem
Statement of the problem(s) that the pattern works to solve.

Context
Definition and constraints of the specific context of applicability of the pattern.

Forces
Scenarios and motivations supporting the pattern logic or application.

Visual Explanation
Diagrams or graphical representations explaining the pattern and a descrip-
tion of the interaction between the different elements of the pattern.

Solution
Explanation of how the pattern solves the problem considering the constraints
of the context.

Resulting Context
Definition and constraints of the context resulting from the application of
the pattern.

Rationale
Philosophy inspiring the pattern.

38

Finally, to better classify patterns, we added a grouping logic based on the
three characterizing dimensions we mentioned before: time, storage strategy and
transfer logic sophistication.

39

4. Data Synchronization Patterns

4.1 Patterns By Time

4.1.1 Asynchronous Data Synchronization
Intent
Performing all tasks required by data synchronization in asynchronous way, allow-
ing parallel on-screen operations. This means that the event does not block or
consistently slow down the user interface.

Problem
Several connected mobile applications have quick access to data as a non-functional
requirement. Speaking of rapidity in the mobile environment, in terms of UX
responsiveness and waiting time are key elements. That been said, these two
aspects are complementary and should ideally be balanced: a responsive interface
taking ages to load data leads to user frustration, just like a quick data-loading
interface lacking in responsiveness feels obsolete.

Context
While the current state of the application may be rather generic, the next state
should not strictly depend on the result of data alignment event, especially when
the pending operation includes uploads. This context matches all the scenarios
in which the application features consumption possibilities and the user performs
uploads or downloads on-demand, just occasionally. Clearly, the outcome of those
tasks does not change the information consumption experience: social networks’
clients are a fitting example. More broadly, applications in which stale data is
valuable in terms of browsing because of highly informative contents or quasi-static
data are ideal candidates: blocking the interface to obtain fresh data —not a
mission critical operation— would not make sense.

Forces

• Synchronizing data while maintaining the application availability greatly
improves the user experience: it is as valuable as an actual feature.

• Background synchronization is noticeably less obtrusive in terms of compu-
tation on multitasking-enabled systems: asynchronous synchronization is a
best practice in this scenario.

• A non-immediate response may be commensurate to the need of fresh data,
which is not always critical.

40

4.1. Patterns By Time

Visual Explanation

Figure 4.1: UML Sequence Diagram for Asynchronous Data Synchronization

Solution
The data alignment operation is triggered by a generic event, being it an aware
interaction or a state change detection (refer to Android Intents or iOS push
notifications). As shown in fig. 4.1, the application provides an EventListener
capturing the event and communicating it to the context. As the delegate object is
informed (in the diagram, for simplicity, we picked the same activity instantiating
the listener), an asynchronous task implementation (AsyncTask in the diagram) is

41

4. Data Synchronization Patterns

instantiated. The lifecycle of this object is completely disconnected from the one
of the application, in such a way not to interfere with its functionality. Optionally,
an animation signaling the running alignment process may be handled by the task
itself. At synchronization completion, a message is sent back to the calling object,
or even broadcasted, depending on the implementation. Optionally, a feedback
signaling the end of the operation may be displayed via notification mechanisms
(for instance, Android Toasts or iOS UIAlertViews).

Resulting Context
The context is refreshed and features new content is appended to stale data.
Depending on the design choices, the content may be added incrementally, substitute
stale data or kept ready until a certain interaction is registered (especially in case
of background synchronization). Optionally, the completion of data alignment
may be notified within the interface of the application or exploiting a system-
level implementation. A problematic resulting context may be generated when
inconsistencies are raised from concurrent access to a shared dataset. Depending
on the application’s requirements, this may represent a major issue or a negligible
flaw.

Rationale
Asynchronous synchronization is one of most commonly used data synchronization
patterns in mobile applications. This is due to the fact that its advantages are
evident, while drawbacks are proportionally less critical. In case of background
synchronization the adoption of this pattern is even a requirement. The general
improvement to the UI responsiveness that this pattern contributes to maintain
favors its inclusion within the best practices for developers of many platforms.

42

4.1. Patterns By Time

4.1.2 Synchronous Data Synchronization
Intent
Performing data synchronization in synchronous way, making the application’s
components wait for its completion before starting any other operation.

Problem
In some scenarios, the representation of data within the application’s interface must
be extremely accurate, even close to a real-time mirroring. Additionally, working
with stale datasets may result useless, hindering or eliminating productivity features
of applications. More generally, sometimes the next state in a navigation session
within the application may depend on the result of operations on data involving
client-server or peer-to-peer exchanges, and the application of this pattern is an
effective way to prevent the application from entering a non-functional state.

Context
Typically the application context features a state providing interactors to start
a transition whose outcome is crucial to determine the subsequent state. Stale
data is rather useless, since its reliability in terms of freshness and consistency is a
fundamental requirement. Even out-of-order data transmission could represent an
issue.

Forces

• Synchronicity is required when the application allows sensitive data modifica-
tion via online services.

• Synchronous alignment resembles a transaction-like procedure, featuring
benefits like atomicity, consistency, isolation and durability.

• Stale data may be useless or even harmful with respect to the application’s
functionality.

• Authentication-like scenarios are not functional before their completion.

• Synchronous operations may require less time to be completed due to their
UI-blocking approach.

43

4. Data Synchronization Patterns

Visual Explanation

Figure 4.2: UML Sequence Diagram for Synchronous Data Synchronization

Solution
The data alignment process initiation is triggered by a generic event detection by a
listener instantiated within the application (EventListener in fig. 4.2). The actual
synchronization is not handled by an asynchronous or background task. Rather, it
is managed by a dedicated activity (SyncActivity in the diagram) started with this
purpose and running in foreground (this flow is represented by the synchronous
message notation for start synchronization activity in the diagram), optionally
starting a continuous animation until completion. This activity usually does not

44

4.1. Patterns By Time

provide interactors offering some functionality, except for contingent canceling
options. As the previous activity is resumed, it performs some operations as a
result of the termination of the data alignment process. In the diagram, this
concept is pictured as a method call, named on activity result method.

An alternative simpler solution may provide a single foreground activity handling
the whole synchronization process within its lifecycle, keeping the UI blocked.

Resulting Context
The UI is blocked, inhibiting the functionality of the application until the process’
completion. This context may be problematic as any interruption, even if important
(think to a network call, for instance), could interfere with the data alignment
operation, with potentially weak results for both the interrupting task and the
foreground synchronization. As synchronization is completed, the context provides
a new state in which fresh data can be displayed according to the application’s
needs. This data is coherent with the order of the states that the application has
undergone.

Rationale
The philosophy behind this pattern is to serve fresh data as a crucial component
for the application to provide a certain functionality. We can even state that, by
applying this pattern, serving fresh data becomes a functionality of the application.
As mobile systems evolve towards multitasking scenarios, enabled by architectures
supporting advanced parallelism, the adoption of this pattern appears to be dis-
couraged. Actually, synchronicity may still represent the only effective solution for
situations in which the data flow must stay coherent and predictable.

45

4. Data Synchronization Patterns

4.2 Patterns By Storage Strategy

4.2.1 Partial Storage
Intent
On the sidelines of a synchronization process, storing data on the device only as
actually needed, to optimize network bandwidth and storage requirements.

Problem
Many applications work with large amounts of data to synchronize. Download
operations obviously imply the storage of data on the devices’ memory, but the
their storage capability is limited and not intended to be saturated due to this
mechanisms. This problem of storage is accentuated for applications that were
originally intended to run on desktop systems, in which resources like network
bandwidth and storage itself have always been more abundant.

Context
The fruition of contents provided by the application requires some expensive
operations in terms of bandwidth and storage. The target dataset is too large to
be entirely stored on the device, besides the fact that in most of the cases it is not
needed.

Forces

• Devices’ mass storage should remain available for other purposes.

• Unneeded data should not be stored.

• Large-sized resources should not be stored as well, especially if not consulted
continuously.

46

4.2. Patterns By Storage Strategy

Visual Explanation

Figure 4.3: UML Sequence Diagram for Partial Storage

Solution
Instead of opting for a brutal pre-fetching, data synchronization is dynamic, on-
demand, and triggered by some generic listeners in the application, most typically
using a variant of the Virtual Proxy pattern. A virtual proxy is an object having the
same interface as system objects intercepting certain events (for example method
calls, short text messages, push notifications), in this case dedicated to handle
the synchronization logic. The Partial Storage pattern can be realized using the
Virtual Proxy combined with Data Access Objects (DAOs), having the virtual
proxy triggering alignment when needed data is not in local storage (as determined
by the DAOs). The virtual proxy instance queries the DAOs for the data to

47

4. Data Synchronization Patterns

populate its fields. Logically, as the proxy object is destroyed, its encapsulated
data becomes unavailable.

Resulting Context
Fresh data is obtained incrementally and resides in cache until needed. Without
network connectivity and with application components not loaded in memory,
contents to be downloaded on-demand exploiting this pattern cannot be displayed.

Rationale
In a context in which mobile devices are designed to host large amounts of applica-
tions, the need for persistence of data must be carefully evaluated. Partial Storage
provides a solution to filter data not to store physically, featuring an interface to
handle on-demand transfers.

4.2.2 Complete Storage
Intent
Storing all the data to be synchronized on the device, so that is persistently available
for consultation, improving responsiveness and nullifying loading times.

Problem
In all scenarios characterized by the absence of network connectivity, the con-
sumption of online data is inhibited, as well as associated productivity features.
Having data stored on the device’s internal memory allows offline consultation
and work. In fact, some applications meant to broadcast up-to-date emergency
information, regarding for instance first-aid stations or shelters in case of natural
disaster, are precisely designed to make data always available, due to the likely
lack of connectivity implied by such a scenario.

Context
The context is usually identified with components of the application conveying
information extracted by remote data. Typically, but not necessarily, the operations
implied by Complete Storage are performed at application launch. However, the
next state of the application requires data synchronization.

48

4.2. Patterns By Storage Strategy

Forces

• Complete Storage enables offline mode.

• Low network bandwidth may negatively affect frequent data transfers implied
by Partial Storage.

• The interface is considerably faster at loading contents.

Visual Explanation

Figure 4.4: UML Sequence Diagram for Complete Storage

Solution
An application component (AppActivity in the diagram in fig. 4.4) communicates
directly with Data Access Objects, which are responsible for data synchronization
and persistence. The adoption of this pattern enables storing the entire dataset on
the devices, incrementally or with a single transfer.

49

4. Data Synchronization Patterns

Resulting Context
With the application of Complete Storage, the next state of the application features
the requested contents. The problematic task is to determine the freshness of data:
in fact, since data may refer to an earlier synchronization event, it can be stale.
The adoption of some counter-measures may consist in storing information related
to transfers to be visualized with the actual data.

Rationale
As mobile devices are becoming powerful computational tools covering more and
more use cases, offline work represents a valuable feature. Complete Storage pattern
provides a straightforward solution to make all the data available at any time,
regardless of the network availability.

50

4.3. Patterns By Transfer Logic Sophistication

4.3 Patterns By Transfer Logic Sophistication

4.3.1 Full Transfer
Intent
The synchronization process transfers the entire dataset at once between the device
and the remote system.

Problem
Sometimes designing a deep reconciliation scheme is a painful and useless task,
especially if the dataset is prone to change entirely after a modification triggered by
manual or automatic updates. A simple reconciliation mechanism consisting in the
dataset overwriting may represent an effective solution, also facing the problems
due to dataset corruption.

Context
The context resembles the one described for Complete Storage. To apply Full
Transfer the dataset of the application must be small enough that it can be
downloaded or uploaded in one transfer.

Forces

• Designing a fine-grained reconciliation scheme takes time and resources.

• A small dataset allows its transfer between the device and the remote system.

• If data is not prone to change, transfers are occasional, so their size may not
represent a big concern.

51

4. Data Synchronization Patterns

Visual Explanation

Figure 4.5: UML Sequence Diagram for Full Transfer

Solution
An application component (AppActivity in the diagram in fig. 4.5) communicates
directly with a generic object handling the synchronization event (SyncDelegate in
the diagram) in such a way to transfer the entire dataset in a single transfer, with
no further granularity.

Note that the visual representation keeps the scenario as abstract as possible,
but in place of the SyncDelegate, depending on the implementation, we could
have an object enabling synchronous or asynchronous synchronization. In this
description the time management of the transfer is out of scope though, as the
focus is on the transfer logic.

Resulting Context
With network connectivity available, fresh data is provided. Due to the simple
nature of the reconciliation scheme, the transfer may require some time to be com-
pleted, depending on the dataset’s size. Data being transferred may be redundant,
if only partially modified since the last synchronization event: in the resulting
context this does not change anything dramatically in terms of visualized contents,
but bandwidth is wasted and, depending on the synchronous or asynchronous
implementation, the UX is altered.

52

4.3. Patterns By Transfer Logic Sophistication

Rationale
The need for data synchronization does not always translate for the need of a
complex, fine-grained reconciliation scheme. Full Transfer provides a simple solution,
still able to cover realistic scenarios in which the dataset size is limited.

4.3.2 Timestamp Transfer
Intent
For each time a synchronization event is triggered, only the parts of the dataset
changed since the last synchronization are transferred between the mobile device
and the remote system, taking advantage of a last-changed timestamp.

Problem
Considering the issues of network availabilty, speed and bandwidth affecting devices
used in mobility, the amount of data transferred to reconcile datasets between
a device and a remote system should be minimized. The aforementioned Full
Transfer pattern wastes too many resources and the put some notable constraints
over the dataset size and dynamicity. Since it is still imperative to synchronize
data, another method is needed to reduce data transfer.

Context
The typical context suggesting the application of Timestamp Transfer features
contents that are prone to change frequently over time, with remarkable granularity.
Long lists of entries that are individually editable, or feeds whose use cases require
frequent or periodic data refresh.

Forces

• Information streams and Instant Messaging applications require fine-grained
mechanisms to drastically reduce redundancy in data transfers.

• Large datasets are quite common, and applying Full Transfer is neither
feasible nor convenient.

• If data is prone to change frequently over time, many transfers are expected
to happen, so their size should be minimized to preserve responsiveness.

53

4. Data Synchronization Patterns

Visual Explanation

Figure 4.6: UML Sequence Diagram for Timestamp Transfer

Solution
The remote system provides a timestamp to the Data Access Object, that performs
the comparisons with the local one. In case of more recent data stored on the
remote system, synchronization is triggered. The remote system returns only data
that has been added or changed after the local timestamp. In the case of two-way

54

4.3. Patterns By Transfer Logic Sophistication

synchronization enabled, the device submits data that has been created or updated
since the last successful submission.

Resulting Context
Generally, having applied Timestamp Transfer, the next state of the application is
expected to include fresh data appended to less recent content.

Rationale
Timestamp Transfer pattern approaches to transfer logic resembling the approach
of Asynchronous Synchronization to time management, meaning that it aims at
optimizing not just the performance, but also non-functional aspects. Thanks to
the timestamp exploitation, this differential transfer approach is also extremely
flexible, not imposing strictly constraints on the data model.

4.3.3 Mathematical Transfer
Intent
For each time a synchronization event is triggered, only the parts of the dataset
changed since the last synchronization are transferred between the mobile device
and the remote system, using a mathematical method.

Problem
Having already recognized the issues of network availabilty, speed and bandwidth
affecting devices used in mobility, the amount of data transferred to reconcile
datasets between a device and a remote system should be minimized. Mathematical
Transfer pattern provides an alternative approach for scenarios not complying with
timestamps exploitation. For instance, checksums of large pieces of data could
be compared just by transmitting the checksum to the remote system, saving a
remarkable amount of bandwidth.

Context
The context is close to the one illustrated for Timestamp Transfer, with the
difference that the data structure does not allow a discrimination based on history.

Forces

• Transfers’ size should be minimized.

• Complex comparisons to determine the differential bundles should be per-
formed at server-side.

55

4. Data Synchronization Patterns

• Some type of data (e.g. large binary data) is not eligible for timestamp
comparison.

Visual Explanation

Figure 4.7: UML Sequence Diagram for Mathematical Transfer

Solution
A mathematical method or algorithm is applied to a token passed by the Data
Access Object and, based on the outcome computed on the remote system, decides
what has to be transferred between the device and the remote system to achieve
data alignment.

56

4.3. Patterns By Transfer Logic Sophistication

Resulting Context
Usually, having applied Mathamtical Transfer, the next state of the application is
expected to include fresh data, which has been incrementally updated thanks to
the exploitation of a mathematical algorithm.

Rationale
Mathematical Transfer can be considered as a generalization of the Timestamp
Transfer. Not relying on timestamps, this pattern is even more versatile and may
result extremely effective when having to update large binary files. The problematic
aspect is given by the scarce re-use potential of mathematical methods, since they
typically vary for different types of data. In addition, these methods often require
more time to be developed and involve proportionally more steps than Timestamp
Transfer’s reconciliation processes.

57

Chapter 5

Patterns Composition

5.1 Building the Big Picture
In our study so far, we have been exploring several aspects of data synchro-

nization in mobile devices. We have been able of distinguish some scenarios,
perspectives, phases and scopes of this high-complexity topic.

Our analysis of data alignment mechanisms in commercial applications let us
identify some high level behaviors, which inspired us through the illustration of
the triggering dimension of synchronization processes. This dimension meets the
proper focus under the User Interaction lens, under which we tried to identify and
present some simple patterns.

Zooming on the core phase of the process, we have seen how fuzzy the data
synchronization logic is, identified its main elements and reviewed some dimensions
of client-server communication under another perspective, to better shape our
scheme.

Guided by the analysis made on architectural aspects and logic, we deepened
our knowledge of the problem of data synchronization, whose study has produced
some useful patterns already known in literature. We illustrated them and tried to
expand their coverage with some proper visual representations in Unified Modeling
Language.

Through this and the next chapters, we would like to realize a complete model
of data synchronization in mobile applications. To getting started with this task, we
are using the outcomes of what we have experimented with so far as cornerstones,
to build something new. The first step will be studying the orthogonality of
interaction and synchronization patterns introduced so far. Eventually, we will try
to combine known patterns to build remarkable new composite patterns, finding
some significant implementations in real-life applications.

59

5.1.1 Tabular Synthesis
The following table combines the patterns we identified and illustrated in our study so far: as rows, we listed

User Interaction Patterns, while as columns we have Data Synchronization Patterns. All cells having a check as value
are indicating a possible match in the adoption of the corresponding pair of patterns. Let us state that orthogonality
is remarkable, since we register a noteworthy amount of checks for each row/column.

In the next section, using this tabular view as a starting point, we are going to introduce a set of new, complex
patterns using User Interactional and Data Synchronization ones as basic building blocks.

Table 5.1: Synthesis of the compatibility between User Interaction and Data Synchronization patterns

Time Storage Strategy Transfer Logic

Syn-
chronous

Asyn-
chronous

Partial
Storage

Complete
Storage

Full
Transfer

Time-
stamp
Transfer

Mathema-
tical

Transfer
Application launch X X X X X X X
Content scrolling X X X X X
Context change X X X X X
Pull-to-refresh X X X X X X
Form submission X X X X X X X
No interaction (push) X X X X X X
No interaction (pull) X X X X X X

60

5.2. Composite Patterns Conception

5.2 Composite Patterns Conception
Pattern Form. Patterns are illustrated in compliance with the Coplien Form
we already adopted to present User Interaction and Data Synchronization patterns.
We slightly alter the pattern form by adding a visual explanation expressed by
IFML and UML diagrams, so the resulting structure is arranged as follows:

Problem
Statement of the problem(s) that the pattern works to solve.

Context
Definition and constraints of the specific context of applicability of the pattern.

Forces
Scenarios and motivations supporting the pattern logic or application.

Visual Explanation
Diagrams or graphical representations explaining the pattern and a descrip-
tion of the interaction between the different elements of the pattern.

Solution
Explanation of how the pattern solves the problem considering the constraints
of the context.

Resulting Context
Definition and constraints of the context resulting from the application of
the pattern.

Rationale
Philosophy inspiring the pattern.

61

5. Patterns Composition

5.2.1 Pattern: Application Launch Synchronous
Synchronization

Problem
We want to load fresh data on application launch, so we need to perform synchro-
nization as soon as possible.

Context
It can be a blank container waiting for its composition, or a splashscreen displayed
while data alignment is performed.

Forces

• Having up to date content displayed at application launch improves the
perception over user experience.

• Occasionally some functionalities are inhibited without fresh data, so – if it
is the case – the soon it is obtained, the better the application works.

• Having data aligned at application launch gives the user the opportunity not
to refresh manually.

• Synchronize data synchronously in this scenario may be the best option, if
stale data is discarded periodically or useless in terms of functionality.

62

5.2. Composite Patterns Conception

Visual Explanation

Figure 5.1: IFML diagram of Application Launch Synchronous Synchronization

63

5. Patterns Composition

Figure 5.2: UML Sequence Diagram for Application Launch Synchronous Synchronization

Solution
As soon as the composition of the view (the starting point of its lifecycle) starts, the
synchronous synchronization event pattern is applied (refer to onCreate event in
fig. 5.1 on the previous page), with a modal window popping over the active screen
and blocking the rest of the interface. As the window’s view is composed (onCreate
view event), the synchronous synchronization event is triggered. Focus on that
screen is restored when the synchronization process is concluded, successfully or
not. Of course, after a positive outcome, the view composition is completed and
contents are displayed (in the UML sequence diagram in fig. 5.2 these operations
are generically encapsulated in on activity result method). In terms of transfer
strategy, this pattern may be coupled with Full Transfer.

64

5.2. Composite Patterns Conception

Resulting Context
Main activity context of the application, populated with up to date content.
Rationale

Rationale
If fresh data is a functional requirement, then waiting for its availability may repre-
sent a solution, given that the trade-off between user experience and functionality
is considered acceptable.

Asynchronous Variant

Problem
We want data refresh to happen as first task, when launching the application,
but without interfere with the rest of the interface, possibly populated with
stale or local data, instead of being displayed blank.

Context
The main view of the application, displaying basic containers comprising stale
or offline data.

65

5. Patterns Composition

Visual Explanation

Figure 5.3: IFML diagram of Application Launch Asynchronous Synchronization

66

5.2. Composite Patterns Conception

Figure 5.4: UML Sequence Diagram for Application Launch Asynchronous Synchroniza-
tion

67

5. Patterns Composition

Solution
As soon as the composition of the view (the starting point of its lifecycle) starts
(onCreate event in fig. 5.3 on page 66), the asynchronous synchronization
event pattern is applied, having focus on the main view container restored
as the synchronization process starts. During data alignment process, the
lifecycle of the application proceeds normally, as emphasized by the use of
asynchronous messages visual notation in fig. 5.4 on the preceding page.
By looking at the same diagram, we acknowledge that, optionally, the UI
may be decorated before, during and after the synchronization process. At
synchronization completion, the contents displayed in the view components
are refreshed (refer to the success flow in fig. 5.3 on page 66, featuring a
ParamterBinding), while a negative outcome may be signaled by means of a
modeless window implementation (error flow in fig. 5.3 on page 66). Transfer
logic (full or differential) may vary in accordance with requirements.

Rationale
Renewing data at application launch is generally a good practice, and realizing
this process using an asynchronous implementation is even better if some of
the components of the interface are functional, regardless of the obsolescence
of data.

5.2.2 Pattern: Content Scrolling Asynchronous
Synchronization

Problem
We want to synchronize elements presented in a scrollable view gradually, without
interrupting the fruition of contents (lazy policy).

Context
Browsing a list – or, more generically, a scrollable container – comprising contents
to be synchronized.

Forces

• Synchronize all the content in a single transfer can be inconvenient, in terms
of performance, bandwidth and storage consumption.

• Requesting ad-hoc interaction to perform data synchronization or refresh
breaks the user experience.

• Data synchronization should remain transparent with respect to the user.

68

5.2. Composite Patterns Conception

Visual Explanation

Figure 5.5: IFML diagram of Content Scrolling Asynchronous Synchronization

69

5. Patterns Composition

Figure 5.6: UML Sequence Diagram for Content Scrolling Asynchronous Synchronization

Solution
Data Synchronization starts in response to the scroll event, given that the activation
expression is satisfied. We are not considering the direction of the gesture, since
the pattern applies to both horizontal and vertical lists. Practically, when the
user exceeds the minimum amount of entries (attribute step in fig. 5.5 on the
previous page) requested to trigger the event, the asynchronous synchronization
starts. The evaluation of this condition is performed by an object that we named
OnScrollListener in fig. 5.6. We want to underline that the focus stays on the
view container the user is browsing (i.e. AppScreen in fig. 5.5 on the previous
page), as indicated by the navigation flow triggered by the onStart event of the
synchronization action. When the action is completed, a positive outcome results
in passing new data to MyList view component, while a negative one fires the

70

5.2. Composite Patterns Conception

visualization of a modeless windows (e.g. a “toast notification” in Android) showing
an error message. The transfer is differential and it can encapsulate look-ahead
policies.

Resulting Context
The context remains unaltered, as the user would expect it. New content is loaded
and displayed.

Rationale
Loading content is a responsibility of the application components: users should
not be requested to perform ad-hoc actions, so this pattern exploit the natural
interaction as a trigger. To achieve all the tasks requested by synchronization
process seamlessly, without blocking the interface, all the operations are executed in
asynchronous way. The only downside is given by latency times, possibly postponing
the invalidation or the incremental population of the list.

5.2.3 Pattern: Context Change Asynchronous
Synchronization

Problem
Modifying the context of exploration in application relying on synchronized data
visualization and manipulation often leads to the need for a data alignment event.
This process must be the most seamless and transparent possible, to preserve the
smoothness and continuity of the user experience.

Context
The context resembles a hypertext: interacting with elements in the container
mimics the behavior of navigation links in a web page.

Forces

• Differential transfer is choice when the application does not need to display
all of its contents in a single view.

• Exploiting screen transitions has two advantages: eliminating the need for
a dedicated interactor and coping with the nature of asynchronous synchro-
nization event.

71

5. Patterns Composition

Visual Explanation

Figure 5.7: IFML diagram of Context Change Asynchronous Synchronization

72

5.2. Composite Patterns Conception

Figure 5.8: UML Sequence Diagram for Context Change Asynchronous Synchronization

Solution
Selecting an entry in the list (which behaves as a link in a hypertext) triggers the
context change (involving some parameters passing to the container comprising the
list view component, as depicted by the data flow connecting the selection event to
AppScreen in fig. 5.7 on the facing page) and the asynchronous synchronization
action. In the UML sequence diagram in fig. 5.8, the object named ListView
handles its invalidation (refresh of its content) as it detects the interaction with
one of its entries (onListItemClick method call). As the action starts (refer to
onStart in fig. 5.7 on the facing page), focus is sent back to the view container,
not to interrupt interaction. A positive outcome of the completed synchronization
process triggers the refresh of the list view component, which loads the new data.
The error outcome implementation may vary. The transfer is differential and it

73

5. Patterns Composition

can encapsulate look-ahead policies.

Resulting Context
The frame does not change and, ideally, the interaction pattern remains unaltered
and applied to the new content.

Rationale
Client applications adopting the “explorer” paradigm often have to deal with large
amounts of data. Synchronizing the minimum amount of needed data at each
step, in compliance with the asynchronous synchronization pattern, offers a good
solution in terms of responsiveness, bandwidth and storage constraints.

5.2.4 Pattern: Pull-To-Refresh Asynchronous
Synchronization

Problem
On-demand synchronization has to be featured as an option, but classical implemen-
tations like buttons in menu-bars look outdated and disrupt the user experience.
The process must be completely unobtrusive, with minimal feedbacks and no
interruptions in terms of functionalities.

Context
Usually a scrollable view container, but it can be a generic one.

Forces

• This pattern is becoming a standard for synchronized lists (e.g. timelines)
and, more in general, scrollable components.

• A vertical gesture requires less effort compared to the selection of a traditional
entry in a menu, given the morphology of most of mobile devices: as a result,
the user experience is more continuous.

• This pattern can replace the “refresh button” in user interfaces, helping to
keep them minimal.

• This pattern provides an “infinite” visual feedback signaling the ongoing
synchronization process, started at alignment initiation and dismissed at
termination.

74

5.2. Composite Patterns Conception

Visual Explanation

Figure 5.9: IFML diagram of Pull-To-Refresh Asynchronous Synchronization

75

5. Patterns Composition

Figure 5.10: UML Sequence Diagram for Pull-To-Refresh Asynchronous Synchronization

Solution
The functionality is intuitive: the asynchronous synchronization process is triggered
by the completion of the gestural combination. Specifically, given that the user
is pointing at the first element of the list, a fling down gesture makes the list
“draggable” from the top to the bottom; to complete the event, the list must be
released after having been dragged for a certain vertical distance, greater than the
value stored in threshold attribute in fig. 5.9 on the previous page). At this point,
the listener (OnRefreshListener object in fig. 5.10) communicates to its parent
to start the animation and asynchronous synchronization pattern is appended.
As usual, starting the action restores the focus on the view container, while at
completion time the contents are refreshed. A modeless window implementation is
displayed in case of errors.

76

5.2. Composite Patterns Conception

Resulting Context
The pattern turns the target view component into an interactor to trigger the
asynchronous synchronization process.

Rationale
This pattern combines the creation of a gestural interactor and the implementa-
tion of asynchronous implementation. Thanks to the continuous visual feedback
provided, it makes the process duration visible to the user, which is consequently
conscious of the process running state.

5.2.5 Pattern: Form Submission Synchronous
Synchronization

Problem
We want to validate and refresh data on a server immediately after the form is
submitted, possibly signaling the process with a feedback.

Context
The view comprises a form and a submit interactor, whose layout depends on the
implementation variant.

Forces

• When user input is required, the most serviceable way to register it is to
commit it after manual confirmation.

• A synchronous transfer can reduce the time required by the operation.

77

5. Patterns Composition

Visual Explanation

Figure 5.11: IFML diagram of Form Submission Synchronous Synchronization

78

5.2. Composite Patterns Conception

Figure 5.12: UML Sequence Diagram for Form Submission Synchronous Synchronization

Solution
Using a simple, intuitive interactor (the submit event in fig. 5.11 on the preceding
page, corresponding to the OnClickListener object in fig. 5.12), the data alignment
process is manually triggered following the form of the synchronous synchronization
pattern, with a foreground modal window interrupting the interaction until process’
completion.

Resulting Context
The resulting context may vary according to the implementation logic. For instance,
it can comprise a modal pop-up or a visual element pinned to the parent view
signaling the operations in progress. However, during the synchronization process,

79

5. Patterns Composition

the user interface is blocked, giving only the possibility to cancel the operation.

Rationale
Committing an operation requires the complete consciousness of the user, whose
first concern is typically about performing a wrong action on data. The easiest way
to letting her/him know of the synchronization process is indeed the application
of this pattern. A synchronous implementation is the best option to monitor and
control the process in a simple way.

5.2.6 Pattern: Push-Triggered Synchronization
Problem
We need to synchronize data as the server sends a message to the mobile application,
acting as a client.

Context
Generic: the push event may happen at any time, given that network connectivity
is available.

Forces

• Push notifications are choice when instantaneous synchronization is a require-
ment.

• Push notifications are able to trigger the decoration of the application’s user
interface.

• The user is accustomed to interact with push notifications.

• Push events enable the most advanced form of automated data synchroniza-
tion, a sort of on-server-demand process.

80

5.2. Composite Patterns Conception

Visual Explanation

Figure 5.13: IFML diagram of Push-Triggered Synchronization

81

5. Patterns Composition

Figure 5.14: UML Sequence Diagram for Push-Triggered Synchronization

Solution
As the push event is caught by the OS, a notification is created within the dedicated
notifications container. Depending on the OS, several options can be provided as in-
teractors, but usually a simple touch let the user navigate to the Details-stereotyped
view component (fig. 5.13 on the previous page), binding some parameters to cor-
rectly display information. It is interesting to underline the effects that the push
event can have on the application’s user interface, which is possibly decorated
within its menu bar implementation. In terms of business logic, the push event
alters some parameters within the application context. In the diagram above, we
stereotyped this event by introducing the collection parameter named ChangesSet.
Usually, when the application is resumed, the control logic mechanisms verify the

82

5.2. Composite Patterns Conception

value of the parameter (in this case, its non-emptiness) and, according to the
comparison result, determine whether synchronization should be performed. Note
that we are not specifying the data synchronization pattern, because in this case,
it would be out of our scope. In some cases, for instance having the application
running in foreground, the synchronization event is triggered directly by the No-
tificationEvent. The UML diagram in fig. 5.14 on the facing page exposes the
server-to-client communication schema, with a mediator interface (Google Cloud
Messaging, Apple Push Notification Service or Microsoft Azure depending on the
platform) forwarding messages to the receiving device.

Resulting Context
The OS landmarks in the user interface and the application’s interface are decorated,
and as the application is resumed, its content is refreshed because of data alignment.

Rationale
Push synchronization permits the ideal implementations of the inverse asynchronous
synchronization technique, with the server notifying the client of changes on data
and triggering the alignment. On the other hand, its implementation introduce
some complexity, since request the creation of some dedicated components of the
application acting as receivers for push events.

83

Chapter 6

Application of the Patterns in
Mobile Front-end Modeling

The closing chapter of this study features a demonstrative nature, aiming at
verifying the applicability of the patterns identified and proposed so far. The
research path undertaken for this examination naturally leads to a concrete experi-
mentation within the frame of Model Driven Development for Mobile Applications,
maintaining the focus on the Front-end design.

6.1 Software Requirements
The application whose Front-end will be modeled using IFML covers a real-world

scenario, being a concept application thought to showcase a popular exhibition
having fashion as main theme. The aforementioned event, named "Il Nuovo [vo-ca-
bo-là-rio] Della Moda Italiana", will be actually hosted by the "Triennale di Milano"
from November 2015 to March 2016.

In this section, we briefly report some of the requirements of this concept
application, in order to discuss them and build a conceptual model based on the
constraints they dictate:

Informative landing view
This section must include a thematic map of the exhibition and other infor-
mative material, comprising an "about" component.

Catalog views for Topics, Exhibitors, Events and Artists
Each room of the exhibition is associated with a single topic. Topics (less
than 20) must be listed in a catalog view. Selecting one, the details of
the associated room are displayed. The same design must be applied to

85

6. Application of the Patterns in Mobile Front-end Modeling

exhibitors (100-150, each one is related to one or more topics), whose detail
view comprises a map showing the rooms in which it is distributed. A list
of the proposed events has to be present, with the possibility to show the
details of the event in a view which contains also a form to save the event in
agenda. Creation of new events or changes to existing ones should be notified
via push notifications. Following the same schema, artists (around 300) must
be listed in a dedicated view, featuring the possibility to view their individual
page including biography, contact information and a high-quality picture of
their artwork.

Integrated dynamic agenda view
This user-centered page is designed to list saved events.

Augmented reality
The application must include an integrated QR-code scanner through which
it is possible to decode the labels which will be placed next to each artwork.
A successful scan triggers the navigation to the associated exhibitor detail
page.

Beacons interaction
The application must react when receiving signals from the sensors that are
distributed alongside the exhibition path. Functionally, when a sensor detects
a device in its proximity, given that positioning systems are active on the
device, a push notification is sent to redirect the user to the page of the
associated room.

Social stream and News views
Dedicated views must be provided for a social stream, showing interactions
related to the exhibition in real-time, and news. The social stream must
be reachable from each exhibitor’s detail page: this interaction flow should
trigger a mechanism to show social posts related to the given exhibitor. News
must be transmitted via push notifications.

For the sake of simplicity, we are assuming that the whole applications’ views
can be consulted after user authentication, which will not be covered by the model.

86

6.2 Model Realization
This section portraits an effective demonstration of the application of the patterns we introduced in the previous

chapter, emphasizing their introduction in the application model. We take as a starting point the model we realized
without integrating data synchronization logic, with the intent of introducing, step by step, adequate patterns to
comply with the requirements.

Figure 6.1: Application Front-end model in IFML

87

6. Application of the Patterns in Mobile Front-end Modeling

6.2.1 Design of Data Synchronization Logic
The application of patterns must strictly match the requirements we have

to satisfy in terms of synchronization mechanisms. Few of them are explicitly
mentioned within the generic software requirements listed in the previous section,
but generally some considerations are mandatory preconditions to determine what
are the best options to rely on.
Let us begin by discerning the processes based on their nature.

Instantaneous synchronization. As stated in the requirements, push notifica-
tions (and subsequent synchronization events) are a mandatory feature to apply
to Events, News and Beacon messages. In this case, we may want to model the
synchronization action as a direct response to the notification, simplifying the
pattern.

Real-Time synchronization is required for the social stream view, but unfortu-
nately there is no effective way to represent it, since it does not involve interaction
at all. However, we would opt for another push mechanism or for an optimized
pull one, as the "long polling" implementation already analyzed on Dropbox mobile
application, in Chapter 1.

On-demand synchronization. Concerning this type of data alignment, given
requirements are very flexible. Nonetheless, as already mentioned multiple times,
the reasoning on the best solutions to apply to each component of the application
must be strict. In fact, the right choice can make the difference in terms of
non-functional requirements in general, which are rather relevant in the Mobile
environment.

Based on the fact that most of informative data is rather static (it rarely changes
over time), synchronizing it asynchronously at application launch makes sense. The
portion of data involved in this process is related to the catalogs views (topics,
exhibitors, artists and events).
Details views for artists and exhibitors is downloaded asynchronously as requested
(i.e. when the view is created). The same process is performed for individual events
and the agenda view.
News and social stream, which are long lists of dynamic data must implement some
lazy techniques to download data: exploiting their scrolling is a possible solution.
Since these components should feature real-time data alignment, we may want to
improve the user experience by adding the feature of manual synchronization via
"pull-to-refresh" interaction: in fact, the idea of having the chance of refreshing
contents manually reinforces the user’s perception of empowerment.

88

6.2. Model Realization

6.2.2 Patterns Application

Patterns for instantaneous synchronization

Event and News entry. Having stated that back-end creation and modification
of events and news articles are to be notified instantaneously, Push-Triggered
Synchronization Pattern is the trivial solution to apply. Actually, in this case the
pattern is highly simplified, to show its behavior within the foreground application:
as a matching push notification is received, an asynchronous synchronization event
is launched. As illustrated in figure 6.2, with a positive outcome of the process
the success interaction flow is taken and the Details-stereotyped component in the
screen is populated, using a token to match the corresponding event or news article.

Figure 6.2: Push-Triggered Synchronization variant for event and news entry

89

6. Application of the Patterns in Mobile Front-end Modeling

Beacons messages. The data alignment event following the reception of a
push notification coming from a sensor in the proximity of the device is modeled
analogously to the corresponding processes already illustrated for events and news.
Specifically, an activation expression acts as process firing condition, stating that
synchronization happens only whether the device’s positioning technologies are
enabled. Furthermore, any event, on successful outcome, appends its message to a
list working as an inbox for beacons. In this way, messages remain available for
deferred consultation. The model is depicted by figure 6.3.

Figure 6.3: Push-Triggered Synchronization variant for beacon messages

Patterns for on-demand synchronization

Landing Screen. The landing screen contains elements based on "quasi-static"
data, which is very unlikely to change over time. This data, together with other
textual data of the same nature used by the application, should be synchronized at
launch time (if not already stored, of course). This scenario perfectly fits with the
Application Launch Synchronization pattern, in its asynchronous variant: its usage
is demonstrated in figure 6.4 on the next page. Under a transfer perspective, let
us underscore that if data synchronized at this stage should actually change very
rarely, full transfer could be applied. Matter of fact, run differential comparisons
would only increase the process’ duration.

90

6.2. Model Realization

Figure 6.4: Application Launch Asynchronous Synchronization

Screens to be populated on creation. Screens that are designed to host
details for a determinate entity typically features heavy contents, like for example
high quality pictures, or even maps. For this kind of application components,
the most clever solution is often to align data on demand, specifically when their
containers are instantiated. This approach can be conceived as a slight variation of
the Application Launch Synchronization pattern, replacing the application launch
with the creation of the screen. Figure 6.5 portraits the application of this pattern
to the Exhibitor Screen.

Figure 6.5: Application Launch Asynchronous Synchronization, variant for views

91

6. Application of the Patterns in Mobile Front-end Modeling

Manual refresh and lazy loading on real-time streams. The sections for
social stream and news are two relevant components of the "Vocabolario" appli-
cation and, in the meantime, feature the most dynamic data. In particular, the
contents for the social stream views is continuously generated at a high pace,
so that a mechanism for real-time synchronization is a requirement. Anyway,
this approach needs at least an alternative and a coordinated implementation:
specifically, a manually triggered refresh may act as a surrogate, while the as-
sociation of content scrolling to synchronization can be integrated. Figure 6.6
depicts the dual application of Content Scrolling Asynchronous Synchronization
and Pull To Refresh Asynchronous Synchronization, exemplified on the News
Screen.

Figure 6.6: Combination of Content Scrolling and Pull-To-Refresh asynchronous synchro-
nizations for the News view

Screens featuring forms. The components of the application featuring actions
on data, associated to the submission of forms, the adoption of the Form Submis-
sion Synchronous Synchronization is the most straightforward consequence. In
the case of event and agenda screens, shown in figure 6.7 on the facing page, the
pattern is also exploited by the delete event accessible from the ToolBar featured
in the agenda Screen, to permit remote removal of saved events.

92

6.2. Model Realization

Figure 6.7: Form Submission Synchronous Synchronization applied to Event and Agenda
views

6.2.3 Resulting Complete Model
Having discussed and illustrated the application of mobile data synchronization

patterns to the application Front-end model, the next step is to evaluate the
outcome. Figures 6.8 on the next page and 6.9 on page 95 are composing the
complete IFML Front-end model of the "Vocabolario" application, now integrating
the data synchronization logic. The outcome evaluation will be covered in the
subsequent paragraphs.

93

Figure 6.8: Application Front-end model, now integrating mobile data synchronization patterns - part 1

94

6.2. Model Realization

Figure 6.9: Application Front-end model, now integrating mobile data synchronization
patterns - part 2

With respect to the original model, this final representation of the application’s
front-end is informative about the interactional, directional and temporal aspects
of data synchronization mechanisms to associate to each component relying on
remote data access. Further information on the nature of data, storage and transfer
strategy may be inferred by analyzing the model.

In the conclusive chapter, we try to identify some more general conclusions on
the introduction of the patterns we presented in this work.

95

Chapter 7

Conclusions and Future Work

We started our work with the specific purpose of deepening our knowledge on
the approaches to data synchronization in mobile applications. The observations we
made, the aspects that we emphasized and the ones that we discarded have shaped
the artifacts we obtained and applied in the final stages of the thesis. Due to the
experimental nature of this path, we cannot claim the goodness of our outcomes: for
instance, the bottom-up approach used to analyze real-world application has some
weaknesses, among which the unavailability of actual code and models. Therefore,
all the considerations done on the deduced implementations are to be deemed
as mere reasoned hypothesis. In Chapter 6, we have applied the patterns we
introduced, but their advantages, liabilities and possible implied compromises are
still to be evaluated. The evaluation process should involve a decent amount of
modeling scenarios, also to study possible extensions or improvements to clear the
idiosyncrasies of our modeling artifacts. On the sidelines of this demonstrative
experience, in the next paragraphs, we try to abstract some positive aspects and
possible drawbacks that can be inferred by the examination of the outcome. Finally,
we attempt to identify some future steps to continue the work we have been
presenting.

Benefits

• Gain in terms of expressive power of the model, which is able to give a
remarkable amount of information about synchronization mechanisms, in
particular on how they affect the user interface. Considering the high amount
of MobileComponents which are directly bound to data synchronization in
client-server applications, like implicit and explicit interactors, this benefit
acquires even more relevance.

• The application of the patterns breaks the barriers between front-end and
back-end design, increasing the continuity of modeling tasks.

97

7. Conclusions and Future Work

• Patterns are easy to combine and modify, to adapt them to particular scenarios.
This has been widely demonstrated in the previous chapter, by applying
variant of the presented patterns to several components of the modeled
application.

Liabilities

• Data synchronization model is not complete, as information inferred by the
front-end model is obviously coarse-grained. On the other hand, this issue is
not unexpected, being data alignment a diagonal problem with respect to
front-end and back-end logic.

• Some notions on the transfer policies, storage strategies and dynamic prop-
erties of data are only partially deducible. In the worst case, we have no
information at all about those aspects.

• Some constraints of the modeling language, IFML, reduce the intuitiveness
of the patterns: for instance, the restitution of the focus to the calling view-
container is represented as a flow outgoing from an "on start" event (associated
to the synchronization action). This is clearly a workaround to achieve a
coherent representation.

Future Work
In this thesis we have been focusing on the enhancement of models with a pattern-
based approach but, as already observed, the model realization is just a stage in
Model Driven Engineering. The next step to make our effort more valuable would
be the definition of rules and templates for code generation (for each target mobile
platform). This stage would exploit the implementability of the IFML language,
and should ideally represent the final step to evaluate the effectiveness of our
introductions.

98

Chapter 8

Related Work

8.1 Design Patterns in Software Development
The concept of "Design Pattern" has been playing a central role in the study

presented in this research work. Despite of this fact, so far we have never deepened
the concept of pattern within the environment it for which it was intended, that is
software design.

In simple words, a pattern highlights a problem occurring multiple times in a
given environment and describes the solution to that problem, in such a way that
the solution can be re-used over and over. More specifically, in software industry a
design pattern is described by a written formal document detailing the elements
characterizing it. According to [8], authored by the so called "Gang of Four",
which in this discipline is a fundamental reference document, the headings of the
specification must include Intent, Motivation, Applicability, Structure, Participants,
Collaborations, Consequences, Implementation, Sample Code, Known Uses and
Related Patterns. Eventually, as design patterns have been growing in popularity,
alternative pattern forms have been defined: the most common are Portland,
Coplien (adopted to introduce patterns in chapters 2, 4 and 5), POSA and P of
EAA.

In the upcoming paragraphs (Naming, Forces, Issues) we are reporting some
remarks on patterns creation, taking inspiration from the considerations articulated
by the author on enterprise software Martin Fowler in [3].

Naming. A great benefit resulting by the identification of patterns is given by
the possibility to organize, name and catalog the problem-solution scenarios, so
that their reusing potential is facilitated. For this reason, choosing an effective,
evocative name is a valuable task, keeping in mind that it should be part of a
vocabulary of software techniques.

99

8. Related Work

Forces. A common misunderstanding about patterns results from thinking that
they should introduce something new in software engineering. This not true at
all, as their goal is to capture knowledge, rather than invent it. Precisely because
of this, when presenting a pattern, writers should strongly motivate their need,
emphasizing the forces behind them. Under this perspective, trying to think about
occasions in which the pattern usage would not be recommended can be useful, at
least to identify an alternative pattern.

Issues. Granularity express the surface of conceptual ground covered by a pattern.
Typically, selecting granularity opens a debate not allowing absolute solutions: in
fact, deciding where to place boundaries between different patterns operating on
nuances of the same problem is a hard task. Another critical aspect is the task-
oriented nature of patterns. Tool orientation in software leads to simplifications,
and pattern writing does not represent an exception: observing a framework and
identifying tools is intuitive. But patterns should stay task-oriented, because of the
natural answer that task orientation provides to designers adopting the pattern.

The closing paragraph of this section tries to connect the patterns introduced
in this document to classic object-oriented design patterns —as classified in [8]—
based on their problem-solving approach.

The Behavioral Approach. By definition, "behavioral patterns are concerned
with algorithms and the assignment of responsibilities between objects" [8, p. 249].
They focus not just on objects and classes, zooming also on the existing communi-
cation mechanisms between them. This kind of approach broadly resembles the one
used to create the patterns illustrated in our research: even though it may appear
tough to visualize through the IFML renditions, this similarity is emphasized by
the UML sequence diagrams. For instance, by looking at fig. 5.6 on page 70,
representing the dynamics of "Content Scrolling Asynchronous Synchronization", it
is deducible that peer objects cooperate to finalize a task being loosely coupled.
Specifically, the "onScroll" event may be handled by different objects, as well as
the request sent to the synchronization service can originate from more than a
source. Even synchronization itself can be handled by several actors: most of
these responsibilities depend on framework or even system implementation design.
Processes of this nature are similar to the scenarios portrayed by the "Chain of
Responsibility" classic pattern [8, p. 251], in which requests are forwarded and
handled with flexibility, and objects collaborating are loosely coupled.

100

8.2. MDE, IFML and Mobile Applications

8.2 MDE, IFML and Mobile Applications
Besides the notion of pattern, the other pillar of our study is represented by the

scope in which the exploitation of patterns takes place: the modeling environment.

The MDE approach. Model Driven Engineering is an approach to development
using models as main artifacts. This translate to the exploitation of models during
the whole process of development, in contrast with a normal approach that typically
takes advantage of their features only in the analysis and design phases.

The relevance of MDE in software engineering has known a notable growth in
the past five years thanks to rising forces like application pervasiveness and their
multi-platform, distributed nature [5, p.71]. The adoption of an MDE approach
eludes the weaknesses of a trial-and-error typical of adaptively fixed systems, fos-
tering the focus change on gathering abstract representations of the knowledge
governing application domains and their re-use.
On the other hand, code generation from software models is a hard task, since it
requires a complete understanding of the model to code transformation semantics.
As a consequence, end-to-end generation of application code matching the level of
quality of a hand-crafted solution remains an ambitious goal. Despite these diffi-
culties, some impressive outcomes has been achieved, like in the case of WebRatio
[2], company in the MDE tool market, as reported in [5, p.79].

The central role of models in MDE products and services made the industry
agree on the idea of setting some standards to produce platform-independent
models. As already mentioned in chapter 2, the OMG (Object Management Group)
adopted the Interaction Flow Modeling Language (IFML) as a standard in July
2014.

101

8. Related Work

IFML and Mobile Applications Extensions. Let us now explain how IFML
contributes to create suitable platform-independent models (PIM) of graphical user
interfaces for application deployed on multiple systems. As explained in the details
in [6], an IFML PIM provides:

• the specifications of the view composition and content, respectively illustrating
the schema of containers and their components;

• the specifications of events (commands) affecting the state of the User Interface
and of the transitions (effects of interaction) portraying the effects implied
by the state change;

• the parameter binding specification, listing the dependencies between compo-
nents and components and actions;

• the actions reference, specified by interaction flows connecting events to
affected view containers or components.

The PIM should be designed for change and its design should adhere to a set of
"golden rules" of the language [4]:

• it should be concise, conveying the front-end model in a single diagram and
avoiding redundancy by exploiting inference from the model;

• it should encourage extensibility, allowing the adaptation to novel require-
ments, interaction modalities;

• it should be implementable, to ensure that models can be mapped easily into
executable applications;

• not everything should be in the model, meaning that, for instance, presentation
aspects should not be covered.

In particular, the extensibility property of the language is what we relied on to
conduct our research work. In fact, IFML provides tools for defining novel concepts
and interaction paradigms, possibly substantially different from the ones for which
the language has been designed. Under this perspective, our study demonstrated
this concept by integrating in models information on data synchronization, an
aspect that is typically closer to back-end logic, rather than front-end design.

To conclude this brief overview of the features of IFML that enabled this work,
we mention some extensions —widely adopted for the representation of the patterns
presented in the previous chapters— of the language conceived for the design of
mobile applications.

102

8.2. MDE, IFML and Mobile Applications

The class Screen, representing a screen of the application, has been defined by
extending ViewContainer, as well as ToolBar, which may contain other containers
and have on its boundary a set of events. The MobileSystem stereotype has been
introduced to distinguish ViewContainers that in mobile interfaces are devoted to
specific functionalities (like Notifications, Settings). MobileComponent extends the
classic IFML class ViewComponent and denotes mobile view components, such as
buttons or icons.

103

Bibliography

[1] jimcoplien - gertrudandcope. http://sites.google.com/a/gertrudandcope.
com/www/jimcoplien/. Accessed: 2015-04-28. 19

[2] Rapid mobile app and web application development platform. http://www.
webratio.com/. Accessed: 2015-05-05. 18, 101

[3] Writing software patterns. http://www.martinfowler.com/articles/
writingPatterns.html. Accessed: 2015-06-20. 99

[4] Marco Brambilla and Piero Fraternali. Interaction Flow Modeling Language:
Model-Driven UI Engineering of Web and Mobile Apps with IFML. Morgan
Kaufmann, 2014. 18, 102

[5] Marco Brambilla and Piero Fraternali. Large-scale model-driven engineering
of web user interaction: The webml and webratio experience. Science of
Computer Programming, 89:71–87, 2014. 101

[6] Marco Brambilla, Andrea Mauri, and Eric Umuhoza. Extending the interac-
tion flow modeling language (ifml) for model driven development of mobile
applications front end. In Mobile Web Information Systems, pages 176–191.
Springer, 2014. 18, 102

[7] Andre Charland and Brian Leroux. Mobile application development: web vs.
native. Communications of the ACM, 54(5):49–53, 2011. 17

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Pearson Education,
1994. 99, 100

[9] Eeva Kangas and Timo Kinnunen. Applying user-centered design to mobile
application development. Commun. ACM, 48(7):55–59, July 2005. 17

[10] Drew McCormack. Data synchronization. http://www.objc.io/issue-10/
data-synchronization.html, March 2014. Accessed: 2015-05-12. 30, 31

105

http://sites.google.com/a/gertrudandcope.com/www/jimcoplien/
http://sites.google.com/a/gertrudandcope.com/www/jimcoplien/
http://www.webratio.com/
http://www.webratio.com/
http://www.martinfowler.com/articles/writingPatterns.html
http://www.martinfowler.com/articles/writingPatterns.html
http://www.objc.io/issue-10/data-synchronization.html
http://www.objc.io/issue-10/data-synchronization.html

BIBLIOGRAPHY

[11] Zach McCormick and Douglas C Schmidt. Data synchronization patterns in
mobile application design. 2012. 37, 38

106

	Introduction
	Analysis of Data Sync in Commercial Applications
	Motivation and Goals
	Modus Operandi
	Methodology
	Case Study 1: Evernote
	Triggering Dimension
	Storage and Transfer Dimensions
	Special Features
	Behavioral analysis

	Case study 2: Dropbox
	Triggering Dimension
	Storage and Transfer Dimensions
	Special Features
	Behavioral analysis

	Case study 3: Instagram
	Triggering Dimension
	Storage and Transfer Dimensions
	Special Features
	Behavioral analysis

	Analysis Report – Tabular View

	User Interaction Patterns
	The Interactional Perspective
	Interaction Flow Modeling Language
	Patterns Identification and Analysis
	Pattern: Content Scrolling
	Pattern: Context Change
	Pattern: Pull-To-Refresh
	Pattern: Form Submission
	Pattern: Application Launch

	Data Synchronization Logic
	Synchronization Types and Elements
	The Synchronization Grid
	Change Tracking
	Conflict Resolution

	Client-Server Communication
	Directional Aspects
	Temporal Aspects

	Data Synchronization Patterns
	Patterns By Time
	Asynchronous Data Synchronization
	Synchronous Data Synchronization

	Patterns By Storage Strategy
	Partial Storage
	Complete Storage

	Patterns By Transfer Logic Sophistication
	Full Transfer
	Timestamp Transfer
	Mathematical Transfer

	Patterns Composition
	Building the Big Picture
	Tabular Synthesis

	Composite Patterns Conception
	Application Launch Synchronous Sync
	Content Scrolling Asynchronous Sync
	Context Change Asynchronous Sync
	Pull-To-Refresh Asynchronous Sync
	Form Submission Synchronous Sync
	Push-Triggered Sync

	Application of the Patterns in Mobile Front-end Modeling
	Software Requirements
	Model Realization
	Design of Data Synchronization Logic
	Patterns Application
	Resulting Complete Model

	Conclusions and Future Work
	Related Work
	Design Patterns in Software Development
	MDE, IFML and Mobile Applications

	Bibliography

