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Sommario

La necessità di simulare flussi comprimibili turbolenti in geometrie complesse, come mo-
tori a combustione interna e ugelli di iniettori, richiede algoritmi capaci di gestire griglie
dinamiche con cambiamenti topologici. L’obiettivo di questo lavoro di tesi è sviluppare
un’efficiente strategia per la generazione di una griglia di calcolo non strutturata a
blocchi, basata su superfici non-conformi e compatibile con OpenFOAM, mediante il
codice commerciale ANSYS ICEM CFD. Due casi sono stati analizzati: un motore con
pistone a testa piatta con valvola centrata sull’asse di moto del pistone ed un motore a
valvole verticali con camera di combustione trasparente. Per entrambi i casi sono state
condotte simulazioni mediante il codice di calcolo open-source OpenFOAM, usando un
modello di turbolenza ibrido RANS/LES chiamato DLRM. Per il primo caso di studio
sono stati simulati otto cicli motore ed i risultati, in termini velocità media assiale e
deviazione standard su piani mediani interni al cilindro, sono stati confrontati con i
dati sperimentali. Per la seconda geometria è stata simulata una compressione seguita
da un’espansione; anche in questo caso, i valori istantanei, calcolati, di pressione e
volume del cilindro sono stati confrontati con i dati sperimentali.

Keywords: CFD, OpenFOAM, ICEM, DLRM, coldTopoEngineFoam, topological
changes, dynamic mesh
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Abstract

The recent need for the simulation of turbulent compressible flows in complex geome-
tries, such as internal combustion engine and injector nozzles, requires algorithms able
to handle dynamic grids with topological changes. The aim of this work is the develop-
ment of an efficient meshing generation strategy by ANSYS ICEM CFD that is suitable
for a dynamic mesh handling based on topological changes in OpenFOAM. Two cases
have been considered: a flat-top cylinder head engine with a fixed axis-centered valve
and a transparent combustion chamber (TCC) engine. Afterward, time-resolved fluid
dynamic simulations in OpenFOAM, using the DLRM turbulence model, have been
performed. For the first case, mean axial velocity and rms velocity has been compared
with LES and experimental measurements. In the second case, only cylinder compres-
sion and expansion have been simulated: instantaneous cylinder pressure and volume,
calculated, have been compared with experimental ones.

Keywords: CFD, OpenFOAM, ICEM, DLRM, coldTopoEngineFoam, topological
changes, dynamic mesh
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Riassunto esteso

I dettagli relativi alle condizioni di moto turbolento del fluido nel cilindro di un mo-
tore a combustione interna hanno un ruolo fondamentale nella determinazione delle
prestazioni del motore e delle relative emissioni. La turbolenza della carica controlla
il miscelamento del combustibile con l’ossidante, l’avvio e lo sviluppo del processo di
combustione, lo scambio termico. La simulazione numerica dei flussi turbolenti rappre-
senta uno strumento molto utile per gli ingegneri durante la fase di progetto del motore
in supporto alle metodologie sperimentali, poichè quest’ultime comportano elevati costi
e maggiori tempi connessi alla realizzazione e taratura di apparati per le campagne di
misura.

Per questo motivi, la fluidodinamica computazionale è uno strumento sempre più
applicato nella progettazione dei motori degli anni recenti. Storicamente, i flussi tur-
bolenti sono stati simulati principalmente attraverso metodi basati sulla media di
Reynolds delle equazioni di Navier-Stokes (RANS), sia nella loro formulazione in-
stazionaria (URANS). Nelle simulazioni condotte sui motori a combustione interna,
l’approccio URANS ha dimostrato di poter garantire delle buone predizioni del flusso
mediato, fornendo con una buona accuratezza le caratteristiche macroscopiche del moto
della carica nel cilindro come i vortici di "swirl" e di "tumble". Tuttavia, la maggior
parte dele grandezze fisiche tempo-varianti che caratterizzano i flussi in un cilindro non
possono essere risolte da un modello basato su metodi che forniscono valori mediati.

La turbolenza su piccolo scale, la dispersione ciclica e l’evoluzione delle strutture
tridimensionali all’interno dei motori possono essere simulate solo con approcci come
"Large eddy simulation" (LES). Tuttavia l’alto costo computazionale richiesto dalle
simulazioni LES, il complesso settaggio dei casi, la complessa analisi dei dati unita
alla necessità di griglie di calcolo molto raffinate, ha spinto verso l’implementazione di
modelli ibridi, che in letteratura prendono il nome di "Very Large Eddy Simulation"
(VLES). Alla famiglia di questi modelli appartiene il modello di turbolenza usato in
questo lavoro: il "Dynamic Length Resolution Model" (DLRM) può disinguere in
relazione alla risoluzione spaziale della griglia ed all’avanzamento temporale, quali siano
le scale che possono essere risolte e quali debbano essere modellate, producendo risultati
con un costo computazionale ragionevole se confrontato a qullo della LES.

Anche il modo con cui la griglia di calcolo è ralizzata e il tipo tesso di griglia
contribuiscono sia a ridurre i costi computazionali, sia al perseguimento di risultati af-
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fidabili. Infatti, dal momento che i motori possiedono geometrie abbastanza complesse
e variabili nel tempo, la griglia deve essere interfacciata con solutori appositamente
sviluppati per gestire il movimento del dominio. In questo lavoro, il modello ibrido
RANS/LES DLRM è stato usato in combinazione con un nuovo solutore fluidodinam-
ico e ad una nuova strategia per la gestione della griglia dinamica, che ha richiesto una
originale strategia di generazione della griglia stessa. In particolare, in questo lavoro,
è stata condotta un’analisi approfondita su come realizzare la griglia per garantirne la
qualità durante tutta la simulazione dinamica.

Il software fluidodinamico utilzzato in questo lavoro è OpenFOAM (Open Field
Operation And Manipulation); OpenFOAM è un codice open-source basato su librerie
C++ per la simulazione dei fenomeni fisici collegati alla meccanica del continuo. Il soft-
ware include diversi solutori per la simulazione di problemi di fluidodinamica classica,
utilities e librerie pre-configurate.

Obiettivo di questo lavoro è stato lo sviluppo di una nuova strategia per realizzare
griglie di calcolo ad alta qualità per motori a combustione interna, attraverso il software
commerciale ANSYS ICEM CFD, che possa soddisfare alcuni requisiti fondamentali:

• avere un appropriato boundary layer vicino alle pareti;

• avere un numero di celle più basso di quello tradizionalmente impiegato in griglie
per una simulazione LES;

• una struttura a blocchi che ne faciliti la gestione dinamica nel solver;

Il solutore fluidodinamico utilizzato in questo lavoro e’ coldTopoEngineFoam, esten-
sione del già esistente solutore instazionario per flussi comprimibili su griglie dinamiche
presente nel codice OpenFOAM, con alcune modifiche per il miglioramento della con-
vergenza con regioni multiple che dinamicamente si connettono e disconnettono e flussi
in condizioni di blocco sonico attraverso le valvole. Insieme al modello di turbolenza
(DLRM) e alle applicazioni utilizzate in questo lavoro, coldTopoEngineFoam è incluso
all’interno delle librerie di OpenFOAM sviluppate dal gruppo Motori del Politecnico
di Milano.

Nei primi capitoli di questo lavoro di tesi verranno prima introdotti i due casi di
motori studiati:

1. un motore a valvola fissa centrata rispetto all’asse e pistone in movimento;

2. un motore a testa piatta con valvole verticali e pistone in movimento;

Per i due casi, sono mostrati i criteri e le strategie adottate per la generazione della
griglia:

1. gestione e modifica della geometria;
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2. gestione e modifica dei blocchi attorno alla valvola ed alla candela, con approccio
top-down, che si possa applicare anche su valvole inclinate e altre geometrie di
candela;

3. generazione di una griglia non-strutturata a blocchi completamente esaedriche,
con applicazione al caso di un motore con valvole verticali.

4. esportazione e manipolazione della griglia generata in formato compatibile con
OpenFOAM.

Nell’ultimo capitolo, si mostrano i risultati delle simulazioni fluidodinamiche “time-
resolved” condotte in OpenFOAMmediante l’applicazione del solver coldTopoEngineFoam,
della strategia di mesh dinamica e del modello di turbolenza DLRM sviluppati al Po-
litecnico di Mialno. Per il primo motore, la velocità media e l’intensità di turbolenza
nelle direzioni assiale e radiale sono state confrontate con i risultati di simulazioni LES
condotte precedentemente e con i risultati sperimentali. Per la seconda geometria,
sono state simulate solo la fase di compressione e di espansione del cilindro, mostrando
confronti con i dati sperimentali in termini di pressione e di volume istantaneo.
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Chapter 1

Introduction

Among all physical phenomena that occur inside an engine cylinder, turbulence has cer-
tainly a direct impact on thermodynamic efficiency, brake power and emissions of the
engine since its influence extends from volumetric efficiency to air/fuel mixing, com-
bustion and heat transfer. Historically, turbulent flows have been simulated mainly
by models based on Reynolds Averaging of Navier-Stokes equations (RANS), either
in their original version or in the unsteady formulation (URANS) for slowly-varying
flows. In ICE simulation, URANS approaches have proved to provide very good pre-
dictions of phase-averaged flow fields: macroscopic features of charge motion like swirl
and tumble vortexes can be estimated with a good accuracy. On the other hand, most
of the time-varying quantities characterizing in-cylinder flows cannot be resolved by a
model based on implicit time or ensemble-averaging methods like URANS: small-scale
turbulence, cycle-to-cycle variability (CCV) and in-cycle evolution of three-dimensional
structures (jets and vortexes) can be simulated only by a time-resolved (rather than
time-averaged) approach like Large Eddy Simulation (LES). However the high compu-
tational cost, the complex case-set-up and pre- and post-processing together with the
need of unaffordable grid resolution near walls to appreciate LES scales, leads to devel-
oped adequate Hybrid model (RANS/LES) which is able to automatically understand
when switching between LES and URANS. There is obviously the need in IC engines
simulation for a turbulence model that can distinguish, automatically run-time, what
can be resolved and what cannot: an hybrid model could be the best way to achieve this
purpose and can also provides an easy set-up of case and produces results in a reason-
able computational time. An additional problem during simulation of these complex
geometries is handle in the best possible way the topological changes due to the moving
boundaries. Since ICE are not a static system, to simulate their real behaviour, the
motion of boundaries must be taken into account. That need leads to development
of algorithms must be able to handle moving domain, new mesh strategy of these ge-
ometries and, finally, algorithms able to adjust the behaviour bring about by moving
mesh. OpenFOAM (Open Field Operation And Manipulation) is the computational
fluid dynamic software used in this simulation. OpenFOAM is a toolbox based on C++
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libraries, that is able to simulate numerically all the physical phenomena related to the
mechanics of continuous. In particular, it allows the following applications: reactive
fluid dynamics of complex fluid, turbulent flow with heat transfer, conjugated calcula-
tions and solid mechanics. The software is provided with several pre-configured solvers,
utilities and libraries and it can be used as any other typical commercial package for
numerical simulation. However, unlike the commercial codes, OpenFOAM is open,
not only in terms of source code, but even in its hierarchical structure and design, in
such a way that all its solvers, utilities and libraries can be modified according to the
needs of the user. The turbulence model (DLRM), solvers (coldTopoENgineFoam) and
dynamic mesh handling tools used in this work has been developed within the libICE,
an extended version of OpenFOAM library developed by ICE group of Politecnico di
Milano for OpenFOAM-2.3.x. The purpose of my work has been the development of
a new meshing strategy, through the commercial software ANSYS ICEM CFD, that
perfectly suits the geometry of ICE and its sub-parts like valves and spark plug as well
and that is easily repeatable on similar geometries. In particular the mesh has to fulfil
some requirements:

• appropriate layering near wall;

• a number of cell lower than of a mesh used for LES simulation.

• a block structure in ICEM which allows for a dynamic mesh handling in Open-
FOAM.

Hence the work is organized according to the following pattern. Firstly the physics of
the problem and the numerical approach to model are presented. Then an in-depth
analysis of how the mesh is generated in ICEM is presented, from geometry/blocking
creation and adjustment up to mesh generation and smoothing techniques.
In particular two cases have been studied: Flat-top cylinder head with a fixed axis-
centred valve and Transparent Combustion Chamber case (TCC). Interfacing ICEM
mesh with OpenFOAM has been dealt as well. Afterwards simulation set-up of two
cases aforementioned is discussed, in order to explain boundary condition, numeri-
cal schemes, numerical solution and algorithm control. Subsequently the numerical
results are shown in several images that describe the comparison between numerical
(LES/DLRM) and experimental results. Finally, in the conclusions section an evalua-
tion of the work and future developments are presented.
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Governing equation and the finite
volume method for moving domain

2.1 Governing equations

The Fluid behaviour could be described by a system of three equations: continuity
equation, momentum equation and energy equation. An equation of state is added
to them and, due to the fact that air is the working fluid, the equation of state is
considered as ideal gas. The Navier-Stokes equations for fluid are written following
the Eulerian approach, therefore the variables (p,u,T, etc.) and fluid proprieties (ρ,
µ, etc.) are expressed as a function of space and time, and their balance is evaluated
on a fixed volume of space traversed by the fluid. In this case the fluid motion is
described by a system of partial differential equations. Another way to write the N-S
equations is the Lagrangian approach, where the volume on which to write the balance
is deformable and in motion with the fluid itself. The Eulerian Approach is made
possible by the theorem of transformation (or Leibniz), which allows to write correctly,
even for a fixed space control volume, the substantial derivative that is formulated for a
volume integral with the body in motion. There is not a right or wrong approach, but
it depends on the typology of problem to solve. In this case it is preferred the Eulerian
approach because it is possible to separate time dependence from spatial dependence
while, using the Lagrangian approach, even in presence of steady state phenomena,
dependence on time remains because it is connected to the integration volume that
must be followed and which varies in function of time.

Thus it is possible to write the conservation equation of the generic physical property
ϕ, defining V as control volume delimited by boundary surface S, n as the surface
normal vector of S, u as the fluid velocity and Qϕ as the generic source of ϕ.

d

dt

∫
V

ρϕ(x, t)dV =

∫
V

QϕdV (2.1)
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Where the first member of Eq.2.1 represents the total variation in time of ϕ:

d

dt

∫
V

ρϕ(x, t)dV =
∂

∂t

∫
V

ρϕ(x, t)dV +

∫
S

ρϕ(x, t) · u · ndS (2.2)

Thus equation 2.1 can be written as:

∂

∂t

∫
V

ρϕ(x, t)dV +

∫
S

ρϕ(x, t) · u · ndS =

∫
V

QϕdV (2.3)

This general formulation does not allow to find the value of ϕ in all points of the
domain. Referring to the Gauss theorem in order to move from surface integrals to
volume integrals: ∫

S

ρϕ(x, t) · u · ndS =

∫
V

∇ · (ρϕu)dV (2.4)

Hence Eq. 2.3 becomes:

∂

∂t

∫
V

ρϕ(x, t)dV +

∫
V

∇ · (ρϕu)dV =

∫
V

QϕdV (2.5)

2.1.1 Continuity equation

Continuity equation can be obtained by putting in equation 2.5, ϕ = 1 and Qϕ = 0
because there are not source terms for the mass, then:

∂

∂t

∫
V

ρ(x, t)dV +

∫
V

∇ · (ρu)dV = 0 (2.6)

Which represents the mass conservation of a compressible fluid.

2.1.2 Momentum equation

Momentum equation of a compressible fluid can be written as:

∂

∂t

∫
V

ρudV +

∫
V

∇ · (ρuu)dV =

∫
S

σndS +

∫
V

ρfdV (2.7)

Which can be rewritten with Gauss theorem as:

∂

∂t

∫
V

ρudV +

∫
S

ρuu · ndS =

∫
V

σdV +

∫
V

ρfdV (2.8)

where f represents body forces acting on the fluid contained in the control volume and
σ is the stress tensor. The stress tensor depends on two contributions, viscous and
pressure effects and it can be defined as:

σij = (−p+ 2λ∇ · uδij + τij) (2.9)
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where δij is Kronecker’s delta and λ the second viscosity. τij is the viscous stress tensor,
which depends on the fluid type. Introducing Newtonian fluid hypothesis, stress tensor
can be rewritten as:

τij = 2µSij + λSiiδij (2.10)

where Sij is the rate of strain tensor defined as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.11)

the hydrostatic part of stress tensor can be written as:

1

3
σii = −p+ λSii +

2

3
µSii (2.12)

2.1.3 Energy equation

Energy equation can be written in enthalpy form. Defining specific enthalpy as:

h = u+
p

ρ
(2.13)

and introducing Fourier’s Law for heat transfer by conduction:

q = −k∇T (2.14)

where k is thermal diffusivity. Finally, energy equation can be written as:

∂

∂t

∫
V

ρ
(
h+

u2

2

)
dV +

∫
V

ρ∇ · u
(
h+

u2

2

)
dV+

−
∫
V

∂p

∂t
dV −

∫
S

α∇h · ndS =

∫
qdV

(2.15)

Where α is the thermal diffusivity.

2.1.4 Equation of state

To close the system of equation, one equation of state is necessary. If the fluid is
considered as an ideal gas , the ideal gas law can be used:

Pv = R∗T (2.16)

where R∗ = R/MM . Otherwise if the fluid is far away from ideal behavior other more
complex equation must be used i.g. Van der Waals’ law or Redlich-Kwong-Soave.
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2.2 Governing equations for moving geometries

The conservation equations are usually formulated for static boundary but the recent
need to describe turbulent flows in complex geometries, especially with moving bound-
aries, leads to rewrite equations taking into account the motion of the domain. If the
control volume is not constant within the time due to a moving boundary, the only
change in conservation equation will be the appearance of relative velocity in convective
terms. Thus Eqs. 2.6 2.8 2.15 becomes respectively:

∂

∂t

∫
V (t)

ρ(x, t)dV +

∫
S(t)

∇ρ(u− ub) · ndS = 0 (2.17)

∂

∂t

∫
V (t)

ρudV +

∫
S(t)

ρu(u− ub) · ndS =

∫
V (t)

σdV +

∫
V (t)

ρfdV (2.18)

∂

∂t

∫
V (t)

ρ
(
h+

u2

2

)
dV +

∫
S(t)

ρ ·
(
h+

u2

2

)
(u− ub) · ndS+

−
∫
V (t)

∂p

∂t
dV −

∫
S(t)

α∇h · ndS =

∫
V (t)

qdV

(2.19)

where ub is the velocities the control volume boundaries move with.

The finite volume method

Equations system described in section 2.1 are solved with numerical methods. The
solution method used is the Finite Volume Method (FVM) [1] based on the solution of
the equations in integral form over the computational domain previously discretized in
a finite number of control volumes, which constitute the mesh. Referring to a governing
equation for generic property ϕ:

∂

∂t

∫
V

ρϕdV +

∫
S

ρϕ · u · ndS =

∫
S

Γ∇ϕ · u · ndS +

∫
V

QϕdV (2.20)

where Γ represents ϕ diffusivity and Qϕ is a generic source term. The first step
consists in the discretization of the computational domain in a finite number of control
volumes, which constitute the mesh. At the center of control volume the computational
node is defined and it is calculated as center of gravity of the volume, on which equations
are solved. The variables in these points represent the cell mean value. By adding the
equations of all the cells, the equation 2.20 is obtained. Since the contributions of the
integrals on the internal faces cancel out each other, just the integral remains on the
boundary, while the contributions of volume integrals add up to a global single term.
In this way the conservation property is guaranteed on each volume, as well as it is
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guaranteed at a global level over the whole domain. A three-dimensional grid is used
to discretize the domain. A typical control volume is shown in Figure 2.1:

Figure 2.1. A cell in three dimension and neighboring nodes on which discretization is done
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Turbulence modeling and solver

After a brief introduction about the problem encountered in simulating turbulence
flows inside ICE a description of novel hybrid RANS/LES turbulence model is dealt.
Afterwards a description of fluid dynamic solver used in OpenFOAM is given and
problem about its coupling with topology changes is discussed.

3.1 Turbulence

Most flows encountered in engineering practice are turbulent and therefore require
different treatment. Turbulent flows are characterized by the following properties:

• they are highly unsteady;

• they are three-dimensional;

• they contain a great deal of vorticity. Indeed, vortex stretching is one of the
principal mechanisms by which the intensity of turbulence is increased;

• turbulence increases the rate at which conserved quantities are stirred. Stirring
is a process in which parcels of fluid with differing concentrations of at least
one of the conserved properties are brought into contact. The actual mixing is
accomplished by diffusion. This process is called turbulent diffusion;

• by means of the processes just mentioned, turbulence brings fluids of differing
momentum content into contact. The reduction of the velocity gradients due
to the action of viscosity reduces the kinetic energy of the flow; in other words,
mixing is a dissipative process. The lost energy is irreversibly converted into
internal energy of the fluid;

• it has been shown that turbulence flows contain coherent repeatable structures
and essentially deterministic events that are responsible for a large part of the
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mixing. However, the random component of turbulent flows causes these events
that differ form each other in size, strength, and time interval between occur-
rences, making their study very difficult;

• turbulent flows fluctuate on a broad range of length and time scales. This prop-
erty makes direct numerical simulation of turbulent flow very difficult.

In particular, for industrial simulations of ICE (internal combustion engine), URANS
(unsteady Reynolds average Navier-Stokes) equations are established as a standard
tool: the complete turbulence behavior is enclosed within appropriate turbulence model
which takes into account all turbulence scales. Turbulence length and time scales are
estimated by dimensional considerations, and model transport equations are solved on
reasonably coarse grids, that makes this approach relatively cheap in terms of compu-
tational cost. Nevertheless RANS is able to give a reasonable approximation of the
wall shear stress, macroscopic features of charge motion, like swirl and tumble vor-
texes, with a good accuracy [2], it is quite well known that the excessive predicted
viscous behavior very often damps out the unsteady motion and the flow unsteadiness
because it overestimates the modeled turbulent length and time scales. Moreover it
is generally accepted that URANS solution is completely determined by initial and
Boundary Condition (BC), thus cannot account for randomness or independent events
in the flow: It is characterized by simulation results which are perfectly repeatable if
BC, with same computer, are used for the unsteady computation. However most of the
time-varying quantities characterizing in-cylinder flows cannot be resolved by a model
based on implicit time or ensemble-averaging methods like URANS: small-scale tur-
bulence, cycle-to-cycle variability (CCV) and in-cycle evolution of three-dimensional
structures (jets and vortexes) can be simulated only by a time-resolved (rather than
time-averaged) approach like Large Eddy Simulation (LES) In the last decay, an alter-
native attractive way has been the application of LES (Large Eddy Simulation) in ICE
by several authors [3, 4, 5, 6, 7], whose work has shown good predictions of mean and
fluctuating velocity, together with estimation of turbulence-driven CCV. Since in LES,
the turbulent length scale is related to the computational grid and to the turbulent
time scale from the resolved flow, this approach is potentially more accurate and is
able to provide the intrinsic unsteadiness of flow. However the required grid resolu-
tion may become very expensive and hence computational cost increase severely. For
these reason a compromise is given by hybrid models which are all based on the same
idea to represent a link between RANS and LES as they use the best feature of two
approach: they resolve the turbulence where possible (LES) and model it elsewhere
(RANS). Thus, they try to keep computational efficiency of RANS and the potential
of LES to resolve the large turbulent structure even on coarser grid and with high
Reynolds numbers. In the recent year, several hybrid LES/RANS methods have been
proposed such as Detached Eddy Simulation (DES), Limited Numerical Scales (LNSs),
partially averaged Navier-Stokes (PANS), scale adaptive simulations (SAS) and Very
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Large Eddy Simulation (VLES). Especially VLES starts to expand as a promising com-
promise for simulation of industrial flow problems and in ICE as well. Its strength is
based on how model acts on turbulence spectrum: its smaller part is resolved and the
influence of a larger part of the spectrum has to be expressed with the model. Thus
VLES requires the definition of an appropriate filtering technique which can distinguish
between resolved an modeled part of the turbulence spectrum, which is a good solution
for simulation on ICE. The filtering procedure provides the adaptive characteristics of
the VLES models, enabling them to be applied for the whole range of turbulence mod-
eling approaches from the RANS to DNS. Thus for the purpose of this work VLES is
suitable since promise a reliable results with lower computational effort than a LES,
also on coarser grid.

3.1.1 DLRM

The VLES model used here is the Dynamic Length Scale Resolution Model (DLRM)
developed by Piscaglia, A.Montorfano, and Onorati [8] and validated on two static
case (swirling flow through a sudden expansion , flow around a poppet valve), and
then use in [9] to validate it on moving mesh. The model name is due to its capability
to dynamically adapt its behavior according to the grid resolution and to consequently
switch from modeling to resolving the turbulent length scale. Its filtering approach
is converse to LES one since instead of solving the filtered equations, avoiding the
computation of small scales, the modeled length and time scales are filtered in order to
suppress their negative influence on the unsteady flow field. Similarly to the work of
Gyllenram and Nilsson [10], the functional form of the filter is derived from the relation
between filtered and non-filtered time scales. In addition was extended to compressible
flows and the functional form of the filter was based on Length Scale Resolution (LSR)
parameter making it particularly suitable for ICE.

The filtering technique has been applied to a compressible formulation of k-ω SST
model including the optional term for rough walls. This choice allows to retain the
robustness and accuracy of the RANS model formulation in the near wall regions and
in zones of the free-stream region where the mesh resolution is not sufficiently high for
the direct solution of the main turbulent scales. The two equations closure model is
coupled to RANS by eddy-viscosity assumption:

−τij = 2µtSij −
2

3
ρkδij (3.1)

where τij is the viscous stress tensor and Sij is the strain rate tensor, defined as:

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (3.2)

The Boussinesq assumption introduces the concept of a turbulent eddy viscosity µt,
which is particularly suitable when the influence of turbulence on the mean flow is
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dominated by mixing process. The eddy viscosity of the fluid has the same dimension
of dynamic viscosity of the fluid and is assumed to be proportional to a function of the
turbulent length and time scales:

µt ∼
L2
t

Tt
(3.3)

Where the turbulent length scale Lt and time scale Tt are unknown local proper-
ties of the turbulent flow and must be modeled and can be directly evaluated by the
turbulent kinetic energy and dissipation rate:

Lt ∼ k1/2/ω (3.4)

Tt ∼ 1/ω (3.5)

If the modeled turbulent kinetic energy k and specific dissipation rate ω are solved,
a measure of the turbulent length and time scales can be estimated. A low-pass fil-
tering operation, on frequency, is applied to the turbulence model in order to allow
the existence of resolvable turbulent scales in the solution of the flow field. The filter
function is derived from a dimensional analysis and the filter is applied to the turbulent
length and time scales, rather than only to the turbulent kinetic energy.

Figure 3.1. Resolved scales and modeled scales

In this model the filtering operation is based on the comparison between the mod-
eled and the resolved turbulent length scales: if the modeled scales are larger than the
resolvable scales, resolvable scales will replace the modeled scales in the formulation
of the eddy viscosity. As shown in Fig. 3.1 the upper limit of the modeled turbulent
length scales corresponds exactly to the lower limit of the resolved turbulent length
scales and there is no lower limit because the mean non-resolved turbulent length scale
may be much smaller than the local grid spacing, especially close to the walls. Thus
the largest length scale that needs to be a part of the eddy viscosity formulation is:

`t = min{Lt,∆f} (3.6)
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Where Lt is modeled length scale and ∆f is resolved length scale defined as follow:

∆f = max{α|U|δt,∆eq} (3.7)

whose terms will discuss later.
As aforementioned the filter function is based on the comparison between the mod-

eled and the resolved turbulent length scales. To do that the upper limit of the modeled
length `t and time scales tt can also be defined in terms of the filtered (non-resolved)
variables:

`t ∼ k̂1/2/ω̂ (3.8)

tt ∼ 1/ω̂ (3.9)

Where the specific dissipation rate modeled ω and filtered ω̂ are:

ω =
ε

β∗k
(3.10)

ω̂ =
ε̂

β∗k̂
(3.11)

Where β∗ = 0.09. As the dissipation rate is never resolved in anything cheaper that
a Direct Number Simulation (DNS), hence:

ε̂ = ε (3.12)

Thus this assumption allows to correlate specific dissipation rate modeled and filtered:

ω̂ =
ε

β∗k̂
=
ωk

k̂
(3.13)

Using Eqs. 3.4, 3.8, from the Eq. 3.13 is possible to find an expression for the
filtered turbulent kinetic energy:

k̂ =
ωk

ω̂
=
k3/2Lt

k̂1/2/`t
(3.14)

k̂ =

(
`t
Lt

)2/3

k = g(`t, Lt)k (3.15)

Thus the filter function results to be defined as:

g ≡

(
`t
Lt

)
2/3 (3.16)
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in which `t is computed from Eq.3.6 and the modeled turbulent scale Lt is calculated
as:

Lt '
k1/2

β∗ω
(3.17)

A filtered eddy viscosity can be constructed directly from the non-resolvable tur-
bulent length and time scales:

µ̂t ∼ `2
t/tt (3.18)

It follows from Eqs. 3.8, 3.5, 3.13 and 3.15 that:

µ̂t = g2ρ
k

ω
= g2µt (3.19)

which means that the filter is directly applied to Reynolds stress tensor left unchanged
the turbulence model, thus it can be applied to any two-equation model Hence the
filter operates in this way:

Condition `t g µ̂t k̂
if Lt < ∆f Lt 1 µt k

if Lt > ∆f max{α|U|δt,∆eq} (
∆f

Lt
)2/3 g2µt gk

Table 3.1. Automatic choice of turbulence model based on length scale

From Tab. 3.1 it is possible understand how the filter operates: in regions where
turbulence cannot be resolved the filter is equal to unity and the eddy viscosity recovers
to the original, non filtered, formulation.

Where turbulence can be resolved the filter is applied and the choice of his value
is made between a LES equivalent filter size ∆eq and the product α|U|δt that is a
measure of the shortest distance over which a fluid particle can be traced in an unsteady
computation and the maximum length scale that needs to be a part of the eddy viscosity
formulation. In this sense, the computational time step influences the lower limit for the
resolved time scale and includes the implicit relationship between space and time in the
filtering operation. Both parameters are calculated dynamically during the simulation:

• ∆eq = LSR · `di
LSR represent a sort of energy distance between the actual resolved energy level
and the corresponding lower limit of the inertial sub-range and it is defined as:

LSRcomputed =
∆

`di
(3.20)
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where ∆ is the local filter size (usually cubic square of cell volume (∆X∆Y∆Z)1/3)
and `di is the lower limit of the inertial sub-range:

`di ≈ 60η (3.21)

and η is the Kolmogorov scale:

η = ν3/4ε−1/4 (3.22)

Figure 3.2. Eddy size (on logarithmic scale) at very high Reynolds numbers, showing the
various length scales and ranges. The suffixes "di" means that `di is the demarcation line
between Dissipation and inertial range while "ei" is the demarcation between Energy and
inertial

From the definition of Eq. 3.20, the evaluation of the actual resolved energy level
is directly linked to the local filter size. In this way the adopted mesh size is
related to the local energy resolution all over the computational domain. In [11],
it was found that LSR ≤ 5 is the upper limit to guarantee a reasonable LES
resolution at an affordable computational cost. Thus LSRmax is fixed to this
value while LSRcomputed is computed dynamically since mesh size can change and
`di change at any time step (using cinematic viscosity of the fluid and assuming
that in Eq. 3.22 the dissipation rate is the modeled one).
Thus the LSR used in ∆eq formulation is set to LSRmax only if LSRcomputed

assumes a value higher than 5, otherwise is set to LSRcomputed.

• α|U|δt comes from the condition imposed by maximum flow Courant-Friedrichs-
Lewy (CFL) number:

CFLmax =
Umaxδt

δxmin
(3.23)

In this way the integration time step is usually limited to:

δt ≤ CFLmaxδxmin
|Umax|

(3.24)
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CFLmax is usually chosen on the basis of the numerical method and other con-
siderations such as the degree of unsteadiness of the problem. Also each cell at
each time step own its local CFL:

CFLi =
Uiδt

δxi
(3.25)

and the criterion 3.24 ensures that for each cell of domain CFLi is lower than
CFLmax :

β =
CFLi
CFLmax

≤ 1 (3.26)

In general, there is no way to mathematically distinguish between turbulence and
unsteadiness. For this reason, it is very difficult to estimate the minimum length
scale that the turbulence model is able to capture, since it depends both on the
spatial resolution and on the temporal correlation between time steps, which is
strictly related to the CFL used by the numerical solver. A conservative way
of thinking would lead to the conclusion that for each computational cell the
smallest turbulent length scale that can be captured by the turbulence model is
|Uδt|max:

|Uδt|max = (CFL · δx)max =
CFLi
β

δx = αCFLiδx = α|U|δt (3.27)

where α = 1/β. Thus, the α is dynamically computed by the model from the
local and the global maximum CFL number, which varies time and space. This
is done to correlate the temporal scales of the vortexes and the spatial resolution
of the grid in the filter operation and it is particularly important in engine flows,
where cell size and flow conditions significantly vary between the near valve region
and the other regions of the mesh, and in particular from time step to time step
when moving mesh is involved.

Hence the trend of filter function is that of Fig.3.3
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Figure 3.3. The filter function g2(∆f) is clipped to 1 as ∆f is equal to the integral length of
the modeled scales Lt and it tends to zero with a minimum as the grid size tends to the fine
grid limit (implicit LES).

and in the fine grid limit, small variations of the grid size MUST correspond to
high variations of the resolved scales. This behavior is justified by the choice of
applying the filter not only to turbulent kinetic energy but to turbulent length
scales as well. If filter was only applied to turbulent kinetic energy, filter will still
tend to zero if ∆f tends to zero but ∂g2

∂∆f
will still not tend to zero but it would

tend to an infinite value thus its second derivative will be negative, showing a
trend opposite of Fig. 3.3

3.2 Solver

3.2.1 coldTopoEngineFoam

The solver used for the simulation is coldTopoEngineFoam, which is an extension of the
already existing transient solver for compressible flows on dynamic meshes, with some
modifications to improve convergence with multiple attaching/detaching regions and
choked flows. The solver undergoes some modifications from the original development
in [9] to [12] which deals with the way the φm is computed. The fundamental equations
governing compressible flow inside a moving domain [13] are those shown in Sec. 2.1.
In OpenFOAM mesh motion algorithm and solvers are separated: the structure of the
solver is independent from the mesh motion algorithm. Thus the interface between
the dynamic mesh class and the Navier-Stokes solver is minimal, being limited to a
single function call that performs all mesh changes when required. In OpenFOAM R©,
the base transient solver for compressible viscous flows is based on a merged PISO-
SIMPLE algorithm (PIMPLE) shown in Fig.3.4

17



Chapter 3

Figure 3.4. standard PIMPLE algorithm

The outer loop is analogous to the pressure-correction algorithm of the steady SIM-
PLE solver, whereas the inner loop solves iteratively the equation of pressure. At the
beginning of each time step, the mesh is updated according to the piston and valve
motion. As the mesh is updated, face fluxes are recalculated including the effect of the
mesh motion. Finally, a remapping of the newly calculated quantities is performed,
the velocity correction equation 3.32 is solved and the iteration for the solution of the
governing equations can start. According to the original formulation of the PIMPLE
algorithm (Fig.3.4), the inner loop is rarely executed more than once (in transient-
SIMPLE mode), since the outer loop allows for achievement of pressure-velocity cou-
pling. Hence CFL can be higher than 1 because we are not resolving in PISO mode,
but cannot assume too large value if we want consecutive time steps in which computed
flow does not differ too much from previous time step to the following one. Thus typi-
cally has been adopted a CFLmax = 5 which allows for have a time step bigger than in
PISO mode, even if actually local mesh size near wall and high values of velocity near
valves region tends to limit ∆t to very small values. Also under-relaxation must be
applied on solved quantities to avoid numerical overshoots during the outer iteration.
Values of relaxation factors range usually from 0.7 (for velocity) to 0.3 (for pressure).
As a topological change in the mesh occurs, the energy equation is now solved together
with mass conservation into the inner loop as shown in Fig.3.5

Figure 3.5. modified PIMPLE algorithm
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, to help global convergence (pressure and temperature are strongly linked in com-
pressible flows); moreover, the solution of turbulence-related quantities (k and ε, k and
ω, etc.) is done every outer iteration, to account for strong changes in the velocity
field that might occur inside the outer loop, especially during the initial time steps
or during the attach/detach of multiple mesh regions (e.g open- opening and closure
of the valves). Despite solving the two additional equations of turbulence for each
outer loop increases the computational effort of the single outer iteration, it favors for
a faster convergence of the solution. Moreover the stronger coupling between energy
and pressure and allows for an high under-relaxation factors (up to 0.9) set-up, thus
limiting the apparent overhead due to an increased number of inner iterations. The
general solution procedure for the solver is as follows:

1. update time step according to Courant number limit;

2. calculate mesh motion;

3. if topological changes (or remapping on different grids) occurs, construct equation
for pressure correction and solve for preliminary values of the velocity fluxes;

4. calculate lagrangian transport of particles and update wall film calculation, if
present;

5. solve pressure-velocity coupling according to transient Simple algorithm:

• compute mass fluxes at cell faces;

• define and solve pressure equation (repeat multiple times for non-orthogonal
mesh corrector steps);

• correct fluxes;

• correct velocities and apply BCs;

• repeat for number of PISO corrector steps (in transient Simple there is only
one PISO loop);

6. compute turbulence and correct velocities;

7. repeat from 1 for next time step.

Despite the formulation with moving boundaries looks very similar to the formu-
lation with a non-moving domain [1], solution of equations 2.17, 2.18, 2.19 requires
particular care because of the term including the relative advection velocity u−ub . In
fact, when they are discretized in a FV framework, advection velocities are substituted
by cell face fluxes φ; similarly, boundary velocities ub are replaced by cell face fluxes
originated by points motion, φM . As shown in [13] mass source can appear in the
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mass conservation equation as cell faces move, even if mesh fluxes are inserted in the
discretized equations:

∆ṁ = ρ
∆V

δt
(3.28)

To avoid this spurious term Eq. 3.28 one must guarantee that the Space Conservation
Law (SCL) is fulfilled [14]. SCL can be regarded as a continuity equation in case of a
zero fluid velocity:

d

dt

∫
V

dV −
∫
S

Ub · ndS = 0 (3.29)

Discretization of Eq. 3.29 depends on the chosen temporal integration scheme and it
allows for calculating the mesh motion flux φM on the basis of the swept volume V̇b; in
the simplest case of Euler implicit integration, the mesh motion flux can be calculated
as:

φM = (Ub · n)fSf = V̇f (3.30)

where V̇f = δV
∆t

is s the volume swept by a cell face in a single time step. In case
of a higher order scheme, a different discrete equation for φM must be used. In
OpenFOAM R© , the calculation of φM is done according to the selected time dis-
cretization scheme. For a cell face with a generic shape, the swept volume is calculated
as follows: first, the face is decomposed into several triangles, one for each edge, that
have as common vertex the face centroid; then, the swept volume is calculated for each
triangle, as the difference between its new point coordinates T and the old ones T 0 :

V̇f = f(T − T 0) (3.31)

Since a face in OpenFOAM R© is stored as a list of point IDs, and not as a list of point
coordinates (Sec. 4.1.1) Eq. 3.31 does hold as long as every point maintains its own ID
during the mesh change (i.e., in the case of point motion without topological changes).
However, when topological changes are triggered, points are renumbered and hence
there is no correspondence between old and new point IDs, so the correlation between
T and T 0 is no longer valid.
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Figure 3.6. Different cases of topological changes. a) Face insertion; b) Face removal; c) Face
does not topologically change, but its vertices get renumbered; d) Face is transformed and a
new vertex is inserted.

Thus handling of mesh fluxes in case of topological changes is done in different
ways, depending on whether:

• a cell face is directly affected by a topology change (i.e. it is added or deleted).
it is useful distinguish between addition and removal of a face. If a face is added
during a topology modification (Fig.3.6-a), its mesh flux must be zero. This is
easily ensured by explicitly setting the value of φM on newly created faces. If
a face is removed (Fig.3.6-b), its mesh flux does no longer exists. Continuity is
thus enforced by solving a modified Poisson equation for pressure correction to
apply to face fluxes, as will be further explained .

• a cell is modified by point addition/removal thus points are renumbered as a
consequence of a topological change, but the owning faces do not show any sub-
stantial modification (Fig.3.6-c). In this case Eq. 3.31 can be still applied but
face triangle decomposition T 0 must be rewritten using the new point IDs, that
are deduced using a point-to-point map generated during the topological change.

• a cell simply changes its shape and not its definition, but points are added or

21



Chapter 3

removed, (Fig.3.6-d). In this latter is necessary to ensure the new face to be
decomposed in the same number of triangles as the old one. This is achieved by
adding vertexes on either the new or the old face, depending on whether the new
face has less or more points than the original one as shown in Fig. 3.7. ‘Ghost’
points are inserted by splitting an existing edge, so that the global shape of the
face remains unchanged. The coordinates of the ghost point is the result of a
projection of the corresponding vertex on the old (or new) face.

new face

old face

new point

ghost point

Figure 3.7. Handling of faces with inserted points. The new point is projected onto the
counterpart edge originating a ‘ghost’ point, and the edge is split. Now both faces can be
decomposed in the same number of triangles. In case the new face has less point than the old
one, the ghost point is added on the new face instead.

Finally, before solving Eqs. 2.17 and 2.18 on the updated mesh, old values of U,
p and ρ must still satisfy continuity when they are remapped onto the new grid: the
old velocity field unn = u(xn, tn) might not be compliant with the continuity equation
(Eq. 2.17), when it is re-sampled onto the new mesh. Therefore, a modified form of
Poisson equation (Eq.3.32) need to be solved for a pressure corrector p corr (p′):

1

ψ

∂p
′

∂t
+∇2p

′
= [∇ · φn−1]n −∇ · [ρ~Un−1

fn
· ~Snf ] (3.32)

where n means "at the current time step" while n means "on the mesh at the current
time step". Hence :

[∇ · φn−1]n (3.33)

represent the divergence of φ = ρU . ρU is defined at the previous time step, while its
divergence is mapped on the mesh of current time step. This scalar is defined on all
cell centers. while:

∇ · [ρ~Un−1
fn
· ~Snf ] (3.34)
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represent the flux at the previous time step on cell faces remapped on the mesh at the
current time step. This scalar is not defined on all cell faces because when a topology
change occurs e.g faces can be added and it is impossible to assign to it a flux. Thus
the difference between 3.33 and 3.34 will be high only on cells where a topology change
occurs. In this case the continuity will not be respect and a p′ will be calculated in order
to makes null the difference between the two terms. Finally the flux at the current
time step on the mesh at the current time step will be:

φnn = ∇ · [ρ~Un−1
fn
· ~Snf ] +

1

Ap
∇p′

(3.35)

The equation 3.32 must be completed with appropriate boundary conditions. On solid
walls they have to be of Neumann type (∂p

′
/∂n = 0), whereas on permeable walls

a Dirichlet boundary condition is applied (p′
= 0). The pressure correction problem

assumes therefore the following form:{
1
ψ
∂p

′

∂t
+∇2p

′
= [∇ · φn−1]n −∇ · [ρ~Un−1

fn
· ~Snf ]

(∂p
′
/∂n = 0)

(3.36)

During intake and exhaust strokes there is at least one open boundary, thus Eq. 3.36
usually poses no concerns upon the existence and uniqueness of its solution. On the
other hand, a difficulty arises when both valves are closed: in this case, Eq. 3.36
is solved separately for each sub-domain (cylinder, intake, exhaust). The cylinder
region, however, is delimited exclusively by solid walls, thus no Dirichlet-type boundary
conditions are applied and the elliptic problem has no unique solution. To overcome
this intrinsic difficulty, a reference value of p′ is imposed at an arbitrary location of the
domain: 

1
ψ
∂p

′

∂t
+∇2p

′
= [∇ · φn−1]n −∇ · [ρ~Un−1

fn
· ~Snf ]

(∂p
′
/∂n = 0)

p
′
(x0) = 0

(3.37)

Once ∇p′ is updated Eqs. 3.32 and 3.35 are solved iteratively any time the mesh
changes, until convergence on pressure is reached.
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Mesh generation for ICE

After a brief description of what is a mesh and which are the most common mesh
quality metrics, it will be shown the dynamic mesh handling with topological changes
of ICE in OpenFOAM. Then it will be described the top-down strategy technique in
order to realize hexa unstructured mesh in ICEM, for each case study, according to the
logic of dynamic mesh handling. Finally it will be described step by step the meshing
conversion and manipulation tool used in OpenFOAM to obtain the final mesh on
which the simulation is done.

4.1 Discretization of spatial volume and mesh quality
metrics

Mesh generation consists in dividing the physical domain into a finite number of dis-
crete regions, called control volumes or cells in which the solution is sought (domain
discretization). The computational grid must be developed trying to find the compro-
mise between grid refinement and computing time. Too refined meshes allow to achieve
precise results, but the computing time may become incompatible with work. The mesh
density should be high enough to capture all relevant flow features. In areas where the
solution changes slowly, larger elements can be used. Generating high quality meshes
is a critical step for CFD computations. Depending on the quality of the mesh, very
different results can be obtained, which can make post-processing and interpretation
of the solution a difficult task, due to contrasting results caused by meshing issues. No
single standard benchmark or metric that can effectively assess the quality of a mesh
exists, but there are suggested practices to follow. The most common mesh quality
metrics are:

• Orthogonality

• Skewness
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• Aspect ratio

• Smoothness

Referring to figure 4.1 mesh orthogonality is the angular deviation of the vector S
(located at the face center f ) from the vector d connecting the two cell centers P and
N.

Figure 4.1. Mesh orthogonality

iface,orth =
d∆

|d||∆|
(4.1)

Mesh orthogonality affects the gradient of the face center f and it adds diffusion to the
solution.

Figure 4.2. Mesh skewness

Skewness is the deviation of the vector d that connects the two cells P and N to the
face center f. The deviation vector is represented with ∆ and f_i is the point where
the vector d intersects the face f .

iface,skewness =
∆

d
(4.2)
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Skewness affects the interpolation of the cell centered quantities to the face center
f and it adds diffusion to the solution as well.

Figure 4.3. Quality metrics: Mesh aspect ratio

Mesh aspect ratio AR is the ratio between the longest side ∆x and the shortest side
∆y Large aspect ratio is fine if gradients in the long direction are small, but usually
high aspect ratio leads to smear gradients. Smoothness, also known as expansion rate,
growth factor or uniformity, defines the transition in size between contiguous cells.

Figure 4.4. Mesh smooth transition

Large transition ratios between cells add diffusion to the solution; ideally the max-
imum change in mesh spacing should be less than 20%:

∆y1

∆y2

= 1.2 (4.3)

4.1.1 Mesh definition in OpenFOAM

In order to understand how topology modifier works is useful clarify on what domain
discretization within OpenFOAM is relied on. Domain discretizazion is based on an
unstructured mesh of polyhedral cells with an arbitrary number of faces. Mesh defi-
nition is enclosed in five different files contained in PolyMesh file under the constant
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directory:

• points: contains the coordinates of all mesh nodes (vertices) in form of a list.
The position index of a point into the list, starting from zero, represents its label
or addressing. The point list cannot contain two different points at an exactly
identical position nor any point that is not part at least one face.

• faces: contains the definition of faces in form of a list of arrays. Each face
is defined as a list of points, that are identified by their respective labels; the
number of point constituting a face can be arbitrarily large. Their order inside
the face definition identifies the direction of face normal vector, according to the
right hand rule. Again, position index of face into this file gives its addressing

Figure 4.5. Right hand rule to define the direction of face normal vector

• owner: each face is owned by a cell, whose lebel is specified in the file owner. The
i-th element of the list is the addressing of the cell that owns the face addressed
by the position index i

• neighbour: the cell adjacent to face i on the opposite side with respect to the
owner cell is the face textttneighbour. The neighbour cells are specified in this file
following the same logic used fr owners. Not all faces have a neighbour: boundary
faces have only an owner; in this case their addressing will be -1.

• boundary: contains specification of boundary "patches" onto which the physical
boundary condition for each variable will be defined. Each patch is a list of
consecutive face labels, and it is defined through the start face addressing and
the number of faces the patch is composed of. Boundary faces always lie at the
end of the face list, after internal faces.

Splitting the mesh definition in different files allows for reducing the storage memory
overhead in case of simulation with dynamic meshes: if no topology change is involved,
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only the point coordinates have to be saved in the result folders, otherwise if mesh
topology changes, the complete mesh definition must be stored for restart and post
processing. Moreover, every time the mesh is read or updated, a strict internal checking
is performed to verify self-consistence of its definition. Note that parts that can be easily
inferred from mesh definition, like edges or cell topology itself, are not considered in it
as well. At the same way, it is possible to specify subsets of point, faces or cells called
"zones", storing the affected entities addressed in a file called respectively pointZones,
faceZones , cellZones which can be automatically update any time the topology
changes.

4.2 Dynamic mesh strategy

Dynamic mesh handling in CFD codes is a suitable technique to simulate in-cylinder
flows in ICE (moving valves and piston). OpenFOAM represents a suitable platform for
complex physical modelling, since it includes a common interface to all dynamically
changing meshes. In order to preserve the mesh quality during extreme boundary
deformation due to piston and valve motion, the number of the cells in the mesh need
to be changed. This is the reason that leads to define a set of "topological changes",
allowing the possibility of attaching or detaching boundaries, adding or removing cell
layers and using sliding meshes interfaces. In topological changes the idea is to use
self-contained objects, where a topology change is executed on demand, rather than at
prescribed moments. Mesh motion can be performed in two ways, namely layering
and deformation. In the first method the mesh topology is changed by adding or
removing cells, lefting unchanged the position of most mesh points, while in the second
method the majority of points in the cylinder is moved and the motion of internal
point is obtained by solving a mesh motion equation. Boundary zones can include
non-conformal interfaces, where the boundaries between cell zones present mesh node
locations that are not identical and they are connected to each other by passing fluxes.
Region are then disconnected when mesh points are moved. Also sliding interface has
been used to reduce the mesh size in the generation of cylinder grids, characterized by
a high quality mesh near valve region.

4.2.1 Topology modifier

In order to realize the topological changes, the moving boundaries are handled by a
wide used of so called topology modifier namely:

• Sliding interface, to connect dynamically different mesh regions through non con-
formal interfaces;

• dynamic addition/removal of cell layers, to keep optimum size of the cells during
piston and valve motion;
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• attach/detach of boundaries, to automatically simulate the valve closure event;

In OpenFOAM, all topological changes, are executed by self-contained objects, called
mesh modifiers, that are activated on demand whenever a topology change is requested,
rather than at prescribed moments. A common interface and the use of virtual func-
tions allows for a common top level code and run-time selection of topology changers.
When the top-level application triggers a mesh update, a loop is performed over all
modifiers; if a topological action is requested, the corresponding algorithm embed-
ded in the specific modifier is invoked. As the loop proceeds, the modified mesh is
stored in a temporary location of memory and an object called mapPolyMesh is cre-
ated. Since points-,faces- and possibly cell- addressing change during a topological
action, the mapPolyMesh object stores all correspondences between original and modi-
fied mesh. This is used to recalculate the actual FV mesh, zones, fields, mesh modifiers
etc. Only after al mesh modifiers have been executed, the global FV mesh is changed
and execution can continue.

Figure 4.6. moving points algorithm

Sliding interface: coupling and decoupling algorithm

It allows for the creation of a reversible, non conformal-grid interface between two
mesh regions with different mesh structure. The coupling is achieved by changing the
local mesh topology in order to get strict one-to-one point correspondence. After the
coupling operation, no "interface" still exist, and the former detached regions can be
considered as one. Therefore, the sliding interface philosophy is different from other
region coupling algorithms, that mostly rely on baffle faces to achieve a fluid-dynamic
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link between topologically separated zones. If necessary, the topological change can be
reversed and mesh can be brought back to the detached configuration. An example is
when a sliding motion is prescribed between two different mesh regions, namely master
region and slave region. The algorithm employed to move points without degrading
the cell quality is made up of some steps as you can see in figure 4.6

Figure 4.7. Sliding interface between master
and slave regions with different mesh struc-
ture

Figure 4.8. Point projection of slave patch
(red) onto master. Solid dots are master re-
tained points, hollow circles are slave points
added because of direct hits or intersection
between the two patches

To proceed with the operation performed by this topology changer the user is
requested to specify:

1. the opposite facing surfaces which will be attached by the sliding interface at the
start time. They need to be valid patches belonging to the external surface of
the mesh, lying on the same ideal surface, up to a tolerance chosen by the user,
and the obviously must overlap;

2. which one of the surface is the "master" patch, while the other one will be im-
plicitly defined as "slave" patch. The difference between slave and master lies in
the fact that the former will possibly undergo point deletion to adapt to other
side, while the latter will remain unchanged as long as possible. Therefore all the
original points on the master patch are retained and some new points, coming
from the slave side, could be added. In this way the face definition changes for
both sides.

When the topology modifier is triggered, the topological change proceeds automat-
ically : points belonging to the "slave" side are projected onto the "master" patch
and in case of no valid projection, the algorithm terminates without errors. Actually
projected point location is corrected for direct point-to-point, point-to-edge and
edge-to-point hit, eliminating all degenerate cases of intersection. In case of a direct
point-to-point hit the slave point is merged with the master point which is retained,
and the slave point is removed. In case of point-to-edge hit, the affected edge is split
and the adjacent faces are modified accordingly. The case of edge-to-edge intersection
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follows the same rules but now a point is added at intersection. Finally, if projected
point lies onto a face, this is splitted itself by adding new edges. The process is shown
in Fig. 4.8.

Then an enriched patch, containing all points and intersections of both sets of faces
is assembled and used to create consistent mesh structure: faces sets are isolated using
right-hand-walk algorithm. Afterward, original master and slave faces involved in the
projection are removed and replaced with the corresponding ones coming form enriched
patch and newly inserted faces is linked to an owner and neighbour cell. Faces involved
into he projection but not master nor slave are called stick-outs, i.g internal faces with
an edge lying on the interface. After the coupling algorithm completion, the resulting
mesh will have seamless junction between the former separated region, as shown in
Fig. 4.9.

Figure 4.9. Coupled interface:red and blue faces represent what remains of the original master
and slave patch after a coupling

Since the different mesh region are merged, topology modifications have to be stored
in order to allows the further operation of decoupling algorithm. Thus all point posi-
tions, face, edge and cell definitions must be saved as they were before the coupling,
before proceeding with topological change. In [15] the information about removed enti-
ties has been changed: faces and points belonging to the enriched patch created at the
projection time are saved in appropriate faceZones while removed entities definitions
are written to a separate meshModifiers file per each time step. Hence, decoupling of
the interface relies completely on the information saved during the previous stage and
the two interfaces are brought back to life as they were originally. After a successful
decouple, no information needs to be saved but the master and slave patch labels, thus
the mesh modifiers is cleared out.
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Thus the sliding interface can be used to create a link between mesh regions with
non-conformal interfaces, as done in [9]. However, if compared to the supermesh ap-
proach (AMI), the target mesh approach (slidingInterface) is more demanding in terms
of computational resources, because coupling/decoupling algotirthm updates the mesh
topology at any time step. For this reason in [12] Arbitrary Mesh Interface approach is
used to move valves. The latter is a supermesh approach which relies on vertex-based
solution using a bounded Galerkin projection over a virtual triangulated surface mesh.
Moreover it allows to avoid updates in mesh change every time step. Although AMI
is faster and has an optimized solution with full overlap of fluid regions it is not as
stable as slidingInterface with partial overlap of mesh regions. The difference between
the method of calculation of fluxes of two approach are shown in Fig.4.10.

(a) Calculation of fluxes with SlidingInterface. (b) calculation of fluxes with AMI.

Figure 4.10. Comparison between target mesh approach and supermesh approach

while in Fig.4.10a is shown a typical Second order interpolation of face-fluxes over
the interface, after the coupling algorithm, in Fig. 4.10b is shown a weighting of
the cells sharing part of their surface with the same face on the coupled patch to
calculate the fluxes. For these reason in Sec.4.3.2 AMI has been used on slidinIntake and
slidingExhaust non-conformal patches, while slidingInterface has been applied between
cylinder and spark plug (non-conformal static interface) through stitchAndSplitMesh
tool, thus only one coupling occurs between them. That means that cylinder region
and intake/exhuast region will be always belong to different regions during simulation
while spark plug region becomes part of cylinder region.
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Layer additional/removal

It consists in adding or removing layers of cells in accordance with the motion of
a moving boundary (e.g the piston patch as in Sec.4.3.2 and Sec. 4.3.1) whereas
the majority of the grids remain fixed. This strategy allows for keeping the mesh
quality constant during the whole simulation: cells are added when the thickness of
the stretched layer rises above a specified threshold and they are removed when the
deforming layer thickness falls below a different threshold. In both axis-centerd valve
and TCC case, additional/removal of cell layer has been applied to piston motion
defining in engineGeometry file:

• the name of the patch;

• the cellSet to move and the faceSet on which layer A/R must be applied; the
generation of these will be explained in Sec.4.4.6.

• The parameters to control the maximum and the minimum thickness of the cell
layers to add or remove.

While layer A/R has been applied to intake and exhaust valve in TCC case, thus in
engineGeometry file has been also defined faceSet and cellSet of the two valves.

Attach/detach of boundaries

Attach/detach mesh modifiers is applied to simulate the valve closure event and it
consists in a reversible interface between two conformal mesh regions. It is used to
temporarily join or split different parts of the mesh starting from a prescribed and
arbitrary set of internal faces (detachFaces), that will be used by the dynamic mesh
solver to be transformed into boundary walls. In this work all internal faceSet has been
created directly with ICEM, which has been used to generate the hexaedral mesh in
both cases. Thus the attachDetach C++ class separates the intake/exhaust ports from
the combustion chamber at valve closure.

4.3 Mesh generation strategy with ANSYS ICEMCFD

The main aim of the work is the creation of a high quality unstructured hexaedrical
mesh in order to obtain a particular kind of mesh shape that is coherent with the
turbulence model either with the topological changes involved in ICE motion. The
former purpose provides for the creation of layers with increasing spacing near wall
patches and the number of cells near jets as well. The latter is obtained building the
block, on which the mesh is based on, according to the type of motion the cell set or
the face set are involved in and according to the kind of topology modifier to use. For
these reason i decide to use ANSY ICEM CFD.
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Introduction to ANSYS ICEM CFD

ANSYS ICEM CFD provides advanced geometry acquisition, mesh generation, and
mesh optimization tools to meet the requirement for integrated mesh generation for
sophisticated analyses. Maintaining a close relationship with the geometry during
mesh generation, ANSYS ICEM CFD’s mesh generation tools offer the capability to
parametrically create meshes from geometry in numerous formats:

• Multiblock structured

• Unstructured hexahedral

• Unstructured tetrahedral

• Hybrid meshes comprising hexahedral, tetrahedral, pyramidal and/or prismatic
elements

Beginning with a robust geometry module which supports the creation and modi-
fication of surfaces, curves and points, ANSYS ICEM CFD’s open geometry database
offers the flexibility to combine geometric information in various formats for mesh
generation. The resulting structured or unstructured meshes, topology, inter-domain
connectivity and boundary conditions are then stored in a database where they can
easily be translated to input files formatted for a particular solver, in this case Open-
FOAM, which accepts only unstructured mesh. In order to build the grid it is used a
hexa meshing modules because it allows to obtain an oriented grid within the domain
either good mesh quality metrics which will not afflict too much the simulation with
numerical errors. The ANSYS ICEM CFD Hexa mesher is a semi-automated mesh-
ing module which allows rapid generation of multi-block structured or unstructured
hexahedral volume meshes representing a new approach to grid generation where the
operations most often performed by experts are automated and made available at the
touch of a button. Blocks can be built and interactively adjusted to the underlying
CAD geometry. This blocking can be used as a template for other similar geometries
for full parametric capabilities. Complex topologies, such as internal or external O-
grids can also be generated automatically.

The basic difference between structured and unstructured grids lies in the form of
the data structure which most appropriately describes the grid. A structured grid of
quadrilaterals consists of a set of coordinates and connectivities that naturally map
into elements of a matrix. Neighboring points in a mesh in the physical space are the
neighboring elements in the mesh matrix.
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Figure 4.11.
structured grid

Figure 4.12. unstructured grid

Thus, for example, a two-dimensional array x(i, j) can be used to store the x-
coordinates of points in a 2D grid. The index i can be chosen to describe the position
of points in one direction, while j describes the position of points in the other direction.
Hence, in this way, the indices i and j represent the two families of curvilinear lines.
These ideas naturally extend to three dimensions. For an unstructured mesh the points
cannot be represented in such a manner and additional information has to be provided.
For any particular point, the connection with other points must be defined explicitly
in the connectivity matrix, in OpenFOAM represented by a list of coordinates, points
or faces if we are considering points, faces or cells respectively Fig. 4.12).

Thus the choice of build an unstructured mesh depends especially on simulating
software. Anyway the unstructured mesh has a real advantage because the points and
connectivities do not possess any global structure. It is possible, therefore, to add and
delete nodes and elements as the geometry requires or, in a flow adaptivity scheme, as
flow gradients or errors evolve. Hence the unstructured approach is ideally suited for
the discretization of complicated geometrical domains and complex flow field features
as internal combustion engine or injectors. However, the lack of any global directional
features in an unstructured grid makes the application of line sweep solution algorithms
more difficult to apply than on structured grids.

Although the choice of using OpenFOAM, which arises by the use of the dynamic
mesh tools developed custom-made for this software, i am not going to use its mesher
snappyHexMesh but a commercial one, ANSYS ICEM CFD. This decision rely on some
features of the mesher that makes the latter better than the former for the purpose of
the work:
The snappyHexMesh utility generates 3-dimensional meshes containing hexahedra (hex)
and split-hexahedra (split-hex) automatically from triangulated surface geometries in
STereolithography (STL) format, however it is more difficult to obtain oriented blocks
with geometry with internal baffles (here for valve motion), as shown in Figs. 4.13a,
4.13b, where topology modifier will be applied.
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(a) non-oriented blocks in snappyHexMesh. (b) oriented blocks in ICEM.

(c) layers around valve in snappyHexMesh. (d) layers around valve in ICEM.

Figure 4.13. comparison between snappyHexMesh and ANSYS ICEM CFD around a valve in
ICE

4.3.1 Flat-top cylinder head with a fixed, axis-centered valve

The axial-symmetric piston-valve assembly 4.14 introduced by Morse, Whitelaw, and
Yianneskis [16] has been selected as a first test-case. In the recent years, many LES
studies have been done: Haworth [17] tested on the same engine different configuration
of subgrid scale models and resolutions and the influence of model constants, integration
time step and mesh resolution; Mittala et al. [18] performed LES simulation by a finite
difference based structured methodology, where the motion of the valves and piston
was handled using a dynamic cell blanking approach and the Arbitrary Lagrangian Eu-
lerian (ALE) method; F. Piscaglia and Onorati [19] studied on the the same simplified
geometry the Complex unsteady features of turbulent fields like laminar-to-turbulent
transition and tumble vortexes evolution in order to prove that the proposed approach
is reliable for reproducing the dynamic behavior of complex turbulent structures in IC
engines.
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Figure 4.14. Geometry of the experimen-
tal apparatus used by Morse, Whitelaw, and
Yianneskis [16]. Legend: c=clearance;
S=stroke; D=bore. Lengths are in mm

Figure 4.15. Definition of patches for mesh
generation and simulation

In this particular case the only part involved in order to provide the change of
topology are:

• piston, whose kind of motion have been defined in the engineGeometry file in
OpenFOAM under pistonMotionType;

• liner, whose length increase or decrease according to piston motion;

Geometry definition

An accurate solution reflects the underlying geometry. The higher is the quality of
geometry file imported in ICEM the higher is the mesh we will expect. To obtain such
things, ICEM CFD provides:

• Geometry import,directly from CAD package, third party formats e.g STEP,
IGES and via Workbench or Design Modeler;

• Surface geometry kernel which is just the part of the code that handles its
native geometry. ICEM CFD’s geometry kernel supports two primary geometry
types, faceted and bspline;

• Internal CAD tools such as creation of geometry, geometry modification and
repairing;

The meshing procedure starts from the import of the case geometry in ICEM and
afterwards goes on with a geometry modification. To import a geometry in ICEM it is
possible choose among 3 group:
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1. faceted. Faceted geometry is made up of lots of little triangles. This data can
come from scanners or some low end geometry tools. The common one is STere-
oLithography file format which describes a raw unstructured triangulated surface
by the unit normal and vertices (ordered by the right-hand rule) of the triangles
using a three-dimensional Cartesian coordinate system. However the STL often
give a rough interpretation of the surface as in Fig. 4.16.

Figure 4.16. STL representation versus a CAD one, of a simple surface

2. Legacy. This comes from higher end cad tools produce basis spline (B-spline)
geometry which is much higher quality because rely upon a very good mathe-
matical definition which gives it numerical robustness and thus also a geometrical
one. IGES and STEP file belong to this group.

3. Formatted data point. It allows auto curve/creation from a table of regular
points;

Since STL roughness leads necessarily to a huge modification of geometry in ICEM,
due to the possible presence of holes and edge misalignment that affect mesh quality,
the meshing approach presented in this work uses a IGES geometry file.

The following case, whose geometry is represented in Fig. 4.17
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Figure 4.17. geometry representation in ICEM

Show the final geometry after the application of the repair tool which allows, up to
a specified tolerance, to obtain points from each curves intersection and the the right
definition of each curve. Afterward additional curves have been created in order to fix
the edges of the block in a prescribed zone as It will show in blocking creation.

Blocking definition

The next step is the creation of block structure. Due to the top-down approach, the
mesh will be generate from the volume. Thus using blocks there is an advantage in
creating easily internal boundary or mesh zone were it is necessary to have a specific
orientation of cells instead of a Cartesian one. The creation start from the curves which
identify the liner, represented in black in Fig. 4.18
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Figure 4.18. in black, curves which identifies
liner

Figure 4.19. Black edges identify the block
for the liner

ICEM creates the 3D block automatically around the geometry based on selected
curves. Now the block has not been associated to the geometrical surface yet. In order
to obtain a complete association edges and faces belonging to the block have to be
associated respectively to curves and surfaces belonging to the geometry through the
"associate block to geometry" command. This procedure will have to be repeated
for each edge and face belonging to a boundary patch. It is worth made it each time
a block is created, if at least one blocks’ face or edge belong to a boundary patch. It
is possible to do the same thing with blocks’ vertexes associating them to points of
geometry. The result of association of block onto geometry is represented by:

• green edge if it is associated with a curve, otherwise it is black if associated with
surface. Light-blue if it is an internal edge (Fig. 4.20).

• Red vertex if it associated with a point, otherwise it is black if associated with
surface. Light-blue if it is an internal vertex.

• Faces do not have such kind of association control. Default option in ICEM does
not provide faces display. Thus after activating face projection it will be possible
to see the face association to the boundary patch or internal baffle (Fig. 4.21).
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Figure 4.20. Representation of edges asso-
ciation: green (associated with curve), black
(associated with surface), light-blue (internal
edges)

Figure 4.21. Face association with boundary
patch whose label name is shown

As it can possible see in Fig. 4.20 an hexaedral block within another one. This kind
of block structure is named O-Grid. It is necessary In order to create a mesh within
a cylindrical geometry, thus it will be developed along all the height of the geometry.
This structure it’ s automatically created by ICEM . The user has only to choose the
block on which O-grid will be made on, and faces on which the faces belonging to the
new internal block have to be coincident. It is also possible to choose the ratio between
internal and external block.

Figure 4.22. O-grid construction: selected faces in blue whie in light-blue selected block.
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O-grid ensures the generation of a mesh with good quality near wall and generation
of boundary layer. The difference between hexa and O-Grid mapped onto cylinder is
very remarkable.

Figure 4.23. Hexaedral
block mapped onto a cylin-
drical geometry.

Figure 4.24. O-grid block Figure 4.25. O-Grid quality
near wall.

In Fig. 4.23 it is shown an hexaedral block mapped onto a cylindrical geometry.
Cells near wall have a very bad quality, which reflects upon numerical convergence,
and does not allow a good representation of boundary layer especially of the velocity
gradient near wall. In Fig. 4.24 it is shown mesh originates from O-grid. It does
not present the aforementioned problem. Moreover in order to calculate a velocity
gradient near wall enough close to the real one a smooth layer thickness grading has
to be created from wall to internal field. This feature can be obtain:

• changing spacing ratio;

• increasing number of nodes on the edge which link external and internal hexaedral-
block;

• changing interpolation law on the edge.

The result of these operations are visible in figure 4.25.
Compared with Fig. 4.24, it shows smooth transition from wall to the center and

good layering near wall. It is important underlying that even if O-grid is automatically
generated in ICEM representing a powerful tool, it is not easy applicable to complex
geometry: the user have to choose carefully on which of several blocks to apply it and
how many times he has to apply in order to have the boundary layer and oriented mesh
wanted.

In Flat-top cylinder case, the generation of the mesh for valve boundary patches
(Fig. 4.26c) is taken into account, making a second O-grid (Fig.4.26a) in the previous
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one and afterward extruding the faces (Fig. 4.26b) within the region delimited by
intakeDuct diameter.

(a) Creation of the second O-
grid in the region identified by the
liner.

(b) Extrusion of faces within the
region delimited by intakeDuct di-
ameter .

(c) O-grid around valve geometry.

Figure 4.26. Steps for the creation of initial block around valve with all association

Figure 4.26c shows that block representing valve are internal block since valve is
an internal part of geometry, but its edges are light-blue, thus edges are not associated
with valve geometry. In order to do that, blocks representing valve has to be deleted,
afterwards external faces of block already deleted will be associated with boundary
patch belonging to valve.

Carrying on with blocking procedure difficulties on visualizations occurs. In order
to delete blocks with ease, ICEM allows to isolate internal blocks (Fig. 4.27a). After
having deleted the three block (Fig. 4.27c), edges will became black due to association
with underlying valve geometry (Fig. 4.27d).
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(a) Isolation of the most internal
block. Edges are light-blue.

(b) Selection of three blocks represent-
ing valve.

(c) Valve block are deleted and edge
has became black and the three block
selected previously there are not any
more.

(d) Association of faces to geometry
surface.

Figure 4.27. steps for valve-block deletion
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The result of these step is the same of Fig. 4.26c but now there are no more
block inside where the valve resides. Although two O-grid have been already created,
to obtain a good mesh , especially near valve patches, two more O-grid have to be
created:

1. The first needs to guarantee a boundary layer around valve and along intakeDuct
(Figs.4.28,4.29);

Figure 4.28. O-grid for in-
takeDuct and valve-stem

Figure 4.29. O-grid for valve

2. The second needs to provide the typical structure of O-grid under the valve-
Bottom patch as in Fig. 4.30;

Figure 4.30. valve-bottom O-grid

The former target is reached isolating the blocks surrounding the valve (Fig. 4.31a).
Afterwards the selection in this case is simple due to the fact that all blocks will be
involved in, thus all visible blocks can be selected, while only top and bottom faces
must be selected to obtain the final structure in Fig. 4.31c. The latter target follow
the same step on the block under the valveBottom patch (Fig. 4.32)
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(a) Blocks isolation. (b) Blocks and faces selection .

(c) Final structure.

Figure 4.31. In figure are presented the three steps to obtain a boundary layer along in-
takeDuct and valve patches
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(a) Blocks isolation. (b) Blocks and faces selection .

(c) Final structure.

Figure 4.32. In figure are presented the three steps to obtain the typical O-grid structure
under valve-bottom
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Blocking adjustment

The resulting blocking structure for the case geometry lacks of some adjustment need
to prevent from mesh compenetration and bad quality:

• changing of nodes distribution on O-grid edges to create the right boundary layer
on liner, intakeDuct and valve;

• moving of vertex of inner blocks to obtain the right block orientation according
to geometry;

• splitting of edges according to boundary geometry in order to prevent from cells
compenetration;

The first type of adjustment is provided by The Edge Params option that allows you
to modify the mesh parameters in a detailed manner by specifying various bunching
laws and the node spacing along any particular edge. Each edge has several parameters
that determine the spacing of the mesh along the edge. Here it has chosen simply to
act on number of nodes, the meshing law, initial length at the beginning/end of the
edge (ratio) as in figure 4.33.

Figure 4.33. Parameters that determine the spacing of the mesh along the edge

A good way of proceeding is choosing an arbitrary number of nodes, not too many,
for each group of parallel edges in order to understand the next adjustments to do.
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Figure 4.34. Mesh section after a random choice of nodes per edge

The result is shown in Fig. 4.34. A non-smoothed transition between different
block regions and lacks of smooth layering within the boundary layer blocks. Red
arrows specify where the adjustments have to be performed. The problem is resolved
easily on inlet (Fig. 4.35), piston (Fig. 4.36) and cylinderHead (Fig. 4.37):

Figure 4.35. in-
takeDuct layer

Figure 4.36. pis-
ton layer

Figure 4.37. cylin-
derHead layer

The most critical part to adjust is the near valve region (Fig. 4.38).

Figure 4.38. Figure shows
the most critical region to
adjust. Red arrows identify
on which edges the spacing
will be modified.

Figure 4.39. Layer around
valve after adjustment
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In order to realize a quite good layer transition from valve-side to valve-bottom
I decide to diminish the initial spacing near valve side (from the bottom to the top)
and the spacing of valve-bottom (in radial direction) as well. Moreover an increase of
nodes on the edge specified by the yellow arrow in Fig. 4.39. The results, shown in
Fig. 4.43 does not seems really good as the user expected: smoothness does not get
better, small layer thickness into inner volume and not near wall. The user does not
worry about that because another important step has to be done: mesh smoothing is
strongly recommended to obtain a good mesh as in Fig. 4.44.

The second type of adjustment is provided by The moving vertex option that allows
you to modify the position of the vertex belonging to a block. It’s possible to move one
or more vertexes simultaneously along a specified direction or basing on the position
of a reference vertex. This step allows to prevent from mesh compenetration. In Fig.
4.40 is shown how much the position of a vertex affect the automatic generation of
hexaedral mesh in ICEM.

(a) wrong position of vertex. (b) right position of vertex.

(c) mesh due to wrong position of
vertex.

(d) mesh due to right position of
vertex.

Figure 4.40. Comparison between valve block with two different position of vertexes near
valve-top patch. With red circle is specified the zone of analysis
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The latter type of adjustment is provided by the Splitting edge tool, in particular by
automatic linear option that allows you to project edges, onto the associated geometry,
according to the node spacing previously given. It’s important underlying that ICEM
default options give to edges only 2 nodes (no discretization on edges) and thus if user
try to split edge nothing will change.

Figure 4.41. Edges splitted Figure 4.42. Edges not splitted

In many cases this adjustment prevent from the mesh overlapping and allows to
orient mesh perfectly with geometry. Both figures 4.41, 4.42 shown that the uniques
edges not modified are those of the inner O-grid block, identified by the red arrows.

Pre-mesh definition

ICEM allows to view the meshing result, without converting it in structured or unstruc-
tured, through the pre-mesh tool. It generates a temporary mesh file, thus provides a
useful way to verify the quality of mesh in few seconds since after only the first defini-
tion of block it is hardly difficult reach a good quality, especially in complex geometry.
All the previous consideration made upon block have been done thanks to pre-mesh.
Thus pre-mesh allows many adjustment on blocking, pre-smooth and the creation of
both the unstructured mesh file (.uns) and multiblok structure file (.multiblock). In
this case, since the simulation will be done on OpenFOAM the choice fall into the first
one, as explained in Sec. 4.3.
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Mesh definition: check and adjustment

After the creation of unstructured mesh three more steps must be done:

1. A check mesh. Even if this check is provided also by OpenFOAM tool checkMesh
in higher strictly way, it’s worth make it in ICEM before translating the .uns file
in .msh file (fluent mesh file) to import in OpenFOAM. The Check Mesh option
allows you to locate problems within the mesh that will usually lead to failure
when translating or running the solution. The most common problems in this
case are:

• Volume orientations, finds elements where the order of the nodes does
not define a right-handed element; it can be fixed automatically by ICEM.

• Penetrating elements, checks for surface elements that intersect or pass
through other surface elements;

• Overlapping elements, refers to surface elements that occupy part of the
same surface area, but don’t have the same nodes. This could be surface
mesh that folds on to itself. This will also find elements that are at an angle
of up to 5 degrees from overlapping each other;

Penetrating and overlapping elements occur especially when block adjustment
have not been performed as explained in sez. 4.3.1 or association between geom-
etry and block is missing and/or is wrong. Thus checking these steps again is
useful if a mesh error occurs.

2. A Smooth Hexahedral Mesh Orthogonal application. The unstructured
hexahedral smoother relaxes unstructured hexahedral meshes in order to obtain
smooth grid lines orthogonal to the boundary as well as smooth grid angles and
transitions in the inner volume. It first smooths the surface mesh recognizing the
topological boundary edges. If the number of volume smoothing steps is greater
than 0, after each surface smoothing step the inner volume will be adjusted by
performing 1 volume smoothing step. After the surface smoothing has been
finished, the inner volume will be smoothed (according to the number of volume
steps set). The mathematical basis is that of an elliptical differential equation of
the form:

∇2µ = f (4.4)

where f is the “control function”. It can be proved that by using the elliptical
operator ∇2 , smoothness of the mesh will be achieved. The control function f
will be specified so that the smoothed mesh will obtain certain characteristics,
such as orthogonality and layer height of the first layer.

3. A Smooth Mesh Globally application. This option allows you to automatically
improve the quality of the mesh elements. Different smoothing algorithms are
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available depending on which mesh type is loaded. Mesh can be smoothed with
respect to a particular quality criterion and with a specified number of iterations
to achieve a given quality level.

The two last option must be applied accordingly to the previous enumeration. Since
Hexaedral smoother help in reaching a smooth mesh without taking into account the
mesh quality, the user will have to use later the smooth mesh globally option to reach
a good quality up to a chosen value in a specific quality metric.

In order to obtain the mesh shown in Fig. 4.44 from mesh of Fig. 4.43 the set-up
used for Hexaedral smoother is:

• Number of iterations for the solver: 10 iterations on surface and 5 iteration on
volume;

• Orthogonality smoother on surface, laplacian smoother on volume, thus solve a
pure diffusion equation ∇2µ = 0 on all nodes of mesh;

• Freeze option onto all patches to freeze all boundary node locations;

• smooth all curves in smooth along curve option;

• Treat unstruct nodes with lapalacian smoother;

• Surface fitting in order to constrains boundary nodes to the true geometry sur-
faces;

After the Hexaedral smoothing, the smooth mesh globally option is applied on
volume and surface up to a 0.3/0.4 value of skewness and quality metrics, normalised
to unit, in ICEM.
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Figure 4.43. Figure shows mesh after spacing adjustment on all edges
aforementioned

Figure 4.44. Figure shows mesh after laplacian smoothing on volume
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4.3.2 Transparent Combustion Chamber case

The transparent combustion chamber (TCC) shown in Fig. 4.45,

Figure 4.45. TCC-III equipment at University of Michigan

from Engine Combustion Network ECN [20], has been chosen as second test-case.
TCC was developed for the specific purpose of supporting the development and vali-
dation of LES approaches.
The engine is made up of a two-valve head with simple intake and exhaust port/runner
geometries and a pancake-shape combustion chamber.

The TCC tools was developed in 1990-1995 with TCC-0 geometry by General Mo-
tors Research department and studied in [21, 22, 23, 24, 17]. The data were taken with
the purpose of Particle Image Velocimetry (PIV) development, empirical observations
of Closed Cranckcase Ventilation (CCV), and RANS development.

Then research on TCC were carried on by University of Michigan in period 2010-
2012 with TCC-I (Kuo, Tang-Wei et al. [25], Sick [26]) geometry (for simulation only)
and TCC-II geometry (Abraham et al. [27]). Compared to the TCC-0, the TCC-II
has a completely new intake and exhaust systems, different crank-case, and different
dynamometer. Testing revealed the intake valve guide was worn, such that later oscil-
lations occurred during lift. It was also discovered that the valve seat had two rather
than one angle, and thus had different discharge coefficients. Early tests during this
period would sometimes experience sudden and random engine speed variations during
testing, due to faults in the dyno powerpack as documented in the publications. These
“faults” were used as opportunities to search for their impact on the flow.

Afterward TCC study went on in University of Michigan during the period 2013-
2014 with TCC-III geometry. The TCC-III engine was refurbished with new hydraulic
valve lifters, new valves (identical design), and new four-angle valve seats. The in-
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take and exhaust systems are prepared for firing tests, including gaseous-fuel and a
nitrogen-dilution critical-orifice metering systems, flame arrestors have been added at
the plenum inlet/outlets, and water-cooled exhaust-pressure transducers. Thus, new
engine geometry files are required both for the LES and 1-D (GT Power) simulations
of the TCC-III engine (Montorfano, Piscaglia, and Onorati [12]). Compared to the
TCC-II, improved operating procedures were instituted to assure engine operation re-
peatability. The data set contains six operating conditions, four measurement planes,
repeated tests, and more cycles per test. Thus the most important feature changed from
period 1990-2014 was the valve-seat. In figure 4.46 is shown the valve-seat anthology
of valve-seat from 1990 to nowadays.

Figure 4.46. Valve-seat anthology from 1990 to 2014. Green lines represent the TCC-III
valve-seat

My case study comes down on TCC-III, thus the configuration with 4 angle valve-
seat, which whole geometry is shown in figure 4.47. In TCC case the parts involved in
topological changes of moving geometries are:

• Piston, as in flat top cylinder;

• liner, whose length increase or decrease according to piston motion;

• non-conformal interfaces with arbitrary mesh interface (AMI) implemented in
OpenFOAM to enable simulation across disconnected, adjacent, mesh domains.
Under intake/exhaust valve geometry;
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• intake and exhaust valve, whose lift has been defined in a table function of crank
angle. Then these tables are invoked in th file engineGeometry, the same for
piston motion, in order to provide valve motion.

• spark plug and detachFaces. On The first a slidingInterface is applied one time
through the use of stitchAndSplitMesh in order to connect fluxes between cylin-
der and spark plug region, that after its application becomes only one region.
Thus slidingInterface is applied on a non-conformal static interface. In the sec-
ond case between the two detached region that arise when attachDetach topology
modifier is triggerd at valve closure/opening event, hence applied on a conformal
interface.

• Baffles, created during the meshing, whose presence need to provide valve motion
and closure. The baffles are converted in a STL file and grouped in trisurface
directory. Afterward baffles are invoked by topoSetDict to create faceSet and
cellSet for those mesh region in which a topological change is requested.

Figure 4.47. whole TCC-III equipment’s geometry

Geometry definition

As in flat-top cylinder case the meshing begin from a IGES geometry file. The geom-
etry taken from ECN describe the whole equipment (plenum and TCC), however the
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meshing procedure has been developed splitting geometry in three parts:

1. intake-parts and exhaust-part, figure 4.48a; in particular, as starting point block
structure is realized on intakeDuct and intValve and then will be created on
exhaustDuct and exhValve using mirroring of blocks. Afterwards blocks of intake
and exhaust plenum are merged to them.

2. cylinder (Fig. 4.48c);

3. sparkplug, (Fig. 4.48d);

Only blocks of plenum and ducts has been merged directly in ICEM because between
them no-one non-conformal interface have been used, thus only two fluid region, one
for intake and one for exhaust, are generated.

(a) intake/exhaust plenum and
duct.

(b) intake and exhaust duct.

(c) cylinder. (d) sparkplug.

Figure 4.48. Figures show in which parts the whole geometry has been splitted to face the
meshing procedure

Many adjustment has been done on starting geometry downloaded from [20]:
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• four new surfaces, slidingIntakeA, slidingExhaustA , slidingIntakeB, slidingEx-
haustB (between ducts in Fig. 4.48a and cylinder in Fig. 4.48c ), has been created
in order to have non-conformal interface for AMI, to provide valve motion.

• four new non-conformal surfaces between cylinder (Fig. 4.48c) and spark plug
(Fig. 4.48d) in order to have a good layering under ground electrode. This
way ensures the right application of layerAdditonalremoval modifier on piston
patch, and guarantees a different spacing and strategy of blocking between cylin-
der and spark as well. Afterwards when the two mesh are completed they will be
stitched obtaining a non-conformal static grid. The reason why a slidingInterface
is preferred is that the more complicated interpolation algorithm of AMI might
represent an additional cost on the total simulation time, whereas the sliding
interface has no overhead since it uses standard cell-to-cell interpolation.

• 2 baffles, for each valve, has been created to provide the forward extraction of stl
file by topoSetDict, for layerAdditionalRemoval and attachDetach topology
modifier.

The patches on which AMI rely on are realized in ICEM starting from the diame-
ter of valve-seat visible in Fig.4.49a. The curve representing the intersection between
cylinderHead and valve-seat has been projected on piston surface through "the project
curve on surface" tools under geometry-create/modify curve (Fig. 4.49c ). Then
2 surfaces for intake, slidingIntakeA (side cylinder) and slidingIntakeB (side intake)
has been created extruding the curves, from piston patch to valve-seat in z direction,
through "curve driven" tools under geometry-create/modify surface. It is neces-
sary that 2 surface overlaps geometrically but they must own a different label name
(Fig. 4.49).

(a) intake valve-seat, exhaust
valve-seat, piston patches.

(b) direction of projection of
the curves.

(c) curve projected on piston
patch.

(d) overlapping surfaces:
sliding-intakeB/exhaustB
(light-blue), sliding-
intakeA/exhaustA (purple).

Figure 4.49. Figure shows the steps to create the 4 surfaces
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Afterwards it is useful to split piston patch in 3 parts: piston which belong to
cylinder part, piston-intake and piston-exhaust belonging to intake and exhaust re-
spectively. To do that has been used the "segment/trim surface by curve" tools under
geometry-create/modify surface using the curve projected on piston patch. Then
under tree-parts/create part/create part by selection, selecting each new trim
surface intake-piston and exhaust-piston has been created, as shown in Fig. 4.50b

(a) curves use to trim the pis-
ton patch.

(b) splitting of piston patch in
3 sub-parts.

Figure 4.50. Splitting of piston patch in intake-piston, exhaust-piston and piston

The non-conformal interfaces between cylinder and sparkPlug rely on the following
geometry surface: interfaceA, interfaceBottomA (side cylinder) and interfaceB, inter-
faceBottomB (side sparkPlug). After the application of stitchAndSplitMesh these
surface will disappear. The same extruding procedure, from curve, has been applied.

Figure 4.51. Figure shows in red the sparkPlug patch and the overlapping surfaces: interface-
BottomA (red), interfaceBottomB (green), interfaceA (orange), interfaceB (blue)
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Finally baffles, from which export stl file, have been generated for both valve:
exhvalve-topFaces, invalve-topFaces, exhaustDetachFaces, intakeDetachFaces. exhvalve-
topFaces and invalve-topFaces has been created from the revolution of one curve around
the valve axis. The curve uses for this purpose is not made of only one segment (Fig.
4.53) from sliding-intake/exhaust but by more segment as shown in Fig. 4.52 Com-
paring Fig. 4.54 and Fig. 4.55 it is possible understand the reason why the choice of
one curve made of a unique segment ( 4.53) is not allowed. Thus the curve, in order
to not cross the valve seat, has to follow his geometry especially for the formers two
angles. After those can be made a single segment to the bottom of valve-stem . This
particular choice will be explained completely in blocking definition due to the further
relation between the baffle and the block around valve it was chosen to do.

Figure 4.52. curve use to obtain
the surface of revolution

Figure 4.53. wrong curve not use
for revolution

Figure 4.54. curve does not cross
seat

Figure 4.55. curve crosses seat
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Then applying the "surface of revolution" tools under geometry-create/modify
surface, using the aformentioned curve, exhValveTopFaces and intValveTopFaces has
been done, as shown in Fig. 4.56.

Figure 4.56. TopFaces

It is important underlying that curves does not start from the top of sliding-
intake/exhaust patch but a little bit shift downward, as shown in Fig. 4.57

Figure 4.57. near view of curve Figure 4.58. Fig. shows the attachDetach in
green

In Fig. 4.57 is shown also the curve use to create exhaust/intake-detach. The
surface will be a surface of revolution around the axis of the valve. Thus the final
surface will cross the exhValve/inValveTopFaces as shown in Fig. 4.58.
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Blocking definition and adjustment for intake and exhaust geometry

The blocking procedure for intake and exhaust follows these steps:

1. Construction of block from intake-piston to vale-side/valve-top intersection. Be-
ginning from a single block (Fig.4.59a) between valve-bottom and intake-piston,
an O-grid has to be created (Fig.4.59c). Then edges has been associated to the
corresponding curves as shown in Fig. (Fig.4.59d).

(a) Creation of block. (b) Selection of block and faces for O-grid.

(c) O-grid block under valve. (d) Association of edges to corresponding curves.

Figure 4.59. Fig. shows the steps to obtain O-grid under the valve

The idea is create an O-grid block whose top-face is oriented with the valve-seat
geometry (Fig.4.59d), in order to obtain an oriented mesh in jet zone. Afterwards
the most external faces of the top of block has been extruded in z-direction as
shown in Fig. 4.60d. Then, the block faces (representing the attachDetach baf-
fles) has been extruded along the valve-side until the valve-side/valve-top inter-
section (Fig. 4.60f). The extrusion tools (under block/create block) can be
used or in interactive mode (after selection of faces the user drag the faces until
the reaching of wanted height) or in extrude along curve mode (after selection of
faces the user have to chose a reference curve for extrusion direction and an end
point for extrusion).
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(a) Selection of faces to be extruded. (b) First extrusion done.

(c) Direction of extrusion with red arrow. (d) Direction of extrusion along
valve side and the edges correspon-
dong to the block faces to be associ-
ated with exhaust7intake detach baf-
fle.

(e) Blocks after firs step blocking procedure. (f) Relative position between block and valve-side
patch.

Figure 4.60. Fig. shows the steps to obtain the block from the piston-intake to valve-
side/valve-top intersection
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2. Construction of block from valve-side/valve-top intersection to valve-top/valve-
stem intersection, under inValveTopFaces; this is the most critical part of blocking
procedure because boundary layer on intakeDuct and valve, either a good cellSet
for valve motion rely on how the block between inValveTopFaces and valve-top
have been done. Since both intakeDuct and valve need a boundary layer, whose
dimension are the same of block between valve-side and valve-seat, the blocks
shown in Fig. 4.60e near valve-side has to be extended along the two patches
aforementioned using a "key brick" block as show in Fig. 4.61

Figure 4.61. Fig. shows the faces involved in the extrusion

It is important to underlying tha the procedure has been done on only one side
(over 4 existing side). Thus this step must be repeated for each side and vertexes
belonging to each side must be merged to the other at the same height. The
former part of extrusion involves faces whose extrusion direction is represented
by red and blue arrow. Faces on the tail of blue arrow are initially extruded along
z-direction (Fig.4.114a)
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Figure 4.62. Fig. shows the faces must be ex-
truded and the extrusion direction

Figure 4.63. Fig. shows block created
with the extrusion

The black arrow in Fig. 4.63 shows the edged has been associated to curve near
valve-stem/valve-top intersection. The result is shown in Fig. 4.64

Figure 4.64. Fig. shows the association of edged to curves belonging to valve-stem and
valve-top
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Since now that there are the faces corresponding to inValveTopFaces it is pos-
sible to associate to the geometrical surface, as seen in Sec. 4.3.1. Afterward
blocks along valve-side ha evbeen created, splitting block near valve-top/valve-
stem (Fig.4.65a) intersection and extruding the bottom face of new block in z
direction. Then extruded blocks hebeen splitted in 5 sub-blocks, to fit the best
as they can the valve top geometry, and then each edges’ block has been associ-
ated to valve-top curve as shown in (Fig.4.65c). Finally the vertexes pointed out
with the tail of red arrow in Fig. 4.65c has been merged with the corresponding
vertexes (valve-side/valve-top intersection), within the red circle.

(a) Split of block near valve-stem/valve-
side intersection.

(b) Extrusion of block.

(c) Association of block to valve-top
curves.

(d) Fig. shows the block in light-blue,
while red represent a "void" to fill with
a particular block structure. Blue block
represent a block to split in ordr to cre-
ate quarter O-grid.

Figure 4.65. Steps to create boundary blocks for valve-top and inValveTopFaces
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The blue block in Fig. 4.65 need to be split in a number of blocks egual to those
along valve-top. These will guarantee the creation of quarter O-grid.

Figure 4.66. Splitting of block along inValveTopFaces

The result is shown in Fig. 4.66. The following step deals with the creation
of a particular block structure within the red field shown in Fig.4.65d. ICEM
allows to create the advanced topology known as a Y-Block or Quarter O-Grid
(under create block-from vertices/faces-Quarter O-grid). This topology is used
to fit three Hexa Blocks into a wedge. Select six vertices as shown in Fig. 4.67
to create the quarter O-grid. The three vertices of one side of the wedge must be
selected first, in clockwise or counter clockwise order. Then the remaining three
vertices can be selected. It is important that the 4th vertex selected should be
connected to the 1st, 5th to the 2nd and 6th to the 3rd respectively.
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Figure 4.67. Rule to select vertexes for
quarter O-grid

Figure 4.68. Quarter O-grid

This approach can be used similarly between in/exhValveTopFaces and in in/exhValve-
top (Fig.4.65d), in order to obtain a block as that of Fig. 4.68. Thus Quarter
O-grid has been applied to the top and to the bottom.

Figure 4.69. Quarter O-grid in the bot-
tom of block

Figure 4.70. Quarter O-grid in the top
of block

In Fig. 4.69 and 4.70 are shown the number of couples of vertexes to select and
the resulting quarter O-grid block. Vertexes to merge are pointed out with the
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same colour. Between bottom and top blocks two more blocks has been created
using create block tools from vertices (hexaedral) as shown in Fig 4.71.

Figure 4.71. Creation of hexaedral
blocks from vertices

Figure 4.72. Lateral view of final
blocks near valve

The blocks are created in the same way both for green faces and orange faces
(for 4 side around valve). Then few adjustment has been done on blocks in Fig.
4.71, such as move vertex, to obtain the best block of structure (Fig. 4.72).

3. Construction of block above inValveTopFaces to the middle of valve-stem. Now
block must be created over the inValveTopFaces through faces extrusion (Fig.4.73).

Figure 4.73. Blocks after extrusion of top faces of block in Fig 4.72
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Then the top faces of block of Fig. 4.73 has been extruded in z direction till the
curve pointed out by the red arrow inf Fig. 4.74a

(a) Fig. shows the faces selected for the extru-
sion .

(b) Near view of face selection.

(c) Block after extrusion. (d) View of block around valve-top and valve-
stem.

Figure 4.74. Extrusion of block above inValveTopFaces
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4. Construction of elbow of duct; In [28] is shown a strategy for "Hexa Mesh Gen-
eration for an Elbow Part". Although it seems to be a good approach, for TCC
case is too simple, since are involved much more blocks than in the tutorial, and
it does not provide a good quality where the elbow crosses with valve-stem. Thus
has been adopt a quite different method. Before proceeding with the blocking
on the elbow, two curves are extract from surface of intakePipeWalls with trim
surface tools (which generate curves as intersection between the plane use to trim
and the trimmed surface). The 2 curves need to associate it has chosen to do
between them. These are shown in Fig. 4.75

Figure 4.75. Extraction of curves from intakePipeWalls patch

Usually, as in a tutorial, when there is a solid region, for which we are not
interested to investigate the physics (e.g conduction), the mesh is created only
on his surface. Therefore an O-grid block is used to realize the axial-symmetric
mesh around it then the internal block is deleted since it is useless. This was the
case of axis-centered valve in sec. 4.3.1. However for TCC case is not worthwile
this approach due to poor quality of mesh it would generate near valve-stem-
intakePipewalls intersection.

First, the top faces in Fig.4.74 has been extruded to the curve pointed out with
red arrow in Fig. 4.75. Afterward the blocking of elbow can start.
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Figure 4.76. Fig. shows the faces extruded to create the block. LCS represent the local
coordinate system use to move the points on x-z plane of LCS

The difference between tutorial and TCC is shown in Figs. 4.77a, 4.77b

(a) Manual block custom made for TCC . (b) Block tutorial with automatic O-grid
generation.

Figure 4.77. Synthetic comparison between block section of two approaches. Purple represents
valve-stem while light-blue and orange represent the boundary layer block.

74



Mesh generation for ICE

As underlying before there is a remarkable difference between the two approaches
at valve-stem/intakePipeWalls intersection. In the former case the blocks cross
over the valve-stem, at the top, and these allows to have around valve stem
blocks whose spacing differs from that of intakePipeWalls, moreover it allows a
god quality of mesh. However this approach is not automatic but depends on
the experience of user. The latter is automatic in ICEM because relies on O-
grid block but it constrains to have the same spacing along intakePipeWalls and
valve-stem, and the typical structure of O-grid around valve-stem as well. For
that reason it has been preferred chose a non-automatic generation of hexaedral
block instead of the most automatic and quick one.

The top faces in Fig. 4.76 has been extruded along the z direction (of global
coordinate system). Afterwards the edges has been oriented, as the curve pointed
out in Fig. 4.78, using another LCS.

Figure 4.78. Extrusion of block around valve-
stem

Figure 4.79. Orientation of block as LCS2

From the block state of Fig. 4.79, two more extrusion has been done in order to
obtain the particular block of Fig. 4.77a.
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(a) Selection of faces for
first extrusion.

(b) Faces extruded and
coloured point to be merged.

(c) Lateral view of block af-
ter vertexes merging.

(d) Selection of faces for sec-
ond exrusion.

(e) Faces extruded.

(f) Coloured point to merge at the
top of the block.

(g) Coloured point to merge at the
bottom of the block.

(h) Final block.

Figure 4.80. Show the steps to obtain the particular blocking shown in Fig. 4.77a
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Extrusion of the left face of top block (Fig. 4.80h), to realize the final part of
duct, seems to be a bad solution since does not provide a boundary layer: it does
not have the typical structure of O-grid, as pointed out in Fig. 4.81.

Thus this block, and the block under it must be deleted. The first provides the
continuation of boundary layer which comes from the "key brick" block used for
blocking around valve, and it is showed in light-blue in Fig. 4.77a. The second
provides the O-grid in final part of intake duct, and it is showed in orange in
Fig. 4.77a. The fact there are two O-grid block is due to mesh cells: the nearest
O-grid to the wall can have a maximum of 2-3 cells since its spacing is strictly
related to spacing of conical space between valve-side and valve-seat. Since the
valve closure cannot be simulate as it happens in reality (no cells volume are
not allowed in CFD), but with attachDetach topology modifier, at least one cell
always remain in this very tight conical space. Thus it is not worth to use a lot of
cells because it will limit Courant-Friedrichs-Lewy (CFL) number, in the further
simulation, when the valves are closest to the their closure.

Figure 4.81. Red arrow shows the block that
not provides boundary layer if was extruded

Figure 4.82. structure after block deletion

5. Construction of final part of intakeDuct; Therefore, in order to obtain the final
block part of intakeDuct two block must be deleted to create O-grid structure.
The result of deletion is shown in Fig.4.82. Then blocks have been generated
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with extrusion of faces, shown in Fig. 4.83a, using "extrusion along curve" tool.
Afterwards, a split (Fig. 4.83c) has been applied to fit better the curvature of
duct.

(a) Selection of faces to extrude. (b) Extrusion along intake duct.

(c) Split of block. (d) Final block and association of edge to geome-
try.

Figure 4.83. Steps to obtain final blocks of duct
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6. Mirroring of intake-block part to obtain the exhaust-block part. Since intake and
exhaust are geometrically identical and symmetric, as shown in Fig. 4.48a, it
is worthwhile to use the same blocks of intake and the geometry created during
adjustment as well. Thus either geometry and the blocks need to be mirrored on
his plane of symmetry. The operation can be made in two steps in ICEM: Mirror
geometry tool and Rotate geometry tool (under Geometry-Transform geom-
etry). Then Mirror blocks tool and Rotate blocks (under Blocking-Transform
blocks) tool.

Since a lot of adjustments have been done on the geometry to provide the con-
struction of blocking and edges association, the intake geometry is mirrored too.
The mirror geometry tool wants in input the geometry part to mirror (point,
curves and surfaces) and it is necessary specify:

• "copy" because it needs one geometry more for exhaust;

• "increment parts" for all parts belonging to intake duct. Once the mirror
is done, the "increment parts" option produce in the tree parts a new part
whose name is the old part plus _0 (e.g inValve-stem becomes inValve-
Stem_0). Thus each new part must be changed with a name for exhaust;

• The axis perpendicular to plane of reflection;

• The point of reflection, on which the plane of reflection must pass through;

Then the new geometry part shown in Fig. 4.84a must be selected to be rotated
(4.84b) and it needs to specify:

• The axis or vector around which the rotation occurs;

• The point on which the axis of rotation must pass through;

.

The same has been performed on block as shown in Figs.4.84c 4.84d. However it
is not allowed to generate an "increment part" for block. Thus the new blocks
own the same association of native blocks. Thus old association must be deleted
and replaced with new ones. The dissociation from geometry is understandable
from the light-blue colour of all edges in Fig. 4.84d.
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(a) Mirror of geometry. (b) Rotation of geometry.

(c) Mirror of blocks. (d) Rotate of geometry and dissoci-
ation from geometry.

Figure 4.84. Operation of mirror and rotation on geometry and blocks

7. Construction of intake/exhaust plenum and merging with ducts. intake and
exhaust plenum own a different. The difference lies on height (Fig. 4.85) and
bottom patches of tanks as shown in Fig. 4.86 and Fig. 4.87.

Figure 4.85. Lateral view of
intake (green) and exhaust
(blue) plenum

Figure 4.86. Lateral view of
intake bottom-tank

Figure 4.87. Lateral view of
exhaust bottom-tank
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Nevertheless their blocking has been made independently, because are different,
their generation is similar. They are two simple cylinder-cylinder intersection.
thus an O-grid crosses another O-grid in both cases. the result is shown in Fig.
4.88

Figure 4.88. shows the block of intake
and exhaust plenum

Figure 4.89. shows the merging be-
tween plenum and ducts

The blocks of plenum have not been generated in the same project of intake
and exhaust duct but in another one. Afterwards, from the project of ducts,
the blocking file of only the plenum has been open and merged with the "root"
Blocking. ICEM does not merge the blocks immediately but generates a sub-
topology corresponding to the new block. "Topology" is displayed under Blocking
tree and give to the user the information about "root" topology and sub-topology.
Right clicking on sub-topo gives many option. One of this allows to merge sub-
topo with "root" topology. After that the two topologies are displayed together
in ICEM window. Thus now it is possible to merge blocks at their meeting point,
merging vertexes to corresponding vertices. The final block structure is shown in
Fig. 4.89

Blocking definition and adjustment for cylinder

Since the cylinder has the geometry of Fig. 4.48c more than one O-grid block are
necessary, either for boundary layer near liner patch either for the three cylindrical
non-conformal interfaces. The synthetic block approach use is shown in Fig. 4.90
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Figure 4.90. Section view of block structure adopted for cylinder

After the creation of the first block and first O-grid, it has noticed out that the only
way to obtain blocks of Fig. 4.90 is rotate the block just created of 45◦ degrees around
the z axis. ICEM block are automatically created oriented with global coordinate
system, thus a block or geometry rotation is strictly necessary.

Figure 4.91. First O-grid creation Figure 4.92. Block rotation

Then a cross has been built centered on sparkPlug. It has been generated splitting
perpendicular the block twice in both direction. Afterward three O-grid have been
built, two for AMI and one for static non-conformal interface between cylinder and
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spark plug, as shown in Fig. 4.93.

(a) Cross construction. (b) SparkPlug O-grid faces selection.

(c) SparkPlug O-grid done. (d) intake/exhaust O-grid faces selection.

(e) intake/exhaust O-grid done. (f) sparkPlug inner block deletion.

Figure 4.93. Steps for the creation of O-grid

The inner block of Fig. 4.93f must be deleted to contain further the mesh of
sparkPlug. However not all the block in his own height must be deleted as can possible
see from geometry in Fig 4.48c and 4.48d. Thus all blocks are splitted along z direction
and one more O-grid as been built inside the inner block. Then the top part of this
block has been deleted. Fig .4.94a shown also some blocks in black. These blocks have
to be removed to have the block of Fig. 4.90 and free vertices has been merged as well.
Finally the blocks are adjusted, moving vertices and applying "automatic split edge"

83



Chapter 4

(as seen in Sec. 4.3.1), to fit the geometry (Fig. 4.94d).

(a) selection of block to delete. (b) Blocks deleted.

(c) Blocks after vertexes merging. (d) Blocks after association and automatic
edge splitting.

Figure 4.94. Steps of deletion and association for final cylinder structure

Blocking definition and adjustment for sparkPlug

As can possible see in Fig. 4.48d, spark Plug geometry is really complex to hexa-
meshing: his top part is a cylinder-like geometry while the bottom part is a smooth
square prism. Whilst the top part (central electrode) wants O-grid structure , the
bottom part (ground electrode) does not want it, thus a compromise between O-grid
structure and classical hexa blocking must be made. Moreover the fact that the ground
electrode is tangent to the cylindrical part of spark makes harder to mesh it. The
following procedure is repeatable on other spark geometry since the huge part of it does
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not change remarkably; only the distance between electrode and the volume between
thread and central electrode can change.

The blocking procedure starts from the volume between external thread and central
electrode, where the presence of an O-grid structure is necessary (Fig. 4.96).

Figure 4.95. First block top
part of spark Plug

Figure 4.96. O.grid on the
top part of spark Plug

However as said previously the O-grid must be adjust to fit the complex geometry
of spark plug. For this reason the block pointed out in Fig. 4.96 has been deleted to
allow the creation of Quarter O-grid, the same use for valve-side blocks. After deletion,
the old internal face become an external face thus a new block can be created from it
with a simple extrusion as shown in Fig. 4.114a

Figure 4.97. Deletion of
block

Figure 4.98. Selection of
face to extrude

Figure 4.99. Extrusion of
face
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In this way Quarter O-grid can be generate as seen in Fig. 4.68 and result is shown
in Fig.4.100.

Figure 4.100. Quarter O-grid on the top part of spark plug

This structure will be kept as it is to the bottom surface, however in the inner
block two more O-grid will be done to fit the central electrode geometry. Thus bottom
blocks’ faces has been extruded (Fig. 4.101) and 3 split has been performed according
to geometry (Fig. 4.102).
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Figure 4.101. Selection of
bottom faces to extrude

Figure 4.102. Extrusion of
faces

Figure 4.103. Splitting of
block in 4 sub-blocks

The block which represent the head of the central electrode has been modified with
two O-grid and afterward the new faces’ structure of the most bottom block has been
extruded to the bottom surface and four more split has been done.

Figure 4.104. Selection of
block and faces for first O-
grid for central electrode

Figure 4.105. Selection of
block and faces for second
O-grid for central electrode

Figure 4.106. Extrusion of
faces from bottom of central
electrode to the lower sur-
face of geometry, and fur-
ther splitting of block in 4
sub-blocks

The central block structure owns some blocks that must be deleted because inner
part of geometry is void. Thus inner blocks from the top face to the bottom face of
central electrode has been deleted as shown in Fig. 4.114a.

87



Chapter 4

Figure 4.107. Deletion of inner blocks

In order to obtain the Most external part of blocking structure extrusion from all
external faces must be performed. Then external vertexes has been merged to average.

Figure 4.108. Top view of
block structure

Figure 4.109. Extrusion of
external faces

Figure 4.110. Merging ver-
texes of adjacent blocks

The blocks, which has just been merged, needs another split in radial direction to
merge the small blocks pointed out in Fig.4.110. The result is shown in Fig. 4.112.

88



Mesh generation for ICE

Figure 4.111. Radial split-
ting blocks

Figure 4.112. Final merging
of vertexes

Figure 4.113. Final block
structure of sparkPlug

To obtain final block structure, the blocks which occupies the geometry of ground
electrode need to be removed since it is a solid region and not a fluid region. After
these blocks deletion the final blocks is that of Fig. 4.113

Mesh definition: check and adjustment

After the application to blocks the "automatic linear" splitting tools at each part
(cylinder, intake/exhaust, sparkPlug) and after the choice of the suitable spacing near
wall patches a "smooth mesh globally has been applied " to reach a good value of
skewness.

(a) intake/exhaust blocks. (b) cylinder blocks. (c) sparkPlug Blocks.

Figure 4.114. Shows the final blocks for each part
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(a) baffles and mesh. (b) baffles and mesh cut view.

(c) sparkPlug mesh cut view. (d) valve-stem mesh cut view.

Figure 4.115. Shows the final mesh for sparkPlug and near valve region

More attention must be given to intake/exhaust duct, especially near baffles. After
unstruct mesh smoothing it is possible to extract the mesh part corresponding to baffles’
geometry created at the beginning:

• From tree parts the user choose the baffles to display. In this way on ICEM
window will appear only that mesh part.

• ICEM allows to "save only the visible mesh". Thus this has been done on inVale-
detach, exhValve-detach and inValve-topfaces, exhValve-topFaces.

For inValve-bottomfaces and exhValve-bottomFaces a different approach has been used
because no-one baffles have been created:

• Creation of subset from mesh tree, for sliding-intValve patch and sliding-exhValve
patch (Fig. 4.118);
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Figure 4.116. Create subset
window

Figure 4.117. Create subset
from parts

Figure 4.118. Subset cre-
ated

• Removal of layers from the bottom and the top of subset (Fig. 4.114a). From the
top only two layers has been removed (between valve seat and intakeTopFaces
there are only a two layer cell). The number of layers removed from bottom de-
pends on how many layer we want between valve-bottom and intake-bottomFaces
(Fig. 4.114a).

Figure 4.119. Remove layers
from subset window

Figure 4.120. Remove layer
from top

Figure 4.121. Final subset

• Creation of subset for intValve-bottom;

Figure 4.122. Creation of valve-bottom subset
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• Modification of intValve-bottom subset. Choosing "add layer to subset" with add
layer method and " also volume" option activated, the user add 1 layer per time
until cells reach the bottom of sliding-intValve subset created previously (Fig.
4.114a).

Figure 4.123. Add layer to
subset window

Figure 4.124. Cells added to
subset

• Saving of the "only visible mesh";

• Opening of another project containing only the previous mesh subset. The user
has to apply a checkMesh activating the control on uncovered faces. During check
process a warning message will appear because the bottom cells are uncovered.
Thus ICEM asks if the user want to cover them, and it allows to specify the name
of the patch that will cover the fluid cells. This new patch will appear in tree
part. This new patch will be intValve-bottomFaces and exhValve-bottomFaces
(Fig. 4.114a).

• Displaying only intValve-bottomFaces and exhValve-bottomFaces save it with
"save only the visible mesh".

• Creation of exhaust-movingCells and intake-movingCells. These subset represent
all the faces containing (Fig. 4.125) the moving cellSet (Fig. 4.126). Thus open
another project in ICEM and open intakeToFaces.uns ,intake-bottomFaces.uns
ans the sliding-exhvalve.uns creating previously from subset. The same thing for
exhaust. Then save it as exhaust-movingCells.uns and intake-movingCells.uns.

• Finally creation of .stl file. For each file the user has to create a stl file in order
to create faceSet and cellSet with topoSet tool in OpenFOAM. Thus under File-
export mesh-write STL file the stl file will be created.
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Figure 4.125. faceSet involved in moving
Mesh

Figure 4.126. CellSet involved in moving
Mesh

4.4 Interfacing ICEM mesh with OpenFOAM

4.4.1 Mesh export and mesh conversion in OpenFOAM

For both cases, once the meshes fulfil the quality constrains, the .uns file has to be
converted to .msh file and the user have to assign to all patches the wall boundary
condition (BC) type. OpenFOAM accepts a wide variety of unstructured mesh file
from the most common solvers such as fluent, kiva, gambit, cfx, STAR-CD. Since i
decide to export .uns file to fluent mesh file .msh i will use a fluent mesh converter:

• fluentMeshToFoam is an old code implemented in OpenFOAM and handles 2D
Fluent meshes but struggles with some 3D meshes, especially when there are
baffles patches. Thus it is possible use it with flat-top cylinder case but not with
TCC case.

• fluent3dMeshToFoam is newer. Can handle only 3D meshes, but it does this
much better than the old one.

93



Chapter 4

This tool can be used together with some options. The most common used is the scale
option. Since OpenFOAM is based on international system of units, it accepts mesh
in meters. Thus it allows to scale the mesh if it was realize on a geometry not previous
scale to the right magnitude.

4.4.2 mergeMeshes tool

TCC is made up of three pieces: intake duct & plenum, exhaust duct & plenum,
sparkPlug, cylinder. All the pieces need to be merge in a unique mesh file under
polyMesh. This tool place the mesh definition for each piece in the same destination
folder but does not merge them physically (stitched) The tools is used n times where
n is the number of pieces: each time a masterCase and a slaveCase are chosen. The
slave one will be merge in the master one.

4.4.3 mergeOrSplitBaffles tool

As seen in Sec. 4.3.2 in mesh adjustment, Intake and exhaust duct own in their inner
volume an internal patch used to create the STL geometry surface that identifies the
face on which the layerAdditionalRemoval topology modifier has to be applied on.
Although baffles are useful to create the STL file to invoke in topoSetDict they are
useless during the simulation and create problems for dynamic mesh Since the domain
is divided in more region instead of one (when valves are opened). Thus this tool allows
the baffles removal to guarantee the right definition of fluid dynamic domain. The tool
is applied directly on the case with whole mesh.

4.4.4 projectPatchPoints tool

This tool is used to prevent errors during stitch procedure. Since stitching is based
on an algorithm that starts from the normal vector to a cell face, if faces belonging
to the same patch own different directions relative to other patch to stitch with, the
mesh cannot be stitched. Thus projectPatchPoints allows to project the point’s of
the slave patch onto surface identified by master patch. The tool is applied choosing a
master patch on which point of slave patch are projected, the information are invoked
in projectPatchPointsDict. The projectPatchPoints tool has been applied:

• on sparkPlug for the further stitch with the correspondent patch on cylinder;

• on intake/exhaust non-conformal interface in order to provide a correct corre-
spondence between mesh faces during piston motion.

4.4.5 stitchAndSplitMesh tool

Finally sticthAndSplitMesh,which rely on slidinginterface toplogy modifier, is applied
between sparkPlug and cylinder patches up to a tolerance, invoked in file toleranceDict,
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which differs from case to case: the finer is mesh the bigger can be the tolerance, seen
as the distance between two points belonging to different patches.

4.4.6 topoSet tool

Both case study build their topological changes on faceSet and cellSet created by
topoSet tool. topoSet invokes topoSetDict. In the first part of topoSetDict label
are assigned to STL file

exhValveTopFacesSTL " constant / t r i S u r f a c e /exhValve topFaces . s t l " ;
exhValveBottomFacesSTL " constant / t r i S u r f a c e /exhValve bottomFaces . s t l " ;
exhValveDetachFacesSTL " constant / t r i S u r f a c e /exhValve detach . s t l " ;

intakeTopFacesSTL " constant / t r i S u r f a c e / intValve topFaces . s t l " ;
intakeBottomFacesSTL " constant / t r i S u r f a c e / intValve bottomFaces . s t l " ;
intakeDetachFacesSTL " constant / t r i S u r f a c e / intValve detach . s t l " ;

exhValveMovingCellsSTL " constant / t r i S u r f a c e / exhaust movingCel ls . s t l " ;
inValveMovingCellsSTL " constant / t r i S u r f a c e / intake movingCel ls . s t l " ;

Then it is possible to specify a series of tolerance to invoke in the generation of set,
case by case:

to lerance_1 1e 5 ;
to lerance_2 1e 5 ;
to lerance_3 1e 5 ;

Afterwards for each .stl file invoked in sourceInfo a type of faceSet is created, up to
a specific tolerance, according to the source file (e.g if set originates from a stl geometry
surfaceToFace is used, otherwise if it originates from a patch patchLayersToFace is
used). For valves the procedure has been done on top-Faces, bottom-Faces, detach-
Faces, for both intake and exhaust basing on the baffles created previously in ICEM.

// exhValve : top Faces
{

name exhValve topFaces ;
type f a c eSe t ;
a c t i on new ;
source surfaceToFace ;
s ou r c e In f o
{

f i l e $exhValveTopFacesSTL ;
nearDist $to lerance_1 ;

}
}

// exhValve : bottom Faces

95



Chapter 4

{
name exhValve bottomFaces ;
type f a c eSe t ;
a c t i on new ;

source surfaceToFace ;
s ou r c e In f o
{

f i l e $exhValveBottomFacesSTL ;
nearDist $to lerance_2 ;

}
}

// exhValve : detach Faces
{

name exhValve detachFaces ;
type f a c eSe t ;
a c t i on new ;
source surfaceToFace ;
s ou r c e In f o
{

f i l e $exhValveDetachFacesSTL ;
nearDist $to lerance_3 ;

}
}

For piston faces the procedure has been done on same way on piston, intake-piston
and exhaust-piston patches:

// p i s t on l a y e r AR
{

name pi s tonFaces ;
type f a c eSe t ;
a c t i on new ;
source patchLayersToFace ;
s ou r c e In f o
{

patch p i s ton ;
nLayers $p i s tonLayers ;

}
}

The same has been done in order to create cellSet. cellSet gives the information
about cells involved in the motion. Thus cellSet is created for both intake and exhaust
valve:

// exhValve : movingCel l s
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{
name exhValve movingCel ls ;
type c e l l S e t ;
a c t i on new ;
source sur faceToCe l l ;
s ou r c e In f o
{

f i l e $exhValveMovingCellsSTL ;
u s eSur f a c eOr i en ta t i on true ; // f a l s e ;
out s idePo in t s
(

( 0 . 0 3 5 0 .0006 0 . 015 )
( 0 . 0 4 5 0 .0006 0 . 0 0 1 )
( 4 0 e3 0 .6 e 3 4 .19 e3 )
( 4 2 e3 0 .6 e 3 1 e3 )

) ;
inc ludeCut fa l se ; // t rue ;
i n c l ud e I n s i d e true ;
i nc ludeOuts ide fa l se ;
nearDistance 1 ;
curvature 1 0 0 ;

}
}

Also for piston motion a cellSet has to be defined, usually this coincide with the bound-
ary layer on piston patch whose layering must keep unchanged not applying no-one kind
of topology modifier on it. Thus a number of pistonLayers has to be defined. This
value will be invoked in sourceInfo to create the pistonCells:

{
name p i s t o nCe l l s ;
type c e l l S e t ;
a c t i on new ;
source patchLayersToCel l ;
s ou r c e In f o
{

patch p i s ton ;
nLayers $p i s tonLayers ;

}
}

However, comparing with faceSet type, the source changes since moving cellSet has
been built from a surface including those cells, and piston cellSet has been built begin-
ning from the patch itself to a specific number of layers.

It is important underlying that piston faceSet and cellSet ave been built both for
flat-top cylinder head and TCC, while intake/exhaust valve faceSet and cellSet have
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been built only for TCC.

4.4.7 createPatchDict-AMI tool

In TCC case the moving non-conformal interface (slidingIntakeA-B and slidinExhaustA-
B) has not been handled with sliding interface but with AMI. Since OpenFOAM needs
information about patches gather up in AMI, a createPatchDict-AMI is requested.
This gives information about each patch and its neighbour one:

{
name s l i d ing In takeA ;
patchIn fo
{

type cyclicAMI ;
inGroups 1( cyclicAMI ) ;
matchTolerance 0 . 0 1 ;
trans form noOrdering ;
neighbourPatch s l i d i ng In takeB ;

}

constructFrom patches ;
patches ( s l i d ing In takeA1 ) ;

}

{
name s l i d i ng In takeB ;
patchIn fo
{

type cyclicAMI ;
inGroups 1( cyclicAMI ) ;
matchTolerance 0 . 0 1 ;
trans form noOrdering ;
neighbourPatch s l i d ing In takeA ;

}
constructFrom patches ;
patches ( s l i d ing In takeB1 ) ;

}
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Cases set-up and results

In this section the set-up of two cases has been dealt with: for the Flat-top cylinder
head with a fixed, axis-centered valve more than one full cycle have been performed
to analyse axial velocity and the rms velocity, instead for the TCC case only the
piston compression and expansion have been performed. Finally a comparison between
experimental results, DLRM and LES has been performed.

5.1 Flat-top cylinder head with a fixed, axis-centered
valve

5.1.1 Experimental set-up

Specification of the geometry for the case studied [16] as well as a list of main func-
tioning parameter has been represented in Fig. 4.14. The piston has a bore diameter
of 75 mm, stroke is 60 mm and clearance height is 30 mm from the cylinder head at
the Top Dead Center (TDC); the geometric compression ratio is 3. The poppet valve
is coaxial with respect to the piston axis and it is static; the valve angle is 30◦ with
respect to the cylinder axis and the width of the uniform valve gap is 4mm.
Piston motion is purely harmonic with a frequency of 200RPM ; the piston has a mean
speed Ūp = 0.4 m/s and it reaches its maximum speed at 90◦ and 270◦ CA degrees
ATDC; as a consequence, the engine Reynolds number (considering air as a working
fluid) is Re = ρŪpD/µ ∼ 2000.
The experimental data used for a comparison with CFD simulation has been taken
from [16]. The experiments were carried out with air at environmental conditions (1
atm and 293 K). Laser-Doppler anemometry was used to measure the axial and az-
imuthal velocity components at 36◦ , 90◦ , 144◦ CA during the intake stroke and at
270◦ CA during the exhaust stroke at points located on planes at 10mm, 20mm and
30mm below the cylinder head in the axial direction. The mean and rms values of the
axial velocity were obtained by averaging over 100 samples within a 10◦ CA interval
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and five independent sets of measurements were taken to check the reproducibility of
the results [16]. The reported errors were smaller than ±3% for the mean and ±5% for
the rms velocity; in regions with steep gradients the error in the mean field increases
to up to 10 % for the mean and to 20 %for the rms values.

5.1.2 Numerical set-up and methodology

The geometry has been discretized with a pure unstructured hexahedral mesh as shown
in Sec. 4.3.1. The cylinder inlet section is connected to a plenum (Fig. 5.1) whose
volume is about 11 times the cylinder volume since cylinder volume at BDC is about
0.0004m3 and tank volume is about 0.0043m3 (Tank−Diameter = 0.166m , Tank−
height = 0.2m )

Figure 5.1. Case set-up and boundary conditions for the apparatus experimentally studied
used by Morse, [16]. The outlet boundary condition provides a non-reflecting outflow condi-
tion, with specified inflow for the case of return flow occurring during the intake stroke.

The purpose of the plenum was to avoid reflections from the inlet boundary, to
improve the accuracy of the results and the stability of the simulation.
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Thanks to the hybrid RANS/LES turbulence model applied, a very coarse mesh, whose
resolution was ranging from 1.400 K cells at the BDC to 800 K cells at the TDC has
been used for simulations (no plenum cells are taken into account). In previous LES
study in [19] the grid had about 4 million cells. The strategy chosen for dynamic mesh
handling is based on dynamic layer addition/removal: the cells are stretched/squash
up to a value of thickness during piston motion; then, beyond this value, a layer is
added/removed if there expansion or compression respectively.

Figure 5.2. Cut view of the Finite Volume grid used for the simulations. The whole mesh had
about 1 million hexahedral elements at TDC, including the plenum (not shown).

The computational grid could be divided into three sub-regions, where points are
characterized by a different motion law (see Fig. 5.2) In particular, points above
the cylinder head were static and they belong to a sub-region named “static mesh”.
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Similarly, points located below the cylinder head (“head points”, Fig. 5.2) were not
moving to preserve the cell quality in the region between valve seat and cylinder: this
region goes from cylinderHead patch to the first layer of cell not belonging to moving
cellSet (usually 4/5 layers) defined in topoSet as shown in Sec. 4.4.6 for piston patch.
Finally, points belonging to moving cellSet generated from piston patch, move axially
to account for the moving boundary (piston). Assuming the cylinder axis aligned to
the z axis of the global reference frame of Fig. 5.2, the point velocity up is calculated
as follows:

up(xp) = Up(t)
zmax − zp

zmax − zpiston
(5.1)

where :
Up(t) = S/2 sin(ωt)ic (5.2)

is the piston velocity, S is the piston stroke, ic is the unit vector parallel to the cylinder
axis, xp = (xp, yp, zp) is the point position, zmax is the z-coordinate of the farthest
moving point from the cylinder and zpiston is the z-coordinate of the piston.

Case set-up

The boundary and initial condition for involved physical quantities are presented briefly
in Tab. 5.1

inlet /tank cylinderHead, piston internalField
liner, /valve

k inletOutlet zG wF wF 0.01m2/s2

ω inletOutlet zG wF wF 400 s−1

µt calculated zG wF wF 1e− 8 kg/(ms)
P totalPressure zG zG zG 101325 Pa
T inletOutlet zG zG zG 293K

TotalTemperature
U pressureInlet 0m/s 0m/s mWV 0m/s

OutletVelocity

Table 5.1. Boundary and initial condition. zG means zeroGradient and wF, wallFunction,
mWV movingWallVelocity

Since The purpose of the plenum is only to avoid reflections from the inlet boundary,
to improve the accuracy of the results and the stability of the simulation, it has been
realized with a coarse mesh in volume and near wall patches as well. Hence it is useless
applied wallFunction to Tank patches for any physical quantity. On the other side they
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are going to be applied on other wall patches even if they are develop only for completely
developed flows and not for ICE or engine like geometry. Internal field for P, T field
are set up according to evironmental conditions, while U is set to quiescent velocity
with piston position at TDC field, because turbulence is activated by piston motion
whose velocity is calculated in z direction with Eq. 5.2. Other physical quantities are
set up with values that allows numerical stability in formers time steps. Moreover for
all wall patches zeroGradient on Temperature is applied which means that not heat
exchange are taken into account and zeroGradient on pressure is applied too.

Particular condition has been applied on inlet: since mass flow rate change in sign
due to piston motion, between intake and exhaust stroke, inletOutlet condition has
been applied on k and ω to provide a generic outflow condition, with specified inflow
for the case of return flow and a similar condition on Temperature as well. Also for U
an inlet/outlet boundary condition is applied, working in this manner: A zero-gradient
condition is applied for outflow (as defined by the flux); for inflow, the velocity is
obtained from the patch-face normal component of the internal-cell value. Notice that
this BC on U has been coupled with totalPressure BC on Pressure at inlet makes the
problem numerically consistent.

Finite volume interpolation schemes

Interpolation schemes used to discretize governing equation (Sec. 2.1) are:

• a second order backward differencing scheme (Crank Nicholson) has been used to
discretize temporal derivative. Even if is unconditionally stable, since stability
does not rely on temporal discretization, when a convective term appears in
equation, spurious oscillations can appear. Thus a blending with Euler implicit
method is performed in order to remove this wiggles.

• pure second order has been used on all space derivatives except for momentum
and energy advection, which use a particular scheme, and turbulence , which is
usually discretized with one order of accuracy lower than momentum. This allow
for a higher accuracy but in many cases, especially with coarse mesh, can be
unbounded.

• momentum advection ∇ · (ρUU) and energy advection ∇ · (ρUh) have been
discretized with Linear-upwind stabilized transport (LUST).
It is a new interpolation schemes in which linear-upwind is blended with linear
interpolation to stabilize solutions while maintaining second-order behavior. The
blending-factor is set to 0.75 linear which optimizes the balance between accuracy
and stability on a range of LES cases with a range of mesh quality. The scheme is
proving particularly successful for LES/DES in complex geometries with complex
unstructured meshes.

• linear scheme for point to point interpolation;
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Algorithm control

Since the compressible dynamic solver is used in Transient-simple mode, Courant num-
ber can be higher than 1. However the timestep is limited due to the fact that both
the compressible transient dynamic solver and the time-resolved turbulence modeling
are limited by Courant number; Even if the transient solver is potentially able to work
with higher Courant numbers, time resolution is crucial to maintain phase coherence
for LES, so Co must be lower than 5. Also Topological changes pose some limits on
the maximum time step size needed to guarantee topological consistency. If the tem-
poral time step was too large, the mesh handling algorithm may skip the point, when
a topological changes should be triggered, leading to a wrong mesh configuration. To
avoid this problematic situation and to ensure dynamic mesh consistency, adaptive
topology-driven time stepping has been implemented. The expected displacements for
all the moving components (piston, valves) ∆z′ are computed before they are actually
executed. As an example, for a piston moving by a velocity Up during the compression
phase:

∆zpiston = Up ·∆t (5.3)

If the predicted displacement is larger than the average height of the cell layer to
remove:

∆zpiston = ∆zmaxlayer (5.4)

then the time step is recalculated as:

∆tlim = ∆zmaxlayer/Up (5.5)

Where ∆zmaxlayer layer is the layer removal threshold and ∆tlim the maximum allowed
time step. Thus time step turns out to be limitated by two factors: phase coherence
for LES and topological consistency. The first leads to use a small time step with an
adjustableTimeStep option to avoid that CFL goes beyond its max value, the second
is ensure by the aforementioned adaptive topology driven time stepping.

5.1.3 Results

The valve is coaxial with respect to the cylinder and remains fixed throughout the
whole engine cycle, that has a period of 360◦ Crank Angle (CA). Due to the low piston
velocity, the flow regime in the valve seat during the intake stroke is laminar. A circular
jet is expected to form in the cylinder during this phase, together with primary and
secondary vortex rings as a consequence of the interaction of the incoming flow with the
fluid inside the cylinder. Azimuthal and ensembling averaging of the data have been
used to calculate statistical quantities to a limited number of engine cycles: because
of this, a sufficient number of engine cycles must be simulated to obtain converged
statistics. In total, eight engine cycles were calculated and the first was discarded from
the statistical analysis, in order to minimize the effect of the initial conditions. This
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choice was due to the need of excluding any non-repeatable phenomenon that might
occur during the very first phases of the simulation, when the cylinder conditions are
very different with respect to the other cycles. Comparisons between simulations and
experiments have been carried out at 36◦ , 90◦ and 144◦ CA (intake stroke) for the
mean and rms of the axial velocity.

Average and rms velocity

Space averaging has been computed along the azimuthal direction, in order to reduce
the total number of engine cycles to be simulated. Data have been sampled with an an-
gular step of 5◦; linear interpolation has been used to approximate the fields in between
cell centers. Both ensemble averaged velocity Ū and rms fluctuations (uz

rms) have been
extracted from the circumferential-averaged planes and compared with experimental
measurements. Profiles have been plotted along the cylinder radius at increasing dis-
tance (with a step ∆z = 10 mm) from the cylinder head (conventionally assumed as
z = 0mm); only the axial component of the velocity has been considered for compar-
ison, since no experimental data were available in [16] for the other two components.
Thus In Figures 5.3, 5.4 and 5.5, mean and rms fluctuations of the axial velocity are
compared at selected axial distances z from the cylinder head. Both mean and rms
fluctuansion are normalised by the average piston speed Ūp defined as 2Sn.
In Fig. 5.3, velocity profiles at CA = 36◦ are represented. The amplitude of local
minima at z = −10 mm and z = −20 mm is correctly estimated, even though the
position is slightly shifted towards the liner wall. The same considerations can be done
for the local maxima of urmsz .
At z = −30 mm flow velocity is very low, because the measurement location is very
close to the piston top, thus Both LES and DLRM catch very well experimental data.
Comparison of averaged velocities at CA = 90◦ are represented in Fig. 5.4.
The experimental velocity profile is caught fairly well at z = −10mm and z = −20mm,
even though the position is slightly shifted towards the liner wall as at CA = 36◦ at
the same height. On the other hand, differences between simulated and measured ve-
locities increase as the sampling plane location is moved far from the cylinder head,
even though the qualitative trend is generally preserved. Predictions of velocity field
for CA = 144◦ (Fig. 5.5) show a very good agreement with experimental data, with
minor discrepancies near the cylinder walls for rms fluctuations. As shown in [19] at
CA = 90◦ (Fig. 5-b) there is a mismatch.
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Figure 5.3. Profiles of mean axial velocity (left) and axial RMS fluctuations (right) for
CA = 36◦ ATDC, at different distances from the cylinder head (conventionally z = 0 mm).
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Figure 5.4. Profiles of mean axial velocity (left) and axial RMS fluctuations (right) for
CA = 90◦ ATDC, at different distances from the cylinder head (conventionally z = 0 mm).
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Figure 5.5. Profiles of mean axial velocity (left) and axial RMS fluctuations (right) for
CA = 144◦ ATDC, at different distances from the cylinder head (conventionally z = 0 mm).

A possible explanation may be found in the mesh resolution that was used at this
CA which is not sufficient to capture the main vortex structures influencing the flow
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field. Since the mesh used for DLRM has the 25 % of resolution of that used for LES, if
this phenomena was presented with LES , using DLRM has been accentuated. DLRM
values of Uz further from piston wall, at 90◦ ATDCE, show a little mismatch from LES
values. It rely on higher g2 value owned at that CA , whose possible explanation are:

• lower resolution of mesh than a LES one;

• bad temporal correlation between following time steps;

• highest velocity flow field at 90◦ that together with coarse mesh, makes hard to
catch the velocity gradient in the shear layer between the annular jet and the
in-cylinder region and on the liner walls where the jets impacts.

A similar behavior can be found at 144◦ ATDCE since jet velocity is still high enough.
Hence, similarly to what has been found in [19], even with an hybrid RANS/LES model
jet penetration at 90◦ CA ATDCE looks quite difficult to capture. On the other hand,
results at all angles are satisfying and are extremely similar to the results obtained by
LES, with a computational effort has been reduced of over one order of magnitude.

5.2 TCC case

5.2.1 Experimental set-up

The Transparent Combustion Chamber (TCC), whose history has been shown in
Sec.4.3.2 engine is an optical engine that was set up at the University of Michigan
by [20] in order to gather a database of experimental data to be used to validate
CFD models. The test configuration is characterized by a single-cylinder setup with
a pancake-shaped head and two vertical valves, operated by a camshaft. The engine
is operating at motored conditions and intake and exhaust ducts are connected with
plenums in order to damp pressure oscillations. All relevant engine data are reported
in Tab. 5.2

Bore 92mm
Stroke 86mm
Connecting rod length 234.95mm
TDC clearance height 9.5
Geometric compression ratio 10
Engine speed 1300RPM

Table 5.2. geometrical feature and relevant data for TCC-III
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The geometry has been discretized with a pure hexa mesh as the previous case, and
was presented in Sec. 4.3.2. At the time the thesis was written only a compression
test on cylinder of Fig. 5.6 has been performed: results has been compared with the
experimental.

Figure 5.6. Mesh of detach cylinder for compression test

Experimental cylinder pressure data and T cylinder data are provided for 235 mo-
tored cycles (four strokes). Pressure has been sampled, using a highly-sensitive piezo-
electric combustion pressure sensors , every 0.5◦ of CA. Hence to compare CFD results
with experimental data a mean pressure over entire volume has been computed. Then,
This mean pressure , is compared with the mean P-cylinder over 235 cycle for each
CA. Only about 200 CAD has been simulated. Firstly the mesh in Fig.5.6 is moved,
without fluid dynamic, to θ = 100 CAD where the real compression start. Thus T (θ)
and P (θ) inside the cylinder at this CAD are use as initial condition, where P (θ) and
T (θ) are the mean P and T over 235 cycles at θ = 100 CAD

Case setup

The boundary and initial condition for involved physical quantities are presented briefly
in Tab. 5.3
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Cases set-up and results

sparkPlug liner cylinderHead, /piston internalField
/dtachFaces,

/valve/
k zG wF wF wF 0.01m2/s2

ω zG wF wF wF 400 s−1

µt zG wF wF wF 1e− 8 kg/ms
αt zG wF wF wF 0 kg/ms
P zG zG zG zG 154330 Pa
T zG Tcyl_surf zG zG 369.83K
U 0m/s 0m/s mWV 0m/s 0m/s

Table 5.3. Boundary and initial condition at 100 CAD. zG means zeroGradient and wF,
wallFunction, mWV movingWallVelocity

Numerical schemes

The same numerical schemes of previous case has been adopted with some modifications
on derivatives where the "limited corrected" option is applied to laplacian and to the
orthogonal part of gradient to contain the "false diffusion" terms arises from non-
orthogonality due to complex unstructured mesh generated for TCC case.

Algorithm control

The same set-up of previous case has been adopted, but, since only flow field inside
cylinder is computed, there are not the presence of very small cells near valve with
high velocity which would make the local CFL really high. Thus the conditon of phase
coherent for LES is easily respected, while the topology consistency is always guarantee
by adaptive topology driven time stepping.

5.2.2 Results

The curve of compression p(θ) obtained with p probed is compared with experimental
data and with an adiabatic compression from intake valve closure (IVC) to Exhaust
Valve Opening (EVO). As expected the cylinder pressure trace (Fig. 5.7) has been
correctly predicted, both during the compression and the expansion phase.
Also the instantaneous volume is trace to verify that dynamic addition and removal of
cell layers was consistent; In the simulation, layerAdditionRemoval has been applied to
the third layer of cells above the piston; these cells were removed during compression
when their thickness was lower than a threshold value defined by the user (0.5 mm in
the example); conversely, single layers of cells were added during expansion, as the cell
thickness was higher than 1 mm.
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Figure 5.7. Average in-cylinder pressure
of the motored engine from IVC (≈ 100◦

BTDC) to EVO (≈ 108◦ ATDC)
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Figure 5.8. experimental in-cylinder vol-
ume during the com- pression and expansion
phase with closed valves (calculated vs pre-
dicted)

In-cylinder volume of the simulated domain has been compared with the theoretical
value:

V = Vc + sp(θ) · Ac (5.6)

where Vc is the volume of the combustion chamber, Ac is the piston face area and sp is
the instantaneous piston displacement as a function of the crank angle θ calculated as:

sp(θ) =
S

2
[1 + 1/Λ− cosθ − 1/Λ

√
(1− Λ2sin2θ)] (5.7)

Λ = R/L (5.8)

where S=stroke, R=crank radius and L=connecting rod length. The cycle fraction
simulated was between the IVC and EVO: the rationale for this choice was to verify
possible errors on one single source only (addition and removal of cell layers on the
piston surface). However, the generality of results on volume consistency is not lost: if
no significant error on the volume computation is introduced by layer addition/removal
on the piston during pure compression (IVC to EVO), it should happen the same
with respect to layer addition/removal near the valves. As shown in Fig. 5.8, the
volume history of the in-cylinder volume is perfectly replicated and the error in volume
calculation is of the order of 0.01%. This small error is due to the round-off error
in the calculation of the cell volume of hexahedral cells, rather than to the dynamic
addition/removal of cell layers.
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Conclusions

The aim of this thesis work was to define a methodology in the commercial soft-
ware ANSYS ICEM CFD to generate high-quality oriented multi-block hexahedral
unstructured grids based on non-conformal interfaces to perform dynamic simulations
in OpenFOAM.

At the time the thesis is written, no information about generation of this kind of
grids in ICEM was available. In particular, in the meshing approach proposed in this
work:

• the multi-block hexahedral domain is generated by a top-down approach;

• oriented mesh zones are generated along internal baffles (generated in ICEM)
that are removed by ad-hoc applications in OpenFOAM;

• the mesh generation strategy is fully compatible with the extensions of the dy-
namic mesh library of OpenFOAM, released by OpenFOAM Foundation.

The proposed methodology has been applied to generate two different engine ge-
ometries. Simulations of turbulent flows performed on the two grids by the DLRM
model were able to capture the main features of turbulent in-cylinder flows and to be
accurate to predict the fluid dynamic quantities even with a coarse mesh. Results show
that DLRM is able to provide very reliable predictions about the in-cylinder flow with
reasonably coarse grids if compared to LES. Also compression test on TCC shows good
results both for cylinder pressure trace and the instantaneous volume which mean very
good performances of solver used.

Finally, the methodology proposed is absolutely general and it can be applied also to
non-engine geometries. For this reason, future works will be focused on the simulation
of engines as well as on the simulation of fuel injectors.
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