
P M
S I I ’I

C S I E

L S M P
T-P I F

Author:
Pietro Salvatore Gheorghiu

Advisor:
Prof. Fabio Inzoli

Co-advisor:
Prof. Said Elghobashi

Tutors:
PhD Gaël Guédon

Michele Rosso

Academic year 2014 - 2015

“After everything we’ve been through, past all the fire and fury,
the one thing I know - is that we can count on each other
to get the job done. Or die trying, if that’s what it takes...

...because some things are just worth fighting for.”
James Raynor

Acknowledgments

I wish to express my sincere thanks to my advisor professor Fabio Inzoli and
to my co-advisor professor Said Elghobashi for the opportunity they gave me
to work on this project. Without their support this thesis would not have been
possible.

I am grateful to my tutors Gaël and Michele for their constant guidance and
encouragement, with the sharing of their expertise they considerably contributed
to the final result of this work.

During my permanence in Irvine I was pleased by the presence of a lot of
friends. I want to thank the guys of the department, the Italians, the people
of the HOPE group and the guys of the Movement. A special thanks goes to
Silvio and Cristy for the priceless friendship that we shared. I also express my
gratitude to the Cordia family for the hospitality, kindness and generosity that
they offered to me during the last five months in California.

Special friendships guided my life towards the completion of this journey:
I take this opportunity to say thanks to all my university mates to have been
travel companions in the past years. Also my friends from Muggiò are specially
thanked, because of their nice disposition that they have always shown to me.

I thank my girlfriend for her unconditional presence, her caring embrace has
been often more helpful than thousands of technical advices.

Finally I thank my grandmother, my uncles and aunts, my cousins, my par-
ents, siblings and aunt Adele. Their love and support were the necessary condi-
tion that made the enterprise an enjoyable travel.

Abstract

M- flows have been deeply studied in the last two decades.
Such an interest rose from the fact that the number of the possible
applications in the engineering field are uncountable. Some exam-
ples are the chemical reactions, it is likely that they involve more

than one phase of reactants or products at a time. In this framework the numer-
ical simulation of those phenomena acquires an huge importance for predicting
the physics of a system and better understanding the small scale evolution of the
flow. The only viable way to accomplish this task is to adopt the DNS method-
ology for resolving the Navier-Stokes equations. Even though in the present day
we do not dispose enough speed and memory from the current supercomputers
to take advantage from such an approach for engineering applications, the DNS
will remain the only numerical method that can provide new physical insights
at all scales of turbulence in flows involving complex physical phenomena.

This thesis concerns about the study of the interface evolution between two
different phases via the implementation of the Level Set Method (LSM). The
Level Set method is an Eulerian method that belongs to the front capturing tech-
niques such as the Volume of Fluid method (VOF). According to these methods
the interface is reconstructed from suitable field scalar variables, in the case of
the LSM from a distance function. Another category of methods for computing
multifluid flows is the Front Tracking (FT). In this case a separate front marks
the interface while a fixed grid is adopted for the fluid in every single phase.

We preferred to adopt the Level Set method above the others techniques since
it is simple to handle, it manages easily breaks-up and merges of the interface,
and it is a good candidate for the exploiting of high-order spatial discretization
schemes. The main drawback of the Level Set method is the lack of mass con-
servation. The task of the current thesis is to compare different techniques to
abolish, or at least diminish, this problem.

The work was accomplished with the essential contribution of the Mechan-
ical and Aerospace Department (MAE) of the University of California - Irvine.

I

The group possesses a DNS code for the resolution of the Navier-Stokes equa-
tions written in Fortran 90, with objects and features from Fortran 2003. We took
advantage from this code, which represented the starting point of the current
project. A numerical model was developed using the environment provided by
Octave 3.8.1, whose flexibility and simplicity is the main strength for a dynamic
encoding and testing phase. The finite difference discretization was used to re-
duce the differential equations to algebraic equations. We adopted a structured
Cartesian grid and the domain is in two dimensions. Besides the traditional
method for the calculation of the interface evolution we implemented and com-
pared three more methods.

The Level Set method theory is deepened in the first part of the thesis. Here
the attention is focused on the main features of the method and the techniques
to advect and reinitialize the scalar function. The theory also provides us a ge-
ometrical toolbox for the calculation of useful properties.

The numerical methods for the discretization of the differential equations
were presented. Four Level Set methods were implemented: the first one is the
traditional advection method of the Level Set function, the second introduces a
modification in the reinitialization step to avoid the shifting of the surface, the
third method embeds in the advection equation a source term in order to avoid
the reinitialization step and the last one is a mass-conservative method. The
verification of the proposed methods was provided. Thus, we compared the
methods in term of mass conservation and considering their ability to maintain
the exact shape from the analytic solution.

Finally the proposed methods are applied to a incompressible flow case test,
that is a falling droplet in air. The Navier-Stokes equations were resolved with
the projection method, the surface tensions were treated as source terms local-
ized within the finite thickness of the interface.

Key words: CFD, Direct numerical simulation, Multi-phase flows, Interface cap-
turing, Level set method.

II

Sintesi della tesi

Problemi che riguardano l’evoluzione di interfacce sono comuni in un elevato
numero di applicazioni. Alcuni esempi sono la propagazione di superfici soli-
de come la crescita di cristalli, composti di fluidi immiscibili e sistemi in cui si
presentano più fasi di uno stesso composto.

In particolare l’ambito al quale noi siamo interessati riguarda lo studio di
sistemi liquido-gas per applicazioni industriali. Descrivere come si comporta
l’interfaccia tra due differenti fasi in un sistema turbolento - ad esempio una
reazione chimica o una combustione per la propulsione di un velivolo - non è
affatto semplice. Eppure la possibilità di poter prevedere questo tipo di feno-
meni e poterne capire meglio la loro natura ha spinto la ricerca degli ultimi due
decenni a sviluppare tecniche di simulazione numerica di questi fenomeni.

Per raggiungere questo scopo nell’ambito della fluidodinamica computazio-
nale, la tecnica più adeguata è la risoluzione delle equazioni di governo tramite
DNS (Direct Numerical Simulation). Si tratta di un approccio diretto che non
fa uso di equazioni approssimate, né introduce coefficienti empirici in fase di
risoluzione: le equazioni di Navier-Stokes sono discretizzate nello spazio e nel
tempo e quindi risolte. Il pregio di questa tecnica risiede nel fatto che permette
di riprodurre in maniera accurata, senza limiti teorici associati a modelli sem-
plificatori, ogni fenomeno fisico. Un esempio è lo studio della turbolenza: un
metodo DNS in potenza potrebbe risolve tutte le scale di turbolenza senza porre
nessun tipo di filtro.

Il principale svantaggio di questa tecnica è legato all’eccessivo onere compu-
tazionale richiesto dagli algoritmi risolutivi per ottenere dei risultati. Anche i
più moderni super computer, seppur con grandi sforzi di parallelizzazione del
codice, non sono in grado di risolvere problemi complessi di utilità industriale
in tempi ragionevoli.

La tesi proposta si interessa di studiare l’evoluzione dell’interfaccia in un si-
stema bifase. La tecnica utilizzata per descrivere l’interfaccia presente tra due
fasi differenti è il Level Set Method (LSM). Questa metodologia fa parte della fa-

III

miglia dei metodi Euleriani, in particolare appartiene alle tecniche di front captu-
ring, come ad esempio il Volume Of Fluid (VOF). L’idea chiave di questi metodi
è ricostruire l’interfaccia tramite funzioni scalari definite su tutto il dominio di
interesse. Nel caso del suddetto metodo adottato, la funzione in questione è la
funzione distanza. L’interfaccia quindi viene identificata come una curva di li-
vello della funzione scalare, e in generale il taglio che si effettua coincide con il
livello per cui la funzione assume valore nullo.

All’atto pratico gli step da seguire per risolvere un problema numerico che
sfrutta il Level Set Method sono:

1. definire la funzione distanza in un dominio n + 1 dimensionale, dove n è
la dimensione dell’interfaccia tra liquido e fase;

2. trasportare la funzione distanza avanzando di un intervallo di tempo uti-
lizzando una equazione differenziale alle derivate parziali (PDE);

3. re-inizializzare la funzione distanza, partendo da un intorno dell’interfac-
cia, tramite un processo iterativo;

4. risolvere i campi di velocità e di pressione;

5. ripartire dal punto 1 per risolvere il passo temporale successivo.

I motivi per cui è stato scelto il Level Set Method nella presente tesi riguar-
dano: la facilità di implementazione, la semplicità con cui è possibile gestire il
metodo, l’intrinseca abilità della tecnica di gestire casi anomali quali fusioni e
rotture di interfacce. Lo svantaggio principale di questo metodo risiede nella
sua incapacità di conservare massa, non essendo un metodo conservativo.

L’obiettivo principale di questa tesi è quello di implementare diverse tecni-
che che sfruttano il Level Set Method ed effettuare un confronto per valutare la
loro abilità nella conservazione della massa. In particolare mettiamo a confronto
quattro diversi algoritmi.

Il primo è il metodo tradizionale, utilizzato per la prima volta da Osher, Sme-
reka e Sussman [36]. La funzione distanza viene trasportata tramite una PDE in
conformità con il campo di velocità. In seguito uno step di re-inizializzazione
viene applicato all’interfaccia per ricostruire la funzione distanza, almeno in un
intorno del fronte.

Con il secondo metodo si vuole introdurre una modifica nell’equazione di re-
inizializzazione con lo scopo di ridurre l’effetto numerico di slittamento dell’in-
terfaccia dalla sua posizione originaria. In questo modo si cerca di andare verso
la direzione di una riduzione della perdita di massa per causa dell’equazione di
re-inizializzazione.

IV

Il terzo metodo proposto aggiunge un termine di sorgente all’equazione del
trasporto della funzione distanza. Questa modifica ha la pretesa di fornire un
metodo che non necessita più dell’equazione di re-inizializzazione. Inoltre il
termine sorgente aggiunto si annulla per valore nullo della funzione distan-
za: questo significa che il metodo dovrebbe mantenere inalterata l’evoluzione
dell’interfaccia.

L’ultima tecnica sfrutta al posto di una funzione distanza una funzione di fa-
se. In pratica si tratta di una funzione tangente iperbolica che viene trasportata
e mantenuta con uno spessore costante grazie all’introduzione di uno step in-
termedio. In questo caso non è più presente l’esigenza di re-inizializzare, dato
che non si ha più a che fare con una funzione distanza. Questo metodo è di tipo
conservativo.

Metodi numerici
Per la riduzione delle equazioni differenziali alle derivate parziali in equazioni
algebriche è stato usato il metodo delle differenze finite. La griglia adottata è di
tipo ortogonale e le informazioni sono state immagazzinate entro una staggered
grid cartesiana.

Le derivate parziali per le equazioni di Navier-Stokes sono state discretizzate
nello spazio con il metodo WENO 5. Le equazioni per la risoluzione dell’inter-
faccia uniscono diversi metodi: nella maggior parte dei casi si adotta il meto-
do WENO 5, seguono metodi upwind, metodi TVD con limitatore superbee,il
metodo di Lax-Friedrichs locale per smorzare le oscillazioni numeriche.

L’integrazione temporale per il trasporto della Level Set function è stata otte-
nuta con un metodo esplicito Runke-Kutta al secondo o terzo ordine. Le equa-
zioni di Navier-Stokes sono state trasportate con un metodo di proiezione e l’a-
vanzamento temporale è stato ottenuto con il metodo esplicito Adam-Bashford
al secondo ordine.

Per la modellizzazione delle equazioni di Navier-Stokes è stato adottato il
one-fluid approach, proposto la prima volta da Tryggvason [40]. La tensione su-
perficiale è trattata con l’utilizzo del metodo CSF (Continuum Surface Force
method).

Risultati ottenuti
I metodi implementati sono stati simulati sfruttando differenti casi test e sono
stati sintetizzati nel capitolo 4. Inizialmente sono stati verificati gli algoritmi,
tramite la sola risoluzione delle equazioni del trasporto della funzione Level Set.
In questi casi è stato scelto un campo di velocità esterno e costante nel tempo. I
test effettuati riguardano:

V

• rotazione completa di un disco per mezzo di un campo di velocità rotazio-
nale;

• rotazione completa del disco di Zalesak per mezzo di un campo di velocità
rotazionale;

• completamento di un intero periodo di tempo di un campo vorticoso, il
quale modifica un disco fino a metà periodo per poi riportarlo nella sua
posizione originale.

Tutti i test sono stati effettuati per tutti i metodi implementati e con diffe-
renti risoluzioni di griglia. I risultati ottenuti mostrano che la discretizzazione
spaziale e temporale dei modelli matematici è consistente con il metodo anali-
tico, del quale abbiamo la soluzione esatta. Dai test effettuati il quarto metodo
implementato emerge per la sua capacità di conservare la massa e per il bas-
so onere computazionale che richiede. Dal punto di vista del trasporto corretto
dell’interfaccia il secondo e il terzo metodo si comportano meglio.

L’accoppiamento con le equazioni di Navier-Stokes è stato affrontato nel ca-
pitolo 5. Il calcolo delle normali a seguito della definizione dell’interfaccia è stato
il problema cruciale. Difatti se questo passaggio non viene effettuato con suffi-
ciente precisione e cautela il termine di tensione superficiale viene mal risolto
causando ingenti problemi al modello complessivo. Il caso di studio considera-
to è una goccia che cade sotto l’effetto della sola forza di gravità. Viene applicata
l’ipotesi di incomprimibilità e il flusso considerato è laminare.

Ogni metodo è stato in grado di simulare correttamente l’evoluzione del-
la goccia che cade senza presentare problemi di stabilità complessiva del codi-
ce. Il terzo metodo ha mostrato limiti sulla stabilità che possono essere superati
diminuendo la risoluzione temporale per il calcolo della soluzione.

Il lavoro è stato svolto con il contributo decisivo del gruppo di ricerca del profes-
sor Elghobashi al Mechanical and Aerospace (MAE) department di University
of California - Irvine. Il lavoro è stato svolto a partire da un codice accademi-
co di loro possesso, scritto in Fortran 90 con aggiunta di elementi e oggetti in
Fortran 2003. Tutto ciò che verrà mostrato nella presente tesi è stato scritto in
codice Octave ed eseguito con il corrispettivo software open-source aggiornato
alla versione 8.3.1.

Parole chiave: Fluidodinamica computazionale, Direct numerical simulation,
flussi multifase, Interface capturing, Level set method.

VI

Contents

1 Introduction 1
1.1 Multiphase simulation and recent developments 2
1.2 Objectives and contributions of the thesis 4

2 Level Set Method 7
2.1 Implicit Functions . 7
2.2 Signed distance functions . 9
2.3 Level Set formulation . 10
2.4 Reinitialization equation . 13
2.5 Geometric tools . 16
2.6 Error estimation . 18

3 Numerical methods 21
3.1 Grid discretization . 21
3.2 Finite difference discretization . 24

3.2.1 Forward, backward and centered difference 25
3.2.2 Upwind method . 26
3.2.3 Total Variation Diminishing methods: TVD 27
3.2.4 Weighted ENO scheme: WENO 5 scheme 28

3.3 Capturing and calculation of the interface 31
3.3.1 Original method: the standard approach 31
3.3.2 First method: Re-distancing operator 34
3.3.3 Second method: source term embedded 35
3.3.4 Third method: conservative phase-field method 39

3.4 Navier-Stokes equations . 42
3.4.1 Momentum and mass equations 43
3.4.2 Surface tension . 44
3.4.3 Numerical solution of the N-S equations 46

VII

CONTENTS

4 Advection of the LS function: results 49
4.1 Circular disk rotation . 50
4.2 Zalesak’s disk rotation . 52
4.3 Vortex test . 57

5 Results on a falling droplet 63
5.1 Chosen scenario and physical framework 64
5.2 Surface tension treatment . 66
5.3 Results . 67

6 Conclusions 71
6.1 Summary . 71
6.2 Future works . 72

Appendices 74

Algorithms 75

VIII

List of Figures

1.1 Air flows through the swirler . 2

2.1 One-dimension implicit function 8
2.2 Implicit function isocontour . 9
2.3 Signed distance function . 11
2.4 Transport without reinitialization 14
2.5 Interface shifting . 15

3.1 Staggered grid . 23
3.2 Ghost cells . 24
3.3 Upwind scheme . 26
3.4 WENO 5 stencils . 29

4.1 Circular disk, case set-up . 50
4.2 Area variation with respect to the time 53
4.3 Zalesak’s disk, case set-up . 54
4.4 Zalesak’s disk, area variation with respect to the time 55
4.5 Zalesak’s disk, shapes comparison 56
4.6 Vortex field . 57
4.7 Tail effect in the vortex problem . 58
4.8 Area conservation, vortex case . 60
4.9 Total area conservation, vortex case 61
4.10 Final stages of the vortex test . 62

5.1 Initial condition, falling droplet . 65
5.2 Spurious currents, conservative method 66
5.3 Sequence of the falling droplet . 68
5.4 Droplet mass with respect to the time. 69
5.5 Falling droplet, conservative method. 69

IX

List of Tables

4.1 Circular disk area and distance error 52
4.2 Circular disk rotation average time 53
4.3 Zalesak’s disk area and distance error 54
4.4 Vortex field case, area error . 59
4.5 Average CPU time to simulate the vortex period 59

XI

CHAPTER1
Introduction

Problems involving moving boundaries are present in a wide range of appli-
cations. Front propagations, crystal growth and multi-phase phenomena are
just few examples. The one that interests us the most is the study of turbulent
liquid-gas interfaces, which is particularly important in combustion problems
with liquid and gas reagents.

To correctly develop a complex engineering system, having a deep under-
standing of the chemical and thermodynamics processes that rule the transfor-
mation of the raw materials to the final products is important. Every single
mechanical component must be designed by engineers in a way that ensures its
correct operation in a safe and efficient framework. In the field that we concern,
developing mechanical products such as chemical reactors and combustors re-
quires to have a complete knowledge of the complex fluid dynamics phenom-
ena that occur inside the channels the fluids passes through. In the past years
the trend was to adopt semi-empirical techniques instead of using exact the-
oretical approaches (DNS, Direct Numerical Simulation) for the simulation of
single-phase and multi-phase flows. The semi-empirical models rely on the res-
olution of approximated numerical Navier-Stokes equations, for example RANS
equations (Reynolds Averaged Navier-Stokes equations) that model all the tur-
bulence scales instead of providing their exact solution.

The reason why DNS has not been employed yet for industrial uses is due to
the limits imposed by the memory and speed of current supercomputers (even
with the massively parallel machines). Since the huge simulation costs of such
a method, we are not expecting that the DNS will predict proficiently in rea-
sonable times flows in complex geometries in the near future. On the other

1

CHAPTER 1. INTRODUCTION

hand DNS is the only numerical method that can really look at the physical phe-
nomenon considering all scales of the turbulence.

This thesis contributes to the development of a DNS model for the simulation
of a multi-phase system. In particular we focused our attention on the transport
of the interface between the gas and liquid phase.

1.1 Multiphase simulation and recent developments

Figure 1.1: Air flows through the swirler producing a toroidal recirculation zone. Fuel
is injected at the center of the venturi. This is a possible application for a
multiflow solver. The image is borrowed from NASA website.

The numerical simulation of multi-phase flows poses three main challenges.
The first one lies in the fact that one needs to numerically localize and transport
the interface (also called front) separating the phases involved. The second one
is due to the numerical treatment of the material properties since they discon-
tinuously change of many order of magnitude between the phases. Finally the
third one is related to the discretization of a singular forcing term, i.e. the surface
tension, acting only on the front. Among the methods proposed for the numer-
ical transport of the front over the past decades, the Volume Of Fluid method
(VOF), the Front-Tracking method (FT) and the Level Set Method (LSM) have
become standard numerical tools for multi-phase simulations. Besides those
methods also the Constrained Interpolation Profile method (CIP) is worth to be
mentioned as a technique to track fronts.

2

1.1. MULTIPHASE SIMULATION AND RECENT DEVELOPMENTS

The VOF [32] describes the interface through a volume fraction scalar, thus
ensuring, at least theoretically, discrete mass conservation. Nonetheless the
scalar function is discontinuous across the interface and thereby a specific ad-
vection scheme is required at the cost of putting constrains on the time step size
and accuracy of the simulation. Moreover, the calculation of geometric quan-
tities such as interface normals and curvature could be challenging. In fact the
surface position is obtained reconstructing the interface on every cell.

The FT, introduced by Unverdi and Tryggvason [40], makes use of an un-
structured moving mesh for the discretization of the interface. The advantage
of this method is that the transport of the mesh is purely Lagrangian; a prob-
lem could be that any topological change or front-to-front interaction has to be
handled manually by means of mesh rearrangements, thus causing adverse ef-
fects on mass conservation. Furthermore, the numerical implementation of a
Lagrangian method is not easy.

The CIP method was devised by Yabe and colleagues [38, 42] and is a scheme
for solving hyperbolic equations, for color or density functions. The gradient
of the color function is calculated in addition to the value of the color func-
tion. The main advantage of the CIP method is its efficiency in reducing the
numerical diffusion keeping a good stability. The major drawback is the non-
conservativeness. The conservative scheme CIP-CSL (Conservative Semi La-
grangian) [21] was devised with different order of accuracy in space, but do
not resolve the problem of controlling the thickness of the interface.

The LSM, pioneered by the work by Osher and Sethian [27], represents the
interface as the zero iso-level of a smooth function, typically a signed distance
function. The latter is transported in an Eulerian fashion by solving a standard
convection PDE and kept smooth through a reinitialization process. Thanks to
the smoothness of the Level Set function, normals and curvature can be com-
puted easily. The main drawback of the LSM is its inherent lack of conservation,
although many strategies have been proposed to address the issue. In particular
Enright et al. [9] used Lagrangian marker particles to correct the front position
after the Eulerian advection step, while Sussman and Puckett [35] coupled the
LSM with the VOF in order to take advantage of the good conservation prop-
erties of the latter. While these techniques alleviate the issue, they also lose the
original simplicity of the LSM. A simpler approach was proposed by Olsson
and Kreiss [23, 24] (also shown in this thesis), they replaced the signed distance
function of the classical LSM with an hyperbolic tangent profile that is advected
and re-initialialized using conservative equations. This approach was later im-
proved by Desjardins et al. [8] and used for the simulation of turbulent atomiza-
tion. An ambitious project came from an idea of Gomes and Faugeras [12], who
proposed a method which is implicitly conservative in term of mass and does

3

CHAPTER 1. INTRODUCTION

not require any adjustment of the interface. Improvements and modifications
are introduced by Gorokhovski et al. [31]. Recent works from Nave [22] and Lee
[18] exploiting the CIP method, supported the Level Set function with the trans-
port of its gradient, not directly resolving the problem in mass conservation but
easing the calculation of geometric quantities.

The LSM simplicity, adaptivity, ease of parallelization and intrinsic ability of
handling topological changes naturally are the reasons why we chose it in our
study.

1.2 Objectives and contributions of the thesis

This thesis contributed to the development of a CFD code, which investigates
the two-way coupling effects of finite-size deformable liquid droplets on decay-
ing isotropic turbulence using direct numerical simulation (DNS). The model is
devised for the aerospace propulsion field, where a dispersed phase of liquid
fuel is sprayed inside a combustion chamber filled with air.

In the proposed work the transport of the front of a scalar function is in-
vestigated. The interface at the beginning is resolved without considering the
Navier-Stokes equations, thus the implementation is addressed to resolve the
physical problems that involve the evolution of the two fluids.

Within the LSM framework we investigated several techniques in order to
manage the mass conservation problem that affects the transportation of the
Level Set function. Every time the transport equation is resolved, the total mass
is slightly modified - in particular we observed the diminishing of the mass - due
to the introduction of mathematical and numerical effects that are non-physical.
We compared three recent techniques based on the Level Set method to assess
which one ensures the minimum loss or gain in term of mass. Every employed
method was verificated, then the coupling with the Navier-Stokes equations is
brought to completion.

We implemented the entire experimental code in Octave 3.8.1. This choice
is made to simplify as much as possible the development and the simulation
of the testing part. The verificated code is then transcribed in Fortran 90, using
features and objects from Fortran 2003.

The work was made with the collaboration of the Mechanical and Aerospace
department (MAE) at the University of California - Irvine, with the supervision
of the professor Elghobashi. The group posses a DNS code for the resolution of
the Navier-Stokes equations written in Fortran 90 with objects and features from
Fortran 2003. We took advantage from this code, which represented the starting
point of the current project.

The thesis is arranged as follows. The chapter 2 introduces the Level Set

4

1.2. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

technique, its analytic transport and useful geometrical and mathematical tools.
The chapter 3 presents the new proposed methods and the numerical schemes
adopted. Moreover in the chapter the numerical Navier-Stokes equations are
derived. The chapter 4 and 5 show respectively the results of the transport of
the Level Set function and the simulation of a falling droplet with the current
methodology. In the chapter 6 the results are summarized and possible future
works are presented.

5

CHAPTER2
Level Set Method and geometrical tools

In this chapter the Level Set method and essential geometrical tools are pre-
sented. The Level Set methodology is explained in detail, including the advec-
tion equation, the reinitialization step and how to obtain a signed distance func-
tion. Then we introduce some important properties and geometrical tools that
descend from the Level Set formulation.

2.1 Implicit Functions

In one-dimensional dominion suppose we divide the real line in three distinct
subdomains using two points x = −1 and x = 1. Thus we define three sepa-
rate subdomains as (−∞,−1), (−1, 1) and (1,+∞). We call Ω− the inner piece
bounded by the two points, we call Ω+ the outer pieces. We call ∂Ω the interface
between the two regions. We are interested in defining the position of the inter-
face. In one-dimensional dominion the interface is defined by the two points on
the line, as we did locating the interface as a set of points belonging to the R1 do-
main. In that case the interface location is known by definition as ∂Ω = {−1, 1}.
This is an explicit interface representation: every point is written down in an
explicit way.

Alternatively, the implicit interface representation defines the interface as the
isocontour of some functions. For example, the zero isocontour of ϕ(x) = x2 − 1
is the set of points where ϕ(x) = 0; i.e. it is exactly ∂Ω = {−1, 1}. Since the
isocontour corresponds exactly to the interface, in order to know its location it
is necessary to calculate the curve value in ϕ = 0. This is shown in Figure 2.1.
Notice that the isocontour is defined in a zero-dimensional domain, while the ϕ

7

CHAPTER 2. LEVEL SET METHOD

Figure 2.1: Implicit function ϕ = x2 − 1 defining the subdomains Ω− and Ω+. The
image is borrowed from [25].

function is defined throughout the one-dimensional domain. More generally, if
the implicit function is defined on all x⃗ ∈ Rn, the isocontour has always dimen-
sion n− 1.

Consider the two dimensional case. In two spatial dimensions the interface
is a curve that separates a closed inner region from the rest of the domain. For
example, let us consider ϕ(x⃗) = x2 + y2 − 1, where the interface defined by the
ϕ(x⃗) = 0 isocontour is the unit circle centered in (0, 0), see Figure 2.2. Now,
the interior region is the unit disk Ω− = { x⃗ | |x⃗| < 1 } and the exterior region
is Ω− = { x⃗ | |x⃗| > 1 }. The interface is defined by ∂Ω = { x⃗ | |x⃗| = 1 }. Thus
ϕ assumes positive values in Ω+ and negative values in Ω−. Above, we chose
the ϕ(x⃗) = 0 isocontour. It could be valid any other isocontour as well, and we
chose the zero level for the sake of simplicity. Throughout the proposed thesis
the interface will be defined most of the time as the zero isocontour of the ϕ
function.

8

2.2. SIGNED DISTANCE FUNCTIONS

Figure 2.2: Isocontour of the implicit function ϕ = x2+y2−1 defining the subdomains
Ω− and Ω+. The image is borrowed from [25].

2.2 Signed distance functions

A distance function d(x⃗) is defined as

d(x⃗) = min(|x⃗− x⃗I |) for all x⃗I ∈ ∂Ω, (2.1)

implying that d(x⃗) = 0 on the boundary where x⃗I ∈ ∂Ω. Otherwise if the point
does not belong to the interface, d(x⃗) is the distance between x⃗ and its closest
point x⃗c on the interface. Furthermore the distance function benefits from the
following property

|∇d| = 1, (2.2)

which means that if we consider any point x⃗ in the dominion the distance func-
tion draws the shortest path between x⃗ and x⃗c to reach the interface. Any other
path between these two points will be longer. To better understand what this
property involves, let us introduce the signed distance function.

A signed distance function [25] is an implicit function ϕ with |ϕ(x⃗)| = d(x⃗) for
all x⃗. Thus ϕ(x⃗) = d(x⃗) = 0 for all x⃗ ∈ ∂Ω, ϕ(x⃗) = −d(x⃗) for all x⃗ ∈ Ω− and
ϕ(x⃗) = d(x⃗) for all x⃗ ∈ Ω+. That is, it determines the distance of a given point
from the interface, with positive sign when x⃗ is inside the isocontour and with

9

CHAPTER 2. LEVEL SET METHOD

negative sign when x⃗ is outside the isocontour. The property

|∇ϕ| = 1 (2.3)

descends from equation (2.2). Furthermore, given a point x⃗, since ϕ(x⃗) is the
signed distance to the closest point to the interface, we can write

x⃗C = x⃗− ϕ(x⃗)n⃗ (2.4)

where n⃗ is the unit normal vector with respect to the interface in x⃗.
In the last section we used ϕ(x) = x2 − 1 as the implicit function for the def-

inition of ∂Ω = { −1, 1 }. Now we chose ϕ(x) = |x| − 1 whose isocontour is
the same of the previous case, but obtained from a signed distance function, as
shown in Figure 2.3. The new representation keeps the interface the same, al-
though the implicit curve is different. The new curve satisfies the property (2.3)
for every point but x = 0. At x = 0 there is a kink that could be problematic
since the derivative assumes infinite value and thus it is not defined. In order to
determine several properties - such as the normal and the curvature - we need
to know the derivative value. However we can easily avoid this problem con-
sidering that in a Cartesian grid we cannot sample any single real point, thus
the kink will be slightly smeared out, making sure that the derivative assumes a
finite value. Furthermore there were devised several method to avoid the prob-
lem, i.e. the narrow band approach [1]. The main task of this method was to
lighten the computational efforts. To achieve that, only a bunch of points of the
domain grid in a narrow band built around the interface are resolved. If we ex-
ploit the fact that only the region near the zero isocontour is interesting to be
resolved, we do not even have the issue to deal with the kink point. Avoiding
that point prevent us from numerical problems.

In two spatial dimensions we replaced the implicit function ϕ(x⃗) = x2+y2−1

with the signed distance function ϕ(x⃗) =
√
x2 + y2− 1 whose zero isocontour is

a unit circle centered in (0, 0). Again, there is a singular point in x⃗ = (0, 0) and
all the considerations made for the 1-D case are still valid.

2.3 Level Set formulation

Above we defined implicit surfaces, now we introduce the Level Set method.
Level Set methods add dynamics to implicit surfaces and allows to track the inter-
face position in an implicit fashion.

The Level Set method was devised by Osher and Sethian [27] in 1988 as a
method to implicitly evolve the interface advecting a scalar function (implicit
surface) with a partial differential equation (PDE). The key idea is to set the the

10

2.3. LEVEL SET FORMULATION

Figure 2.3: Signed distance function ϕ(x) = |x| − 1 defining the subdomains Ω− and
Ω+. The image is borrowed from [25].

interface as the zero level set of the implicit function. The interface will propa-
gate naturally as the zero level set evolves with the level set function. Some of
the advantages of the Level Set method over other techniques are its ability to
easily handle topological changes such as merges and breaks, its simplicity and
the ease of implementation.

Let us consider a closed interface Γ(t) ∈ Rn with codimension 1 and t ∈
R+. Let it be Ω−(t) the region that Γ(t) encloses, Ω+(t) the region outside Γ(t).
We define over Ω(t) the function ϕ(x⃗, t), the Level Set function, that satisfies the
following conditions

ϕ(x⃗, t) > 0 in Ω+(t)

ϕ(x⃗, t) = 0 on Γ(t)

ϕ(x⃗, t) < 0 in Ω−(t).

(2.5)

The interior and exterior domain contain opposite signed values of the ϕ func-
tion. The exterior partition outside the interface has values ϕ > 0, the interior
partition inside the interface has values ϕ < 0. The phase location of a generic
point x⃗ is given by the sign of the ϕ function. The above sign convention of the
ϕ function will be adopted throughout the text. The reader can refer to 2.3 to
better understand how the partition is taken.

11

CHAPTER 2. LEVEL SET METHOD

Supposed that a velocity field is defined all over the domain. The velocity in
each point of the implicit surface is given as v⃗(x⃗). Suppose now x(t) is a particle
trajectory on the interface Γ(t) moving with velocity v⃗ = ẋ(t). By definition,
ϕ(x(t), t) = 0. Differentiating with respect to t, we get

ϕt + u⃗ · ∇ϕ = 0 (2.6)

where the t subscript denotes the partial derivative of ϕ in the time variable t. ∇
is the gradient operator, so that

u⃗ · ∇ϕ = uϕx + vϕy + wϕz

In [27] is shown that the interface is accurately moved by equation (2.6) ac-
cordingly with the velocity field v⃗(x). For better understanding the equation (2.6)
[37] let Γ parameterized by x(s, t) and y(s, t), then the evolution of the curve is
determined by the equations:

dx(s, t)

dt
= u(x(s, t), y(s, t))

dy(s, t)

dt
= v(x(s, t), y(s, t)).

We must have
dϕ(x(s, t), y(s, t), t)

dt
=
dϕ

dx

dx

dy
+
dϕ

dy

dy

dt
+
dϕ

dt
= ϕt + uϕx + vϕy = 0 (2.7)

since ϕ(x(s, t), y(s, t), t) is defined to be zero for all (s, t). It is now clear that each
point at the interface behaves as a material point, indeed the point x⃗0(t) that
belongs to the interface is affected by the stream generated by the the velocity
field. The point is transported for pure convection.

It is important to notice that the Level Set function is moved precisely only at
the interface. In the neighborhood the Level Set function is approximately re-
solved accordingly the velocity field and in the rest of the dominion the solution
has no real accordance with the velocity field. This fact in practice means that
the Level Set function does not conserve its original slope during the evolution
[3]. As it will be explained later, we want the Level Set function to be a signed
distance function everywhere, or at least in a wide enough region around the in-
terface, and for every time step. Whereas the zero level set is well resolved and
keeps the exact position, the transport equation makes the rest of the function to
shift from being a signed distance function. Moreover problems in computation
may occur (the solver may not converge) if the function gets a bad trend. The
consequence is that not even for divergence free velocity field the advection of ϕ
is made in a conservative way, but the method is intrinsically non-conservative.

12

2.4. REINITIALIZATION EQUATION

Actually, we only need the normal component of v⃗. The gradient of the im-
plicit function in 3-D is defined as

∇ϕ =
(∂ϕ
∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
. (2.8)

The gradient is perpendicular to the isocontours of ϕ and points in the direc-
tion of increasing ϕ. Therefore, if x⃗0 is a point on the zero isocontour of ϕ, then
∇ϕ evaluated at x⃗0 is a vector that points outward the interface. Thus, the unit
outward normal is

n̂ =
∇ϕ
|∇ϕ|

, (2.9)

for every point at the interface. Thus, the equation (2.6) becomes

ϕt + un|∇ϕ| = 0. (2.10)

2.4 Reinitialization equation

It is common acknowledgment that the ϕ function should stay closed to a signed
distance function during the calculation process. Thus maintaining the interface
close to |∇ϕ| = 1 ensures that the width of the interface is smeared with a con-
stant thickness. However in general solving the equation (2.2) does not keep the
Level Set function a signed distance function. The mathematical proof is shown
in [3]. In the Figure 2.4 is represented a one-dimension transport problem where
the ϕ line is advected. The interface (in this case it is represented by the point
on the x-axis) is well transported, but the rest of the function does not keep the
initial slope.

The problem can be avoided adding a new reinitialization equation, which
is the hyperbolic Hamilton-Jacobi equation

dτ − sgn(d)(1− |∇ϕ|) = 0 (2.11)

with the initial condition
ϕ(x⃗, 0) = d(x⃗, t),

where sgn is the sign function and is defined as

sgn(d) = d

|d|
(2.12)

and provides the sign of the function. The integration of this equation over a fic-
titious time τ provides a solution that corresponds to the reconstruction of the ϕ
function starting from {ϕ = 0}. Every time step moves ahead the calculation in

13

CHAPTER 2. LEVEL SET METHOD

Figure 2.4: The point interface is transported without the use of the reinitialization equa-
tion. While the position of the zero level is exact, the surface changes its slope.

accordance with the direction of the characteristic. The transporting velocity is
represented by the signed function. Usually it is not necessary reinitializing all
over the domain, instead we do that just for a limited numbers of cells around
the interface. Thus we can save computational time and reduce spurious oscil-
lations. When the reinitialization step comes to convergence we obtain a signed
distance function whose zero level is exactly the same as the initial function.

That is not true when the computation is made numerically. Generally to
solve the reported above PDE equation upwind methods are used, where the
discrete derivatives are computed in accordance to the direction of the charac-
teristic. However this property is violated if the integration is made across the
interface, as Russo and Smereka stressed in [30]. In Figure 2.5 is represented
the effect of the reconstruction of a signed distance function over a 1-D domain
using the equation (2.11). The line that we obtained after the reinitialization is
susceptible to a slight shift since the method is inconsistent across the interface.
The more the interpolated line is distant from a nodal point, the bigger is the
position variation. Thus the final numerical reconstruction provides a function
with the zero level set that does not match with the initial one. Such a problem
usually causes a shrinking of the interface that affects the area conservation.

14

2.4. REINITIALIZATION EQUATION

Figure 2.5: Shifting of the interface because the reinitialization. Even though the line is
not transported, it slightly changes its position.

15

CHAPTER 2. LEVEL SET METHOD

2.5 Geometric tools

The Level Set formulation provides us several geometric quantities (well ex-
posed in [26]) that can be easily represented in terms of ϕ. In the section 2.3
we defined the unit normal vector to the interface (2.9); now we can introduce
the mean curvature of the interface as

κ = ∇ · ∇ϕ
|∇ϕ|

. (2.13)

We adopted a convention that makes κ positive for convex regions, negative for
concave regions. For example, let us consider a bubble immersed in water. At
the initial point, supposing the bubble a perfect sphere, the curvature will be
positive everywhere at the interface. Advancing in time the bubble begins to
rise up due to the gravity force and changes its shape since the surface tension
acts over it. Once the bubble reaches the steady state (the resultant acting force
over the bubble is zero) and it reaches its terminal velocity the final shape will be
similar to a ”mushroom”, flattened on the bottom and elongated on the cross-
rise direction. The mean curvature κ on the bottom will become negative since
the formation of a concave region. The property κ is necessary to calculate the
surface tension.

The Heaviside function H is defined as

H(ϕ) =

{
0 ifϕ ≤ 0,

1 ifϕ > 0.
(2.14)

Notice that this is a one-dimensional function. It is also clear that ϕ depends on
x⃗; nevertheless is not important to specify this dependence when working with
H. We chose arbitrarily to include the boundary with the interior region.

We can use (2.14) to calculate the area or volume integral (it depends whether
the integral is in R3 or R2) as∫

Ω

f(x⃗)(1−H(ϕ(x⃗))) dx⃗ (2.15)

representing the integral of f over the interior region Ω−. In the same way,∫
Ω

f(x⃗)H(ϕ(x⃗)) dx⃗ (2.16)

is the integral of f over the exterior region Ω+.
By definition, the directional derivative of the Heaviside function H in the

normal direction n̂ is the Dirac delta function

δ̂(x⃗) = ∇H(ϕ(x⃗)) dx⃗ · n̂. (2.17)

16

2.5. GEOMETRIC TOOLS

The δ distribution is non-zero only at the interface. Rewriting the above equation
as

δ̂(x⃗) = H ′(ϕ(x⃗))∇ϕ(x⃗) · ∇ϕ(x⃗)
|∇ϕ(x⃗)|

= H ′(ϕ(x⃗))|∇ϕ(x⃗)| = δ(ϕ(x⃗))|∇ϕ(x⃗)|

where
δ(ϕ) = H ′(ϕ) (2.18)

we obtain the 1-D version of the Dirac delta function which evaluates to 1 where
ϕ = 0 and 0 everywhere else.

We can use (2.17) to calculate the surface or line integral of a function f over
the boundary ∂Ω (it depends whether the integral is over R3 or R2)∫

Ω

f(x⃗)δ̂(x⃗) dx⃗ (2.19)

where the region of integration is all of Ω, since δ̂ cuts out everything except the
boundary ∂Ω.

Special care must be taken when resolving discontinuities in the Navier-Stokes
equations. Consider the surface integral in equation (2.19). Since δ(ϕ) = 0 almost
everywhere it is unlikely that a numerical approximation based on sampling will
give a good approximation to the integral. Otherwise is likely that over the grid
the function will be irregularly caught. Moreover in the Navier-Stokes equa-
tions the δ function is required to calculate properties such as surface tension.
Fluid dynamics applications of the Level Set method raise problems about steep
gradient at the interface: indeed we deal with a density ratio of about 1000 con-
sidering water and air. A such high discontinuity yields a non stable solution of
the Navier-Stokes equations.

Thus, we decided to smear out the H function and the δ function. First, we
define the smeared-out Heaviside function as

Hε(ϕ) =

0 ϕ < −ε,
1
2
+ ϕ

2ε
+ 1

2π
sin

(
πϕ
ε

)
−ε ≤ ϕ ≤ ε,

1 ϕ > ε,

(2.20)

where ε is a parameter that determines the size of the bandwidth of numerical
smearing. We adopt ε = 1.5∆x where ∆x is the distance between two adjacent
points of the grid (see chapter 3). That makes the width of the interface equal
to three grid cells when ϕ is normalized as a signed distance function. Then
the delta function is defined according to equation (2.18) as the derivate of the

17

CHAPTER 2. LEVEL SET METHOD

Heaviside function

δε(ϕ) =

0 ϕ < −ε,
1
2ε

+ 1
2ε

cos
(
πϕ
ε

)
−ε ≤ ϕ ≤ ε,

0 ϕ > ε.

(2.21)

The smeared-out functions approach to the calculus of implicit functions leads to
first-order accurate methods. Thus the error in the calculation is always of order
O(∆x), regardless the integration method used. Thus, no matter how high is
the order method to calculate the equation of the surface (2.19), the error will
always be first-order accurate.

2.6 Error estimation

In the previous chapter we have shown how to calculate volume and surface of
the region enclosed by the zero level of a Level Set function. The first task of this
thesis is to assess the capability of several Level Set approaches to preserve the
mass. Indeed, as explained in the chapter 1, we must deal with the fact that one
of the most crucial drawbacks of the Level Set method is its incapability to pre-
serve the mass. The method is not conservative since the advection of ϕ shifts
the Level Set function from the distance function and the numerical reconstruc-
tion is not exact (see section 2.3). Therefore it is crucial to understand how well
each method is able to keep the mass unchanged. Furthermore, the numerical
implementation of each method introduces numerical diffusion (for more in-
formation about numerical diffusion, see [41]). Numerical diffusion makes the
solution of the discretized transport equation to be different from the exact solu-
tion. For example, the upwind discretization method is a first order method and
the solution of the modified PDE generates an additional term called diffusive
term. The new term is proportional to the grid size: the error grows with spatial
discretization.

Thus, to assess the behaviour of the Level Set methods proposed in this text,
the following measures of error will be used:

em% =
M −M0

M0

· 100 (2.22)

where
M =

∫
Ω

ρ(1−H(ϕ)) dxdy (2.23)

that is exactly the equation (2.15) valid for a two-dimensional case. The equa-
tion (2.22) represents the percentage mass loss (or gain) with respect to the initial

18

2.6. ERROR ESTIMATION

value M0 of the mass. We chose to keep track of the entire region of the domain
for the mass calculation. Let us consider a rectangular dominion of length lx
and width ly. We define ∆x = lx

Nx
and ∆y = lx

Nx
as the length and the width of

the cell, where Nx and Ny are number of the grid points in the x and y direction
respectively. Over the discretized domain the value of the ϕ function is stored
at the center point of each grid cell. Thus we can calculate the mass as a discrete
summation of the cell values throughout the domain:

M =
lx∑
i=0

ly∑
j=0

ρij(1−H(ϕi,j))∆x∆y. (2.24)

We calculate the error length as the percentage variation of length with re-
spect to the initial length

el% =
L− L0

L0

(2.25)

where
L =

∫
Ω

δ(ϕ) dxdy (2.26)

andL0 is the initial length of the interface. This equation is valid in two-dimensional
cases. The discrete form of the equation (2.26) is

L =
lx∑
i=0

ly∑
j=0

δ(ϕi,j)∆x∆y. (2.27)

We introduce the Linf error, defined as

Linf = max(|ϕi,j − di,j|), (2.28)

and the L1 error, defined as

L1 =
Nx∑
i=0

Ny∑
j=0

|ϕi,j − di,j|/NxNy. (2.29)

Where d is the exact Level Set function equation provided by the analytic solu-
tion, Nx and Ny are the number of the intervals on the domain with respect to
the x and y coordinates. The value of a point of a signed distance function is
the spatial coordinate position of that point. Hence, these errors provide infor-
mations about the position of the computed interface with respect to the exact
interface and will be referred to as the ”distance errors”.

Those measures of error are useless if the Level set is not reasonably resolved
by the mesh. Thus we chose cases where the feature sizes of the Level Set are
not smaller than the grid resolution.

19

CHAPTER3
Numerical methods

The equations and the resolution algorithm are implemented using the software
Octave for the verification step, then the results are transferred in Fortran 90 as
part of the main code for the resolution of the 3-D turbulent problem and the
validation of the code. Every partial differential equation is reduced to an al-
gebraic equation system, where the derivatives are treated as finite differences.
In this chapter the proposed new models to find the solution of the Level Set
equation are presented in detail. furthermore we explain the discretization pro-
cedure adopted for their numerical resolution. Thus, we introduce the mass
conservation law, the governing conservation law and the detailed sequence of
the algorithm to solve the velocity and pressure field.

3.1 Grid discretization

The domain is discretized using a regular orthogonal grid. In this case the po-
sition of the grid nodes is uniquely defined by a set of indices. In particular a
Cartesian grid is used, this means that all the cells within the domain are squares
or cubes of the same dimension. We always consider a 2-D domain, the 3-D
complication is not necessary since we do not simulate problems that involve
turbulence. After the validation step the code will be implemented over a 3-D
domain. Anyway, the extension to the 3-D case is trivial thanks to the ease in
handling the level set approach, thus for the sake of simplicity in this thesis is
presented only the 2-D problem implementation.

Let us consider a rectangular domain whose length is lx and the height is ly.
We embed the domain in a Cartesian coordinate system where the length of the

21

CHAPTER 3. NUMERICAL METHODS

rectangle lays on the x coordinate, the height of the rectangle on the y coordinate,
and the south-west corner of the rectangle coincides with the point (0, 0). Now
we can divide the domain in a finite number of grid points,Nx for the x-axis and
Ny for the y-axis. Consider that the interval between two different grid points is
fixed and it is the same in the two directions. Thus the domain is split in squares
whose corners are the grid points (from now we call them nodal points). For
the sake of simplicity it is common use to adopt the indices convention instead
using the Cartesian coordinates convention. Therefore, the convention we use
to define the nodal points is the following:

uni,j = u(x+ i∆x, y + j∆y, t0 + n∆t). (3.1)

Usually the subscript identifies the spatial position and the superscript the po-
sition in time. Thus, the Cartesian grid is arranged by the following set of ele-
ments:

{ (xi, yj) | 0 < i < Nx , 0 < j < Ny } ;

therefore every single point over the grid is univocally defined by a two elements
vector. The set of points is ordered, x0 < · · · < xi−1 < xi < · · · < xNx and
y0 < · · · < yj−1 < yj < · · · < yNy . The distance between a point and the next one
is fixed, e.g. lx

Nx
= xi+1,j − xi,j = ∆x and ly

Ny
= xi,j+i − xi,j = ∆y. Notice that

using a Cartesian grid implies the use of a rectangular domain.
After the definition of the mesh the finite difference method demands to dis-

cretize the values of the scalar and vector properties over the grid. In particular
the vector properties are the velocity fields, while the scalar properties are the
ϕ function, pressure, etc. It is not convenient to store the velocity in the same
cells of the scalar properties, mainly because the solution of the pressure field
in the Navier-Stokes equations could oscillate. For a detailed description of the
problem see [41]. To avoid this problem a staggered grid was implemented.
The traditional grid allocates all the variables in the nodal points. In a staggered
grid (Figure 3.1), only the scalar values are stored in the nodal points, each other
variable is stored in its own sub-grid shifted half a cell distance from the nodal
points. In a 2-D domain there are three different sub-grids, one for the pres-
sure, one for the horizontal component u of the velocity and the third one for
the vertical component v of the velocity. Thus, in the staggered grid arrange-
ment the velocities are stored in the cell faces of the control volume, while the
scalar properties are stored in the nodal points. The notation that we use is the
following: the scalar properties are stored in the xi,j points, the u-component of
the velocity is stored in xi+ 1

2
,j and the v-component of the velocity is stored in

xi,j+ 1
2
. The grid is not staggered in time. We call the xi+ 1

2
,j and xi,j+ 1

2
positions

cell faces.

22

3.1. GRID DISCRETIZATION

Figure 3.1: Staggered grid representation. The scalar properties are stored in a different
position from the other properties. The image is borrowed from [41].

23

CHAPTER 3. NUMERICAL METHODS

Around the domain a band of ghost cells is added, as it is represented in Fig-
ure 3.2. They are not part of the real domain, but they are necessary to ease the
calculation at boundaries and for parallel communications. Applying a stencil
for the calculation of the derivatives requires the presence of the ghost cells to
gain all the values for the calculations of the differences. Moreover the ghost
cells help in the definition of the boundary conditions.

Figure 3.2: The gray band is the ghost cells strip around the real boundary of the domain.

3.2 Finite difference discretization

The finite difference method is used to convert the analytic equations and the
governing equations into a set of algebraic equations. It consists in approximat-
ing the differential operator by replacing the derivatives in the equation using
differential quotients. The difference between the exact solution and the nu-
merical solution provides the error that is committed going from a differential
equation to an algebraic equation. It is usually called truncation error because it
has the magnitude of the truncation term of the Taylor expansion.

In this section we listed the schemes that we used to reduce the differential
operators to algebraic terms.

24

3.2. FINITE DIFFERENCE DISCRETIZATION

3.2.1 Forward, backward and centered difference

Let us consider a mono-dimensional case. From the definition of the derivative
we write the forward difference of u with respect to the spatial coordinate as

∂u

∂x
= lim

∆x→0

u(x+ h)− u(x)

∆x
,

removing the limit we obtain the forward difference
∂u

∂x
≈ u(x+∆x)− u(x)

∆x
=
ui+1 − ui

∆x
. (3.2)

In the same way we can write the backward difference of u as
∂u

∂x
≈ u(x)− u(x−∆x)

∆x
=
ui − ui−1

∆x
. (3.3)

Finally, the central difference formula is the following:
∂u

∂x
≈ u(x+∆x)− u(x−∆x)

2∆x
=
ui+1 − ui−1

2∆x
. (3.4)

To obtain the second order central difference let us consider the Taylor expansion
of the ui+1 and ui−1 around ui:

ui+1 = ui +∆x
∂u

∂x

∣∣∣∣
i

+
∆x2

2

∂2u

∂x2

∣∣∣∣
i

+
∆x3

3

∂3u

∂x3

∣∣∣∣
i

+O(∆x4)

ui−1 = ui −∆x
∂u

∂x

∣∣∣∣
i

+
∆x2

2

∂2u

∂x2

∣∣∣∣
i

− ∆x3

3

∂3u

∂x3

∣∣∣∣
i

+O(∆x4).

Adding these two expansions the odd terms cancel each other out. Moreover
we remove the terms of O(∆x4) and higher since they are negligible. From the
sum we obtain

ui+1 + ui−1 = 2ui +∆x2
∂2u

∂x2

∣∣∣∣
i

and if we rearrange to solve for ∂2u
∂x2

∣∣∣
i
the final result is:

∂2u

∂x2
=
ui+1 − 2ui + ui−1

∆x2
. (3.5)

The extension to the two-dimensional case is straightforward. I just show the
result of the mixed term of the second order difference scheme:

∂2u

∂x∂y
=
ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4∆x∆y
. (3.6)

Notice that usually the properties values are stored in the cell nodes. The
derivatives in the finite difference discretization framework must be stored in
the face nodes.

25

CHAPTER 3. NUMERICAL METHODS

3.2.2 Upwind method

The upwind scheme is an adaptive finite difference stencil that can simulate
the direction of the propagation of the information in a flow field. The upwind
scheme takes into account the direction of the flow determining the sign of the
the convection field. Then it applies the biased difference according to the flow
direction; the values at the cell faces are always taken to be equal to the value
at the upstream node. The Figure 3.3 represents the upwind principle. If the

Figure 3.3: Upwind scheme representation. The u property is transported in accordance
with the velocity direction.

convective flux courses towards the east side (c > 0) the the value of ue becomes
equal to uP , otherwise if the convective flux courses towards the west side (c < 0)
the value of ue becomes equal to uE . Considering the following one-dimensional
linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0

the first order upwind scheme is given by

un+1
i − uni
∆t

+ c
uni − uni−1

∆x
= 0 for c > 0,

un+1
i − uni
∆t

+ c
uni+1 − uni

∆x
= 0 for c < 0.

In this thesis the upwind scheme is usually written using the Godunov’s scheme
[2] that assumes the following form (for the two dimensional case):

un+1
i,j = uni,j −∆tG(u)i,j,

and

G(u)i,j =

{√
max(a2+, b2−) + max(c2+, d2−) if ci,j > 0√
max(a2−, b2+) + max(c2−, d2+) if ci,j < 0,

(3.7)

26

3.2. FINITE DIFFERENCE DISCRETIZATION

where for any real number d, it is d+ = max(d, 0), d− = min(d, 0), with

a =
ui,j − ui−1,j

∆x
,

b =
ui+1,j − ui,j

∆x
,

c =
ui,j − ui,j−1

∆y
,

d =
ui,j+1 − ui,j

∆y
.

3.2.3 Total Variation Diminishing methods: TVD

The main drawback of high-order schemes is that they produce artificial oscil-
lations near discontinuities. That is true in particular when the Péclet number
is high. The TVD schemes are designed to avoid this problem introducing an
artificial diffusion or a weighting that counteracts the formation of oscillations.
TVD methods exploit the idea that the total variation of a function must never
grow. As soon as this condition is satisfied we obtain a stable and non-oscillatory
method. Let us define the total variation as

TV =
∑
i

|ui+1 − ui|

and a method is TVD if the total variation does not increase in time. That means
that the property ui monotonically increases or decreases in space at every time
step. A method that satisfies this condition is said to be monotonically preserving,
respecting the following disequation:

TV (un+1) ≤ TV (un)

Basically the advection of ui is made using an upwind scheme with the ad-
dition of a limiter that smears the function out. There are several limiters in
literature [19], we chose to use the Superbee limiter mainly because is known to
be one of the least diffusive. The general advecting function for ui, considering
the cell i to be upstream, is

ui+ 1
2
= ui +

∆x

2
ψi(r)

where ψ(r) is the limiter function
ψ(r) = max[0,min(2r, 1),min(r, 2)].

Here
r =

ui−1 − ui
∆x

If ψ(r) = 0 the scheme is reduced to the first order upwind scheme.

27

CHAPTER 3. NUMERICAL METHODS

3.2.4 Weighted ENO scheme: WENO 5 scheme

The essentially non-oscillatory schemes (ENO) are conceived by Harten and al.
[15] in order to provide an useful tool to resolve problems with smooth solutions
that contain discontinuities. They are high order interpolation schemes that are
substantially non-oscillatory. In 1997 Jiang and Shu [16] created third and fifth
order schemes WENO designing non linear weights for the smoothness manage-
ment. The WENO schemes calculate the fluxes over different low interpolation
order stencils to combine them and obtaining an higher-order scheme. They can
avoid discontinuities problems automatically choosing the smoothest stencil. In
particular in this work a fifth order WENO scheme is implemented.

We introduce the following convention:

D+ϕk = ϕk+1 − ϕk, D−ϕk = ϕk − ϕk−1.

Now we can write the left and right biased derivatives of the stencil in Figure 3.4
for ϕ−

x,i as

d1 =
D+ϕi−3

∆x
, d2 =

D+ϕi−2

∆x
, d3 =

D+ϕi−1

∆x

d4 =
D+ϕi

∆x
, d5 =

D+ϕi+1

∆x
,

and for ϕ+
x,i as

d1 =
D−ϕi+3

∆x
, d2 =

D−ϕi+2

∆x
, d3 =

D−ϕi+1

∆x
,

d4 =
D−ϕi

∆x
, d5 =

D−ϕi−1

∆x
,

The third-order accurate ENO chooses one from the following schemes for the
right and left flux calculation:

ϕ±,0
x,i =

1

3
d1 −

7

6
d2 +

11

6
d3,

ϕ±,1
x,i = −1

6
d2 +

5

6
d3 +

1

3
d4,

ϕ±,2
x,i =

1

3
d3 +

5

6
d4 −

1

6
d5.

Conversely, the WENO approximation of ϕx is a weighted combination of ϕ±,s
x,i

with (s = 0, 1, 2), thus we get

ϕ±
x,i = ω0ϕ

±,0
x,i + ω1ϕ

±,1
x,i + ω2ϕ

±,2
x,i . (3.8)

28

3.2. FINITE DIFFERENCE DISCRETIZATION

The weights are defined as

a0 =
1

10

1

(ε+ S0)2
, ω0 =

a0
a0 + a1 + a2

,

a1 =
1

10

1

(ε+ S1)2
, ω1 =

a1
a0 + a1 + a2

,

a2 =
1

10

1

(ε+ S2)2
, ω2 =

a2
a0 + a1 + a2

.

Here

S0 =
13

12
(d1 − 2d2 + d3)

2 +
1

4
(d1 − 4d2 + 3d3)

2

S1 =
13

12
(d2 − 2d3 + d4)

2 +
1

4
(d2 − d4)

2

S2 =
13

12
(d3 − 2d4 + d5)

2 +
1

4
(3d3 − 4d4 + d5)

2.

We are using ε = 10−6 to avoid the denominator becomes zero.

(a) (b)

Figure 3.4: From the left, the left biased and the right biased WENO 5 schemes.

Notice that we cannot always take advantage from the method to be fifth or-
der, the actual order depends on the weights values. Indeed when there is a dis-
continuityin the field values the method prefers to choose the smoothest stencil
for the calculation since the weights over the steepest stencils become negligi-
ble. We can exploit this feature to manage the calculation of the derivatives over
the boundaries. Suppose we must calculate the value of the flux at im that is
the nearest nodal point to the right boundary of the domain. We need to calcu-
late the derivatives avoiding the ghost cells that physically have no meaning. In
order to do that we store in the ghost cells high numbers (e.g. 108). Thus, con-
sidering the left biased flux, the derivative across the interface becomes orders
of magnitude bigger in module than the others. Therefore the second and third
weight become negligible since the denominators increase while the first weight

29

CHAPTER 3. NUMERICAL METHODS

turns almost to one. The first weight evaluates only the first three differences of
the stencil (Figure 3.4) that belong to the real domain. Notice that, since we store
so high values in the ghost cells, it is necessary to ensure that at the boundaries
the fluxes are directed outflow. In fact in our example the calculation of ϕ+

x,i loses
any meaning and would provide senseless results.

The WENO 5 method requires to add three ghost cell stripes all around the
domain to well define the real boundary cells. That is clear if we pay attention
to the way the stencil is built: the right side flux calculation requires three nodes
on the right of the nodal point iwhile the left side flux calculation requires three
nodes on the left of the nodal point i.

Remark. Since we are considering a solenoidal field, the equation (2.6) can be
recast in the following form:

∂ϕ

∂t
+∇ · (u⃗ϕ) = 0. (3.9)

We obtain that simply considering that

∇ · (u⃗ϕ) = u⃗ · ∇ϕ+ ϕ∇ · ϕ (3.10)

has the last term on the right-hand side equal to zero. Analytically using one
equation or the other one makes no difference in the incompressible framework,
otherwise if we analyze the numerical implementation the equations are not the
same. Let us pay attention to the fact that the velocities values are stored on the
interfaces of the cells while the values of ϕ are stored in the nodal points since
we are adopting the staggered grid method. Furthermore, the fluxes of ϕ are
stored on the cells interfaces. In the eq. (2.6) the calculation of the flux gradi-
ent is made before the divergence calculation and it consists in differentiating
the flux over the cell. Thus the velocities are not considered in the physic flux
calculation. This method is not written numerically in a conservative way. On
the other hand the eq. (3.9) calculates the flux making the right property balance
over the boundaries of the cell. The method is automatically conservative and
keeps the value of the ϕ integration over the domain constant. In our specific
case until the simulations are conducted with a velocity field that is indepen-
dent from the physics of the system no problem emerges, however when we
introduce the Navier-Stokes equations some troubles can occur. Nevertheless
for the sake of simplicity we numerically discretized the equation (2.6) with a
non implicitly conservative WENO 5 scheme in the ”test code”, then we imple-
mented the eq. (3.9) for the main code.

30

3.3. CAPTURING AND CALCULATION OF THE INTERFACE

3.3 Capturing and calculation of the interface

The Level Set methods belong to the interface-capturing methods since the key
idea relies on the reconstruction of the interface handling an auxiliary field func-
tion. The field function is a scalar function defined in an Eulerian coordinate
system. Therefore all the equations and quantities are defined in an Eulerian
fashion with no need to introduce markers for the tracking as in the Lagrangian
methods. Thus every equation for the transport of the auxiliary field function is
written with the Cartesian grid as reference system.

In the chapter 1 we defined the Level Set function as a field function that lies
in a space one dimension higher than the space where we define the interface.
Therefore the Level Set function must be initialized over the entire domain even
though the values of the interface are stored just in few points over the domain.
The interface in most of our cases is localized where the level set function is zero,
i.e. in the nodal points where the change in sign of the function is observed.
Since the function of the surface is implicitly defined, we do not need to store
the values of the interface in an additional array. All the information that we
need will be deduced with thanks to the tools that we have available from the
Level Set function theory when necessary.

In this section the mathematical models to resolve the transport equation are
presented. First, we show the original method used within our study group.
Such method is a good compromise between computational effort, ease in man-
agement and mass conservation capability. It is very good in keeping the right
shape of the interface thanks to WENO 5 scheme but it still lacks too much in
mass conservation. In fact in several test cases the trend to shrink is evident.
Then the description of the new models follows. Notice that every proposed
method is developed aiming to improve the global mass conservation.

3.3.1 Original method: the standard approach

The traditional method advects the Level Set function using the equation (2.6).
The smoothness of the ϕ function makes the function to be easily resolved nu-
merically. This equation will move the zero contour exactly as it is supposed to
move. The flux direction was tracked by an upwind method, implemented in the
code with the Godunov scheme (see equation 3.7) and both the right hand and
left hand fluxes at the cell faces were calculated using the WENO 5 scheme. The
WENO 5 scheme was used in conjunction with high-order TVD Runge-Kutta
schemes. For example, a second or third-order Runge-Kutta method is written
as a linear combination of Euler steps [33]. We show the time procedure adopted
in the thesis to obtain the advance in time, that is, the third-order Runge-Kutta

31

CHAPTER 3. NUMERICAL METHODS

scheme. First we define ϕ̃n+1 and ϕ̃n+2 with two consecutive Euler steps:

ϕ̃n+1 − ϕn

∆t
= RHS(ϕn),

ϕ̃n+2 − ϕ̃n+1

∆t
= RHS(ϕ̃n+1),

where RHS(ϕ) is the right-hand side of the transport equation. Thus we define
an intermediate value ϕ̃n+ 1

2 by simple averaging

ϕ̃n+ 1
2 =

3

4
ϕn +

1

4
ϕ̃n+2,

and then we advance ϕ̃n+ 1
2 for another time step doing

ϕ̃n+ 3
2 − ϕ̃n+ 1

2

∆t
= RHS(ϕ̃n+ 1

2).

Finally, ϕn+1 is the linear combination of

ϕn+1 =
1

3
ϕn +

2

3
ϕ̃n+ 3

2 . (3.11)

Since we discretized all terms explicitly, to preserve the stability there is a re-
striction in the time step. The restriction on the convective time step in a 2-D
framework is given by the CFL condition

∆t

(
|u|max

∆x
+

|v|max

∆y

)
< 1, (3.12)

where the subscript max specifies the maximum magnitude of the velocities.
While during the advance in time the interface keeps the right position, the

Level Set function outside the zero level is distorted, no longer conserving the
signed distance function properties (see chapter 2). In order to maintain the
Level Set function a signed distance function we must apply an intermediate
step after the transport. We adopted the eq. (2.11) to readjust the function to be
a signed distance function. The reinitialization step always follows the transport
equation resolution, but was not performed every time step. We chose to apply
the reinitialization equation at least every 20 time-steps, mainly for two reasons:

• the resolution of the reinitialization equation every time step requires ad-
ditional effort from the calculator, excessively protracting the CPU time;

• although the analytic solution of the equation provides a signed distance
function with the zero iso-contour unchanged, the numerical resolution
tends to shift the zero iso-contour.

32

3.3. CAPTURING AND CALCULATION OF THE INTERFACE

Within every time-step the average slope of the signed distance function around
the zero contour was monitored, to ensure that it does not excessively change
its value. If |∇ϕ| moves too much away from 1 the algorithm reinitializes the
function even if the counter did not reach 20.

In the reinitialization equation (2.11) the flux was calculated with WENO 5
schemes, the flux direction was checked using an upwind method, where the
sign function stands in for the velocity. The sign function (2.12) is usually mod-
ified for numerical reasons as

sgn(d) = d√
d2 + ε2

(3.13)

introducing ε, usually equal to ∆x, that is a small number to avoid the denom-
inator becomes equal to zero. Furthermore in this thesis we implemented the
correction proposed by Peng et al. [29]. They pointed out the existence of a bad
behavior of the equation evolution if the ϕ function is too flat or too steep near
the interface. In those conditions the function rebuilding goes too much slow
when the function is too flat, on the other hand if the function is too steep this
approach could change the sign of d, since it could move the interface across a
grid point. Thus we put

sgn(d) = d√
d2 + |∇ϕ|∆x

(3.14)

into the intermediate equation as the sign function, to slightly alleviate the prob-
lem.

The reinitialization step is resolved until the steady state is reached in a band
around the interface, or when the maximum number of iterations, set to 20, is
reached. Pay attention to the fact that this number is not the maximum number
of time-steps performed without reinitializing. To preserve the stability the CFL
condition must be respected, thus our choice goes for ∆τ = ∆x/2. It is not a
strict condition, but it is enough to ensure the convergence of the solution. The
residual was calculated as

res =

∫
Ωm

|ϕn+1 − ϕn| dΩm/Ωm (3.15)

and as the criteria for steady-state we used

res < TOL ·∆τ, (3.16)

where the subscriptmdenotes a particular mask defined over the domain drawn
around the interface and TOL is a specified tolerance. The tolerance that we
chose is ∆x2.

33

CHAPTER 3. NUMERICAL METHODS

3.3.2 First method: Re-distancing operator in the reinitialization

The first method is very similar to the original one, except for the fact that in-
stead of using the regular reinitialization equation a new constrain was added in
order to conserve the area of the domain. This change was devised by Sussman
and Fatemi [34, 37] and it was addressed to make the iteration procedure more
accurate and efficient. To preserve the volume of the domain it is required that

∂t

∫
Ω

H(ϕ) dΩ = 0, (3.17)

where the subscript t indicates the temporal derivative and H is the Heaviside
function. It is clear that satisfying this constrain means keeping the area of the
domain always constant. The equation for the reconstruction of the interface

dτ = sgn(d)(1− |∇ϕ|) = G(d, ϕ), ϕ(x, 0) = d(x, t) (3.18)
is rewritten in this way

ϕτ = G(d, ϕ) + λf(ϕ), (3.19)
and λ is a function of t only, determined by requiring

∂t

∫
Ω

H(ϕ) dΩ =

∫
Ω

H ′(ϕ)ϕτ dΩ =

∫
Ω

H ′(ϕ)(G(d, ϕ) + λf(ϕ)) dΩ = 0. (3.20)

Thus λ is calculated from the previous equation and we obtain

λ =
−
∫
Ω
H ′(ϕ)G(d, ϕ) dΩ∫

Ω
H ′(ϕ)f(ϕ) dΩ

. (3.21)

To ensure that the correction is applied only on the interface without disturbing
the function properties in the rest of the domain, the choice of f is

f(ϕ) = H ′(ϕ)|∇ϕ|. (3.22)
The authors also provided a second order scheme for the discretization, but
we prefer to keep working with the WENO 5 scheme as we did in the previ-
ous method. The advance in time was made with a third-order Runge-Kutta
method (3.11). For the computation of the λ parameter we followed the choices
of the authors, where:

G(ϕ̃n+1
i,j) ≈

(ϕ̃n+1
i,j − ϕn

i,j)

∆τ
,

H ′(ϕi,j) ≈
∂Hε(ϕi,j)

∂ϕi,j

= δ(ϕ),

f(ϕi,j) ≈ H ′(ϕi,j)|∇ϕi,j|,

λi,j(ϕ̃
n+1
i,j) ≈

−
∫
Ωi,j

H ′(ϕn
i,j)G(ϕ̃

n+1
i,j) dΩi,j∫

Ωi,j
H ′(ϕn

i,j)f(ϕ
n
i,j) dΩi,j

. (3.23)

34

3.3. CAPTURING AND CALCULATION OF THE INTERFACE

The λi,j parameter is assumed to be constant in each cell Ωi,j near the interface.
λi,j is a function that disappears outside of a small band around the interface.

The method is ease to implement since it requires only the addition of a term
in the intermediate equation. The additional calculation time required by the
calculator is barely significant, almost negligible. The effect of this correction
mostly aids the model avoiding the shrinking and introducing a slight improve-
ment in the mass conservation.

3.3.3 Second method: source term embedded

The model proposed by Gorokhovski et al. [31] illustrates a new equation for the
transport of the Level Set function that theoretically should keep the function
close to a signed distance function when integrated in time. In fact the Eikonal
equation (|∇ϕ| = 1) is automatically satisfied by embedding a new source term
in the transport equation. Therefore after the integration of the new Level Set
equation the reinitialization procedure of the Level Set function should be no
longer necessary. Furthermore the source term on the front is zero and the equa-
tion behaves as the regular equation for the Level Set function advection.

We introduce the new equation pointing the presence of the new term:

ϕt + u⃗ · ∇ϕ = A(x⃗, t)ϕ, (3.24)
ϕ(x⃗, 0) = d(x⃗), |∇d(x⃗)| = 1,

where the coefficientA(x⃗, t) is an arbitrary regular function that does not depend
on ϕ. It is clear that the evolution of the zero level set remains unaffected if we
choose any regular A(x⃗, t) that does not depend on ϕ.

Moreover in terms of Eikonal equation, we have at all times

|∇ϕ(x⃗, t)| = 1, t > 1. (3.25)

The authors rewrote the equation in suffix notation. We propose the same con-
vention for the calculation of the source term. Hence the equation becomes

∂ϕ

∂t
+ uk

∂ϕ

∂xk
= A(x⃗, t), (3.26)

where k is the notation used for the k-th dimension. With this notation the equa-
tion is valid for every dimension of the domain. Our work is just related to a 2-D
domain. Differentiating the equation with respect to xi (where i is the i-th ̸= k-th
dimension) and multiplying it by 2∇iϕ, after rearranging we obtain

ϕni
∂A(x⃗, t)

∂xi
+ A(x⃗, t) = ni

∂uk
∂xi

nk, (3.27)

35

CHAPTER 3. NUMERICAL METHODS

here ni =
∇iϕ
|∇iϕ| . Since the Eikonal equation (3.25) is satisfied even for t > 0 we

can write ni = ∇iϕ. We rewrite the eq. (3.27) in terms of normal derivatives, if
we move along the characteristic of the differential equation we can consider a
point x⃗ from the interface that pinpoints a distance n. Clearly along this line the
components of n(x⃗, t) = ∇ϕ(x⃗, t) do not change. Since the eq. (3.25) is always
valid, ϕ aligns with n:

ϕ = n.

Thus we can rewrite the eq. (3.27) as

∂(An− uknk)

∂n
= 0. (3.28)

Solving the differential equation provides the exact solution

A(x⃗, t)n = uknk − (uknk)|n=0, (3.29)

where the suffix n = 0 denotes the condition ϕ(x⃗, t) = 0. If we go back to the
Level Set formulation, the equation turns in

∂ϕ

∂t
+ uk

∂ϕ

∂xk
= (uk − (uk)|n=0)

∂ϕ

∂xk
. (3.30)

Therefore the reinitialization equation is no longer necessary, but the problem
of calculating (uk)|n=0 appears. We need to calculate it at each point and time to
obtain the value of the source term A. That is not a trivial problem, and creates
a lot of numerical issues. Hence the authors proposed to use an approximate
form ofA avoiding the problem of calculating the exact source term at the front.
However the authors and some others proposed a solution addressed in the di-
rection of directly calculating the source term, if interested we recommend the
reader to see [12, 28].

Taylor expansion and zero-order local approximation of the source term
The expansion of the source term in a Taylor series up to the second-order term
is

A(x⃗, t) = A0 + A1n+ A2n
2 +O(n3) (3.31)

and the expansion of uknk up to the third-order term is

uknk = (uknk)|n=0 +

(
∂uknk

∂n

)∣∣∣∣
n=0

n+
1

2

(
∂2uknk

∂n2

)∣∣∣∣
n=0

n2

+
1

6

(
∂3uknk

∂n3

)∣∣∣∣
n=0

n3 +O(n4). (3.32)

36

3.3. CAPTURING AND CALCULATION OF THE INTERFACE

Hence using the eq. (3.29) we obtain

A0 + A1n+ A2n
2 +O(n3) =

(
∂uknk

∂n

)∣∣∣∣
n=0

+
1

2

(
∂2uknk

∂n2

)∣∣∣∣
n=0

n

+
1

6

(
∂3uknk

∂n3

)∣∣∣∣
n=0

n2 +O(n4). (3.33)

Now, the zero-order term is

A0 =

(
∂uknk

∂n

)∣∣∣∣
n=0

. (3.34)

Evaluating A0 exactly on the interface is not easy since the quantities are known
on the nodal points. Thus we evaluateA0 on the nearest grid point x⃗ to the front
and we recast the eq. (3.34) as(

∂uknk

∂n

)∣∣∣∣
n=0

=

(
∂uknk

∂n

)∣∣∣∣
x⃗

+O(n). (3.35)

Thus the approximation to the zero-order coefficient takes the following form

ALA,0(x⃗,) =

(
∂uknk

∂n

)∣∣∣∣
x⃗

, (3.36)

where LA stands for Local Approximation.

Numerical implementation
The equation we are going to solve is the following, again, in suffix notation:

∂ϕ

∂t
= −uk

∂ϕ

∂xk
+ ALA,0ϕ. (3.37)

We recalled the first term of the equation on the right as RHS1 and the second
term on the right side, i.e. the source term ALA,0ϕ, as RHS2. The sum of these
two terms is the right hand side of the equation. We resolved them separately. In
particular RHS1 was resolved in the same way as in the original method, where
the divergence was discretized with the WENO 5 scheme. The source term gave
more problems. First of all we redefined the zero-order coefficient. Aided by the
following definitions nk =

∂ϕ
∂xk

, ∂
∂n

= ∂ϕ
∂xj

∂
∂xj

the eq. (3.34) can be rewritten in the
following form:

ALA,0(x⃗, t) =
∂ϕ

∂xj

∂uk
∂xj

∂ϕ

∂xk
. (3.38)

37

CHAPTER 3. NUMERICAL METHODS

We adopted two different approaches to discretize this term. The first is a ”rough”
method, we just reduced the derivatives with the WENO 5 scheme and we ap-
plied a first-order forward scheme for the velocity derivative. We stress that
the velocity was averaged over the cell, due to the de-localization of the non-
conservative formula (see the remark in section 3.2.4). This method works good
until the system to be solved is very simple and without the coupling with the
Navier-Stokes equations. However the goal of the model is to manage physical
problems where high velocities, huge pressure gradients and thus quick topo-
logical changes occur. The ”rough” scheme is not stable, and shows its limits
in those situations. For some examples see chapter 4,5. The second approach
uses the WENO 5 paired with the local Lax-Friedrichs function, providing the
following numerical Hamiltonian:

ˆRHS(ϕ+
x , ϕ

−
x , ϕ

+
y , ϕ

−
y) = RHS

(
ϕ+
x + ϕ−

x

2
,
ϕ+
y + ϕ−

y

2

)
− α(ϕ+

x , ϕ
−
x)
ϕ+
x − ϕ−

x

2
− β(ϕ+

y , ϕ
−
y)
ϕ+
y − ϕ−

y

2
, (3.39)

where

α(ϕ+
x , ϕ

−
x) = max

ϕx∈I(ϕ−
x ,ϕ+

x)
ϕy∈[C,D]

|RHS1(ϕx, ϕy)|,

β(ϕ+
y , ϕ

−
y) = max

ϕx∈[A,B]

ϕy∈I(ϕ−
y ,ϕ+

y)

|RHS2(ϕx, ϕy)|.

Here RHS1 and RHS2 stand for the partial derivatives of RHS with respect
to ϕx and ϕy; [A,B] and [C,D] are a range of discrete values within ϕ±

x and ϕ±
y

respectively; I(a, b) = [min(a, b),max(a, b)].
The advantage of this scheme is brought with the introduction of the viscous

terms α and β that produce artificial diffusion in the equation. The artificial
diffusion helps the stability of the method and avoids undesirable oscillations.
On the other side the solution will be less accurate. Indeed in the experiments
showed in this thesis it is evident that the viscous terms enhance the loss of mass
problem if they are not tuned accurately. Thus the choice of the viscous terms
values was a tricky issue. Here we presented the original fashion to derive them,
but it was not rare the case where we had to fix them manually.

The time integration was accomplished using the third-order Runge-Kutta
scheme (3.11). Since we discretized all terms explicitly the stability must be pre-
served introducing restriction on the time-step. We used the restriction (3.12)
for the convective time-step and a new restriction in time due to the source term.

38

3.3. CAPTURING AND CALCULATION OF THE INTERFACE

The new restriction in time is the following:

M∆t < 1, M = max
∣∣∣∣∂uk∂xi

∂ϕ

∂xi

∂ϕ

∂xk

∣∣∣∣ = max
∣∣∣∣Sik

∂ϕ

∂xi

∂ϕ

∂xk

∣∣∣∣ (3.40)

where Sik is the rate of strain tensor.
As we will see at a later time this condition is not always strict enough. In

effect the stability problem will be the main concern about this method, we will
be forced to further diminish the time-step in order to reach the convergence and
do not let the code blowing up.

3.3.4 Third method: conservative phase-field method

The resolution of the reinitialization equation brings too many drawbacks in
its numerical implementation. On the other hand it is basically essential the
reinitialization step due to the nature of the advection equation. Nevertheless,
several attempts to abolish such equation exist. In particular the Olsson and
Kreiss idea [23] is very interesting and we are going to present it in this section.

Instead of transporting the signed distance function, the Heaviside func-
tion (2.14) is directly transported. Thus the initialization of the function is made
building a Heaviside function without the concern of respecting the Eikonal
equation. In the numerical implementation we preferred to use the smeared-
out Heaviside function (2.20). Analytically what we want is

ϕ̃(x⃗) = Hsm(ϕ(x⃗)), (3.41)

where Hsm is the smeared Heaviside function (2.20) but taken with a different
convention, that is Hsm = 1−Hε. The goal is to obtain a conservative numerical
method to advect the ϕ̃(x⃗) that preserves its smooth profile. Having this method
means to ensure the conservation of the integral

∫
ϕ over the domain. The Heav-

iside function defines two sub-regions on the domain, and we expect that also
the sub-regions behave in a conservative way. In particular we set the interface
at the level ϕ = 0.5 and we want the area of the inner region to be Aϕ̃=0.5 ≈

∫
ϕ.

From now we rename ϕ̃(x⃗) as ϕ(x⃗), which becomes our phase-field function.
To advect the phase-field function let us consider the standard equation (2.6).

Since for incompressible flows the u⃗ field is always divergence free we can write

ϕt +∇ · (ϕu⃗) = 0, (3.42)

and we can adopt this form for the numerical resolution. The authors stressed
the following points for the choosing of the numerical method:

• the method should be conservative;

39

CHAPTER 3. NUMERICAL METHODS

• no spurious oscillations should be introduced;

• the thickness of the interface and the profile of ϕ should be kept constant.

A conservative method can be written in the following form

ϕn+1
i,j − ϕn

i,j

∆t
= − 1

∆x
(Fi+ 1

2
,j − F1− 1

2
,j)−

1

∆y
(Gi,j+ 1

2
−Gi,j− 1

2
), (3.43)

where Fi+ 1
2
,j and Gi,j+ 1

2
are approximations of the flux (F,G) = ϕu⃗ on the stag-

gered grid. We calculated the fluxes using the central averaging

Fi+ 1
2
,j =

1

2
(ϕi,j + ϕi+1,j)ui+ 1

2
,j, Gi,j+ 1

2
=

1

2
(ϕi,j + ϕi,j+1)vi,j+ 1

2
. (3.44)

Although the method is conservative, the central difference introduces oscilla-
tions on the front. Hence, in addition to this scheme we introduced also a TVD
scheme with superbee limiter (see subsection 3.2.3) that damps the oscillations
and helps in the preserving of the interface thickness.

Intermediate step
The advection of the phase field cannot keep by itself the thickness of the inter-
face constant, nor the right shape of the smeared-out Heaviside function. It is
necessary to introduce a new equation, an intermediate step addressed to solve
this problem. We can add artificial compression in order to maintain the reso-
lution of contact discontinuities as proposed by Harten [14]. The artificial com-
pression can be viewed as an intermediate equation that is solved after the ad-
vection equation:

ϕτ +∇ · f⃗(ϕ) = 0, (3.45)

where f is the compressive flux. We want that the flux operates only in the re-
gion where 0 < ϕ < 1 and along the normal direction to the interface. Thus
we can choose f⃗ = ϕ(1− ϕ)n̂, where n̂ is the unit vector normal to the interface
calculated using the definition (2.9). The equation in this form is a conserva-
tion law that forces the reconstruction of the function over the front and keeps
the area constant through the time. To avoid discontinuities at the interface we
introduced a small dissipation term ε modifying the conservation law:

ϕτ +∇ · f⃗(ϕ) = ε∆ϕ. (3.46)

Thus we can write it in the conservative form:

ϕτ +∇ · f̃(ϕ) = 0, (3.47)

40

3.3. CAPTURING AND CALCULATION OF THE INTERFACE

where
f̃(ϕ) = f⃗(ϕ)− ε∇ϕ. (3.48)

That ensures the interface thickness to be constant and defined by a finite value
proportional to ε. For the implementation of the method we used the (3.48). The
numerical reduction of the mathematical model is made using the conservative
scheme

ϕn+1
i,j − ϕn

i,j

∆τ
= − 1

∆x
(Fi+ 1

2
,j − Fi− 1

2
,j)−

1

∆y
(Gi,j+ 1

2
−Gi,j− 1

2
), (3.49)

with Fi+ 1
2
,j and Gi,j+ 1

2
approximate the flux at the cell faces. In this case

Fi+ 1
2
,j =

f(ϕi,j) + f(ϕi+1,j)

2
− ε

ϕi+1,j − ϕi,j

∆x
,

Gi,j+ 1
2
=
g(ϕi,j) + g(ϕi,j+1)

2
− ε

ϕi,j+1 − ϕi,j

∆y
.

The normal n̂i,j is calculated just once for each intermediate step and then
kept fixed until the convergence is reached. We also implemented an intermedi-
ate step correction proposed in [24, 8] demanding to enhance the accuracy of the
front definition. The variation of the velocities in the domain distorts the shape
of the interface, thus a stabilizing term is introduced. The intermediate step is
recast by:

ϕτ +∇ · f⃗(ϕ) = ε∇ · ((∇ϕ · n̂)n̂), (3.50)
we rewrite it in a conservative form, thus

ϕτ +∇ · f̃ = 0,

where
f̃ = f⃗ − ε((∇ϕ · n̂)n̂).

To resolve it we use the conservative scheme (3.49) and for the fluxes we use

Fi+ 1
2
,j =

f(ϕi,j) + f(ϕi+1,j)

2
− ε((∇ϕi+ 1

2
,j · n̂i+ 1

2
,j)n̂i+ 1

2
,j),

Gi,j+ 1
2
=
g(ϕi,j) + g(ϕi,j+1)

2
− ε((∇ϕi,j+ 1

2
· n̂i,j+ 1

2
)n̂i,j+ 1

2
).

The normal and the gradient, only for this last scheme, are calculated with for-
ward differences, it is obviously related with the fact that we want to keep co-
herence in the operations between the values stored in the face cells throughout
the entire domain. The n̂i,j is just calculated once for every time-step, in other
words we used the same value of the normal until the steady-state is reached.

41

CHAPTER 3. NUMERICAL METHODS

For the time integration we used a Runge-Kutta scheme, that coupled with a
TVD scheme ensures the stability of the method. The ε is chosen to be dependent
on the grid size in the following way:

ε =
(∆x)1−d

2
. (3.51)

d is usually equal to zero, but for the most difficult cases (i.e. the vortex field)
we take d = 0.1 to improve the stability. For the resolution of the intermediate
equation we use as fictitious time-step

τ =
(∆x)1+d

2
. (3.52)

Using this method we no longer need to initialize the ϕ field as a signed dis-
tance function. Now the phase field is initialized as a smeared-out Heaviside
function with values equal to one in the inner region, equal to zero in the rest of
the domain with a smooth transition between the two phases across the thick-
ness of the interface. There are two easy ways to set the initial condition of the
ϕ function. We can initialize the first phase storing ones, the second one storing
zeros and then resolve the artificial compression equation until it reaches con-
vergence; or if we deal with simple cases we can use the directly the analytic
equation. The authors provided the analytic equation for the circle

ϕ = (1 + e(|x⃗−x⃗c|−r)/ε)−1, (3.53)

and for the horizontal interface

ϕ = (1 + e(y−yint)/ε)−1. (3.54)

No matter how we decide to initialize the ϕ function, the interface will lie on
ϕ = 0.5.

3.4 Navier-Stokes equations

The first part of the thesis is related to the simple advection of the phase-field
to make a verification of the resulting numerical model. Our concern is also
simulating a real physical system combining the transport equation of the phase
field with the Navier-Stokes equations. In the aerospace propulsion field the
description of the phenomena that govern the fuel injection, the combustion and
the flame propagation are crucial in order to obtain better efficiencies, yields
and performances. In this context, the falling droplet is a good benchmark for

42

3.4. NAVIER-STOKES EQUATIONS

a multi-phase solver, in fact it involves all the typical problems of a multiphase
flow as the surface tension forces. We remind the reader that our solver does not
consider the equation of the energy, every test was drove with the hypothesis of
iso-thermal conditions and therefore the transfer of the mass across two phases
was not considered.

In this section we described the law of the mass conservation and the law of
the momentum conservation. Then we focused our attention on the discretiza-
tions of these equations and their numerical resolution.

3.4.1 Momentum and mass equations

The one fluid approach described by Tryggvason [39] and Chang et al. [6] was
chosen. A weak formulation of the incompressible multi-phase flow was derived
by coupling the Level Set formulation with the fluid equations. Basically one set
of equations was resolved over the entire domain and the interface effects, i.e.
the surface tension, were added only in a tiny band around the interface. We
used the dimensionless Navier-Stokes equations in the context of the one fluid
approach valid for an incompressible, viscous, unsteady and immiscible multi-
phase system. Thus we write

∂u⃗

∂t
+∇ · (u⃗u⃗) = 1

ρ

[
−∇p+ 1

Re
∇ · (2µD)− 1

Fr2
(ρ− 1)k +

2

We
κδ(n)n

]
, (3.55)

where u⃗ is the velocity, p is the dynamic pressure, µ the dynamic viscosity, k the
z-direction versor, ρ the density, κ the mean curvature, δ is the one dimensional
delta function of the normal coordinate n and n the normal direction versor. Re
is the Reynolds number, Fr is the Froude number and We is the Weber number
defined as follows:

Re =
ρgUL

µg

, F r2 =
U2

gL
, We =

ρgU
2L

σ
. (3.56)

Here, U is the reference velocity, L is the reference length, ρg and µg are the
density and dynamic viscosity of the reference phase that in our case is the gas
phase, g is the gravity acceleration and σ the surface tension coefficient. There-
fore, the right hand terms of the equation (3.55) correspond to, from left to right:

• pressure term. The pressure appears in the Navier-Stokes equation only in
a differential form, thus it is relative to the reference system;

• viscous term, proportional to the Re number;

• buoyancy force that acts only along the vertical component of the system;

43

CHAPTER 3. NUMERICAL METHODS

• the surface tension term. This term is localized only within the thickness
of the smeared-out δ function.

We ensure the mass conservation introducing the continuity equation:

∂ρ

∂t
+∇ · (ρu⃗) = 0. (3.57)

The fluids are assumed to keep constant material properties, therefore the den-
sity and the viscosity of the fluid particles remain constant. Thus it is true that

Dρ

Dt
= 0, (3.58)

Dµ

Dt
= 0. (3.59)

Thanks to the (3.58) the continuity equation assumes the form

∇ · u⃗ = 0, (3.60)

that is, the velocity field for an incompressible system is always considered divergence-
free.

3.4.2 Surface tension

The critical issue in the simulation of the multi-phase flow is the calculation of
the singularities at the interface. The fluid properties like the density and the
viscosity across the interface change discontinuously and thus it is hard to man-
age the numerical implementation. Moreover the surface tension is treated as a
local source term only along the interface. Brackbill et al. [5] proposed to treat
the interface as a finite thickness region across whom the function value varies
continuously, that is, as a Continuum Surface Force. From here the name of the
method CSF. Such reconstruction is not physically true, but allows to numeri-
cally resolve the problem in a stable fashion. Moreover every restriction to the
topology of the problem is eliminated, indeed we will adopt a bi-phase system
where the density ratio is 1000 without reporting stability problems.

Let us consider the last term of the equation (3.55). The CSF calculates the
material properties exploiting the phase-field function ϕ that is defined in ev-
ery point throughout the domain. The smeared-out Heaviside function (2.20) is
used to obtain the values of the density and the viscosity taking into account the
different phases. To calculate ρ and µ we defined the ratios

ηρ =
ρl
ρg
, ηµ =

µl

µg

, (3.61)

44

3.4. NAVIER-STOKES EQUATIONS

thus

ρε = ηρ + (1− ηρ)Hε(ϕ), (3.62)
µε = ηµ + (1− ηµ)Hε(ϕ), (3.63)

These are the values of the density and the viscosity smeared-out across the
finite thickness of the interface. The surface tension is only present in the δε(ϕ)
region across the interface.

Then, instead of solving the Navier-Stokes equations (3.55) we used a smeared-
out version by the introduction of the ϕ function dependency:

∂u⃗

∂t
+∇·(u⃗u⃗) = 1

ρε(ϕ)

[
−∇p+∇ · (2µε(ϕ)D)

Re
− (ρε(ϕ)− 1)

Fr2
k+ κδε(ϕ)∇ϕ

We

]
. (3.64)

We write the normal n as ∇ϕ according to the (2.9) since |∇ϕ| = 1 every time the
Level Set function is reinitialized as signed distance function. The smeared-out
delta function corresponds with the (2.21).

Discretization
It is useful to show the numerical schemes used to resolve the surface problem.
To calculate ρ at the cell faces we used:

ρi+ 1
2
,j =

1

2
(ρi,j + ρi+1,j)

ρi,j+ 1
2
=

1

2
(ρi,j + ρi,j+1),

and respectively, we did the same for µ. The gradient of ϕ is approximated using
the centered differences:

(∇ϕ)i,j =
(
ϕi+1,j − ϕi−1,j

2∆x
,
ϕi,j+1 − ϕi,j−1

2∆y

)
=

(
(ϕx)i,j, (ϕy)i,j

)
, (3.65)

and the normal to the interface (2.9) becomes

n̂i,j =
(∇ϕ)i,j
|(∇ϕ)i,j|

. (3.66)

The gradient of H is approximated with forward differences:

(∇H)i+ 1
2
,j =

(
ϕi+1,j − ϕi,j

∆x
,
ϕi,j+1 − ϕi,j

∆y

)
. (3.67)

The curvature κ is expressed as

κ =
ϕyyϕ

2
x − 2ϕxϕyϕxy + ϕxxϕ

2
y(

ϕ2
x + ϕ2

y

) 3
2

(3.68)

45

CHAPTER 3. NUMERICAL METHODS

where the terms are discretized according the schemes presented in the sec-
tion 3.2, and we centred on the cell faces

κi+ 1
2
,j =

1

2
(κi,j + κi+1,j) (3.69)

to obtain the surface tension

F x
i+ 1

2
,j
=

1

We

(
1

ρi+ 1
2
,j

κi+ 1
2
,j(∇H)i+ 1

2
,j

)
,

F y

i+ 1
2
,j
=

1

We

(
1

ρi,j+ 1
2

κi,j+ 1
2
(∇H)i,j+ 1

2

)
.

Since the third method (section 3.3.4) adopts another phase field function
instead of the signed distance function, it was necessary to slightly modify the
numerical scheme to make the method stable and without spurious oscillations
around the interface. We took advantage from the fact that the term κ∇H can
be rewritten as

κ∇H = ∇κH −H∇κ, (3.70)

where κ is independent from the spatial coordinate since it is defined locally on
the interface. Thus the last term of the eq. (3.70) is equal to zero. Therefore we
can calculate the surface tension in a more suitable way for our purpose:

F x
i+ 1

2
,j
=

1

We

1

ρi+ 1
2
,j

1

2

(
κi,j(ϕx)i,j + κi+1,j(ϕx)i+1,j

)
,

F y

i,j+ 1
2

=
1

We

1

ρi,j+ 1
2

1

2

(
κi,j(ϕy)i,j + κi,j+1(ϕy)i,j+1

)
.

3.4.3 Numerical solution of the N-S equations

The integration of the Navier-Stokes equations was performed with the projec-
tion method [7, 4]. The adopted procedure is as follows.

1. At the beginning of each time step the Level Set function is advanced in
time from ϕn to ϕn+1 as already said in the section 3.3 of this chapter.

2. The fluid acceleration term Ru due to inertial and viscous forces is defined
as:

Ru = −∇ · (u⃗u⃗) + 1

Re

∇h · (2µε(ϕ
n+1)D)

ρε(ϕn+1)
, (3.71)

and it is computed at the current time-step.

46

3.4. NAVIER-STOKES EQUATIONS

3. We integrate the equation (3.64) in time without considering the pressure
gradient term. A provisional velocity u⃗∗ is computed:

u⃗∗ − u⃗n

∆t
=

3

2
Rn

u −
1

2
Rn−1

u − k
Fr2

(
1− 1

ρε(ϕn+1)

)
+

1

We

κδε(ϕ
n+1)∇hϕ

n+1

ρε(ϕn+1)
.

(3.72)
A multi-step explicit Adam-Bashforth scheme is adopted for the calcula-
tion of the tentative velocity.

4. A variable-coefficient Poisson’s equation is solved to compute pn+1, that is
the pressure at the next time-step is:

∇h ·
(

∇hp
n+1

ρε(ϕn+1)

)
=

∇h · u⃗∗

∆t
. (3.73)

The solution of the equation is obtained by means of a preconditioned con-
jugate gradient method.

5. Finally, the provisional velocity u⃗∗ is corrected by the pressure term to ob-
tain u⃗n+1:

u⃗n+1 = u⃗n −∆t
∇hp

n+1

ρε(ϕn+1)
. (3.74)

47

CHAPTER4
Advection of the Level Set function: results

In this chapter, the verification of the proposed numerical models is presented.
Here we will resolve the advection equation of the ϕ function, using all the dif-
ferent methods introduced. When necessary, we will also resolve the reinitial-
ization equation. The Navier-Stokes equations are not taken into account since
no physical phenomenon is inspected; we will insert them in the next chapter.
These tests are addressed to:

• arrange a serviceable numerical algorithm;

• test the working parameters of the model using various benchmarks;

• calculate the ability of each method in conserving the initial area and the
initial shape;

• define limits and operative boundaries of the numerical models.

In order to accomplish the tasks we will simulate the models over three test
cases. First, the revolution of a circular disk in a rotational field, second the the
revolution of the Zalesak’s disk in a rotational field, and as last the deformation
of a circular disk immersed in a vortex flow.

DNS pretends to predict engineering flows without any approximation in the
equations. Its ability in providing real results is paid with an high computational
effort by the supercomputers. Due to the limited ability of the methods and
algorithms to track the interfaces and the limitation in memory and speed of
current supercomputers, we are not able to simulate complex problems with
complex geometries. Thus, another crucial parameter of the methods that we are

49

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

going to verify is the CPU time required to complete the simulation. It is well
know that the bottle neck of the simulation is the Poisson solver, however the
advection of theϕ function takes more or less 20% in time of the entire simulation
overall. Since it is not a negligible number, we will calculate the average CPU
time deployed to complete the experiments.

Figure 4.1: The red shape is the initial condition of the circular disk at t = 0. The black
shapes denote the evolution of the disk during the rotation.

4.1 Circular disk rotation

In this simple test a circular interface is subjected to a rotational field. The com-
putational domain is a square of unitary length Ω : [0, 1] × [0, 1]. The zero (0.5
for the conservative method) level set of the function is a circular shape with the
center in xc = 0.5, yc = 0.75. The radius is R = 0.15. To initialize the surface as a
signed distance function we can use the following analytic equation:

ϕ =
√
(x− x0)2 + (y − y0)2 −R. (4.1)

Otherwise the reader can adopt any surface function with the zero level values
corresponding to the circle drew and then apply the reinitialization step. When

50

4.1. CIRCULAR DISK ROTATION

we tested the conservative method we initialized the function with (3.53). The disk
is convected by a rotational velocity field:{

u = 0.5− y,

v = x− 0.5,
(4.2)

which represents a rigid body rotation with respect to (0.5, 0.5). The Figure 4.1
depicts the case set-up.

We rotated the disk for T = 6.28 time units, that correspond to a complete
revolution with respect to the center of the rotational field. After the experi-
ments we compared the numerical solution with the analytic solution. We re-
solved the problem for the following grid sizes: 64×64, 128×128, 256×256. The
source term method never reinitializes, the original and the re-distancing method
apply the reinitialization every 20 time-steps. In this experiment, and in all the
experiments that follow, the conservative method resolves the intermediate step
every time-step. For every method we used ∆t = C∆x and ∆τ = C∆x, where
the Courant number is chosen to be C = 0.5, that it was enough in both cases
to ensure stability and damp oscillations. At the borders of the domain we can
both adopt the Neumann conditions and the Dirichlet conditions as boundary
conditions for the Level Set function. The remark is valid for every case we con-
sidered in this chapter.

In the table 4.1 we compared the area error and the distance error at the end
of one revolution of the circular disk. The area is well conserved in all cases,
especially with the grid refinement the results show up low errors. The source
term method stands out since its area error is always at least one order of mag-
nitude smaller than the others. Such a good behaviour is justified by the fact the
method reinitializes just once in a while, thus the interface is never shifted from
its exact position. The Figure 4.2 compares the evolution of the area between the
source term method and the original method. The measure of the distance error
is good for every case, but the conservative method.

The average CPU time to complete the experiments is reported in table 4.2.
Notice that the grid discretization is the main reason in the increase of the com-
putational time. We can observe that the re-distancing method is more demanding
than the original one. We expected that since the introduction of a new addi-
tional term inside the reinitialization step. Also the source term method requires
more time to accomplish the simulation, although the reinitialization equation
is not resolved. This fact is explained considering the fact that the source term
added to the equation is not straightforward to compute and needs additional
efforts. The conservative method shows the lowest time, and gets a head start with
respect to the others, especially for fine meshes. In effect numerical tests showed
that only few iterations had to be performed in order to reach steady-state solu-

51

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

Table 4.1: The area and the distance errors for the circular disk case are represented. The
methods are tested with different grid sizes.

Method 64x64 128x128 256x256

em%

Original 0.33 0.105 0.04
Re-distancing 0.27 0.02 0.035
Source term 0.02 0.0006 0.0001
Conservative 1.22 0.002 0.006

1 × 103 1 × 103 1 × 103

ed

Original 2.54 0.89 0.52
Re-distancing 1.41 0.73 0.41
Source term 0.37 0.05 0.21
Conservative 4.74 2.02 0.77

tion of the intermediate equation, compared to the average number of iterations
that the reinitialization step requires.

4.2 Zalesak’s disk rotation

We proposed as second test the rotation of the Zalesak’s disk. This test is in-
teresting since the shape presents sharp corners, thus we evaluated how much
every method smears the corners out during the revolution. The domain is again
a square with length equal to 1. The velocity field is the same as the previous
section, that is the equation (4.2). The Zalesak’s disk is centered in xc = 0.5,
yc = 0.75 and the radius is R = 0.15. The slot width is 0.075 and the slot length
is 0.25. The Figure 4.3 shows the case setup. The time step and the fictitious
time step are ∆t = ∆τ = C∆x. the Courant number is C = 0.5. One complete
revolution of the disk was accomplished.

We summarized the results in the table 4.3. The re-distancing method works
very good when the mesh is coarse, while it loses its advantage refining the
mesh. The source term method is still better than the original one thanks once
again to its ability not to reinitialize often. In terms of area conservation the con-
servative method seems to be the worst above all, but actually it is not true. In fact,
let us consider the area value versus time of Figure 4.4. On the right we can see

52

4.2. ZALESAK’S DISK ROTATION

Table 4.2: Average CPU time elapsed to simulate the rotation of the circular disk. Time
is expressed in seconds. Several tests were made in order to obtain an average
time.

Method 64x64 128x128 256x256

Original 11.66 64.35 540.08
Re-distancing 19.09 80.01 617.57
Source term 20.23 83.09 582.49
Conservative 7.23 30.47 215.97

Figure 4.2: Area conservation of the original method (left) and the source method (right)
for the rotation of the circular disk.

53

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

Figure 4.3: The red shape is the initial condition of the Zalesak’s disk at t = 0. The black
shapes denote the evolution of the disk during the rotation.

Table 4.3: The area and the distance errors for the Zalesak’s disk case are represented.
The methods are tested with different grid sizes.

Method 64x64 128x128 256x256

em%

Original 9.77 1.08 0.17
Re-distancing 1.64 0.67 0.40
Source term 7.75 0.74 0.04
Conservative - 5.02 2.63

ed

Original 0.03 0.017 0.009
Re-distancing 0.02 0.001 0.006
Source term 0.02 0.009 0.005
Conservative - 0.015 0.010

54

4.2. ZALESAK’S DISK ROTATION

the original method. For a coarse mesh it tends to lose area advancing in the
time, without any gesture to adjust the problem. The main issue is that every
time we apply the reinitialization step the shape shrinks and a little amount of
area is lost. A fine mesh diminishes the problem, but doesn’t prevent it. On the
left the conservative method is shown. During the time, besides some rumor, if
we look at the error calculation the area is perfectly conserved with a little de-
viation (< 0.5% for the coarsest grid). Even though there is a small initial offset
of the area, there is no drift and the area does not increase nor decrease. We did
not perform the 64× 64 case for this method because problems in the initializa-
tion of the shape arose. The grid is too much coarse and the intermediate step
scheme is not accurate enough to grant an acceptable result to be employed in
the simulation.

Figure 4.4: Zalesak’s disk area versus time. On the left: conservative method. On the
right: original method

In Figure 4.5 we compared the final stage of every method with the exact
result after one turn, for the 128 × 128 grid. The most difficult parts to resolve
are the corners, where the numerical schemes easily fail to reproduce the correct
geometric shape. The re-distancing method slightly improves the accuracy with
respect to the original method, while the source term method deploys the bet-
ter approximation to the exact solution. The conservative method is not good in
the shape conservation, even though his excellent ability to conserve area. The
bottom-right picture from Figure 4.5 does not exactly respect the reality since
the red shape is initialized as a signed distance function, while the blue shape
was initialized by a Heaviside function.

55

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

Figure 4.5: Final stage comparison between numerical solutions (black, blue) and exact
solution (red) on a 128 × 128 grid. Top-left: original method; top-right:
re-distancing method; bottom-left: source term method; bottom-right: con-
servative method.

56

4.3. VORTEX TEST

Figure 4.6: Vortex field applied to a disk, original method.

4.3 Vortex test

The vortex test is the most arduous between the three since the velocity field
warps the original shape. We settled the circle in the same position of the cir-
cular disk in the rotation test, and the velocity field adopted is described by the
following set of equations:{

u = − sin2(πx) sin(2πy) cos(πt/T),
v = sin(2πx) sin2(πy) cos(πt/T).

(4.3)

The twisting is made with respect to the central point of the domain, (0.5, 0.5).
The circle is stretched out into a filament and then reversed to the original po-
sition. The period of the round cycle T was chosen to be T = 4. At t = T/2
the disk reaches the maximum deformation, then it comes back to the initial
state. The evolution of the disk is portrayed in Figure 4.6. Increasing the T pe-
riod makes the tail of the filament resolution harder to catch if we use meshes
not fine enough. Usually the grid refinement that we deployed was enough for
our needs, but we have to remark that the conservative method struggled. In the
Figure 4.7 the tail effect of the conservative method is shown. When the thick-
ness of the shape becomes too much thin it will not be well resolved, and leaves
behind ”chunks” of area that detach from the original figure. This numerical
effect can only be avoided if the thickness of the interface is smaller that the dis-

57

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

tance between two interfaces, that is, refining the mesh or reduce the value of ε.
Changing ε is not easily viable, because ε influences the fictitious time-step and
thus the overall method ability to converge.

Figure 4.7: Circular disk at t = 0 in red and at t = T/2 in black. The conservative
method bad reproduces the stretched disk at the maximum elongation.

The velocity field is solenoidal, thus ideally the shape at the end of the pe-
riod T should be like the original circle at the starting point. In the numerical
implementation some area will be lost for every test and the shape will be not
conserved exactly. We simulated the methods over different grid sizes: 64× 64,
128× 128, 256× 256. The time-step for the original method and the re-distancing
method is unvaried. For resolving the vortex with the conservative method we
opted for d = 0.1, where d is the parameter to control the fictitious time-step as
shown in eq. (3.52). The time-step is unvaried. The source term method requests
to adopt a very strict time-step condition. Although the Lax-Friedrichs scheme
was applied, the code showed limitations in the stability and easily failed to con-
verge unless we reduce the time-step. To get the job done it required C = 0.1,
even though there was already an additional source term restriction (3.40) over
the time-step. The fictitious time-step was unvaried.

The table 4.4 shows the ability of every method to conserve the area after
one period of time. The re-distancing method behaves better than the original
method if compared over the coarse mesh. Increasing the resolution of the mesh,
the gain in adopting the modification to the reinitialization equation fades out.
However, this method has no drawbacks compared with the original one. The

58

4.3. VORTEX TEST

Table 4.4: Area error after one period, t = T . Different grid sizes have been considered.

Method 64x64 128x128 256x256

Original 22.79 4.87 1.40
Re-distancing 17.35 4.57 1.64
Source term 31.53 9.60 3.05
Conservative 0.46 0.26 0.17

Table 4.5: CPU time elapsed in seconds to simulate an entire period of the vortex field.
Several tests were made in order to obtain an average time.

Method 64x64 128x128 256x256

Original 19.20 70.77 522.98
Re-distancing 19.92 76.77 554.56
Source term 78.80 448.52 5532.52
Conservative 16.53 40.08 243.33

only disadvantage could be a slightly increasing in the computational time, but
totally negligible for the purposes of our job.

The source term method in this framework presents the worst behaviour. The
area loss is higher than all the others as we can see from Figure 4.10, and more-
over if we take a look at table 4.5, we see that its computational CPU time is
about one order of magnitude higher than the average. We must stress that this
is mostly due to the time-step restriction and not to the complexity of the numer-
ical equations. In order to accomplish the entire revolution the source term method
needs to reinitialize often than the previous cases. In fact the vortex field distorts
excessively the Level Set function and the equation (3.37) seems no longer able
to maintain it as a signed distance function. It is useless to remark that the rein-
troduction of the reinitialization equation further slows down the computation
speed and lets the shape shift from its original position, nullifying the advantage
that the method claims.

The conservative method shows a temporary area loss of the inner region since
the shape is subject to the pinch at t = T/2 (Figure 4.8). The shape is however re-
covered at the final stage of the vortex and the area loss is small compared with
the original method. We stress that the intermediate step always ensures the

59

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

conservation of the area. Moreover, if we calculate the integral
∫
ϕ throughout

the entire domain the area error is closed to zero as it is shown in Figure 4.9, no
matter the instant of time t we are considering, since the method is intrinsically
conservative. In Figure 4.10 is shown the final stage of the disk. This method
does not succeed in keeping the exact shape, this problem is related to the dif-
ficult to reproduce the tail when the distance between the interface becomes to
small, as described above. This method stands out for the computational CPU
time employed (table 4.5). For a coarse grid it saves about 14% in time while for
the finest grid saves up to 53% of the time compared to the original method.

Figure 4.8: Area comparison of the inner region between the conservative method and
the original method. The 64× 64 and 128× 128 grid cases are represented.

60

4.3. VORTEX TEST

Figure 4.9: Total area error with respect to the time of the conservative method. All the
grid sizes are represented. It is difficult to identify the coarse mesh line since
the overlapping.

61

CHAPTER 4. ADVECTION OF THE LS FUNCTION: RESULTS

Figure 4.10: Final stages of the vortex rotation for the various methods, with a 128×128
grid. Top-left: original method; top-right: re-distancing method; bottom-
left: source term method; bottom-right: conservative method.

62

CHAPTER5
Results on a falling droplet

In this chapter the Level Set function methodology was applied to a physical
phenomenon to simulate the interface between two different phases. The Navier-
Stokes equations are added to the existent model in order to introduce a phys-
ical behaviour in the Level Set formulation. We investigated the evolution of a
falling droplet in a stagnant flow, for a 2-D case. We are considering a system
with low speed velocities involved (Ma < 0.3), thus we made the approxima-
tion of incompressible flow. Moreover we do not simulate the turbulence, in
fact we cannot demand to simulate with a good accuracy the real turbulence
phenomena since the 2-D limitation. In effect the scope of this chapter is mainly
to verify the compatibility of the code developed with the Navier-Stokes equa-
tions. That is, we want to expand the usability of the proposed methods to the
fluid-dynamics framework. This work supports a bigger project to develop a
complete toolbox that simulates accurately a multi-fluid 3-D turbulent isotropic
system with sharp interface (GFM) between two high-density ratio phases.

With the introduction of the surface tension several issues in the coupling
of the phases emerged. It is common that spurious currents rise in the vicinity
of the interface that have no physical meaning. As it was pointed out in [11],
the main reason of the generation of these currents is a numerical unbalance
between the tension forces and the relative pressure gradient. The CSF method
is definitely subject to the phenomenon, but also the Ghost Fluid Method [17, 10,
20] is not immune to the problem. The problem is more sensitive for the VOF and
FT methods. In fact the reconstruction of the interface via interpolation can lead
to an erroneous or a not enough accurate calculation of the interface normals.
Even though in a reduced scale, also the LSM is subject to spurious currents, in

63

CHAPTER 5. RESULTS ON A FALLING DROPLET

the measure that the precision of the calculation of the normals lays on how well
the auxiliary function ϕ is rebuilt in the interface neighbourhood.

Our efforts were addressed to minimize the numerical currents and obtain
a 2-D simulation of a falling droplet. We then compared the results of the per-
formed simulations, taking into account the ability of each method to conserve
the mass.

5.1 Chosen scenario and physical framework

A water droplet falls in air under the effect of gravity and surface tension. The
technique adopted to the treatment of the jump evolution is the CSF method-
ology. The treating of the interface evolution was made with, first, the origi-
nal method, then with the proposed methods. The velocity field and the pres-
sure were calculated with the one-fluid approach presented in chapter 3. For
the simulations we used the following physical constants: ρg = 1.204 kg/m3,
ρl = 998.2 kg/m3, µg = 1.983 × 10−5 kg/(m s), µl = 1.002 × 10−3 kg/(m s).

At t = 0 the droplet is initialized as an exact circle with initial diameter
d0 = 1.250 mm and we assume the reference length to be L = d0. Thus, the
normalized droplet diameter is d∗0 = 0.5. The simulations were performed in a
box of length lx = 10d∗0, that is 5 units and of height ly = 10d∗0, that is 5 units.
The cell dimensions are ∆x = ∆y = 1/6 units for a total of 60 nodes along the
x-axis and the y-axis. Approximately the diameter contains 7 nodes. The initial
position of the center of the droplet is (x0, y0) = (0.5lx, 0.75ly).

The reference velocity is U∗ =
√
gL = 0.110 68 m/s, where g is the gravity

acceleration. The surface tension between the water phase and the air phase is
σ = 7.28 × 10−2 N/m. Thus, the dimensionless groups assume the following
values:

Re = 9.372,

F r2 = 1,

We = 2.52× 10−4.

The simulation is stopped after 3units of time, during this interval the droplet
falls with constant acceleration increasing its velocity until it splashes against the
boundary wall at the bottom. The Figure 5.1 displays the initial condition of the
ϕ, where the black contour represents its zero level and the coloured function in
the background is the Level Set function.

Boundary conditions
The rectangular dominion is delimited at the borders by boundary conditions.

64

5.1. CHOSEN SCENARIO AND PHYSICAL FRAMEWORK

Figure 5.1: Level Set function at t = 0 of the droplet initialized as described above.

The top edge is open, while the lateral and the bottom edges are rigid walls. Let
us consider as an example the west wall. The function ϕ along the wall respects
the Neumann condition

∂ϕ

∂x
≈ ϕ2,j − ϕ1,j

∆x
, (5.1)

where the index i according with the Octave notation denotes the first element
of the array, that is the ghost cell. The tangential velocity v has a prescribed value
vwall on the west boundary, the values in ghost cell nodes must be adjusted such
that the average on the boundary is vwall [13]:

v1,j = 2vwall − v2,j. (5.2)

Where, in this context, the equal sign is an explicit assignment. The prescribed
value for the velocity vwall in both directions in our simulations was always taken
equal to 0.

For the pressure field we adopted the Neumann condition at the boundaries.

65

CHAPTER 5. RESULTS ON A FALLING DROPLET

5.2 Surface tension treatment

A good modelling of the surface tension, that acts localized along the interface
of the droplet, lies on the calculation accuracy of the normal vectors to the in-
terface calculation. The surface tension force is embedded in the Navier-Stokes
equations (3.64) and the localization of the source term is enforced by the delta
function (according with the CSF model). The source term is not localized ex-
actly on the interface, but also within a small band with finite thickness around
the interface. In fact a smeared-out delta function instead of an exact function is
adopted to deal with the numerical problems. The surface tension is calculated
as in the eq. (3.64). Instead of using the smeared-out delta function (2.21) we
took advantage from the equation (2.18) and we directly calculated the gradient
ofHε using a forward difference scheme (3.2) to avoid the numerical oscillations
that are typically encountered from the discretization of the delta function. The
discretization of the model is explained in the section 3.4.2.

Figure 5.2: Spurious currents around the interface of the droplet. The turbulence vor-
texes around the interface are a side effect of the numerical resolution of the
surface tension explicit term in the Navier-Stokes equations.

66

5.3. RESULTS

Since the normals are derived from the shape of the Level Set function, it is
crucial to ensure that its transport is made in the right fashion along the inter-
face and within a large enough band around it. For the original method, the
source term method and the re-distancing method the discretization is made accord-
ingly with the subsection 3.4.2. The conservative method, due to the fact it uses
a function which is not a signed distance function, does not provide good re-
sults if we implement the discretization presented above. The Figure 5.2 shows
what happens after few iterations. The coloured function in the background is
the magnitude of the velocity field, while the arrows represent the direction of
the velocity. Near the interface, the adopted numerical approach for the resolu-
tion of the surface tension does not prevent the generation of spurious currents.
These currents denote a non-physical behaviour of the droplet during its falling.
In order to avoid them it is necessary to rewrite the surface tension discretiza-
tion, in particular paying attention to the density term treatment. According to
the subsection 3.4.2 we modelled the numerical scheme, and then we recalcu-
lated the density around the interface as

ρε =
maxΩ(ρε) + minΩ(ρε)

2
. (5.3)

With this modification in the code we damped efficiently the spurious oscilla-
tions.

5.3 Results

The performed experiments have shown good results in the simulation of the
droplet. The Figure 5.3 illustrates frames of the droplet interface that evolves
under the effect of the gravity force and the surface tension force in the air. The
shape keeps a round profile until it reaches the ground; that is what we expected
since the droplet is small (d0 = 1.250 mm) and the acting tension force is strong
enough to counteract the distortion of the droplet.

For the cases that advected the signed distance function, the mass M is cal-
culated as the summation over the entire domain of the smeared-out Heaviside
function values, then multiplied for the density ratio. For the conservative method,
we calculated the mass as the summation over the domain of the phase-field
function. In the Figure 5.4 the droplet mass for the traditional method and the
conservative method is drawn with respect to the time. The original method fol-
lows the trend to slightly lose mass during the time, since the reinitialization
step does not keep the interface in the exact position where it is supposed to
be. A similar behaviour is observed for re-distancing method and the source term
method, even though in both cases there is a slightly improvement in the mass

67

CHAPTER 5. RESULTS ON A FALLING DROPLET

Figure 5.3: Falling droplet from t = 0 to t = 3 time units.

conservation. The conservative method is not affected by the problem of loosing
mass with respect to the time. The abrupt leap of the curve at about t = 2.5 is
due to the impact of the droplet with the ground wall.

In the Figure 5.5 the velocity field of the falling droplet for the conservative
case is represented. The dominion is wide enough to not affect the velocity field
considerably. The velocity field still shows small oscillations of the velocity in-
side the droplet (look at the second and third frames), but the spurious currents
were substantially damped compared with the initial simulations.

68

5.3. RESULTS

Figure 5.4: Droplet mass with respect to the time. On the left, the conservative method,
on the right, the original method.

Figure 5.5: Evolution of the falling droplet until t reaches t = 3. The interface is cap-
tured by the conservative method

69

CHAPTER6
Conclusions

In this chapter we summarized the obtained results and final considerations,
then possible evolutions of the presented work are shown.

6.1 Summary

In this thesis a numerical method for a non-turbulent 2-D two-phase flow has
been implemented. The interface was transported via a partial differential equa-
tion and a reinitialization step was introduced in order to maintain the total mass
during the evolution in time. The Navier-Stokes equations were resolved by a
DNS approach, the projection method for decoupling the velocity from the pres-
sure term was adopted. The treating of the multi-phase was accomplished us-
ing the CSF method. The implementation of the transport techniques was made
from scratch using the the environment provided by Octave 3.8.1.

Thus, three more models to improve the mass conservation were implemented.
The first proposed method was the re-distancing method. We modified the reini-
tialization step introducing a constrain in the equation. Such a modification re-
duces the shrinking behaviour that affects the interface during its advancing in
time. Secondly, we proposed the source term method: a source term was embed-
ded in the advection equation of the Level Set function that forces it to keep the
properties of a distance function even outside the interface, clearing the algo-
rithm from the reinitialization step. The third method is a conservative method
that replaces the distance function with a hyperbolic tangent profile that is ad-
vected and reinitialized using conservative equations.

71

CHAPTER 6. CONCLUSIONS

The verification step and the numerical assessment have been made testing
all the four methods with three common benchmarks: the revolution of the cir-
cular disk, the revolution of the Zalesak’s disk (both via a rotational field) and
the evolution after a complete period T of a circular disk under the effect of a
vortex field.

The tests have shown that the numerical implementation of the methods is
consistent with the analytical equations, for all the four cases. The evidence was
procured by the fact that increasing the grid resolution, the numerical solution
approximates better the analytic solution.

In those benchmarks the conservative method stood out for its ability to keep
the mass unaltered through the time-steps. The accuracy of the method is inde-
pendent from the grid resolution. Nonetheless, it struggles in the reconstruction
of the expected interface shape. We observed this behaviour where the grid res-
olution is too small to resolve adequately the interface thickness. The source term
method worked good until there were not critical alterations of the shape to deal
with, then failed both in accuracy and efficiency for complex cases, i.e. the vor-
tex test. We suggest the re-distancing method as a smart fix for the reinitialization
step. In fact it decreases the loss in mass during the time without introducing
disadvantages: it is easy to implement, does not substantially increase the com-
putational time and keeps the method stable.

The coupling of the proposed method with the Navier-Stokes equations has
been accomplished. As a benchmark we proposed the falling droplet test, where
a droplet of water falls under the effect of the gravity force. The tests showed that
the methods simulate with a good accuracy the evolution of the droplet. Situa-
tions such as the droplet breaking against the wall and fluid merges were man-
aged with no difficulties for most the simulations. The source term method showed
some problems in the equations resolution. Due to the need to adopt a too much
strict time-step to ensure convergence we do not suggest such a method to the
reader, the gain is too small compared with the drawbacks.

6.2 Future works

The present thesis is the first part of a project addressed to enhance the accuracy
of a numerical algorithm for the direct simulation of dispersed liquid droplets
in isotropic turbulence. The straightforward steps that follow what presented
here are:

• validation process for the coupled Navier-Stokes Level Set solver;

• implementation of the new models in Fortran 90 and parallelization in
open MPI;

72

6.2. FUTURE WORKS

• extension to the 3-D case.

The provided model could be improved with the following changes:

• substituting the CSF method with the Ghost Fluid Method;

• implementing the WENO 5 scheme for the conservative method;

• introduction of the narrow band to resolve faster the interface.

The ghost fluid method allows the model to resolve the surface tension in a sharp
fashion. Thus, it should introduce additional global accuracy.

73

APPENDIX

Algorithms

Here we reported a part of the code developed to show how we implemented
the evolution of the interfaces.

Resolution of the transport equation, TVD upwind method with superbee
limiter.

function [phi] = lsm_phasefield_advection_superbee(phi,ui,vi,dt,dx,dy)

nx = size(phi,1);
ny = size(phi,2);
sx = zeros(nx,ny-2);
sy = zeros(nx-2,ny);
flux_x = zeros(nx-1,ny-2);
flux_y = zeros(nx-2,ny-1);

phin = phi;

for n = 1:2

rght_phix = (phi(3:end,2:end-1) - phi(2:end-1,2:end-1))/dx;
left_phix = (phi(2:end-1,2:end-1) - phi(1:end-2,2:end-1))/dx;
rght_phiy = (phi(2:end-1,3:end) - phi(2:end-1,2:end-1))/dy;
left_phiy = (phi(2:end-1,2:end-1) - phi(2:end-1,1:end-2))/dy;

sx(2:end-1,:) = limiter(rght_phix,left_phix);
sy(:,2:end-1) = limiter(rght_phiy,left_phiy);

75

APPENDIX . ALGORITHMS

% Overwriting variables: same name, different things!! Beware
left_phix = phi(1:end-1,2:end-1) + 0.5*sx(1:end-1,:)*dx;
left_phiy = phi(2:end-1,1:end-1) + 0.5*sy(:,1:end-1)*dy;
rght_phix = phi(2:end,2:end-1) - 0.5*sx(2:end,:)*dx;
rght_phiy = phi(2:end-1,2:end) - 0.5*sy(:,2:end)*dy;

flux_x = max(ui(1:end-1,2:end-1),0).*left_phix +...
min(ui(1:end-1,2:end-1),0).*rght_phix;

flux_y = max(vi(2:end-1,1:end-1),0).*left_phiy +...
min(vi(2:end-1,1:end-1),0).*rght_phiy;

phi(2:end-1,2:end-1) +=...
- ((flux_x(2:end,:) - flux_x(1:end-1,:))/dx + ...

(flux_y(:,2:end) - flux_y(:,1:end-1))/dy)*dt;
phi = bc(phi);

endfor

phi = 0.5*(phi + phin);

endfunction

function [phi] = bc(phi)
phi(1,:) = phi(2,:);
phi(end,:) = phi(end-1,:);
phi(:,1) = phi(:,2);
phi(:,end) = phi(:,end-1);

endfunction

function [s] = limiter(x,y)
signx = x./(sqrt(x.^2) + eps);
ax = abs(x);
ay = abs(y);

s = signx.*max(ax,ay).*((ay >= ax*0.5 & ay <= 2.0*ax) & x.*y > 0) +...
2.0*signx.*min(ax,ay).*((ay <= ax*0.5 | ay >= 2.0*ax) & x.*y > 0);

endfunction

76

Intermediate step for the conservative method.

function [phi, iter] = intermediate_step(phi,dx,dy,epsilon,d,X,Y)

dtau = 0.5*dx^(1 + d);
nx = size(phi,1);
ny = size(phi,2);
f = zeros(nx,ny);
g = zeros(nx,ny);
phix = zeros(nx-2,ny-2);
phiy = zeros(nx-2,ny-2);
n_x = zeros(nx-2,ny-2);
n_y = zeros(nx-2,ny-2);
flux_f = zeros(nx-1,ny-2);
flux_g = zeros(nx-2,ny-1);

phix = (phi(3:end,2:end-1)-phi(1:end-2,2:end-1))/2/dx;
phiy = (phi(2:end-1,3:end)-phi(2:end-1,1:end-2))/2/dy;

n_x = phix./(sqrt(phix.^2 + phiy.^2) + eps);
n_y = phiy./(sqrt(phix.^2 + phiy.^2) + eps);

for iter = 1:10

phin = phi;

% Runge-Kutta 2
for n = 1:2

f(2:end-1,2:end-1) = phi(2:end-1,2:end-1).*...
(1 - phi(2:end-1,2:end-1)).*n_x;

g(2:end-1,2:end-1) = phi(2:end-1,2:end-1).*...
(1 - phi(2:end-1,2:end-1)).*n_y;

f = bc(f);
g = bc(g);

flux_f = 0.5*(f(1:end-1,2:end-1) + f(2:end,2:end-1)) - ...
epsilon*(phi(2:end,2:end-1) - phi(1:end-1,2:end-1))/dx;

flux_g = 0.5*(g(2:end-1,1:end-1) + g(2:end-1,2:end)) - ...

77

APPENDIX . ALGORITHMS

epsilon*(phi(2:end-1,2:end) - phi(2:end-1,1:end-1))/dy;

phi(2:end-1,2:end-1) += - ((flux_f(2:end,:) - flux_f(1:end-1,:))/dx +...
(flux_g(:,2:end) - flux_g(:,1:end-1))/dy)*dtau;

phi = bc(phi);

endfor

phi = 0.5*(phi + phin);

mask = (abs(phin) < 3*dx);
err = sum(sum(abs(phi - phin).*mask))/sum(sum(mask));
if (err < dx**2*dtau)
break;

endif

endfor

endfunction

Numerical scheme for the resolution of the source term from the source term
method.

function [out] = rhs2_friedrichs(phi,u,v,dx,dy)

nx = size(phi,1);
ny = size(phi,2);
phix = zeros(nx+3,ny-2);
phiy = zeros(nx-2,ny+3);
udx = (u(1:end-2,2:end-1) - u(2:end-1,2:end-1))/dx;
vdy = (v(2:end-1,1:end-2) - v(2:end-1,2:end-1))/dy;
udy = (u(1:end-2,2:end-1) - u(2:end-1,2:end-1))/dy;
vdx = (v(2:end-1,1:end-2) - v(2:end-1,2:end-1))/dx;

phix(3:end-2,:) = diff(phi(:,2:end-1),1,1)/dx;
phiy(:,3:end-2) = diff(phi(2:end-1,:),1,2)/dy;

v1 = phix(1:end-5,:);
v2 = phix(2:end-4,:);
v3 = phix(3:end-3,:);

78

v4 = phix(4:end-2,:);
v5 = phix(5:end-1,:);
v6 = phix(6:end,:);

left_phix = weno5(v1,v2,v3,v4,v5);
rght_phix = weno5(v6,v5,v4,v3,v2);

v1 = phiy(:,1:end-5);
v2 = phiy(:,2:end-4);
v3 = phiy(:,3:end-3);
v4 = phiy(:,4:end-2);
v5 = phiy(:,5:end-1);
v6 = phiy(:,6:end);

left_phiy = weno5(v1,v2,v3,v4,v5);
rght_phiy = weno5(v6,v5,v4,v3,v2);

term1 = udx.*(left_phix + rght_phix)*0.5.*(left_phix + rght_phix)*0.5;
term2 = vdx.*(left_phix + rght_phix)*0.5.*(left_phiy + rght_phiy)*0.5;
term3 = udy.*(left_phiy + rght_phiy)*0.5.*(left_phix + rght_phix)*0.5;
term4 = vdy.*(left_phiy + rght_phiy)*0.5.*(left_phiy + rght_phiy)*0.5;

H = phi(2:end-1,2:end-1).*(term1 + term2 + term3 + term4);

H1a = (2*udx.*left_phix + vdx.*left_phiy + udy.*left_phiy);
H1b = (2*udx.*left_phix + vdx.*rght_phiy + udy.*rght_phiy);
H1c = (2*udx.*rght_phix + vdx.*rght_phiy + udy.*rght_phiy);
H1d = (2*udx.*rght_phix + vdx.*left_phiy + udy.*left_phiy);

H2a = (2*vdy.*left_phiy + vdx.*left_phix + udy.*left_phix);
H2b = (2*vdy.*rght_phiy + vdx.*left_phix + udy.*left_phix);
H2c = (2*vdy.*rght_phiy + vdx.*rght_phix + udy.*rght_phix);
H2d = (2*vdy.*left_phiy + vdx.*rght_phix + udy.*rght_phix);

a = max(max(abs(H1a),abs(H1b)),max(abs(H1c),abs(H1d))).*phi(2:end-1,2:end-1);
b = max(max(abs(H2a),abs(H2b)),max(abs(H2c),abs(H2d))).*phi(2:end-1,2:end-1);

out = H - a.*(rght_phix - left_phix)*0.5 - b.*(rght_phiy - left_phiy)*0.5;

endfunction

79

APPENDIX . ALGORITHMS

Surface tension treatment for the conservative method.

[K(2:end-1,2:end-1), PHIx, PHIy] = curvature(PHI,dx,dy);
FU = 0.5*(K(3:end,2:end-1).*PHIx(3:end,2:end-1) +...

K(2:end-1,2:end-1).*PHIx(2:end-1,2:end-1));
FU = -qWe*FU*(2/(max(max(RHO)) + min(min(RHO))));
FV = 0.5*(K(2:end-1,3:end).*PHIy(2:end-1,3:end) +...

K(2:end-1,2:end-1).*PHIy(2:end-1,2:end-1));
FV = -qWe*FV*(2/(max(max(RHO)) + min(min(RHO))));
FV = - qFr + FV;

function [out,phi_x,phi_y] = curvature_olsson(phi,dx,dy)

nx = size(phi,1);
ny = size(phi,2);
phi_x = zeros(nx,ny);
phi_y = zeros(nx,ny);

phi_x(2:end-1,:) = 0.5*(phi(3:end,:) - phi(1:end-2,:))/dx;
phi_y(:,2:end-1) = 0.5*(phi(:,3:end) - phi(:,1:end-2))/dy;

gradphi = sqrt(phi_x.^2 + phi_y.^2 + eps);

out = 0.5*(phi_x(3:end,2:end-1)./gradphi(3:end,2:end-1) -...
phi_x(1:end-2,2:end-1)./gradphi(1:end-2,2:end-1))/dx +...

0.5*(phi_y(2:end-1,3:end)./gradphi(2:end-1,3:end) -...
phi_y(2:end-1,1:end-2)./gradphi(2:end-1,1:end-2))/dy;

endfunction

80

List of symbols and acronyms

Description Symbol

Greek letters

Phase-field function ϕ

Dominion of the system Ω

Geometric interface Γ

Fictitious time-step τ

Mean curvature κ

Delta function δ

Discrete interval ∆

Finite small thickness ε

Density ρ

Dynamic viscosity µ

Limiter function ψ

Source coefficient λ

Lax-Friedrichs coefficients α, β
Density and viscosity ratio η

81

APPENDIX . ALGORITHMS

Description Acronym

Acronyms

Computational Fluid-Dynamics CFD
Direct Numerical Simulation DNS
Level Set Method LM
Volume Of Fluid VOF
Front Tracking FT
Constrained Interpolation Profile CIP
Total Variation Diminishing TVD
Essentially Non-Oscillatory scheme ENO
Weighted ENO WENO
Right-Hand Side RHS
Ghost Fluid Method GFM
Continuum Surface Force CSF
Navier-Stokes NS

82

Bibliography

[1] David Adalsteinsson and James A Sethian. “A fast level set method for
propagating interfaces”. In: Journal of computational physics 118.2 (1995),
pp. 269–277.

[2] Martino Bardi and Stanley Osher. “The nonconvex multidimensional Rie-
mann problem for Hamilton-Jacobi equations”. In: SIAM Journal on Math-
ematical Analysis 22.2 (1991), pp. 344–351.

[3] Guy Barles, H Mete Soner, and Panagiotis E Souganidis. “Front propaga-
tion and phase field theory”. In: SIAM Journal on Control and Optimization
31.2 (1993), pp. 439–469.

[4] John B Bell, Phillip Colella, and Harland M Glaz. “A second-order projec-
tion method for the incompressible Navier-Stokes equations”. In: Journal
of Computational Physics 85.2 (1989), pp. 257–283.

[5] JU Brackbill, Douglas B Kothe, and C1 Zemach. “A continuum method for
modeling surface tension”. In: Journal of computational physics 100.2 (1992),
pp. 335–354.

[6] Yu-Chung Chang et al. “A level set formulation of Eulerian interface cap-
turing methods for incompressible fluid flows”. In: Journal of computational
Physics 124.2 (1996), pp. 449–464.

[7] Alexandre Joel Chorin. “Numerical solution of the Navier-Stokes equa-
tions”. In: Mathematics of computation 22.104 (1968), pp. 745–762.

[8] Olivier Desjardins, Vincent Moureau, and Heinz Pitsch. “An accurate con-
servative level set/ghost fluid method for simulating turbulent atomiza-
tion”. In: Journal of Computational Physics 227.18 (2008), pp. 8395–8416.

[9] Douglas Enright et al. “A hybrid particle level set method for improved in-
terface capturing”. In: Journal of Computational physics 183.1 (2002), pp. 83–
116.

83

BIBLIOGRAPHY

[10] Ronald P Fedkiw et al. “A non-oscillatory Eulerian approach to interfaces
in multimaterial flows (the ghost fluid method)”. In: Journal of computa-
tional physics 152.2 (1999), pp. 457–492.

[11] Marianne M Francois et al. “A balanced-force algorithm for continuous
and sharp interfacial surface tension models within a volume tracking
framework”. In: Journal of Computational Physics 213.1 (2006), pp. 141–173.

[12] Jose Gomes and Olivier Faugeras. “Reconciling distance functions and
level sets”. In: Biomedical Imaging, 2002. 5th IEEE EMBS International Sum-
mer School on. IEEE. 2002, 15–pp.

[13] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer. Numerical
simulation in fluid dynamics: a practical introduction. Vol. 3. Siam, 1997.

[14] Amiram Harten. “The artificial compression method for computation of
shocks and contact discontinuities. III. Self-adjusting hybrid schemes”. In:
Mathematics of Computation 32.142 (1978), pp. 363–389.

[15] Ami Harten et al. “Uniformly high order accurate essentially non-oscillatory
schemes, III”. In: Journal of computational physics 71.2 (1987), pp. 231–303.

[16] Guang-Shan Jiang and Danping Peng. “Weighted ENO schemes for Hamilton–
Jacobi equations”. In: SIAM Journal on Scientific computing 21.6 (2000), pp. 2126–
2143.

[17] Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. “A boundary con-
dition capturing method for multiphase incompressible flow”. In: Journal
of Scientific Computing 15.3 (2000), pp. 323–360.

[18] Curtis Lee, John Dolbow, and Peter J Mucha. “A narrow-band gradient-
augmented level set method for multiphase incompressible flow”. In: Jour-
nal of Computational Physics 273 (2014), pp. 12–37.

[19] Randall J LeVeque. Finite volume methods for hyperbolic problems. Vol. 31.
Cambridge university press, 2002.

[20] Xu-Dong Liu, Ronald P Fedkiw, and Myungjoo Kang. “A boundary con-
dition capturing method for Poisson’s equation on irregular domains”. In:
Journal of computational Physics 160.1 (2000), pp. 151–178.

[21] Takashi Nakamura et al. “Exactly conservative semi-Lagrangian scheme
for multi-dimensional hyperbolic equations with directional splitting tech-
nique”. In: Journal of Computational Physics 174.1 (2001), pp. 171–207.

[22] Jean-Christophe Nave, Rodolfo Ruben Rosales, and Benjamin Seibold. “A
gradient-augmented level set method with an optimally local, coherent
advection scheme”. In: Journal of Computational Physics 229.10 (2010), pp. 3802–
3827.

84

BIBLIOGRAPHY

[23] Elin Olsson and Gunilla Kreiss. “A conservative level set method for two
phase flow”. In: Journal of computational physics 210.1 (2005), pp. 225–246.

[24] Elin Olsson, Gunilla Kreiss, and Sara Zahedi. “A conservative level set
method for two phase flow II”. In: Journal of Computational Physics 225.1
(2007), pp. 785–807.

[25] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit
surfaces. Vol. 153. Springer Science & Business Media, 2003.

[26] Stanley Osher and Ronald P Fedkiw. “Level set methods: an overview
and some recent results”. In: Journal of Computational physics 169.2 (2001),
pp. 463–502.

[27] Stanley Osher and James A Sethian. “Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations”. In:
Journal of computational physics 79.1 (1988), pp. 12–49.

[28] A Ovsyannikov, V Sabel’nikov, and M Gorokhovski. “A new level set equa-
tion and its numerical assessments”. In: Proceedings of the Summer Program.
2012, p. 315.

[29] Danping Peng et al. “A PDE-based fast local level set method”. In: Journal
of Computational Physics 155.2 (1999), pp. 410–438.

[30] Giovanni Russo and Peter Smereka. “A remark on computing distance
functions”. In: Journal of Computational Physics 163.1 (2000), pp. 51–67.

[31] Vladimir Sabelnikov, Andrey Yu Ovsyannikov, and Mikhael Gorokhovski.
“Modified level set equation and its numerical assessment”. In: Journal of
Computational Physics 278 (2014), pp. 1–30.

[32] Ruben Scardovelli and Stéphane Zaleski. “Direct numerical simulation of
free-surface and interfacial flow”. In: Annual review of fluid mechanics 31.1
(1999), pp. 567–603.

[33] Chi-Wang Shu and Stanley Osher. “Efficient implementation of essentially
non-oscillatory shock-capturing schemes”. In: Journal of Computational Physics
77.2 (1988), pp. 439–471.

[34] Mark Sussman and Emad Fatemi. “An efficient, interface-preserving level
set redistancing algorithm and its application to interfacial incompressible
fluid flow”. In: SIAM Journal on scientific computing 20.4 (1999), pp. 1165–
1191.

[35] Mark Sussman and Elbridge Gerry Puckett. “A coupled level set and volume-
of-fluid method for computing 3D and axisymmetric incompressible two-
phase flows”. In: Journal of Computational Physics 162.2 (2000), pp. 301–337.

85

BIBLIOGRAPHY

[36] Mark Sussman, Peter Smereka, and Stanley Osher. “A level set approach
for computing solutions to incompressible two-phase flow”. In: Journal of
Computational physics 114.1 (1994), pp. 146–159.

[37] Mark Sussman et al. “An improved level set method for incompressible
two-phase flows”. In: Computers & Fluids 27.5 (1998), pp. 663–680.

[38] Hideaki Takewaki and Takashi Yabe. “The cubic-interpolated pseudo par-
ticle (CIP) method: application to nonlinear and multi-dimensional hyper-
bolic equations”. In: Journal of Computational Physics 70.2 (1987), pp. 355–
372.

[39] Grétar Tryggvason, Ruben Scardovelli, and Stéphane Zaleski. Direct nu-
merical simulations of gas–liquid multiphase flows. Cambridge University Press,
2011.

[40] Salih Ozen Unverdi and Grétar Tryggvason. “A front-tracking method
for viscous, incompressible, multi-fluid flows”. In: Journal of computational
physics 100.1 (1992), pp. 25–37.

[41] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to
computational fluid dynamics: the finite volume method. Pearson Education,
2007.

[42] TAKASHI Yabe and T Aoki. “A universal solver for hyperbolic equations
by cubic-polynomial interpolation I. One-dimensional solver”. In: Com-
puter Physics Communications 66.2 (1991), pp. 219–232.

86

	Introduction
	Multiphase simulation and recent developments
	Objectives and contributions of the thesis

	Level Set Method
	Implicit Functions
	Signed distance functions
	Level Set formulation
	Reinitialization equation
	Geometric tools
	Error estimation

	Numerical methods
	Grid discretization
	Finite difference discretization
	Forward, backward and centered difference
	Upwind method
	Total Variation Diminishing methods: TVD
	Weighted ENO scheme: WENO 5 scheme

	Capturing and calculation of the interface
	Original method: the standard approach
	First method: Re-distancing operator
	Second method: source term embedded
	Third method: conservative phase-field method

	Navier-Stokes equations
	Momentum and mass equations
	Surface tension
	Numerical solution of the N-S equations

	Advection of the LS function: results
	Circular disk rotation
	Zalesak's disk rotation
	Vortex test

	Results on a falling droplet
	Chosen scenario and physical framework
	Surface tension treatment
	Results

	Conclusions
	Summary
	Future works

	Appendices
	Algorithms

