
POLITECNICO DI MILANO
Facoltà di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria dell’Automazione

Solutions for Model Predictive Control of Large-Scale

Cascade Systems with Application to Irrigation Networks

Relatore: Prof. Marcello Farina

Correlatore: Prof. Michael Cantoni

Tesi di Laurea di:

Marco Ettore Fasani

Matr. n. 800444

Gabriele Maronati

Matr. n. 796575

Anno Accademico 2014-2015

Acknowledgments

This Thesis was developed in collaboration with the University of Melbourne.

Special thanks to Prof. Marcello Farina and Prof. Michael Cantoni whose ex-

pertise and kindness made our work possible.

Finally, we would like to thank Prof. Eric C Kerrigan, Farhad Farokhi and

Amir R Neshastehriz for their invaluable advice given during our stay in Mel-

bourne.

Contents

List of Figures 7

Abstract 11

Sommario 13

1 Introduction 17

1.1 Motivations and Context . 18

1.2 Control Architectures . 21

1.3 Thesis Contributions . 23

1.4 Structure of the Thesis . 23

2 Large-scale and structured systems. MPC control 27

2.1 Systems and Modelling . 28

2.2 Model Predictive Control . 29

2.3 Formalization of the Optimization Problem 33

2.3.1 Space-LBT Formulation 34

2.3.2 Time-LBT Formulation 36

3 The irrigation channel case study 41

3.1 Modelization . 42

3.1.1 First-order Model of Each Pool 42

3.1.2 Water-Level Regulation 43

3.1.3 State Space Representation 46

3.2 High-Level Controller . 48

3.3 Model Parameters and Limitations 49

4 Cooperative Distributed MPC 51

4.1 Modelization . 52

4.1.1 Standard Model for Cooperative Distributed MPC 52

4.1.2 Low Order Model . 54

4.2 The Cooperative Distributed MPC Control Scheme 55

4.2.1 Constraints on Inputs and State Variables 56

4.2.2 Optimization Problem 56

4.2.3 Design Parameters . 58

5 Numerical methods for MPC optimization problems 61

5.1 MPC Problem and Quadratic Programming 62

5.2 Interior Point Methods (IPM) 64

5.2.1 Mehrotra’s Predictor Corrector Algorithm 66

5.2.2 Convergence Analysis . 69

5.2.3 Complexity and Separability 70

6 Proposed solvers for LBT systems 73

6.1 Space-LBT Solver . 74

6.1.1 KKT Conditions . 75

6.1.2 Solver . 77

6.1.3 Complexity . 89

6.2 Time-LBT Solver . 92

6.2.1 KKT Conditions . 93

6.2.2 Solver . 94

6.2.3 Complexity . 103

6.3 Concluding Remarks . 105

7 Simulations 107

7.1 Application of Cooperative Distributed MPC 108

7.1.1 Design Parameters . 108

7.1.2 Performances Achieved with the Two Models 109

7.1.3 State constraints . 111

7.2 Computational Analysis . 111

7.2.1 Proposed Algorithm Analysis 111

7.2.2 Comparison: Cooperative and LBT Solvers 118

7.3 Closed-loop Simulations . 120

8 Conclusions and Future Work 123

Bibliography 125

List of Figures

1 Canale d’irrigazione . 13

2 Architetture di controllo . 15

1.1 Irrigation Channel: focus on a gate 18

1.2 FlumeGateTM . 19

1.3 Irrigation network . 20

1.4 Control architectures . 22

2.1 Coupling in a cascade system 29

3.1 Pool: measurement and control action 43

3.2 Distant-downstream decentralized control scheme 44

3.3 Low level and high level MPC controllers 48

5.1 Convergence of the solution . 70

6.1 Affine and Centering steps . 87

6.2 Multistaged structures . 105

7.1 Comparison between standard and low order cooperative models 110

7.2 Convergence of the solution: Space-LBT 112

7.3 Convergence of the solution: Time-LBT 112

7.4 Stopping condition . 113

7.5 Optimal trajectories of the water-level references 114

7.6 Complexity varying T . 115

7.7 Complexity varying N . 116

7.8 3D representation of the complexity varying N and T simulta-

neously . 117

7.9 Computational time: Cooperative and LBT Solvers 119

7.10 Closed loop trajectories: constraints on input variables 121

7.11 Closed loop trajectories: constraints on state variables 121

Abstract

Nowadays, the modelization and control of large-scale systems of increasing size

and complexity is one of the most challenging objectives in the Automation

field. The aim of this Thesis is to provide and develop efficient algorithms

in the context of a large-scale cascade systems for the application of Model

Predictive Control (MPC) techniques. In particular, such algorithms will be

applied to an irrigation network.

Two different approaches will be investigated and compared in this Thesis.

First, a distributed cooperative MPC strategy will be studied where each con-

troller exchanges information with the others, and where the computational

effort required to local computing units is limited.

Secondly, two different centralized MPC formulations will be analyzed

stemming from the system block triangular structure. Two solvers will be

developed and implemented through the application of numerical methods.

This will allow for an efficient solution to the optimization problem arising

from the application of the MPC control strategy.

Eventually, simulation tests have been carried out to test and compare the

two approaches.

Sommario

Oggigiorno, la modellizzazione ed il controllo dei sistemi a larga scala, con

crescente complessità e dimensioni è una tematica di particolare interesse nel

campo dell’Automazione. In questa Tesi ci siamo preposti di sviluppare algo-

ritmi efficienti nel contesto del Model Predictive Control (MPC) applicato a

sistemi su larga scala con struttura a cascata.

La scelta di studiare algoritmi di controllo per sistemi a larga scala con

struttura a cascata è motivata, ad esempio, dal problema di controllare in modo

efficace ed affidabile i canali d’irrigazione. Il caso da studiare scelto in questa

Tesi è pertanto relativo a questo problema di controllo. Più nello specifico,

Figure 1: Canale d’irrigazione

l’esempio che sarà usato è un esempio realistico, relativo al distretto idrico

di Goulburn Murray situato nello stato meridionale del Victoria, in Australia

(vedi Figura 1). Questo distretto copre approssimativamente una superficie di

68000 kilometri quadrati servendo oltre 15000 aziende agricole. Le operazioni

manuali sui canali di irrigazione portano ad uno spreco di acqua durante il suo

trasporto lungo la rete del 30-40 %. L’automazione di tali infrastrutture porta

ad una gestione più consapevole delle risorse idriche con un efficienza che può

arrivare fino all’ 85%. Il controllo e la gestione di tali vaste strutture è quindi

giustificato, tuttavia la sua realizzazione risulta complicata.

In questa Tesi verranno studiati due approcci per la soluzione del problema

di controllo di sistemi a larga scala basato su MPC (vedi Figura 2). In primo

luogo verrà considerato un approccio cooperativo distribuito MPC, dove tutti

i controllori sono abilitati allo scambio di informazioni e alla soluzione di prob-

lemi locali di controllo. Tale tecnica viene studiata in quanto risulta essere

particolarmente favorevole nella gestione dello sforzo computazionale.

Inoltre, verrà affrontato il problema della riduzione del carico computazionale

legato alla soluzione del problema MPC centralizzato. In particolare verranno

formalizzate due diverse modellizzazioni del sistema che mostreranno una strut-

tura triangolare a blocchi. Alla luce di ciò, verranno sviluppati e implemen-

tati due risolutori, che fanno uso di metodi numerici, in grado di risolvere

in maniera efficiente il problema di ottimizzazione derivante dal problema di

controllo MPC.

Infine verranno mostrate delle simulazioni riguardanti l’applicazione degli

algoritmi citati. Focalizzandoci sull’approccio distribuito, i risultati mostrano

migliori prestazioni relativamente al tempo impiegato per calcolare la soluzione

ottima. Ciò è dovuto all’intrinseca capacità di tale strategia nel distribuire

l’onere computazionale sui diversi sottosistemi. Tuttavia si incontreranno delle

limitazioni operative dovuto al fatto che tale tecnica di controllo non permette

l’implementazione di vincoli stringenti sulle variabili di stato. Successivamente

verranno analizzati i risultati ottenuti dai controllori centralizzati, eviden-

ziando come le loro prestazioni dipendano fortemente dalla scelta dell’orizzonte

di predizione e dal numero di sottosistemi che compongono l’intero canale.

(i-1)-th
process

i-th
process

(i+1)-th
process

Centralized controller

High-level MPC reference planner

Large-scale cascade system

(a) Schema centralizzato

(i-1)-th
process

(i-1)-th
controller

i-th
controller

(i+1)-th
controller

i-th
process

(i+1)-th
process

High-level MPC reference planner

Large-scale cascade system

(b) Schema distribuito

Figure 2: Architetture di controllo

16

Chapter 1

Introduction

The aim of this chapter is to provide an overview of the problems addressed in

this Thesis. First, large-scale systems are introduced with particular focus on

irrigation networks. Afterwards, advanced control strategies to control such

systems are discussed, highlighting our original contributions. Eventually, the

structure of the Thesis is described.

18 Introduction

1.1 Motivations and Context

The research in the Automation and Control field has focused, classically, on

the development of design and analysis methods for control and estimation of

dynamical systems, with special focus on centralized procedures. More specif-

ically, the focus has been mostly on the overall model of the system to be

controlled, regardless of its size and of its internal structure. Indeed, central-

ized estimation and control methods suffer from the curse of dimensionality.

More specifically, as the system size grows, design procedures and online imple-

mentation requirements can prevent many control and estimation algorithms

from application.

These limitations have pushed research on the so-called large-scale systems

(LSS). Typical examples of large-scale systems include large infrastructures,

e.g. transportation, water, and power networks. They can be typically re-

garded as networks of interconnected systems, which exchange data, material

Figure 1.1: Irrigation Channel: focus on a gate

1.1. Motivations and Context 19

or energy. In view of this, they are characterized by peculiar structures, which

must be specifically accounted for in an efficient way. In particular, we will

focus on large-scale systems with a cascade structure, e.g. irrigation channel.

Irrigation Networks

Irrigation channel networks are large infrastructures that transfer water from

sources (e.g. lakes or reservoirs) to farms under the power of gravity for agri-

cultural activities. In particular, the Golburn-Murray irrigation district is

considered in this Thesis (see Figure 1.1). It is located in Australia and it

consists of 7000 Kilometers of channels, around 17000 regulators and 21000

farm outlets.

Manual operation currently used to handle the water requests of the farmers

typically leads to 30 − 40% waste of water along all the irrigation channels.

The research on sensors, actuators and advanced control strategies has the aim

to improve the efficiency of the water distribution. When fully implemented, it

has been estimated that an automation scheme can improve water distribution

efficiency up to 85%, [1].

Figure 1.2: FlumeGateTM

20 Introduction

In order to regulate the water-flow from the reservoir to the end of the

channel, gates are installed along the network. In Figure 1.2, a FlumeGateTM

is shown: basically it is a weir aiming to automatically control the flow of

water by varying its position based on a desired set-point (e.g., water-level,

flow-rate). The stretch of water between two consecutive gates is called pool.

The open-water channel may be regarded as a series of pools interconnected

by gates. Pools or channels can vary in length, from several kilometers down

to hundreds of meters. Moreover, off-take points to the farms and secondary

channels are placed along the pools, as shown in Figure 1.3.

At each gate, measurement and control are locally performed and data

are transmitted to the operation center by means of radio telecommunica-

tions. Typically, the regulation of the water-level is performed by acting on

the water-flow through the opening of the gate, with a feedback controller.

Due to the slow dynamics of the water-flow and to the wide dimensions of

the pools, such feedback control introduces delays in the channel dynamics,

limiting the achievable dynamic performances. Moreover, the violation of op-

erational limitations can occur as a result of the implementation of the local

Primary
channel

Secondary
channel

Reservoir

Off-take

Gate

Farm

Figure 1.3: Irrigation network

1.2. Control Architectures 21

feedback controllers. This can lead to actuator saturation, flooding, or water-

levels falling below a low limit (i.e., provision of insufficient flow).

In order to limit the wastage of water and to guarantee the necessary supply

for all the farmers’ demand, a high level controller working on the adjustment of

the water-level references for each pool is usually implemented. For this reason,

in this Thesis, the inputs to each pool correspond to water-level references, as

more thoroughly discussed in Chapter 3.

1.2 Control Architectures

In this section we will introduce the main features of the advanced control

strategies investigated in the Thesis. In particular, the computational issues

arising in the implementation of a Model Predictive Control scheme to a large-

scale cascade system will be highlighted and, distributed and centralized im-

plementations will be discussed.

Centralized MPC

The main idea of a centralized control strategy is to design a regulator which

can account for the plantwide interactions, performing a control action for the

whole system by accounting for the complete model (see Figure 1.4a). Re-

garding the irrigation networks case of study, this lead to a unique reference

planner for all the pools. However, due to the big amount of data to man-

age by the unique controller, one may address the control problem with either

different solutions (e.g., decentralized, distributed) or using efficient numerical

solvers. The latter will be considered in order to develop centralized algo-

rithms. Indeed, increased computational power, faster optimization software,

and algorithms designed specifically for large-scale systems, can make central-

ized control more practical.

22 Introduction

(i-1)-th
process

i-th
process

(i+1)-th
process

Centralized controller

High-level MPC reference planner

Large-scale cascade system

(a) Centralized scheme

(i-1)-th
process

(i-1)-th
controller

i-th
controller

(i+1)-th
controller

i-th
process

(i+1)-th
process

High-level MPC reference planner

Large-scale cascade system

(b) Distributed scheme

Figure 1.4: Control architectures

1.3. Thesis Contributions 23

Distributed cooperative MPC

A distributed approach is considered in order to divide the system-wide control

problem into simpler problems with reduced computational complexity. The

network interactions are explicitly modelled, and information is exchanged

among local controllers (see Figure 1.4b). In particular, a cooperative algo-

rithm will be considered. Basically it requires each subsystem to take into

account the effect of local control actions on other subsystems in the network,

whereas a global objective function has to be minimized by each controller.

1.3 Thesis Contributions

The problem of reducing the computational effort required by the applica-

tion of MPC schemes to large-scale systems (with special focus on irrigation

networks) has been already addressed in the past, showing that many im-

provements can be made by taking advantage of the sparse structure of the

systems considered (i.e., large-scale cascade systems). The main source of

inspiration for our work is [2]. In this paper a peculiar method of solving

quadratic programming problems is presented. Using [2] as a starting point,

in this Thesis we have modified the original optimization problem in order to

improve the computational efficiency of the solution. After, we focused on an

alternative and original formulation which yield to a different solution to the

same optimization problem, relying on a different problem formulation. As it

will be thoroughly discussed, this contribution lend itself to the application

for a system very large in scale, where a classic centralized approach would be

impractical.

1.4 Structure of the Thesis

This Thesis is structured as follows:

• In Chapter 2 a modelization of each subsystem composing the LSS is

24 Introduction

carried out, with a particular focus on systems with a cascade structure.

Furthermore, the Model Predictive Control technique is introduced and

the properties of stability and recursive feasibility are analyzed. After,

the optimization problem is formulated according to two different model

formulations.

• In Chapter 3 the irrigation channel case of study is introduced. More

specifically, a continuous-time state-space representation of a pool con-

trolled with its local decentralized regulator is derived and then dis-

cretized. Also, its inclusion in a system-wide control scheme is briefly

discussed.

• In Chapter 4 the distributed MPC control strategy is introduced. A

cooperative algorithm from the literature is studied. Algorithmic details

are discussed.

• In Chapter 5 numerical methods for the solution to a centralized control

algorithm are introduced. First, it is shown how an MPC optimiza-

tion problem can be translated into a sequence of quadratic programs.

Then, the Interior Point Methods are introduced, leading to a particular

procedure which will be employed in the sequel. A brief computational

analysis of such methods is eventually carried out.

• In Chapter 6 two solvers which take advantage of the particular system

structure are presented and illustrated in detail. The goal of both solvers

is to simplify the computational effort. Therefore, computational aspects

are regarded and the two algorithms are compared together.

• In Chapter 7 simulation tests on a realistic benchmark of the algorithms

presented in Chapter 4 and in Chapter 6 are shown, in order to com-

pare computational performances. Eventually, closed loop simulations

are illustrated.

1.4. Structure of the Thesis 25

• In Chapter 8 conclusions are drawn , and possible future developments

are envisaged.

Chapter 2

Large-scale and structured

systems. MPC control

The main difficulty that occur when dealing with large-scale system is related

to the great demand of computational resources. However, the large-scale sys-

tems considered in this Thesis have a cascade structure which, regarding the

application of a MPC control strategy, may be taken into account for in an effi-

cient way. In this respect, two different model formulations can be considered,

leading to two different representations of the same control problem.

28 Large-scale and structured systems. MPC control

2.1 Systems and Modelling

Let us consider a set of N interconnected subsystems, each characterized by

the internal state and input vectors xi(k) ∈ Rni and ui(k) ∈ Rmi , respectively,

with i ∈ V = {1, . . . , N}. Focusing on linear time-invariant discrete-time

systems, for each i ∈ V , the dynamics of xi is described as follows

xi(k + 1) = Aixi(k) +Biui(k) + Fivi(k) (2.1)

where Ai ∈ Rni×ni and Bi ∈ Rni×mi represent the effect of local variables on

the evolution of the internal state. The term vi(k) ∈ Rsi has been introduced

to account for the influence of the variables of other subsystems on xi(k). More

specifically, for each i ∈ V , we define a set Wi as follows:

Wi = {j 6= i|xj(k) or uj(k) have a direct influence on the evolution of xi(k+1)}

In particular we can define the coupling variable vi(k) as a linear combina-

tion of internal variables of neighbour subsystems, i.e., as discussed in [3],

vi(k) =
∑
j∈Wi

Kijuj(k) +
∑
j∈Wi

Hijxj(k) (2.2)

where the interconnection matrices Kij and Hij have appropriate dimensions.

In this work we focus on cascade systems, in view of their wide-spread dif-

fusion in the context of large-scale irrigation networks. The class of cascade

systems is a subclass of system modelled using (2.1)-(2.2). More specifically,

in this case, it is set Wi = {i + 1} for all i = 1, . . . , N − 1 while WN = ∅

or equivalently, Wi = {i − 1} for all i = 2, . . . , N while W1 = ∅. Clearly

this means that the dynamics of the state of the i -th subsystem is directly

affected just by the internal state of either the upstream (Figure 2.1a) or the

downstream one (Figure 2.1b). Note that the terms upstream and downstream

have a specific reference to the definition of the set V . This, possibly, implies

a preliminary permutation of the subsystems order, highlighting the peculiar

cascaded structure.

Another system assumption adopted in this Thesis isKij = 0 for all i, j ∈ V

with i 6= j meaning that interconnections are through states variables (i.e.,

2.2. Model Predictive Control 29

ii+1 i-1

(a) Coupling with the downstream subsystem: Wi = {i− 1}

ii+1 i-1

(b) Coupling with the upstream subsystem: Wi = {i+ 1}

Figure 2.1: Coupling in a cascade system

systems are state-coupled but input-decoupled). Remark that this may be

regarded as a strong assumption. However it applies to several case of studies

(among which the irrigation channel described in Chapter 3). Also, with a

suitable reformulation of the state variables, all types of couplings can be

given this form.

In view of the discussion above, the system form used in the sequel is

xi(k + 1) = Aixi(k) +Biui(k) + Eixj(k) (2.3)

where Ei = FiHij and, up to a suitable subsystem permutation, we have the

following two equivalent cases:

• j = i− 1 , Ei 6= 0 ∀ i = 2, . . . , N while E1 = 0

• j = i+ 1 , Ei 6= 0 ∀ i = 1, . . . , N − 1 while EN = 0

2.2 Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy that has been

widely adopted in the industrial process control community and implemented

successfully in many industrial applications since 1980s.

The control problem is formulated as an optimization one, where con-

straints on input and state variables can be accounted for explicitly.

30 Large-scale and structured systems. MPC control

More specifically, the aim of the MPC technique is to find the sequence of

optimal control inputs by explicitly minimizing, at each time instant, a cost

function calculated through the prediction of the behaviour of the system. Such

prediction is attained through the model of the system and the measurement

of the current state. The optimal control law is implemented until another

state measurement is available, then the updated variables of the system are

used to formulate the new optimization problem for the next iteration step.

This characterizes the so-called receding horizon approach.

The application of the MPC control strategy to a large-scale system (LSS)

requires a demanding computational effort, limiting the use of these kinds of

controllers to processes with relatively slow dynamics or small-scale models.

Moreover, the presence of constraints on inputs and states further complicate

the optimization problem. This pushes research on efficient numerical methods

and on distributed/hierarchical architectures.

Model Predictive Control for unstructured linear systems

Let us consider a discrete-time linear time-invariant system (LTI)

x(k + 1) = Ax(k) +Bu(k) (2.4)

where the state vector x ∈ Rn is measurable and u ∈ Rm is the control vector.

We also consider a set of linear inequality constraints on input and state

variables in order to represent physical limitations on a real system such as

actuator’s saturations. In particular they can be expressed by:

x(k) ∈ X, u(k) ∈ U (2.5)

where X and U are polytopic compact convex sets that include the origin in

their interior.

The main rationale of MPC is the following. At time instant t the MPC

controller determines the optimal control sequence uo(t), uo(t + 1), . . . , uo(t +

T − 1) along a fixed horizon of lenght T , minimizing a suitable cost function.

2.2. Model Predictive Control 31

Then, only the first input uo(t) is implemented on the system at time t and

all the other elements of the optimal control vector are discarded. After the

subsequent time step t + 1, the same procedure is carried out considering the

shifted time horizon t+ 1, · · · , t+ T and using the new measurement x(t+ 1)

of the internal state of the system. Then, only the first element of the new

optimal inputs vector sequence, i.e. uo(t+ 1), will be applied. This technique

defines the so-called Receding Horizon principle and leads to an implicit time

invariant control law that, as shown in [4] for example, can be expressed by

u = κRH(x) (2.6)

Typically the cost function is a quadratic function of type

J
(
{x(k)}Tk=0, {u(k)}T−1

k=0

)
=

T−1∑
k=0

(
||x(k)||2Q + ||u(k)||2R

)
+ Vf

(
x(T)

)
(2.7)

where the weight matrices Q = QT � 0, R = RT � 0, have appropriate

dimensions and the term Vf
(
x(k+T)

)
is the positive definite terminal weight.

x(0) is considered to be equal to the state measurement taken at the current

time instant t.

The resulting optimization problem consists in the minimization of the

objective function (2.7) subject to a set of equality constraints expressed by

(2.4) and inequality constraints (2.5) for k = 0, · · · , T − 1. More specifically,

the equality constraints represent the dynamic of the linear system predicted

along the horizon of length T and the inequality constraints may be introduced

in order to consider limitations acting on the dynamic system.

Recursive feasibility

Before proving stability, one needs to establish recursive feasibility for the MPC

problem. More specifically, for all feasible initial state conditions, feasibility

must be guaranteed at every future time step. In other words, let assume fea-

sibility for the optimization problem (i.e., existence of a solution) at a generic

time instant t, recursive feasibility guarantees the existence of a feasible so-

lution to the optimization problem at time step t + 1. This may be achieved

32 Large-scale and structured systems. MPC control

by enforcing, in the optimization problem defined in the previous section, a

suitable terminal set constraint of type

x(T) ∈ Xf .

To properly define the set Xf we need the following definition.

Definition 2.1. A set Υ is said to be positively invariant for the autonomous

system x(k + 1) = f
(
x(k)

)
if the following condition holds:

x(k) ∈ Υ⇒ x(k) ∈ Υ, ∀k ≥ k

�

Let us define the auxiliary control law

u(k) = κaux
(
x(k)

)
such that the equilibrium x = 0 is asymptotically stable for the system

x(k + 1) = Ax(k) +Bκaux
(
x(k)

)
, (2.8)

the set Xf ⊆ X a positive invariant set containing the origin, such that, con-

sidering the closed loop system (2.8) for all the states x belonging to Xf at

time k results

x(k) ∈ Xf , k ≥ k (2.9a)

u(k) = κaux
(
x(k)

)
∈ U, k ≥ k (2.9b)

This means that starting from an initial state x(k) ∈ Xf and applying the

auxiliary control law, the states remain into Xf and the constraints (2.5) on

states and inputs are satisfied.

Stability

Let us introduce the conditions needed to obtain a control law, through MPC

and the RH principle, which guarantees stability for the closed loop system for

linear discrete time systems in the form (2.4) subject to constraints (2.5).

2.3. Formalization of the Optimization Problem 33

The terminal weight must chosen so that ∀x(k) ∈ Xf

Vf

(
Ax(k) +Bκaux

(
x(k)

))
− Vf

(
x(k)

)
+
(
||x(k)||2Q + ||κaux

(
x(k)

)
||2R
)
≤ 0,

(2.10)

If (2.10) is verified the stability of the closed loop system is ensured with a

control law expressed by (2.6). In particular, looking at (2.10), we note that,

to ensure the stability, the terminal weight has to be a Lyapunov function for

the controlled system.

Typical choices of κaux and Vf , in the linear framework, are:

• κaux(x) = Kx, where K is selected to guarantee that A + BK is Schur

stable, i.e. that the eigenvalues of A+BK lie in the interior of the unit

circle. Typical design tools are pole placement and LQ control.

• Vf is selected as follows

Vf (x) = ||x||2
Q

(2.11)

where Q satisfies the Lyapunov inequality (A+BK)>Q(A+BK)−Q ≤

−(Q+K>RK)

2.3 Formalization of the Optimization Problem

The computational burden that MPC control imposes mostly depends on the

way the control problem is formulated as an optimization one. In fact, as seen

in the previous section, the finite-horizon constrained problem consists of min-

imizing a certain objective function subject to constraints and this operation

may be not trivial. Specifically, in a large-scale context, it is worth considering

the structure of the system in order to possibly take advantage of it.

In this section we will present two different formulations for the optimiza-

tion problem which will be further considered in Chapter 6. Both the rep-

resentations will have a lower block-triangular structure (LBT) as shown in

[5].

34 Large-scale and structured systems. MPC control

2.3.1 Space-LBT Formulation

Consider the expression (2.3) which represents the dynamics of the i -th subsys-

tem. More specifically, here we consider the case where subsystem i is coupled

with subsystem i− 1, for all i > 1, i.e.

xi(k + 1) = Aixi(k) +Biui(k) + Eixi−1(k), while E1 = 0 (2.12)

If we stack all together the variables across the spatial coordinate it is possible

to obtain such structure:



x1(k + 1)

x2(k + 1)

x3(k + 1)
...

xN(k + 1)


=



A1 0 · · · · · · 0

E2 A2
.

0 E3 A3
.

... 0

0 · · · 0 EN AN





x1(k)

x2(k)

x3(k)
...

xN(k)


+



B1 0 · · · · · · 0

0 B2
.

... . . . B3
.

... 0

0 · · · · · · 0 BN





u1(k)

u2(k)

u3(k)
...

uN(k)


(2.13)

Rewriting this equation in a compact form we obtain:

X(k + 1) = AX(k) +BU(k) (2.14)

Where X(k) ∈ Rn, U(k) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m, with n =
∑N

i=1 ni

and m =
∑N

i=1mi. Note that in the case the coupling is with the upstream

subsystem, the structure will remain the same but the matrix A would be

upper-triangular.

As discussed in Section 2.2, a set of inequalities describe physical/operational

limitations on the system’s (both state and input) variables i.e.,

Cixi(k) ≤ ci Diui(k) ≤ di (2.15)

i = 1, . . . , N k = 0, . . . , T − 1

2.3. Formalization of the Optimization Problem 35

where Ci ∈ Rqi×ni , Di ∈ Rhi×mi , ci ∈ Rqi and di ∈ Rhi . qi and hi are the

number of inequality constraints on states and inputs, respectively, for each

subsystem. According to the particular arrangement of the variables, an ade-

quate compact expression for the inequality constraints can be derived for the

Space-LBT system, that is:

CX(k) +DU(k) ≤ δ (2.16)

In particular, the matrices C, D and the vector δ have the following structure:

C =



C1 0 · · · 0

0 C2
.

... 0

0 · · · 0 CN

0 · · · · · · 0
... 0

...
...

0 · · · · · · 0



D =



0 · · · · · · 0
... 0

...
...

0 · · · · · · 0

D1 0 · · · 0

0 D2
.

... 0

0 · · · 0 DN



δ =



c1

c2
...

cN

d1

d2
...

dN



(2.17)

where C ∈ R(q+h)×n and D ∈ R(q+h)×m. Note that C and D have the same

number of rows, that is q + h where q =
∑N

i=1 qi and h =
∑N

i=1 hi. We call

nin = q + h the total number of inequality constraints for the generic time

instant k. Note that matrices Ci, Di and vectors ci and di are assumed to be

time invariant.

Similarly to (2.7),the objective function takes the following form:

J
(
{X(k)}Tk=0, {U(k)}T−1

k=0

)
=

T−1∑
k=0

(
||X(k)||2Q) + ||U(k)||2R

)
+ ||X(T)||2

Q
(2.18)

In case the weight matrices are block-diagonal

Q =


Q1

. . .

QN

 R =


R1

. . .

RN

 Q =


Q1

. . .

QN


where Qi ∈ Rni×ni , Ri ∈ Rmi×mi and Qi ∈ Rni×ni , the cost function is formally

separable with respect to the single subsystems. Therefore, it can be written

36 Large-scale and structured systems. MPC control

as

J =
N∑
i=1

Ji
(
{xi(k)}Tk=0, {ui(k)}T−1

k=0

)
(2.19)

where

Ji =
T−1∑
k=0

(
||xi(k)||2Q + ||ui(k)||2R

)
+ Vf

(
xi(T)

)
As discussed in Section 2.2, the MPC problem can be written as a standard

quadratic programming where the minimization of the cost function (2.18), has

to be performed with respect to the constraints related to the dynamics of the

system (2.14) and to the inequality constraints (2.16), [4].

min
X(k),U(k)

J
(
{X(k)}Tk=0, {U(k)}T−1

k=0

)
subject to X(0) = X̂ (2.20)

X(k + 1) = AX(k) +BU(k) k = 0, · · · , T − 1

CX(k) +DU(k) ≤ δ k = 0, · · · , T − 1

CfX(T) ≤ δf

where Cf and δf are the matrices associated to the terminal constraint.

2.3.2 Time-LBT Formulation

In this section we introduce a similar equivalent formulation, based on the

reordering of the variables according to the time coordinate rather than the

spatial one. For further explanations, one may refer to [3] and [6].

In particular, considering the i-th subsystem and stacking the expression

(2.12) for each time instant k = 0, . . . , T , the following system of equation is

obtained:



xi(t) = x̂i

xi(t+ 1) = Aixi(t) +Biui(t) + Eixi−1(t)

xi(t+ 2) = Aixi(t+ 1) +Biui(t+ 1) + Eixi−1(t+ 1)

...

2.3. Formalization of the Optimization Problem 37

By substituting at first the expression of xi(t+1) into xi(t+2), the following

equation holds:

xi(t+ 2) = A2
ixi(t) + AiBiui(t) +Biui(t+ 1) + AiEixi−1(t) + Eixi−1(t+ 1)

and with the same procedure, recursively, we obtain

xi(t+ k) = Aki xi(t) +
k−1∑
j=0

Ak−1−j
i Biui(t+ j) +

k−1∑
j=0

Ak−1−j
i Eixi−1(t+ j)

Basically, the state variables are expressed as a function of the current state

xi(t), input sequences {ui(k)}t+T−1
k=t , and the sequence {xi−1(j)}t+k−1

j=t .

Fixing for semplicity of notation the current instant t = 0, it is possible

now to write the matrix representation for the Time-LBT formulation and the

result is this expression for the dynamics of the system:

xi(0)

xi(1)

xi(2)
...

xi(T)


=



I

Ai

A2
i

...

ATi


xi(0) +



0 · · · · · · 0

Bi 0
...

AiBi Bi
.

... . . . 0

AT−1
i Bi · · · · · · Bi





ui(0)

ui(1)

ui(2)
...

ui(T − 1)


+



0 · · · · · · 0 0

Ei 0
...

...

AiEi Ei
.

...
... . . . 0

...

AT−1
i Ei · · · · · · Ei 0





xi−1(0)

xi−1(1)

xi−1(2)
...

xi−1(T)


(2.21)

In a compact form, the following equation is obtained for each subsystem:

Xi = Γixi(0) + ΩiUi + ΨiXi−1 (2.22)

where

Xi =



xi(0)

xi(1)

xi(2)
...

xi(T)


∈ Rpi Ui =



ui(0)

ui(1)

ui(2)
...

ui(T − 1)


∈ Rli

38 Large-scale and structured systems. MPC control

and Γi ∈ Rpi×ni , Ωi ∈ Rpi×li and Ψi ∈ Rpi×pi−1 , with pi =
∑T

k=0 ni = (T + 1)ni

and li =
∑T−1

k=0 mi = Tmi.

Due to the new arrangement of the variables, the inequality constraints have

to be written consistently with the Time-LBT formulation. Once the stacked

vectors Xi and Ui are defined, with some manipulations the expressions (2.15)

becomes:

CiXi +DiUi ≤ δi (2.23)

In particular, Ci, Di and δi take the following form:

Ci =



Ci 0 · · · 0 0

0 Ci
.

...
... 0

...

0 0 · · · Ci 0

0 · · · · · · 0 0
... 0

...
...

...
...

0 · · · · · · 0 0



Di =



0 · · · · · · 0
... 0

...
...

0 · · · · · · 0

Di 0 · · · 0

0 Di
.

... 0

0 · · · 0 Di



δi =



ci

ci
...

ci

di

di
...

di



(2.24)

where Ci ∈ R(αi+βi)×pi , Di ∈ R(αi+βi)×li and δi ∈ R(αi+βi). αi = Tqi and

βi = Thi are the total number of inequality constraints on states and inputs

respectively of the i-th subsystem along the prediction horizon. We call γi =

αi+βi the total number of inequality constraint for the i-th subsystem. Unlike

the Space-LBT formulation, where the number of inequality constraints was

the same at every time instant, according to this specific formulation, it varies

and thus the use of the subscript i to the dimensions α, β and γ is justified.

Notice that, for each subsystem, all the states are constrained except for the

states related to the last time instant, as will be discussed in the following.

Similarly as done with the Time-LBT formulation, the quadratic cost func-

tion (2.19) can be separeted into its terms defining the matrices Qi and Ri

2.3. Formalization of the Optimization Problem 39

as

Qi =


Qi

. . .

Qi

Qi

 Ri =


Ri

. . .

Ri


Note that is possible to formulate the cost function and it is:

J
(
{Xi}Ni=1, {Ui}Ni=1

)
=

N∑
i=1

(
||Xi||2Qi

+ ||Ui||2Ri

)
(2.25)

The system-wide optimization problem is:

min
Xi,Ui

J
(
{Xi}Ni=1, {Ui}Ni=1

)
subject to xi(0) = x̂i i = 1, · · · , N (2.26)

Xi = Γxi(0) + ΩUi + ΨXi−1 i = 1, · · · , N

CiXi +DiUi ≤ δi i = 1, · · · , N

Note that the terminal constraints on state variables are included in CiXi,

since Xi contains the term xi(T). We remind that such formalization can be

obtained granted that the terminal set is rectangular i.e.,

X(T) ∈ Xf =
N∏
i=1

X(i)
f ⇐⇒ xi(T) ∈ X(i)

f ∀i

where
N∏
i=1

X(i)
f = X(1)

f × · · · × X(N)
f

and × is the Cartesian product.

For LBT systems, it is always possible to compute terminal sets of this

type. However, for simplicity, in the algorithms presented in the following

terminal constraints on state variables will not be considered.

Chapter 3

The irrigation channel case study

The algorithms proposed in this Thesis are applied to irrigation channel net-

works. As introduced in Section 1.1, the pools composing the whole channel

present low level controllers aiming to regulate the water-levels. However, the

violation of operational limitations and bad dynamic performances can occur

if local decentralized feedback controllers are applied. In order to increase the

efficiency of the irrigation network and to avoid manage saturations in an op-

timal way, advanced control strategies are required such as Model Predictive

Control. More specifically, an MPC scheme can be designed to online adjust

the level references for the low level controllers. Each MPC controller solves

a long horizon constrained optimal control problem. However, the design and

implementation of a centralized MPC controller typically suffers from scalabil-

ity issues due to the big amount of data and by the large scale of the plant.

For this reason, distributed and decentralized approaches must be considered,

together with ad-hoc optimization methods, which specifically account for the

peculiar system structure.

42 The irrigation channel case study

3.1 Modelization

Different models are used for describing the dynamics of the single pool, span-

ning from complex non-linear systems, to simplified linear ones. In this chapter

a simple first order modelization of the single pool controlled with a PID level

regulator is presented. In particular, it will be shown how the state space rep-

resentation of the closed loop system can be expressed by means of (2.3). As

discussed in Chapter 2, it will be possible to reduce the complexity of the MPC

optimization problem, by exploiting the structured Space-LBT and Time-LBT

formulations (2.14) and (2.22), respectively.

3.1.1 First-order Model of Each Pool

Traditionally, open channel dynamics are described using the shallow water

equations, or the so-called St-Venant equation. For a detailed modelization we

address the reader to [7].

The first-order continuous-time model considered in this Thesis is

Siẏi(t) = γih
3/2
i (t− τi)− γi−1h

3/2
i−1(t)− di(t) (3.1)

where

• Si is the surface of the pool expressed in [m2]

• yi is the water level expressed in [m]

• γi is a coefficient expressed in [m
3/2

min]

• hi is the overhead, i.e. the displacement between the top of the gate and

crest of the wave, expressed in [m]

• τi is the delay expressed in [min]

• di is the off-take and it is a flux expressed in [m
3

min]

Such equation consists of a mass balance in the the pool. Note that the off-take

term di will be neglected in the sequel for simplicity. Indeed, the variation of

3.1. Modelization 43

water-level in a pool is proportional to the difference between the upstream

flow and the downstream flow.

Defining now the scaled flow and the real flow as respectively

fi(t) = h
3/2
i (t)

[
m3/2

]
Fi(t) = γih

3/2
i (t)

[
m3

min

]
and the coefficients

cin,i =
γi
Si

[
m−1/2

min

]
cout,i =

γi−1

Si

[
m−1/2

min

]
the equation (3.1) becomes

ẏi(t) = cin,ifi(t− τi)− cout,ifi−1(t) (3.2)

3.1.2 Water-Level Regulation

The decentralized low-level regulation scheme discussed in this section consists

in a number of PI controllers (i.e., one regulator for each pool) which aim to

control the level yi(t) of each pool on the basis of a given set point ri(t). More

yi(t)
i-th pool

Upstream gate

Downstream gate

Water-Level
(measurement)

Flow-Rate
(control action)

fi(t)

hi(t)

hi-1(t)

Figure 3.1: Pool: measurement and control action

44 The irrigation channel case study

specifically, each controller regulates the flow of the i -th pool acting on the

upstream gate. However, the water measurement is taken at the downstream

gate (see Figure 3.1) so the control action fi(t) results delayed due to the slow

dynamics of the pool:

gi(t) = fi(t− τi)

The architecture of the so called distant-downstream decentralized control

is shown in Figure 3.2.

Let Yi(s) = L{yi(t)}, Fi(s) = L{fi(t)}, Ri(s) = L{ri(t)}, where the oper-

ator L{·} denotes the Laplace transformation. The mass balance equation of

the pool becomes:

Yi(s) =
cin,i
s
Fi(s)e

−τis − cout,i
s

Fi−1(s)

Delay

The dynamics of the pools is typically very slow. For this reason the controlled

system in closed loop will be designed in order to display a small bandwidth.

The delay, i.e. the term e−τis, is represented using a first order Padè approxi-

mation

e−τis ≈
1− τi

2
s

1 + τi
2
s

=
−s+ 2

τi

s+ 2
τi

(3.3)

As well-known, such approximation reduces the phase margin of the controlled

system. However, if the dynamics is sufficiently slow, this approximation does

Pi+1

ri ri-1

fi-2fi-1fi+1

ri+1

fi
Pi Pi-1

Ki+1 Ki Ki-1

- - -yiyi+1 yi-1

Figure 3.2: Distant-downstream decentralized control scheme

3.1. Modelization 45

not compromise the stability properties of the closed loop system. In particu-

lar, the lower is the crossover frequency, the more accurate the Padè approxi-

mation is.

Low-level Controller

Different decentralized control architectures, aiming to control the water level

of the single pool, can be found in the literature (e.g., PI, PID, PID with feed-

forward action). In particular, such control strategies are mostly concerned

with control of the propagation of water-level errors upstream during the tran-

sient. More specifically, any control action taken to control the water-level of

a pool affect the water-level of the upstream one. Therefore, this results in

a corresponding water-level error, which propagates upstream along the chan-

nel. However, the transient properties of the single pool are not a topic for

this work. For this reason, in order to simplify the modelization, the low level

controllers applied to each pool are supposed to be simple PI.

The transfer function of the PI regulator between the error Ei(s) = Ri(s)−

Yi(s), and the control law Fi(s) takes the classical form:

Fi(s) =
Ki(1 + TI,is)

sTI,i(1 + TF,is)

(
Ri(s)− Yi(s)

)
(3.4)

Where

• Ki is the proportional gain

• TI,i is the integral time

• TF,i is a time constant added in order to have the pole 1/TF,i at high

frequency. Such pole is necessary in order to obtain a strictly proper

transfer function of the regulator. In particular, it will be usefull in the

state representation of the regulator presented in the following.

46 The irrigation channel case study

3.1.3 State Space Representation

Controller

It is possible to rewrite the equation (3.4) as

Fi(s) =

Ki

TF,i
s+ Ki

TF,iTI,i

s2 + 1
TF,i

s

(
Ri(s)− Yi(s)

)
By means of the controllability canonical form [8], the state space representa-

tion of the controller becomes :
ẋKi (t) =

0 1

0 − 1
TF,i

xKi (t) +

0

1

(ri(t)− yi(t))
fi(t) =

[
Ki

TF,i

Ki

TF,iTI,i

]
xKi (t)

(3.5)

Notice that using the superscript K in xKi we denote the state variables asso-

ciated to the controller.

Delay

Using the Padè approximation (3.3), the delayed control action, i.e. the flow,

in frequency domain is given by

Gi(s) = −Fi(s) +
4
τi

s+ 2
τi

Fi(s)

Using again the controllability canonical form, the state representation of the

delayed control action may be achieved:ẋ
D
i (t) = − 2

τi
xDi (t) + fi(t)

gi(t) = 4
τi
xDi (t)− fi(t)

Deriving the expression of the flow gi(t) and replacing the expression of fi(t)

given by (3.5), we eventually obtain:

ġi(t) = − 2

τi
gi(t) +

[
α β

]
xKi (t)− Ki

TF,i
ri(t) +

Ki

TF,i
yi(t) (3.6)

with
[
α β

]
=
[

2Ki

τiTI,iTF,i

2Ki

τiTF,i
− Ki

TF,iTI,i−T 2
F,i

]

3.1. Modelization 47

Combining the state space representations (3.2), (3.5) and (3.6) it is possi-

ble to obtain a full modelization of the controlled pool:
ẏi(t)

ġi(t)

ẋK,1i (t)

ẋK,2i (t)

 =


0 Cin,i 0 0

Ki

TF,i
− 2
τi

α β

0 0 0 1

−1 0 0 − 1
TF,i




yi(t)

gi(t)

xK,1i (t)

xK,2i (t)

+


−Cout,i

0

0

0

 fi−1(t) +


0

− Ki

TF,i

0

0

 ri(t)

All the states variables have a physical meaning. More specifically, yi is the

water level, gi is the delayed control action over the upstream gate and xKi =[
xK,1i xK,2i

]>
are the variables associated to the low-level controller.

Defining

Ac
i =


0 Cin,i 0 0

Ki

TF,i
− 2
τi

α β

0 0 0 1

−1 0 0 − 1
TF,i

 Bc
i =


0

− Ki

TF,i

0

0

 F c
i =


−Cout,i

0

0

0


Hc
i−1 =

[
0 0 Ki−1

TF,i−1

Ki−1

TF,i−1TI,i−1

]
the model expressed in a compact form becomes:

ẋi(t) = Ac
i xi(t) +

[
Bc
i F c

i

] ri(t)

fi−1(t)


fi−1(t) = Hc

i−1xi−1(t)

(3.7)

Discretization

By means of the matlab function c2d (i.e., continuous-to-discrete) the continuous-

time system (3.7) has been discretized, obtaining the following representation:
xi(k + 1) = Aixi(k + 1) +

[
Bi Fi

]ri(k + 1)

vi(k + 1)


vi(k + 1) = Hi−1xi−1(k + 1)

(3.8)

Eventually, defining Ei = FiHi−1, the discrete-time model of the controlled

pool becomes:

xi(k + 1) = Aixi(k) +Biri(k) + Eixi−1(k) (3.9)

48 The irrigation channel case study

Note that the coupling between subsytems is represented through state

variables (i.e., the term Eixi−1(t)). Moreover, the expression (3.9) has the

same structure of (2.3). Such modelization will allow us to use both the Space-

LBT and the Time-LBT formulations presented in Section 2.3.1 and Section

2.3.2, respectively, in order to represent the dynamics of the whole irrigation

network.

3.2 High-Level Controller

As shown in the previous section, the input to the low level regulators of each

pool is the water-level error defined as

ei(t) = ri(t)− yi(t)

where ri(t) is the water-level reference. However, the application of this de-

centralized control scheme to the irrigation network leads to bad transient

performances and possible violation of physical constraints. Therefore, an ad-

vanced control strategy is needed in order to keep the water level around a

security range. For all these reasons an MPC control strategy will be applied

ri(t)ri+1(t) ri-1(t)

High Level Controller

Low Level Controllers

yi(t)

ei(t)

fi(t)
i-th pool

(i+1)-th pool

(i-1)-th pool
ei+1(t)

ei-1(t)

fi+1(t)

fi-1(t)

yi+1(t)

yi-1(t)

-

-

-
Ki

Ki+1

Ki-1

Figure 3.3: Low level and high level MPC controllers

3.3. Model Parameters and Limitations 49

to the whole system. More specifically, MPC aims to control the irrigation

network by an on-line adjustment of the nominal water-level references ri(t)

applied to the systems (3.9).

The control hierarchy is shown in Figure 3.3.

3.3 Model Parameters and Limitations

In Table 3.1 all the physical parameters of a channel composed by four pools

as well as the parameters associated to the low-level controllers are reported.

Such values, taken by [9], will be used for all the simulations carried out in this

Thesis. All the physical data and the controller parameters for the simulations

have been provided by Rubicon Water Pty. Ltd., and by the University of

Melbourne, and they are referred to the East Goulburn-30 Irrigation network.

We remind that, according to the state space representation (3.9), the

water-level of the i-th pool is expressed by the variable yi(t), while the scaled

flow fi(t) is the linear combination of the state variables referred to the low

level controller, i.e.

fi(t) =
[
Ki

TF,i

Ki

TF,iTI,i

]xK,1i (t)

xK,2i (t)


The control strategies that will be introduced aim to constrain the water-

level of each pool and the actual flow imposed by the gates, i.e. Fi(t) = γifi(t),

Pool Cin Cout τ γ KD TI TF

[m−
1
2/min] [m−

1
2/min] [min] [m

3
2/min]

1 0.0461 0.0461 2 107.46 1.259 50.058 5.935

2 0.0438 0.0438 3 107.46 1.057 62.716 7.436

3 0.0498 0.0305 4 175.67 0.863 67.600 8.015

4 0.0591 0.0591 3 175.67 0.913 53.830 6.382

Table 3.1: East Goulburn-30 Irrigation Channel Pools and Controller Param-

eters

50 The irrigation channel case study

in order to keep the water-level around a range of values, and to avoid actuator

saturations. Such limitations are:

ymin,i = 0.92 m ≤ yi(t) ≤ 1.08 m = ymax,i (3.10a)

Fmin,i = 0
m3

min
≤ γifi(t) ≤ 12

m3

min
= Fmax,i (3.10b)

Constraints on input variables are eventually considered. We remind that

for the high level controller the control variables are the water-level references

ri(t) of the low level controllers applied at each pool. More specifically, for

each subsystem, the input is a scalar. They will be expressed as

rmin,i ≤ ri(t) ≤ rmax,i

where

rmin,i = ymin,i

rmax,i = ymax,i

Chapter 4

Cooperative Distributed MPC

The limitations related to the traditional implementation of MPC centralized

controllers have pushed research on the so called decentralized and distributed

control strategies. Especially in chemical plants, plantwide control has tradi-

tionally been implemented in a decentralized fashion, i.e., each subsystem is

controlled independently and network interactions are treated at most as local

subsystem disturbances. However, when the interactions between subsystems

are strong, decentralized control becomes unreliable, [10].

In this chapter a Cooperative Distributed MPC control strategy [10] is ap-

plied to a large-scale system where the dynamics of each subsystem is expressed

by (2.1). Through this control strategy all regulators solve in parallel, but it-

eratively, different optimization problems. A negotiation phase is also required

for gaining a consensus of the control action to be taken. More specifically,

through negotiation, a global optimal control action is obtained and the closed

loop stability of the whole system is ensured. The purpose of such control

strategy is to ease the computational burden required with respect to a cen-

tralized formalization of the optimal control problem. Note that, this control

strategy has been applied to the same case study in [11].

52 Cooperative Distributed MPC

4.1 Modelization

For each i-th subsystem, with i = 1, . . . , N , composing the whole large-scale

system, a model of the following form is used:

zi(k + 1) = Aizi(k) +
∑N

j=1 Bijuj(k)

yi(k) = Cizi(k)

(4.1)

where zi ∈ Rni and yi ∈ Rpi are the vectors of the state variables and outputs,

respectively, of the i-th subsystem and uj ∈ Rmj is the vector of inputs of

the generic j-th subsystem. Note that model (4.1) is rarely obtained through

physical-based modelling of the systems. More frequently, such a formulation

(denoted state-decoupled) must be obtained through a suitable model expan-

sion, described below.

Initially (i.e., in Section 4.1.1) each subsystems composing the whole LSS

is modelled as proposed by [10]. However, due to computational issues, a low

order model based on the Space LBT formulation (2.14) will be introduced in

Section 4.1.2.

4.1.1 Standard Model for Cooperative Distributed MPC

As shown in [10], by applying the superposition principle for each subsystem i

we define a set of dynamic models, each describing the effect of each input uj,

with j = 1, . . . , N , on the states and outputs of the subsystem i:

zi1(k + 1) = Ai1zi1(k) +Bi1u1(k)

zi2(k + 1) = Ai2zi2(k) +Bi2u2(k)

...

ziN(k + 1) = AiNziN(k) +BiNuN(k)

yi(k) =
∑N

j=1Cijzij(k)

(4.2)

Regarding the cascade systems considered in this Thesis, it is apparent that the

i-th subsystem is influenced only by the inputs of the j-th subsystems with

4.1. Modelization 53

j = 1, . . . , i according to the numeration shown in Figure 2.1. Consistently

with this remark, the system (4.2) reduces to

zi1(k + 1) = Ai1zi1(k) +Bi1u1(k)

zi2(k + 1) = Ai2zi2(k) +Bi2u2(k)

...

zij(k + 1) = Aijzij(k) +Bijuj(k)

yi(k) =
∑j

j=1Cijzij(k)

with

Aij =


Aj 0 · · · 0

Ej+1 Aj+1
.

0
. 0

0 0 Ei Ai

 , Bij =


Bj

0
...

0


Note that all the matrices Ai, Ei and Bi are defined as in Section 2.1 and

zij ∈ Rnij , Aij ∈ Rnij×nij , Bij ∈ Rnij×mj and Cij ∈ Rpi×nij with nij =
∑i

l=j nl.

Collecting the state variables in a vector

zi = [z>i1, z
>
i2, . . . , z

>
ij]
>

it is possible to obtain a model in the form (4.1), where:

Ai = diag(Ai1, Ai2, . . . , Aij,)

Bij =



0
...

0

Bij

0
...


(4.3)

Ci =
[
Ci1 Ci2 · · · Cij

]
As the number of subsystems increases such modelization suffers from scalabil-

ity issues, due to the rapid growth of the number of state variables composing

54 Cooperative Distributed MPC

the generic i-th subsystem. More specifically, supposing that each subsystem

(2.1) has order ni = n for all i = 1, · · · , N , with the modelization procedure

described above the i-th subsystem will be described by n
∑i

j=1 j states, i.e.,

n i(i+1)
2

variables. Therefore, to obtain a more tractable model, a lower order

modelization of the LSS will be used.

4.1.2 Low Order Model

The low order dynamic model of the i-th subsystem is built in the same fashion

as the Space-LBT formulation presented in Section 2.3.1. More specifically, we

define

zLi (k) =


zLi1(k)

zLi2(k)
...

zLii(k)



and we describe the dynamics of zLi (k) as



zLi1(k + 1)

zLi2(k + 1)

zLi3(k + 1)
...

zLii(k + 1)


=



A1 0 · · · · · · 0

E2 A2
.

0 E3 A3
.

... 0

0 · · · 0 Ei Ai





zLi1(k + 1)

zLi2(k + 1)

zLi3(k + 1)
...

zLii(k + 1)


+



B1 0 · · · · · · 0

0 B2
.

... . . . B3
.

... 0

0 · · · · · · 0 Bi





u1(k)

u2(k)

u3(k)
...

ui(k)


(4.4)

4.2. The Cooperative Distributed MPC Control Scheme 55

From this, we obtain the state decoupled formulation (4.1) by defining

Ai =



A1 0 · · · · · · 0

E2 A2
.

0 E3 A3
.

... 0

0 · · · 0 Ei Ai


and Bij =



0
...

Bj

0
...


Note that the number of state variables required to describe the dynamics of the

i-th subsystem is smaller than the number of variables required by modelization

described in Section 4.1.1. In particular, they are equal to
∑i

j=1 nj. However,

the matrix Ai is not block diagonal as proposed by [10]. In the following, we

will show that the loss of this property will not compromise the features of the

Cooperative Distributed MPC algorithm.

4.2 The Cooperative Distributed MPC Control

Scheme

According to the modelization (4.1), for each subsystem i, with i = 1, . . . , N

a local cost function is defined:

Ji(zi(t), ui(t), . . . , ui(t+T−1)) =
t+T−1∑
k=t

[
||zi(k)||2Qzi

+||ui(k)||2Ri

]
+||zi(t+T)||2

Qzi

The current time instant t will be set equal to zero in order to simplify the

notation. A global cost function is also defined

J(z1(0), . . . , zN(0), u1(0), . . . , uN(0), . . . , uN(T − 1)) =

N∑
i=1

ρiJi(zi(0), ui(0), . . . , ui(T − 1)) (4.5)

where ρi > 0 is the relative weight of the i-th cost function. We note that each

local cost Ji is function of the local input ui and of the j-th inputs uj, with

j = 1, . . . , i, since the state zi depends on such variables.

56 Cooperative Distributed MPC

4.2.1 Constraints on Inputs and State Variables

Constraints on inputs are considered and they are imposed on the i-th subsys-

tem, for all i = 1, · · · , N . Specifically they can be expressed by:

ui(k) ∈ Ui i = 1, . . . , N k = 0, . . . , T − 1

Note that constraints on the state variables are not regarded in the im-

plementation of the cooperative distributed MPC algorithm proposed by [10].

However, for generality, we will test the capability of the control scheme to

cope with the latter, and more specifically we will introduce constraints of

type

zi(k) ∈ Zi i = 1, . . . , N k = 1, . . . , T (4.6)

where Zi is convex with the origin in its interior. For obvious reasons, such

constraints are softened by means of appropriate slack variables that allow

their temporary violation. The reduced efficiency of the algorithm with ac-

tive constraints on state variables will be demonstrated in Chapter 7, devoted

to the simulations tests. Finally, note that zero terminal constraints are in

general required, but they can be neglected under the assumption that Ai is

Schur stable for i = 1, · · · , N , which will be the standing assumption for the

remainder of the Thesis.

4.2.2 Optimization Problem

The optimal control law to be applied is obtained through a negotiation phase

between all the controllers Ci. The local solutions obtained after a number of

negotiation steps are only sub-optimal compared to the solution calculated with

a centralized controller applied to the whole system. Indeed, the Cooperative

Distributed MPC control strategy attains the optimality only at the limit.

At each iteration p all the controllers Ci solve an appropriate minimization

problem, minimizing the global cost function with respect to the local inputs

4.2. The Cooperative Distributed MPC Control Scheme 57

ui, that is

min
ui(0),...,ui(T−1)

J(z1(0), . . . , zN(0), u1(0), . . . , uN(0), . . . , uN(T − 1))

subject to


z1(k + 1)

z2(k + 1)
...

zN(k + 1)

 =


A1 0 · · · 0

0 A2
.

... 0

0 · · · 0 AN




z1(k)

z2(k)
...

zN(k)

 (4.7)

+
N∑
j=1


B1j

B2j

...

BNj

uj(k) k = 0, · · · , T − 1

uj(k) = upj(k); k = 0, · · · , T − 1 ∀j 6= i

ui(k) ∈ Ui; k = 0, · · · , T − 1

zi(k) ∈ Zi; k = 1, · · · , T i = 1, · · · , N

For subsystem i the input sequence uj(k), with j 6= i, are the sequences

upj(k), k = 0, · · · , T − 1, transmitted at the previous negotiation step by the

other subsystems. Note that the cost function and the equality constraints

referred to the dynamics of the system along the prediction horizon are global

while the optimal solution is local, and consists of the optimal trajectory

u∗i (k) k = 0, · · · , T − 1

During the cooperation phase each controller weights its control input sequence

with the trajectory transmitted at the previous step, i.e.

up+1
i (k) = wiu

∗
i (k) + (1− wi)upi (k) k = 0, · · · , T − 1 (4.8)

where wi is proper weight associated to the i-th subsystem. The trajectory

up+1
i (k) k = 1, · · · , T − 1 is now transmitted to the other subsystems for the

subsequent negotiation step. At the last iteration p each controller Ci applies

the control input upi (k). The global optimality of the solution is guaranteed if

for all the controllers, in two consecutive iterations the following condition is

58 Cooperative Distributed MPC

satisfied:

upi (k) = up+1
i (k) k = 0, · · · , T − 1 i = 1, · · · , N (4.9)

However the number of iterations needed to attain (4.9) are sensitive to the

initial conditions of the system and to the weights imposed on state and input

variables. Indeed, such number can be very high, which could penalize the

efficiency of the algorithm. For this reason a maximum number of iterations

pmax and a tolerance for the sub-optimality of the solution ε are set. Therefore,

introducing the parameter

φi =
∥∥∥upi (k)−up+1

i (k)

upi (k)

∥∥∥2

(4.10)

i = 1, · · · , N k = 0, · · · , T − 1

the following stopping condition is enforced in the algorithm

p ≥ pmax ∨ φi ≤ ε

This choice allows us to improve the performances of the algorithm in the

calculation of the solution as it will be explained in the following.

4.2.3 Design Parameters

Taking into account the modelization (4.1) the cost function and constraints

are expressed with respect to the outputs yi, which have a physical meaning.

For this reason the cost functions Ji and the constraints actually implemented

on the algorithm have the following expressions:

Ji(yi(0), ui(0), . . . , ui(T − 1)) =
T−1∑
k=0

[
||yi(k)||2Qyi

+ ||ui(k)||2Ri

]
+ ||zi(T)||2

Qzi

ui(k) ∈ Ui (4.11)

yi(k) ∈ Yi

i = 1, . . . , N ; k = 1, . . . , T

where Yi is a polytopic convex set that includes the origin in its interior. The

constraints on outputs and inputs are supposed to be linear and expressed by

4.2. The Cooperative Distributed MPC Control Scheme 59

the following inequalities:

Hiyi(k) ≤ ki i = 1, · · · , N k = 1, · · · , T

Diui(k) ≤ di i = 1, · · · , N k = 0, · · · , T − 1

Recalling that yi(k) = Cizi(k) and defining the matrices

Qzi = C
>
i QyiCi (4.12)

H i = HiCi

it is finally possible to redefine the cost function and the constraints in the

form (4.5), (4.6) as function of the states variables and inputs only.

60 Cooperative Distributed MPC

Algorithm 1 Cooperative Distributed MPC
1: Input:

N , T
Ai, Bi, Ei, Ci Hi, Di, ki, di, Qi, Ri i = 1, · · · , N
Initial values zi(·) i = 1, · · · , N
Weights ρi, wi i = 1, · · · , N
Tollerance ε ∈ [10−6, 10−10], pmax ∈ [15, 100]

2: Output:
Optimal control sequence u∗i (k) i = 1, · · · , N k = 0, · · · , T−1

3: Procedure:
4: for i : 1→ N do (Offline)
5: Build the matrices Ai, Bij, Ci by means of (4.1) and Qzi , H i by means

of (4.12)

6: Define Qzi
such that A>i Qzi

Ai − Qzi
= −Qzi (recall that Ai is assumed

Schur stable)
7: Inizialization of the generic iteration
8: p=0
9: φi = 1 i = 1, · · · , N

10: uoi (k) = [u∗i (0|t − 1), · · · , u∗i (0|t + T − 2), 0]> where u∗i (k|t − 1) is the
optimal input trajectory computed at the previous time instant t − 1.
i = 1, · · · , N k = 0, · · · , T − 1

11: while
(
φi > ε, ∀i || p < pmax

)
do

12: Each controller Ci solve the minimization problem (4.7) obtaining the
current optimal solution u∗i (k) with i = 1, · · · , N k = 0, · · · , T − 1

13: Negotiation Phase
14: Each controller calculates the trajectory up+1

i (k) through (4.8)
15: Each controller send up+1

i (k) to all the others controllers.
16: Each controller calculates φi for the stopping condition with (4.10)
17: p = p+ 1

Chapter 5

Numerical methods for MPC

optimization problems

In Chapter 2 the MPC control strategy has been introduced and formulated.

As discussed, implementing a model predictive controller requires to solve a

convex quadratic program (QP) at each time step. However, for LSS this

procedure demands a great amount of online computation which scales both

with the prediction horizon T and the number of subsystems N.

In this chapter the Interior point methods (and in particular the Mehro-

tra’s Predictor-Corrector Algorithm) will be presented and used to solve the

optimization problem with a naive approach: this corresponds to solving the

quadratic program without exploiting the inherent structure of the system.

As we will more thoroughly discuss, an algorithm stemming from this naive

approach has a complexity that scales as O(N3T 3).

The search for efficient numerical methods for solving such optimization

problem is justified. With this aim, the formulations denoted Space-LBT and

Time-LBT will be efficiently employed. In Chapter 6, we will exploit the two

state space representations (2.14) and (2.22), leading to algorithmic solutions

where the computational effort is reduced.

62 Numerical methods for MPC optimization problems

5.1 MPC Problem and Quadratic Programming

In this section we want to show how an MPC control problem of the type

presented in Section 2.3 can be written as a sequence of convex quadratic

programs.

Let us consider the formulation introduced in Section 2.3.1. The con-

straints of the optimization problem (2.20) are defined for each time instant

k = 0, . . . , T where T is the prediction horizon. Recalling the particular ar-

rangement of the variables

X(k) =


x1(k)

x2(k)
...

xN(k)

 U(k) =


u1(k)

u2(k)
...

uN(k)


it is possible to define a vector which contains all the states and inputs for the

whole system along the prediction horizon T :

Z =
[
X(0)>, U(0)>, X(1)>, U(1)>, . . . , U(T − 1)>, X(T)>

]> (5.1)

The quadratic problem can be defined with its standard formulation, where

the cost function is quadratic and the equality and inequality constraints are

linear in Z

AeqZ = beq

AineqZ ≤ bineq

More specifically, the equality constraints are derived from the dynamic model

of the centralized system (2.14), i.e.

Aeq =


I

A B −I
. . .

A B −I

 beq =


X̂

0
...

0



5.1. MPC Problem and Quadratic Programming 63

Likewise, the inequality constraints, which have to be consistent with (2.16),

are

Aineq =


C D

. . .

C D

0

 bineq =


δ
...

δ

0


Finally the standard formulation for the optimization problem is:

min
Z

J(Z) =
1

2
Z>HZ

subject to AeqZ = beq (5.2)

AineqZ ≤ bineq

where matrix H is defined by rearranging properly the weight matrices Q and

R used in (2.18) as it is shown in the following:

H =



0

R

Q

R
. . .

Q


It is also possible to take into account in the cost function the so-called cross

term matrix S, which penalize, in the cost function, also the hybrid term x>Su.

In particular, in the latter case, the matrix H takes the form

H =



0

R

Q S

S> R
. . .

Q S

S> R

Q



64 Numerical methods for MPC optimization problems

The MPC problem has been formulated as a quadratic problem with op-

timization variable Z. The same procedure can be applied to the Time-LBT

formulation (Section 2.3.2) in order to obtain a similar quadratic problem as

(5.2), which only differs in how the equality constraints are expressed (i.e., the

variables are stacked differently in this state space representation).

5.2 Interior Point Methods (IPM)

The problem (5.2) is a convex quadratic problem and, due to the presence of

the inequality constraints, an explicit solution does not exist. In this section

we introduce a family of numerical methods which aim to solve a convex opti-

mization problem with linear equality and inequality constraints which reduces

it to a sequence of linear equality constrained problems, [12]. In particular the

Mehrotra’s Predictor Corrector algorithm will be described.

The Lagrangian function can be defined for a generic optimization problem

as the sum of different contributions, i.e.

L = (cost function) + p>(eq. constr.) + λ>(ineq. constr.)

where the vectors p and λ are the Lagrangian multipliers of the equality and

inequality constraints, respectively. Specifically, considering the optimization

problem (5.2), the Lagrangian function is

L =
1

2
Z>HZ + p>

(
AeqZ − beq

)
+ λ>

(
AineqZ − bineq

)
The Karush-Kuhn-Tucker (KKT) conditions for the optimization problem are

obtained by setting to zero the first derivative of the Lagrangian function, with

respect to Z, p, and λ [12]. We obtain in this way

HZ + A>eqp+ A>ineqλ = 0

−AeqZ + beq = 0

−AineqZ + bineq ≥ 0

λ ≥ 0

λj(−AineqZ + bineq)j = 0 j = 1, . . . , nineq

5.2. Interior Point Methods (IPM) 65

where (·)j denotes the j-th element of a vector, and nineq is the number of rows

of Aineq, i.e. the total number of inequality constraints.

In order to convert the inequality constraints into equality constraints, a

slack variable t is introduced and the KKT conditions can be rewritten as:

F (Z, p, λ, t) =


HZ + A>eqp+ A>ineqλ

−AeqZ + beq

−AineqZ − t+ bineq

TΛe

 = 0 (5.3a)

(λ, t) ≥ 0 (5.3b)

where T and Λ are diagonal matrices defined by

T = diag(t1, t2, . . . , tnineq
), Λ = diag(λ1, λ2, . . . , λnineq

)

and e is a vector of elements equal to 1, used for dimensional consistency

e = (1, 1, . . . , 1)>.

In view of the fact that the KKT conditions are satisfied only in the optimal

point (Z∗, p∗, λ∗, t∗), the Interior Point Method is used to find the optimal

solution for the non linear system of equations (5.3a) with condition (5.3b).

More specifically, it makes use of a sequence of Newton’s steps, each involving

a linearization of (5.3a).

At iteration τ , computing the Jacobian of (5.3a), the linearized system

around the point (Zτ−1, pτ−1, λτ−1, tτ−1) is given by:
H A>eq A>ineq 0

−Aeq 0 0 0

−Aineq 0 0 −I

0 0 T Λ




∆Z

∆p

∆λ

∆t

 =


rH

rAeq

rAineq

rT

 (5.4)

The right hand terms of the system (5.4) will be defined according to the Mer-

hotra’s predictor corrector algortihm. This will be explained in the following

sections. Given the generic Newton’s iteration, denoted by the superscript

66 Numerical methods for MPC optimization problems

τ , the so-called search directions (∆Zτ ,∆pτ ,∆λτ ,∆tτ) are calculated solving

(5.4). The vector of the decision variables is updated according to

(Zτ , pτ , λτ , tτ) = (Zτ−1, pτ−1, λτ−1, tτ−1) + (∆Zτ ,∆pτ ,∆λτ ,∆tτ)

If the problem is feasible, the interior point method allows to approach the

optimal solution (Z∗, p∗, λ∗, t∗) in a certain number of iterations and with a

certain accuracy.

However, a full step along the Newton’s direction is usually not permitted,

since it may violate the bound (λ, t) ≥ 0. Due to this feasibility issue, the

steplength applied to the vector (Zτ , pτ , λτ , tτ) is scaled using a parameter

α ∈ (0, 1]:

(Zτ , pτ , λτ , tτ) = (Zτ−1, pτ−1, λτ−1, tτ−1) + α(∆Zτ ,∆pτ ,∆λτ ,∆tτ)

Unfortunately, using the pure Newton’s directions, the allowed steplength en-

suring the satisfaciton of the condition (λ, t) ≥ 0, may be very small (α � 1)

which slows down dramatically the convergence speed of the algorithm.

There are different methods allowing to modify the basic Newton procedure

to obtain higher performances. Typically these methods constrain the search

direction to be towards the interior of the nonnegative orthant (λ, t) ≥ 0, so

that it would be possible to move further along the growth direction before one

of the component of (λ, t) becomes negative. They also keep (λ, t) far enough

from the boundary of the nonnegative orthant when necessary, because the

directions computed from the starting point too close to the boundary usually

result distorted. The method used in this Thesis to improve the performances

of the basic Newton method is the so-called Mehrotra’s predictor corrector

algorithm [13].

5.2.1 Mehrotra’s Predictor Corrector Algorithm

The Mehrotra’s Predictor-Corrector algorithm splits the pure Newton’s step

defined by (5.4) in two parts: the affine-scaling step and the centering-corrector

5.2. Interior Point Methods (IPM) 67

step. This algorithm has proved to be one of the most effective approaches for

general linear and convex quadratic programs [2].

Affine-scaling Step

In this first step of the Mehrotra’s algorithm, the right hand side terms of the

system (5.4) are defined as follows, considering the solutions of the previous

Newton’s iteration:
rH

rAeq

rAineq

rT

 = −F (Zτ−1, pτ−1, λτ−1, tτ−1) =

−


HZτ−1 + A>eqp

τ−1 + A>ineqλ
τ−1

−AeqZτ−1 + beq

−AineqZτ−1 − tτ−1 + bineq

T τ−1Λτ−1e

 (5.5)

The corresponding search directions obtained by solving the system (5.4), are

denoted by:

(∆Zaff,∆paff,∆λaff,∆taff,)

note that we have dropped the superscript τ , meaning that from now all the

variables are intended to be related to the current Newton’s iteration.

Centering-corrector Step

The corrector step is needed to move the point closer to the central path. In

this part of the algorithm the right hand terms of (5.4) are defined as:
rH

rAeq

rAineq

rT

 =


0

0

0

−∆Taff∆Λaffe+ σµe

 (5.6)

68 Numerical methods for MPC optimization problems

where

∆Taff = diag(∆taff,1,∆taff,2, . . . ,∆taff,nineq
)

∆Λaff = diag(∆λaff1,∆λaff2, . . . ,∆λaff,nineq
)

σ is the centering parameter and µ is the Duality gap. The Duality gap is by

definition the difference between the primal and dual solution: it is a parameter

used to check the optimality of the current solution (Zτ , pτ , λτ , tτ). In our case

it is given by

µ = λ>t/nineq

Defining now the maximum steplength αaff that can be taken along the affine-

scaling direction as

αaff = arg max
(
α ∈ [0, 1]|(λ, t) + α(∆λaff,∆taff) ≥ 0

)
and the duality gap µaff obtained from the affine-scaling step as

µaff = (λ+ αaff∆λaff)>(t+ αaff∆taff)/m

it is shown by [2] and [14] that a good way to define the centering parameter

is given by the following heuristic:

σ =
(
µaff/µ

)3

The solutions of the Centering-corrector step are defined as:

(∆Zcent,∆pcent,∆λcent,∆tcent)

Overall procedure

The search directions are obtained summing the solutions of the Affine-scaling

step with the solutions of the Centering-corrector step:

(∆Z,∆p,∆λ,∆t) = (∆Zaff,∆paff,∆λaff,∆taff)+(∆Zcent,∆pcent,∆λcent,∆tcent,)

As done for the Affine-scaling step we select, at first, the coefficient αmax which

represents the maximum step that can be taken without violating the condition

(5.3b):

αmax = arg max
(
α ∈ [0, 1]|(λ, s) + α(∆λ,∆t) ≥ 0

)

5.2. Interior Point Methods (IPM) 69

Then, selecting a parameter γ ∈ (0, 1), αmax is further reduced to enforce a

smooth convergence to the optimal solution:

α = αmaxγ

See [14] for the details on a heuristic choice of γ.

Eventually, we can update the variables for the next IPM’s iteration as

follows:

Zτ = Zτ−1 + α∆Zτ

pτ = pτ−1 + α∆pτ

λτ = λτ−1 + α∆λτ

tτ = tτ−1 + α∆tτ

5.2.2 Convergence Analysis

Let us consider ξ as the generic decision variable for simplicity, defined as

ξ =


Z

p

λ

t


In τ = 1, the so-called initial guess ξ0 has to be properly defined. If the

problem is feasible, as the number of iterations τ increases, the vector of the

search directions ∆ξ will approach zero and ξ converges to the optimal solution

ξ∗. However, from a numerical point of view, ∆ξ will never be exactly zero,

due to the approximation introduced by the Newton’s method. The main

idea of the inexact Newton’s methods is to terminate, with a suitable stopping

condition, the iterative linear solver early with less accuracy, reducing the

computational effort, [15].

Moreover, it is worth remarking that the algorithm does not require to

specify a feasible starting point. Indeed, it may generate infeasible iterates,

attaining feasibility only in the limit, [2], as shown in Figure 5.1. A trajectory

70 Numerical methods for MPC optimization problems

in the state space is shown, where the variables, starting from a generic point,

converge to a solution being very close to the optimal one as mentioned. The

solution lies in the feasible region, bounded by the box, which represents the

collection of points into the surface that satisfy the constraints.

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

0

0.05

0.1

0.15

0.2

Level y
i
(k) [m]

S
c
a
le

d
 f
lo

w
 f

i(k
)

[m
3

/2
]

Figure 5.1: Convergence of the solution

5.2.3 Complexity and Separability

The Interior Point Method shown in the previous section can be used to solve

MPC problems in presence of constraints on inputs and states of type (5.2).

Note that the main idea of the IPM is to solve, at each iteration, linear

equations of type (5.4), involving a matrix inversion. However, matrix inver-

sions may be inefficient from the computational point of view, especially when

the size of the large-scale system and/or the length of the prediction horizon

grow. More specifically, the submatrices H, Aeq and Aineq grow in dimension

5.2. Interior Point Methods (IPM) 71

with the prediction horizon T and the number of subsystems N . The algo-

rithms implemented on standard solvers typically lead to a complexity which

scales as O(T 3N3) and their application tends to be significantly burdensome

or even impractical for large-scale systems.

Significant improvements can be made by exploiting the multistaged struc-

ture of such optimization problem (see (2.20)). In particular a discrete-time

Riccati recursion can be used to solve the linear system of equations efficiently

at each iteration of the Interior Point Method. This so-called block factoriza-

tion approach consists of reducing the optimization problem to a collection of

simpler problem to be solved with a complexity that scales as O(TN3) (as

discussed in [2]).

On the other hand, note that the minimization problem (2.26) takes the

same form as (2.20). The only difference lies in the fact that the equality con-

straints are defined differently. However, instead of the temporal partition of

the interconnected system, one can apply the dynamic programming principle

on a subsystem basis, [3]. This is possible in view of the fact that the plant

belongs to the particular class of cascade systems, which has a specific LBT

structure. Note that the approach that will be proposed relies on more than

just the cascade structure, since the separability across both time and space of

the cost function and the constraints of the original problem is needed for the

Time-LBT formulation. These properties allow us to formulate differently-

structured IPM problems for the efficient design and implementation of the

optimal controller. More specifically, given the Time-LBT formulation intro-

duced in Section 2.3.2, the associated quadratic program (2.26) is multistaged,

with as many stages as the number of subsystems N . It will be possible to

formulate a problem with a complexity that scales as O(T 3N).

The former solutions are described in the next Chapter 6.

Chapter 6

Proposed solvers for LBT systems

In this chapter, two algorithms that solve efficiently a class of quadratic pro-

gramming problems are presented. More specifically, we address an MPC opti-

mization problem applied to a large-scale cascade system. The two algorithms

discussed in this chapter exploit the spatial and temporal interconnections of

such systems. In particular, they take advantage of either the Space-LBT for-

mulation or the Time-LBT one, introduced in Section 2.3.1 and in Section

2.3.2, respectively.

Considering the linear system of equations (5.4) obtained applying the IPM

to a QP problem, such system, for both problems (2.20) and (2.26), is struc-

tured. In particular, the structure is block-diagonal and it has a strong depen-

dence on the prediction horizon T and the number of subsystems N .

74 Proposed solvers for LBT systems

6.1 Space-LBT Solver

The first algorithm proposed evolves along the line of paper [2] and it relies on

the Space-LBT formulation. More specifically, the dynamic equation (2.14) is

recalled:

X(k + 1) = AX(k) +BU(k) (6.1)

A set of inequality constraints on states and inputs for each subsystem has

been introduced. It is based on the inequalities (2.15) which can be rewritten

in the more compact form (2.16), i.e.,

CX(k) +DU(k) ≤ δ (6.2)

The weight matrices for the optimization problem have already been intro-

duced in Section 2.3.1, but one might consider the presence of cross-penalty

terms in order to relate state and input variables. In particular, the latter

terms are defined by means of:

S =


S1

S2

. . .

SN


with Si ∈ Rni×mi .

Therefore, the cost function (2.18) becomes:

J
(
{X(k)}Tk=1, {U(k)}T−1

k=0

)
=

1

2
U(0)>RU(0) +

T−1∑
k=1

1

2

(
X(k)>QX(k)

+ U(k)>RU(k) + 2X(k)>SU(k)
)

+
1

2
X(T)>QX(T) (6.3)

where Q, Q ∈ Rn×n, R ∈ Rm×m and S ∈ Rn×m. In particular, they are

considered to be time invariant along the prediction horizon T , and they are

built according to the stacking of the variables.

The minimization of the cost function (6.3) has to be performed with re-

spect to the constraints related to the dynamics of the system (6.1) and to the

6.1. Space-LBT Solver 75

inequality constraints (6.2). Consequently, the minimization problem can be

written as:

min
X(k),U(k)

J
(
X(k), U(k)

)
(6.4)

subject to X(0) = X̂

X(k + 1) = AX(k) +BU(k) k = 0 . . . T − 1

CX(k) +DU(k) ≤ δ k = 0 . . . T − 1

Note that we have explicitly formulate the constraint on the initial state, be-

cause it is accounted as a known term.

It is very important to acknowledge that this optimization problem, as it

is formulated, relies inherently to separability of cost function and constraint

across time. Moreover, the block diagonal structure of weight matrices and in-

equality constraint matrices is intentional, since it allow us to have separability

across space as well.

6.1.1 KKT Conditions

In order to solve the optimization problem (6.4) one need at first to derive

the KKT conditions. The Lagrangian function of the minimization problem is

given by:

L = L0 +
T−1∑
k=1

Lk + LT

The Lagrangian associated to the first and the last time instants (L0 and

LT) are slightly different from the one referred to k = 1, · · · , T − 1, since cost

function and constraints are different at k = 0 and k = T . Let p(k) and λ(k) be

the vectors of the Lagrangian multiplier referred to the equality and inequality

constraints respectively, the elements composing the Lagrangian function take

the following form.

First time instant:

L0 =
1

2
U(0)>RU(0) + p(0)>

(
AX(0) +BU(0)−X(1)

)
+ λ(0)>

(
CX(0) +DU(0)− δ

)

76 Proposed solvers for LBT systems

For k = 1, · · · , T − 1:

Lk =
1

2

(
X(k)>QX(k) + U(k)>RU(k) + 2X(k)>SU(k)

)
+ p(k)>

(
AX(k) +BU(k)−X(k + 1)

)
+ λ(k)>

(
CX(k) +DU(k)− δ

)
Last time instant:

LT =
1

2
X(T)>QX(T)

The following KKT conditions can be obtained by setting to zero the first

derivative of the Lagrangian function L with respect to the decision variables

X(k), U(k), p(k) and λ(k):

First Stage



∂L
∂X(0)

= 0
(
X(0) is given

)
∂L

∂U(0)
= RU(0) +B>p(0) +D>λ(0) = 0

∂L
∂p(0)

= AX(0) +BU(0)−X(1) = 0

∂L
∂λ(0)

= CX(0) +DU(0)− δ + t(0) = 0

Λ(0)Θ(0)e = 0

(λ(0), t(0)) ≥ 0 (6.5)

Generic Stage



∂L
∂X(k)

= QX(k) + SU(k) + A>p(k) + C>λ(k)− p(k − 1) = 0

∂L
∂U(k)

= RU(k) + S>X(k) +B>p(k) +D>λ(k) = 0

∂L
∂p(k)

= AX(k) +BU(k)−X(k + 1) = 0

∂L
∂λ(k)

= CX(k) +DU(k)− δ + t(k) = 0

Λ(k)Θ(k)e = 0

(λ(k), t(k)) ≥ 0 (6.6)

Last Stage
{

∂L
∂X(T)

= QX(T)− p(T − 1) = 0

A slack variable t(k) has been introduced in order to convert the inequality

6.1. Space-LBT Solver 77

constraints into equality constraints, and the following relationship must hold:

t(k) = −CX(k)−DU(k) + δ k = 0, . . . , T − 1

λj(k)tj(k) = 0 k = 0, . . . , T − 1 j = 1, . . . , nin

The matrices Θ(k) and Λ(k) are diagonal and they contain the Lagrangian

multipliers referred to the inequality constraints and the corresponding slack

variables:

Λ(k) =


λ1(k)

λ2(k)
. . .

λnin
(k)

 Θ(k) =


t1(k)

t2(k)
. . .

tnin
(k)



while e is a vector containing only elements equal to one, in order to keep the

dimensions consistent.

6.1.2 Solver

The optimal values of the decision variables X(k), U(k), p(k), λ(k) and t(k)

have to satisfy the KKT conditions above. In particular, such values will be

calculated by means of the numerical iterative method described in Section 5.2.

This method consists of a sequence of Newton’s steps which solve efficiently

a linear system of equations. More specifically, according to the Mehrotra’s

predictor corrector algorithm, each Newton’s iteration will be defined as the

sequence of an Affine and a Centering step. However, the KKT conditions

are not linear due to the presence of the equations Λ(k)Θ(k)e = 0. Therefore,

a linearization has to be carried out, and the resulting linear system is the

78 Proposed solvers for LBT systems

following:



R B> D 0

B 0 0 0 −I

D 0 0 I

0 0 Θ(0) Λ(0)

−I Q S A> C> 0

S> R B> D> 0

A B 0 0 0 −I

C D 0 0 I

0 0 0 Θ(1) Λ(1)

−I . . .

Q





∆U(0)

∆p(0)

∆λ(0)

∆t(0)

∆X(1)

∆U(1)

∆p(1)

∆λ(1)

∆t(1)
...

∆X(T)



=



rR(0)

rA(0)

rC(0)

rS(0)

rQ(1)

rR(1)

rA(1)

rC(1)

rS(1)
...

rQ(T)


(6.7)

The ∆ terms are the so-called search directions for the interior point method,

and they represent the increment to apply to the decision variables which lead

iteratively to the optimal solution, while the definition of the right-hand terms

will be explained in the following.

The stages are arranged blockdiagonal-wise in order to be consistent with

the vector of the decision variables, which are interleaved according to the

stage index (i.e., the time instant). Indeed, (6.7) is structured in T stages and

each stage is connected with both the previous and the next one by means of

coupling terms. The strength of this algorithm is in how the system is solved:

in fact, as discussed in Section 5.2.3, a recursive law will be applied in order to

take advantage of the great sparsity. This will result in a significant increase

on efficiency, especially when the number of stages is much higher than the

dimension of the generic stage (i.e., T � N).

Affine-scaling step

As discussed in Section 5.2.1, the right-hand terms of the system (6.7) have

a suitable definition for the Affine-scaling step of the Mehrotra’s algorithm.

6.1. Space-LBT Solver 79

More specifically, for the generic stage they are:

rR(k)

rA(k)

rC(k)

rS(k)

rQ(k + 1)


=



−
(
S>X(k) +RU(k) +B>p(k) +D>λ(k)

)
−
(
AX(k) +BU(k)−X(k + 1)

)
−
(
CX(k) +DU(k)− δ + t(k)

)
−
(
Λ(k)Θ(k)e(k)

)
−
(
QX(k + 1) + SU(k + 1) + A>p(k + 1) + C>λ(k + 1)− Ip(k)

)


(6.8)

The algorithm involves the block-elimination of every stage, starting from

the last, into the previous one. In order to obtain a more compact structure

of (6.7), it is convenient to eliminate certain search directions. At first, the

slackness variables ∆t are eliminated. Considering the generic stage k, the last

two equations state:

Θ(k)∆λ(k) + Λ(k)∆t(k) = rS(k) (6.9)

C∆X(k) +D∆U(k) + ∆t(k) = rC(k) (6.10)

solving (6.9) for the slackness variable and substituting its expression into

(6.10), it is easy to obtain

C∆X(k) +D∆U(k) + Λ−1(k)
(
rS(k)−Θ(k)∆λ(k)

)
= rC(k) (6.11)

The new terms Z(k) = −Λ−1(k)Θ(k) and rZ(k) = rC(k) − Λ−1(k)rS(k) are

introduced and therefore, equation (6.11) becomes

C∆X(k) +D∆U(k) + Z(k)λ(k) = rZ(k) (6.12)

Due to the conditions (6.5) and (6.6), the matrices Λ(k) and Θ(k) are positive

semidefinite, and therefore invertible. On the other hand, it is possible to invert

those matrices only far enough from the optimal solution because, in that point,

the KKT conditions have to be satisfied and thus Λ(k)Θ(k) = 0 has to hold.

This is the reason why in Section 5.2.2 the concept of inexact Newton’s method

was introduced, meaning that matrices Λ(k) and Θ(k) should never be null (or

values too close to zero) otherwise it would be impossible to invert them. We

will see that the algorithm has to stop to iterate before reaching the theoretical

optimal solution, resulting in a less accurate (but still acceptable) one.

80 Proposed solvers for LBT systems

Regarding the generic k-th stage, the term ∆t(k) has been eliminated. In

particular, the system (6.7) takes the more compact form:



. . .

−I · · · Q S A> C>

S> R B> D>

A B 0 0 −I

C D 0 Z(k)
. . .





...

∆p(k − 1)
...

∆X(k)

∆U(k)

∆p(k)

∆λ(k)

∆X(k + 1)
...



=



...

rQ(k)

rR(k)

rA(k)

rZ(k)
...


(6.13)

With the same procedure, the terms ∆λ may be eliminated as well. Specif-

ically, solving (6.12) for ∆λ(k), follows that:

∆λ(k) = Z−1(k)
(
rZ(k)− C∆X(k)−D∆U(k)

)
where Z(k)−1 = −Λ(k)Θ−1(k). The term ∆λ(k) can be substituted only into

the first two equations of (6.13), and they become:

Q∆X(k) + S∆U(k) + A>∆p(k)

+ C>Z−1(k)
(
rZ(k)− C∆X(k)−D∆U(k)

)
= r(k)Q (6.14)

S>∆X(k) +R∆U(k) +B>∆p(k)

+D>Z−1(k)
(
rZ(k)− C∆X(k)−D∆U(k)

)
= r(k)R (6.15)

After few calculations, defining the matrices

Q̃(k) = Q− C>Z−1(k)C

S̃(k) = S − C>Z−1(k)D

S̃(k)> = S> −D>Z−1(k)C

R̃(k) = R−D>Z−1(k)D

r̃Q(k) = rQ(k)− C>Z−1(k)rZ(k)

r̃R(k) = rR(k)−D>Z−1(k)rZ(k)

6.1. Space-LBT Solver 81

the equations (6.14) and (6.15) take the form

Q̃∆X(k) + S̃∆U(k) + A>∆p(k) = r̃Q(k) (6.16a)

S̃>∆X(k) + R̃∆U(k) +B>∆p(k) = r̃R(k) (6.16b)

Eventually, after the elimination of the Lagrangian multipliers of the in-

equality constraints and their slack variables, the linear system (6.7) takes the

more compact form:



R̃(0) B>

B 0 −I

−I Q̃(1) S̃(1) A>

S̃>(1) R̃(1) B>

A B 0 −I

−I . . .

Q





∆U(0)

∆p(0)

∆X(1)

∆U(1)

∆p(1)

∆X(2)
...

∆X(T)



=



r̃R(0)

rA(0)

r̃Q(1)

r̃R(1)

rA(1)

r̃Q(2)
...

rQ(T)



(6.17)

Note that, the weight matrices Q, Q, R and S has been assumed to be time-

invariant, but, due to the elimination of the variables ∆t and ∆λ, the matrices

Q̃(k), R̃(k) and S̃(k) are time-varying.

Only the last stage remained unchanged, since it is only composed by the

equation −I∆p(T − 1) +Q∆X(T) = rQ(T). This is the starting point for the

recursive algorithm. Basically, the aim is to block-eliminate every stages into

the previous one with a procedure similar to the elimination of the variables

∆t and ∆λ. Such procedure is called backward recursion, and it ends when all

the stages are block-reduced into the first one. Afterwards, starting from the

first stage, all the search directions ∆ will be found by means of the so-called

forward recursion.

In the following, the backward recursion is explained in detail. Let consider

82 Proposed solvers for LBT systems

the T -th and the (T − 1)-th stage:



. . .

−I Q̃(T − 1) S̃(T − 1) A>

S̃>(T − 1) R̃(T − 1) B>

A B 0 −I

−I Π(T)





...

∆p(T − 2)

∆X(T − 1)

∆U(T − 1)

∆p(T − 1)

∆X(T)


=



...

r̃Q(T − 1)

r̃R(T − 1)

rA(T − 1)

π(T)


(6.18)

Regarding the equation of the last stage, the weight matrix and the corre-

sponding right-hand term have been renamed as Q = Π(T) and rQ(T) = π(T)

respectively. As a result, the following expression for ∆X(T) holds:

∆X(T) = Π−1(T)
(
π(T) + ∆p(T − 1)

)
(6.19)

The block-elimination of the last stage into the previous one can be simply

done by substituting ∆X(T) into the last equation of the (T −1)-th stage, and

it results in this:

A∆X(T − 1) +B∆U(T − 1)− Π−1(T)∆p(T − 1) = rπ(T − 1) (6.20)

where

rπ(T − 1) = rA(T − 1) + Π−1(T)π(T)

The linear system (6.18) becomes:



. . .

−I Q̃(T − 1) S̃(T − 1) A>

S̃>(T − 1) R̃(T − 1) B>

A B −Π−1(T)





...

∆p(T − 2)

∆X(T − 1)

∆U(T − 1)

∆p(T − 1)


=



...

r̃Q(T − 1)

r̃R(T − 1)

rπ(T − 1)


(6.21)

The last block has been eliminated, but in order to find the recursive law it is

necessary to eliminate also the (T − 1)-th stage into the (T − 2)-th one.

6.1. Space-LBT Solver 83

The first variable to cancel out is ∆p(T − 1), that is expressed as:

∆p(T − 1) = Π(T)
[
A∆X(T − 1) +B∆U(T − 1)− rΠ(T − 1)

]
Taking this expression and putting it into the first and the second equation of

(6.21), it follows:

−∆p(T − 2) +
[
Q̃(T − 1) + A>Π(T)A

]
∆X(T − 1)+[

S̃(T − 1) + A>Π(T)B
]
∆U(T − 1) = rQ(T − 1)[

R̃(T − 1) +B>Π(T)B
]
∆U(T − 1)+[

S̃(T − 1)> +B>Π(T)A
]
∆X(T − 1) = rR(T − 1)

Defining the matrices

Q(T − 1) =
[
Q̃(T − 1) + A>Π(T)A

]
R(T − 1) =

[
R̃(T − 1) +B>Π(T)B

]
S(T − 1) =

[
S̃(T − 1) + A>Π(T)B

]
S(T − 1)> =

[
S̃(T − 1)> +B>Π(T)A

]
rR(T − 1) = r̃R(T − 1) +B>Π(T)rπ(T − 1)

rQ(T − 1) = r̃Q(T − 1) + A>Π(T)rπ(T − 1)

the (T − 1)-th stage (6.21) takes the following form:


. . .

−I Q(T − 1) S(T − 1)

S
>

(T − 1) R(T − 1)




...

∆p(T − 2)

∆X(T − 1)

∆U(T − 1)

 =


...

rQ(T − 1)

rR(T − 1)

 (6.22)

Eventually, solving the second equation of (6.22) for ∆U(T − 1), we obtain:

∆U(T − 1) = R
−1

(T − 1)
(
rR(T − 1)− S(T − 1)>∆X(T − 1)

)
Inserting ∆U(T − 1) into the first one and defining

Π(T − 1) = Q(T − 1)− S(T − 1)R
−1

(T − 1)S(T − 1)> (6.23a)

84 Proposed solvers for LBT systems

π(T − 1) = rQ(T − 1)− S(T − 1)R
−1

(T − 1)rR(T − 1) (6.23b)

it follows that

−∆p(T − 2) + Π(T − 1)∆X(T − 1) = π(T − 1) (6.24)

The block-elimination of the (T−1)-th stage has been performed. More specif-

ically, the system (6.18), can be written as:



. . .

−I Q̃(T − 2) S̃(T − 2) A>

S̃>(T − 2) R̃(T − 2) B>

A B 0 −I

−I Π(T − 1)





...

∆p(T − 3)

∆X(T − 2)

∆U(T − 2)

∆p(T − 2)

∆X(T − 1)


=



...

r̃Q(T − 2)

r̃R(T − 2)

rA(T − 2)

π(T − 1)


Highlighting the fact that expanding (6.23a), it becomes:

Π(k − 1) =
(
Q̃(k − 1) + A>Π(k)A

)
−
(
S̃(k − 1) + A>Π(k)B

)
(
R̃(k − 1) +B>Π(k)B

)−1(
S̃(k − 1)> +B>Π(k)A

)
(6.25)

Note that equation (6.25) is the well-known discrete-time Riccati equation for

time-varying weighting matrices. Indeed, this block-elimination procedure can

be applied to all the others upstream stages, until the first one is reached and

the system is completely reduced, i.e.
R̃(0) B> 0

B 0 −I

0 −I Π(1)




∆U(0)

∆p(0)

∆X(1)

 =


r̃R(0)

rA(0)

π(1)


After the backward recursive procedure it is possible to find the search

directions ∆U(k), ∆p(k), ∆X(k), ∆λ(k) and ∆t(k), through the forward al-

gorithm. Basically, by means of the relationships used before to apply the

block-eliminations, one can restore every eliminated block finding the search

directions. At first the equations of the first stage are solved and then all the

6.1. Space-LBT Solver 85

others, with the equations resumed below:

First stage (0)



∆U(0) =
(
R̃(0) +B>Π(1)B

)−1

(
r̃R(0) +B>Π(1)rA(0) +B>π(1)

)
∆p(0) = Π(1)B∆U(0)− Π(1)rA(0)− π(1)

∆X(1) = Π−1(1)∆p(0) + Π−1(1)π(1)

∆λ(0) = Z−1(0)
(
rZ(0)−D∆U(0)

)
∆t(0) = Λ−1(0)

(
rS(0)−Θ(0)∆λ(0)

)

(6.26)

Generic stage (k)



∆U(k) =
(
R̃(k) +B>Π(k + 1)B

)−1

[
rR(k)−

(
S̃>(k) +B>Π(k)A

)
∆X(k)

]
∆X(k + 1) = A∆X(k) +B∆U(k)− rA(k)

∆p(k) = Π(k + 1)∆X(k + 1)− π(k + 1)

∆λ(k) = Z−1(k)
(
rZ(k)− C∆X(k)−D∆U(k)

)
∆t(k) = Λ−1(k)

(
rS(k)−Θ(k)∆λ(k)

)

(6.27)

Last stage (T) ∆X(T) = Π−1(T)
(
π(T) + ∆p(T − 1)

)
(6.28)

Regarding the forward procedure, one might notice that actually, solutions on

a time instant k relies on Π(k + 1). For this reason, a proper initialization of

the matrix Π(T) is necessary.

Centering-corrector step

To complete a full iteration, a centering step is needed. The algorithm used

to find the search directions in the centering phase is exactly the same used

for the affine one. The only difference lies in the definition of the right-hand

86 Proposed solvers for LBT systems

terms of the linear system (6.7). More specifically, they are defined as:

rR(k)

rA(k)

rC(k)

rS(k)

rQ(k + 1)


=



0

0

0

−∆Θaff(k)∆Λaff(k)e+ σµe

0


(6.29)

The terms ∆Θaff and ∆Λaff are diagonal matrices containing all the ∆ti(k)

and ∆λi(k) respectively, which are obtained from the previous affine step (as

detailed explained in Section 5.2). In order to compute the duality gap, all the

terms λ(k) and t(k), obtained from the previous IPM’s iteration (τ − 1), have

to be stacked into two different vectors:

λ = [λ(0)>, λ(1)>, . . . , λ(T − 1)>]> (6.30)

t = [t(0)>, t(1)>, . . . , t(T − 1)>]> (6.31)

the duality gap is thus defined by:

µ =
(
λ>t

)
/ν (6.32)

where ν = Tnin is the total number of inequality constraints along the predic-

tion horizon.

Once the duality gap parameter is defined, the centering parameter σ has

to be calculated. Likewise to (6.30), all the affine directions related to the

Lagrangian multipliers of the inequality constraints and the respective slack

variables have to be stacked in vectors:

∆λaff = [∆λaff(0)>,∆λaff(1)>, . . . ,∆λaff(T − 1)>]>

∆taff = [∆taff(0)>,∆taff(1)>, . . . ,∆taff(T − 1)>]>

As explained in Section 5.2, the maximum affine steplength αaff has to be found.

In particular, it represents the maximum steplength that may be achieved along

6.1. Space-LBT Solver 87

the affine-scaling direction. It is used to compute the affine duality gap µaff

attained from this full step to the boundary:

αaff = argmax
[
α ∈ [0, 1] | (λ, t) + α(∆λaff,∆taff) ≥ 0

]
(6.33)

µaff =
[
(λ + αaff∆λaff)>(t + αaff∆taff)

]
/ν (6.34)

Finally the centering parameter σ is selected as:

σ = (µaff/µ)3 (6.35)

At this point, both the duality gap and the centering parameters have been

calculated so that it is possible to continue with the centering-corrector step.

Henceforward, the procedure is identical to the affine-scaling step. Indeed,

given the generic IPM iteration τ , the same algorithm has to be applied two

times: one for the affine step and another one for the centering step, varying

only the right-hand terms. Moreover, for each of these two steps, the solver

has to perform both a backward recursion and a forward recursion procedure.

The whole process is illustrated by Figure 6.1.

Affine-Scaling step Centering-Corrector step

Backward Forward Backward Forward
1-st

stage

2-nd
stage

3-rd
stage

Last
stage

Last
stage

3-rd
stage

2-nd
stage

1-st
stage

Figure 6.1: Affine and Centering steps

88 Proposed solvers for LBT systems

Maximum Steplenght

After the centering step, the generic IPM’s iteration can be considered con-

cluded. The total steplength is thus defined:

(
∆X(k),∆U(k),∆p(k),∆λ(k),∆t(k)

)
=(

∆X(k)aff,∆U(k)aff,∆p(k)aff,∆λ(k)aff,∆t(k)aff

)
+(

∆X(k)cent,∆U(k)cent,∆p(k)cent,∆λ(k)cent,∆t(k)cent

)
(6.36)

However this steplength is further reduced of a factor α in order to avoid the

violation of the conditions (6.5) and (6.6). More specifically, both the vectors

containing the new ∆λ and ∆t are created:

∆λ = [∆λ(0)>,∆λ(1)>, . . . ,∆λ(T − 1)>]>

∆t = [∆t(0)>,∆t(1)>, . . . ,∆t(T − 1)>]>

A reducing coefficient αmax is selected as:

αmax = argmax
[
α ∈ [0, 1] | (λ, t) + α(∆λ,∆t) ≥ 0

]
(6.37)

Eventually, setting the parameter γ ∈ (0, 1] (usually very close to 1) which

scales αmax, the effective steplength reduction is defined by:

α = αmaxγ (6.38)

Let τ be the current IPM’s step, we can update the vectors of the search

directions for the next IPM’s iteration through these equations:

Xτ+1(k) = Xτ (k) + α∆X(k)

U τ+1(k) = U τ (k) + α∆U(k)

pτ+1(k) = pτ (k) + α∆p(k) (6.39)

λτ+1(k) = λτ (k) + α∆λ(k)

tτ+1(k) = tτ (k) + α∆t(k)

6.1. Space-LBT Solver 89

Stopping Condition

Since the optimization problem considered is convex, then the KKT conditions

are both necessary and sufficient for optimality, so if the solution exits it is

unique. With a feasible problem, we expect that the search directions become

smaller at each iteration because the algorithm is converging to the optimal

solution. In the optimal point this condition holds:

λj(k)tj(k) = 0 ∀j = 1, . . . , nin k = 1, . . . , T

From a numerical point of view, since the Mehrotra’s algorithm is an inexact

IPM method, this condition is not reached in practice. Moreover, getting

closer to the optimal solution, the matrices Λ−1(k) and Θ−1(k) become ill

conditioned. For these reasons a stopping condition has been enforced for the

algorithm, which selects a solution that is close enough to the optimal one.

One can use different types of stopping conditions. In our simulations we set

a threshold on the terms λ and t

λ>t ≤ ε (6.40)

such that while their product is bigger than ε = 10−5, the algorithm will

continue to iterate.

6.1.3 Complexity

The aim of this section is to show how the aforementioned solver for the MPC

control problem, reduces significantly its computational effort compared with

a standard solver. The complexity in the resolution of optimization problems

like (6.4) with classical methods scales cubically with the number of subsystems

N and the prediction horizon T characterizing the system.

As discussed in [2], the presented algorithm exploits the structure of the

linearized system (6.17) which is banded and its bandwidth is independent on

T . However, it grows linearly with N . In fact the larger N is, the bigger the

dimensions of the matrices of the generic stage are. Instead, the dimension of

the system (i.e., number of stages) rises with the prediction horizon T .

90 Proposed solvers for LBT systems

In the backward recursion the computational effort grows cubically with

N , owing to the inversion of the term Π(k), as shown in (6.19). At the same

time it grows linearly with T due to the 2T recursions (backward and forward)

made at each IPM iteration. For these reasons the algorithm complexity is

O(TN3).

6.1. Space-LBT Solver 91

Algorithm 2 Space-LBT Solver
1: Input:

Ai, Bi, Ei, Ci, Di, ci, di, Qi, Ri, Si, N, T
Initial guess (X0(k), U0(k), p0(k), λ0(k), t0(k))
Tollerance ε ∈ [10−5, 10−3]

2: Output:
Optimal solution (X∗(k), U∗(k), p∗(k), λ∗(k), t∗(k))

3: Procedure:
4: Stacking the variables according to the Space-LBT formulation in order to

obtain the matrices A, B, C, D, δ, Q, R, S used in (6.1), (6.2) and(6.3)
5: while λ>t > ε do (stopping condition, τ = current iteration)
6: Affine-Scaling step:
7: Set the right-hand side as in (6.8)
8: Set Π(T) and π(T)

9: for k : (T − 1)→ 1 do (Backward recursions)
10: Block elimination of ∆t(k), ∆λ(k) and ∆X(k + 1)

11: Calculation of Π(k) and π(k) through (6.23a) and (6.23b)
respectively

12: for k : 0→ (T − 1) do (Forward recursion)
13: Calculation of ∆Uaff(k), ∆paff(k), ∆λaff(k), ∆taff(k), ∆Xaff(k + 1)

using (6.26) if k = 0 or (6.27) and (6.28) else

14: Centering-Corrector step:
15: Set the duality gap µ (6.32)
16: Set the affine duality gap µaff (6.34) using αaff (6.33)
17: Set the centering parameter σ (6.35)
18: Set the right-hand side as in (6.29)
19: Set Π(T) and π(T)

20: for k : (T − 1)→ 1 do (Backward recursions)
21: Block elimination of ∆t(k), ∆λ(k) and ∆X(k + 1)

22: Calculation of Π(k) and π(k) through (6.23a) and (6.23b)
respectively

23: for k : 0→ (T − 1) do (Forward recursion)
24: Calculation of ∆Ucent(k), ∆pcent(k), ∆λcent(k), ∆tcent(k),

∆Xcent(k + 1) using (6.26) if k = 0 or (6.27) and (6.28) else

25: Maximum steplength:
26: Obtain (∆X(k),∆U(k),∆p(k),∆λ(k),∆t(k)) summing the affine and

the centering contributes as done in (6.36)
27: Set αmax (6.37)
28: Choose γ ∈ (0, 1]

29: Set α (6.38)
30: Update the variables (Xτ+1(k), U τ+1(k), pτ+1(k), λτ+1(k), tτ+1(k))

through (6.39)

92 Proposed solvers for LBT systems

6.2 Time-LBT Solver

The solver introduced in Section 6.1 refers to the Time-LBT formulation dis-

cussed in Section 2.3.2. In this case the variables of each subsystem are stacked

all across the prediction horizon, resulting in a different formulation of the op-

timization problem. The main contribution of this work is to show that, if

certain properties are guaranteed (i.e., cascade structure of the system, sep-

arability of cost function and constraints across space), it will be possible to

solve a quadratic programming problem spatially, with the same procedure of

the solver presented in Section 6.1, which applies the dynamic programming

principle with its classical formulation (i.e., temporal-wise).

More specifically, we consider systems of type (2.22)

Xi = Γix̂i + ΩiUi + ΨiXi−1 (6.41)

Constraints on states and inputs (2.15) have been rewritten in a compact

form (2.23) and the result is the following:

CiXi +DiUi ≤ δi (6.42)

Weight matrices for the optimization problem have already been introduced

in Section 2.3.2. However, it is again appropriate to consider the possible

introduction of cross-terms in the cost function design for increasing generality.

In particular, the matrix which takes into account the cross-terms is structured

as:

Si =



0 0 · · · 0

0 Si
.

... 0

0 · · · 0 Si

0 · · · · · · 0


Note that the structure of matrix Si highlights the fact that the vector Xi

contains T + 1 elements, while the vector Ui contains instead T of them. This

remarks that the matrix of cross-terms is not supposed to be diagonal.

6.2. Time-LBT Solver 93

The cost function (2.25) becomes as follows:

J({Xi}Ni=1, {Ui}Ni=1) =
1

2

N∑
i=1

(
X>i QiXi + U>i RiUi + 2X>i SiUi

)
(6.43)

where Qi ∈ Rpi×pi , Ri ∈ Rli×li and Si ∈ Rpi×li .

As a result, the minimization problem takes the form

min
Xi,Ui

J({Xi}, {Ui}) i = 1 . . . N

subject to xi(0) = x̂i (6.44)

Xi = Γixi(0) + ΩiUi + ΨiXi−1

CiXi +DiUi ≤ δi

The equality constraint xi(0) = x̂i, enforces the decision variable xi(0) to

be equal to the state measurement taken at the current time instant.

6.2.1 KKT Conditions

The Lagrangian function L has to be calculated as the sum of contributions

from each subsystem:

L =
N∑
i=1

Li

where the single term Li is

Li =
1

2

(
X>i QiXi + U>i RiUi + 2X>i SiUi

)
+ p>i (−Xi + Γix̂i + ΩiUi + ΨiXi−1) + λ>i (CiXi +DiUi − δi)

In particular, pi ∈ Rpi and λi ∈ Rγi are the Lagrange multipliers of the equal-

ity and inequality constraints, respectively. Setting the first derivative of the

Lagrangian function with respect to the decision variables to zero, the non

94 Proposed solvers for LBT systems

linear KKT equations are obtained:

generic stage



∂L
∂Xi

= QiXi + SiUi − pi + C>i λi + Ψ>i+1pi+1 = 0

∂L
∂Ui

= RiUi + S>i Xi + Ω>i pi +D>i λi = 0

∂L
∂pi

= −Xi + Γix̂i + ΩiUi + ΨiXi−1 = 0

∂L
∂λi

= CiXi +DiUi − δi + ti = 0

ΛiΘie = 0

(λi, ti) ≥ 0 (6.45)

A slack term ti has been introduced such that the following relationships hold:

ti = −CiXi −DiUi + δi i = 1, . . . , N

λi,jti,j = 0 i = 1, . . . , N ; j = 1, . . . , γi

Moreover, Λi and Θi matrices are defined such that they are positive semidef-

inite.

Λi =


λi,1

λi,2
. . .

λi,γi

 Θi =


ti,1

ti,2
. . .

ti,γi

 e =


1

1
...

1


Note that in this case, the KKT conditions have the same structure for each

subsystem, and they are non linear, due to the presence of ΛiΘie = 0.

6.2.2 Solver

Once the non linear KKT conditions have been defined, the IPM requires

the solution of a linear system of equations. Therefore, such conditions are

6.2. Time-LBT Solver 95

linearized, and the following system is obtained:



Q1 S1 −I C>1 0 Ψ>2

S>1 R1 Ω>1 D>1 0

−I Ω1 0 0 0

C1 D1 0 0 I

0 0 0 Θ1 Λ1

Q2 S2 −I C>2 0

S>2 R2 Ω>2 D>2 0

Ψ2 −I Ω2 0 0 0

C2 D2 0 0 I

0 0 0 Θ2 Λ2

. . .





∆X1

∆U1

∆p1

∆λ1

∆t1

∆X2

∆U2

∆p2

∆λ2

∆t2
...



=



rQ1

rR1

rA1

rC1

rS1

rQ2

rR2

rA2

rC2

rS2
...


(6.46)

The multistaged system (6.46) is now composed by N stages. In a similar

way, the system (6.7) regarding the Space-LBT solver, was composed by T

stages. However, also in this case, each stage is coupled with the previous and

the next one through the terms Ψi and Ψ>i+1 respectively. Moreover, the first

stage and the last one have only one interconnection term (i.e., Ψ2 and ΨN

respectively) due to the cascade structure of the systems taken into account.

This will allow us to apply recursive backward and forward procedures in a

similar fashion of the previous algorithm.

In the following, the Mehrotra’s predictor corrector algorithm is applied to

solve the optimization problem.

Affine-scaling step

The choice of the right-hand side is such that the non-linear KKT conditions

are satisfied, for the current IPM iteration. It is widely described in Section

96 Proposed solvers for LBT systems

5.2 and the result is the following:

rQi

rRi

rAi

rCi

rSi


=



−(QiXi + SiUi − pi + C>i λi + Ψ>i+1pi+1)

−(RiUi + S>i Xi + Ω>i pi +D>i λi)

−(−Xi + Γix̂i + ΩiUi + ΨiXi−1)

−(CiXi +DiUi − δi + ti)

−(ΛiΘie)


(6.47)

In order to write the system in a more convenient form, some variable are

eliminated. The generic i-th stage of (6.46) is:



Qi Si −I C>i 0 · · · Ψ>i+1

S>i Ri Ω>i D>i 0

Ψi · · · −I Ωi 0 0 0

Ci Di 0 0 I

0 0 0 Θi Λi





∆Xi−1

...

∆Xi

∆Ui

∆pi

∆λi

∆ti
...

∆pi+1



=



rQi

rRi

rAi

rCi

rSi


(6.48)

The first elimination concerns the terms ∆ti . Since Λi is a positive def-

inite diagonal matrix according to a suitable initialization of the Lagrangian

multipliers, it is possible to invert it obtaining:

∆ti = Λ−1
i (rSi −Θi∆λi) (6.49)

Substituting (6.49) into the equation

Ci∆Xi +Di∆Ui + ∆ti = rCi

we obtain

Ci∆Xi +Di∆Ui + Zi∆λi = rZi (6.50)

where Zi = −Λ−1
i Θi and rZi = rCi − Λ−1

i rSi .

6.2. Time-LBT Solver 97

The stage (6.48) takes the following form:


Qi Si −I C>i · · · Ψ>i+1

S>i Ri Ω>i D>i
Ψi · · · −I Ωi 0 0

Ci Di 0 Zi





∆Xi−1

...

∆Xi

∆Ui

∆pi

∆λi
...

∆pi+1



=


rQi

rRi

rAi

rZi

 (6.51)

The second variable that has to be eliminated is the Lagrange multiplier

∆λi of the inequality constraints. From equation (6.50) it can be expressed

by:

∆λi = Z−1
i (rZi − Ci∆Xi −Di∆Ui) (6.52)

Substituting such expression into the first two equations of (6.51), they become

as follows:

(Qi − C>i Z−1
i Ci)∆Xi + (Si − C>i Z−1

i Di)∆Ui −∆pi

+ Ψi+1∆pi+1 = rQi − C>i Z−1
i rZi

(S>i −D>i Z−1
i Ci)∆Xi + (Ri −D>i Z−1

i Di)∆Ui + Ω>i ∆pi

= rRi −D>i Z−1
i rZi

Let us define the terms

Q̃i = (Qi − C>i Z−1
i Ci) R̃i = (Ri −D>i Z−1

i Di) S̃i = (Si − C>i Z−1
i Di)

r̃Qi = rQi − C>i Z−1
i rZi r̃Ri = rRi −D>i Z−1

i rZi

Since Z is invertible, we obtain:

Q̃i∆Xi + S̃i∆Ui −∆pi + Ψi+1∆pi+1 = r̃Qi

S̃>i ∆Xi + R̃i∆Ui + Ω>i ∆pi = r̃Ri

98 Proposed solvers for LBT systems

Therefore, the generic stage takes its final form, which is shown below:


Q̃i S̃i −I · · · Ψ>i+1

S̃>i R̃i Ω>i

Ψi · · · −I Ωi 0





∆Xi−1

...

∆Xi

∆Ui

∆pi
...

∆pi+1


=


r̃Qi

r̃Ri

rAi

 (6.53)

Using the more convenient structure (6.53), finally it is possible to rewrite

the whole linear system (6.46) as:



Q̃1 S̃1 −I Ψ>2

S̃>1 R̃1 Ω>1

−I Ω1 0

Q̃2 S̃2 −I Ψ>3

S̃>2 R̃2 Ω>2

Ψ2 −I Ω2 0

Q̃3 S̃3 −I

S̃>3 R̃3 Ω>3

Ψ3 −I Ω3 0
. . .





∆X1

∆U1

∆p1

∆X2

∆U2

∆p2

∆X3

∆U3

∆p3

...



=



r̃Q1

r̃R1

rA1

r̃Q2

r̃R2

rA2

r̃Q3

r̃R3

rA3
...



(6.54)

Once the linear system of equation (6.54) has been obtained, the aim is to

find a relationship between consecutive stages with an algorithm similar to the

one used in [2]. Starting from the final stage (N -th), once a relationship holds

between that subsystem and the previous one, by induction arguments it is

possible to conclude that the same relationship holds for all the other stages.

This is possible because in view of the fact that all the N stages have the same

6.2. Time-LBT Solver 99

structure. Specifically, the last stage takes the following form:



. . .

Q̃N S̃N −I

S̃>N R̃N ΩN

ΨN · · · −I ΩN 0





∆XN−1

...

∆XN

∆UN

∆pN


=



...

r̃QN

r̃RN

rAN

 (6.55)

At first, the last stage (6.55) has to be reduced to a single equation, in

order to perform the block-eliminations. More specifically, the two equations

without the coupling term ΨN are resolved for ∆XN and ∆UN :

Q̃N∆XN + S̃N∆UN −∆pN = r̃QN

⇒ ∆XN = Q̃−1
N

(
r̃QN − S̃N∆UN + ∆pN

)

S̃>N∆XN + R̃N∆UN + Ω>N∆pN = r̃RN

⇒ ∆UN = R̃−1
N

(
r̃RN − S̃>N∆XN − Ω>N∆pN

)
Solving the linear system of two equations in two unknown variables, the ex-

pressions of ∆XN and ∆UN are calculated as

∆XN =
(
Q̃N − S̃NR̃−1

N S̃>N
)−1[

r̃QN − S̃N R̃
−1
N r̃RN +

(
I + S̃NR̃−1

N Ω>N

)
∆pN

]

∆UN =
(
R̃N − S̃>NQ̃−1

N S̃N
)−1[

r̃RN − S̃>NQ̃−1
N r̃QN −

(
Ω>N + S̃>NQ̃−1

N

)
∆pN

]

and they are ready to be substituted into the third equation of (6.55). The

final result is the following simple equation:

ΨN∆XN−1 − ΠN∆pN = πN (6.56)

where

ΠN =
(
Q̃N − S̃NR̃−1

N S̃
>
N

)−1(
I + S̃NR̃−1

N Ω>N

)
+

ΩN

(
R̃N − S̃>NQ̃−1

N S̃N
)−1(

Ω>N + S̃>NQ̃−1
N

)
(6.57a)

100 Proposed solvers for LBT systems

πN = rAN +
(
Q̃N − S̃NR̃−1

N S̃
>
N

)−1(
r̃QN − S̃NR̃

−1
N r̃RN

)
−

ΩN

(
R̃N − S̃>NQ̃−1

N S̃N
)−1

r̃RN − S̃>NQ̃−1
N r̃QN (6.57b)

The similarity in the notation of (6.56) compared with (6.24) is remarkable.

In fact, they both represent the recursive equation which make the elimination

of a block into the previous one possible. In particular, in the solver discussed

in Section 6.1, the equation (6.25) highlights the fact that such backward

recursion was performed by using a Riccati recursive law. On the other hand,

(6.57a) shows that a backward recursion is still possible in (6.54), even though

it takes a slightly different form (i.e., not Riccati equation anymore).

Regarding the last two stages, the resulting structure is the following:



. . .

Q̃N−1 S̃N−1 −I Ψ>N

S̃>N−1 R̃N−1 Ω>N−1

−I ΩN−1 0

ΨN −ΠN





...

∆XN−1

∆UN−1

∆pN−1

∆pN


=



...

r̃QN−1

r̃RN−1

rAN−1

πN


In order to check if the recursive law holds for each backward iteration, one

last elimination of the variable ∆pN is needed:

∆pN = Π−1
N

(
ΨN∆XN−1 − πN

)
(6.58)

Equation (6.58) is used in the first equation of the (N − 1)-th stage, and it

becomes:

(
Q̃N−1 + Ψ>NΠ−1

N ΨN

)
∆XN−1 + S̃N−1∆UN−1 −∆pN−1 = r̃QN−1 + Ψ>NΠ−1

N πN

Defining the new terms

Q*
N−1 = Q̃N−1 + Ψ>NΠ−1

N ΨN r∗QN−1 = r̃QN−1 + Ψ>NΠ−1
N πN

6.2. Time-LBT Solver 101

the (N − 1)-th stage takes the final form:



. . .

Q*
N−1 S̃N−1 −I

S̃>N−1 R̃N−1 Ω>N−1

ΨN−1 · · · −I ΩN−1 0





...

∆XN−2

...

∆XN−1

∆UN−1

∆pN−1


=



...

r∗QN−1

r̃RN−1

rAN−1

 (6.59)

It is possible to see that the structure in (6.59) is identical to the structure

in (6.55): they only differ in the matrix Q̃N which becomes Q*
N−1, and the

right-hand term r̃QN which becomes r∗QN−1 . Therefore, the conclusion is that

the same recursive law is applicable for each stage from i = N to i = 1. The

first stage, after all the block-eliminations, is
Q∗1 S̃1 −I

S̃>1 R̃1 Ω>1

−I Ω1 0




∆X1

∆U1

∆p1

 =


r∗Q1

r̃R1

rA1


Eventually, it is further reduced to the single equation −Π1∆p1 = π1, which is

used to calculate ∆p1.

At the end of all the backward recursions, the forward procedure is applied

to find the search directions, starting from the first stage toward the last one.

More specifically, the solution of the first stage is given by:

∆p1 = −Π−1
1 π1

∆U1 =
(
R̃1 − S̃>1 Q∗−1

1 S̃1

)−1[
r̃R1 − S̃>1 Q∗−1

1 r∗Q1 −
(
Ω>1 + S̃>1 Q∗−1

1

)
∆p1

]
∆X1 = Q∗−1

1

(
r∗Q1 + ∆p1 − S̃1∆U1

)
∆λ1 = Z−1

1

(
rZ1 − C1∆X1 −D1∆U1

)
∆t1 = Λ−1

1

(
rS1 −Θ1∆λ1

)
(6.60)

The expressions in (6.60) can be generalized for all the other stages considering

that the only thing that changes is how we calculate the term ∆pi since it is

102 Proposed solvers for LBT systems

present the coupling term with the previous stage Ψi.

∆pi = −Π−1
i

(
Ψi∆Xi−1 − πi

)
∆Ui =

(
R̃i − S̃>i Q∗−1

i S̃i
)−1[

r̃Ri − S̃>i Q∗−1
i r∗Qi −

(
Ω>i + S̃>i Q∗−1

i

)
∆pi

]
∆Xi = Q∗−1

i

(
r∗Qi + ∆pi − S̃i∆Ui

)
∆λi = Z−1

i

(
rZi − Ci∆Xi −Di∆Ui

)
∆ti = Λ−1

i

(
rSi −Θi∆λi

)
(6.61)

Centering-Corrector step

The Mehrotra’s predictor corrector algorithm requires a centering step where

the right-hand side is:

rQi

rRi

rAi

rCi

rSi


=



0

0

0

0

−∆Θi,aff∆Λi,affe+ σµe


(6.62)

The duality gap µ and the centering parameter σ are calculated in the same

way as done in Section 6.1, but in this case the vectors λ and t are stacked

according to the spatial index, instead of the temporal one.

λ = [λ>1 , λ
>
2 , . . . , λ

>
N]>

t = [t>1 , t
>
2 , . . . , t

>
N]>

(6.63)

The search directions for the centering step are then calculated using the same

algorithm of the affine one (i.e., backward and forward recursions). Eventually,

the two contributions are summed and the solution of the τ -th IPM iteration

is obtained:(
∆Xi,∆Ui,∆pi,∆λi,∆ti

)
=
(

∆Xi,aff,∆Ui,aff,∆pi,aff,∆λi,aff,∆ti,aff

)
+
(

∆Xi,cent,∆Ui,cent,∆pi,cent,∆λi,cent,∆ti,cent

)
(6.64)

6.2. Time-LBT Solver 103

Maximum steplength

The solution (6.64) represents the total steplength achievable but, as explained

in (5.2.1), it is necessary to reduce the steplength with a scaling factor α.

Eventually the updated variables are:

Xτ+1
i = Xτ

i + α∆Xi

U τ+1
i = U τ

i + α∆Ui

pτ+1
i = pτi + α∆pi (6.65)

λτ+1
i = λτi + α∆λi

tτ+1
i = tτi + α∆ti

They will be used for the next IPM iteration (τ + 1).

6.2.3 Complexity

The complexity of the algorithm presented in Section 6.2 is analized as done in

Section 6.1.3, highlighting how the number of subsystems and the prediction

horizon affect differently the computational burden.

The system of linearized KKT conditions (6.54) has a block diagonal struc-

ture similar to (6.17). However, in this case, due to the spatial causality of the

interconnected system, the dimension of the single block is proportional to the

prediction horizon T . On the other hand, the dimension of the system (i.e.,

the number of stages) corresponds to the number of subsystems N .

In the backward recursion the most burdensome computational effort is

required by the inversion of the term Πi, with a complexity which scales cu-

bically to its dimension (i.e., proportional to T). On the other hand, the

complexity also grows linearly with the number of subsystems, since, at each

iteration of the Interior Point Method, 2N recursions (backward and forward)

are performed.

For all the aforementioned reasons, we can expect that the complexity of

such algorithm is O(NT 3), as it will be empirically demonstrated in the next

chapter.

104 Proposed solvers for LBT systems

Algorithm 3 Time-LBT Solver
1: Input:

Ai, Bi, Ei, Ci, Di, ci, di, Qi, Ri, Si, N, T
Initial guess (X0

i , U0
i , p0

i , λ0
i , t0i)

Tollerance ε ∈ [10−5, 10−3]

2: Output:
Optimal solution (X∗i , U∗i , p∗i , λ∗i , t∗i)

3: Procedure:
4: Stacking the variables according to the Time-LBT formulation in order to

obtain the matrices Γi, Ωi, Ψi, Ci, Di, δi, Qi, Ri, Si used in (6.41), (6.42)
and (6.43)

5: while λ>t > ε do (stopping condition, τ = current iteration)
6: Affine-Scaling step:
7: Set thre right-hand side as in (6.47)
8: Set Πi and πi
9: for i : N → 2 do (Backward recursions)

10: Block elimination of ∆ti, ∆λi and ∆pi
11: Calculation of Πi and πi through (6.57a) and (6.57b) respectively

12: for i : 1→ N do (Forward recursion)
13: Calculation of ∆Ui,aff, ∆pi,aff, ∆λi,aff, ∆ti,aff, ∆Xi,aff using (6.60)

if i = 1 or (6.61) else

14: Centering-Corrector step:
15: Set the duality gap µ (6.32)
16: Set the affine duality gap µaff (6.34) using αaff (6.33)
17: Set the centering parameter σ (6.35)
18: Set the right-hand side as in (6.62)
19: Set Πi and πi
20: for i : N → 2 do (Backward recursions)
21: Block elimination of ∆ti, ∆λi and ∆pi
22: Calculation of Πi and πi through (6.57a) and (6.57b) respectively

23: for i : 1→ N do (Forward recursion)
24: Calculation of ∆Ui,cent, ∆pi,cent, ∆λi,cent, ∆ti,cent,

∆Xi,cent using (6.60) if i = 1 or (6.61) else

25: Maximum steplength:
26: Obtain (∆Xi,∆Ui,∆pi,∆λi,∆ti) summing the affine and the centering

contributes as done in (6.64)
27: Set αmax (6.37)
28: Choose γ ∈ (0, 1]

29: Set α (6.38)
30: Update the variables (Xτ+1

i , U τ+1
i , pτ+1

i , λτ+1
i , tτ+1

i) through (6.65)

6.3. Concluding Remarks 105

6.3 Concluding Remarks

The proposed algorithms solve a multistaged system of linear equations (i.e.,

(6.17) and (6.54)) through a recursive method whose efficiency depends on the

number of blocks composing such system and their dimension. In particular,

focusing on the Space-LBT algorithm, it has a complexity which scales as

O(TN3). On the other hand, the Time-LBT algorithm is supposed to have a

complexity which scales as O(T 3N).

In view of this, it is easy to conclude that for systems with a greater num-

ber of subsystems than the prediction horizon (N � T) Time-LBT Solver is

recommended; in the opposite case (T � N) the use of Space-LBT Solver is

suggested. This situation is represented in Figure 6.2.

Therefore, the computational benefits of Time-LBT Solver are remarkable

only for the application on systems which are significantly large in scale.

N

N

N

N

N

N

T T

N >> TT >> N

(a) Space-LBT formulation

T

T

T

T

T

T

N N

T >> NN >> T

(b) Time-LBT formulation

Figure 6.2: Multistaged structures

Chapter 7

Simulations

In this chapter the algorithms presented in Chapter 4 and 6 are applied to

the irrigation network introduced in Chapter 3. All the physical data and the

low level controller parameters are referred to the East Goulburn-30 irrigation

channel in Australia, see Section 3.3. Since this network, being composed by

just four pools, may not have a large scale such that the advantages of the

proposed algorithms are appreciable, where needed we will refer to a channel

with N ≥ 4 pools, modelled as in Chapter 3, with parameters derived from

the real ones.

In Section 7.1 we present the results attained through the application of the

Cooperative Distributed MPC. In Section 7.2 a computational analysis of all

the different algorithms implemented is presented. Eventually, a closed-loop

simulation is carried out.

All the simulations have been performed in the Matlab environment, mak-

ing use, when necessary, of the quadratic optimization function quadprog. The

main index of performance used for comparing the different solutions is the

computational time needed to solve the specific control problem, and it is re-

lated to the computational capacity of the CPU used for the simulations. In

order to obtain comparable results, all the simulations have been carried out

with the same calculator.

108 Simulations

7.1 Application of Cooperative Distributed MPC

In this section, simulations regarding the application of Cooperative Distributed

MPC to the irrigation network are presented. In particular, such technique is

applied making use of both the standard modelization (4.2) and the low order

one (4.4) presented in Chapter 4. More specifically, it will be shown how the

application of the low order model will lead to better computational perfor-

mances. For this reason, the model (4.1) will be discarded for all the subsequent

simulation tests.

7.1.1 Design Parameters

Weight Matrices

The cooperative algorithms result to be very sensitive to the choice of the

weight matrices of the optimization problem (4.7). At first, the weight matrices

for the cooperative algorithm have been set. As discussed in Section 4.2.3,

we will actually minimize the cost function (4.11), and therefore the actual

weights are applied to the outputs yi(k) = Cizi(k). An empirical tuning of

such parameters has been conducted. As a result we notice that

Qyi =


10000

10

10

10

 Ri =
[
1
]

are suitable to obtain good performances. This is due to the fact that the

level (i.e., the first variable) is related to the process, while all the others are

referred to the output of the low-level controllers. For this reason, the classical

normalization of contributes can not be performed due to the non-homogeneous

nature of the system variables. Moreover, the weight matrices related to the

low-level control input variables (i.e., flow-rates) are tuned in order to enhance

the response speed of the system.

7.1. Application of Cooperative Distributed MPC 109

Stopping Conditions

In Section 4.2.2 the cooperative algorithm needs a suitable stopping condition

in order to exit from the negotiation phase and to provide a sub-optimal, but

acceptable, solution. More specifically, the optimal solution is theoretically

reached when, in two consecutive iterations p, holds:

up(k) = up+1(k) k = 0, · · · , T − 1

However, such condition is attained in practice with several iterations. In order

to limit their number, a sub-optimality threshold has to be enforced∥∥∥∥upi (k)− up+1
i (k)

upi (k)

∥∥∥∥2

≤ ε

with ε = 10−10. A further stopping condition on the maximum number of

iterations has been introduced

p ≤ pmax (7.1)

with pmax = 100. This value has been chosen as a secondary stopping condi-

tion. In particular, it is used for security reasons.

7.1.2 Performances Achieved with the Two Models

A simulation is presented in order to show the main differences between the

models introduced for the Cooperative Distributed MPC. In particular, compu-

tational efficiency will be analysed and the best performance obtained through

the low order model will be highlighted. The simulation has been carried out

regarding an irrigation network composed by four pools and with a prediction

horizon T = 10. The receding horizon principle has been applied to the con-

trol variables for a short simulation time equal to 10min with a sampling time

Ts = 1 min.

In Figure 7.1 it is possible to see that both modelizations lead to the same

optimal control sequence. In these simulations the stopping condition (7.1)

has been neglected, since the algorithm which makes use of (4.1) exceeds the

110 Simulations

1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [min]

W
a

te
r−

le
v
e

l
re

fe
re

n
c
e

 [
m

]
Standard Cooperative Model

pool1

pool2

pool3

pool4

1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [min]

W
a

te
r−

le
v
e

l
re

fe
re

n
c
e

 [
m

]

Low order Cooperative Model

pool1

pool2

pool3

pool4

0 5 10 15
0

20

40

60

80

100

120

140

Time [min]

N
°

o
f

It
e

ra
ti
o

n
s
 (

p
)

0 5 10 15

20

40

60

80

100

120

140

Time [min]

N
°

o
f

It
e

ra
ti
o

n
s
 (

p
)

0 5 10 15
0

5

10

15

20

25

30

35

Time [min]

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 [
s
]

0 5 10 15

5

10

15

20

25

30

35

Time [min]

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 [
s
]

Figure 7.1: Comparison between standard and low order cooperative models

maximum number of allowed iterations. Note that, in case the standard mod-

elization is used, the number of iterations p reaches an order of magnitude

higher than the case when the low-order model is employed. Considering that,

at each time instant, at every iteration p we solve an optimization problem,

as a result, the computational time increases dramatically, making its imple-

mentation particularly inefficient. Indeed, the use of the low order model (4.4)

provides better performances, and for this reason, it is the one which will be

taken into account in the sequel.

7.2. Computational Analysis 111

7.1.3 State constraints

Finally, the implementation of state constraints through slack variables has

been explored. Experimental tests have shown that, as the weight associated

to the slack variable increases (i.e., which has the effect of enforcing the satis-

faction of hard constraints if possible), an excessive number of iterations were

needed to attain the optimal solution. On the other hand, by decreasing such

weight (i.e., allowing the violation of the constraints) the security level bounds

resulted to be strongly violated. For these reasons we did not take into account

anymore constraints on state variables.

7.2 Computational Analysis

In this section an analysis of the computational efficiency of the discussed

algorithms is carried out. In particular, the two solvers proposed in Chapter 6

will be analysed, highlighting how their computational effort scales favourably

with respect to the values of T andN . Eventually, a computational comparison

between the solvers and the cooperative algorithm proposed in Chapter 4 will

be presented.

7.2.1 Proposed Algorithm Analysis

Convergence to the optimal solution

The purpose of this part is to analyse the convergence properties of the two

IPM solvers introduced in Chapter 6. Indeed, as stated in Chapter 6, the

optimization problems (2.20) and (2.26) are the same, even though the two

formulations (i.e., Space-LBT and Time-LBT) make use of a different arrange-

ment of the variables.

A test has been performed considering an irrigation channel composed by

four pools and a prediction horizon T = 7. In Figures 7.2 and 7.3 it is shown

how the solvers attain the optimal solution within a single sampling interval.

112 Simulations

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
Space−LBT Solver

S
ta

te
 v

a
ri
a
b
le

s

2 4 6 8 10 12 14 16 18 20
0

0.5

1

In
p
u
t
v
a
ri
a
b
le

u
 [
m

]

2 4 6 8 10 12 14 16 18 20
−200

0

200

400

Number of iterations (τ)

L
a
g
ra

n
g
ia

n
 m

u
lt
ip

lie
rs

p

y
1
(5)

g
1
(5)

x
1

K,1
(5)

x
1

K,2
(5)

r
1
(5)

p
1

1
(5)

p
1

2
(5)

p
1

3
(5)

p
1

4
(5)

Figure 7.2: Convergence of the solution: Space-LBT

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
Time−LBT Solver

S
ta

te
 v

a
ri
a
b
le

s

2 4 6 8 10 12 14 16 18 20
0

0.5

1

In
p
u
t
v
a
ri
a
b
le

u
[m

]

2 4 6 8 10 12 14 16 18 20
−5

0

5

Number of iterations (τ)

L
a
g
ra

n
g
ia

n
 m

u
lt
ip

lie
rs

p

y
1
(5)

g
1
(5)

x
1

K,1
(5)

x
1

K,2
(5)

r
1
(5)

p
1

1
(5)

p
1

2
(5)

p
1

3
(5)

p
1

4
(5)

Figure 7.3: Convergence of the solution: Time-LBT

7.2. Computational Analysis 113

2 4 6 8 10 12 14 16
0

20

40

60

80
Space−LBT Solver

T
h

re
s
h

o
ld

λ
T
t

2 4 6 8 10 12 14 16
0

50

100

150
Time−LBT Solver

Number of iterations (τ)

T
h

re
s
h

o
ld

λ
T
t

Figure 7.4: Stopping condition

The plots are referred to states, input and Lagrange multipliers of the equality

constraints for pool i = 1 and instant k = 5. Note that both solvers reach

the same optimal values after a finite and comparable number of iterations.

We remark that the variables of actual interest for the control are the level

references, i.e. ri(k), k = 0, · · · , T − 1.

A further evidence of the convergence to the optimal solution, is remarked

by the analysis of the stopping condition. In fact, as already discussed, the

solution reached is only sub-optimal in order to avoid that the matrices related

to the Lagrange multipliers of inequality constraints and to the slack variables

become ill conditioned. More specifically, the variable subject to the stopping

criterion is the scalar product between the vectors λ and t, defined by (6.30)

for Space-LBT Solver and (6.63) for Time-LBT Solver. These values are used

as a measure of proximity to the optimal solution, and they approach zero

114 Simulations

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1
W

a
te

r−
le

v
e

l
re

fe
re

n
c
e

s
 [

m
]

Prediction horizon

Pool 1

Pool 2

Pool 3

Pool 4

(a) Space-LBT Solver

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

W
a

te
r−

le
v
e

l
re

fe
re

n
c
e

s
 [

m
]

Prediction horizon

Pool 1

Pool 2

Pool 3

Pool 4

(b) Time-LBT Solver

Figure 7.5: Optimal trajectories of the water-level references

as the number of iterations grows (see Figure 7.4). Indeed, such number of

iterations is directly related to the tolerance of sub-optimality of the solution.

In this case it has been set to ε = 10−5.

Eventually, the optimal trajectories of the water-level references for the

four pools are shown in Figure 7.5. Note that the trends are identical along

the prediction horizon for both solvers.

Complexity

The focus of this part is to analyse the computational times required to obtain

a solution using the two IMP solvers described in Chapter 6. As a good

indicator for the computational effort of the solvers we use the computational

time required from the CPU to solve the optimization problem. Such value

results to be less accurate than more suitable indicators (e.g., the flop counter),

but it is easier to implement and anyway it lends itself to our purpose.

Two cases of study are then introduced, and the aim is to show how the

computational time changes as the parameters N or T grow.

Case 1: fixed N , varying T

In this case, the number of subsystems is fixed equal to N = 10 and the

optimization problems have been solved for both the algorithms varying the

prediction horizon from T = 2 to T = 50. In Figure 7.6, the trend of the

7.2. Computational Analysis 115

0 5 10 15 20 25 30 35 40 45 50
−20

0

20

40

60

80

100

Time horizon (T)

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 [
s
]

Red/Star = Space−LBT Solver

Blue/Dot = Time−LBT Solver

 Linear interpolant

 Quadratic interpolant

 Cubic interpolant

Figure 7.6: Complexity varying T

computational time for both solvers is shown. In particular, it is remarkable

that for Space-LBT Solver (i.e, red star line) the complexity is linear with T, as

asserted in Section 6.1.3. Regarding Time-LBT Solver (i.e., blue dot line) the

computational time has a polynomial growth, and in order to identify the order

of such polynomial, different types of interpolants are used. More specifically,

we note that the trend is not linear (green line) but it results to be fitted quite

well from the quadratic and the cubic interpolants. The parameters of the

cubic interpolant are the following:

y = p1x
3 + p2x

2 + p3x+ p4

p1 = 0.00042702

p2 = 0.0084276

p3 = 0.19986

p4 = −0.13909

The coefficient of the cubic term p1, even if small, is comparable to the

quadratic one p2. Therefore, we can state that the growth of the computa-

116 Simulations

0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

60

80

100

120

140

Number of subsystems (N)

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 [
s
]

Red/Star = Space−LBT Solver

 Linear interpolant

 Quadratic interpolant

 Cubic interpolant

Blue/Dot = Time−LBT Solver

Figure 7.7: Complexity varying N

tional time is cubic.

Case 2: fixed T , varying N

In this simulation, the fixed prediction horizon T = 10 has been consid-

ered and the optimization problems have been solved varying the number of

subsystems from N = 2 to N = 50. As expected, the solvers display a dual

behaviour with respect to the previous case. More specifically, the trend of

the complexity of Time-LBT Solver is linear in N, while the one of Space-LBT

Solver is polynomial (see Figure 7.7).

Also in this case different fitting functions have been used (i.e., linear,

quadratic and cubic) and, in the same fashion as in Case 1, the coefficients of

7.2. Computational Analysis 117

the cubic interpolant are presented below:

y = p1x
3 + p2x

2 + p3x+ p4

p1 = 0.0013971

p2 = −0.027585

p3 = 0.67867

p4 = −1.7109

Analyzing the coefficients p1 and p2 we can say that the growth of the com-

putational time, and so the complexity of the algorithm with respect to N , are

cubic.

In view of these results, if T � N , the use of Space-LBT Solver is recom-

mended, since the computational effort is linear in T. Otherwise, if N � T ,

Time-LBT Solver, whose complexity grows linearly with N, will offer better

performances.

Figure 7.8: 3D representation of the complexity varying N and T simultane-

ously

118 Simulations

Regarding the case where T andN are comparable, it is basically equivalent

to employ one solver rather than the other one, since it does not provide any

considerable advantage. In Figure 7.8, the computational time for each solver,

where both T and N vary, is shown. Basically, one can see that Figure 7.6 and

Figure 7.7 are particular sections of this 3-dimensional plot, where either N or

T are fixed respectively. The region in the middle (i.e., T ≈ N), where the two

surfaces intersect each other, represent the case in which the performances are

similar.

7.2.2 Comparison: Cooperative and LBT Solvers

A comparison between the computational times required for the solution, to be

obtained at each time instant, to the distributed MPC optimization problem

and for the application of the two LBT Solvers is now proposed. In particular,

the algorithms performances are analysed by means of a simulation where the

number of subsystems have been fixed to N = 12, varying the prediction

horizon from T = 2 to T = 50.

Computational aspects

In Figure 7.9 the computational times needed from the solvers to compute the

optimal trajectories are represented. In particular, regarding the Cooperative

algorithm, a practical implementation was to solve in series (at each simulation

time) the N optimization problems and considering only the computational

time of the slowest controller.

The Cooperative algorithm results to be faster due to its distributed nature.

In particular, in this strategy, each controller minimize a global cost function

with respect to its local control variable, resulting in a smaller number of

decision variables. Instead, the LBT Solvers have been applied in a central-

ized fashion which inherently rely on a bigger amount of decision variables.

However, it is worth to remark that in the Cooperative strategy, the times

related to the negotiation phase between the controllers have not been taken

7.2. Computational Analysis 119

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70
N = 12 (fixed) T = 2 : 100 (varying)

Prediction horizon

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 [
s
]

 Distributed − Cooperative (Low order model)

Centralized − Space−LBT Solver

Centralized − Time−LBT Solver

Figure 7.9: Computational time: Cooperative and LBT Solvers

into account. Also, the cooperative MPC scheme has been implemented as if

N computers were available, while in the centralized implementation only one

computing unit has been employed. For these reasons, a fair simulation which

takes into account these considerations should lead to more comparable results

where the centralized solvers result to be competitive with the distributed one.

A plot showing similar results in the case when the prediction horizon is

kept fixed and the number of subsystem varies is not shown for brevity. This

is due to the fact that the performances of the cooperative algorithm is not

significantly affected by the variation of N , in view of its distributedness. On

the other hand, we experienced a dual behaviour of the LBT Solvers, as in

Figure 7.9.

Coding issues

Focusing on implementation aspects, we note that the Cooperative algorithm

solve the optimization problem by means of standard solvers (e.g., Quadprog,

C-plex), which are optimized from a coding point of view. On the other hand,

120 Simulations

the LBT Solvers have not been optimized yet, affecting their performances.

Moreover, it would be possible to code such algorithms e.g., the C++ envi-

ronment, in order to ease the computational load.

Considerations on Constraints

The simulation shown in Figure 7.9 has been carried out considering only con-

straints on the input variables. This choice is due to the fact that, as discussed

in Chapter 4, the Cooperative algorithm does not lend itself to the applica-

tion of hard constraints on state variables. Indeed, they may be implemented

only as soft constraints, allowing the control strategy to temporary violate

them. Considering the particular case of study, this involves the violation of

water-level security bounds and actuator saturations (note, in fact, that the

flow-rates are inputs to the low-level controlled systems). For these reasons, the

Cooperative algorithm shows some limitations in real plant implementation.

7.3 Closed-loop Simulations

In this last section we illustrate the closed loop simulations of an irrigation

channel obtained by applying the receding horizon principle, to all the three

algorithms presented in this Thesis. First, in Figure 7.10 the trajectories of

the water-level references, the water-levels and the flow-rates are shown for a

simulation time of 30 min. In particular, in this first simulation only constraints

on input variables ri(t) have been considered. However, without imposing

constraints on the state variables, it may occur the violation of the security

bounds on water-level and flow expressed by the physical limitations (3.10a)

and (3.10b). In fact, the variables referred to the flows, violate such conditions

during the transient. Secondly, in Figure 7.11 a simulation similar to the

previous one is carried out. In such simulation, only hard constraints on state

variables has been considered. We remark that, regarding the cooperative

distributed MPC, even the application of soft constraints, by means of slack

variables, resulted to be impractical. Therefore, only the LBT solvers have

7.3. Closed-loop Simulations 121

been used. Note that the constraints on the water-levels and the flows are

satisfied for all the transient.

5 10 15 20 25 30
−1

0

1

W
a
te

r−
le

v
e
l

re
fe

re
n
c
e
s

[m
]

pool1

pool2

pool3

pool4

5 10 15 20 25 30
−0.1

0

0.1

W
a
te

r−
le

v
e
l

[m
]

pool1

pool2

pool3

pool4

5 10 15 20 25 30

0

0.1

0.2

Time [min]

W
a
te

r
fl
o
w

−
ra

te

[m
3
/m

in
]

pool1

pool2

pool3

pool4

Figure 7.10: Closed loop trajectories: constraints on input variables

5 10 15 20 25 30
−1

0

1

W
a

te
r−

le
v
e

l
re

fe
re

n
c
e

s
[m

]

pool1

pool2

pool3

pool4

5 10 15 20 25 30
−0.1

0

0.1

W
a

te
r−

le
v
e

l
[m

]

pool1

pool2

pool3

pool4

5 10 15 20 25 30

0

0.1

0.2

Time [min]

W
a

te
r

fl
o

w
−

ra
te

[m
3
/m

in
]

pool1

pool2

pool3

pool4

Figure 7.11: Closed loop trajectories: constraints on state variables

Chapter 8

Conclusions and Future Work

In this Thesis the application of an MPC control strategy to a large-scale

cascade systems have been explored. In particular, such control technique has

been applied in a distributed and centralized fashion regarding the irrigation

networks, highlighting the computational performances.

At first, a Cooperative Distributed MPC has been analyzed and imple-

mented. Such control strategy leads to satisfactory performances. However,

the impossibility in the imposition of hard constraints on the state variables

yields to the possible violation of the security levels related to the irrigation

channels.

Then, the centralized approach has been taken into account. In particular,

we have focused our attention on the implementation of numerical methods

exploiting the sparsity of the optimization problems obtained with two LBT

formulations. The two proposed algorithms resulted to be suitable for increas-

ing the efficiency in the centralized control of the whole LSS.

As shown in Chapter 7, regarding the LBT solvers, an optimization of the

codes is recommended in order to attain competitive performances. In partic-

ular, more efficient methods for the inversion of matrices are recommended.

We refer to the Cholesky factorization (see [15]) and to the use of the nilpotent

property of a matrix dicussed in [6]. Furthermore, we envisage the implemen-

tation of a pre-compiled code in a C++ environment.

124 Conclusions and Future Work

A further future work includes the research in the application of the LBT

solvers in a distributed fashion, to further increase their applicability to large-

scale systems.

Eventually, it would be interesting the implementation of the proposed al-

gorithms on a real channel, in order to analyse their performances in a realistic

benchmark.

Bibliography

[1] Department of environment and primary industries, the state government

of Victoria, Australia and Goulburn-Murray water, “improving irrigation

efficiency,” Tech. Rep. Available online. http://www.depi.vic.gov.au/

water/rural-water-and-irrigation/murray-darling-basin.

[2] Christopher V Rao, Stephen J Wright, and James B Rawlings. Appli-

cation of interior-point methods to model predictive control. Journal of

optimization theory and applications, 99(3):723–757, 1998.

[3] Iman Shames and Michael Cantoni. On computing quadratic controls for

acyclic networks of heterogeneous systems. In European Control Confer-

ence (ECC), pages 3306–3311, 2013.

[4] Riccardo Scattolini and Lalo Magni. Complementi di controlli automatici.

Pitagora Editrice Bologna, 2006.

[5] Dragoslav D Siljak. Decentralized control of complex systems. Academic

Press, 1991.

[6] Juan Luis Jerez, Eric C Kerrigan, and George A Constantinides. A con-

densed and sparse QP formulation for predictive control. In Conference

on Decision and Control and European Control Conference (CDC-ECC),

pages 5217–5222. IEEE, 2011.

[7] Michael Cantoni, Erik Weyer, Yuping Li, Su Ki Ooi, Iven Mareels, and

Matthew Ryan. Control of large-scale irrigation networks. Proceedings of

the IEEE, 95(1):75–91, 2007.

http://www.depi.vic.gov.au/water/rural-water-and-irrigation/murray-darling-basin
http://www.depi.vic.gov.au/water/rural-water-and-irrigation/murray-darling-basin

126 Bibliography

[8] Paolo Bolzern, Riccardo Scattolini, and Nicola Schiavoni. Fondamenti di

controlli automatici. McGraw-Hill Libri Italia, 1998.

[9] Amir R Neshastehriz, Michael Cantoni, and Iman Shames. Water-level

reference planning for automated irrigation channels via robust MPC. In

Control Conference (ECC), 2014 European, pages 1331–1336. IEEE, 2014.

[10] Brett T Stewart, Aswin N Venkat, James B Rawlings, Stephen J Wright,

and Gabriele Pannocchia. Cooperative distributed model predictive con-

trol. Systems & Control Letters, 59(8):460–469, 2010.

[11] Alireza Farhadi, Michael Cantoni, and Peter M Dower. Computation time

analysis of a distributed optimization algorithm applied to automated

irrigation networks. In Conference on Decision and Control (CDC), pages

2193–2199, 2013.

[12] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-

bridge University Press, 2004.

[13] Stephen J Wright. Primal-dual interior-point methods. Society for Indus-

trial and Applied Mathematics, 1997.

[14] Sanjay Mehrotra. On the implementation of a primal-dual interior point

method. SIAM Journal on optimization, 2(4):575–601, 1992.

[15] Amir Shahzad, Eric C Kerrigan, and George A Constantinides. A stable

and efficient method for solving a convex quadratic program with applica-

tion to optimal control. SIAM Journal on Optimization, 22(4):1369–1393,

2012.

	List of Figures
	Abstract
	Sommario
	Introduction
	Motivations and Context
	Control Architectures
	Thesis Contributions
	Structure of the Thesis

	Large-scale and structured systems. MPC control
	Systems and Modelling
	Model Predictive Control
	Formalization of the Optimization Problem
	Space-LBT Formulation
	Time-LBT Formulation

	The irrigation channel case study
	Modelization
	First-order Model of Each Pool
	Water-Level Regulation
	State Space Representation

	High-Level Controller
	Model Parameters and Limitations

	Cooperative Distributed MPC
	Modelization
	Standard Model for Cooperative Distributed MPC
	Low Order Model

	The Cooperative Distributed MPC Control Scheme
	Constraints on Inputs and State Variables
	Optimization Problem
	Design Parameters

	Numerical methods for MPC optimization problems
	MPC Problem and Quadratic Programming
	Interior Point Methods (IPM)
	Mehrotra's Predictor Corrector Algorithm
	Convergence Analysis
	Complexity and Separability

	Proposed solvers for LBT systems
	Space-LBT Solver
	KKT Conditions
	Solver
	Complexity

	Time-LBT Solver
	KKT Conditions
	Solver
	Complexity

	Concluding Remarks

	Simulations
	Application of Cooperative Distributed MPC
	Design Parameters
	Performances Achieved with the Two Models
	State constraints

	Computational Analysis
	Proposed Algorithm Analysis
	Comparison: Cooperative and LBT Solvers

	Closed-loop Simulations

	Conclusions and Future Work
	Bibliography

