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Abstract

Musculoskeletal systems feature many degrees of freedom and muscles, which

are characterized by complex nonlinear dynamics. One of the long-standing

question in neuroscience is how the central nervous system (CNS) is able to

efficiently and harmoniously perform motor control, despite this very high

complexity. Researchers have tried to give an answer to this question formu-

lating the muscle synergy hypothesis. Muscle synergies are groups of muscle

activation patterns which can be linearly combined in order to generate

complex muscle actuations. This strategy may simplify motor control be-

cause the CNS only has to choose how to combine these predefined patterns

instead of synchronizing the individual muscles independently.

The classical approach in order to verify the muscle synergy hypothesis

has been to record EMG (Electromyographic) signals during the execution

of tasks, and try to extract components (i.e. synergies) able to reconstruct

the EMG dataset. This approach provided evidence for the existence of syn-

ergies in many biological systems (frogs, cats, humans etc.). In particular,

in humans, evidence of muscle synergies were found during postural bal-

ance, cycling, walking exercises etc. This approach leaves, however, many

questions open. For example we don’t know if it is theoretically possible to

control a musculoskeletal system by linear combination of synergies, nor we

know how the biomechanical properties of the system influence the synergy

hypothesis. A possible computational approach to face these questions is

to define a dynamical system and a set of desired tasks, and to see if it is

possible to find a set of synergies, which, when linearly combined, are able

to solve the desired tasks.

In this thesis we want to understand if the control by linear combinations

of synergies is possible (question partially addressed in previous research),

and to investigate the impact of redundancy and muscle nonlinearities (two

important biomechanical features of musculoskeletal systems) on the syn-

ergy hypothesis. We modeled the human arm as a 2-joint kinematic chain,

we synthesized appropriate synergies, and we measured their performance in
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solving reaching tasks. We incrementally added the biomechanical features

mentioned above: first we actuated the kinematic chain by means of torques

applied to the joints. This model is not redundant as the number of inputs

is equal to the number of joints; then we actuated the kinematic chain by

means of 6 forces applied to the links, thus introducing redundancy as the

number of forces exceeds the number of joints; finally we generated the 6

forces applied to the links by means of nonlinear muscles controlled in acti-

vation, thus introducing muscle nonlinearities. We were able to control the

torque actuated and the force actuated kinematic chain obtaining the same

performance with an equal number of synergies. We have found, instead,

that the activation actuated kinematic chain requires a higher number of

synergies in order to obtain similar performance.

Our results suggest that redundancy does not necessarily increase the

number of synergies required to execute a task, and therefore that the num-

ber of muscles may not affect the complexity of the control. Nonlinearities,

coming for example from muscle dynamics, may instead make the job of the

CNS harder, and require a higher number of synergies.



Sommario

Il nostro apparato locomotore è estremamente complesso ed è composto da

molti giunti, moltissime ossa e ancor più muscoli. Nonostante tutta questa

complessità riusciamo a svolgere una quantità di azioni in modo spontaneo

e armonioso, senza che ci sembri di compiere il minimo sforzo. Una delle

domande nel campo neuroscientifico che più occupa i ricercatori è come

faccia quindi il sistema nervoso a controllare il nostro apparato locomotore.

Tra i molti fattori che ne rendono il controllo estremamente complesso ve ne

sono due che hanno un ruolo fondamentale: la ridondanza e le non linearità.

La ridondanza è caratterizzata dal fatto che il numero di muscoli supera

di gran lunga quello dei gradi di libertà, per cui il sistema nervoso si trova

a dover scegliere tra un numero infinito di modi di eseguire un task. La

non linearità, invece, implica che combinazioni lineari di input non risultano

in combinazioni lineari di output. Task molto simili potrebbero richiedere

attuazioni molto diverse per essere eseguiti e, come conseguenza, il sistema

nervoso non può utilizzare la sua esperienza passata per generare comandi

appropriati.

Per eseguire un task, il sistema nervoso deve generare i segnali da manda-

re ai muscoli (i.e. attivazione muscolare), in modo tale che questi generino

le forze che producono il movimento desiderato. In un approccio classi-

co, il sistema nervoso dovrebbe generare i segnali individualmente per ogni

muscolo, sincronizzandoli in maniera tale da ottenere l’effetto desiderato.

Una delle ipotesi formulate dai ricercatori per cercare di spiegare come il

sistema nervoso riesca a dominare questa complessità è quella delle sinergie

muscolari.

Sinergie muscolari

L’ipotesi delle sinergie muscolari è una specializzazione dell’ipotesi del con-

trollo motorio basato su architetture modulari già formulata da Nikolai

Bernstein molti anni addietro. Le sinergie muscolari sono schemi di co-

attivazione muscolare, ogni sinergia descrive cioè uno specifico schema di
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co-attivazione tra più muscoli. Al fine di eseguire un task, il sistema nervoso

combina linearmente queste sinergie in modo da ottenere le complesse atti-

vazioni muscolari necessarie per eseguire il task. Vi è quindi, in termini del

numero di variabili da controllare, una notevole riduzione della dimensiona-

lità del problema. Ciò risulta in una semplificazione del controllo, perché il

sistema nervoso deve solo decidere come combinare le sinergie.

L’aspetto più importante nella teoria delle sinergie muscolari è che sono

invarianti rispetto al task. Con ciò vogliamo dire che il sistema nervoso usa,

almeno in parte, le stesse sinergie per eseguire task diversi [24, 18, 17, 25].

Alcuni ricercatori hanno anche scoperto che le sinergie potrebbero essere

invarianti rispetto ai soggetti, nel senso che sinergie molto simili sono state

trovate in individui diversi della stessa specie [23, 30, 25].

Sono stati proposti diversi modelli per le sinergie muscolari (si veda

[2] per un sommario completo sui diversi modelli), tra questi quello delle

sinergie tempo-varianti che useremo anche in questa tesi. Formalmente, le

sinergie muscolari sono funzioni tempo-varianti wj di attivazioni muscolari

e vengono modulate in ampiezza e shiftate nel tempo da coefficienti aj e τj .

L’attivazione muscolare totale u(t) è data da:

u(t) =

n∑
j=1

ajwj(t− τj) (1)

dove n è il numero di sinergie.

L’approccio classico per verificare o confutare l’ipotesi delle sinergie mu-

scolari è quello di registrare segnali EMG (elettromiografici) durante l’ese-

cuzione di task e usare tecniche di analisi dei dati (PCA, ICA, NMF etc.)

per estrarre componenti in grado di ricostruire il dataset di segnali EMG.

Sugli umani questo approccio è stato applicato con successo in diversi studi

su task di reaching [23, 21, 8, 20, 7, 19, 13], pedalata [42, 25], camminata

[43, 17, 25], corsa [14], mantenimento dell’equilibrio [63, 18, 17]. L’approccio

basato su analisi di EMG presenta tuttavia il problema che i risultati non

possono essere facilmente validati (non si possono usare le sinergie estratte

per verificare se il task viene eseguito correttamente), perciò negli ultimi an-

ni sono emersi modelli che tentano di integrare nell’analisi le proprietà del

task [18, 62, 27, 28]. Nonostante questi sforzi, rimane il problema che il vero

rapporto tra input (sinergie muscolari) e output (cinematica), rappresentato

dalla dinamica dell’apparato locomotore viene considerato molto raramente

[53, 10, 2]. In particolare non è chiaro se è possibile controllare l’apparato

locomotore tramite combinazione lineare di sinergie e non è noto se fattori

biomeccanici come la ridondanza e le non linearità influenzano l’ipotesi delle

sinergie muscolari.



Obiettivi

L’obiettivo di questa tesi (sezione 1.4) è capire (1) come ridondanza e non

linearità influenzano l’ipotesi delle sinergie muscolari e (2) se è possibile con-

trollare un sistema muscolo-scheletrico che presenta queste proprietà tramite

combinazione lineare di sinergie.

Metodi

Per rispondere alle domande di cui sopra, utilizziamo un approccio compu-

tazionale, definendo un modello di braccio umano a due gradi di libertà e

aggiungendo sistematicamente ad uno ad uno i fattori biomeccanici di inte-

resse (i.e. ridondanza e non linearità). In una prima fase attuiamo il braccio

con momenti applicati ai giunti (sezione 2.2.3); successivamente utilizziamo

6 forze applicate ai link, introducendo quindi la ridondanza (sezione 2.2.4);

infine generiamo le forze tramite muscoli non lineari controllati in attivazio-

ne, introducendo quindi la non linearità (sezione 2.2.4). Per ognuno di questi

modelli sintetizziamo delle sinergie e valutiamo le prestazioni durante l’ese-

cuzione di task di reaching. Le sinergie sono definite nello spazio dell’input

del modello via via analizzato (momenti, forze, attivazioni). Le prestazioni

sono valutate definendo per ogni modello più di 800 task di reaching unifor-

memente distribuiti nello spazio operativo del braccio e calcolando l’errore

ottenuto approssimando l’attuazione desiderata che risolve il task con una

combinazione lineare delle sinergie. Per avere una misura di come l’errore

scala con l’aumentare delle sinergie, abbiamo valutato le prestazioni per un

numero di sinergie da 1 a 12.

Per rappresentare e sintetizzare sinergie utilizziamo DRD (Dynamic Re-

sponse Decomposition) [2] (sezione 2.1), un metodo generale per trovare

soluzioni a task come combinazione lineare di primitive, partendo da una

traiettoria desiderata nello spazio del task. Il metodo sfrutta la dinamica

inversa del sistema per calcolare la soluzione desiderata a partire dalla tra-

iettoria e successivamente approssima la soluzione con le sinergie. Lo stesso

metodo viene anche utilizzato per sintetizzare iterativamente sinergie (re-

duction) a partire dalle risposte del sistema ad un set rappresentativo di

input (exploration) (sezione 2.3).

Il modello di braccio umano utilizzato è costituito da una catena cinema-

tica planare, con due giunti rotazionali rappresentanti il gomito e la spalla.

I dati antropometrici sono stati presi dalla letteratura [52].

Modello attuato da momenti ai giunti (sezione 2.2.3) Il modello della

catena cinematica attuata da momenti applicati ai giunti è descritto dalle



ben note equazioni del moto:

D(q)q̈ +E(q, q̇)q̇ +G(q) = τ (2)

dove q rappresenta lo stato del sistema (i.e. posizione dei giunti)e τ i mo-

menti applicati ai giunti. Le matrici D, E e G rappresentano i termini

inerziali, centrifughi e di coriolis, e gravitazionali. In questo modello le si-

nergie sono funzioni 2-dimensionali del tempo e rappresentano momenti ai

giunti.

Modello attuato da forze (sezione 2.2.4) In questo modello la catena

cinematica è attuata da 6 forze applicate ai link, rappresentanti 4 musco-

li monoarticolari e 2 muscoli biarticolari. Il modello è ridondante perché

ci sono più forze che gradi di libertà. Le forze F generano il momento ai

giunti tramite i bracci fissi della matrice L (Leverarm). I parametri musco-

lari (punti di origine/inserimento, braccio della forza, forza massima etc.)

sono stati stimati tramite una procedura di lumping [52] a partire dai da-

ti di 19 muscoli del braccio umano (appendice A). Il sistema è descritto

dall’equazione:

D(q)q̈ +E(q, q̇)q̇ +G(q) = τ = LF (3)

In questo modello le sinergie sono funzioni 6-dimensionali del tempo e rap-

presentano forze esercitate sui link dai muscoli.

Modello attuato da muscoli (sezione 2.2.5) In questo modello le 6 for-

ze del modello precedente sono generate da muscoli non lineari. Ogni mu-

scolo è composto da un elemento contrattile (CE) ed un elemento passivo

(PE). L’elemento contrattile genera la forza dipendentemente dall’attivazio-

ne muscolare, dalla velocità di contrazione (force-velocity relation) e dalla

lunghezza del muscolo (force-length relation). L’elemento passivo modella le

proprietà elastiche passive del muscolo e genera una forza dipendente dalla

sua lunghezza (force-length relation). La lunghezza dei muscoli è calcola-

ta a partire dalla posizione della catena cinematica. La relazione tra forza

generata, velocità di contrazione e lunghezza del muscolo è fortemente non

lineare (Figure 2.7 e 2.8). Le equazioni che descrivono il moto del sistema

sono:

D(q)q̈ +E(q, q̇)q̇ +G(q) = LC(l, l̇)M +LP (l) (4)

dove M è l’attivazione muscolare, C(l, l̇) e P (l) incapsulano le caratteri-

stiche non lineari dei muscoli ed l è il vettore che rappresenta lo stato (i.e.

lunghezza) dei muscoli. Quindi, la relazione tra forza generata e attivazione



non solo è non lineare, ma dipende anche dallo stato (i.e. posizione e ve-

locità) della catena cinematica. In questo modello le sinergie sono funzioni

6-dimensionali del tempo e rappresentano attivazioni muscolari.

Risultati

Modello attuato da momenti ai giunti (capitolo 3) In questo modello,

con 8 sinergie definite nello spazio dei momenti, si è potuto effettuare task

di reaching in tutto lo spazio operativo con un errore medio in posizione di

1mm. Questi risultati sono simili a quelli già ottenuti precedentemente in

[2].

Modello attuato da forze (capitolo 4) Nella catena cinematica attuata

da forze non solo ci troviamo a dover affrontare il problema della ridondanza,

ma anche quello di vincoli biologici dovuti al fatto che i muscoli possono

generare solo forze positive. Al fine di calcolare le forze desiderate necessarie

per eseguire una traiettoria di reaching, dobbiamo trovare un modo per

calcolare le forze a partire dai momenti ai giunti. Per via della ridondanza,

tuttavia, esistono infinite forze F che producono gli stessi momenti ai giunti

τ . La relazione generale per calcolare la forza F dai momenti è data da:

F = L+τ +Nw (5)

dove L+ è la matrice pseudo-inversa di L ed N è una base ortogonale di

ker(L). Il termine w è il cosiddetto nullshift e può essere usato per variare il

profilo della forza F senza modificare il momento risultante, poiché Nw ∈
ker(L). Abbiamo utilizzato il nullshift w per calcolare delle forze desiderate

che fossero positive e abbiamo dimostrato che se tutte le forze sono calcolate

con un unico nullshift w∗ uguale per tutte, la dimensionalità dell’insieme

delle forze F rispetto a quella dell’insieme dei momenti ai giunti τ viene

conservata. Abbiamo sintetizzato un set di sinergie e abbiamo dimostrato

che, nonostante la ridondanza, con un numero di sinergie uguale a quello nel

modello dei momenti, è possibile ottenere le stesse prestazioni.

Modello attuato da muscoli (capitolo 5) Questo modello, oltre ad essere

ridondante (6 muscoli e 2 gradi di libertà) e ad avere vincoli biologici (forze

positive), è caratterizzato dal fatto che la relazione tra attivazione muscolare

e momenti ai giunti prodotti è fortemente non lineare. La relazione generale

tra attivazione muscolare M e momenti ai giunti τ è data da:

M = R(l, l̇)+(τ −LP (l)) +Q(l, l̇)z (6)



dove R(l, l̇) rappresenta la relazione non lineare tra attivazioni e momenti

ai giunti, R(l, l̇)+ è la sua pseudo-inversa e Q(l, l̇) è una base ortogonale

di ker(R(l, l̇)). Analogamente a w nel modello delle forze, il termine z è

un nullshift che può essere usato per variare il profilo dell’attivazione M

senza modificare il momento ai giunti. Mostriamo che, per via del carattere

non lineare di R(l, l̇), la dimensionalità delle attivazioni rispetto a quella dei

momenti ai giunti esplode. Ciò risulta, seppur moderatamente, in un numero

maggiore di sinergie necessarie al fine di ottenere le stesse prestazioni degli

altri due modelli.

Conclusioni

Mostriamo che, nei limiti del modello sviluppato, il controllo tramite com-

binazione lineare di sinergie è fattibile. Mostriamo inoltre che la ridondanza

nei sistemi muscolo-scheletrici potrebbe non influenzare il numero di sinergie

necessario a controllarli e quindi che la complessità del controllo tramite si-

nergie muscolari potrebbe non dipendere dal numero di muscoli. Infine, mo-

striamo che le non linearità derivanti dalla dinamica del muscolo potrebbero

invece aumentare la complessità del controllo.
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Chapter 1

Introduction

Musculoskeletal systems, like our body, are very complex and are composed

by a lot of components interacting together. We have a great quantity of

bones and hundreds of muscles. Despite all this complexity, we can perform

and learn a variety of tasks. We can stand, walk, run, jump, touch or

take things, look behind and many, many other type of movements. We

execute these tasks spontaneously and harmoniously without the need to

think about it. Think for example of the simple, everyday action of taking a

cup of coffee: in doing so we use dozens of degrees of freedoms and muscles,

all present in our arm and hand, and we do not put, at least consciously,

the minimum attention in this. How can we do that? How can our CNS

(Central Nervous System) efficiently tackle all this complexity, while we,

with our supercomputers and hi-tech materials, have still many problems in

controlling much simpler systems?

Researches have tried to give an answer to these questions formulating

several hypotheses. One of the them, is that the CNS simplifies motor

control using a modular architecture, where the modules are called muscle

synergies. Muscle synergies are patterns of motor commands that can be

“linearly” combined in order to obtain the command patterns required to

execute a task (i.e. reach a cup of coffee). This strategy would result

in a dimensionality reduction of the control problem, and would therefore

simplify control and learning.

Many authors have found experimental evidence of the existence of mus-

cle synergies. The classical approach consists in analyzing EMG (Elec-

tromyographic) signals recorded from muscles, and try to extract compo-

nents (i.e. synergies) which, combined, explain the variability in the dataset.

Many questions, however, are still open. For example, the role of biomechan-

ics in the synergy hypothesis is still not clear. We don’t know if it’s possible
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to control a musculoskeletal system by linear combination of synergies, and

we don’t know how biomechanical features influence the hypothesis. In this

thesis we try to give an answer to these questions using a computational

approach. In particular we analyze the role of redundancy and nonlinear-

ities in the synergy hypothesis and test if the control by means of muscle

synergies is possible.

In the next sections we will first elaborate on the complexity in motor

control, and will explain why muscle synergies may simplify it. Afterwards,

we will explain and formalize the muscle synergy model. Then we review

the state of the art on muscle synergies and finally we focus on the open

problems, and on the objectives of this work.

1.1 Complexity in motor control

There is no doubt that the control of the musculoskeletal system is difficult.

In the following we describe the factors that make it so complex, and explain

conceptually how they are exhibited and what they imply from the control

point of view.

Muscle redundancy In a musculoskeletal system like our body, there are

more muscles than mechanical degrees of freedom, thus the system is redun-

dant. In such a system the total coordinated action of many muscles leads to

a certain movement. Since different muscles act on the same joint, muscles

can be commanded in many different ways to solve a certain task, obtaining

the same movement. As an example, we can reach a cup of coffee with a

“relaxed” movement, or by co-contracting every muscle and increasing the

stiffness of our arm. The forces exerted by the muscles are different, but we

are still able to move along the same trajectory. Hence, in order to execute

a task, our CNS has to “choose” among a number of infinite possible ways

of actuating the involved muscles. In the rest of the thesis we will refer to

muscle redundancy simply as redundancy. In section 2.2.2 we will formalize

redundancy and explain the role it plays in our work.

Nonlinearities Musculoskeletal systems are nonlinear. This means that

linear combinations of inputs do not lead to linear combinations of outputs.

This implies that “similar” tasks may require quite different motor com-

mands in order to be executed. As a result, the CNS could exploit past

experience in a very limited way, and appropriate motor commands should

be computed/learned almost from scratch for each new task.
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Nonlinearities originate from almost each level of the musculoskeletal

system. At the skeletal level (that can be described with a kinematic chain)

there is a nonlinear relation between torque and joint movements. Muscles

are nonlinear. They are controlled in activation by motor neurons, and

produce a force which depends nonlinearly on their length and contraction

velocity. In section 2.2.2 we will show the implications of nonlinearity on

our work from a mathematical point of view.

Other factors Redundancy can be observed not only at the muscular

level, but also at the neural level. Each muscle is composed by lot of muscle

units, commanded by many motor neurons. The CNS can obtain the same

muscle activation by recruiting different motor neurons and motor units.

There is also redundancy at the kinematic level. The number of degrees

of freedom is higher than the number of variables describing the task. In

the human arm, for example, there are seven mechanical degrees of freedom

without considering the hand. This means that a position of the hand in

space (e.g. to reach a cup of coffee), can be obtained by different configura-

tions of the shoulder, elbow and wrist joints. Tackling kinematic redundancy

means deciding which particular configuration each joint has to take in order

to reach a desired configuration. Another factor that makes control difficult

are delays between the controller (i.e. CNS) and actuators (i.e. muscles).

Similarly there are delays between sensory informations, originating for ex-

ample from muscle spindles, and the controller.

Although the musculoskeletal system is nonlinear and redundant, many

studies have shown that different subjects employ similar kinematics and

muscle activation patterns to solve a given task. How does the CNS choose

this solution among the infinite number of motor commands that solve a

task? This problem was formulated for the first time by Nikolai Bernstein

[11], and it is often referred as degrees of freedom problem. He suggested that

muscles are not controlled individually, rather the CNS relays on a modular

architecture where the modules are combined in order to obtain a complex

behavior. This would reduce the number of variables to be controlled, thus

simplifying motor control and learning. The Bernstein problem was studied

and implemented in different ways, one of them is the model of muscle

synergies.
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1.2 Muscle synergy hypothesis

In order to execute a task (e.g. reach a cup of coffee) the CNS has to generate

appropriate motor commands (e.g. muscle activation) (Figure 1.1). How

does the CNS compute the required muscle activations?

Figure 1.1: In order to execute a task (e.g. light blue reaching task) the CNS has to

generate the muscle activations ui(t) which lead to the desired movement.

According to the muscle synergy hypothesis, motor commands are gen-

erated by combining predefined “modules”, called muscle synergies. These

are defined as specific co-activation patterns among groups of muscles. Hy-

pothetically, the CNS combines few synergies in order to obtain complex

behaviors and solve specific tasks. This leads to a dimensionality reduction

of the control problem, as the CNS only has to choose how to combine the

synergies, instead of calculating each individual muscle activation. As an

example, think to a painter creating its whole color palette by only mixing

different quantities of few colors. We can think to the color palette as the

set of complex tasks to be executed, and to the few color generators as the

set of synergies.

One of the most important aspects of the muscles synergy hypothesis

is that synergies are invariant across tasks (Figure 1.2). As an example,

authors have found that in frogs some synergies are shared across kicking,

jumping, walking etc. [24]. There is also some evidence that synergies may

be invariant across individuals, that is, subjects from the same species may

share similar synergies [23, 30, 25].

From a mathematical point of view two main models of muscle synergies

have been proposed (see [2] for a more extensive review):
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Figure 1.2: A small set of synergies (left) are mixed in different ways (center) in order

to obtain muscle activations required to execute different tasks (right).

� Time invariant synergies

� Time-varying synergies

In the following we will describe and formalize the two models.

Time invariant synergies

Time invariant synergies are also called synchronous synergies, spatially fixed

synergies or muscle modes. Each synergy wj corresponds to a spatially fixed

pattern of muscle activations. Temporal structure is instead specified by

the 1-dimensional real functions of time aj(t) that serve as synergy mixing

coefficients (Figure 1.3a). Formally, the total activation u(t) given as input

to muscles is:

u(t) =

n∑
j=1

aj(t)wj (1.1)

where n is the number of synergies. The vectors wj represent, therefore,

the task-independent synergies which are combined linearly by means of the

task-dependent and time-dependent functions aj(t). Given that the elements

aj(t) are 1-dimensional real functions, this model results in a dimensionality

reduction only if the number of synergies is lower than the number of muscles

(see [2] for more details).
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(a)

(b)

Figure 1.3: Models of muscle synergies. (a) Time invariant synergies model: the

spatially fixed synergies wj are modulated by the temporal patterns aj(t) and summed

together to obtain the complex activations u(t) which solve a task. (b) Time-varying

synergies model: the time-varying synergies wj(t) are scaled by the coefficients aj , and

shifted in time by the onset time τj . Image adapted with permission from [2].

Time-varying synergies

In this model, synergies wj(t) are time-varying patterns of muscles activa-

tions that can be shifted in time and modulated in amplitude by the scalar
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coefficients τj and aj (Figure 1.3b). Formally, the total muscle activation

u(t) is given by:

u(t) =
n∑
j=1

ajwj(t− τj) (1.2)

where n is the number of synergies. The vector-valued functions wj(t) rep-

resent the task-independent synergies, which are combined by means of the

task-dependent coefficients aj , and are time-shifted by the task-dependent

onset times τj . Since these variables are scalars, the input-space is reduced

to a 2 ·n dimensional space, with n the number of synergies (see [2] for more

details).

In this work we implement synergies according to the time-varying model

without considering the shifting coefficients τj (i.e. τj = 0 ∀j). Note,

however, that for any synergy wj shifted by an onset time τj , we can define

another synergy wk as follows:

wk(t) = wj(t− τj) (1.3)

Therefore, except for the number of synergies, our model is equivalent to

the time-varying model.

1.3 State of the art

In this section we review the state of the art on the muscle synergies hy-

pothesis.

The classical approach to investigate the muscle synergy hypothesis con-

sists in recording EMG (Electromyographic) signals from a set of muscles

during the execution of a task (e.g. reaching task). Decomposition algo-

rithms are then applied in order to extract components (i.e. synergies)

that can reconstruct the dataset. If these components are invariant across

different experimental conditions (e.g. reaching targets, movement speed

etc.), they are considered an indirect evidence of the existence of an un-

derlying modular architecture. In order to extract components, researchers

use algorithms like PCA (Principal Component Analysis), ICA (Indepen-

dent Component Analysis), NMF (Non-Negative Matrix Factorization) and

other. The quality of the extracted synergies is then evaluated using sta-

tistical measures (e.g. R2) that assess how much data variability can be

explained by linear combinations of the extracted components. The choice

of the algorithm depends on assumptions made a-priori, and influences the

obtained results [61]. Furthermore, the number of synergies is mostly defined
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a-priori [2]. Despite these limitations, this approach has provided insights on

the hypothesized modular control strategy both in humans and in animals.

In [23] the authors were able to reconstruct the EMG dataset recorded

from human reaching movements with 4-5 time-varying synergies. Similar

results are shown in [21] where a few number of synergies, robust across

changes in reaching direction and speed, were found. In the context of

reaching tasks, it was found that muscle synergies can account for both

movements and forces in multiple directions [8]. In [20] two time-varying

synergies captured most of muscle pattern variability observed during ball

catching exercises. In particular, the authors observed that one of the syn-

ergies was activated always short before catching the ball, suggesting that

synergy recruiting is modulated by visual informations. Similar experiments

have been performed by other authors reporting experiments on muscle syn-

ergies extracted from the arm and/or hand of humans [7, 19] and primates

[54]. In [13] the muscles synergy hypothesis is supported by the result that a

minimum effort recruiting strategy of muscle synergies explains the recorded

muscle activations better than a minimum effort recruiting strategy of in-

dividual muscles. The EMG signals were recorded during the generation of

isometric forces at the hand.

Others have done similar experiments on other type of tasks. In [42]

a small set of synergies explained the activations recorded during cycling

exercises and were stable across different experimental conditions. In [43]

five synergies account for human locomotion in a variety of conditions. Sim-

ilar results are obtained in [14] during running. Muscle synergies have been

extracted also during postural balance [63]. In this context, several authors

have found common synergies between postural control stepping and non-

stepping responses [18], balance and walking [17], cycling and walking [25].

Many experiments have been done also on animals (frogs, cats, pri-

mates). In [24], for example, three synergies explained the muscle patterns

recorded during frog kicking and were found to be stable across individuals

and partially across behaviors (walking, jumping and swimming).

The debate on what synergies represent is still open. Modular structures,

like muscle synergies, have in fact been observed at different levels. Some

authors have found that muscle synergies may be expressions of neurons

organized in spinal primitives [38]. Other analyzed them from a task-space

perspective, for example extracting kinematic synergies which reconstruct

joint kinematic trajectories [66, 57, 29, 60, 73] or at the force level, finding

that the force obtained by co-stimulation of two spinal cord sites in the frog,

was very similar to the vector summation of the forces obtain by separately

stimulating the two sites [51]. These different representations, however,
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could be the results of a unique modular organization of the motor control.

In [60], for example, the authors have recorded EMG signals during human

reaching and grasping exercises. Simultaneously they measured kinematic

variables, and found that synergies extracted from the EMG datasets are at

the origin of the kinematic synergies.

There are also experiments which discredit the muscle synergy hypoth-

esis. For example in [48] the authors demonstrate, through cadaveric ex-

periments, that muscle synergies may emerge simply from biomechanical

couplings (i.e. interaction between joints, bones, muscles etc.), without the

need to conclude that they are the results of some neural modular architec-

ture.

In general, the muscle synergy hypothesis is very difficult to verify or

falsify. One of the main difficulties with the approach based on the analysis

of EMG dataset is that there is no direct task verification. That is, ones the

synergies are extracted it is not possible to directly verify if they solve the

original task. Some authors therefore tried to follow other approaches. In [9]

the authors recorded EMG signals from reaching tasks in a virtual PC envi-

ronment. Reachings were executed by subjects exerting forces on a handle.

They extracted a set of synergies from the EMG dataset, and calculated the

mapping between the dataset reconstructions and the forces applied to the

handle. Then they applied transformations (i.e. virtual surgeries) to the

mapping between forces on the handle and movements of the cursor on the

PC. Virtual surgeries were of two types: compatible with the synergies (i.e

the forces needed to execute the tasks could still be generated by a suitable

combination of the extracted synergies), and incompatible with the syner-

gies. In the case of compatible surgery the subjects were still able, after

a short adaption phase, to execute the tasks. In the case of incompatible

surgeries instead, the subjects were no more able to execute the tasks. The

idea was that if control was not based on some modular architecture, the

subjects would be equally able to learn the tasks in both cases. A very sim-

ilar approach has been followed in [34], where researchers have found that

the extracted synergies are robust to visuomotor rotations.

Since musculoskeletal systems are nonlinear, synergies extracted from

EMG datasets may not lead to the expected task performance. Furthermore,

muscles that are not recorded during experiments can potentially play an

important role for the movements analyzed [3]. Some researches, therefore,

have considered task performance variables in their experiments. In the

model of “functional synergies”, components are extracted from a dataset

of both EMG and task variables. This has allowed researchers to find a cor-

respondence between muscle synergies and task properties [18, 62]. Another
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model that is grounded on task variables is that of the “spinal force fields”.

It originated from the observation that the forces generated through spinal

stimulation of the frog limb, depend on the posture of the limb ([35, 51],

see [3] for a more extensive review on functional synergies and spinal force

fields). Another approach has been followed in [27] and [28] where a possi-

ble relation between synergy recruiting parameters and task discriminating

properties is exploited during the synergy extraction. The method results

in the identification of the minimum number of muscle synergies which can

explain most of the variability in the task space.

Although many researchers are already moving from a perspective con-

sidering only the input-space (i.e. synergy activation pattern), to one where

the task-space perspective (i.e. task execution) becomes more and more im-

portant, the musculoskeletal dynamics is often not taken into account, and

many questions regarding the relation between synergies and task execution

remain open. We don’t know which role is played by the musculoskeletal

dynamics, or how its properties influence the results. We don’t even know

if a small set of primitives may actually be able to control a complex mus-

culoskeletal system. One possible strategy to tackle these questions is to

follow a computational approach, namely to define a dynamical system (e.g.

model of limb) and a set of tasks (e.g. reaching tasks), and see if it’s pos-

sible to find a set of synergies that are able to solve the tasks. In [53], for

example, a mathematical formulation which leads to the synthesis of a set

of primitives in accordance with the spinal force fields model is proposed.

The synthesized primitives are able to control a two-dof planar kinematic

chain, and the authors prove that the dimensionality of the task space sets

a lower bound to the number of primitives needed. A recent study attain-

ing the same conclusion is [26], where the authors show that the number

of synergies required for a generic biomechanical system increases with the

dimensionality of the task-space. In [10], a model of the frog hindlimb is first

reduced to a low-dimensional model. Then an optimization process synthe-

sizes synergies on this reduced model from a representative set of desired

actuations. The synthesized synergies were similar to those found experi-

mentally by other researches. In [58] a simulated musculoskeletal model of

human lower limb is driven by five primitives extracted from EMG signals

of two subjects. Finally in [1, 2] a method is proposed for the generation

of open loop controllers based on synergies. The method, called DRD (Dy-

namic Response Decomposition), explicitly integrates the musculoskeletal

dynamics in the procedure used to synthesize synergies, and exploits the

relation between input space and task space by assuming that muscle syn-

ergies are solutions to representative tasks. In this thesis we extend this
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work trying to understand how some important biomechanical features of

musculoskeletal systems influence the synergy hypothesis.

1.4 Objectives

In the previous section we claimed that the approach based on the extraction

of input primitives from recorded signals (e.g. EMG, kinematics trajecto-

ries etc.) represents only an indirect evidence of the existence of muscle

synergies, even if task variables are integrated in the analysis. The mus-

culoskeletal dynamics, which represents the relation between input-space

and task-space is rarely explicitly considered. Therefore, it is not clear if

muscle synergies represent a feasible approach to control the musculoskele-

tal system. Some researchers have shown computationally [53, 10, 2] that

it is possible to control a dynamical system by means of muscle synergies.

However a systematic analysis on how biomechanical features influence the

synergy model is still missing. In this thesis we investigate (1) the extent

to which redundancy and nonlinearities, two important features of muscu-

loskeletal systems, influence the muscle synergy hypothesis, and (2) whether

a musculoskeletal model that features these properties can be controlled by

linear combinations of synergies.

In order to answer these questions we synthesize synergies for system-

atically more complex models of the human arm. We start with a 2-joint

kinematic chain actuated in torque space, and we validate the results ob-

tain in [2]. Then we actuate the kinematic chain by means of 6 forces, thus

leading to a redundant model. Finally we generate the 6 forces by means of

nonlinear muscles controlled in muscle activation.

Synergies are synthesized using the DRD method for each of these mod-

els, and performance are evaluated for the execution of reaching tasks. The

synergies will be formulated according to the time-varying synergy model,

without onset time1. Furthermore we will assume, according to [2], that syn-

ergies represent solutions to specific task instances. That is, the synergies

which are used to solve reaching tasks, are solutions to “specific” reaching

tasks themselves.

1We have shown in section 1.2 that our model is equivalent to the time-varying synergy

model, except for the resulting number of synergies.
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1.5 Structure of the thesis

The first part of this thesis is the introduction (chapter 1), which starts

with a brief initial explanation on the issues faced in this work. We then

elaborate on the complexity of motor control in musculoskeletal systems and

introduce the synergy hypothesis followed by a review on the state of the

art. Finally we describe the objectives of this work.

In chapter 2 we give the mathematical details of the DRD method (sec-

tion 2.1), and of the musculoskeletal models used (sections 2.2.3, 2.2.4 and

2.2.5). The chapter terminates with a section regarding the procedures used

in our experiments (section 2.3).

In chapter 3 we show the results obtained on the model actuated by

means of torques. In chapters 4 and 5 we show, respectively, the results

obtained on the redundant model actuated by means of forces and the results

obtained on the model actuated by means of nonlinear muscles.

In chapter 6 we conclude our work with a summary of the results ob-

tained and a discussion on future works.

In the appendices A and B we give details about the procedure used to

lump the musculoskeletal model. Finally, in appendix C, we show a pro-

cedure implemented for this work to include dynamical system boundaries

into the DRD method.
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Methods

In this chapter we introduce the mathematical models and tools used in

our work. First we introduce DRD, a general method to generate inputs

to a dynamical system as linear combinations of primitives, used here to

represent and synthesize synergies. Then, in section 2.2, we describe the

musculoskeletal model of human upper limb developed for our experiments

and provide the details of the torque, force and activation actuated kinematic

chain built on top of it. Finally, in section 2.3, we provide the relevant data

and procedures needed to execute the experiments.

2.1 The DRD method

The Dynamics Response Decomposition (DRD) is a general method to gen-

erate inputs for a given dynamical system as linear combinations of prim-

itives [15, 1, 2]. We used the DRD framework to perform our analysis. In

what follows we describe the method, and unfold its mathematical details.

To support the explanation we use a generic multi-joint kinematic chain as

exemplary dynamical system, however DRD is a general method applicable

to a variety of dynamical systems.

2.1.1 Definitions

Consider a generic dynamical system described by the differential operator

D
D (q(t)) = u(t) (2.1)

where q(t) ∈ Rnq is a vector of nq configuration variables and u(t) ∈ Rnu is

the actuation vector at time t. In our example D represents the equation of
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motion of a kinematic chain, u(t) is the vector of the torques applied to the

joints, and q(t) represents the joint positions.

Inspired by the muscles synergy hypothesis, the actuation u(t) is rep-

resented as linear combination of time-dependent primitives {φi(t)} (i.e.

synergies) with mixing coefficients {bi}:

u(t) =

nφ∑
i=1

φi(t)bi (2.2)

If time is discretized we can represent the actuation over nt time samples as

a nt · nu × 1 vector u:

u =

nφ∑
i=1

φibi = Φb (2.3)

where Φ = [φ1 . . .φnφ ] ∈ Rnt·nu×nφ is the matrix that contains each dis-

cretized primitive in its columns and b = [b1 . . . bnφ ]T .

The primitives {φi(t)} are themselves actuations, and when applied to

the dynamical system individually they produce the trajectories {θi(t)} in

configuration space, called dynamic responses (DR):

D (θi(t)) = φi(t). (2.4)

If time is discretized we can represent the dynamic response θi(t) with a

nt · nq × 1 vector θi and the whole set with the nt · nq × nθ matrix Θ =

[θ1 . . .θnθ ].

For our kinematic chain θi(t) represents the joints position, while θ̇i(t)

and θ̈i(t) their velocity and acceleration respectively at time t.

2.1.2 Dynamic response decomposition

The DRD generates the inputs to a dynamical system that solve a desired

task, and it approximates such inputs as linear combination of primitives. A

task is defined by constraints in the phase space. For example a task could

be defined as moving the joints of our kinematic chain from an initial (at

time t = t0) to a final (at time t = tf ) position with some initial and final

velocities. This task can be formulated with the following constraints:

q(t0) = q0, q̇(t0) = q̇0

q(tf ) = qf , q̇(tf ) = q̇f
(2.5)

We want to actuate the dynamical system in order to satisfy the task con-

straints.
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The DRD method first finds a trajectory q(t) satisfying the constraints,

and then computes the corresponding actuation u(t) leading to the found

trajectory. Given the set of DRs associated to the dynamical system, a

trajectory q(t) is found by interpolation, searching for a linear combination

of DRs that fulfills the task constraints:

q(t) =

nθ∑
i=1

θi(t)ai (2.6)

where θi(t) are the dynamic responses and ai the mixing coefficients. If time

is discretized we can write Eq. (2.6) in matrix form as:

q = Θa (2.7)

where Θ is the matrix containing the DRs in its columns and a = [a1 . . . anθ ]
T

is the vector of mixing coefficients. See [1] for an evaluation of the quality

of the DRs used as interpolators for the trajectory of reaching tasks on a

planar kinematic chain.

The mixing coefficients a can be found by solving the following linear

system of equations:
θ1(t0) ... θnθ(t0)

θ1(tf ) ... θnθ(tf )

θ̇1(t0) ... θ̇nθ(t0)

θ̇1(tf ) ... θ̇nθ(tf )

a = Ma =


q0
qf
q̇0
q̇f

 = P (2.8)

where P is the vector of task constraints and M is the so called alternant

matrix, containing the DR evaluated at the timestamps where the task con-

straints are defined (t0 and tf in the example).

2.1.3 Solution composition

Once a trajectory has been found, the corresponding actuation ũ(t) can be

obtained by applying the differential operator D (inverse dynamics):

D (q(t)) = D (Θ(t)a) = ũ(t) (2.9)

In our example ũ(t) represents the torques required to obtain a joint trajec-

tory that fulfills the constraints.

Finally DRD approximates this actuation as a linear combination of

primitives (see Eq. (2.3)). In general this consists in solving the following

minimization:

b = argmin
b
||ũ(t)−Φ(t)b|| (2.10)
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where || · || is the Euclidean norm. If time is discretized this problem can be

solved using the Moore-Penrose pseudoinverse of Φ

b = Φ+ũ (2.11)

If the desired actuation ũ(t) is not in the linear span of the primitives, the

obtained actuation u(t) = Φ(t)b will differ from ũ(t) by an error εu(t) =

ũ(t)− u(t).

2.1.4 Performance measures

To evaluate the performance of DRD, we define three measures:

� the interpolation error measures the ability of the DRs Θ to generate

a trajectory satisfying the task constraints P ;

� the projection error measures the ability of the primitives Φ(t) to

approximate the actuation ũ(t);

� the forward dynamics error measures the error between the task con-

straints P and the trajectory obtained when the dynamical system is

actuated by u(t) = Φ(t)b (which may be different from ũ(t)).

Interpolation error The interpolation error measures the distance be-

tween the interpolated trajectory q(t) = Θ(t)a and the task constraints.

The distance measure is the Euclidean norm. Given k task constraints the

interpolation error errI is defined as:

errI =

√∑
k∈K

err2Ik =

√∑
k∈K
‖qk − θka‖2 (2.12)

where errIk is the interpolation error associated to the k-th task constraint,

qk is the desired value, and θk the DRs evaluated at the corresponding

timestamp. If the linear system of equations (2.8) has exact solution then

the interpolation error is zero, meaning that the interpolated trajectory

satisfies all the task constraints exactly.

Projection error The projection error measures the distance between the

actuation ũ(t) which solves the tasks and the one found as linear combina-

tion of primitives:

errP =

√∫
T
‖ũ(t)−Φ(t)b‖2dt =

√∫
T
‖εu(t)‖2dt (2.13)
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This error is zero only if the desired actuation is in the linear span of the

primitives.

The projection error has the same unit of measure of the actuation ũ(t),

consequently it is not possible to numerically compare errors from different

type of actuations (e.g torques and forces). We therefore define the relative

projection error as the adimensional quantity:

errPr =
errP
‖ũ(t)‖

(2.14)

which can be used to compare errors from actuations with different unit of

measures. In this work we will use both the projection error and the relative

projection error.

The idea behind the projection error is that if the actuation ũ(t) leads to

a trajectory satisfying the task constraints, then another actuation u(t) 6=
ũ(t) might most probably not satisfy them and the error in executing the

task will be related to how much they are different. This assumption does

not hold in general for at least two reasons:

� for a redundant system there may be multiple actuations that lead

to the same trajectory. However, these solutions will have different

projection error;

� there may be various trajectories satisfying the task constraints. Each

trajectory, however, would be obtained actuating the dynamical sys-

tem with a different actuation. These actuations would have different

projection errors.

Forward dynamics error The forward dynamics error measures the dis-

tance between the trajectory q(t) obtained by actuating the dynamical sys-

tem with Φ(t)b and the task constraints. The distance measure is as usual

the Euclidean norm:

errF =

√∑
k∈K

err2Fk =

√∑
k∈K
‖qk − q(tk)‖2 (2.15)

where errFk is the forward dynamics error associated to the k-th task con-

straint, qk is the constraint value and q(tk) the obtained trajectory evaluated

at the corresponding timestamp. The forward dynamics error is therefore a

direct measure of task performance as it shows how much the real trajec-

tory differs from the constraints when the system is actuated with the linear

combination of primitives.
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2.2 The musculoskeletal model

In this section we provide the details of the musculoskeletal model used in

our work. Experiments involving the synergy hypothesis have been done in

the past mainly on limb segments of animals and humans, although many re-

searches also considered other types of synergies, for example those supposed

to be involved in postural balance. In this work, we used a model of upper

limb because it is simple but at the same time allows to capture the essen-

tial properties of movement, and to address redundancy and nonlinearities

affecting musculoskeletal systems. Defining the particular characteristics of

the model however is not trivial. Many researches have faced this issue and

have proposed their own solutions based on their objectives. In [46] the

authors use a two-joints kinematic chain with six Voigt muscles. In [44] a

very similar model is proposed while in [49, 52, 45] Hill muscles are used.

In [39] a simple but effective three-links limb model is actuated with Voigt

muscles. Similar models with more complex limb or muscle configurations

can be found in many other works [47, 55, 6, 50, 36]. Other authors have

build very detailed three-dimensional musculoskeletal models of the upper

limb with all bones, lots of muscles and degrees of freedom using available

data from literature [41] or medical images [32, 33].

In this work we model the human upper limb with a two-joint kinematic

chain. In the following sections we give the details on the skeletal model

and define different ways of actuating it.

2.2.1 Skeletal model

The human arm is considered to have seven degrees of freedom: three in

the shoulder, two in elbow, and two in the wrist. For simplicity we consider

the wrist rigidly attached to the elbow, and we restrict our analysis to the

horizontal plane, without considering the gravity. Furthermore we consider

homogeneous mass distribution. We end up with a planar kinematic chain

with two segments representing the upper arm and the forearm respectively,

and two rotational joints representing the glenohumeral and elbow joints

(Figure 2.1). In this manuscript we will refer to these joints as shoulder joint

and elbow joint respectively. The shoulder joint is attached to a rigid body

representing the scapula-clavicle complex. The joint axes are perpendicular

to the horizontal plane.

Anthropometric data are taken from [52] and are reported in Table 2.11.

1In [52] the moment of inertia is given with respect to the joints, while for our purpose

we needed the moment of inertia with respect to the center of masses of the two segments.
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Figure 2.1: Kinematic chain representing the skeletal of a human arm model with the

elbow and shoulder joint and the forearm and upper arm segments.

Table 2.1: Anthropometric data of the skeletal model.

Forearm Upper arm Unit

Mass 1.43 1.82 Kg

Length 0.333 0.309 m

Center of Mass1 0.165 0.135 m

Moment of Inertia2 0.0186 0.0178 Kg ·m2

1 Distance from proximal joint
2 Relative to the Center of Mass

2.2.2 Actuation

In order to investigate the impact of redundancy and nonlinearities on the

synergy hypothesis, we systematically added these two biomechanical fea-

tures to our kinematic chain. In this way it was possible to analyze their

contributions separately. Depending on how the kinematic chain is actuated

we define three models:

1. Torque Model : the kinematic chain is actuated by means of torques

applied to the joints. This model is not redundant as the number of

inputs is equal to the number of joints;

2. Force Model : the kinematic chain is actuated by means of 6 forces

applied to the links. This model is redundant as the number of forces

exceeds the number of joints;

We have recalculated them by applying the Huygens-Steiner theorem, best known as

parallel axis theorem. The obtain data is comparable to that given by other authors

[44, 49, 65].
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3. Activation Model : in this model the 6 forces applied to the links are

generated by means of nonlinear muscle models, which receive muscle

activations as inputs.

Before looking at the details of the models above, we shortly define the

concept of Redundancy and Nonlinearity.

Redundancy

In a human arm there are 7 degrees of freedom (dof) without considering

the hand. These are controlled by dozens of muscles thus, the same joint

configuration can be obtained by different muscle contraction patterns. A

long standing question in neuromotor control is how the CNS “chooses”

among infinite number of muscle activation patterns that solve a task and

how certain patterns are chosen instead of others. This is the so called

degrees of freedom problem, formulated for the first time by Bernstein [11].

In this section we define the concept of redundancy and explain the role it

plays in our work.

In the first instance, a mechanical system is said to be redundant when

it has more inputs than degrees of freedom (dof). As a result a theoretically

infinite number of different inputs can lead to the same output. From the

mathematical point of view, for a redundant dynamical system represented

by the differential operator D, the inverse dynamics problem of finding the

unknown input u(t) leading to the known configuration q(t), is underdeter-

mined, that is:

∃u1(t) 6= u2(t) s.t. q(t) = D−1 (u1(t)) = D−1 (u2(t)) (2.16)

Finding a solution to the inverse dynamics in this case may be non-trivial,

even if the input is chosen with some criteria. We will show that unfortu-

nately this is exactly the case in this work.

How does redundancy apply to our musculoskeletal model? For simplic-

ity let’s first consider a single rotational joint actuated by a torque producing

a certain angular acceleration. In this case the input u(t) to the dynamical

system is the torque τ while the configuration q(t) is characterized by the

joint angular position θ and velocity θ̇. The differential equation character-

izing the system is:

τ = Iθ̈ (2.17)

where I is the joint moment of inertia. This relation is one-to-one and, given

an initial configuration, it is possible to determine the applied torque from

the joint kinematics and vice-versa. Now consider another dynamical system
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characterized by a joint actuated by means of two unconstrained forces f1
and f2 acting on the joint through two lever arms r1 and r2. The differential

equation characterizing the system is:

r1 × f1 + r2 × f2 = Iθ̈ (2.18)

Once the two forces are known, the angular acceleration θ̈ is uniquely deter-

mined. The contrary instead cannot be said. Given the angular acceleration

θ̈ (i.e. the joint kinematics) there are infinite combinations of f1 and f2 which

generate it.

The discussion above generalizes to our musculoskeletal model. We have

2 degrees of freedom, namely the shoulder and the elbow joints. When we

actuate the model with two torques, one per joint, the relation between

actuation and kinematics is one-to-one and there is no redundancy. If in-

stead we actuate the kinematic chain by means of forces, their total action

produces a certain torque but the inverse dynamics problem of finding the

contribution of each force given the joint kinematics is underdetermined and

has infinite solutions.

Nonlinearity

In this section we explain the concept of nonlinearity and how its comes to

play in our work.

In a nonlinear dynamical system the output is related to the input by a

nonlinear relation. For such a system the superposition principle is not valid,

meaning that in general it is not possible to linearly decompose the output

in order to deduce a possible input decomposition. Similarly, if we know the

input required to obtain a desired output, we cannot use this information to

generate other inputs leading to other desired outputs. On the other hand,

this is exactly what the synergy hypothesis speculates, that there are a set

of input primitives (i.e. synergies) which linearly combined generate inputs

leading to the execution of a desired task.

As described at the beginning of this section, we actuate the muscu-

loskeletal model by means of torques applied to the joints, by means of

forces, and by means of muscle activations. For a generic kinematic chain,

the relation between torques applied to the joints and the kinematics is

already not linear. We are however interested in the non-linearity which

affects the relation between the input to the kinematic chain and the torque

actually generated on the joints. Let’s represents our musculoskeletal model

actuated by torques with the usual differential operator D:

D(q(t)) = τ (t) (2.19)
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where q(t) is the configuration and τ (t) the actuation torque. Let’s say that

to execute a desired trajectory q̃(t) we have found a linear decomposition of

the desired torque τ̃ (t) as follows:

D(q̃(t)) = τ̃ (t) = a1τ 1(t) + a2τ 2(t) (2.20)

Suppose now that we actuate the kinematic chain with forces applied to the

joints and that we want to find a similar decomposition. If we represent the

linear relation between forces and torques in case of a constant lever arm

with a function g(·), we can write:

D(q̃(t)) = a1τ 1(t) + a2τ 2(t)

= a1g(f1(t)) + a2g(f2(t))

= g(a1f1(t) + a2f2(t))

(2.21)

and we have found a linear decomposition in the forces f1(t) and f2(t)

leading to the desired trajectory q̃(t). Suppose now that we actuate the

kinematic chain with muscles producing a force in response to an activation

input. The relation h(·) between muscle activationm(t) and generated force

f(t) is nonlinear and we have therefore:

D(q̃(t)) = g(a1f1(t) + a2f2(t))

= g(a1h(m1(t)) + a2h(m2(t))

6= g(h(a1m1(t) + a2m2(t)))

(2.22)

In general it is not possible to find a decomposition in the activation inputs

m1(t) and m2(t) by simply applying the superposition principle.

If we now think at τ i(t), f i(t) and mi(t) as primitives of a synergy-

based controller it is clear that while the transition from torques to forces

may not add any complexity in terms of linearity, the transition from forces

to activations instead adds a new property which makes the whole system

even more nonlinear and the job of the controller harder.

2.2.3 Torque model

In this model the kinematic chain is actuated by means of torques applied

to the joints (Figure 2.2). The well-known dynamical equation describing

this model is shown below and is taken from [67]:

D(q)q̈ +E(q, q̇)q̇ +G(q) = τ (2.23)

where q = [qe qs]
T is the configuration vector, with qe and qs the angular

positions of the elbow and shoulder joints respectively and τ = [τe τs]
T the
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Figure 2.2: Torque actuated model. mi are the segment masses, li their length, ai
the distance of the center of masses to the corresponding proximal joint, τi are the

actuation torque.

torques applied to the respective joints. The matricesD, E andG represent

the inertial, centrifugal/coriolis and gravitational contributions respectively

and are defined as follows:

D =

(
mea

2
e + Ie meaels cos qe +mea

2
e + Ie

meaels cos qe +mea
2
e + Ie 2meaels cos qe +mel

2
s +mea

2
e + Ie +msa

2
s + Is

)
(2.24)

C =

(
0 meaels sin qeq̇s

−meaels sin qe(q̇e + q̇s) −meaels sin qeq̇e

)
(2.25)

G =

(
meg0ae cos (qe + qs)

meg0ls cos qe +meg0ae cos (qe + qs) +msg0as cos qs

)
(2.26)

where the quantities with the subscript e refer to the elbow joint and forearm

segment, while those with subscript s refer to the shoulder joint and upper

arm segment, as depicted in Figure 2.2. The quantities me and ms are the

masses of the two segments, le and ls their length, ae and as the positions

of their centers of mass relative to the proximal joint, and Ie and Is their

moments of inertia relative to the centers of mass. The term g0 is the

gravitational acceleration, but because the kinematic chain is horizontal,

gravity has no effect and the whole G matrix can be ignored.

2.2.4 Force model

The kinematic chain is actuated by means of 6 forces applied to the links, as

depicted in Figure 2.3. In this configuration we have 4 forces acting on each
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joint, 2 of them in place of single-joint muscles, and the other 2 in place of

biarticular muscles.

Figure 2.3: Forces actuated model. Each force f corresponds to a muscle in the mus-

culoskeletal model and acts on a joint with lever arm r. The muscles are: Elbow Flexor

(EF), Elbow Extensor (EE), Shoulder Flexor (SF), Shoulder Extensor (SE), Biarticular

Flexor (BF), Biarticular Extensor (BE).

This type of configuration is widely used in literature (e.g. [46, 52, 45]).

In particular Nijhof and Kouwenhoven [52] propose a procedure to lump

19 muscles of the human arm into 6 muscles organized as in Figure 2.3.

Muscles origin and insertion points are taken from literature [72, 71, 4]

and in part estimated from a skeleton model2. We used their data and

lumping procedure, briefly illustrated in appendix A, to build our model.

The lumping procedure results in the origins, insertion points and lever arms

summarized in Table 2.2. Positive lever arms contribute to a positive torque

and therefore to a flexion of the joint, while negative lever arms contribute

to an extension. Coordinates are expressed in the reference frame of Figure

2.4, depicting the musculoskeletal model with the shoulder and elbow joints

flexed 30°and 90°respectively. The x-axis runs along the Humerus while the

y-axis is in parallel to the Ulna-Radius complex. The z coordinate of origin

and insertion points was ignored because we were only interested in the

horizontal plane3.

We can express the actuation represented by the 6 forces with a vector

2The 19 muscles are those generating significant horizontal adduction/abduction of

the shoulder and flexion/extension of the elbow [52]. The other arm muscles are not

considered.
3By comparing the distance between insertion and origin in the three dimensional space

with the distance calculated in the horizontal plane it can be verified that most muscles

already lie essentially in the horizontal plane.
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Table 2.2: Lumped muscles data obtained with the procedure described in [52]. τsmax

and τemax
(Nm) are the maximal torques the muscle can generate and are obtained

as sum of the single torques contributions from Table A.1. Fmax (N) is the maximal

force the muscle can generate, obtained dividing the maximal torque by the lever arm.

For biarticular muscles the maximal forces is the mean value between the two maximal

forces generated at the joints. Ox, Oy, Ix and Iy (cm) are the lumped origin and

insertion point coordinates in the horizontal plane. rs and re (cm) are the lever arms.

Muscle τ smax τ emax Fmax Ox Oy Ix Iy rs re

SF 54.30 0 838 -5.6 10.9 8.7 1.6 6.5 0.0

SE -43.08 0 1207 1.6 -5.6 9.4 0.4 -3.6 0.0

EF 0 37.63 1422 23.1 -0.6 30.9 14.4 0.0 2.6

EE 0 -28.23 1549 20.2 -1.7 32.4 2.0 0.0 -1.8

BF 7.21 14.08 304 -2.5 2.8 31.0 4.4 3.7 3.4

BE -10.72 -12.06 469 -1.4 -2.8 32.6 -1.9 -3.2 -2.0

F defined as:

F =
(
fef fee fsf fse fbf fbe

)T
(2.27)

where the subscripts refer to the muscle names in Table 2.2 and depicted in

Figure 2.3.

Each force acts on a joint through a lever arm. We consider a fixed lever

arm, that is, it does not change with joint position. This assumption is not

biologically plausible because we know that muscles slide over bones, joints

and over each other and their lines of action changes constantly with the arm

position. Nevertheless, this assumption let us investigate the implications

of redundancy without adding further complexity.

If ri is the lever arm associated to the force fi, the total torque τj acting

on a joint j is given by:

τj =
∑
i

rifi (2.28)

The total torques on elbow and shoulder joints of our model can therefore

be written as follows:

τ =

(
τe
τs

)
=

(
reffef + reefee + rebffbf + rebefbe
rsffsf + rsefse + rsbffbf + rsbefbe

)
= L



fef
fee
fsf
fse
fbf
fbe


= LF

(2.29)



40 Chapter 2. Methods

Figure 2.4: Skeletal model with the 6 muscles lumped following the procedure from

[52].

The term L ∈ R2×6 is the lever arm matrix with values given in Table

2.2:

L =

(
ref ree 0 0 rebf rebe
0 0 rsf rse rsbf rsbe

)
(2.30)

where each lever arm has the same subscript of the corresponding force, with

the exceptions of rebf (rebe) and rsbf (rsbe) which are the lever arms of elbow

biarticular flexor (extensor) and shoulder biarticular flexor (extensor).

The equations of motion (2.23) of the force model can therefore be rewrit-

ten as:

D(q)q̈ +E(q, q̇)q̇ +G(q) = τ = LF (2.31)

The input to the kinematic chain are no more the torques τ but the forces

vector F containing the 6 independent inputs which actuate two joints.

Thus, the system is redundant because the number of forces exceeds the

number of joints. How is this redundancy exhibited? The lever arm matrix

L plays a fundamental role. This matrix has rank 2 therefore its kernel it

not empty4. Let’s assume that the kinematic chain is actuated by a force

F 1 producing the torque τ 1 given by:

LF 1 = τ 1 (2.32)

Since the ker(L) 6= {∅} we can find a force F 2 6= 0 such that LF 2 = 0. It

follows that:

LF 1 = τ 1 = τ 1 + 0 = τ 1 +LF 2 ⇒ L(F 1 − F 2) = τ 1 (2.33)

4By construction it has at least rank 2 because columns 1 and 3 or 2 and 4 are linearly

independent, furthermore it has 2 rows. We conclude therefore that it must have rank 2.
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hence we have found another force F 1−F 2 leading to the same torque and

to the same kinematic response. Given that the kernel is closed with respect

to the multiplication by a scalar, there are infinite forces leading to the same

actuation.

2.2.5 Activation model

The activation model is obtained from the force model by replacing the in-

dependent force inputs with muscles controlled in activation. Each muscle

generates a force with the same line of action and lever arm as in the force

model. The force configuration is therefore the same and all the considera-

tions about redundancy are still valid. The independent inputs however are

no more the forces, but the activations controlling the muscles.

In 1938 Hill showed that forces generated by muscle contractions depend

on their internal state, represented by length and contraction velocity, and

that the relation between activation and generated force is nonlinear. Thus,

we can represent the activation model as in Figure 2.5, where g(m, l, l̇) is

the nonlinear function relating muscle activation m, state (l, l̇), with l the

muscle length, and generated force f .

Figure 2.5: Activation actuated model. The force f produced by a muscle is a function

of the its activation m, its length l and its contraction velocity l̇. Each force acts

on a joint with the lever arm r. The muscles are: Elbow Flexor (EF), Elbow Extensor

(EE), Shoulder Flexor (SF), Shoulder Extensor (SE), Biarticular Flexor (BF), Biarticular

Extensor (BE).

Muscle Dynamics

In the classic model from Hill, a muscle is composed by a contractile ele-

ment (CE) in series with a series element (SE), and a parallel element (PE)
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arranged in parallel to both CE and SE5. The CE generates an active con-

traction force in response to an activation m(t), which is a dimensionless

quantity in the range [0, 1]. The generated force depends on muscle length

and contraction velocity. The SE is a nonlinear spring-like element repre-

senting the passive elastic properties of muscle tissues and tendons. Being

in series with the CE, it accounts for compliance during contractions; ad-

ditionally its stiffness increases while stretching, resulting in increased joint

stiffness during co-contractions [39, 70]. Finally the PE is a spring-like el-

ement which models the muscle viscoelasticity due to passive tissue inside

and around the muscles (skin, fibers, vessels etc.).

The musculotendon series element (modeled by SE) is responsible for

compliance in the muscle. Ignoring it corresponds to consider the muscle

infinitely stiff and avoids to deal with differential terms in the muscle model.

We decided therefore to focus on a model without the SE, which allows to

analyze muscle nonlinearities without additional complexities. The model

is depicted in Figure 2.6.

Figure 2.6: Muscle model composed by contractile element (CE) and a parallel element

(PE) arranged in parallel. m(t) is the muscle activation while f(t) is the force resulting

from both the CE and the PE.

In what follows we provide the details of the CE and the PE, and we

show how they characterize muscle dynamics.

Contractile Element (CE) The force generated by the CE depends on

muscle activation as well as on muscle length and velocity. In the following

sections this force will be called active force. The relationship between active

force, length and velocity is regulated by two equations, commonly called

force-length and force-velocity relations. The force is generally considered

5Other models have been proposed in literature, for example with SE in series with

both CE and PE. These models are described by other equations but are equivalent to

the model described here.
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instantaneous (not dependent on history) and is given by [69]:

fCE(m, l, l̇) = mfl(l)fv(l̇)Fmax (2.34)

where fCE(m, l, l̇) is the force generated by the CE, m is the activation,

fl(l) the force-length relation depending on the length l of the CE, fv(l̇)

the force-velocity relation depending on the CE velocity l̇, and Fmax the

maximal isometric force. The terms m, fl(l) and fv(l̇) accept values in the

range [0, 1], thus they act as weighting factors for the maximal isometric

force.

Note that, since we have no SE in our model, the muscle length coincides

with the length of CE and PE. We will therefore refer to this length simply

as muscle length and we will use always the symbols l for the length ans l̇

for the velocity.

Force-length relation This relation describes how muscle length affect

the generated force, and originates from the fact that the muscle strength

depends on the degree of overlapping of its fibers. According to [69] the

force-length relation has its maximum at the muscle optimum length (about

1.05 times the rest length), and decreases for shorter or longer lengths. Most

authors approximate this relation with a gaussian function ([52, 50, 39] and

others). Accordingly, we chose to define the force-length relation as follows:

fl(l) = e
−
(

l
Lrest

−Lopt
kl

)2

(2.35)

where l is the muscle length, Lrest the muscle rest length, Lopt the optimum

length, and kl the steepness of the gaussian curve (between 0 and 1).

Force-velocity relation Describes the dependency of the generated force

on the muscle contraction velocity. For shortening muscles (contractions)

the force increases for decreasing velocity, while it saturates at about 30%

over the maximal isometric force for lengthening muscles (extensions). It

is common practice to use two different formulations for contractions and

extensions. For shortening muscles (l̇ < 0), the force-velocity relation is

modeled with the following normalized hyperbolic formula (see [69]):

fv(l̇)
∣∣∣
l̇<0

=
af (Vmax − l̇)
afVmax + l̇

(2.36)

where l̇ is the contraction velocity, af the hyperbolic shape, and Vmax <

0 the maximum unloaded contraction velocity. Vmax and af depend on
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muscle fiber composition [70]. According to [16], Vmax should be scaled

with activation, unless the movement being modeled requires low velocity of

shortening muscles. Like the majority of the authors, we will not consider

this scaling.

In case of lengthening muscles the force-velocity relation is such that the

force saturates at about Fs = 1.3Fmax (see [69] and [52]):

fv(l̇)
∣∣∣
l̇>0

=
Fs(af + 1)l̇ + (Fs − 1)afVmax

(af + 1)l̇ + (Fs − 1)afVmax
(2.37)

Note that both relations converge to 1 for l̇ = 0, that is, in isometric

conditions.

Parallel Element (PE) The PE represents the passive elements of the

muscle, and is commonly modeled as a nonlinear spring. It starts to have

a non-negligible effect for muscle lengths higher than a certain threshold

(typically about 30% over the rest length). Its effect is mostly linear in

the primary range, but the steepness increases for higher values of muscle

lengths, where the PE element starts to have big influence. Commonly, the

force generated by the PE, called passive force, is modeled as an exponential

function [36, 50, 52]:

fPE(l) = FPEmax
ekPE

l
Lmax − 1

ekPE − 1
(2.38)

where FPEmax is the PE maximal force, kPE is the steepness of the expo-

nential and Lmax is the maximum muscle length. In other words, the PE

generates the force FPEmax when the muscle is at its maximum length. Ac-

cording to [64], depending on activation, the PE element can also push when

compressed to extreme lengths and resist to the force produced by CE. We

did not considered this possibility in our work.

Total muscle force Since the CE and the PE are arranged in parallel,

the total force f is given by the sum of the two:

f(m, l, l̇) = fCE(m, l, l̇) + fPE(l) = mfl(l)fv(l̇)Fmax + fPE(l) (2.39)

Muscle Kinematics

In order to compute muscle lengths and velocities, a common assumption

in literature (e.g. [59]) is that muscles roll over joints and slide over each
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other. Hence, we can model the change in muscle length dl of a muscle as

the product of the change in joint angles θ, times the lever arm r:

dl = rdθ (2.40)

To integrate this relation (i.e. to know the absolute lengths for a certain joint

position) we need a reference position that associates given joint angles with

the corresponding muscle lengths. The joint reference position q̂ = [q̂e q̂s]
T

that we have used corresponds to the arm posture described in section 2.2,

where the elbow and shoulder joints are flexed at 90°and 30°respectively.

The corresponding muscle lengths l̂ = [l̂ef l̂ee l̂sf l̂se l̂bf l̂be]
T were

computed as the euclidean distance between lumped origin and insertion

coordinates (these coordinates are reported in Table 2.2).

For a single muscle, the absolute length l is given by:

l = l̂+re(q̂e−qe)+rs(q̂s−qs) = l̂+
(
re rs

)(q̂e
q̂s

)
−
(
re rs

)(qe
qs

)
(2.41)

where re and rs are the lever arms at the elbow and shoulder joint respec-

tively and q = (qe qs)
T is the configuration state. If the muscle is not

biarticular, then either re or rs are 0. Eq. (2.41) can be rewritten in matrix

form as follows

l = l̂+LT (q̂ − q) (2.42)

where l = [lef lee lsf lse lbf lbe]
T is the vector of muscle lengths and

L is the lever arm matrix defined in Eq. (2.30). The expression to calculate

muscles velocities can be calculated similarly, or simply by deriving Eq.

(2.42):

l̇ = −LT q̇ (2.43)

Muscle Parameters

In this section we define the values of the muscle parameters described in

the previous sections.

Is is difficult to estimate plausible values for those parameters because

each muscle has different properties and some of them also change from

individual to individual. Literature does not provide ready to use data

and, additionally, we work on a lumped musculoskeletal model. We believe,

however, that for our purpose it is not important to obtain a quantitatively

accurate model of the muscle. Rather, we want to make sure that the model

resembles qualitatively properties and dynamics of real muscles. We chose

therefore a common parameter set for all muscles.



46 Chapter 2. Methods

Rest length (Lrest) We use the musculoskeletal arm configuration de-

scribed in 2.2, with the elbow and shoulder flexed 90°and 30°, as resting

position. Starting from the resting position, we compute muscle rest lengths

as the euclidean distances between origin and insertion points in Table 2.2.

Maximum length (Lmax) Is calculated by placing the musculoskeletal

model in the 4 extreme joint positions. Relation (2.42) is then used to

calculate the muscle lengths at these positions, and the maximum value for

each muscle is taken as maximum length.

Optimum length (Lopt) In accordance with [69] we take 1.05. This means

that muscles can express their maximal force when their length is 1.05Lrest.

Force-length relation gaussian steepness (kl) According to [69], the force-

length relation has its maximum at the muscle optimum length Lopt, and

tends to 0 at about 0.4 and 1.5 times the muscle rest length. Such a profile

can be obtained with kl = 0.50.

Force-velocity relation hyperbolic shape (af ) Depending on the muscle,

this parameter takes a value in the range [0, 1], and is generally below 0.25

for slow fiber muscles and higher for faster muscles [69]. According to [70],

for example, elbow extensors and flexors have values between 0.30 and 0.45.

We chose af = 0.45 for all muscles.

Maximal unloaded contraction velocity (Vmax) Different authors propose

a variety of values for this parameter. For Winters [69] it depends on the

fiber types composing the muscles and ranges from 2L0/sec to 8L0/sec where

L0 is the mean fiber rest length. In [68] the author proposes values above

10L0/sec. According to [37], L0 takes values between 0.33Lrest for distal

muscles (i.e. elbow muscles) and 0.75Lrest for other muscles. We chose

L0 = 0.54Lrest for all muscles and Vmax = 5L0/sec = 2.7Lrest/sec. These

values lay in the middle of the ranges suggested in literature.

Maximal isometric force (Fmax) This parameter is taken from our lumped

musculoskeletal model described in section 2.2. Values are shown in Table

2.2.

Maximal PE force (FPEmax) According to [64], the maximum PE force is

less than 10% of Fmax and is obtained at maximum anatomical length. Max-

imum anatomical length is the maximum length a muscle can have across

all anatomical configurations of the joints it crosses [64]. This value can be
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estimated by subtracting the tendon length from the entire musculotendon

length. Because we are not considering tendons (no SE element), we take

the maximum anatomical length as Lmax and set FPEmax = 0.1Fmax.

PE force steepness (kPE) A value which fits the curve description given

in literature is kPE = 20.

Figure 2.7 shows the normalized profiles of the CE force-velocity and

force-length relations, and of the PE force function for the described param-

eters. Figure 2.8 shows the overall normalized muscle force as a function of

its length and velocity. In both figures, length is normalized with respect to

Lrest, velocity with respect to Vmax, and PE force with respect to FPEmax .

Figure 2.7: CE and PE normalized characteristic profiles. Length is normalized with

respect to Lrest, velocity with respect to Vmax and PE force with respect to FPEmax
.

Kinematic chain activation dynamics

Now that we have defined the dynamics of a single muscle as interaction

between the CE and PE elements, we derive the dynamical equations for the

whole kinematic chain. As we have done for the force model, the activation
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Figure 2.8: Three-dimensional surface representing muscle force as a function of length

and velocity. Length is normalized with respect to Lrest, velocity with respect to Vmax,

and the resulting force with respect to the maximal isometric force Fmax.

input can be arranged in a vector M :

M =
(
mef mee msf mse mbf mbe

)T
(2.44)

By using Eq. (2.39) we can define the vector F of the forces generated by

the muscles as:

F = C(l, l̇)M + P (l) (2.45)

where l = [lef . . . lbe]
T and l̇ = [l̇ef . . . l̇be]

T are the muscle length and velocity

vectors. The term C(l, l̇) is a diagonal matrix that represents the CE: it

contains at position i of its diagonal the maximal isometric force weighted

by the force-length and force-velocity relations of muscle i:

C(l, l̇) =


flef (lef )fvef (l̇ef )Fmaxef

. . .

flbe(lbe)fvbe(l̇be)Fmaxbe


(2.46)
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The vector P (l) is the contribution of the PE:

P (l) =

fPEef (lef )
...

fPEbe(lbe)

 (2.47)

The expression of the total torque applied to the joints follows from relations

(2.29) and (2.45):

τ = LF = L(C(l, l̇)M + P (l)) (2.48)

where L is the lever arm matrix. The equations of motion for the activation

model can be rewritten as:

D(q)q̈ +E(q, q̇)q̇ +G(q) = LC(l, l̇)M +LP (l) (2.49)

2.3 Experimental setting

In this section we describe the procedures followed to execute our experi-

ments, and the methods used in order to evaluate the obtained results. We

actuated our kinematic chain with linear combinations of primitives rep-

resenting synergies, as described in section 2.1.3, and have measured their

performance in solving reaching tasks, as described in section 2.1.4. These

experiments have been performed in all the three models described in sec-

tions 2.2.3, 2.2.4 and 2.2.5.

DRD Framework We have conducted our experiments in the DRD frame-

work described in section 2.1. In our setting the differential operator D
represents our kinematic chain, the vector q(t) = [qe(t) qe(t)]

T its configu-

ration and u(t) the actuation, which, depending on the model, is a torque,

a force or an activation.

The synergies Φ = [φ1(t) . . .φnφ(t)] are defined in the actuation space of

the kinematic chain (torques, forces or activations). The dynamic responses

Θ = [θ1(t) . . .θnθ(t)] where θi(t) = [θei θsi ]
T are the responses of the

kinematic chain to the synergies. In this setting nφ = nθ = N . The vector

b = [b1 . . . bN ]T contains the synergy mixing coefficients. For the rest of this

manuscript we will identify all these terms with different symbols depending

on the model. These symbols are listed in Table 2.3.

Task definition We defined reaching tasks as movements from an ini-

tial joint position q0 = [qe0 qs0 ]T at time t = 0 to a final position qf =
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Table 2.3: Symbols used in the torque, force and activation model.

Model Actuation Synergy All Synergies Mixing coeff.

Torque Model τ φ Φ a

Force Model F γ Γ b

Activation Model M ψ Ψ c

[qef qsf ]T at time t = T . Both initial and final velocities are null and ac-

celeration is unconstrained. While q0 is fixed across tasks, qf defines each

task instance. The task is therefore defined by the following constraints:

q(0) = q0, q̇(0) = 0

q(T ) = qf , q̇(T ) = 0
(2.50)

The alternant and task constraint matrices are defined as follows (see Eq.

(2.8)):

M =


θ1(0) ... θnθ(0)

θ1(T ) ... θnθ(T )

θ̇1(0) ... θ̇nθ(0)

θ̇1(T ) ... θ̇nθ(T )

 P =


q0
qf
0

0

 (2.51)

Each element of the two matrices is a two dimensional vector with the elbow

and shoulder joint coordinates. The system of equations (2.8) is therefore

composed in this case by 8 linear equations and a number of unknowns

depending on the number of synergies/dynamics responses.

The time interval [0 T ] of the reaching tasks is fixed with T = 750ms.

This value was chosen as the mean duration of reaching movements in hu-

mans as reported from literature [40, 5, 46].

Synthesis of synergies Alessandro et al. [2] propose a method to syn-

thesize synergies using the DRD framework. They hypothesize that the

synergies involved in the solution of a certain class of tasks (e.g. reaching

tasks) are themselves solutions to tasks of the same type. A class of task is

an equivalence relation between tasks which share common properties. For

example, while the class of reaching tasks may be composed by all reaching

tasks with initial and final velocity zero, the class of via-point tasks may

be instead composed by all tasks which trajectory passes through a certain

via-point, expressed as task constraint. The idea behind this hypothesis is

that synergies picked in a class of tasks embed information about that class

and are more suitable to solve other task instances of similar type.
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The method is composed by two steps, the exploration followed by the

reduction. In the exploration phase the dynamical system (i.e. the kine-

matic chain) is actuated with a extensive set of actuations Φ∗, starting from

different initial conditions. This results in a corresponding set of DRs Θ∗

uniformly distributed in the phase space. Actuations and initial conditions

are not restricted to a particular type. In the reduction phase the trajecto-

ries of a small set of tasks, called prototasks, are found by interpolating on

the exploration DRs Θ∗, as in Eq. (2.6). The actuations solving the pro-

totasks are found by inverse dynamics from the trajectories (see Eq. (2.9)),

and are taken as the synergy set Φ. The number of prototasks will therefore

correspond to the number of synergies.

The prototasks are defined by task constraints and are added iteratively

with the following procedure:

1. define the first prototask. No particular restrictions are applied. In the

case of reaching tasks for example, the first prototask may be defined

by a final position qf somewhere in the configuration space of the

kinematic chain, by the initial configuration q0 and by null initial and

final joint velocities;

2. solve the newly added prototask by interpolation on Θ∗, and take

its corresponding actuation, found by inverse dynamics, as synergy,

adding it to the initially empty set Φ;

3. define a sufficient number of test tasks (e.g. reaching tasks) uniformly

distributed and solve them by linearly combining the synergies Φ as

described in section 2.1;

4. for each task evaluate the projection error. This leads to a mapping

between the tasks and the synergies performance in approximating

their solutions;

5. if the overall performance is not satisfactory add a new prototask where

the error is maximal and reiterate from step 2, otherwise terminate. In

other words, the newly added prototask has similar constraints to the

tasks for which the solutions are poorly approximated by the synergies.

We used the method described above in order to synthesize a set of

synergies for our models and used them to evaluate the performance and

the effect of redundancy and nonlinearity on the control of reaching tasks

by linear combination of synergies.

In the exploration phase we actuated the torque model with a set of about

120 random torque profiles leading to 120 exploration dynamic responses.
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These actuations were generated by filtering (with a 9th-order low pass

butterworth filter) random numbers in the interval of feasible torques ([-

4.4, +4.4] Nm for shoulder, and [-1.3, +1.3] Nm for elbow [31]6). For each

torque we chose a random initial condition (initial joint configuration) and

we simulated the system; if the obtained joint trajectory was outside the

joint boundaries, both DR and actuation were discarded. The result of the

exploration is shown in Figure 2.9.

Figure 2.9: Exploration dynamic responses represented in joint space (left) and end

effector space (right). Each colored line is a different dynamic response.

In the reduction phase we used the exploration DRs in order to find the

synergies as solutions to prototasks. Following the hypothesis of Alessandro

et al. [2] (synergies involved in the solution of a task are themselves solutions

to tasks in the same class) we picked prototasks from the class of reaching

tasks with constrained initial and final positions and velocities. We iterated

the reduction procedure at least 12 times, to find at least 12 synergies. At

each step we evaluated the performance of the synergies found till then.

Performance assessment The performance of the synthesized synergies

was evaluated on a wide set of reaching tasks. We defined a mesh of more

6Values taken from Fig 3A and 3B in [31].
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than 800 points uniformly distributed in the whole configuration space and

have taken each point as final configuration qf of one task instance. The

initial configuration q0 was fixed. We solved each task with the set of the

first n synergies found during the reduction, for n = 1 . . . 12. For each

n we calculated the mean (relative) projection error and the mean forward

dynamics error over all the tasks, and plotted these error against the number

of synergies n. This resulted in two plots, the (relative) projection error vs.

number of synergies and the forward dynamics error vs. number of synergies.

These plots give information on the ability of the synergies in approximating

task actuations, and on the quality of the trajectory obtained from the

approximated solutions. They also show how the overall performance scales

by adding new synergies, and make possible a good and intuitive comparison

between the torque, the force and the activation models.
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Chapter 3

Results: Torque Model

In this chapter we present the results obtained on the torque actuated kine-

matic chain. We show the prototasks found using the reduction procedure

described in 2.3 and show that a small number of synergies is capable of

controlling the kinematic chain with good performance, leading to a con-

siderable dimensionality reduction of the controller. The same experiments

on a slightly different 2-joints kinematic chain actuated with torques have

already been done by Alessandro et al. in [2]. We compare their results

with those obtained in our work and use the latter as performance reference

mark for the force and activation models.

3.1 Reduction

The result of the reduction procedure on the torque model, iterated 12

times in order to synthesize from 1 to 12 synergies, is shown in Figure 3.1.

Each panel corresponds to one iteration (ordered in row-major order), and

shows the projection error (color coded) obtained by solving more than 800

reaching tasks distributed in the operational space of the arm. The darker

the color, the smaller the error. In iteration 5 (fifth image in row-major

order, starting from the top-left image), for example, the color corresponds

to an error of 10−1 in most areas, with some darkening around the prototasks

(10−2) and a slightly brighter area in the center (between 1 and 10−1). The

new prototask (no. 6) is placed in this area, because there the projection

error is higher. The addition of prototask no. 6 results in a darkening in the

next panel, meaning that the projection error is smaller and performance

is increased. The 800 test tasks are then evaluated again and the resulting

performance is used to add prototask no. 7. The procedure reiterates till

prototask no. 12 is added and all test tasks are evaluated again for the last
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Figure 3.1: Results of the reduction procedure for the torque actuated kinematic chain.

Each panel corresponds to a number of synergies. Each point of the operational space is

colored depending on the performance of the synergies in approximating a reaching task

solution with final position in that point. Bright areas correspond to high projection

errors while dark areas correspond to small projection errors as depicted in the color bar

above.

time (bottom-right image).

Table 3.1 shows the prototask coordinates expressed in elbow and shoul-

der joint angular positions.
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Table 3.1: Prototasks posi-

tions in the torque model,

expressed as elbow and

shoulder joint angles.

# qe [rad] qs [rad]

1 2.5183 2.2611

2 0.7411 -0.3497

3 0.5114 2.2047

4 2.4789 -0.4042

5 1.6219 2.2180

6 2.1195 1.0429

7 0.5884 0.6575

8 1.4434 1.2242

9 0.7642 1.5458

10 1.0547 2.2218

11 1.9514 -0.2364

12 0.7256 0.1289

3.2 Performance

Figure 3.1 gives an idea of the performance obtained when solving reaching

tasks by linear combination of synergies. Such results can be summarized as

in Figure 3.2, where each point represents the mean projection error across

the test reaching tasks for each number of synergies (i.e. for each iteration of

the reduction). As it can be seen, performance increases by adding new syn-

ergies. For example, while 4 synergies approximate a desired actuation with

a mean error below 10−1Nm, with 8 synergies the mean error approaches

10−3Nm. Figure 3.3 shows the actuations and kinematic trajectories ob-

tained by approximating the desired control signal with 8 synergies for the

task with the highest projection error. The desired actuation obtained from

the inverse dynamics of the desired trajectory, and the trajectory itself, are

very close to those obtained from the linear combination of synergies.

What does all this means in terms of end effector movement? Will

the kinematic chain controlled by linear combination of synergies be able

to reach the desired configuration? The plot of the end effector forward

dynamics error vs. number of synergies (see section 2.3) in Figure 3.4 shows

that the forward dynamics performance scales similarly to the ability of the

synergies to approximate the desired actuation (measured by the projection

error). With 8 synergies the mean forward dynamics error is less than 10−3,
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Figure 3.2: Projection error vs. number of synergies for the torque model.

meaning that the kinematic chain can reach the desired target with an error

smaller than 1mm1.

As observed in [2], a traditional controller would have to “choose” joint

torques at each timestamp. In contrast the 8 synthesized synergies allow

the controller to generate satisfactory actuations by choosing only 8 scalars,

i.e. the mixing coefficients (see Eq. (2.2)). Hence, 8 synergies represent a

very high dimensionality reduction.

3.3 Comparison with previous work

The obtained results are similar to that reported in [2] for point-to-point

tasks with null initial and final velocity. In their work, the authors obtained

with 7 synergies a mean projection error < 10−2Nm and a mean forward

dynamics error of ca. 10−2. Here we achieve a little bit higher but still simi-

lar projection error with the same number of synergies, and, by adding new

1The forward dynamics error is calculated from both position and velocity trajectory

components, measured in m and m/s respectively (see definition in section 2.1). As a

result, if the forward dynamics error is 10−3, the error in position cannot be higher than

1mm.



3.3. Comparison with previous work 59

(a) (b)

(c) (d)

Figure 3.3: End effector trajectory (a), torques actuation (b), joint positions (c) and

joint velocities (d) obtained by linearly combining the first 8 synergies found during the

reduction for the task with the highest projection error. Red lines refer to the elbow

joint while blue lines to the shoulder joint. Continuous lines in (b) represent the desired

actuations (computed by evaluating the inverse dynamics on the desired trajectory)

while dotted lines are the closest actuations in the linear span of the synergies. Con-

tinuous lines in (c) and (d) represent the desired trajectories (linear combinations of

DR, see Eq. (2.6)). Dotted lines represent the trajectories obtained when actuating

the kinematic chain by means of linear combination of synergies.

synergies, performance scale very similarly. This can be verified comparing

Figure 3.2 with the similar plot reported in [2]. The small differences in the

projection error can be due to a variety of factors (e.g. choice of prototasks,

different kinematic chain properties etc.) and are not relevant. As shown in

Figure 3.4 instead, the forward dynamics error with 7 synergies is ca. 10−2,

perfectly in line with that reported in [2].
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Figure 3.4: End effector forward dynamics error vs. number of synergies for the torque

model.

3.4 Torque model as performance reference

The performance obtained on the torque model will be used as a reference to

compare the results obtained on the force model (which adds redundancy)

and on the activation model (which adds both redundancy and muscle non-

linearities). These results will be presented in the next chapters.
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Results: Force Model

In this chapter we present the results obtained when controlling the kine-

matic chain by means of redundant forces applied to the links (they translate

into torques on the joints). In addition to redundancy, we also introduce bio-

logical constraints (i.e forces ≥ 0). We show with examples that the problem

of solving the inverse dynamics of the model is non-trivial. We then formal-

ize this problem mathematically and demonstrate that by choosing a certain

criteria it is possible to obtain valid force inputs, and that the number of

synergies needed to obtain results comparable to that of the torque model

does not increase, despite redundancy and constraints.

4.1 Torque to force relation

In order to compute both synergies and task solutions we use the inverse

dynamics of the model to be controlled. In the force model this means

that given a certain trajectory in kinematic space we need a strategy to

find a force profile which leads to that trajectory. In the torque model the

correspondence between kinematic trajectory and torque is one-to-one, that

is, there is only one torque profile leading to a given trajectory, and it can be

calculated by means of the closed form (2.23). In the force model instead,

because of the redundancy, different forces lead to the same torque and

therefore to the same trajectory, as illustrated in Figure 4.1. The objective

consists therefore in finding a torque-to-force relation g(·) from torque space

T ⊆ R2 to force space F ⊆ R6 such that:

g : T→ F : τ (t) = Lg(τ (t)) = LF (t) ∀τ (t) ∈ T (4.1)

where τ (t), F (t) and L are torque, force and the lever arm respectively,

already introduced in section 2.2.4. Since under our assumptions synergies
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are solutions to prototasks, there will also be different synergies leading to

the same dynamic response.

Figure 4.1: Redundancy in the force model. While the correspondence between joint

kinematic trajectory qi and torque τ i is one-to-one, the correspondence between torque

and force F ij is one-to-many. Since synergies are solutions to prototasks the corre-

spondence between torque actuations T and force synergies Γ is one-to-many as well.

In addition to redundancy, the choice of the torque-to-force relation is

also influenced by biological constraints. In our setting forces represent mus-

cle outputs. Thus they must be physiologically plausible. In the following

we briefly discuss the two fundamental properties characterizing the force

model and the torque-to-force relation and introduce the math necessary to

formalize them.

4.1.1 Redundancy

In section 2.2.4 we showed that redundancy is exhibited through the lever

arm matrix L and we demonstrated that an infinite number of forces can

lead to a given torque. We will formalize the mathematical relation between

forces and torques in the next section. For now we show, with the example
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in Figure 4.2, that two completely different forces lead to the same torque.

Each force can be decomposed in two components: one that contributes to

the torque and the other one that doesn’t. If two different force profiles share

the first of these components, they will lead to the same torque, indepen-

dently on the second component. Since synergies are basis which are linearly

combined together in order to approximate a set of input forces, their profile

is extremely important and influences the model performance. In approxi-

mating task solutions the non-contributing component of the force synergies

can be changed in order to obtain good performance, without affecting the

resulting actuation.

4.1.2 Biological constraints

In the force model forces are assumed to be generated by muscles. Thus,

they must be physiologically plausible. In particular muscles can only pull,

meaning that they contribute to the torque in only one direction, either

positive (flexion) or negative (extension). Since the direction is already en-

coded in the sign of the corresponding element(s) of the lever arm matrix

L, F (t) must be constrained to be positive. Additionally, muscle forces are

bounded. The maximal force Fmax is a property of our lumped muscu-

loskeletal model and is reported in Table 2.2. The torque-to-force relation

in 4.1 can therefore be rewritten as:

g : T→ F : τ (t) = Lg(τ (t)) = LF (t) ∧ g(τ (t)) ∈ [0,Fmax] ∀τ (t) ∈ T

(4.2)

4.2 Nullspace

In this section we formalize the torque-to-force relation introduced in the

previous paragraphs.

Each force F i(t) ∈ R6 can be decomposed in two components, one con-

tributes to the torque and the other one doesn’t. The minimum-norm com-

ponent F 0
i (t) ∈ R6 leading to a specific torque τ i(t) ∈ R2 can be computed

as:

F 0
i (t) = L+τ i(t) (4.3)

where L+ ∈ R6×2 is the Moore-Penrose pseudoinverse of L. The non-

contributing component F k
i (t) ∈ R6 is in the nullspace of L and can be

written as:

F k
i (t) = Nwi(t) (4.4)



64 Chapter 4. Results: Force Model

(a) (b)

(c) (d)

Figure 4.2: Effect of redundancy on the force model. (a) representative torque profile,

where the red line refers to the elbow joint and the blue one to the shoulder joint.

(b) shows a possible force contributing component that leads to the desired torque,

where each color corresponds to a different muscle. (c) and (d) depict two different

force profiles (top plot) that share the same contributing component (middle plot, also

shown in (b)), and have different non-contributing components (bottom plots).

where N ∈ R6×4 is a matrix containing the basis of the nullspace of L,

and wi(t) ∈ R4 is the so called nullshift and can be freely changed without

affecting the torque. A force F i(t) leading to a torque τ i(t) can therefore

be finally written as:

F i(t) = F 0
i (t) + F k

i (t) = L+τ i(t) +Nwi(t) (4.5)
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Since N contains a basis of ker(L), then LNwi(t) = 0 ∀wi(t) and the

torque produced by F i(t) does not depend on wi(t).

Similarly a force synergy γj(t) can be found from its corresponding

torque τ j(t) as follows:

γj(t) = L+τ j(t) +Nwj(t) (4.6)

for some wj(t). Generalizing to all synergies we can write:

Γ(t) = Γ0(t) + Γk(t) = L+T(t) +NW (t) (4.7)

where Γ(t) = [γ1(t) . . .γnγ (t)] ∈ R6×nγ is a formal matrix containing the

synergies arranged in columns, T(t) = [τ 1(t) . . . τnγ (t)] ∈ R2×nγ is the ma-

trix with the corresponding torques, and W (t) = [w1(t) . . .wnγ (t)] ∈ R4×nγ

contains the nullshifts wj(t) corresponding to each synergy. From now on,

in the interest of readability, we will omit the independent time variable t

in case this does not introduce ambiguities in interpreting formulas.

The concept of nullspace is important because all possible forces F i

leading to a particular torque τ i can be found by varying wi. Similarly, all

possible synergies Γ leading to particular torque actuations T can be found

by varying W . The nullshift W and wi can therefore be used to change

the profiles of forces and synergies, in order to satisfy biological constraints

and to obtain performance. Therefore, if one or more suitable torque-to-

force relations exist (leading to forces satisfying biological constraints and

to synergies capable of approximating them) these can be found across the

possible wi and W .

Given a desired dataset of torques (that solve the tasks of interest),

possible corresponding force datasets can be found by varying wi. Since

this parameter affects the shapes of the force profiles, it will impact on the

dimensionality of this force dataset. This means that more or less generators

(i.e. synergies) are required to approximate it. It is therefore crucial to

understand the effects of the nullshifts on the forces involved. In order

to investigate this effect we have taken n = 8 torque that solve reaching

tasks and have created m = 100 linear combinations of them using random

mixing coefficients. In doing so we obtained a dataset {τ i}mi=1 of torque

actuations with dimensionality n. From this dataset we calculated h = 100

corresponding force datasets. We have done it in two different ways:

1. using a fixed nullshift wj , equal for each force, but different across the

datasets. The force F ij corresponding to the torque τ i in the dataset

j is:

F ij = L+τ i +Nwj for i = 1 . . .m, j = 1 . . . h (4.8)
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2. using a variable nullshift wij , different across both the forces and the

datasets. The force F ij corresponding to the torque τ i in the dataset

j is:

F ij = L+τ i +Nwij for i = 1 . . .m, j = 1 . . . h (4.9)

In both cases, wi and wij have been selected randomly. We have then

evaluated the dimensionality of all the force datasets using SVD (Singular

Value Decomposition). Singular values provide information on how much

variability in the data they explain. The smaller the singular value, the less

variability it explains. If one plots the singular values in decreasing order,

the resulting plot goes to 0 when all the variability in the data is explained.

The number of non-null singular values needed to explain most or all the

variability gives an idea of the dataset dimensionality1.

For each force dataset we plotted the singular values as described above.

The singular values are normalized between 0 and 1 in order to make possi-

ble the comparison between quantities with different magnitude. Figure 4.3a

shows the plots obtained from the datasets with fixed nullshifts wj . Fig-

ure 4.3b shows instead the plots obtained from the datasets with variable

nullshifts wij . The plots obtained from the different force datasets overlap

almost perfectly in both cases. These two figures show that calculating each

force with a different nullshift leads to a much higher dimensionality than

when all forces are calculated using the same nullshift.

We then calculated the standard deviation of each singular value across

the h datasets both in the case of fixed and variable nullshift. Our objective

was to see if the particular value of wj (respectively wij) influenced the

singular values, and therefore the dimensionality. The results are shown

in Figure 4.3c (fixed nullshift) and in Figure 4.3d (variable nullshift). The

histograms show that in the first case almost all singular values have the

same standard deviation, while in the second case (of variable nullshift)

the singular values present much more variability. This result suggests that

when a force dataset is calculated with a fixed nullshift wj , not only the

dimensionality is lower, but it does not depend on the particular wj chosen.

If the dimensionality would depend on the particular nullshift we would

observe move variability in Figure 4.3c.

To conclude this short analysis, we compare the dimensionality of the

force datasets with that of the original torque dataset which we know is

1In the rest of this manuscript we use SVD to provide an estimation of a dataset

dimensionality. When we say that a dataset has lower dimensionality than another, we

mean that, for the number of singular values we consider, the variability in the first dataset

is lower and therefore it can be explained with a smaller number of generators.
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(a) (b)

(c) (d)

Figure 4.3: Dimensionality comparison between force datasets calculated from a torque

dataset using nullshifts. (a) The h = 100 lines represent the normalized singular values

of the h force datasets calculated each with a fixed nullshift wj , equal across all forces

in the same dataset, but different across the datasets. (b) The h = 100 lines represent

the normalized singular values of the h force datasets where each force is calculated

with a variable nullshift wij different across forces and datasets. (c, d) Singular values

standard deviation distribution of the force datasets in the case of fixed nullshift (c) and

in the case of variable nullshift (d). Values on the x axis represent standard deviation

bins. Values on the y axis represent how many singular values have a standard deviation

falling inside a bin on the x axis.

n = 8. We calculated the mean singular values across the h force datasets in

the case of fixed nullshift and variable nullshift. In other words we calculated

the mean lines from Figures 4.3a and 4.3b and plotted them together with

the singular values from the torque dataset. The result is shown in Figure

4.4. The torque dataset (blue line) has dimensionality n = 8 because the

lines approaches 0 at the 9-th singular value. The force datasets calculated

with fixed nullshifts (red line) have dimensionality n + 1 = 9, while the

force datasets calculated with variable nullshifts (green line) have very high
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dimensionality.

Figure 4.4: Dimensionality comparison between torque dataset (blue line), fixed nullshift

force datasets (red line) and variable nullshift force datasets (green line). Singular values

in the two latter cases are the mean of the singular values across all the datasets. The

singular values are normalized between 0 and 1.

All these tests have been performed on a torque dataset obtained by

linearly combining n torque generators. In order to ground these results to

our problem we have taken 100 torques that solve desired reaching tasks

as our torque dataset and have done the same analysis. The results are

shown in Figure 4.5. The torque dataset (blue line) now has a much higher

dimensionality than in the previous case. However, the dimensionality of the

force dataset obtained with a fixed nullshift (red line) is still very similar

to that of the torque dataset. On the other hand, the dimensionality of the

variable nullshift force dataset (green line) is again much higher, meaning

that much more generators would be needed to approximate it. These results

suggest that to keep the forces dimensionality as low as possible we have

to shift all forces with the same nullshift. This implies that in order to

approximate this dataset we would need less synergies than if we use a

variable nullshift.
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Figure 4.5: Dimensionality comparison between a torque dataset composed of 100

reaching task actuations (blue line), fixed nullshift force datasets (red line) and variable

nullshift force datasets (green line). Singular values in the two latter cases are the

mean of the singular values across all the datasets. The singular values are normalized

between 0 and 1.

4.3 Problem formulation

In the previous sections we have shown that choosing the desired force

dataset and the synergies corresponds to choosing wi and W respectively,

and that the dimensionality of the force dataset is similar to that of the

torque dataset if we use the same nullshift for all the forces. In this section

we formalize the general problem of finding wi and W .

Given a desired force F i and the synergies Γ, defined as in Eqs. (4.5)

and (4.7) respectively, we want to approximate F i with a linear combination

of synergies, such that the resulting force is positive. In other words we want

to find the force F̃ i = Γbi ≥ 0 which minimizes the norm of:

εF = F̃ i − F i = Γbi − F i = (L+T +NW )bi −L+τ i −Nwi (4.10)

where bi = [bi1 . . . binγ ] ∈ Rnγ is a constant vector of mixing coefficients.

This problem is ill-posed because its solution depends on the unknown null-
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shifts wi and W respectively, which however provide additional degrees of

freedom in approximating F i. This problem can be formulated as follows:

[bi,wi,W ] = argmin
bi,wi,W

‖Γbi − F i‖

= argmin
bi,wi,W

‖(L+T +NW )bi −L+τ i −Nwi‖

s.t. (L+T +NW )bi ≥ 0

(4.11)

where the norm ‖·‖ operator represents, when applied to a function f(t),

the generalization of the Euclidean norm of a vector and is calculated as

follows:

‖f(t)‖=

√∫
t∈T
|f(t)|2dt

Problem (4.11) is very complex and computationally intensive, further-

more it may lead to different W for each force to be approximated. This

means that the synergies would be task-dependent, which is not desiderable

and conflicts with the basic assumption of the muscle synergy hypothesis.

For the moment, let’s assume that W is given. Under this assumption wi

can be written as a function of bi. Solving the system of linear equations

(4.10) for wi, all possible solutions minimizing εF can be expressed as fol-

lows:

wi = N+(L+Tbi +NWbi −L+τ i), (4.12)

and since N+N = I and N+L+ = 0 we obtain the fundamental relation:

wi = Wbi. (4.13)

Substituting (4.13) in (4.11), the final expression of the general problem

becomes:

bi = argmin
bi

‖L+Tbi −L+τ i‖

s.t. (L+T +NW )bi ≥ 0
(4.14)

where the cost function in ‖·‖ does not depend anymore on wi and W , and

the problem only consists in finding the appropriate mixing coefficients bi
which minimizes the error. However, the particular value of the synergies

nullshift W affects the constraint of the optimization, thus reducing the

space of the possible solutions. The choice of the right W becomes therefore

crucial. In the next section we consider different possible models for W .
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4.4 Identifying synergies

In the previous section we have seen that, once the synergies are defined,

a desired actuation can be approximated by solving the problem (4.14),

where the constraint depends on the value of the synergy nullshift W . In

this section we consider some possible choices for the value of W .

The first question that must be addressed is how to choose the individual

nullshifts of the synergies, corresponding to the columns of W . In order

to strive for better performance in approximating the desired forces one

should choose the nullshift to make the problem (4.14) as less constrained

as possible, in order to make the space containing all feasible bi as large

as possible. This however would be very complex to achieve and depends

on the particular prototasks which are not known a-priori. Furthermore,

in section 4.2 we have shown that in order to reduce the dimensionality of

the force dataset, we should use the same wi for all desired forces. Such

a transformation is an affine map between the torque space and the force

space. Similarly we assume that shifting all synergies by a single w∗ might

be beneficial in terms of the capability to approximate a force dataset2. In

this thesis therefore we considered a model consisting in all synergies shifted

by a nullshift w∗:

W = [w∗ . . .w∗] (4.15)

Later, in section 4.4.3, we will show that this assumption is in accordance

with the results on the dimensionality reported in section 4.2.

Another important question to take into consideration, is whether syn-

ergies represent “valid” actuations or not, that is, whether they fulfill bio-

logical constraints (i.e. 0 ≤ Γ ≤ Fmax), or if they represent instead abstract

generators which, when linearly combined, lead to valid forces. In neuro-

science there is no agreement on this matter. We therefore considered both

cases: synergies that fulfill biological constraints (in particular, positivity),

and synergies that don’t.

From the above considerations we identified three possible models:

A No nullshifts are applied to the synergies (w∗ = 0);

B The same nullshift is applied to all synergies, without constraining

them to be positive (w∗ 6= 0);

C The same nullshift is applied to all synergies such that they become

positive (w∗ 6= 0 : L+T +NW > 0).

2Additional work is required to investigate if this assumption is theoretically grounded.
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4.4.1 Model A: No nullshift

In this model the synergy nullshift is defined as:

W = [0 . . .0] (4.16)

From Eq. (4.7) the force synergies are calculated from the corresponding

torque actuations as Γ = L+T. Given that this expression returns the mini-

mum norm solution, the synergies are in general both positive and negative.

Since W = 0, from Eqs. (4.13) and (4.5) it follows that for any desired force

F i to be approximated:

wi = 0⇒ F i = L+τ i (4.17)

For the same reasons already discussed above for the synergies Γ, also the

desired force F i is not constrained to be positive. At least two considera-

tions can be done about the approximating force F̃ i found through (4.14).

First, the difference εF between F̃ i (which is positive) and the desired force

F i that instead is both positive and negative (see above) is probably not

negligible. Second, generating a positive force (F̃ i) with unconstrained syn-

ergies is only possible if the synergies have very particular profiles. Given

that the synergies do not have any particular form (they are minimum norm

solutions of the torque actuations T) we expect that the problem (4.14) is

either infeasible, or leads to very high projection error. In this model in fact

the mixing coefficient bi found in (4.14) tend to zero in almost every case, be-

cause this is the only value which always satisfies the constraints. We have

verified this observation by trying to approximate over 800 desired forces

that correspond to reaching tasks homogeneously distributed in the opera-

tional space. Figure 4.6 shows that the components bij in bi = [bi1 . . . binγ ]

tend to zero almost for every task i. Figure 4.7 shows the mean relative

projection error (left) and the mean forward dynamics error (right) plot-

ted against the number of synergies. As expected this model is not able to

approximate the desired forces.

4.4.2 Model B: Same nullshift without positivity constraints

The nullshift is defined as:

W = [w∗ . . .w∗] (4.18)

and the synergies are not subject to any positivity constraint. From Eq.

(4.13), in order to minimize the projection error, the nullshifts of the desired
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Figure 4.6: Distribution of the mixing coefficient components for 12 non-constrained

synergies with W = 0. Each boxplot represents the distribution of the mixing coef-

ficient across 800 tasks. All mixing coefficients are very small, meaning that for each

task i bi → 0.

(a) (b)

Figure 4.7: Relative projection error vs. number of synergies (a) and forward dynamics

error vs. number of synergies (b) for the model with non-constrained synergies with

W = 0.

forces have to be:

wi = Wbi = w∗
nγ∑
j=1

bij ⇒ F i = L+τ i +Nw∗
nγ∑
j=1

bij (4.19)
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However, this “optimal” wi does not guarantee that the desired force F i

is positive. Hence, the same considerations already done for the previous

model can be done also in this case.

4.4.3 Model C: Same nullshift with positivity constraints

In this model the nullshift is defined as:

W = [w∗ . . .w∗] such that Γ ≥ 0 (4.20)

From Eq. (4.13) and (4.5) the nullshifts that reduce the projection error

and the corresponding forces are:

wi = Wbi = w∗
nγ∑
j=1

bij ⇒ F i = L+τ i +Nw∗
nγ∑
j=1

bij (4.21)

While there is no guarantee that the desired forces F i are positive, we can

be sure that the problem (4.14) is feasible because Γ ≥ 0, and therefore its

constraint (i.e. Γbi ≥ 0) can be satisfied for some bi 6= 0. The question is

how to find a suitable w∗. A possible strategy is to define an optimization

problem that minimizes an appropriate cost function g(·), and to impose

the constraint Γ ≥ 0:

w∗ = argmin
w

g(w)

s.t. Γ = L+T +NW ≥ 0
(4.22)

As an example we calculated a w∗ for a set of 8 predefined prototasks, us-

ing 4 different cost functions, thus leading to 4 different sets of synergies.

The particular cost functions we have used are not relevant for the follow-

ing discussion (they are briefly discussed in Figure 4.8). For each w∗ we

approximated over 800 desired forces (corresponding to reaching tasks ho-

mogeneously distributed in the end effector space) as linear combinations

of synergies (i.e. Γbi), with mixing coefficients calculated as in Eq. (4.14).

The nullshift wi of each force was calculated by means of Eq. (4.13). We

surprisingly found that, in all cases, all wi tended to the particular w∗ used

for the synergies, that is:

∀F i = L+τ i +Nwi, wi → w∗ (4.23)

Results for the 4 representative w∗ are shown in Figure 4.8, where the

red thick line corresponds to w∗, and the colored lines represent the wi.

This result is in accordance with the results obtained in the dimensionality
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(a) (b)

(c) (d)

Figure 4.8: Examples of force nullshifts wi calculated using Eqs. (4.14) and (4.13) for

4 different w∗. The colored lines are the nullshifts wi associated to 800 desired forces.

The red thick line represents the w∗ used for the synergies. In each case all wi converge

to w∗. Note that w∗,wi ∈ R4 and in order to plot them their dimensions have been

concatenated: the first dimension goes from timestamp 1 to 100, the second from 101

to 200 and so on. (a) nullshift found by linearly minimizing the sum of the total shift

Nw∗. (b) nullshift found by minimizing the norm of the total shift Nw∗. (c) nullshift

leading to Nw∗ = [k . . . k]T with k the minimum constant value necessary to make

positive all forces in all synergies. (d) nullshift leading to Nw∗ = [k1 . . . k6]T with ki
the minimum constant value necessary to make positive the force i in all synergies.

analysis in section 4.2. There we found that a single nullshift preserves the

dimensionality of the force dataset. Now we are showing that choosing a

fixed nullshift for the synergies, and minimizing the projection error leads to

nullshifts of the desired forces which approach that of the synergies, resulting

in a single fixed nullshift.

In the next sections we introduce the results from the reduction proce-

dure when using a fixed nullshift w∗ to calculate the force synergies, and

show that the obtained performance are comparable to those of the torque
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model.

4.5 Reduction

As explained in section 2.3 the reduction consists in iteratively finding kine-

matic solutions to the prototasks, and in computing the corresponding ac-

tuations by means of inverse dynamics. These actuations will be used as

synergies. In the force model, this computation involves using the torque-

to-force relation to translate the torque that solves a prototask into a force.

Such a relation includes the w∗ discussed above. A possible method to find

w∗ could be to minimize a cost function with the constraint that the syner-

gies must be positive, as described in section 4.4.3. This approach has the

problem that it assumes an a-priori knowledge of the synergies Γ. On the

other hand, synergies are computed iteratively via the reduction procedure.

Moreover, the following considerations hold. We have shown that the null-

shift wi of the desired forces converges to w∗. Thus it seems to be that, by

minimizing the error εF as in Eq. (4.14), the model naturally converges to

one where all synergies and all desired forces are shifted by the same null-

shift. From Figure 4.8, however, it can be noticed that wi and w∗ are not

exactly equal, though very similar. We believe that the distance between the

particular wi and the synergy nullshift w∗ depends on whether w∗ is able to

positivize the desired forces. If this is the case (i.e. F i = L+τ i+Nw
∗ ≥ 0)

then the difference between wi and w∗ will be zero, and the error εF in Eq.

(4.10) might become smaller. To address these issues, a possible solution is

to search a nullshift which positivizes a set of representative forces instead

of only positivizing the synergies as in Eq. (4.22). The idea is that such

a w∗ encapsulates informations on the desired forces. We picked therefore

200 random reaching tasks and used a linear programming problem in order

to find w∗:

w∗(t) = argmin
w(t)

∑
t

Nw(t)

s.t. L+τ i(t) +Nw(t) ≥ 0 for i = 1..200

(4.24)

We then used this w∗ as a first guess to calculate the synergies via the

iterative process of the reduction. At iteration j of the reduction procedure,

a new synergy γj is calculated from the torque actuation τ j that solves the

new prototask as follows:

γj = L+τ j +Nw∗ (4.25)
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The w∗ however, being calculated only on a set of representative tasks as in

Eq. (4.24), does not guarantee the positivity of the new synergy. Therefore

at each iteration j we adjusted the current w∗ in order to satisfy the posi-

tivity constraints, and we recalculated all synergies with the new w∗. Such

an adjustment is performed by means of the following optimization:

w∗ = w∗j = argmin
wj

‖wj −w∗j−1‖

s.t. Γ ≥ 0
(4.26)

The initial guess of w∗ at iteration 1 is calculated from Eq. (4.24). The

initial guess at iteration j > 1 was instead w∗j−1. Note that, given the

argument of the minimization, the change of w∗ between one iteration and

the other should be very small. If at iteration j all synergies are already

positive, the value of the nullshift is not changed. The w∗ found at the last

iteration renders all synergies positive, and it still encapsulates information

from the tasks used to calculate its initial guess.

The result of the reduction procedure on the force model, iterated 12

times, is shown in Figure 4.9. Panels are ordered in row-major order, each

corresponding to one iteration. The color code indicates the projection error

in solving the 800 reaching tasks distributed in the reachable area. Table

4.1 shows the prototask coordinates for the force model, expressed in elbow

and shoulder angular position. We started the reduction process with the

same 2 prototasks used for the torque model. At each iteration, if the highest

error was localized similarly as in the torque model we simply used the same

prototask, otherwise we chose a new one. The two models started to diverge

after the 8th prototask.

4.6 Performance

We compared the performance of the force model to those obtained for the

torque model (presented in section 3). Figure 4.10 shows the mean relative

projection error plotted against the number of synergies. The blue line

represents the torque model, the red line the force model. Approximation

performance are very similar, although the force model has slightly smaller

errors. The forward dynamics error plotted against the number of synergies

is shown in Figure 4.11. The blue line represents the torque model, while

the red line the force model. From this plot it is evident that the average

performances are practically the same and scale similarly by adding new

synergies.
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Figure 4.9: Results of the reduction procedure for the force actuated kinematic chain.

Each panel corresponds to a number of synergies. Each point of the operational space is

colored depending on the performance of the synergies in approximating a reaching task

solution with final position in that point. Bright areas correspond to high projection

errors while dark areas correspond to small projection errors as depicted in the color bar

above.

Despite the higher complexity of the musculoskeletal model (due to re-

dundancies and biological constraints) we were able to perform reaching

tasks in the entire end effector space with similar performance as those

obtained on the non-redundant and non-constrained torque model. These

result suggests that muscle redundancy does not necessary increases the

number of synergies required to obtain a certain performance.
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Table 4.1: Prototasks posi-

tions in the force model, ex-

pressed as elbow and shoul-

der joint angles.

# qe [rad] qs [rad]

1 2.5183 2.2611

2 0.7411 -0.3497

3 0.5114 2.2047

4 2.4789 -0.4042

5 1.6219 2.2180

6 2.1195 1.0429

7 0.5884 0.6575

8 1.4434 1.2242

9 2.5437 0.7392

10 0.8163 2.1790

11 1.9065 -0.1651

12 2.1451 2.1641

These results where obtained by using the same nullshiftw∗ for all syner-

gies. The nullshifts wi of the desired forces F i, were found with Eqs. (4.14)

and (4.13). Figure 4.12 depicts w∗ (red thick line) and the individual wi

(colored lines) of the desired forces. As hypothesized in the previous section,

the distance between wi and w∗ is very small, and the reason is that we

calculated w∗ from a large set of representative tasks, and not only from the

synergies. As a result w∗ is able to positivize lot of desired forces, for which

wi = w∗. Results suggest that a fixed nullshift not only preserves dimen-

sionality, but also represents a good strategy to obtain good approximation

and task performance.
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Figure 4.10: Relative projection error vs. number of synergies for the force model (red

line) compared to the torque model (blue line).
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Figure 4.11: End effector forward dynamics error vs. number of synergies for the force

model (red line) compared to the torque model (blue line).
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Figure 4.12: The optimal nullshift of the desired forces (colored lines) converge to that

of the synergies (red thick line).



Chapter 5

Results: Activation Model

In this chapter we present the results obtained in the activation model, thus

actuating the kinematic chain by means of nonlinear muscle models. We

then formalize the inverse dynamics of the model in a way which enables

the use of a nullshift also in the activation space. Finally, we report the

results obtained in the activation model, and show that nonlinearities may

increase the number of synergies required to obtain a certain performance,

compared to the torque and force model.

5.1 Torque to activation relation

In the activation model forces, applied to the links of the kinematic chain,

are produced by means of muscle models that are controlled in activation

(see section 2.2.5). Like in the force model, in order to apply the DRD

method we need to define the inverse dynamics of the system: given a tra-

jectory in kinematic space, we need to find the activation which leads to that

trajectory. The problems we face are therefore similar to those described in

the previous chapter, and all considerations about redundancy and biologi-

cal constraints still hold. In the following we ground these considerations to

the activation model and describe the nonlinearities introduced by muscles.

The kinematic chain actuated in activation has more muscles than joints,

thus it is a redundant system. As a result different activations can lead to

the same torque, and therefore to the same trajectory. Note, however, that

there is no additional redundancy in the dynamics of the individual muscles.

Ones their lengths and contraction velocities are known, the generated force

can be univocally determined from the activation. Lengths and contraction

velocities can in turn be univocally determined from the state of the kine-
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matic chain1. The redundancy therefore arises solely from the fact that the

number of forces (generated by muscles) is higher than the number of joints.

As we have seen, these forces must satisfy the positivity constraint and they

cannot exceed a maximal value. Activation is defined in the range [0, 1]

and scales the output of the CE (Contractile Element) which generates the

active force (see section 2.2.5). The problem, therefore, consists in finding

a torque-to-activation relation g(·), from torque space T ⊆ R2 to activation

space M⊆ R6, such that its inverse corresponds to relation (2.48):

g : T→M :

τ (t) = LC(l, l̇)M(t) +LP (l) = LC(l, l̇)g(τ (t)) +LP (l)

∧
g(τ (t)) ∈ [0,1] ∀τ (t) ∈ T

(5.1)

where τ (t) is the torque, M(t) the muscle activation and L the lever arm.

C(l, l̇) and P (l) where introduced in section 2.2.5 and represent the state-

dependent muscle model. C(l, l̇) relates muscle activation to the active

force generated by the CE, while P (l) is the passive force produced when

the muscle is extended over a certain length.

From now on, in the interest of readability, we will omit the time depen-

dence t and the state variables l and l̇, unless this introduces ambiguities in

interpreting formulas.

5.1.1 Nonlinearities

The activation model features nonlinearities and state-dependencies that

are introduced by the nonlinear CE force-length and force-velocity relations

(represented by the C term), and by the nonlinear PE force-length relation

(represented by the P term). Figures 2.7 and 2.8 show the extent to which

muscle dynamics is nonlinear and state-dependent.

The mechanisms underlying activation and force models are schemati-

cally represented in Figure 5.1. In the force model (Figure 5.1a) the force

F acts on the joints through the fixed lever arm L, producing the torque τ .

In the activation model (Figure 5.1b) the relation between the total force

F and the torque τ is still linear, but the force F depends nonlinearly on

the activation M and on the state of the kinematic chain (q, q̇). Therefore,

1The muscle model is “rigid” because there is no Hill-like serial element modeling

tendon elasticity. Muscle lengths and velocities are determined through Eqs. (2.42) and

(2.43). Note that, from the definition of L given in Eq. (2.30), the kernel of LT is empty,

therefore the relation between muscle kinematics and kinematic chain state is one-to-one.
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(a)

(b)

Figure 5.1: Comparison between force and activation model dynamics. (a) In the force

model the force F acts on the joints producing a torque. The lever arm relation between

force F and torque τ is linear. (b) In the activation model the activation M produces

a force F which nonlinearly depends on the kinematic state (q, q̇). This force then

linearly produces a torque τ through the lever arm relation.

in order to find an activation corresponding to a given torque we have to

(1) find the corresponding force, facing the redundancy problem, (2) de-

compose this force in its active and passive components (associated to C

and P respectively), and (3) invert the nonlinear relations in order to find

the activation (this last step requires to know the kinematic trajectory, and

thus (l, l̇)). It is important to note that in the activation model not only

the total force (given by the sum of active and passive forces) must be posi-

tive, but the corresponding activation has to be in the range [0,1]. A valid

torque-to-activation relation has to consider both these constraints.

Another important factor to consider is the influence of the model nonlin-

earities on the representation of the input as linear combination of synergies.

In the force model, for the superposition principle, a force F i = Γbi leads

to a torque τ i calculated as follows:

τ i = LF i = LΓbi = L

nγ∑
j=1

γjbij = L

nγ∑
j=1

(L+τ j +Nwj)bij =

nγ∑
j=1

τ jbij

(5.2)

where γj are the force synergies, bi = [bi1 . . . binγ ] are the mixing coeffi-

cients, L and N the lever arm and its nullspace matrix respectively, wj

is the nullshift of the synergy γj , and τ j is its corresponding torque. The

final torque τ i is therefore a linear combination of the torques τ j associated

to the synergies γj . The activation model, behaves very differently. While
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in the force model the torque-to-force relation characterized by the pseu-

doinverse of the lever arm was state-independent (because we considered a

state-independent lever arm), and therefore it was equal for each synergy

and task, this time the torque-to-activation relations g depend on the par-

ticular kinematic trajectory to be translated into activation (see dependence

on (l, l̇) in Eq. (5.1)). Say that the activation M i = Ψci is a linear com-

bination of the activation synergies {ψj}
nψ
j=1 through the mixing coefficients

vector ci. Say, then, that gi is the state-dependent torque-to-activation rela-

tion associated to the kinematic trajectory corresponding to M i. Similarly,

gj is the torque-to-activation relation of the synergy ψj . The total torque

τ i generated by M i is given by:

τ i = g−1i (M i) = g−1i (Ψci) = g−1i (

nψ∑
j=1

ψjcij) = g−1i (

nψ∑
j=1

gj(τ j)cij) (5.3)

This expression cannot be further simplified because gj is nonlinear, and

because for the above considerations, g−1i is not the inverse relation of any

gj . The superposition principle does not hold and a linear combination of

activation synergies does not lead to a corresponding linear combination of

torque actuations.

In the next section we derive the torque-to-activation relationship. We

find that its form is very similar to that of the force model but its elements,

instead of being constant, depend on the kinematic state.

5.2 Nullspace

In this section we define the torque-to-activation relation and suggest a

mathematical formulation which, similarly to the force model, allows us to

use a nullshift to modulate an activation without changing its corresponding

torque. The nullshift can then be used to tackle redundancy and satisfy

biological constraints. First, however, we show another possible inversion

that deserves attention, and that wasn’t used for reasons we will discuss.

We said in the previous section that the activation-to-force relation for a

given trajectory is one-to-one. As a result an activation M i associated to a

given torque τ i can be obtained by first calculating the force F i associated

to τ i (i.e. finding wi as explained in section 4.2), and then translating F i

to M i. The latter can be done by simply matching Eqs. (2.45) and (4.5)

with the constraint that the total force is bigger than the passive element
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contribution2:

CiM i + P i = L+τ i +Nwi ⇒
⇒M i = C−1i (L+τ i +Nwi − P i)

with: L+τ i +Nwi ≥ P i

(5.4)

This equation leads to a valid activation by definition (we will show later

that Ci is invertible in most cases), but it requires to calculate the nullshifts

at the force level without considering the nonlinearities coming from Ci and

P i, which instead are important when it comes to approximate the desired

activations by means of linear combinations of activation synergies.

Another possibility is to find a direct relation between torque and ac-

tivation without computing the force as an intermediate step. To do so,

we define the active torque σi as the torque generated by the active force

by means of the CE, without considering the passive muscle force P i. The

expression of the active torque σi as a function of the activation M i can be

derived from Eq. (2.48):

σi = τ i −LP i = LCiM i = RiM i (5.5)

where τ i is the total torque (active and passive) and Ri = LCi ∈ R2×6 is

the state-dependent activation-to-torque relation. The subscript i indicates

that the relation is different for each task (i.e. state-dependent). From the

definition ofRi it follows that its nullspace, defined asQi = ker(Ri) ∈ R6×4,

is non-empty and state-dependent. All possible activations M i leading to

an active torque σi are therefore given by:

M i = R+
i σi +Qizi (5.6)

where R+
i ∈ R6×2 is the Moore-Penrose pseudoinverse of Ri and zi ∈ R4

is the activation nullshift which can be freely changed without affecting the

torque σi. Since the total torque τ i differs from σi by a quantity that

depends only on the kinematic trajectory, which is known a priori, we can

state that zi can be changed without affecting the total torque τ i. All

possible activations M i leading to a particular torque τ i can be found by

varying zi.

As for the force model, Eq. (5.6) can be generalized to the synergies.

Given the active torque σj produced by a synergy ψj , the synergy can be

written as:

ψj = R+
j σj +Qjzj (5.7)

2From Eq. 2.45 and from the fact that Ci is positive by definition it follows that

F i < P i ⇒ CiM i + P i < P i ⇒ CiM i < 0 ⇒M i < 0 which is not a valid activation.

Therefore it must be F i ≥ P i.
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for some nullshift zj . Generalizing to all synergies we can write:

Ψ = R+S +QZ (5.8)

where Ψ = [ψ1 . . .ψnψ ] ∈ R6×nψ is the formal matrix containing the syn-

ergies arranged in columns, R+ = [R+
1 . . .R

+
nψ

] ∈ R6×2nψ is the matrix

containing the pseudoinverses of Rj arranged in columns, S = diag(σj) ∈
R2nψ×nψ is a block diagonal formal matrix with the synergy active torques on

the diagonal, Q = [Q1 . . .Qnψ
] ∈ R6×4nψ is the matrix with the nullspaces

of Rj arranged in columns and finally Z = diag(zj) ∈ R4nψ×nψ represents

the nullshifts of the individual synergies, arranged on the block diagonal.

Observation It is worth nothing that Eq. (5.6) is very similar to the

torque-to-force relation in Eq. (4.5). Ri and Qi have similar meaning to

L and N , but are state-dependent. Indeed, they are obtained as the mod-

ulation of their force counterpart through the relation Ci. The activation

model is, therefore, conceptually similar to a model in which the lever arm

matrix is state-dependent.

Observation The rank of anyRi, and therefore the dimensionality of its

nullspaceQi, does not depend on the kinematic state. From the definition of

Ci where each diagonal element is fl(l)fv(l̇)Fmax and it refers to a particular

muscle, Ri is just the product of each column of L by a different positive

number. Therefore, if the diagonal elements of Ci are always different from

zero, the linear independence of the columns of L and the dimension of the

nullspace are preserved. We can observe that:

� fl(l), the force-length relation, is a gaussian and therefore is different

from 0;

� fv(l̇), the force-velocity relation, is equal to 0 iif l̇ = Vmax;

� Fmax is a constant.

The dimension of the nullspace therefore may change only if some mus-

cles are at their maximal contraction velocity. However, in any agonist-

antagonist pair, muscles cannot reach their maximum velocities simultane-

ously if joint velocity is different than zero, because one muscle extends and

the other flexes. In isometric contraction instead velocity is zero and the

force-velocity relation fv(l̇) is equal to 1. Therefore, for any kinematic tra-

jectory, at least three elements of Ci will be different from zero, and at least

three column of Ri (one corresponding to the elbow, one to the shoulder and
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one to a biarticular muscle) will be linearly independent, thus preserving the

rank 2 of L. If the rank would not be preserved, it would mean that for

the interested kinematic trajectories we would have additional redundancies.

For the same observations above, the Ci is invertible when no muscle is at

its maximum contraction velocity. In the following we will assume to be

always in this situation.

Like in the force model, suitable torque-to-activation relations have to

be found across all possible nullshifts zi and Z. We started by analyzing the

dimensionality of the inputs to be approximated, making use of SVD (Sin-

gular Value Decomposition). Starting from the same n = 8 torque profiles

already used in the force model, we generated m = 100 linear combina-

tions, obtaining a dataset {τ i}mi=1 of torque actuations with dimensionality

n. Then, we calculated h = 100 corresponding activation datasets. We have

done this in three different ways:

1. using a fixed nullshift zj , equal for each activation, but different across

the datasets. The activation M ij corresponding to the torque τ i in

the dataset j is:

M ij = R+
i σi +Qizj for i = 1 . . .m, j = 1 . . . h (5.9)

2. using a variable nullshift zij , different across both the activations and

the datasets. The force M ij corresponding to the torque τ i in the

dataset j is:

M ij = R+
i σi +Qizij for i = 1 . . .m, j = 1 . . . h (5.10)

3. without nullshift (zij = 0 ∀i, j). The force M i corresponding to the

torque τ i is:

M i = R+
i σi for i = 1 . . .m (5.11)

The idea behind the last case, without using any nullshift, is to investigate

the intrinsic dimensionality of the torque-to-activation relation. If trans-

lating torques to activations increases the dimensionality, the number of

required synergies in the activation model may be higher than in the torque

model. Note that we didn’t do the same test in the force model because the

torque-to-force relation (see Eq. (4.5)) is linear and therefore, if wij = 0,

the dimensionality is preserved.

As in the force model, in each of the above cases, the singular values

overlap almost perfectly across datasets. Therefore, in Figure 5.2 we show
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only the mean normalized singular values against the number of singular val-

ues. The blue line represents the original torque dataset, the dimensionality

of which results n = 8 as expected, the continuous magenta line represents

the activation datasets calculated with a fixed nullshift, while the green line

represents those calculated with a variable nullshift. Finally the dashed ma-

Figure 5.2: Dimensionality comparison between torque dataset (blue line), non-

nullshifted activation dataset (dashed magenta line), fixed nullshift activation datasets

(continuous magenta line) and variable nullshift activation datasets (green line). Sin-

gular values in the two latter cases are the mean of the singular values across all the

datasets. The singular values are normalized between 0 and 1.

genta line represents the dimensionality of the activation dataset when no

nullshift is used. This dataset has a much higher dimensionality than the

torques dataset, and comparable to that of the fixed nullshift datasets. This

means that the matrices Ci and P i themselves lead to an increase of dimen-

sionality. The dimensionality of the variable nullshift datasets, as expected,

is higher.

For completeness we show the same comparison in the case where the

torque dataset is not generated by linearly combining n generators, but

composed by solutions to 100 reaching tasks randomly distributed in the

end effector space. Figure 5.3 shows the results, which as expected are very
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similar to those obtained in the previous case.

Figure 5.3: Dimensionality comparison between a torque dataset composed of 100

reaching task actuations (blue line), non-nullshifted activation dataset (dashed magenta

line), fixed nullshift activation datasets (continuous magenta line) and variable nullshift

activation datasets (green line). Singular values in the two latter cases are the mean of

the singular values across all the datasets. The singular values are normalized between

0 and 1.

To conclude this analysis we stress again that the high dimensionality

of the activation model is provided by muscle nonlinearities through the

matrices Ci and P i. This means that more generators are needed to explain

the variability in the data, and therefore that we may need more synergies

in order to obtain a certain performance, compared to the force and torque

models.

5.3 Problem formulation

In this section we formalize the general problem of finding the nullshifts zi
and Z in order to obtain a good approximation of the set of activations

solving the desired tasks. We follow the same reasoning we used in the

force model. We want to approximate a desired activation M i with a linear
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combination of synergies M̃ i = Ψci which minimizes the error:

εM = M̃ i −M i = Ψci −M i = (R+S +QZ)ci −R+
i σi −Qizi (5.12)

where ci = [ci1 . . . cinψ ] ∈ Rnψ is a vector of mixing coefficients. This prob-

lem can be formulated as:

[ci, zi,Z] = argmin
ci,zi,Z

‖Ψci −M i‖

= argmin
ci,zi,Z

‖(R+S +QZ)ci −R+
i σi −Qizi‖

s.t. (R+S +QZ)ci ≥ 0

(5.13)

where the norm ‖·‖ applied to a function f(t) must be interpreted as follows:

‖f(t)‖=

√∫
t∈T
|f(t)|2dt

As discussed in the force model (section 4.3) one of the main assumption

of the synergy hypothesis is that synergies are invariant across tasks, which

means that the nullshift Z does not change. From Eq. (5.12) and given

that Q+
i R

+
i = 0, all possible solutions that minimize εM can be expressed

as follows:

zi = Q+
i (R+Sci +QZci −R+

i σi) = Q+
i (R+S +QZ)ci (5.14)

Substituting this value of zi in Eq. (5.13) and assuming a given Z, the final

expression of the general problem is:

ci = argmin
ci
‖(R+S +QZ)ci −R+

i σi −QiQ
+
i (R+S +QZ)ci‖

= argmin
ci
‖(I −QiQ

+
i )(R+S +QZ)ci −R+

i σi‖

s.t. (R+S +QZ)ci ≥ 0

(5.15)

Differently from the force model, both the constraint and the cost function

depend on the particular choice of Z for the activation synergies. In the

following section we show a possible strategy to choose such a Z.

5.4 Identifying synergies

In the previous section we proposed a method to calculate the optimal mix-

ing coefficients ci and the optimal nullshift zi in order to minimize the

projection error. In this section we introduce some possible strategies to

define the synergy nullshift Z.
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As for the force model, a first choice regards whether synergies are valid

actuations (i.e. satisfy the positivity constraints), or not. In section 4.4.1

we argued, supported by test results, that in general it is not possible to

approximate positive actuations with unconstrained synergies, except if they

have a very particular form. For the same reasons we assume here that the

nullshift Z must lead to positive synergies. We propose two models for Z:

A The same nullshift is applied to all synergies such that they are posi-

tive.

B A variable nullshift is applied to each synergy such that they are pos-

itive.

In the following, initially we formalize the two models, and then we show

the results for both of them.

5.4.1 Model A: Same nullshift with positivity constraints

The nullshift of the synergies is defined as:

Z = diag(z∗ . . . z∗) such that Ψ ≥ 0 (5.16)

The nullshift z∗ was calculated in the same way as thew∗ in the force model,

using the following linear optimization problem:

z∗(t) = argmin
z∗(t)

∑
t

Qiz
∗(t)

s.t. R+
i σi(t) +Qiz

∗(t) ≥ 0 for i = 1..200

(5.17)

where the constraints are set on the activation corresponding to the active

torque σi of 200 representative reaching tasks uniformly distributed in the

end effector space.

5.4.2 Model B: Variable nullshifts with positivity constraints

In this model the synergy nullshift is defined as:

Z = diag(z1 . . . znψ) such that Ψ ≥ 0 (5.18)

This is the most general formulation of Z and gives the possibility to shape

each synergy as required. For example, one may choose to set the zj in order

to increase orthogonality between the synergies, or to decrease the activa-

tion magnitude, or something else. However, depending on the particular

criteria and on the number of synergies, it can be extremely difficult and
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computationally intensive to find an adequate Z, furthermore it would re-

quire to find all its components at ones. This is in contrast with the method

we propose to synthesize synergies, the reduction (see section 2.3), which

instead is an iterative process.

Here we propose a possible approach to find each zj iteratively in a

way compatible with the reduction method. The idea is based on the fact

that active forces are generated as the product between muscle activations

and the nonlinear relation C. The proposed approach tries to encapsulate

the information about C into the nullshifts zj , and to produce actuations

compatible with those of the force model obtained with fixed nullshift w∗.

From the general torque-to-force relation (4.5) we can define the active force

F j leading to the active torque σj as:

F j = L+σj +Nw∗ (5.19)

for some w∗. Note that this w∗ may be different than that found in the force

model as here, we have to deal with the passive properties of the muscles,

thus we have to calculate such a nullshift using the active torque σj only,

and not the total torque τ j . The relation between the active force F j and

the corresponding activation M j is (see Eq. (2.45)):

F j = CjM j (5.20)

Matching these two equations, and using the general torque-to-activation

relation in Eq. (5.6) we obtain the expression of the activation nullshift zj
as a function of force nullshift w∗ as follows:

CjM j = L+σj +Nw∗ ⇒
Cj(R

+
j σj +Qjzj) = L+σj +Nw∗ ⇒

CjQjzj = (L+ −CjR
+
j )σj +Nw∗ ⇒

zj = Q+
j C
−1
j ((L+ −CjR

+
j )σj +Nw∗)⇒

zj = Q+
j C
−1
j (L+σj +Nw∗)

(5.21)

where the last equality results from the fact thatCj is diagonal and therefore

invertible, and Q+
j R

+
j = 0.

The value of w∗ has been calculated across 200 representative tasks by

running the following optimization:

w∗(t) = argmin
w(t)

∑
t

Nw(t)

s.t. L+σi(t) +Nw(t) ≥ 0 for i = 1..200

(5.22)



5.5. Reduction 95

Note that this linear problem is equivalent to (4.24), expect that in this case

the force which must be positive is not the total force, but only the active

force (leading to the active torque σi, which does not include the contribute

from the parallel element of the muscles). A positive active force leads, by

definition, to a positive activation, therefore if the force calculated with w∗

is positive, then the activation calculated using zj will also be positive.

We used the force nullshift w∗ found as described above to calculate

the nullshifts zj of the synergies. Note however that while w∗ is fixed, the

nullshift zj varies across synergies, as it depends on σi (i.e. active torque

of synergy j). Furthermore it is modulated by the state-dependent relations

Cj and Qj . The active torque σi of the synergies are calculated iteratively

by means of the reduction, as explained in the next section.

5.5 Reduction

We ran the reduction process for both the models A (fixed nullshift) and B

(variable nullshift) presented above.

In model A, at iteration j, the new synergy was calculated from the

active torque σj as follows:

ψj = R+
j σj +Qjz

∗ (5.23)

If the new synergy ψj was not positive, we improved the value of the nullshift

z∗ with the same strategy followed in the force model:

z∗ = z∗j = argmin
zj
‖zj − z∗j−1‖

s.t. Ψ ≥ 0
(5.24)

In model B, at iteration j, the new synergy was calculated from the

active torque σj by using Eq. (5.21), as follows:

ψj = R+
j σj +Qjzj = R+

j σj +QjQ
+
j C
−1
j (L+σj +Nw∗) (5.25)

If the new synergy ψj was not positive we improved the value of the active

force nullshift w∗ with:

w∗ = w∗j = argmin
wj

‖wj −w∗j−1‖

s.t. Ψ ≥ 0
(5.26)

As described in section 2.3, at each reduction step we evaluated the

projection errors in approximating the solutions to over 700 reaching tasks
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Table 5.1: Prototasks positions in the

activation model with synergies null-

shifts calculated as in model A. Coordi-

nates are expressed in elbow and shoul-

der joint angles.

# qe [rad] qs [rad]

1 2.3679 2.1889

2 0.7669 -0.3771

3 1.2274 2.0619

4 2.3324 -0.1515

5 0.9310 0.0065

6 1.7669 -0.2848

7 2.4551 0.7425

8 1.8115 2.2267

9 1.9760 1.4898

10 2.4069 1.8872

11 1.5979 1.0314

12 2.0476 0.5248

Table 5.2: Prototasks positions in the

activation model with synergies null-

shifts calculated as in model B. Coordi-

nates are expressed in elbow and shoul-

der joint angles.

# qe [rad] qs [rad]

1 2.3679 2.1889

2 0.7669 -0.3771

3 1.2274 2.0619

4 2.3324 -0.1515

5 1.4105 -0.2035

6 1.5006 1.3475

7 2.4150 0.8098

8 1.9577 0.5146

9 2.0103 1.6435

10 1.1814 0.6275

11 1.6550 2.2471

12 0.7660 -0.0104

distributed homogeneously in the end effector space. We didn’t evaluate

reaching tasks with final positions along the kinematic chain boundaries in

order to avoid model instability3. The mixing coefficients and the nullshifts

zi of each task were calculated by solving Eqs. (5.15) and (5.14) respectively.

The result of the reduction procedure with 12 iterations on models A and

B are shown in Figures 5.4 and 5.5 respectively, where panels are arranged

in row-major order and each one corresponds to one reduction iteration.

Tables 5.1 and 5.2 show the prototask coordinates for the two models.

5.6 Performance

We evaluated the performance of the activation model and compared them

with those of the torque and force models. Figures 5.6 and 5.7 show respec-

tively the mean relative projection error and the mean end effector forward

dynamics error of the activation model (green and magenta lines) compared

3Even though the desired activation leads to a valid trajectory, the activation found by

linear combination of synergies may lead to one which instead exceeds the boundaries. In

this case muscles exceed their maximum length, causing unpredictable effects (e.g. passive

force diverges). Such effects can be avoided for example modifying the dynamics of the

kinematic chain and/or of the muscles.
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Figure 5.4: Results of the reduction procedure for the kinematic chain actuated with

fixed nullshift activation (model A). Each panel corresponds to a number of synergies.

Each point of the operational space is colored depending on the performance of the

synergies in approximating a reaching task solution with final position in that point.

Bright areas correspond to high projection errors while dark areas correspond to small

projection errors as depicted in the color bar above. White areas on the boundaries of

the operational space were not evaluated to avoid model instability in case of projected

activations leading to trajectories exceeding the boundaries.

to the results obtained in the torque model (blue line) and in the force

model (red line). The green line corresponds to the activation model with

fixed synergies nullshifts (model A), while the magenta line corresponds to

the model with variable synergies nullshifts (model B). As expected, the
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Figure 5.5: Results of the reduction procedure for the kinematic chain actuated with

variable nullshift activation (model B). Each panel corresponds to a number of synergies.

Each point of the operational space is colored depending on the performance of the

synergies in approximating a reaching task solution with final position in that point.

Bright areas correspond to high projection errors while dark areas correspond to small

projection errors as depicted in the color bar above. White areas on the boundaries of

the operational space were not evaluated to avoid model instability in case of projected

activations leading to trajectories exceeding the boundaries.

activation model requires more synergies than the torque and force models

to obtain the same performance. The reason for this is the explosion of

the dimensionality at the activation level, described in section 5.2. There

is a non-negligible difference in performance between the activation models
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Figure 5.6: Relative projection error vs. number of synergies for the activation model

with fixed nullshift (green line) and variable nullshift (magenta line), compared to the

torque model (blue line) and the force model (red line).

with fixed and variable nullshifts. The errors of the fixed nullshift model are

more than half order of magnitude higher than those of the variable nullshift

model. This is in accordance with our consideration that since the nullspace

Qi is state-dependent, a fixed nullshift does not necessarily lead to better

results (as in the force model) and that a suitable choice of the synergies

nullshifts Z may lead to more satisfactory results.
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Figure 5.7: End effector forward dynamics error vs. number of synergies for the ac-

tivation model with fixed nullshift (green line) and variable nullshift (magenta line),

compared to the torque model (blue line) and the force model (red line).



Chapter 6

Conclusions

6.1 Thesis Contributions

In this work we investigated the muscle synergy hypothesis following a com-

putational approach. Many researchers provided indirect evidence for the

existence of muscle synergies, mostly by analyzing EMG recordings and by

extracting components that explain the dataset variability. This approach

has provided a lot of insights, but many questions remain open. Among

others, one very important question is whether muscle synergies are a valid

control strategy from the point of view of the musculoskeletal dynamics.

Trying to address these questions, we investigated (1) the extent to which

redundancy and muscle nonlinearities influence the muscle synergy hypoth-

esis, and (2) whether a musculoskeletal model that features these properties

can be controlled by linear combinations of synergies. In order to do so we

followed a computational approach. We defined a model of human arm com-

posed by 2 joints representing shoulder and elbow. We started with a simple

model, and systematically added redundancy and nonlinearities: initially

we actuated the kinematic chain with torques applied to the joints, leading

to a non-redundant model; then we generated the torques my means of 6

forces applied to the links, thus adding redundancy; finally we generated the

forces my means of nonlinear muscle models controlled in muscle activation.

In each of the mentioned models, we synthesized appropriate time-varying

synergies, i.e. signals in the input space of the model (torques, forces and

muscle activations). Synergies were synthesized through a procedure based

on the DRD (Dynamic Response Decomposition) method, called reduction.

We then evaluated how well linear combinations of the synthesized synergies

can approximate a set of desired actuations, and let the system perform the

corresponding reaching tasks. The reaching tasks were distributed in the
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entire end effector space, and were defined as the movement of the joints

from an initial position to a final position, with initial and final velocities

equal to zero.

In the torque model, we were able to perform reaching tasks by linearly

combining 8 synergies. We could approximate the desired actuations with a

mean relative approximation error (i.e. relative projection error) of around

10−4 (see Figure 5.6, blue line). We obtained a mean error in the end

effector position lower than 1mm (see Figure 5.7, blue line), meaning that

the distance between the desired and the obtained final position was smaller

than 1mm. These results were similar to those obtained in previous research.

In the force model, redundancy requires to choose among an infinite

number of forces which lead to the same torque, thus to the same kinematic

trajectory. Furthermore, due to biological constraints on the muscles, forces

have to satisfy a positivity constraint. Despite this added complexity, we

showed that if synergies and desired forces (i.e. those solving the reaching

tasks) are calculated in a particular way (i.e. fixed nullshift), the dimen-

sionality of the force dataset to be approximated, is similar to that of the

corresponding torque dataset. With the same number of synergies we were

able to obtain similar performance to those of the torque model (see Figure

5.7, red line). These results suggest that muscle redundancy does not neces-

sary lead to a increase in the complexity of the control by linear combination

of synergies. This means that, for a given number of degrees of freedom, the

number of synergies required by the CNS may not depend on the number

of muscles to be controlled.

In the activation model the synergies are represented as muscle activa-

tion profiles. Their linear combinations represent the input to nonlinear

muscle models, which in turn produce the forces applied to the kinematic

chain. We showed that this model requires more synergies than the force

and torque models, to obtain the same performance (see Figure 5.7, magenta

line). Furthermore, performance increases with the number of synergies at

a lower rate than in the other models, meaning that the gain in performance

obtained when adding a new synergy is smaller in the activation model than

in the other two. These results are supported by the fact that the dimen-

sionality of the desired activations (solutions to the reaching tasks) is much

higher than the dimensionality of the desired forces and desired torques, as

shown in section 5.2. This increase of dimensionality derives from the mus-

cles dynamics. These results suggest that muscle nonlinearity may increase

the required number of synergies to obtain a given performance, and may

represent a challenge for a synergy based controller. Similar results have

been obtained in [56]. During reaching tasks, the authors estimated torque
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actuations from joint kinematics. They also extracted synergies by means

of EMG recordings and found that the number of generators (i.e. synergies)

needed to explain the variability in the EMG dataset is higher than the

number of generators in the torque dataset.

Finally, we showed that in all three models we could successfully con-

trol the kinematic chain in order to perform reaching tasks. Although we

show that biomechanical features influence the number and characteristics

of the synergies, our results suggest that muscle synergies may be a feasi-

ble strategy for the CNS to simplify the control in musculoskeletal systems.

Differently from approaches based on the analysis of EMG signals, which

lead to results that are very difficult to validate, we have shown that with

a suitable synergy set, it is possible to control a simplified musculoskeletal

model of the human arm.

6.2 Discussion and Future Work

Neuroscience

We showed that, depending on the features of the musculoskeletal system,

the number of synergies needed in order to obtain a certain performance

may be different (i.e. increases in case of nonlinear muscles). This means

that the number and characteristics of the synergies may depend on their

level of representation (kinematics, muscle activation, neural activity etc.).

In literature synergies have been investigated at different levels. For exam-

ple, several authors searched for synergies at the EMG level (similar to our

muscle activation) [22, 63, 42, 43], other have found evidence for kinematic

synergies [66, 57, 29, 60]. In [60] in particular, the authors have found that

during reach and grasp movements, synergies at muscle activation level (i.e.

EMG) are also at the origin of kinematic synergies. Our work shows that

experimental results may vary considerably depending on the level at which

the muscle synergy hypothesis is investigated, therefore we believe that the

community should put some effort in investigating what synergies may actu-

ally represent. Otherwise the conclusions of experiments may be misleading.

Another important consideration is about the validity of the individual

synergies as task solution. It is not clear what synergies really represent

and there is no general agreement in neuroscience on this (see for example

[18, 48, 12] for different points of view). In our work we ask whether they

represent valid inputs, in which case they have to satisfy all biological con-

straints (e.g. positive muscle activation) and lead to a valid trajectory, or
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they are abstract generators defined at some level, which when combined

lead to valid motor commands. We showed that, under our assumptions,

non-valid synergies do not lead to good approximation of desired actuations,

nor they lead to good task performance. In our framework, however, one

could think to use the nullshift in order to obtain abstract synergy profiles,

which combined lead to valid actuations. We leave this idea for future work.

This is nevertheless a key question in neuroscience: if the synergies can be

anything (i.e. abstract generators) then we may be able to find them at any

level of description, and they only have to satisfy the requirement that they

reconstruct some recorded dataset. If we say, instead, that synergies must

have particular characteristics (i.e. valid actuations) we reduce the set of

possible representations. It would therefore be easier to challenge the syn-

ergy hypothesis with specific experiments, trying to falsify it. This analysis

is left for future work.

In section 4.6 we showed that both relative projection error and end

effector error of the force model are, for most number of synergies, below

the respective errors of the torque model (see Figures 4.10 and 4.11). We

speculate that this happens because the synergy controller may exploit re-

dundancy in order to better approximate the desired inputs, given that it

has more degrees of freedom available. Additional work has to be done to

investigate this speculation.

Methodology

The procedure we used to synthesize synergies (reduction) is driven by the

projection error. However, during our experiments we could observe that in

some cases the projection error does not represent a suitable performance

measure. Indeed the projection error measures the ability of the synergies

in approximating a desired input. When the musculoskeletal system is re-

dundant, however, part of the input does not lead to any change in the

kinematic state (for the force model, this happens if portion of input is in

the nullspace of the lever arm matrix, see section 4.2). The result is that

we measure, at least in part, something that does not have any effect on the

task performance, and the result can be very misleading. These considera-

tions do not apply only to the computational approach presented here, but

also to more classical approaches like the analysis of EMG dataset, where

researchers measure the ability of the extracted synergies to reconstruct a

dataset (i.e. they measure an approximation error). Synergy extraction

methods should explicitly take into account task execution variables [3]. A
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possible direction for future work is therefore that of trying to drive the

reduction procedure using a direct task performance measure (i.e. forward

dynamics error).

In this work we considered a simplified model of the human arm. The

lever arm was fixed, and muscles were composed by the contractile and par-

allel elements. We did not include the serial element, which accounts for

compliance during contractions, nor a variable lever arm, or friction at the

joints and so on. These elements add additional complexity and therefore

they might lead to further increase in the number of synergies needed to

obtain a certain performance. On the other hand, from where the synergies

are assumed to be stored (e.g. brain, spinal cord), to the muscles where

they are consumed, the information they carry goes through different com-

plex systems and is possibly influenced by many factors like those mentioned

above. It may be, therefore, that some of these factors compensate the com-

plexity introduced by other factors, thus they may not affect, or may even

reduce, the number of synergies. Additional work is required to study such

interaction effects.

In the activation model we proposed a possible way to calculate the

synergy nullshift from the force nullshift. This leads to better performance

compared with other methods (i.e. fixed nullshift). Under the assumption

that synergies represent task actuations, we ask if there is a set of nullshifts

for the synergies which further improves performance. Such a set may ex-

ist, but finding it may be non-trivial from both the methodological and the

computational point of view. Nevertheless, investigating this issue may be

worth it.

Finally, a possible investigation which could be performed in future work

consists in trying to see, on a more complete and realistic model, if there

is some correlation between the synergies synthesized with the computa-

tional approach used here, and the synergies experimentally extracted from

EMG datasets. If some correspondence could be found, this would rep-

resent a breakthrough for the muscles synergy hypothesis. It would mean

that synergies might be solutions to prototypical tasks, and that they embed

information on task and body dynamics.
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Appendix A

Lumping procedure

Muscles are lumped according to their torque contribution and depending on

which joint they span. Briefly, muscles which share the following properties

are lumped together and are assumed to be recruited simultaneously:

� they span the same joints;

� are either all monoarticular muscles, or all biarticular;

� they contribute to joint torque in the same direction.

Muscles data from Nijhof and Kouwenhoven [52] are shown in Table A.1 and

grouped depending on the lumped muscle they contribute to. Origin and

insertion points in red in Table A.1 were missing from [52] and needed to be

estimated (see appendix B for more details). The torque contributions to

the shoulder (τs) and to the elbow (τe) could be calculated from the phys-

iological cross-sectional area (PCSA) and the lever arms rs and re (which

were assumed to be constant) as follows:

τs = ks · PCSA · rs τe = ke · PCSA · re (A.1)

where ks = 50N/cm2 and ks = 90N/cm2 are the muscle-strength/PCSA

ratios (values from [52]). The torque contribution of a muscle is then used

as weighting factor to lump all other muscle properties (See [52] for the full

details on the lumping procedure).
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Appendix B

Missing musculoskeletal data

Insertion and origin coordinates marked in red in table A.1 are missing in

[52] because either their insertion or their origin point are not on the bone

segments considered. Nevertheless they contribute to the joint torques and

therefore they had to be found in order to be included into our model.

Shoulder data Data in [52] for the shoulder is taken from [72] where

instead the coordinates for the muscles PMJA, PMJS and LATD are all

available. Note however that in [52] the authors have applied a number of

transformations to the original data in part using a skeleton as model. To

make a gross approximation we have matched all the available data from

[72] with all the available data from [52] and have estimated the Rotation

between the two sets using the well known Kabsch algorithm. The transla-

tion was instead estimated by the distance between the centroids of the two

datasets after applying the rotation from Kabsch. Estimated rotation and

translation are shown in (B.1). Numbers are expresses in meters.

R =

−0.471017 −0.777509 −0.416681

−0.617529 −0.046682 0.785162

−0.629922 0.627137 −0.458146

 t =

 0.45937

−0.41399

0.38223

 (B.1)

Elbow data Unfortunately there was no data available for the muscles

ECRD and ECUL. These two muscles originate close to the elbow joint and

insert into the wrist/hand complex. We have done a gross approximation

by considering the muscle lines of actions shown in [52].
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Appendix C

Including dynamical system

boundaries in DRD

In this appendix we formulate a method to take into account dynamical sys-

tem variables boundaries into the DRD (Dynamic Response Decomposition)

framework, described in section 2.1. The method was used in this work to

generate feasible trajectories for the musculoskeletal model described in 2.2.

C.1 Introduction

Given a dynamical system (e.g. a kinematic chain), its dynamic responses

(e.g. joint trajectories) defined as in Eq. (2.4) and a task defined by con-

straints (e.g. a reaching task) as in Eq. (2.5), the problem of finding a

trajectory by interpolation on the dynamic responses, which satisfies the

task constraints, is formalized as in Eq. (2.8). For convenience we report

Eq. (2.8):

Ma = P (C.1)

where P is the vector of task constraints and M is the alternant matrix,

containing the dynamic responses evaluated at the timestamps where the

task constraints are defined. The problem, therefore, reduces to find the

vector a which solves Eq. (C.1).

The actual implementation of DRD, does not include the possibility to

define boundaries to the obtained solutions, in terms of lower bound and

upper bound to the values taken by the dynamical system state variables

and their derivatives. Such boundaries might either derive by the nature

of the dynamical system, or they might be imposed by the engineer. In

the following we will refer to these boundaries simply as dynamical system

boundaries.
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As an example, DRD was used in previous works to generate synergies

for a 2-dof kinematic chain actuated in torque space. It was not possible

however to specify directly the joint angular boundaries. This resulted in

solutions to Eq. (C.1) leading to trajectories which could potentially exceed

the dynamical system boundaries. The user of DRD had to work in a trial

and error way, that is:

1. Search with DRD for a solution to the task in the phase space (e.g. the

kinematic space of the kinematic chain) by inverting the constraints

equation as follows:

a = M−1P (C.2)

Most of the times the system of equations (C.1) is overdetermined or

underdetermined, therefore the Moore–Penrose pseudoinverse of M ,

which existence and uniqueness is guaranteed, is used. We will call

therefore this method the pseudoinverse method or approach.

2. Verify a posteriori if the solution is inside the boundaries using some

user-defined method. If not, discard it and start some other search to

find a linear combination of dynamic responses solving the task. In

previous work this was done by randomizing the linear combination

coefficients. This search stops when a solution of Eq. (C.1) with

negligible error and entirely inside the boundaries has been found or

when a maximum number of iterations have been reached. This is a

time-consuming step and it does not guarantee to find a solution within

the boundaries. We will call this method the randomized method or

approach.

Solutions given by the pseudoinverse approach inverting Eq. (C.1) can

potentially exceed the dynamical system boundaries. Objective of the method

it to include boundaries in the formulation of DRD, thus enabling to find

solutions to Eq. (C.1) which a priori lay entirely within the boundaries.

C.2 Method development

Given a task defined by P , and assuming that a solution to Eq. (C.1)

exists, such a solution may exceed the imposed boundaries. What we need

is to find a solution to Eq. (C.1) which is inside the boundaries and, if

possible, close to the ideal solution given by Eq. (C.2). The goodness of

a solution is measured by the interpolation error errI (see section 2.1.4),

which is the distance between the solution and the task constraints. We

want to find the solution which minimizes the interpolation error, subject to
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the dynamical system boundaries constraints. We will now formulate this

problem mathematically. From the definition of interpolation error errI
for k task constraints on an n-dimensional dynamical system we have (see

section 2.1.4):

errI =

√∑
k∈K

err2Ik =

√∑
k∈K
||qk − θka||2 (C.3)

err2I =
∑
k∈K
||qk − θka||2 =

∑
k∈K

n∑
j=1

(qkj − θkja)2 (C.4)

where qk = [qk1, qk2...qkn]T is a subvector of P and qkj is the scalar value

of the constraint k at dimension j (e.g. joint), θk = [θk1,θk2...θkn]T is

a submatrix of M and θkj is the 1 -by-m vector of constrained dynamic

responses values at constraint k and dimension j, with m the number of

dynamic responses, equal to the number of columns of M . Developing the

expression of err2I we have:

err2I =
∑
k∈K

n∑
j=1

(q2kj + (θkja)2 − 2qkjθkja)

=
∑
k∈K

(
n∑
j=1

q2kj +
n∑
j=1

(θkja)2 − 2
n∑
j=1

qkjθkja)

=
∑
k∈K

(qTk qk + (θka)T (θka)− 2qTk θka)

=
∑
k∈K

qTk qk +
∑
k∈K

aTθTk θka− 2
∑
k∈K

qTk θka

(C.5)

Given that
∑
k∈K

qTk qk = P TP ,
∑
k∈K

θTk θk = MTM and
∑
k∈K

qTk θk = P TM

the equation can be rewritten as

err2I = P TP + aTMTMa− 2P TMa (C.6)

indeed, if P̃ would solve Eq. (C.1) for some a, the squared error would be:

err2I = P TP + P̃
T
P̃ − 2P T P̃ = (P − P̃ )2 −→

P→P̃
0 (C.7)
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Our objective is to find a which minimizes the interpolation error, that is:

a = argmin
a

(errI) = argmin
a

(err2I )

= argmin
a

(P TP + aTMTMa− 2P TMa)

= argmin
a

(
1

2
P TP +

1

2
aTMTMa− P TMa)

= argmin
a

(
1

2
aTMTMa− P TMa)

= argmin
a

(f(a))

(C.8)

which leads to the standard formulation of a Quadratic Programming prob-

lem with objective function:

f(a) =
1

2
aTQa+ cTa

with:

Q = MTM

c = −MTP

(C.9)

From the mathematical and geometrical interpretation of f(a) we conclude

that:

1. Q is the Gram Matrix of M and is therefore positive semidefinite and

symmetric by definition.

2. The term 1
2a

TQa is a quadratic form. Because Q is positive semidefi-

nite, its eigenvalues are non negative and the quadratic form is positive

semidefinite, that is, it has a single global minimum in a = 0.

3. The term cTa is an affine hyperplane which simply shifts the paraboloid
1
2a

TQa.

Figure C.1 shows an example plot of f(a) for a 2-dimensional a.

Thus, if the problem is feasible (i.e. the task constraints P lay within the

boundaries), solving the Quadratic Programming problem with objective

function (C.9) subject to the dynamical system boundaries guarantees to

find the global optimal solution to Eq. (C.1). We will call this method the

optimization method or approach.

We will now demonstrate that solutions found by minimizing (C.9) with-

out being subject to boundary constraints cannot have a greater interpo-

lation error than the solutions found with the pseudoinverse method. The

Moore-Penrose pseudoinverse of a matrix is known to exists and to be unique
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Figure C.1: Example of the quadratic programming objective function used to solve

Eq. (C.1) subject to the dynamical system boundaries.

for every matrix and we have shown that f(a) has a global minimum. The

interpolation error above can be rewritten as follows:

errI = ||P −Ma|| (C.10)

It is known that the pseudoinverse of a matrix provides a least squares

solution to a system of linear equations. The least squares solution minimizes

in this case the euclidean norm ||P −Ma||, meaning that

a = M+P = argmin
a

errI = argmin
a

f(a) (C.11)

The pseudoinverse solution corresponds with the one minimizing f(a) and

both minimize the interpolation error. This means that for an uncon-

strained system the two methods are equivalent. However for a system for

which boundaries are defined and the pseudoinverse solution lays outside

the boundaries, the optimized solution is the closest possible solution to the

pseudoinverse one, laying inside the boundaries. This is shown graphically

in Figure C.2 for a 1-dimensional example function.
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Figure C.2: Geometrical interpretation of the solutions found by pseudoinverse and by

optimization.

C.3 Test procedure

Similarly to [2], we test the method on a 2-joint planar kinematic chain

representing a human arm model. Anthropometric data (link length, mass,

center of mass, moment of inertia and joint boundaries) are taken from
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literature [52]. As described in [2] the chain has been stimulated with a

number of random actuations (exploration synergies) to obtain the so called

exploration set of dynamic responses. For the described kinematic chain

the exploration synergies are time-varying joint torques and the dynamic

responses are the corresponding joint angle trajectories. The result of the

exploration can be viewed in Figure C.3.

Figure C.3: Dynamic responses exploration set represented in the joint space (left) and

in the effector space (right) of the kinematic chain used to test the method. Each

colored line is a different dynamic response, composed by the angular joint trajectories

of the kinematic chain.

The exploration set has then been used to solve generic point to point

reaching tasks.

C.4 Results

In our tests a generic reaching task is defined by know initial and final

position, null initial and final velocity and unconstrained acceleration. That
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is, Eq. (C.1) can be written as:

Ma =


θ1(0) ... θN (0)

θ1(T ) ... θN (T )

θ̇1(0) ... θ̇N (0)

θ̇1(T ) ... θ̇N (T )

a =


q0
qT
q̇0
q̇T

 = P (C.12)

where θj(t), θ̇j(t), qj and q̇j are n-dimensional vectors with n the number

of dimensions of the dynamical system. In our case n = 2, the number of

joints. The dynamical system boundaries are defined by the minimum and

the maximum angular position of the elbow and shoulder joint. However,

because of the generality of the method, boundaries can be defined on any

derivate of the system state variables. We say that a given task is feasible if

all its constraints lay within the boundaries. We say that a trajectory of the

system variables is feasible if it lays entirely within the imposed boundaries.

We therefore seek a solution to (C.1) that leads to a feasible trajectory.

For a given task we can identify following cases:

1. The task is not feasible, that is, some constraints lay outside the dy-

namical system boundaries.

2. The task is feasible and the pseudoinverse approach produces a feasible

trajectory with negligible interpolation error.

3. The task is feasible but the pseudoinverse approach does not produce

a feasible trajectory.

In the following sections we describe results and comparisons between

the pseudoinverse and the optimization approach in all these cases.

Case 1: Task not feasible

In general, finding a solution to the system of equations (C.1) does not

mean that the trajectories of the system variables are inside the boundaries.

The kinematic chain under test, for example, may not be able to perform a

movement because at some point the position trajectory exceeds the joints

boundaries. In this section we want to point out that the optimization

approach always produces feasible trajectories a priori. As an example, we

can imagine an object in front of us which is a bit more distant than the full

extension of our arm. We may think to be able to reach it, although we are

not. Nevertheless we still try the move toward the object. Figure C.4 shows

a comparison between the pseudoinverse and the optimization approach for
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feasible (inside the dotted box) and not feasible tasks (outside the dotted

box). For the non feasible tasks, the optimization approach still produces

feasible trajectories (Figure C.4b), which of course will have a potentially

non-negligible interpolation error as they will be inside the joint boundaries.

This is exactly what happens when we try to reach an object which is too

far and we are finally not able to reach it.

Trajectories found by means of the pseudoinverse approach are instead

not feasible (Figure C.4a). Being the pseudoinverse of a matrix unique by

definition we conclude that the pseudoinverse approach fails to find a valid

trajectory. We will show later that even if the task is feasible, it is not

always possible for the pseudoinverse method to find a feasible trajectory.

Case 2: Task is feasible and the pseudoinverse trajectory is

feasible

In this case the pseudoinverse approach produces a feasible trajectory. Be-

cause of the uniqueness of both M+ and min f(a) the trajectories found

by the two methods must necessary be the same. This is shown in Figure

C.5 where the trajectories corresponding to the two approaches are perfectly

overlapping. The interpolation error errI for all tasks and both approaches

is negligible, at machine precision level ( 10−15).

Case 3: Task is feasible but the pseudoinverse trajectory is

not feasible

This is the most interesting case and the one which justifies the development

of the optimization method. If the dynamical system boundaries are tight

or the task constraints are close to the boundaries it is possible that the

pseudoinverse approach does not find a feasible trajectory. Figure C.6 shows

an example. Some trajectories found by the two methods do not correspond

anymore and while the pseudoinverse approach (blue dashed lines) fails for

several tasks, the optimization approach is still able to find trajectories

(green lines) which are inside the boundaries. These have however a greater

and perhaps non-negligible interpolation error1.

1We have demonstrated in Eq. (C.11) that min f(a) = f(M+P ). We are minimizing

the interpolation error and the smallest error is at the function minimum. But because this

is also the solution to Eq. (C.1) provided by pseudoinverse (which leads to an unfeasible

trajectory) the interpolation error must be necessary greater. Better results would be

achieved only with a bigger exploration set, but then also the pseudoinverse approach

would perform better.
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The approach in this case, as stated in section C.1, would be to apply the

randomized method. As an example, let us consider one of the tasks depicted

in Figure C.6b (35th task with filled black circle) for which the pseudoinverse

trajectory is not feasible. Figure C.7 compares the trajectories obtained by

the pseudoinverse, the randomized and the optimization approaches. The

search for randomized trajectories is expensive and even if one is found, it

is mostly not acceptable from a kinematic point of view. We will support

this last statement with another example.

From a starting position where the elbow is nearly fully extended and the

shoulder is about 80% flexed we search trajectories for 9 reaching tasks reg-

ularly distributed onto the feasible area. The found trajectories are shown

in Figure C.8. Tasks 7 and 9 are solved by means of the randomized method

(Figure C.8a) and have awkward trajectories, whereas the optimization ap-

proach leads to very smooth trajectories.

Obviously the interpolation errors of the trajectories solving tasks 7 and

9 found by the optimization approach will be higher than those found by the

randomized approach. This is shown in Figure C.9. Nevertheless, these are

by definition the best possible trajectories one can ever find with the spe-

cific dynamic responses set in use. An improvement would be only possible

by increasing the number of dynamic responses or by changing the torque

profiles used to actuate the kinematic chain. From a kinematic point of

view the trajectories found by randomization are much more cumbersome

than those found through optimization. Figure C.10 shows a comparison

between joint position, velocity and acceleration profiles of the trajectory

solving task 7 for the two approaches. Figure C.11 shows the corresponding

position trajectories in the end effector space.

Comparison in the end effector space

From the previous sections, for feasible tasks, we can summarize results as

follows:

1. If a pseudoinverse trajectory is feasible then the one found by the op-

timization approach is identical and both have negligible interpolation

error;

2. If a pseudoinverse trajectory is not feasible then a randomized trajec-

tory with negligible error is searched:

(a) if such a trajectory is found it will have a better interpolation

error than the trajectory found through optimization, but it will

be less smooth;
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(b) if such a trajectory cannot be found the task remains unsolved

by the pseudoinverse and randomized approaches, while the op-

timization method will always be able to solve it;

That is, either the trajectories and the interpolation errors for the pseudoin-

verse and the optimization approaches are the same, or the interpolation

errors of the pseudoinverse and randomized approach are smaller but their

trajectories are unacceptable or cannot be found.

We show this with another example in the end effector space. For sev-

eral starting positions we simulated reaching tasks to over 3000 destination

positions equally distributed over the space. We searched randomized trajec-

tories when those produced by the pseudoinverse method were not feasible.

At each destination position we calculated following data:

1. maximum difference between interpolation error produced by opti-

mization and the one obtained by pseudoinverse or randomization.

This difference is expected to increase when the pseudoinverse trajec-

tory is not feasible and a randomized trajectory with negligible inter-

polation error have been found. Figure C.12a shows how this happened

on the boundary where some points are darker because the interpola-

tion errors produced by the optimization approach were higher.

2. maximum norm of the difference between optimized and pseudoin-

verse or randomized position trajectories. Figure C.12b shows how

this norm increases in the same areas where the interpolation error

does. This is because the randomized trajectories, while having neg-

ligible interpolation error, contribute more to the norm. The darkest

points correspond to destination positions for which neither pseudoin-

verse nor randomized feasible trajectories could be found and the norm

is virtually infinite.

As an example, Table C.1 shows data for several reaching points from

one of the starting positions. Reaching destinations are all in the bottom-left

area of the end effector space where the most problems with the pseudoin-

verse approach arise for the chosen starting point (see Figure C.12). The

relation between the interpolation errors and the norm of the difference of

the trajectories can be clearly seen in the table. Rows with ∞ in the in-

terpolation error and norm columns indicate that for this points no feasible

trajectory was found, neither by pseudoinverse, nor by randomization.
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(a)

(b)

Figure C.4: Comparison between trajectories solving tasks (circles) found by the pseu-

doinverse approach (a) and by the optimization approach (b). The trajectories are

given in the joint space. The black dotted box identifies the feasible area delimited by

the shoulder and elbow joint angular boundaries. The circles outside the box represent

non feasible tasks. While for the non feasible tasks the pseudoinverse trajectories are

also unfeasible, the optimization approach is still able to produce feasible trajectories.



C.4. Results 131

Figure C.5: Comparison between trajectories solving tasks (circles) in joint space found

by the pseudoinverse approach (dashed blue trajectories) and the optimization approach

(green trajectories). The starting point of all reachings is close to the middle point of

the joint boundaries area and is marked with a cross. Trajectories produced by the two

approaches are perfectly overlapping.
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(a)

(b)

Figure C.6: Comparison between trajectories solving tasks (circles) in joint space found

by the pseudoinverse approach (dashed blue trajectories) and the optimization approach

(green trajectories) when the starting point of the reaching movements is close to the

boundary. The leftmost blue dashed trajectories outside the boundaries in (a) and the

rightmost ones in (b) are not feasible.
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Figure C.7: Example of randomized trajectory when the pseudoinverse approach is not

able to find a feasible trajectory for a task. The blue dashed line is the unfeasible

trajectory found by pseudoinverse, the green line is the feasible trajectory found by

optimizing, the red line is the feasible randomized trajectory.
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(a)

(b)

Figure C.8: Comparison between pseudoinverse approach (a) and optimization ap-

proach (b) for the solution of reaching tasks from a boundary position to 9 regularly

distributed final positions. In (a) tasks 7 and 9 are solved by randomization because

the pseudoinverse trajectories are not feasible.
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Figure C.9: Comparison between interpolation error of the pseudoinverse and of the

optimization approaches for the tasks in Figure C.8.
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(a)

(b)

Figure C.10: Comparison between joint kinematic profiles of the trajectories solving task

7 in Figure C.8. (a) position, velocity and acceleration of the randomized trajectory;

(b) position, velocity and acceleration of the optimized trajectory.



C.4. Results 137

(a)

(b)

Figure C.11: Comparison between end effector kinematic profiles of the trajectories

solving task 7 in Figure C.8. (a) end effector position of the randomized trajectory; (b)

end effector position of the optimized trajectory.
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(a)

(b)

Figure C.12: Comparison between interpolation error and trajectories obtained by means

of the optimization and of the pseudoinverse / randomized approaches in the end ef-

fector space. (a) difference in the interpolation error between optimization and pseu-

doinverse / randomized approaches. Points which are more bright are characterized by

the two approaches having the same interpolation error. The more darker the points,

the higher the difference between the interpolation errors. (b) norm of the difference

between trajectories generated by the optimization and the pseudoinverse / randomized

approach. The darker the points, the more cumbersome the randomized trajectories. A

cumbersome random trajectory will in fact generate a higher norm. The darkest points

are those for which the pseudoinverse trajectory was not feasible and no randomized

trajectory could be found. The norm is normalized between 0 and 1.
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Point errIopt errIpi,r ||popt(t)− ppi,r(t)||
34 7.09E-02 2.36E-13 16.26

35 6.79E-02 1.93E-13 17.52

36 6.48E-02 ∞ ∞
37 6.18E-02 ∞ ∞
38 5.87E-02 2.76E-13 19.12

39 5.57E-02 2.05E-13 18.18

40 5.26E-02 2.94E-13 21.05

456 8.01E-15 8.01E-15 0.00

556 1.19E-14 1.19E-14 0.00

626 1.66E-02 3.85E-13 14.55

884 9.89E-03 1.80E-13 16.19

968 2.57E-02 1.78E-13 22.79

969 2.06E-02 ∞ ∞
1175 3.27E-02 2.48E-13 17.59

1323 7.64E-15 7.64E-15 0.00

1528 2.98E-02 1.20E-13 9.29

1743 4.53E-02 2.73E-13 12.71

1785 4.45E-03 3.01E-13 17.65

2054 2.44E-04 3.78E-13 19.26

2101 1.49E-03 ∞ ∞
2190 2.61E-02 3.19E-13 19.71

2510 1.79E-02 ∞ ∞
2696 5.06E-02 ∞ ∞
2751 4.54E-02 1.42E-13 21.29

2774 6.70E-03 1.70E-13 23.01

2823 6.55E-15 6.55E-15 0.00

2841 3.83E-02 2.86E-13 20.27

2849 3.16E-02 1.81E-13 19.15

2891 3.29E-02 1.69E-13 21.33

2975 1.03E-14 1.03E-14 0.00

Table C.1: Interpolation error for the pseudoinverse / randomized and the optimization

approaches and the norm of the difference between trajectories for 30 reaching tasks

from the same point to destinations in the bottom-left region of Figure C.12, where

the most difficulties for the pseudoinverse arise. errIopt is the interpolation error for

the optimization approach, errIpi,r the one for the pseudoinverse approach (or for the

randomized one when the pseudoinverse trajectory was not feasible). popt(t) is the

position trajectory found by means of the optimization approach and ppi,r(t) the one

found by means of the pseudoinverse or of the randomized approach.


