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Summary

A major issue with data centres is the tremendous amount of energy consumed

ranging from a few kW for a rack of servers in a closet to several tens of MW for

large facilities.

Some facilities have power densities more than 100 times that of a typical office

building .It can be estimated from the fact, that at present, in United States, it

takes 34 power plants, each capable of producing 500 MW of electricity, to power

all the data centres in operation and by 2020, the nation will need another 17

similarly sized power plants to meet projected data centre energy demands as

economic activity becomes increasingly digital. More generally in a large data

centre, the amount of electricity needed to run it is similar to that of a small

town.

The major aspect to be understood in this context is the main consumers of

energy in a Data Centre.There are two main sinkers of energy, firstly the power

needed to run the servers and secondly the power needed to cool them down

as the temperature increase caused by the high energy consumption can prove

fatal to the life of servers and lead to inefficiencies in carrying out the commands

that are to be executed by the servers. Another added burden is due to the

need of redundancy of all these equipments to save the data centre from complete

shutdown in case of some interruption, as the complete shutdown just for a short

while can lead to the loss of billions of dollars.

In recent years, a lot has been done by the computer science field using method-

ologies such as Dynamic Voltage Frequency Scaling (DVFS) and other techniques

but not as much has been done from the point of view of system modelling and

application of classical control techniques for the optimization of energy and tem-

perature control at local as well as central level. The main objective of the thesis

was to develop system models at the server levels taking into account all the im-

portant aspects such as number of instructions to be executed, DVFS and the

energy consumed. It was followed by its temperature control by implementation

of the discrete event controller which was successfully achieved. Furthermore,

the the complex modelling of the racks and hot and cold aisles using the basic

principles of thermodynamics was carried and then integrated to form a complete

model of the data centre.

This thesis is part of a long-time research, aimed at an integrated control of

the data centre machines, and the air conditioning system. A previous thesis [1]



addressed the modelling of airflow and conditioning, having however the servers

just described as exogenous sources of thermal power. This permitted to set up

some system-level control, including a very simple load re-allocation mechanism,

but not to appreciate realistically enough the consequences of said control on

the behaviour of the single server as for the accomplishment of its computational

demand. This work, on the contrary, focuses on describing the server with the

simplest model capable of fulfilling the need just mentioned, and previously left

open.

The usefulness of the proposed model for the intended purpose is demonstrated

by employing that model to set up local controls for the servers’ thermal behaviour.

The integration with previous results, so as to obtain a complete data centre

model, is left to future works. Nonetheless, the simulation performance of the

proposed models is high enough to allow to state that its use for “large-scale”

system-level studies will be successful.
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Sommario

Un elemento importante della gestione dei data centre è il loro gande consumo

energetico, che puó variare da pochi kW per un singolo rack di server fino a diverse

decine di MW per grandi installazioni.

Alcuni data centre hanno densità di potenza superiori di 100 volte quella di un

tipico edificio per uffici. Per esempio, dal momento che attualmente negli Stati

Uniti ci vogliono 34 centrali elettriche, ognuna in grado di produrre 500 MW di

potenza, per alientare tutti i data center in funzione, e dato che entro il 2020 la

nazione avrà bisogno di altri 17 impianti di dimensioni simili per soddisfare la

domanda di energia prevista per i data centre di futura installazione, poiché le

attività economiche diverranno sempre più digitali. Più in generale, in un grande

data centre, la quantità di energia elettrica necessaria al suo funzionamento è

simile a quella di una piccola città.

L’aspetto principale da considerare in questo contesto consiste nel comrpendere

e analizzare quali sono i principali consumatori di energia in un data centre. A

tal proposito due sono i principali consumi di energia, in primo luogo la potenza

necessaria per far funzionare i server e in secondo luogo la potenza necessaria

per raffreddarli, dal momento che l’aumento di temperatura causato dall’elevato

consumo energetico può rivelarsi fatale per la vita del server e portare a inefficienze

nello svolgimento dei compiti che esso deve eseguire. Un’altra difficoltà viene dalla

necessità di ridondanza di tutti queste apparecchiature, per salvaguardarere il data

centre da un completo shutdown in caso di interruzione di alcuni servizi, visto che

l’arresto completo solo per un breve periodo può portare alla perdita di miliardi

di dollari.

Negli ultimi anni, molto è stato fatto dal settore informatico utilizzando meto-

dologie come Dynamic Voltage Frequency Scaling (DVFS) e altre tecniche, ma

non altrettanto è stato fatto dal punto di vista della modellazione del sistema e

dell’applicazione di tecniche di controllo classiche per la ottimizzazione del con-

trollo dell’energia e della temperatura sia a livello locale che a livello centrale. Il

principale obiettivo della tesi è quello di sviluppare modelli di sistema a livello di

server, tenendo conto di tutti gli aspetti importanti quali il numero di istruzioni

da eseguire, la gestione del DVFS e l’energia consumata. Tale obiettivo è seguito

dall’implementazione di un controllo di temperatura centrato su un regolatore

event-based, che è stato realizzato con successo.

Questa tesi è parte di una ricerca di lungo periodo, volta a un controllo in-

tegrato delle macchine del data center e dell’impianto di climatizzazione. Una

tesi precedente [1] ha affrontato la modellazione dei flussi d’aria e del condizion-
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amento, descrivendo tuttavia i server come fonti esogene di potenza termica. Ciò

ha consentito di delineare delle strategie di controllo a livello di sistema, com-

prendendo un meccanismo molto semplice di riallocazione del carico, ma non di

apprezzare abbastanza realisticamente le conseguenze di tale controllo sul com-

portamento del server singolo quanto al soddisfacimento della sua domanda di

carico computazionale. Questo lavoro, al contrario, si concentra sulla descrizione

del server con il modello più semplice in grado di soddisfare la necessità appena

citata, e precedentemente lasciata aperta.

L’utilità del modello proposto per lo scopo sopra descritto è dimostrata utiliz-

zando quel modello per mettere a punto dei controlli locali per il comportamento

termico dei server. L’integrazione con risultati precedenti, cos̀ı da ottenere un

modello completo del data centre, è lasciato a lavori futuri. Tuttavia, le prestazioni

di simulazione dei modelli proposti sono sufficientemente elevate da permettere di

affermare che il loro uso per studi ‘large-scale” a livello di sistema avrà successo.
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Chapter 1

Introduction

1.1 Introduction

In today’s technical world, the term DATA CENTRES or in general SERVER

ROOMS need no introduction. They are the most essential parts of all the big

and small companies operating today. In order to store information and run on

and offline servers and networks,all the companies need big or small data centres

depending on the intensity of the tasks to be accomplished by each company .

The importance of these centres can be ascertained from the fact, that companies

like Google, have entire buildings under lock and key dedicated to their advanced

data storage techniques. Figure 1.1 shows a typical data centre architecture.

Historically speaking, the basic existence of these data centres can be attributed

to the need of fast Internet connectivity and nonstop operation by the companies

to deploy systems and establish a presence on the internet. Many companies

started building very large facilities, called Internet Data centres(IDC), which

provided businesses with a range of solutions for system deployment and operation.

The main issue with the data centres is the tremendous amount of energy

consumed ranging from a few kW for a rack of servers in a closet to several tens

of MW for large facilities. Some facilities have power densities more than 100

times that of a typical office building [2].It can be estimated from the fact, that

at present, in United States, it takes 34 power plants, each capable of producing

500 MW of electricity, to power all the data centres in operation and by 2020,

the nation will need another 17 similarly sized power plants to meet projected

data centre energy demands as economic activity becomes increasingly digital[3].

More generally in a large data centre, the amount of electricity needed to run it

is similar to that of a small town.

The major aspect to be understood in this context is the main consumers of energy
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Figure 1.1: An Internal View of Google’s Data Centre

in a Data Centre.Figure 1.2 refers to the typical energy consumption in a data

centre.

There are two main sinkers of energy, firstly the power needed to run the

servers and secondly the power needed to cool them down as the temperature

increase caused by the high energy consumption can prove fatal to the life of

servers and lead to inefficiencies in carrying out the commands that are to be

executed by the servers. Another added burden is due to the need of redundancy

of all these equipments to save the data centre from complete shutdown in case

of some interruption, as the complete shutdown just for a short while can lead to

the loss of billions of dollars.

Until recently , the computer science has been working rigorously to reduce the

computational power consumption of the servers which forms a major percentage

of the energy consumed and if kept under control could also reduce the power

needed to cool down these servers , since less energy means less power and hence

less heat dissipation. In this regard, the most significant technique which has been

developed till date is known as Dynamic Voltage Frequency Scaling (DVFS). It is

an accepted technique to lower the energy and power consumption of microproces-

sors which are the main users of computing power in data centres[4].The relation

between the power consumed by the processor and the supply voltage is quadratic,

hence lowering the supply voltage can reduce a significant amount of energy while

lowering only the operating frequency can reduce the power consumption but the

6



Figure 1.2: Typical Energy Consumption in a Data Centre

energy consumption remains the same because the computation needs more time

to finish. Lowering the supply voltage and operating frequency reduces the power

and energy consumption further. Different techniques like voltage scaling hard-

ware loop and hardware technique for shutting down unused hardware modules

have been devised till date to significantly and efficiently use DVFS to decrease

consumption and increase efficiency [5, 6].

Having said that, up to date minimal efforts have been put into offering solu-

tions from the point of view of system modelling and amalgamating them with

classical control techniques for the optimization of energy and temperature con-

trol at local as well as central levels.Hence, in the thesis, the main objective is to

develop the model of the server which will take into account the computational

as well as thermal aspect of modelling and will be an amalgamation of the two.

The equations used to model the server are relevant to duplicate their computing

behaviour such as number of instructions to be executed, the energy consumed

to execute these instructions and DVFS as well as the thermal behaviour which

includes the dependence of temperature on the power consumed which in turn

7



depends on the DVFS and the set of instructions to be executed.

The main advantage of this server modelling is that it is not very demanding

computationally but at the same time gives complete and fast simulated results

which can be very useful when designing the entire data centres and duplicate the

detailed behaviour of the data centre quite fast and convincingly.

The temperature control of the server is implemented with the help of a discrete

event controller and LQR which was successfully achieved having DVFS as input

and temperature of the server as output. Furthermore, the modelling of racks

along with both hot and cold aisles were successfully developed and then combined

to form a small virtual data centre using Modelica as a software tool.

1.2 State of the Art

From the past many years, data centres have been the focus of extremely serious

research as they are one of the major consumers of energy today and extreme

need of energy optimization in today’s world which is drowned in energy crisis is

inevitable. With reference to this, different methodologies have been presented

mostly based on dynamic voltage frequency scaling to reduce power and energy

consumed by the processor. In [7], a proposed control loop of DVFS technique

has been introduced.

The proposed dynamic voltage frequency scaling (DVFS) loop varies or sets

the supply voltage Vdd and operating frequency according to the desired fre-

quency which is predicted via the operating system and speed control circuit.

The DVFS proposed loop has a high performance due to accuracy in progress,

and can significantly improve processor energy efficiency. Another way to reduce

energy consumption in data centres is by the reduction of the idle power of their

servers [8] which consumes 60 percent of their peak power draw. Idle power refers

to the electric power consumed by electronic and electrical appliances while they

are switched off (but are designed to draw some power) or in a standby mode.

The method presented is called PowerNap, an energy-conservation approach

where the entire system transitions rapidly between a high-performance active

state and a near-zero power idle state in response to instantaneous load. Rather

than requiring fine-grained power-performance states and complex load-proportional

operation from each system component, PowerNap instead calls for minimizing

idle power and transition time, which are simpler optimization goals. Based on

the PowerNap concept, requirements and outlined mechanisms are developed to

eliminate idle power waste in enterprise blade servers.
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Because PowerNap operates in low efficiency regions of current blade centre

power supplies, the Redundant Array for Inexpensive Load Sharing (RAILS) are

introduced, a power provisioning approach that provides high conversion efficiency

across the entire range of PowerNap’s power demands. Using utilization traces

collected from enterprise-scale commercial deployments, it is demonstrated that

together, PowerNap and RAILS reduce average server power consumption by 74

percent.

Another technique proposed is based on the efficient resource management

policy for virtualized Cloud Data centres[9]. The objective is to continuously

consolidate these Virtual Machines leveraging live migration and switch off idle

nodes to minimize power consumption, while providing required Quality of Ser-

vice. Evaluation results show that the dynamic reallocation of Virtual Machines

brings substantial energy savings. In [10], Pack and Cap is proposed , a novel tech-

nique for maximizing the performance of multi threaded workloads on multi-core

processors within an arbitrary power cap.

Thread packing is introduced as a control knob that can be used in con-

junction with DVFS to manage the power-performance tradeoff. It expands the

range of feasible power caps, and enables fine-grained dynamic control of power

consumption. In devising a multinomial logistic regression (MLR) classifier ap-

proach to identifying optimal operating points, possibility to automatically select

Pareto-optimal DVFS and thread packing combinations during runtime is demon-

strated successfully. Using a large body of characterization data gathered from

the Princeton Application Repository for Shared-Memory Computers (PARSEC)

benchmark suite, sophisticated classifier models are trained that encapsulate the

workload dependence of the power-delay Pareto frontier. By performing model

learning offline and exposing the models via lookup tables, the runtime overhead

of the control scheme was reduced to a low-cost probability calculation.

Implementation of Pack and Cap on a real quad-core based system with a

wide range multi-threaded workloads demonstrates that the method is capable of

adhering to a power cap 82 percent of the time while maximizing performance,

even in the absence of a power measuring device. Thread packing increases the

range of feasible power constraints by an average of 21 percent when compared to

DVFS alone and reduces workload energy consumption by an average of 51.6 per-

cent compared to existing control techniques that achieve the same power range.

In [11], DVFS along with per-core power gating (PCPG)as an additional power

management knob for multi-core processors is used for processor power manage-

ment.PCPG is the ability to cut the voltage supply to selected cores, thus reducing

9



to almost zero the leakage power for the gated cores. Using a testbed based on a

commercial 4-core chip and a set of real-world application traces from enterprise

environments, it is shown that PCPG can significantly reduce a processor’s en-

ergy consumption (up to 40 percent) without significant performance overheads.

When compared to DVFS, PCPG is highly effective saving up to 30 percent more

energy than DVFS. When DVFS and PCPG operate together they can save up

to almost 60 percent.

Carrying on, [12] enables power-efficient management of enterprise workloads

by exploiting a fundamental characteristic of data centres:“platform heterogene-

ity”.This heterogeneity stems from the architectural and management-capability

variations of the underlying platforms. An intelligent workload allocation method

is defined that leverages heterogeneity characteristics and efficiently maps work-

loads to the best fitting platforms, significantly improving the power efficiency of

the whole data centre.This allocation is performed by employing a novel analyti-

cal prediction layer that accurately predicts workload power/performance across

different platform architectures and power management capabilities and achieves

on average 20 percent improvements in power efficiency for representative het-

erogeneous data centre configurations, highlighting the significant potential of

heterogeneity-aware management.

In [13], formal models for precedence-constrained parallel tasks, DVFS enabled

clusters, and energy consumption are presented and aims to reduce energy con-

sumption for high end computing. It studies the slack time for non-critical jobs,

extends their execution time and reduces the energy consumption without in-

creasing the task’s execution time as a whole. By increasing task execution time

within an affordable limit, this paper develops scheduling heuristics to reduce

energy consumption of a tasks execution and discusses the relationship between

energy consumption and task execution time. Models and scheduling heuristics

are examined with a simulation study.

On the other hand,[14] provides an assessment of the current thermal mod-

elling methodologies for data centres , with focus on the use of computational

fluid dynamics (CFD) and heat transfer as analysis tools, and model validation

while [15] focuses on importance of the HVAC ( heating, ventilation, and air

conditioning) methods reduce power consumption in data centres. Again in [16],

two hierarchical thermal-aware power optimization techniques for data centres are

proposed that are complementary to each other and achieve firsty lower overall

system power with no performance penalty or secondly higher performance within

the same power budget.
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At the data centre level, trade off is the facility Heating, Ventilation and Air

Conditioning (HVAC) power with server fan power by choosing between two ther-

mal setpoints for the HVAC chiller based on the cooling zone utilization levels.

This optimization can reduce total data centre total power by as much as 12.4

percent to 17 percent, with no performance penalty. At the server level, the trade

off fan power and circuit leakage power by dynamically adjusting the server ther-

mal setpoint, allowing the system to heat up when this saves more fan power

than it costs in terms of leakage power. Evaluation shows that it reduces total

server power by up to 5.4 percent with no performance penalty for workloads that

heavily exercise a server.

The methodologies presented in the literature clearly indicate that up till now

the entire focus has been either on developing classical DVFS techniques combined

with resource allocation, load balancing and other power management techniques

to reduce the computing power or on the other hand HVAC , CFD techniques

to reduce the thermal power. There has been hardly any focus on developing

a model of the server itself which takes into account the thermal as well as the

computational aspects of the system, while at the same time being simple enough

to be usable in data centre simulators that may contain hundreds or even thou-

sands of servers. Hence the project carried out in this dissertation, focuses on

the development of this simple server model which provides an almost complete

behaviour from all the important aspects as well and when used in the context of

the data centre, can be computationally very light as well as complete.

1.3 Modelica

The modelling language used to implement the models presented and discussed in

this thesis is Modelica and a short introduction about this was deemed necessary

to bring about totality in the documentation. Modelica is a language which is

based on object oriented modelling. It is used for modelling of complex systems

containing mechanical, electrical, electronic, hydraulic, thermal, control, electric

power or process-oriented sub components. Unlike other languages, it is developed

by the non profit Modelica Association and is free, which was a big motivation

behind its implementation in the thesis.While Modelica resembles object-oriented

programming languages, such as C++ or Java, it differs in two important respects.

First, Modelica is a modelling language rather than a conventional programming

language. Modelica classes are not compiled in the usual sense, but they are trans-

lated into objects which are then exercised by a simulation engine. The simulation
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Figure 1.3: Introduction to Modelica

engine is not specified by the language, although certain required capabilities are

outlined. Second, although classes may contain algorithmic components similar

to statements or blocks in programming languages, their primary content is a set

of equations.

Modelica traces its origin to September 1996 by Hilding Elmqvist. The goal was

to develop an object-oriented language for modelling of technical systems in order

to reuse and exchange dynamic system models in a standardized format. Modelica

1.0 is based on the PhD thesis [17] of Hilding Elmqvist and on the experience with

the modelling languages Allan,Dymola, NMF ObjectMath, Omola, SIDOPS+,and

Smile. Hilding Elmqvist is the key architect of Modelica, but many other people

have contributed as well. In September 1997, version 1.0 of the Modelica speci-

fication was released which was the basis for a prototype implementation within

the commercial Dymola software system. In year 2000, the non-profit Modelica

Association was formed to manage the continually evolving Modelica language

and the development of the free Modelica Standard Library. In the same year,

the usage of Modelica in industrial applications started.

1.4 Purpose and Organization of the thesis

In [19], like in the ancestor [1] of this dissertation, the server for the purpose of

data centre energy optimization has been just modeled by its power consumption
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which has been approximated as linear in utilization between a fixed idle power

and peak load power.

Similarly in [7] the modelling of the server is defined again by its power which is

described as a combination of its dynamic, static and short circuited power, where

the server’s dynamic power represents the main portion of its power dissipation

and is dependent on the supply voltage , the clock frequency and the collective

switching capacitance. Again in [8], the server is approximated by the average

computing power.

On the other hand, in [14] computational fluid dynamics (CFD) and heat

transfer techniques have been used. Hence as can be concluded from the literature,

all the server models present till date are either based on computational aspects

of modelling or their thermal aspects and until now there has been no such model

which combines the two to give a complete model.

The main purpose of this thesis is to provide a model of the server which

provides a complete analysis – as long as a system-level attitude is taken – of its

thermal as well as computational aspects while also highlighting the dependence of

one on the other and then use this model to simulate the behaviour of the entire

data centre. The main benefit of this model is that it is simple and complete

never used before amalgamation of the two main phenomena, which are the main

consumers of power in data centres but at the same time is not computationally

heavy as in the case of for example CFD models, the simulations of which can

last 24 hours or more and need extremely powerful processors. This model of the

server, when fitted into the context of data centres provide computationally less

demanding yet detailed simulated behaviour which can be extremely useful for

the purpose of their energy optimization.

The following chapters of the thesis are so structured:

� Chapter 2 provides an explanation of the basic thermodyamic equations and

concepts used for the modelling of elementary blocks of the overall data

centre.

� Chapter 3 discusses the implementation, simulation and results obtained

when the concepts discussed in Chapter 2 are simulated in Modelica

� Chapter 4 provides an overview of different controllers used to govern the

server thermal behaviour, thereby assessing the model as suitable for the

synthesis of such local controllers, and illustrates their successful implemen-

tation in Modelica.
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� Chapter 5 concludes with the objectives fulfilled, and sketches out future

works in this direction.
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Chapter 2

Modelling Bricks of Data Centres

2.1 Introduction

This chapter introduces the basic concepts and equations which have been used

to simulate the behaviour of the data centre starting from servers which form

the basic entities in a data centre to the air flowing through the hot and cold

aisles. Then these servers are arranged in racks, which are essential for the proper

working and design of a data centre. All these components have been modelled

using the basic concepts of thermodynamics and then combined to form a working

model of the data centre.

2.2 Modelling of the Server

This is the most important section of the thesis. As discussed in the first chapter,

this section presents a novel method to model the server. The need for this

modelling arises from the fact that all the previous models which have been used

to represent the server are either in some cases too simple to present a credible

model of the server in terms of its power and performance or so computationally

heavy and time consuming that the simulation needs days to complete. On the

other hand, these models fail to describe the relationship between the thermal

power and the computational load of the server which is extremely important for

understanding how both of these aspects together effect the performance of the

server, which is the most important concern in the computer science world.

In this aspect, it is very important to understand that the thermal power of

the server ultimately depends on its computational load, be it the input rate of

instructions which it needs to execute or the kind of instructions it executes, since
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different instructions require different levels of energy with some tasks requiring

more energy than the others. Hence with this concept in mind, our model in

a very simple yet credible way relates the thermal power of the server to its

computational load. The model is represented by very simple and fine grained

set of equations, its main aim being firstly to present the system as continuous.

Secondly, this model when used in the context of a data centre where a large

number of servers need to be simulated can provide affordable complexity.

Starting with the short description of the server, the term “server” cannot be

defined in a single way. A typical server is shown in figure 2.1 below.

Figure 2.1: Single server in a data centre

A server is a physical computer dedicated to running one or more such services

(as a host), to serve the needs of the users of the other computers on the network.

Depending on the computing service that it offers, it could be a database server,

file server, mail server, print server, web server or others. Servers provide essential

services across a network, either to private users inside a large organization or

to public users via the Internet. In hardware sense, the word server typically

designates computer models intended to hosting software applications under the

heavy demand of a network environment. In this client-server configuration, one

or more machines, either a computer or a computer appliance, share information

with each other, with one acting as a host for the others. While nearly any personal

computer is capable of acting as a network server, a dedicated server will contain

features making it more suitable for production environments. These features

may include a faster CPU(Central Processing Unit), increased high performance

RAM (Read Only Memory) and typically more than one large hard drive. For the

purpose of this work, however , there is no need to model accurately the hardware

part, since a simple model, yet accurate concerning thermal and computational

power must be enough.

The server is described by two inputs and one output. The first input is
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the input rate of instructions (roi) that the system needs to execute and for

simplification , it is normalized with respect to the maximum rate of instructions

that the server is capable to execute. The second input to the server is the

dynamic voltage frequency scaling (DVFS) command which has been assumed to

be already determined from a preexisting loop in the server and it ranges between

0 and 1.

This DVFS command decides the rate of instructions based on its scaling, which

the server is actually able to execute given the power limitations and hence these

rate of instructions are given by

qreq = Cmax ∗DV FS; (2.1)

Once the rate of instructions from the server determined by the DVFS com-

mand is calculated (qreq), the net rate of instruction queue (dn/dt) which are

actually executed by the server is given by the input rate of instructions which

are requested to be executed by the server (roi) minus the real rate of instructions

which the server is able to execute.

The rate of instructions length executed by the server is given by

dn

dt
= Cmax ∗ roi− qreq (2.2)

where

n >=0

Cmax=Maximum rate of server capacity to execute instructions

(instructions/second)

DVFS=Dynamic Voltage Frequency Scaling[0,1]

roi=normalized input rate of instructions to execute w.r.to Cmax

qreq=requested rate of execution (instructions/second)

Another limitation comes in the form of instruction queue (n) which can never

be less than zero and further limits the rate of instructions which the server is

able of execute (qact) and is given

qact = Cmax ∗ roi− dn

dt
(2.3)

where

qact=actual execution rate which the server can execute keeping the constraint

n >=0 under check
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So equation 2.3 gives the actual computational load which the server executes

and based on this load , the thermal power can be computed. In this case , for

simplicity the equation to compute the power is based on the assumption that

each instruction uses the same energy which is not the actual case and in real

cases energy needed depends on the different tasks which need to be executed.

P = qact ∗ epi (2.4)

where

P=power consumed by the server when executing instructions (Watts)

epi=energy per instruction (Pico joules)

Finally, the model of the server has one output , which is the temperature of the

server. This temperature depends on the thermal power needed to execute the

computational load of the server and the exchange of heat with the external

environment through a heat port and is presented through the thermal

phenomena in equation 2.5.

C ∗ dTcpu
dt

= P +QFlow (2.5)

where

C= Heat Capacity (Joules/Kelvin)

Tcpu = Temperature of the server depending on the power consumed by the

executions of the instructions in the server and heat flow between the external

environment and the server(Kelvin).

QFlow =heat flow rate between the server and the external environment(Watts)

Hence this modelling of the server provides an understanding of accessing thermal

behaviour together with the computational load, which provides an important

break through in this field.

2.3 Modelling of the Air Compartment

The modelling of the air requires the knowledge and understanding of a large num-

ber of thermodynamic and transport properties related to it. A general process

of the air flow in the atmosphere is depicted in the figure 2.2

The air is a heterogeneous mixture of gases and liquid and solid particles in

suspension (clouds, dust, microorganisms...). As is a well known fact, all natural

air is humid; dry air must be artificially obtained. In many engineering problems,
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Figure 2.2: Air Flow in the Atmosphere

where there is little or no change in composition of the air, humid air formulation

is not needed and air can be treated as a pure substance (from aircraft lifting to

most heat transfer problems). But in some cases, the change in composition of

the air may be crucial, either because condensation occurs or because air entrains

water from some source, as from vital meteorological processes, to artificial air

conditioning and evaporative cooling. Hence, the modelling of moist air is of

relevance to our project.

2.3.1 Modelling of the Moist Air

Humid air is the most important gaseous mixture in science and engineering: from

breathing to meteorology and air conditioning and can be modeled as a binary

gas mixture of dry air and water vapour because none of the components of dry

air is highly soluble in liquid water, and dry-air composition can be considered

invariable. For general information, a binary system is a particular case of the

more general multi component system in which only two components are present.

Th term mixture refers to the fact that both substances to be treated are of equal

footing.

The two-phase binary mixture of water and air is not an ideal mixture in both

phases, but for the gaseous phase the ideal mixture model is very appropriate,

and Raoult’s law for the two-phase equilibrium of water is still valid. It is one

of the most important law of thermodynamics and was established by French

physicist François-Marie Raoult in 1882. It states that the partial vapor pressure

of each component of an ideal mixture of liquids is equal to the vapor pressure of

the pure component multiplied by its mole fraction in the mixture and is used in
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the modelling equation 2.7. The thermodynamic state of humid air, as a binary

homogeneous mixture (of dry air and water vapor, in gas phase), requires three

intensive variables to be fully specified: pressure, temperature and humidity, the

latter being determined by several different variables, all of them related. Given

as input initial temperature, pressure and absolute humidity , the terms and

equations which define the thermodynamic state of moist air can be written as:

The vapour mass fraction of the total air is given as

x =
X

1 +X
(2.6)

where

X=input prescribed absolute humidity of dry air(kg/m3)

Applying Raoult’s law to the mixture, the partial pressure of the water vapor is

given by

pv = p ∗ X

X + 0.622
(2.7)

where

pv=vapour partial pressure

and

p=input prescribed pressure(Pascals)

pvs = 610.10 ∗ e
T−273.15

T−273.15+238.3 ∗ 17.2694 (2.8)

where

pvs=saturated vapour partial pressure

and

T=input prescribed temperature(Kelvins)

The relative humidity marks the proximity of the saturation and is an important

parameter in describing the great effects of condensation and evaporation. The

amount of water vapor in the air at any given time is usually less than that

required to saturate the air. The relative humidity is the percent of saturation

humidity, generally calculated in relation to saturated vapor density and is given

by

phi =
pv

pvs
(2.9)

where
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phi=relative humidity

In case of saturation equals 1

But relative humidity does not give an indication of how much vapour there

actually is (unless complemented by p-T-values), as specified by pv.The

humidity ratio or absolute humidity, X, related the mass of the dry air with that

of the mass of water vapour. The reason for not using the total mass but the

mass of dry air is that air and water are very dissimilar substances, and for the

range of temperatures and pressures envisaged, one of the components (dry air)

may be thought as permanently in the gas phase, while water vapour can be

easily changed, and thus it is advantageous to refer concentrations, enthalpies,

and other thermodynamic functions, to the conservative mass of dry air.

Mv = Ma ∗X (2.10)

where

Ma=Total Dry Air Mass

Mv= Total Vapour Mass

The wet bulb temperature is the temperature a small wet-object would reach, by

evaporative cooling, when exposed to an air flow. When the combined heat and

mass transfer problem is solved, it happens that the value of this temperature is

approximately the adiabatic saturation temperature. Because it is easy to

measure (just blowing over a thermometer with its bulb surrounded by a small

mesh soaked in water), it was customarily used to measure humidity by rotating

a set-up with two equal mercury thermometers, one of them with the bulb

wrapped with a wick soaked in water (sling psychrometer).

Twb = 273.15− 238.3 +
T − 273.15

17.2694 ∗ ln( pv
610.78

)
(2.11)

where

Twb=Temperature of the wet bulb

Xs = 0.622 ∗ pvs

p− pvs
(2.12)

where

Xs=Absolute humidity of dry air at saturation

Another important characteristic, which is extremely important for the

modelling of moist air is enthalphy. The word enthalpy is based on the Greek

enthalpein , which means ”to warm in”. Enthalpy is the amount of heat content

used or released in a system at constant pressure. Enthalpy is usually expressed
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as the change in enthalpy. The change in enthalpy is related to a change in

internal energy (U) and a change in the volume (V), which is multiplied by the

constant pressure of the system. Hence the Enthalphy(H) is the sum of internal

energy (U) and the product of pressure and volume (PV) given by the equation:

H = U + PV (2.13)

If temperature and pressure remain constant through the process and the work

is limited to pressure-volume work, then the enthalpy change is given by the

equation:

∆H = ∆U + P∆V (2.14)

Also at constant pressure the heat flow (q) for the process is equal to the change

in enthalpy defined by the equation:

∆H = q (2.15)

When the temperature increases, the amount of molecular interactions also

increases. When the number of interactions increase, then the internal energy of

the system rises. According to the equation 2.14, if the internal energy (U)

increases then the ∆H increases as temperature rises. The equation for heat

capacity and equation 2.15 can be used to derive this relationship.

C =
q

∆T
(2.16)

Under constant pressure, substituting equation 2.15 into 2.16

Cp =

(
∆H

∆T

)
P

(2.17)

Under the assumption of constant pressure throughout, the enthalpy relating

thermodynamics of our case is defined as

ha = cpa ∗ (T − 273.15) (2.18)

where

ha=specific enthalpy of dry air(J/Kg)

and

cpa=Specific heat capacity of dry air

hv = hv3pt+ cpv ∗ (T − 273.15) (2.19)
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where

hv=specific enthalpy of water vapour(J/Kg)

cpv=Specific heat capacity of water vapour

and

hv3pt=Specific enthalpy of water vapour at triple point [J/Kg]

The triple point of a substance is the temperature and pressure at which the

three phases (gas, liquid, and solid) of that substance coexist in thermodynamic

equilibrium.

Figure 2.3: Triple point

h = ha+X ∗ hv (2.20)

where

h=specific enthalpy of moist air(J/Kg)

hl = cpl ∗ (T − 273.15) (2.21)

where
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h=specific enthalpy of liquid water(J/Kg)

and

cpl=Specific heat capacity of liquid water

The density of air varies as the temperature and moisture content in the air

varies. When the temperature increases, the higher molecular motion results in

an expansion of the volume and thus decreasing the density. The density of a

gas, either it is dry air, water vapor or a mixture of dry air and water vapor -

moist or humid air, can be calculated on basis of the Ideal Gas Law.

The Ideal Gas Law can be expressed as

p ∗ V = m ∗Rx ∗ T (2.22)

where p = absolute pressure (N/m2)

V = volume of gas (m3)

m = mass of gas (kg)

Rx = individual gas constant (J/kg.K)

T = absolute temperature (Kelvin)

The density can be expressed as

d =
m

V
(2.23)

and equation 2.22 becomes

p = d ∗R ∗ T (2.24)

The individual gas constant can be expressed with the universal gas constant

and the molecular weight of a gas as

Rx =
Ru

Mg

(2.25)

where

Mg = molecular weight of the particular gas

and

Ru = 8314.47 = universal gas constant (J/(kmol K))

Hence to define the density of moist air,equation 2.26 based on the Ideal Gas

Law is used.

d =
(p− pv)

(Ra ∗ T )
+

pv

Rv ∗ T
(2.26)
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where

d=density of moist air (Kg/m3)

Ra=Gas constant of dry air

and

Rv=Gas constant of water vapour in moist air

cp = cpa +X ∗ cpv (2.27)

cp=moist air specific heat capacity(J/Kg)

R = Ra+Rv ∗X (2.28)

where

R=equivalent gas constant of moist air

2.3.2 Balance Equations

All the balance equations, whether they involve the balance of mass in a system or

the balance of energy are based on the very basic principle of physics, which is the

conservation principle. It states that matter can neither be created nor destroyed

but can be changed from one form to another. In our case, two balances that

are used to duplicate the behaviour of air compartment, are mass balance and

energy balance. The use of energy balance in the modelling holds relevance ,

since the temperature is not constant and a lot of heat is generated due to the

power consumed by the servers of the data centre.

The total mass of the moist air is given by

Ma+Mv = V ∗ d (2.29)

where

V=Volume

ea =
(h− p)
d

(2.30)

where

ea=Specific energy of the moist air

Ea =
(Ma+Mv)

ea
(2.31)

where

Ea=Energy of the moist air
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The mass balance is described by total continuity equation which states that the

time rate of change of mass inside any system must be equal to the mass

entering into the system minus the mass exiting the system.

wtin = wain ∗ (1 +X) (2.32)

where

wtin = Total mass flow rate at the input

and

wain=Mass flow rate of the dry air at the input

wtout = waout ∗ (1 +X) (2.33)

where

wtout = Total mass flow rate at the output

and

waout=Mass flow rate of the dry air at the output The total mass balance is

given by

d(Ma+Mv)

dt
= wtin+ wtout− wc (2.34)

where

wc = Condensed water mass flow rate The mass balance of the water vapour is

given by

dMv

dt
= wain ∗ xain+ waout ∗ xaout− wc (2.35)

where

xain = Absolute humidity of the dry air at the input

and

xaout = Absolute humidity of the dry air at the output

Since, there is a change of temperature and consumption of power resulting in

heat generation, so in order to model our system correctly, energy balance is

extremely vital for the purpose.

Cw ∗ dTw
dt

= Qawsen+Qawlat+QFlowwall (2.36)

where

Cw = Heat Capacity of the Wall(Joules/Kelvin)
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Tw = Wall Temperature (Kelvin)

Qawsen=sensible heat

Qawlat=Latent Heat

and

QFlowwall =Heat Flow Rate between wall and the environment(Watt)

Latent and sensible heat are types of energy released or absorbed in the system.

Latent heat is related to changes in phase between liquids, gases, and solids.

Latent heat is the energy absorbed by or released from a substance during a

phase change from a gas to a liquid or a solid or vice versa. If a substance is

changing from a solid to a liquid, for example, the substance needs to absorb

energy from the surrounding environment in order to spread out the molecules

into a larger, more fluid volume. If the substance is changing from something

with lower density, like a gas, to a phase with higher density like a liquid, the

substance gives off energy as the molecules come closer together and lose energy

from motion and vibration. For example, when water is boiled over a stove,

energy is absorbed from the heating element and goes into expanding the water

molecules into a gas, known as water vapor. When liquid water is put into ice

cube trays and placed in the freezer, the water gives off energy as the water

becomes solid ice. This energy is removed by the freezer system to keep the

freezer cold. Hence the definition itself is self explanatory to explain its

dependence on condensed water flow rate and the enthaphies of the different

phases as is described in equation 2.37

Qawlat = wc ∗ (hv − hl) (2.37)

where

Gaw=Air−Wall Thermal Conductance

Sensible heat is related to changes in temperature of a gas or object with no

change in phase and is given by the equation 2.38.

Qawsen = Gaw ∗ (T − Tw) (2.38)

Finally the rate the change of the output temperature is given by equation 2.39

d ∗ V ∗ cp ∗ dTout
dt

= wc ∗ cp ∗ (T − Tout) +QFlowair (2.39)

where

Tout = Output Temperature (Kelvin)

and

QFlowair =Heat Flow Rate between input and output air(Watt)
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2.4 Modelling of the Rack and Data Centre

Once the basic blocks have been modeled, they need to be joined together into

racks. The rack contains multiple mounting slots called bays, each designed to

hold a hardware unit secured in place with screws. A single rack can contain

multiple servers stacked one above the other, consolidating network resources and

minimizing the required floor space. The rack server configuration also simplifies

cabling among network components. In an equipment rack filled with servers, a

special cooling system is necessary to prevent excessive heat buildup that would

otherwise occur when many power-dissipating components are confined in a small

space.If servers are logically placed in rows with the front of the racks (and servers)

all facing the same direction, then a consistent airflow direction throughout the

rows of racks is achieved. However, if several parallel rows of racks are placed with

the same orientation, a significant efficiency problem arises. The hot exhaust air

from the first row of racks gets sucked into the ”cool” air intakes of the second

row of racks. With each progressive row, the air temperature increases as hot

air is passed from one row of servers to the next.To overcome this problem, the

rows of server racks should be oriented so that the fronts of the servers face each

other. In addition, the backs of the server racks should also face each other. This

orientation creates alternating ”hot aisle/cold aisle” rows.

Hot aisle/cold aisle is a layout design for server racks and other computing equip-

ment in a data centre. The goal of a hot aisle/cold aisle configuration is to conserve

energy and lower cooling costs by managing air flow. In its simplest form, hot

aisle/cold aisle data centre design involves lining up server racks in alternating

rows with cold air intakes facing one way and hot air exhausts facing the other.

The rows composed of rack fronts are called cold aisles. Typically, cold aisles face

air conditioner output ducts. The rows the heated exhausts pour into are called

hot aisles. Typically, hot aisles face air conditioner return ducts. A simple data

centre with multiple racks is shown in Figure 2.4.

As can be seen in Figure 2.4, all the servers inside the rack are arranged in such

a way that heat generating sides of all the servers of the rack are on one side and

this side is associated with the hot aisle and is the hotter section of the data centre

with hot air (represented by red arrows in Figure 2.4). The cold aisle is formed by

the cold air coming from the air conditioner and this cold air (represented with

blue arrows in Figure 2.4) is send to the non heat generating side of the rack.

Then also there is re-circulation of this hot air inside the data centre and results

in overall increase of the temperature inside the data centre room. The hot and

cold aisles in our system have been modeled with the help of air compartments
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Figure 2.4: Racks arranged in a Data Centre

presented in section 2.2.

The issue with hot aisle/cold aisle designs is that the air is free to move wherever

it will.A containment system can be used to isolate hot aisles and cold aisles

from each other and prevent hot and cold air from mixing. Containment systems

started out as physical barriers that simply separated the hot and cold aisles with

vinyl plastic sheeting or Plexiglas covers. Today, vendors offer plenums and other

commercial options that combine containment with variable fan drives (VFDs)

to prevent cold air and hot air from mixing. A typical containment is shown in

Figure 2.5.

With reference to our model of the server obtained in section 3.2, it is very

important to mention here that the model which was designed for the purpose of

being used in the context of data centre is extremely useful. The main advantage is

that it provides a complete description of the thermal as well as the computational

behaviour of the system. As is known, data centre contains servers ranging from

hundreds to thousands and hence in order to simulate the complete model of

the data centre can be demanding computationally. Our model of the server ,

when used in the context of a data centre firstly provides a very good description

of thermal power consumed by the data centre together with the computational

load and secondly and mostly importantly , the simulations carried out are not

computationally demanding at all. This model can be very useful in the future to

help develop new methods and technologies when working for the optimization of

energy in these data centres.
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Figure 2.5: Data Centre with Hot Aisle Containment

2.5 Conclusion

This chapter has successfully presented all the basic concepts and equations which

have been used to model our data centre. The next chapter will show the imple-

mentation of these concepts, amalgamation of these blocks to bring into existence

a working model of the data centre and simulation results associated with it.
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Chapter 3

Simulation and Implementation

of Data Centre Model

3.1 Introduction

The previous chapter gave a detailed overview of the many concepts and equations

used to model our server, air compartments and finally how these blocks can be

combined to duplicate the behaviour of a data centre. This chapter presents an in-

sight into obtained model by amalgamation of its basic blocks, its implementation

in Modelica and the simulation results obtained.

3.2 Simulation and Implementation of Server

This section is divided into two subsections. The first section shows the imple-

mentation and results of the server alone while the second section shows the server

modeled along with the air compartment.

3.2.1 Server without Air Compartment

This section presents a working model of the server. The equations used to de-

scribe this system have already been described in section 2.1 of Chapter 2.

Coding and Block Diagram Implementation in Modelica:

The code is presented in Code Snippet 3.1 below.

1 model rackmodel

2 parameter SI .HeatCapacity Ca = 0 . 1 ”Thermal cap” ;

31



3 parameter SI.Temperature Tstart = 273 .15 + 20 ” I n i t i a l T” ;

4 // SI.Temperature Ta i r in ( s t a r t = Tstart ) ” Input Temperature ” ;

5 SI.Temperature Tair ( s t a r t = Tstart ) ”Output Temperature” ;

6 parameter Real rhoa i r = 1 .2754 ”kg/mˆ3” ;

7 parameter Real G = 1 ;

8

9 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput Tout annotation ( Placement ( v i s i b l e = true ,

t rans fo rmat ion ( o r i g i n = { 100 , 20} , extent = {{−10 , −10} , { 10 , 10}} , r o t a t i on

= 0) , i conTrans format ion ( o r i g i n = { 85 , 15} , extent = {{−15 , −15} , { 15 , 15}} ,
r o t a t i on = 0) ) ) ;

10 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Temcpu annotation ( Placement ( v i s i b l e = true

, t rans fo rmat ion ( o r i g i n = {−100 , −20} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−85 , −25} , extent = {{−15 , −15} ,
{ 15 , 15}} , r o t a t i on = 0) ) ) ;

11 Mode l i ca .The rma l .HeatTrans f e r . In t e r f a c e s .Hea tPor t a Heatportout annotation (

Placement ( v i s i b l e = true , t rans fo rmat ion ( o r i g i n = { 0 , −100} , extent = {{−10 ,

−10} , { 10 , 10}} , r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {5 .18249e−016 , −
80} , extent = {{−20 , −20} , { 20 , 20}} , r o t a t i on = 0) ) ) ;

12 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tin annotation ( Placement ( v i s i b l e = true ,

t rans fo rmat ion ( o r i g i n = {−85 , 55} , extent = {{−15 , −15} , { 15 , 15}} , r o t a t i on

= 0) , i conTrans format ion ( o r i g i n = {−85 , 55} , extent = {{−15 , −15} , { 15 , 15}} ,
r o t a t i on = 0) ) ) ;

13

14 equation

15 Ca * der ( Tair ) = rhoa i r * Heatportout .Q f low * Ca * (Tin − Tair ) +

Heatportout .Q f low ;

16 Heatportout.T = Tair ;

17 Tout = Tair ;

18

19 end rackmodel ;

Code Snippet 3.1: Modelica Code of a Data Centre Server

The simulation block implementation is demonstrated with the help of figure

3.1 ,which shows the server model connected to the inputs DVFS and roi and

the heat port exchanging heat with the external environment through a thermal

conductor. The output of this block is temperature which has a strong dependence

on the consumed power, and proportionally increases with the load of the server

and hence the server has a strong probability of trespassing its nominal operating

point as the data centres have mostly very heavy set of instructions lined up which

need to be fulfilled.
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Figure 3.1: Block Diagram of Server in Modelica

Simulation and Results:

Figure 3.2 and 3.3 show the inputs given to the system in the form of input set

of instructions and Dynamic Voltage Frequency Scaling.

Figure 3.2: Normalized input set of Instructions (Roi)

Figure 3.3: Dynamic Voltage Frequency Scaling

As can be seen in Figure 3.5 , the temperature increases and decreases as the

input varies. For a high DVFS , the temperature and power (Figure 3.6) increases

proportionally and vice versa. Also roi effects the temperature and power directly,

as can be seen between 20 and 25 seconds, when roi is zero, temperature is the

lowest.
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Also, the quick drop in temperature and power at around 25 seconds can be

attributed to the fact that at that point of time, there are no instructions to be

executed, which is quite obvious from Figure 3.4.

Figure 3.4: Actual rate of instructions that are being executed (qact)

Figure 3.5: Output Temperature of the Server

Figure 3.6: Consumed Power

3.2.2 Server With Air Compartment

The modelling of server should also involve the the phenomenon of heat exchange

with its environment, hence the server needs to be modeled along with the air

compartment, which describes the heat flow rate, enthaphy and mass flow rate

and how they effect the server and the environment around it.

Coding and Block Diagram Implementation in Modelica:

1 model AirVolumeWithWall Condensing

2 extends I n t e r f a c e s .A i rPo r t .Pa r t i a lTwoPor t a ;

3 EEB source4hafsa .Media .Substances .MoistAir a i r ;

4 EEB source4hafsa .Media .Substances .MoistAir wa l l s a t ;

5 parameter SI.Volume V = 0 .001 ”volume” ;

6 parameter S I .P r e s su r e Pstart = 101325 ” I n i t i a l moist a i r p r e s su r e ” ;
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7 parameter SI.Temperature Tstart = 273 .15 + 20 ” I n i t i a l moist a i r temperature ” ;

8 parameter SI .MassFract ion Xstart = 0 .001 ” I n i t i a l abso lu t e umidity [ kg H20/

kg DA ] ” ;

9 parameter SI .HeatCapacity Cw = 50 ”wal l heat capac i ty [ J/K] ” ;

10 parameter SI.ThermalConductance Gaw = 100 ” a i r−wal l thermal conductance ” ;

11 parameter SI.ThermalConductance Gair = 1 ” a i r thermal conductance ” ;

12 SI.Mass Ma ”Total dry a i r mass” ;

13 SI.Mass Mv ”Total vapour mass” ;

14 SI .Energy Ea ”Energy o f the moist a i r ” ;

15 S I . Sp e c i f i cEne r gy ea ” S p e c i f i c energy o f the moist a i r ” ;

16 S I .P r e s su r e P( s t a r t = Pstart ) ” Pressure o f the a i r ” ;

17 SI.Temperature Ti ”Temperature o f the a i r ” ;

18 SI.Temperature Tw ”Wall temperature ” ;

19 SI.Temperature Tout ”Temperature o f the output a i r ” ;

20 SI .MassFract ion Xi ”Water vapour mass f r a c t i o n [ kg H20/kg DA ] ” ;

21 SI.MassFlowRate wt1 ”Total mass f low ra t e at f l ang e 1” ;

22 SI.MassFlowRate wt2 ”Total mass f low ra t e at f l ang e 2” ;

23 SI.MassFlowRate wc ”Condensed water mass f low ra t e ” ;

24 SI.HeatFlowRate Qawsens ” Sen s i b l e heat ” ;

25 SI.HeatFlowRate Qawlat ”Latent heat ” ;

26 In t e r f a c e s .Hea tPor t .Hea tPor t heatPort annotation ( Placement ( t rans fo rmat ion (

extent = {{−60 , 40} , { 60 , 60}} ) , i conTrans format ion ( extent = {{−70 , 40} , { 70 ,

60}} ) ) ) ;
27 EEB source4ha f sa . In te r f ace s .HeatPor t .HeatPor t hea tPor ta i r annotation ( Placement (

v i s i b l e = true , t rans fo rmat ion ( o r i g i n = {−25 , −75} , extent = {{−35 , −15} , {
35 , 15}} , r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−5 , −70} , extent = {{−
15 , −10} , { 15 , 10}} , r o t a t i on = 0) ) ) ;

28 i n i t i a l equation

29 Xi = Xstart ;

30 equation

31 // Total mass balance

32 wt1 = wa1 * ( 1 + Xi ) ;

33 wt2 = wa2 * ( 1 + Xi ) ;

34 der (Ma + Mv) = wt1 + wt2 − wc ;

35 der (Mv) = wa1 * actualStream ( a i r f l a n g e 1 . x a ) + wa2 * actualStream (

a i r f l a n g e 2 . x a ) − wc ;

36 Ma + Mv = V * a i r . d ;

37 // Mass f r a c t i o n [ kg H20/kg da ]

38 Mv = Ma * Xi ;

39 Xi = a i r .X ;

40 pa1 = pa2 ;

41 P = pa1 ;

42 a i r . p = P;

43 // Energy balance in the a i r volume

44 der (Ea) = wt1 * actualStream ( a i r f l a n g e 1 . h a ) + wt2 * actualStream (

a i r f l a n g e 2 . h a ) − Qawsens − Qawlat ;

45 // Energy o f the moist a i r

46 Ea = (Ma + Mv) * ea ;

47 ea = a i r . h − P / a i r . d ;

48 // s p e c i f i c energy o f the moist a i r

49 // Wallsat cond i t i on

50 wa l l s a t . p = P;

51 wa l l s a t .T = Tw;

52 wa l l s a t . p h i = 1 . 0 ;

53 // Condensed water
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54 wc = i f a i r .X > 1e−006 and a i r .X > wal l sa t .X then Gaw / a i r . c p * ( a i r .X −
wal l sa t .X ) else 0 . 0 ;

55 // Thermal connector

56 Ti = a i r .T ;

57 heatPort.T = Tw;

58 heatPorta i r .T = Tout ;

59 // Heat t r a n s f e r

60 Cw * der (Tw) = Qawsens + Qawlat + heatPort .Q f low ;

61 Qawsens = Gaw * ( a i r .T − Tw) ;

62 Qawlat = wc * ( a i r . h v − wa l l s a t . h l ) ;

63 // Heat t r a n s f e r between input and output a i r

64 a i r . d * V * a i r . c p * der (Tout ) = Gair * ( a i r .T − Tout ) + hea tPor ta i r .Q f l ow ;

65 // a i r . d * V * a i r . c p * der (Tout ) = wc * a i r . c p * ( a i r .T − Tout ) +

hea tPor ta i r .Q f l ow ;

66 // a i r . d * V * a i r . c p * der (Tout ) = hea tPor ta i r .Q f l ow ;

67 // a i r humidity r a t i o boundary cond i t i on s

68 xaout1 = Xi ;

69 xaout2 = Xi ;

70 // en tha l p i e s boundary cond i t i on s

71 haout1 = a i r . h ;

72 haout2 = a i r . h ;

73

74 end AirVolumeWithWall Condensing ;

Code Snippet 3.2: Modelica Code of an Air Compartment with Saturated Wall

The modelling scenario represents a single server which is inside a room .

There are two heat exchange processes, one between the room and the external

environment through its wall and the second exchange is between the server and

the environment of the room through the wall of the server. Three heat ports can

be seen in Figure 3.7.

Two heat ports are associated with the modelling of the air compartment, one

represents the transfer rate at which heat flows from the room to the external

environment and vice versa. The second heat port represent the heat flow rate in-

side the room which is also connected to heat port of the server and represents the

heat transfer between the server and the room and vice versa. Hence any change

in the temperature of the server because of its computing power or any other

energy consumption directs effects the temperature of the room. This room is the

data centre and each data centre has hundreds of servers, hence the tremendous

heat production and need for optimization of energy.

There are also two air flanges which represent the input and output flow of

moist air flow through the room. They are represented by four properties which

is pressure, mass fraction, enthalpy and mass flow rate of the moist air. With

the help of mass and energy balances , which have been used to model the air

compartment, the thermodynamic relation between input and output air and how

the various heat exchanges inside the data centre effect these properties have been
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studied well, and are extremely useful for energy optimization.

Figure 3.7: Block Diagram of Server With Air Compartment in Modelica

Simulations and Results

The results clearly indicate the increase of enthalphy 3.9 and absolute humidity

3.10 with the increase in the temperature of the server shown in Figure 3.8.

Figure 3.8: Temperature of a Server with Air Compartment

Figure 3.9: Specific Enthalpy increase due to the increasing temperature of the server
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Figure 3.10: Increase in absolute humidity of dry air

3.3 Simulation and Implementation of the Data Centre

The working of the rack has been explained in the previous section. In this section,

the modelica simulation and implementation of the rack is presented.

Block Diagram implementation in Modelica

Figure 3.11: Servers arranged in a Rack Configuration

Figure 3.12: Racks arranged in a Data Centre Confguration

Simulation and Results

The results presented in Figure 3.13 and 3.14 show the behaviour of the data

centre, which have been designed to have a cold aisle and a hot aisle. In Figure
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3.13, the red graph shows the temperature of the cold aisle, while the green shows

the temperature of the hot aisle

Figure 3.13: Output Temperature of Racks

Figure 3.14 shows the enthalpies of the three racks which form the data centre.

Figure 3.14: Enthaphy of Racks

3.4 Conclusion

This chapter successfully presented the implementation, simulation and results

obtained when the models were simulated in modelica. The next chapter deals

with the design of controllers for energy optimization of data centres by effective

temperature control of servers.
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Chapter 4

Controller Design

In the economy of the thesis, the role of this chapter is to

provide an overview of different controllers that can be used to govern the

server thermal behaviour, and to use the presented server model for their setup,

thereby assessing the model as suitable for the synthesis of such local controllers.

4.1 Introduction

Before presenting the design of the controller used in our project, it is important to

shortly describe the history of why these controllers came into existence. Control

theory is an interdisciplinary branch of engineering and mathematics dealing with

the behaviour of dynamic systems with inputs. The objective of control theory

is to calculate solutions for the proper corrective action from the controller that

results in system stability, i.e., the system will hold the set point and not oscillate

around it. It can be divided into two main branches, classical control and modern

control.

Classical control theory is just limited to single input single output (SISO)

while Modern control theory can deal with multi-input and multi-output (MIMO)

systems. Hence, modern control theory overcomes the limitations of classical

control theory in more sophisticated design problems. Two common types of

control are the feedback control and the sequence control.

Feedback control is usually a continuous process and includes taking measure-

ments with a sensor and making calculated adjustments via the controller to an

output device to keep the measured variable within a set range. For instance, in

a water heater, the sensor is the thermometer which measures the temperature of

the water. The output of the thermometer is sent to the controller which compares

the current temperature to the set point (aka desired temperature). Then, based

41



on the difference between the current temperature and the set point a signal will

be sent to the heaters to go on or off depending upon whether or not the water is

hot enough or not. A simple Feedback controller is shown in Figure 4.1.

Figure 4.1: A simple Feedback Controller

In a Feedback Controller, another important aspect to understand is whether

it is open loop or closed loop .An Open-Loop controller does not have any mea-

surement of the system’s output – e.g., the water temperature – used to alter

the water heating element. As a result, the controller cannot compensate for

changes acting on the system. Open Loop controls are usually managed by hu-

man intervention where an operator observes a key metric– such as system power,

pressure, or level – and then makes manual adjustments to the controls to achieve

the desired result. In a Closed-Loop controller, as depicted in Figure 4.1 above, a

sensor monitors the system’s condition (e.g., temperature, pressure, speed, etc.)

and feeds the data to a controller which adjusts the output device (e.g., the wa-

ter heater heating element) as necessary to maintain the desired system output

such as temperature, speed, etc. The design of this feedback process can also be

referred to as a Control Loop since the system state is fed back to the controller

and referenced to provide an error signal to the controller to make the necessary

changes to the output device.

On the other hand, Sequence Control may be either to a fixed sequence or

a logical one that performs different actions based on various system states.As

sequential controls were established and became more and more part of the in-

dustrial automation landscape they became included in Relay Logic. Essentially

this is where electrical relays engage electrical contacts which either start or inter-

rupt power to a device. According to one source, electrical relays are referenced in

industrial automation discussions as early as 1860. An example of a simple solar

tracking sequence controller is shown in Figure 4.2
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Figure 4.2: A simple Sequence Controller

4.2 Design of the Controller

The vast majority of all feedback controllers today are implemented using digital

computers, relying on periodic sampling, computation, and actuation. For linear

systems, sampled-data control theory provides powerful tools for direct digital

design, while implementations of nonlinear control designs tend to rely on dis-

cretization combined with fast periodic sampling. In recent years, there has been

a growing research interest in event-based control, in particular in connection to

distributed and networked control systems.

The basic idea is to communicate, compute, or control only when something

significant has occurred in the system. The motivation for abandoning the time-

triggered paradigm is to better cope with various constraints or bottlenecks in the

system, such as sensors with limited resolution, limited communication or compu-

tation bandwidth, energy constraints, or constraints on the number of actuations.

As compared to a fixed rate controller , where events are triggered periodi-

cally based on the sampling time , events based controller is a means to acquire

measurements, take decisions and apply actions, ”only when needed”. The main

differences between the way, these two kinds of controllers operate is based on the

fact that in a fixed rate controller , the measurement of the control variable is
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taken at a constant rate, based on which the control signal is computed and that

value is actuated, whereas an event based controller differs from the previous one

in two ways, firstly the time between events is not constant and secondly , there

can be multiple sources of events.

In this work thesis, firstly a continuous Proportional Integral (PI) controller

has been used to control the temperature of the server by keeping the DVFS

command under check. Then the same controller has been converted to a discrete

form and used as a fixed rate controller. Finally , the discrete event controller has

been implemented.

4.2.1 Continuous Proportional Integral Controller (PI) Design with

Anti-Windup

PI controllers are one of the most widely used controllers. The combination of

proportional and integral terms is important to increase the speed of the response

and also to eliminate the steady state error. The anti-windup or saturation is

important specially in cases where the control input needs to be kept bounded.

The basic idea of this controller is that there is a reference value which needs to

be tracked and the error is computed based on this reference value and the output

value of the system to be controlled, which is fed back to the controller. The PI

controller acts in such a way that this error becomes zero and the system suc-

cessfully tracks the reference value. The combination of proportional and integral

terms is important to increase the speed of the response and also to eliminate the

steady state error. The proportional and integral terms are given by

u(t) = kp ∗ e(t) + ki ∗
∫
e(t) ∗ dt (4.1)

where

e(t)=calculated error between the reference signal and the output.

kp=Proportional gain of the PI controller

ki=Integral gain of the PI controller

and

u(t)=controller signal which is input to the system
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The block diagram of the PI controller used in our thesis is given in Figure 4.3.

Figure 4.3: Block Diagram of PI Controller with anti-wind up

With reference to the block diagram presented in Figure 4.3, the equations

representing the controller can be written as follows:

The error between the reference and the output from the system is given by

ep = Trefpi− Tmeaspi (4.2)

where

ep= error between the reference temperature and the output temperature of the

system

and

Trefpi=reference temperature to be maintained by the controller

and

Tmeaspi= measured output of the system

The saturated control signal ux is given by

ux = us+ Ti ∗ d(us)

dt
(4.3)

us =
ux

1 + (s ∗ Ti)
(4.4)

where Ti= Integral time constant of the PI controller.
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up = kp ∗ ep (4.5)

where kp= Proportional Gain of the PI controller.

upi = up+ us (4.6)

where

upi= unsaturated control signal

ux = sat(upi) (4.7)

uy = ux+DV FS (4.8)

where

DVFS= Dynamic Voltage Frequency Scaling and is an input to the controller

ucontrolpi = sat(uy) (4.9)

where

ucontrolpi= Final saturated ouput of the PI controller, which is the input of the

system

Tuning Rule

For tuning a PI controller, certain criteria need to be kept under consideration.

� Integral Time Constant (Ti): Usually the integral time constant is set equal

to the system time constant.

Ti = T (4.10)

where

T=time constant of the system to be controlled

� Proportional Gain (kp ): The proportional gain of the PI controller is given

by

kp =
wp ∗ Ti
G

(4.11)

where

wp=Cut off frequency of the system chosen according to requirements

and

G=Gain of the system to be controlled
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Coding and Block Diagram

The modelica coding for the design of a continous PI controller is given in Code

Snippet 4.1.

1 model pimodelcoont inous

2

3 parameter Real Kp = 1000 ”Kp” ;

4 parameter SI.Time Ti = 0 . 1 ”Ti” ;

5 parameter Real uMax( s t a r t = 1) = 1 ”Upper l im i t s o f input s i g n a l s ” ;

6 parameter Real uMin = −1 ”Lower l im i t s o f input s i g n a l s ” ;

7 parameter Boolean s t r i c t = fa l se ”= true , i f s t r i c t l im i t s with noEvent ( . . ) ”

annotation ( Evaluate = true , c ho i c e s ( checkBox = true ) , Dia log ( tab = ”Advanced”

) ) ;

8 parameter Boolean l im i t sA t I n i t = true ”= f a l s e , i f l im i t s are ignored during

i n i t i a l i z a t i o n ( i . e . , y=u) ” annotation ( Evaluate = true , c ho i c e s ( checkBox =

true ) , Dia log ( tab = ”Advanced” ) ) ;

9

10 Real ep ;

11 Real up ;

12 Real us ;

13 Real ux ;

14 Real uy ;

15 Real upi ;

16

17 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t uDVFSPI annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−80 , 20} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−17 .5 , 82 . 5 } , extent = {{−17 .5 , −
17 . 5 } , {17 .5 , 17 . 5 }} , r o t a t i on = −90) ) ) ;

18 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tre fp i annotation ( Placement ( v i s i b l e = true

, t rans fo rmat ion ( o r i g i n = {−95 , 55} , extent = {{−15 , −15} , { 15 , 15}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−82 .5 , 37 . 5 } , extent = {{−17 .5 , −
17 . 5 } , {17 .5 , 17 . 5 }} , r o t a t i on = 0) ) ) ;

19 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tmeaspi annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−95 , −25} , extent = {{−15 , −15} , { 15 , 15}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−80 , −50} , extent = {{−20 , −20} ,
{ 20 , 20}} , r o t a t i on = 0) ) ) ;

20 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput ucon t r o l p i annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = { 80 , 0} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = { 85 , −5} , extent = {{−15 , −15} , {
15 , 15}} , r o t a t i on = 0) ) ) ;

21 equation

22 ep = Tre fp i − Tmeaspi ;

23 // equat ion 1

24 up = ep * Kp;

25 // equat ion 2

26 us = ux − Ti * der ( us ) ;

27 // equat ion 3

28 upi = up + us ;

29 // equat ion 4

30 assert (uMax >= uMin , ” Limiter : L imits must be c o n s i s t e n t . However , uMax (=” +

Str ing (uMax) + ” ) < uMin (=” + Str ing (uMin) + ” ) ” ) ;

31 i f i n i t i a l ( ) and not l im i t sA t I n i t then
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32 ux = upi ;

33 // equat ion 5

34 assert ( upi >= uMin − 0 .01 * abs (uMin) and upi <= uMax + 0 .01 * abs (uMax) , ”

Limiter : During i n i t i a l i z a t i o n the l im i t s have been i gno r ed . \n” + ”However ,

the r e s u l t i s that the input upi i s not with in the r equ i r ed l im i t s : \n” + ”

upi = ” + St r ing ( upi ) + ” , uMin = ” + Str ing (uMin) + ” , uMax = ” + Str ing (

uMax) ) ;

35 e l s e i f s t r i c t then

36 ux = smooth ( 0 , noEvent ( i f upi > uMax then uMax else i f upi < uMin then uMin

else upi ) ) ;

37 else

38 ux = smooth ( 0 , i f upi > uMax then uMax else i f upi < uMin then uMin else upi )

;

39 end i f ;

40 i f ep <= 0 then

41 uy = ux + uDVFSPI ;

42 else

43 uy = uDVFSPI ;

44 end i f ;

45 // equat ion 6

46 assert (uMax >= uMin , ” Limiter : L imits must be c o n s i s t e n t . However , uMax (=” +

Str ing (uMax) + ” ) < uMin (=” + Str ing (uMin) + ” ) ” ) ;

47 i f i n i t i a l ( ) and not l im i t sA t I n i t then

48 ucon t r o l p i = uy ;

49 // equat ion 7

50 assert ( uy >= uMin − 0 .01 * abs (uMin) and uy <= uMax + 0 .01 * abs (uMax) , ”

Limiter : During i n i t i a l i z a t i o n the l im i t s have been i gno r ed . \n” + ”However ,

the r e s u l t i s that the input uy i s not with in the r equ i r ed l im i t s : \n” + ” uy

= ” + Str ing (uy ) + ” , uMin = ” + Str ing (uMin) + ” , uMax = ” + Str ing (uMax) ) ;

51 e l s e i f s t r i c t then

52 ucon t r o l p i = smooth ( 0 , noEvent ( i f uy > uMax then uMax else i f uy < uMin then

uMin else uy ) ) ;

53 else

54 ucon t r o l p i = smooth ( 0 , i f uy > uMax then uMax else i f uy < uMin then uMin

else uy ) ;

55 end i f ;

56

57 end pimodelcoont inous ;

Code Snippet 4.1: Modelica Code Implementation of a Continous PI Controller

The block diagram implementation of the system along with the controller

in given in Figure 4.4. A short explanation of the way the controller has been

designed and how it is useful to make the system behave in the desired way is

deemed necessary in the scope of the work carried out.

Firstly, the system is the server, which has two inputs DVFS and roi and one

output which is the temperature of the server. The main aim of the controller is

to not let the output temperature of the server exceed the operating limits, which

can be detrimental to the working of the server.
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Figure 4.4: block diagram implementation of the continuous PI Controller plus the system

In case, the temperature of the server exceeds the reference range, the controller

acts in such a way that it will make the system follow the reference value by

acting on the DVFS command and if the temperature of the system is below the

reference, then the controller doesn’t take any action and let the system operate

in open loop. In this case, the DVFS is considered to be the input of the system

and output of the controller while roi is considered as a disturbance.

Simulation and Results

The results of the simulations are shown in the following figures. Figure 4.5

and 4.6 show the open loop response and the controlled response of the server

respectively.In this case, the reference value has been set to 360 Kelvin. As can

be observed from the results,that as long as the open loop temperature is below

the reference, the controller does not come into action but once the temperature

of the system goes above the reference, the controller makes sure that it starts

tracking the reference.

Figure 4.5: Open loop temperature response of the Server (Kelvin)
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Figure 4.6: Controlled Temperature of the Server Tracking the reference at 360 Kelvin (Kelvin)

Figure 4.7 and 4.8 shows the DVFS command in case of open loop server and

when a controller is included in the loop respectively.

Figure 4.7: Open loop DVFS input of the Server

Figure 4.8: Controlled DVFS input of the system which is the output of the controller

Figure 4.9 and 4.10 show the open loop power and the power in case of the

controller which is consumed respectively.
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Figure 4.9: Open loop power response of the Server (Watts)

Figure 4.10: Power Consumed in case of the temperature controlled server (Watts)

4.2.2 Fixed Rate Discrete Proportional Integral Controller (PI) De-

sign with Anti-Windup

Since the final aim is to design a discrete event based controller, first step is to

discretize the controller and apply it to fixed rate controller to test if it is working

properly. It is important to note that fixed-rate controller necessarily yields the

same results as continuous controller which will be evidenced while demonstrating

results.

First step in the design of a fixed rate controller is discretization.

Discretization

There are many different types of discretization methods used. The simplest way

to convert any system G(s) defined in s-domain to G(z)in z-domain is to find

transform which relates one to another. Consider the problem of integrating a

generic signal, x(t). In continuous time, if x is integrated , it has the laplace

transform of 1
s
. Defining this equation by y(t), it can be written as

y(t) =

∫
x ∗ dt (4.12)

In software, it can be approximated as

y = y + x ∗ dt (4.13)

With Euler Integration, the relationship between s and z is then

y(k) = y(k − 1) + u(k) ∗ T (4.14)
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where

T=sampling time

Converting to z-domain

Y =
1

z
∗ Y + T ∗ U (4.15)

(z − 1) ∗ Y = T ∗ z ∗ U (4.16)

Y =
T ∗ z
z − 1

∗ U (4.17)

1

s
=
T ∗ z
z − 1

(4.18)

which results in

s =
z − 1

T ∗ z
(4.19)

This equation 4.19 represents the Euler Integration Approximation

With reference to the block diagram shown in Figure 4.3, the Euler Integration

Approximation obtained in equation 4.19 is applied to the continuous controller

to convert it into discrete form.

Recalling equation 4.4 and substituting equation 4.19 into it,

us(z) =
1

1 + ( z−1
Ts∗z ) ∗ Ti

∗ ux(z) (4.20)

us(z)

ux(z)
=

z ∗ Ts
Ts+T i

z − T i
T i+Ts

(4.21)

For simplification

a =
Ti

T i+ Ts
(4.22)

and

b =
Ts

Ts+ Ti
(4.23)

which results in equation 4.21 becoming

us(z)

ux(z)
=

z ∗ b
z − a

(4.24)
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Using the partial fraction method , since we are dealing with not strictly proper

systems

us(z) = b ∗ ux(z) +
a ∗ b
z − a

∗ ux(z) (4.25)

and

representing the fraction from equation 4.25 by

s(k) =
a ∗ b
z − a

∗ ux(k) (4.26)

which results in equation 4.25 becoming

us(k) = s(k) + b ∗ ux(k) (4.27)

where

s(k) = a ∗ s(k − 1) + a ∗ b ∗ ux(k − 1) (4.28)

This is the discretized form of our controller, whose implementation has been

shown in the next sections.

Coding and Block Diagram

This section shows the coding and block implementation in modelica to achieve

the desired results.

1 model p i d i s c r e t e f i x e d s t e p

2

3 parameter Real Kp = 1000 ”Kp” ;

4 parameter SI.Time Ti = 0 . 1 ”Ti” ;

5 parameter Real uMax = 1 ”Upper l im i t s o f input s i g n a l s ” ;

6 parameter Real uMin = −1 ”Lower l im i t s o f input s i g n a l s ” ;

7 parameter Real u s t a r t = 0 ;

8 parameter Real Ts = 0 .01 ;

9 discrete Real Trefpi lastComp ;

10 discrete Real TmeaspilastComp ;

11 discrete Real uDVFSPIlastComp ;

12 // d i s c r e t e Real tLastComp ;

13 discrete Real u ;

14 discrete Real us ;

15 discrete Real ux ;

16 discrete Real uxold ;

17 discrete Real sko ld ;

18 discrete Real uy ;

19 // d i s c r e t e Real ud ;

20 discrete Real sk ;

53



21 discrete Real a ;

22 discrete Real b ;

23 discrete Real ep ;

24 discrete Real upi ;

25 // d i s c r e t e Real tLastComp ;

26

27 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t T r e f p i d f i x annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−100 , 60} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−85 , 55} , extent = {{−15 , −15} , {
15 , 15}} , r o t a t i on = 0) ) ) ;

28 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tmeaspidfix annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−100 , −20} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−85 , −25} , extent = {{−15 , −15} ,
{ 15 , 15}} , r o t a t i on = 0) ) ) ;

29 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t uDVFSPIdfix annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = { 0 , 100} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = −90) , i conTrans format ion ( o r i g i n = {−5 , 85} , extent = {{−15 , −15} ,
{ 15 , 15}} , r o t a t i on = −90) ) ) ;

30 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput ucont ro lp id annotation ( Placement ( v i s i b l e

= true , t rans fo rmat ion ( o r i g i n = { 100 , 20} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = { 85 , 15} , extent = {{−15 , −15} , {
15 , 15}} , r o t a t i on = 0) ) ) ;

31 equation

32 ucont ro lp id = u ;

33 //uDVFSPI = ud ;

34 algorithm

35 when i n i t i a l ( ) then

36 Trefpi lastComp := Tr e f p i d f i x ;

37 TmeaspilastComp := Tmeaspidf ix ;

38 uDVFSPIlastComp := uDVFSPIdfix ;

39 ux := us ta r t ;

40 uxold := ux ;

41 sko ld := sk ;

42 uxold := 0 ;

43 sko ld := 0 ;

44 us := ux ;

45 end when ;

46 //us :=ux ;

47 //when sample ( 0 , Ts ) then

48 when sample ( 0 , Ts ) and not i n i t i a l ( ) then

49 ep := Tr e f p i d f i x − Tmeaspidf ix ;

50 upi := Kp * ep + us ;

51 b := Ts / (Ts + Ti ) ;

52 a := Ti / (Ts + Ti ) ;

53 us := b * ux + sk ;

54 sk := a * sko ld + a * b * uxold ;

55 ux := max(uMin , min (uMax , upi ) ) ;

56 i f ep <= 0 then

57 uy := uDVFSPIdfix + ux ;

58 else

59 uy := uDVFSPIdfix ;

60 end i f ;

61 u := max(uMin , min (uMax , uy ) ) ;

62 Trefpi lastComp := Tr e f p i d f i x ;

63 TmeaspilastComp := Tmeaspidf ix ;

54



64 uDVFSPIlastComp := uDVFSPIdfix ;

65 uxold := ux ;

66 sko ld := sk ;

67 end when ;

68 //when not i n i t i a l ( ) then

69

70 end p i d i s c r e t e f i x e d s t e p ;

Code Snippet 4.2: Modelica Code Implementation of a Fixed Rate Discrete PI Controller

The block diagram shown in Figure 4.11 shows the implementation of fixed

rate controller to control the output temperature of the server.

Figure 4.11: Modelica Block Diagram of a discrete PI controller

Simulations and Results

As can be observed from figure 4.12, the fixed rate controller successfully controls

the temperature of the server and yields the same result as that of the continuous

proportional controller with reference to figure 4.6.

Figure 4.12: Modelica Block Diagram of a fixed step discrete PI controller

Figure 4.13 shows the sampling time of the fixed step discrete PI controller and

as can be seen, it is fixed for this kind of controller.
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Figure 4.13: Sampling time of a fixed step discrete PI controller

4.2.3 Discrete Event Based Controller

This section will provide a short description of the design of discrete events con-

troller, which is important in the scope of the project. In this work, some in-

dustrially realistic hypotheses that lead to consider a class of event-based control

systems that is in some sense the closest to the fixed-rate case is introduced.

Firstly, the hypothesis which is the basis of design of the event based controller is

designed.

General Hypothesis

For simplicity , the case in which event based information flow originates from the

sensor is considered. The hypothesis are as follows:

� Hypothesis 1: The system to be controlled is linear time invariant (LTI )single

input, single output(SISO)system. The model has to be strictly proper.

� Hypothesis 2: A continuous LTI SISO controller that stabilizes the nominal

closed loop system containing model is available. In case of this project, PI

controller has been chosen.

� Hypothesis 3: The controller mentioned in Hypothesis 2 is realized with

digital technology and computes the discrete-time control u*(k) at events,

which occur at time instants tk counted by an integer k ¿ N, and not evenly

spaced.

� Hypothesis 4: Events are triggered by a single source (assumed to be sensor).

� Hypothesis 5: The time between two events is an integer multiple of a quan-

tum qs ¿ R, qs > 0.

∀ th ≤tk,tk - th = ζ(k, h)qs, ζk,h ¿ N.

According to Hypothesis 4, two quantities can be defined
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– the a priori step duration T s(k) that is decided at the k-th event,

– the a posteriori step duration T s(k), i.e., the time actually elapsed from

the k-th to the (k + 1)-th event.

In practice, events can occur at the termination of T s(k) or earlier, no matter

why. In the former case T s(k)=T s, while in the latter T s (k) < T s(k).

Notice that the event generation mechanism is in part reactive and in part

proactive, the timeout being in fact the simplest way to decide when the next

event has to occur.

� Hypothesis 6:There is an upper bound for the time between two subsequent

events, i.e.,

∀ k, σ(k)¿
∑

= [1, ..., N ] ⊂ N, 1≤N<∞
where

σ(k):=ζ(k + 1, k)

� Hypothesis 7: The control signal is kept constant between two subsequent

events, as in the extremely frequent case where a zero order holder is used.

� Hypothesis 8: When an event is triggered by the sensor, this results in the

computation and actuation of a new control value. The delay between the

triggered event and the control actuation is either negligible or known and

constant, so that it can be taken as a part of the process model.

Triggering Rule

For the application of the triggering rule, it is very important to have a stable

system. Once a stable system has been ensured, the triggering rule can be applied.

Basically, one wants the (a posteriori) control step duration

� to increase as rapidly as possible toward its allowed maximum if the sensor

triggers no event, which typically occurs with the “send on delta” policy,

i.e., when the controlled variable, polled by the sensor at rate 1/qs, differs in

magnitude from the last transmitted one by more than a prescribed amountδ

y.

� to allow reacting as soon as possible to an event, the minimum reaction time

being qs.

� and to avoid event hauls after the first one triggered by a controlled variable’s

variation.
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To achieve that, once qs and N are decided, a subset
∑

= [σi] of the
∑

is

defined, with cardinality N <N, so that σ1 be greater than 1, σ1 qs be a “small

but reasonable” sampling period if adopted for a fixed-rate controller realization,

and σN = N.

The a priori period T s is first initialised to σ1 qs. Then, if a step of a priori

duration σi qs elapses, the next a priori period is set to σi+1 qs, until σN is

reached. If conversely a step ends due to a sensor event, the next period is reset

to σ1 qs and the system is forced to make it elapse. This temporary constraint

results in possibly ignoring some events, which is however harmless because it was

just stated that if the controller were realised as a fixed-rate one with sampling

period σ1 qs, the consequent latency – e.g., in reacting to a disturbance – would

be acceptable.

Coding and Block Diagram

Modelica code implementation of Discrete Events based controller is shown in

Code Snippet 4.3. As can observed from the code, as compared to fixed rate

controller, where the sampling time is fixed, in this case the the sampling time

depends on the events generation.

1 model p i c o n t r o l d i s c r e t e

2

3 parameter Real Kp = 1000 ”Kp” ;

4 parameter SI.Time Ti = 0 . 1 ”Ti” ;

5 parameter Real uMax = 1 ”Upper l im i t s o f input s i g n a l s ” ;

6 parameter Real uMin = −1 ”Lower l im i t s o f input s i g n a l s ” ;

7 parameter Real u s t a r t = 0 ;

8 Real Ts ;

9 discrete Real Trefpi lastComp ;

10 discrete Real TmeaspilastComp ;

11 discrete Real uDVFSPIlastComp ;

12 discrete Real tLastComp ;

13 discrete Real u ;

14 discrete Real us ;

15 discrete Real ux ;

16 discrete Real uxold ;

17 discrete Real uy ;

18 // d i s c r e t e Real ud ;

19 discrete Real sk ;

20 discrete Real sko ld ;

21 discrete Real a ;

22 discrete Real b ;

23 discrete Real ep ;

24 discrete Real upi ;

25
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26 Mode l i c a .B l o ck s . I n t e r f a c e s .Boo l e an Inpu t Etr ig annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−100 , 20} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−85 , −5} , extent = {{−15 , −15} , {
15 , 15}} , r o t a t i on = 0) ) ) ;

27 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tmeaspid annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−100 , −40} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−85 , −65} , extent = {{−15 , −15} ,
{ 15 , 15}} , r o t a t i on = 0) ) ) ;

28 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t uDVFSPId annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−20 , 100} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = −90) , i conTrans format ion ( o r i g i n = {−15 , 85} , extent = {{−15 , −15} ,
{ 15 , 15}} , r o t a t i on = −90) ) ) ;

29 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tre fp id annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−100 , 60} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−85 , 55} , extent = {{−15 , −15} , {
15 , 15}} , r o t a t i on = 0) ) ) ;

30 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput ucont ro lp id annotation ( Placement ( v i s i b l e

= true , t rans fo rmat ion ( o r i g i n = { 100 , 20} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = { 85 , 15} , extent = {{−15 , −15} , {
15 , 15}} , r o t a t i on = 0) ) ) ;

31

32 equation

33 ucont ro lp id = u ;

34 //uDVFSPI = ud ;

35 algorithm

36 when i n i t i a l ( ) then

37 Trefpi lastComp := Tre fp id ;

38 TmeaspilastComp := Tmeaspid ;

39 uDVFSPIlastComp := uDVFSPId ;

40 ux := us ta r t ;

41 uxold := ux ;

42 sko ld := sk ;

43 uxold := 0 ;

44 sko ld := 0 ;

45 us := ux ;

46 end when ;

47 when Etr ig <> pre ( Etr ig ) and not i n i t i a l ( ) then

48 Ts := time − tLastComp ;

49 tLastComp := time ;

50 ep := Tre fp id − Tmeaspid ;

51 upi := Kp * ep + us ;

52 ux := max(uMin , min (uMax , upi ) ) ;

53 b := Ts / (Ts + Ti ) ;

54 a := Ti / (Ts + Ti ) ;

55 us := b * ux + sk ;

56 sk := a * sko ld + a * b * uxold ;

57 i f ep <= 0 then

58 uy := uDVFSPId + ux ;

59 else

60 uy := uDVFSPId ;

61 end i f ;

62 u := max(uMin , min (uMax , uy ) ) ;

63 Trefpi lastComp := Tre fp id ;

64 TmeaspilastComp := Tmeaspid ;

65 uDVFSPIlastComp := uDVFSPId ;
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66 uxold := ux ;

67 sko ld := sk ;

68 end when ;

69 //us :=(Ti * pre ( us ) + Ts * ux ) / (Ti + Ts) ;

70 //uy :=pre (uy ) + uDVFSPI + ux + pre (ux ) ;

Code Snippet 4.3: Modelica Code Implementation of a Discrete Events Based PI Controller

In code snippet 4.4 , the coding and implementation of trigger for generation

events is shown.

1 model t r i g g e r

2 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tmeastrig annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−95 , 15} , extent = {{−15 , −15} , { 15 , 15}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−100 , 20} , extent = {{−10 , −10} ,
{ 10 , 10}} , r o t a t i on = 0) ) ) ;

3 parameter Real DeltaTmeastr ig = 0 .01 ”Threshold f o r send on Delta ” ;

4 parameter Real qs = 0 . 1 ”Ts quantum ( i n t e r n a l s enso r sampling time ) ” ;

5 parameter Real qsm [ : ] = { 10 , 20 , 50 , 100 , 200 , 500 , 1000 , 2000 , 5000 , 10000} ”

qs mu l t i p l i e r s ( l a s t elem i s N) ” ;

6 parameter Real pTmea s t r i g f i l t = 0 . 5 ” po le o f the DT PV f i l t e r ” ;

7 //paramter Real Tref = 360 ”Tref ” ;

8 discrete Boolean Egend ;

9 discrete Boolean wait4Ts ;

10 discrete Real Tmeastrigd ;

11 discrete Real TmeastriglastCom ;

12 discrete Real tLastCom ;

13 discrete Real Ts ;

14 discrete I n t eg e r EvCnt ;

15 discrete I n t eg e r dex ;

16 Mode l i ca .B lock s . In t e r f a c e s .Boo l eanOutput Egen annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = { 95 , 15} , extent = {{−15 , −15} , { 15 , 15}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = { 100 , 20} , extent = {{−10 , −10} , {
10 , 10}} , r o t a t i on = 0) ) ) ;

17 equation

18 Egen = Egend ;

19 algorithm

20 when i n i t i a l ( ) then

21 TmeastriglastCom := Tmeastrig ;

22 tLastCom := 0 ;

23 Egend := fa l se ;

24 wait4Ts := fa l se ;

25 dex := 1 ;

26 Ts := qsm [ 1 ] * qs ;

27 EvCnt := 0 ;

28 end when ;

29 when sample ( 0 , qs ) then

30 Tmeastrigd := pTmea s t r i g f i l t * pre ( Tmeastrigd ) + ( 1 − pTmea s t r i g f i l t ) *

Tmeastrig ;

31 i f abs ( Tmeastrigd − TmeastriglastCom ) >= DeltaTmeastr ig and not wait4Ts or

time − tLastCom >= Ts then

32 i f time − tLastCom >= Ts then

33 dex := min ( dex + 1 , s ize (qsm , 1) ) ;

34 wait4Ts := fa l se ;
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35 else

36 dex := 1 ;

37 wait4Ts := true ;

38 end i f ;

39 Ts := qsm [ dex ] * qs ;

40 TmeastriglastCom := Tmeastrig ;

41 tLastCom := time ;

42 Egend := not Egend ;

43 i f time >= 0 then

44 EvCnt := EvCnt + 1 ;

45 end i f ;

46 end i f ;

47 end when ;

48

49 i n i t i a l algorithm

50 Tmeastrigd := Tmeastrig ;

51 end t r i g g e r ;

Code Snippet 4.4: Modelica Code Implementation of the Trigger used in Discrete Events Based

PI Controller

The block diagram of discrete events based controller is shown in Figure 4.14.

The yellow block is the trigger and is connected to the controller through a boolean

signal. Based on that signal, events are generated and controller works to make

the system work in the desired way.

Figure 4.14: Modelica Block Diagram of a Discrete Event based PI controller
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Simulation and Results

This section shows the results which have been obtained by successful implemen-

tation of the discrete event based controller to the system which is the server.

The reference temperature to be tracked is kept at 350 kelvin and the controlled

system successfully tracks the reference with the controller only acting at times

when the temperature exceeds the reference temperature.

Figure 4.15: Controlled temperature of the server using discrete events based controller

As can be seen in Figure 4.16, the sampling time in case of an events based

controller is no longer constant.

Figure 4.16: Sampling time of a discrete event based controller

4.2.4 Linear Quadratic Regulator (LQR)

Linear Quadratic Regulator is a special controller and belongs to the family of

optimal control. Optimal control deals with the problem of finding a control

law for a given system such that a certain optimality criterion is achieved. A

control problem includes a cost function that is a function of state and control

variables. An optimal control is a set of differential equations describing the paths

of the control variables that minimize the cost functional. The optimal control

can be derived using Pontryagin’s maximum principle (a necessary condition also

known as Pontryagin’s minimum principle or simply Pontryagin’s Principle), or by

solving the Hamilton–Jacobi–Bellman equation (a sufficient condition).The theory

of optimal control is concerned with operating a dynamic system at minimum cost.

The case where the system dynamics are described by a set of linear differential

equations and the cost is described by a quadratic function is called the LQ

problem. One of the main results in the theory is that the solution is provided by
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the linear-quadratic regulator (LQR), a feedback controller. The LQR is one of

the most fundamental problems in control theory.

Based on the different ways to define a cost function, LQR problem can be of

different types most commonly finite horizon continuous time, infinite horizon

continuous time, finite horizon discrete time and infinite horizon discrete time

LQR. In this case , infinite horizon continuous time LQR has been used.The

equations defining the LQR controller are:

The general linear system to be controlled is given in the form of

ẋ = [A]x+ [B]u (4.29)

where

x=states of the system

u=inputs of the system

[A] =open loop eigenvalues of the system and is a n*1 matrix, in case of n=1 is

a scalar.

[B]=p*1 matrix, in case of p=1 is a scalar

For a continuous time system, the state feedback law u=r-kx minimizes the

quadratic cost function

J(u) =

∫ ∞
0

(xT ∗Q ∗ x+ uT ∗R ∗ u)dt (4.30)

subject to the system dynamics in equation 4.29

where

J=Quadratic cost function

r=reference signal to be tracked by the controller

k=controller gain to stabilize the system.

[Q]= is a positive definite matrix and is the gain to penalize states of the system

and is a n*n matix

and

[R]= is a positive definite matrix and is the gain to penalize the inputs of the

system and is a p*p matrix

Usually in order to find the desired eigenvalues, can take r=0, so that the it

becomes the problem of a pure regulator . It turns out that the system eigenvalues

that make the regulator work well are the same system values that make a tracker

work when a reference other than zero is given. So can think of the problem as

just a regulator problem with no reference. In a normal state feedback controller,
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when placing the close loop eigenvalues is that it is hard to have a great sense

of dynamic response associated with the eigenvalues and then it is not always

possible for the actuator to provide such high control inputs to give the desired

eigenvalues. So how and where to place the eigenvalues is not very intuitive and

that is what the LQR is about.

The feedback control law that minimizes the value of the cost is given by

u = −kx (4.31)

where

k = R−1 ∗BT ∗ P (4.32)

and

P is given by the algebraic riccati continuous equation (ARE) associated with the

cost function

AT ∗ P + P ∗ A+Q− P ∗B ∗R−1 ∗BT = 0 (4.33)

So the controlled tracking system is given by

ẋ = [A−Bk]x+ [B]r (4.34)

Coding and Block Diagram

Code Snippet 4.5 shows the modelica code used to model the LQR.

1 model LQRcontrol ler

2 parameter Real A = −10 ;

3 parameter Real B = 800 ;

4 parameter Real Q = 1 ;

5 parameter Real R = 0 .25 ;

6 Real k ;

7 Real P;

8 Real ep ;

9 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t uDVFS annotation ( Placement ( v i s i b l e = true ,

t rans fo rmat ion ( o r i g i n = { 0 , 100} , extent = {{−22 , −22} , { 22 , 22}} , r o t a t i on

= −90) , i conTrans format ion ( o r i g i n = { 4 , 78} , extent = {{−22 , −22} , { 22 , 22}} ,
r o t a t i on = −90) ) ) ;

10 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tlqr annotation ( Placement ( v i s i b l e = true ,

t rans fo rmat ion ( o r i g i n = {−100 , −50} , extent = {{−22 , −22} , { 22 , 22}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−79 , −63} , extent = {{−21 , −21} ,
{ 21 , 21}} , r o t a t i on = 0) ) ) ;

11 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput u lq r annotation ( Placement ( v i s i b l e = true ,

t rans fo rmat ion ( o r i g i n = { 99 , 11} , extent = {{−19 , −19} , { 19 , 19}} , r o t a t i on

= 0) , i conTrans format ion ( o r i g i n = { 81 , 1} , extent = {{−19 , −19} , { 19 , 19}} ,
r o t a t i on = 0) ) ) ;
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12 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t Tr e f l q r annotation ( Placement ( v i s i b l e =

true , t rans fo rmat ion ( o r i g i n = {−94 , 70} , extent = {{−10 , −10} , { 10 , 10}} ,
r o t a t i on = 0) , i conTrans format ion ( o r i g i n = {−80 , 60} , extent = {{−20 , −20} , {
20 , 20}} , r o t a t i on = 0) ) ) ;

13 equation

14 A * P + P * A + Q − P * B * ( 1 / R) * B * P = 0 ;

15 k = B * ( 1 / R) * P;

16 ep = Tre f l q r − Tlqr ;

17 i f ep <= 0 then

18 u lq r = Tre f l q r − k * Tlqr + uDVFS;

19 else

20 u lq r = uDVFS;

21 end i f ;

22 // u lq r = uDVFS;

23 // u lq r = Tre f l q r − k * Tlqr + uDVFS;

24 end LQRcontrol ler ;

Code Snippet 4.5: Modelica Code Implementation of the Linear Quadratic controller (LQR)

Figure 4.17 present the block diagram implementation of LQR to control the

temperature of the server. There are two inputs roi and DVFS, the LQR controller

has DVFS as its output while roi is considered as a disturbance.

Figure 4.17: Block diagram of LQR implementation

Simulations and Results

This section presents the results achieved upon successful implementation of LQR

to control the temperature of the server. Figure 4.3 and 4.19 show the open loop

and the closed loop temperature response of the server. As can be seen from

Figure 4.19, as long as the temperature is below the reference temperature, the
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control lets the system operate in open loop but as soon as the temperature crosses

the reference, the controller starts operating and makes the system to track the

reference temperature which has been set to 360 Kelvin in this case.

Figure 4.18: Open loop temperature response of the Server (Kelvin)

Figure 4.19: Controlled Temperature of the Server Tracking the reference at 360 Kelvin

Figure 4.20 and 4.21 show the open loop input to the system and the controlled

input to the system respectively. As can be seen from Figure 4.21, the LQR gives

the optimal input to the system.

Figure 4.20: Open loop DVFS input of the server
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Figure 4.21: Controlled DVFS input of the system which is the output of the controller

Finally, Figure 4.22 and 4.23 compares the power consumption of the server

in open loop and in case of LQR controlled server which reduces the power con-

sumption consumption considerably.

Figure 4.22: Open loop power response of the Server (Watts)

Figure 4.23: Power consumed in case of the temperature controller server(Watts)

Comparison of results of LQR with the PI controller presented in subsection 4.2.1

This section provides a comparison of the results obtained in case of PI controller

and LQR with reference to the results presented in subsections 4.2.1 and 4.2.4.

With reference to Figure 4.8 and 4.21, it can be easily noticed that LQR provides

optimal input (DVFS) to the system to track the same reference as compared to

PI controller and hence implies that to track the same output LQR needs less

actuator efforts as compared to PI controller which in itself proves its optimality.

4.3 Conclusion

This chapter has given an overview of the different controllers which have been

used to control the temperature of the server, their methodologies and the results
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obtained. The temperature control of the server was successfully achieved, and

the presented model proved suitable for the setup of such control solutions.
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Chapter 5

Conclusion and Future Works

This main objectives of the project have been successfully achieved. As can be

observed from the state of art presented in chapter 1, this method of modelling

and control has never been used before.Most of the methods presented till date

have been focusing mostly on different ways to scale voltage and frequency of

the processor of the servers by using different approaches for DVFS to optimize

the computing power of these servers to reduce the energy consumption in these

Data centres. The modelling of data centres from a system and control point of

view using the basic principles of thermodynamics and simple power equations

is a completely new approach as compared to how the computer science deals

with the problem and has the potential of producing far better results in terms of

power optimization. This method is also useful in preventing unnecessary loops for

control approaches which are inevitable when using computer science approaches.

Having said that, this research is still in its preliminary stage with the control

design just implemented at the local server level and very far from its real im-

plementation in actual data centres and needs a lot of efforts to reach the final

stages. Due to time limitations, controller design for power optimization at the

data centre level could not be studied deeply enough to propose a solution, and

the integration of this work with previous ones had to be deferred.

Therefore, the future scope of this research work can include both development

at the local level and the use of different strategies, such as model predictive con-

trol, H-infinity approaches and optimal control techniques, for the overall energy

optimization of the data centres, and then its testing and implementation on real

systems.
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