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You can never know everything, and part of what you know is always wrong.

Perhaps even the most important part.

A portion of wisdom lies in knowing that.

A portion of courage lies in going on anyway.

Robert Jordan



Ringraziamenti

Vorrei in primo luogo ringraziare il professor Casella che mi ha seguito in questa tesi e

mi ha aiutato a scoprire un argomento di cui sapevo poco o niente.

Un grande grazie a mio fratello Alessandro senza la cui consulenza informatica questo

lavoro sarebbe stato decisamente più di�cile, e il resto della mia famiglia che mi ha

sostenuto per tutto il percorso universitario.

Un ringraziamento particolare a Andrea �Pavel� Manfreda che mi ha accolto al mio

arrivo a Milano e mi ha insegnato a vivere oltre che sopravvivere un appartamento di

sette studenti universitari fuori sede, e ai compagni di Appa che ho avuto in questi

anni: sia per avermi lasciato stare quando mi chiudevo in un angolo a leggere, sia per

avermi chiamato quando ci stavo troppo tempo.

Mille grazie ai compagni di studio con cui ho preparato degli esami che mi hanno

aiutato negli esami che mi risultavano più di�cili. In particolare Davide Mariani e

Pietro Gheorghiu.

E ultimo ma non meno importante, grazie agli amici di Genova che mi accolto tutte le

volte che riuscivo a fuggire da Milano e tornare alla Superba.

3



4



Abstract

Due to the rising concerns of sustainable development, in recent years the renewable

share of the total electrical energy produced worldwide has increased considerably and

is expected to continue to do so. Since most of the new renewable power plants are

intrinsically non-programmable, �exibility of the output has become a critical charac-

teristic of thermal power plants. One way of increasing the �exibility of existing power

plants is to devise advanced control techniques that determine the optimal way to shift

the operating point of the plant. In order to apply an automatic control to any system,

it is necessary to provide: a mathematical model of the system itself, formulate the

optimization problem, solve the problem. Each step of this process has to be repeated

many times before a reasonable solution can be obtained. This has never been tried

before with problem of practical interest for the energy industry. In this work we do

so using high level. We developed a model of a combined cycle power plant using

the modeling language Modelica. Then we used said model to test three optimization

methods based on the Direct Collocation implemented using the software JModelica

and OpenModelica. The process we studied was the optimization of a warm start-up

of the plant with the goal of reaching the full load without violating a constraint on

the structural integrity of the steam turbine. All the methods reached an acceptable

solution of the problem, so their performance was compared and commented to �nd

out their strengths and weaknesses.

Keywords: Object-Oriented modeling, Optimal Control, Modelica, Optimization,

Combined Cycle, Direct Collocation
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Estratto in lingua italiana

Il nuovo scenario energetico

Negli ultimi anni lo scenario energetico è notevolmente cambiato. Le nuove preoccu-

pazioni di sviluppo sostenibile hanno portato a una notevole crescita della quota di

energia elettrica mondiale prodotta da fonti rinnovabili, in particolare sono stati co-

struiti molti impianti solari ed eolici. Queste fonti di energia sono intrinsecamente non

programmabili, il che costringe le centrali tradizionali a modulare la loro produzione

non solo in risposta alla domanda della rete, ma anche all'o�erta variabile delle nuove

rinnovabili.

Alla luce di questo fatto diventa interessante la possibilità di applicare tecniche di

controllo ottimo alle centrali tradizionali per ottimizzare i loro transitori e aumentare

la �essibilità della loro produzione. Queste tecniche richiedono un modello matematico

della centrale da ottimizzare, a partire da questo modello viene poi scritto il problema

di ottimizzazione, che può quindi essere sottoposto a un software di calcolo numeri per

ottenere una soluzione.

Il problema è che è raro che questo processo fornisca una soluzione ragionevolmente

corretta alla prima iterazione. Più spesso insorgeranno problemi in una di queste fasi

e di conseguenza sarà necessario ripetere tutte e tre, ad esempio:

• il modello si rivela troppo complicato per il software, o viceversa si scopre che una

dinamica che era stata trascurata è in realtà molto rilevante, e allora bisognerà

sempli�care o ampliare il modello;

• il problema di ottimizzazione è mal posto a causa della mancanza di uno o più

vincoli, oppure la funzione obiettivo non porta alla soluzione desiderata e va

modi�cata;

• il metodo di soluzione non è adatto al problema o impiega troppo tempo e va

sostituito con un altro.
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Questo tipo di approccio non è mai stato applicato a problemi di interesse reale nel

settore energetico, quindi lo scopo di questo lavoro è provare a utilizzare strumenti

e software innovativi e di alto livello e capire se sono abbastanza maturi per essere

utilizzati in applicazioni pratiche

Per fare ciò abbiamo sviluppato un modello di un ciclo combinato usando il linguaggio

di programmazione Modelica e lo abbiamo testato con con diversi metodi implementati

tramite i software JModelica e OpenModelica, entrambi open-source.

Modelica

Modelica è un linguaggio di modellazione orientato agli oggetti. Questo linguaggio si

presta molto bene al nostro scopo in quanto permette di modellare facilmente sistemi

molto complessi a partire dai loro componenti.

L'approccio di fondo è di iniziare creando modelli dei componenti elementari tramite

equazioni di bilancio e munirli di appropriati connettori che hanno la funzione di inter-

facciare i componenti tra di loro, queste connessioni generano poi equazioni algebriche

quando il modello viene compilato. Successivamente i componenti elementari possono

essere collegati tra di loro attraverso i connettori creando modelli più complessi. Questa

operazione viene ripetuta �nché non viene raggiunto il livello del sistema complessivo,

a questo punto il modello di insieme conterrà tutte le equazioni e le variabili del sistema

complessivo.

Questo approccio modulare permette di suddividere il problema in parti più semplici

e gestibili che possono essere controllate per errori indipendentemente l'una dall'altra,

e anche di sostituire o modi�care con facilità un componente invece di dover riscrivere

da capo il modello del sistema in caso le speci�che cambiassero. Questa eventualità è

tutt'altro che rara nel campo dell'ottimizzazione, ambito nel quale è necessario svilup-

pare parallelamente il modello da ottimizzare e il metodo di ottimizzazione ottenere

una soluzione.

La fase di connessione dei componenti viene resa particolarmente facile e intuitiva dal

tool gra�co OMEdit.

Ottimizzazione

Il problema che vogliamo risolvere è un problema di ottimizzazione dinamica. Una

volta compilato dal software, il modello della nostra centrale è rappresentato da un
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sistema di equazioni algebrico-di�erenziali (DAE) del tipo

F (ẋ(t), x(t), w(t), u(t)) = 0

e vincoli tra le variabili espressi da disequazioni nella forma

H(x(t), w(t), u(t)) ≥ 0

dove x(t) sono le variabili le cui derivate compaiono esplicitamente, dette variabili di

stato; w(t) sono le variabili algebriche; e u(t) sono gli ingressi, le variabili controllate

dall'utente.

Il nostro scopo è determinare le funzioni u(t) che minimizzano una certa funzione di

costo solitamente espressa nella forma

C(x, w, u) =

T̂

0

L(x(t), w(t), u(t))dt

Dove T è l'intervallo di tempo considerato per l'ottimizzazione.

In questa tesi abbiamo deciso di risolvere il problema di ottimizzazione con il metodo

della Direct Collocation. Questo metodo si basa sul dividere l'intervallo di ottimizzare

in n sotto intervalli e approssimare ingressi e variabili come funzioni polinomiali a

tratti, trasformando il problema dal determinare le le funzioni degli ingressi nel tempo

(problema in�nito dimensionale), a determinare un numero �nito di coe�cienti dei

polinomi (problema �nito dimensionale). Il problema da risolvere rimane comunque

un problema non lineare (NLP), ma sono disponibili molte tecniche collaudate per

risolvere questo genere di problemi.

Questo metodo è stato implementato tramite i software JModelica e OpenModelica,

entrambi basati sul linguaggio Modelica e la sua estensione Optimica che aggiunge i

costrutti necessari a de�nire problemi di ottimizzazione. La Direct Collocation è stata

implementata in tre modi diversi:

• Direct Collocation sul sistema in forma DAE con JModelica;

• Direct Collocation sul sistema in forma DAE dopo aver sempli�cato il problema

e ridotto il numero di variabili algebriche con JModelica;

• Direct Collocation sul sistema convertito in forma ODE con OpenModelica.
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Un caso studio

Il caso di studio scelto per questo lavoro è un ciclo combinato ad un livello di pressione.

Il processo studiato è uno start-up a caldo in cui la turbina a gas passa dal 15% al

100% del carico massimo. L'obiettivo dell'ottimizzazione è di portare la centrale al

carico massimo senza violare i vincoli del problema. Le variabili libere sono il carico

della turbina a gas e la portata di attemperamento del ciclo a vapore.

Il vincolo principale è lo stress termo-meccanico sull'albero della turbina a vapore,

che non deve superare un valore di sicurezza nè essere soggetto a oscillazioni. Questo

stress è causato dal gradiente di temperatura radiale che si forma sull'albero durante i

transitori a causa della variazione della temperatura del vapore che entra in turbina.

Nello sviluppare il modello è stato necessario fare alcune ipotesi sempli�cative, in par-

ticolare riguardo alle proprietà di acqua e vapore, ma i risultati delle simulazioni fatte

su di esso risultano in linea col comportamento di una centrale reale.

Per aumentare il numero di dati raccolti abbiamo preparato due varianti del modello:

• un modello di riferimento che non utilizza l'attemperamento durante lo start-up;

• un modello completo che usa entrambe le variabili di ottimizzazione.

Campagna di test

La campagna di test è stata condotta applicando ciascun metodo a entrambe le versioni

del modello e variando il numero di passi temporali in cui è stato diviso l'intervallo di

ottimizzazione.

I dati monitorati per confrontare le prestazioni degli algoritmi sono stati:

• numero di variabili del NLP;

• numero di iterazioni necessarie a raggiungere convergenza;

• tempo impiegato a risolvere il NLP, escluso il tempo necessario a calcolare le

funzioni necessarie;

• tempo impiegato nel calcolare le funzioni.

Analizzando i dati è emerso che i due metodi di JModelica hanno un comportamento

molto simile tra di loro, la versione con eliminazione delle variabili si è dimostrata più
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e�ciente della sua controparte, ma non in maniera troppo signi�cativa. Il metodo di

OpenModelica è risultato molto più lento degli altri due, ma anche più stabile. Mentre

le prestazioni dei metodi di JModelica variano enormemente al variare della discretiz-

zazione, arrivando a non convergere per certi valori del passo temporale, OpenModelica

ha mostrato un andamento più regolare e a�dabile.

La causa della variabilità delle prestazioni di JModelica è stata identi�cata in una

di�coltà nell'approssimare le non linearità del modello che emerge o meno a seconda

della discretizzazione dell'intervallo temporale.

Conclusioni

Il nostro caso studio ha rivelato che attualmente esistono strumenti di modellazione e

ottimizzazione capaci di risolvere problemi di interesse in campo energetico.

Inoltre gli strumenti di ottimizzazione da noi utilizzati, JModelica e OpenModelica,

sono ancora in fase di sviluppo. Attualmente stanno venendo testati miglioramenti ai

metodi esistenti e nuovi metodi più avanzati. Il modello prodotto da questo lavoro,

potrebbe essere facilmente utilizzato come caso studio anche per testare queste nuove

funzionalità quando verranno implementate.
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Chapter 1

Introduction

The worldwide demand for electrical energy has been steadily increasing for many

years, especially many third-world countries are beginning to develop and their energy

requirements are growing. Because of concerns of sustainable development and envi-

ronmental preservation, the share of electrical energy produced from renewable energy

sources has also grown as it can be seen from �gure 1.1.

In particular, in order to deal with the problems of global climate change and atmo-

spheric CO2, it is expected that the policies and restrictions on power generations and

carbon emissions will grow even stricter for the next years. For example �gure 1.2

shows how the CO2 emissions should be reduced in the future according to the Inter-

national Energy Agency (IEA) in order to reach the 450 Scenario, which aims to limit

the global increase in temperature to 2oC by limiting concentration of greenhouse gases

in the atmosphere to around 450 parts per million of CO2.

A signi�cant part of these renewable power plants are based on solar and wind energy,

which are intrinsically non-programmable and mostly non-predictable, and lend them-

selves to distributed generation. These characteristics make it so that the power they

supply to the electrical grid is highly irregular, forcing the traditional thermal power

plants to modulate their power output not only in response to the varying demand of

the users, but also to the non-predictable power supplied by the renewable plants. In

light of this the estimation of �gure 1.2 can be misleading, since with the right weather

conditions, the renewable power plants can account for the main share of the electrical

energy demand of a region.

Unfortunately the traditional thermal power plants are complex and relatively deli-

cate systems, they typically have signi�cant thermal or mechanical inertia and their

thick-walled components are subject to heavy mechanical stress, so regulating their

output quickly without compromising their service life can be very di�cult. In order

19
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Figure 1.1: Share of renewable electrical energy in recent years[23]

to improve their �exibility it is necessary to quickly determine the best way to shift

the operating point of the plant, so the idea of applying advanced control techniques to

the plants is very attractive. Particularly because it could be easily applied to already

existing plants that were designed when the need for �exibility was not as pronounced

but are still operational due to their very long life-cycles.

Speci�cally, the so called Optimal Control techniques focus on �nding the best transient

from one state to another for a given system while taking into consideration eventual

constraints on the variables. These kind of techniques necessitate a mathematical

model of the system to be controlled, which has to be both complete in all its relevant

dynamics and simple enough for the problem to be solved in short enough time. Also,

the Optimal Control ultimately consist of solving a type of mathematical problem, the

optimization problem, whose solution is de�nitely non-trivial.

1.1 Aim of the thesis

Given this context, in this work we will explore the possibility of using a modern

modeling language to create models of power plants and then use them in conjunction

with appropriate software to determine the best way to shift their operating point,

thus increasing their �exibility. The models created need to be both complete in all

the relevant dynamics, and simple enough for the software to �nd a solution in good
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Figure 1.2: Di�erence in CO2emission in di�erent scenarios[12]

time.

This will be done, by developing a model of a combined cycle power plant as a case

study and then using it to test multiple methods of optimizations applied to a practical

situation. This will give information on whether or not these types of problem are

feasible with these methods.

The tools used in this thesis are the modeling language Modelica, the OpenModelica

v1.9.2 compiler and optimizer, the JModelica.org v1.15 compiler and optimizer, and

the graphical editor OMEdit. The model will be created using OpenModelica, while

the optimization will be done with both OpenModelica and JModelica.

1.2 Thesis structure

After this �rst chapter of introduction, chapter two describes the modeling language

Modelica used in this work. The third chapter explores the theory of optimization and

some of the possible methods of solution from a mathematical point of view, while

chapter four explains the software that are used in this work to apply them to the case

study which is explored in detail in chapter �ve. Finally in chapter six the data of the

performance of the software are reported and compared, and chapter seven contains

the conclusions and possibilities of future work.
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Chapter 2

Modelica, an Object-oriented

modeling language

Modelica is a tool-independent modeling language developed by the non-pro�t Modelica

Association. It is widely used to simulate complex systems, is two de�ning character-

istics of this language are being Object-oriented and equation based.

Object-oriented means that it focuses on creating objects independent of their bound-

ary conditions that describe components and parts of a complex system, these objects

can then be connected to form more complex objects until the whole system is described

via physical connections.

Equation based on the other hand means that the governing equations of each objects

are not de�nitions of a variable (i.e. x := y + z + 4), but declarative statements of

equality constraints between two expressions (i.e. x − y = z + 4). Referring to the

examples: the �rst permits only to calculate x as a function of y and z, the relation

is causal; in the second, any of the variables can be calculated once the other two are

known, the relation is a-causal. This property also extends to the connections between

objects.

2.1 A simple example

This simple model of a Van der Pol oscillator shows what Modelica code looks like:

23



24CHAPTER 2. MODELICA, AN OBJECT-ORIENTED MODELING LANGUAGE

model VDP

Real u "Control signal";

Real x1(start=0, fixed=true) "First state, velocity";

Real x2(start=1, fixed=true) "Second state, position";

equation

der(x1) = (1 - x2^2) * x1 - x2 + u;

der(x2) = x1;

u = sin(time);

end VDP;

The �rst word of the object de�nes what class of object it is, in this case the �model�

class, which is the most generic and used. Other classes have built in behaviors and

are used for speci�c purposes. After that the name of the object is declared and the

model itself can be de�ned.

The �rst part is the declaration of the variables of the model, each one preceded by

an indication of its type (Real, Integer, Boolean, etc). It is also possible to declare

another model as a variable, this will add all of that model variables and equations to

new model. In the example all of the variables are real numbers: two state variables (x1,

x2) and a control signal (u). Variables can also have attributes that add information

about the variable, in this case both state variables have a speci�c start value and the

start value is to be used for initialization.

After that the �equation� section contains the three equations that fully describe the

behavior of the variables of the system, in this case two di�erential equations and an

algebraic one. This is a stand-alone model, it can be directly simulated and does not

admit connections with other models.

2.2 Connections

In order to model more complex systems, we need to separate it in its components and

model each of them separately and the connect each component model to obtain the

model of the whole system. But, in order to de�ne the relations between components,

it is necessary to �rst de�ne a Connector class. Given the a-causal nature of the

connections it is necessary to distinguish between two types of variables: potential (or

across) variables, and �ow (or through) variables. Di�erences in the values of across

variables across a component are what trigger components to react, while �ow variables
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normally represent the �ow of some conserved quantity like mass, momentum, energy,

charge, etc.

Declaring an object as a connector implies that it contains at least one �ow variable

and one potential variable, else it is not a valid object. Also, it makes the object a

viable target for the �connect� instruction that serves to connect di�erent components.

To understand how this instruction works it is easier to refer to this example of an

electrical pin that is used to model electric circuits:

connector electrical_pin

Real v �Electric Potential�;

flow Real i �Current�;

end electrical_pin;

The across variable is the Electric Potential and the �ow variable is the current. When

two or more components with this type of connector are connected it will result in the

following equations (the �ow variables are considered positive if entering the compo-

nent):

∑
ij = 0

v1 = v2

v1 = v3
...

v1 = vn

(2.1)

These equations guarantee that at each node the charge is conserved, while the potential

is the same in all the components connected to it.

If needed it is also possible to create causal connections by declaring variables as the

built-in types �input� and �output�.

2.3 Components

The model of a component will contain all the needed variables and equations plus one

or more connectors. For example this is the model of a resistor:
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model Resistor

electrical_pin positive_pin �positive pin of the resistor�;

electrical_pin negative_pin �negative pin of the resistor�;

Real i �current flowing through the resistor�;

Real delta_v �difference of potential across the resistor�;

parameter Real R = 1 �resistance of the resistor�;

equation

delta_v = positive_pin.v - negative_pin.v;

positive_pin.i = i;

positive_pin.i + negative_pin.i = 0;

delta_v = R * i;

end Resistor;

The model contains two instances of the connector described before, each containing

two variables, and there are two more variables declared in the model itself. The re-

sistance is declared as a �parameter� i.e. a constant that does not change throughout

the simulation. There are also four equations, which would leave the system under-

determined since there would be more variables then equations. But when a connector

is not connected to anything an equation stating that the �ow variable is zero is au-

tomatically added, and when the connector is connected to something the equation of

the connection discussed earlier are added to the total. This is very important because

a model can be simulated only if the number of equations and the number of variables

are the same, which is a necessary condition for the existence and uniqueness of the

solution.

2.4 General form of a physical model

The model of a physical system can always be written as a system of Di�erential and

Algebraic Equations (DAE), which is a generalization of a typical Ordinary Di�eren-

tial Equations system (ODE) where the derivatives of some variable do not appear

explicitly in any equation. Because of this the convention is to distinguish between the

state variables (x) whose derivatives appear explicitly in the system, and the algebraic

variables (w) whose derivatives do not appear.

While the di�erence may seem trivial, the method used to solve DAE systems are

di�erent from the ones used to solve ODE, and are signi�cantly more complicated.



2.5. THE POTENTIAL OF MODELICA 27

To get an idea of the di�erence between DAE and ODE systems, consider the very

simple example

ẋ− w = 0

x− u = 0
(2.2)

where a su�ciently smooth function u is given. Clearly, the only solution is x = u(t),

w = u̇(t) , and no initial conditions are needed. That is, if an arbitrary initial condition

is imposed, it may well be inconsistent with the DAE. Furthermore, it can be seen

that the solution depends on the derivative of the input which cannot happen in the

ODE case. Another di�erence is that even if consistent initial values are given, the

existence and uniqueness theory is more complicated and involves additional technical

assumptions besides just su�cient smoothness as in the ODE case. The fact that in the

�rst equation of this example, one needs to di�erentiate x , which implies di�erentiation

of the input function u , in order to �nd w , makes a key di�erence. For a standard-form

ODE, the solution is always more continuous than the input. In other words, a DAE

may involve both integrations and di�erentiations[8].

It should also be noted that any di�erential equation of order n can be transformed in

a system of n equations of the �rst order:

aẍ1 + bẋ1 + cx1 = g(x1, t) ⇐⇒

aẋ2 + bx2 + cx1 = g(x1, t)

x2 = ẋ1

(2.3)

Given these premises the general form of a model is a DAE system of n equations in

the form fi(ẋ, x, w, u) = 0 where x and w are the vectors of, respectively, the state

and algebraic variables of the system, whose total number has to be n in order for the

system to admit a solution; ẋ the vector of the �rst derivatives of the state variables,

and u the vector of the inputs.

2.5 The potential of Modelica

The model of a complex system such as a power plant can easily have hundreds of

variables and just as many equations, manually writing each one of these equations

to create the model in one go would be a long and error-prone process with little

possibility of checking the correctness of each part independently. With Modelica on

the other hand it is possible to decompose the system in elementary components, write
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Figure 2.1: Solving an Optimization Problem

the code for each one, check it for errors, and then compose the system by adding the

connections between each component.

This also means that the model of each system is highly modular: in order to modify

a model the user can simply modify the involved components, or write new version of

them, and then substitute them in the model of the system. For the same reasons, a

component written for an old model could be re-used in a di�erent model of the same

domain.

This is of particular importance since the topic of this work is optimization. At its core

the solution of an optimization problem consists of:

• Developing a model of the system;

• Formulating the optimization problem;

• Implementing a method of solution.

But most of the time these steps have to be iterated more than once in order to obtain

a reasonable and signi�cant solution. Any one of these steps may need to be repeated

and modi�ed, and that in turns force the user to do the same for the other two. Some

examples of the possible problems:
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• the model may turn out to be too complicated for the software to handle, or

vice-versa a crucial dynamics may have been mistakenly neglected;

• the formulation of the problem may need to be changed since one or more con-

straints may be missing, or it might turn out that a di�erent cost function is

needed in order to obtain satisfactory results;

• the method of solution may not be suitable for the problem and may need to be

substituted for another one.

This whole process becomes signi�cantly easier if the high-level tools are used, and as

it has been elaborated earlier Modelica model are very easy to modify.

2.6 Software for model development

There are many commercial and open source software that can be used to write and

simulate Modelica code, the one used for this work is OpenModelica, supported by the

non-pro�t organization Open Source Modelica Consortium [11].

OpenModelica contains various tools to write Modelica code with, from the low level

Open Modelica Shell which interacts directly with the Modelica compiler, to the higher

level Open Modelica Connection Editor (OMEdit) used in this work. While it supports

the plain writing of Modelica code, the main feature of OMEdit is a user-friendly

graphical interface that facilitates composing complex models from their parts. The

tool adds a diagram and an icon view of the code beside the standard text view which

are generated annotations added to the code of the model, the diagram view shows

the graphical representation of the objects declared in the model, while the icon view

shows how the current model will look when used in other models.

The important part is that the program translates changes to one view to the others,

for example dragging and dropping the icon of a component to the diagram of the

current model adds the declaration of the component to its code, and drawing a line

between the connectors of two components adds the connect instruction to the code.
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Chapter 3

Direct methods for optimal control

problems

In mathematical terms, an optimization problem consist in minimizing or maximizing

a function, called the objective function, while the independent variables are subject to

some constraint. Since maximizing f(x) is identical to minimizing −f(x), the conven-

tion is to only deal with minimizing functions, and to call the function to be minimized

�cost function�.

In this work the focus will be on dynamic optimization, i.e. problems where the in-

dependent variables are the input or control variables of a physical system over an

interval of time, and the cost function (C) is the time integral of a function (L) of the

states and inputs. A simple example is �nding the force (input) to be applied to a

pendulum (system) order to stop it as quickly as possible, i.e. bringing the angular

distance from the vertical θ and the velocity v to zero.

This is the general form of the optimization problem:

minimize

C(x, w, u) =
´ T
0
L(x(t), w(t), u(t))dt (cost function)

subject to

G(x(0), w(0)) = 0 (fixed initial conditions)

F (ẋ(t), x(t), w(t), u(t)) = 0 ∀tε[0, T ] (DAE System)

H(x(t), w(t), u(t)) ≥ 0 ∀tε[0, T ] (path constraints)

(3.1)

For simplicity of notation the vector sign as been omitted from all the variables and

F , G and H functions represent respectively the whole DAE system, the �xed initial

31
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conditions, and all the constraint. Similarly, x0 is the vector of all the initial values of

the state variables.

3.1 Basic approach

In order minimize a function with only one variable it is only necessary to �nd where

the �rst derivative is zero and then check the sign of the second derivative. In case

of function with two or more variables it becomes necessary to determine the gradient

and the hessian matrix which is signi�cantly more computationally complex, but there

are many e�cient algorithms to solve this kind of problem numerically. The dynamic

optimization on the other hand is a problem of even higher complexity, since instead of

having to determine a �nite number of variables it is necessary to determine a function

over a continuous interval of time.

In this work we will focus on the so called direct methods, that are based on ap-

proximating the input function as a piecewise constant function, such a function is

completely determined once the value of the function in each interval is determined.

this transforms the problem from a continuous and in�nite-dimensional one to a �nite

dimensional one. The problem is still going to be a Non-Linear Program (NLP), but

there are many well tested iterative algorithm that can solve such problems.

3.2 Single Shooting

The single shooting method [14] is based on discretizing only the inputs u. The time

interval is divided in n time steps with ti =
T
n
· i for iε[0, n] and the inputs are de�ned

as u(t) = qi

ti−1 ≤ t ≤ ti
(3.2)

thus making the vector q of the values of each input variable in each time step the

vector of the variables to be optimized. The optimization problem becomes:
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minimize

C(q) =
´ T
0
L(x(t, q), w(t, q), u(t, q))dt

subject to
F (ẋ(t, q), x(t, q), w(t, q), u(t, q)) = 0 ∀tε[0, T ]

H(x(t, q), w(t), u(t, q)) ≥ 0 ∀tε[0, T ]

G(x(0), w(0)) = 0

(3.3)

When using this method in each iteration the system is simulated with the current

iteration of u, obtaining new values for the state and algebraic variables in the whole

interval. Then using these values the derivatives of the cost function are evaluated and

the new iteration of u is calculated, so the simulation and optimization are sequential.

Pros, and Cons:

+ Can use state-of-the-art ODE/DAE solvers.

+ Few degrees of freedom even for large ODE/DAE systems.

+ Active set changes easily treated.

+ Need only initial guess for controls q.

- Cannot use knowledge of x in initialization.

- ODE solutionx(t, q) can depend very non-linearly on q.

- Unstable systems di�cult to treat.

3.3 Multiple Shooting

The multiple shooting [14] method discretize the the input u in the same way as the

single shooting, but it also discretize the state and algebraic variables by writing them

as piecewise functions. For each time step two vector of parameters si and ri are

introduced that represents the initial values respectively of the state and algebraic

variables in the ith time step, i.e. x(ti−1) = si, w(ti−1) = ri

The successive step is to solve the DAE problem in the time step


F (ẋi(t, qi, si, ri), wi(t, qi, si, ri), qi) = 0 ∀tε[ti−1, ti]

xi(ti−1)− si = 0

wi(ti−1)− ri = 0

(3.4)
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to determinate the states variables xi in each time step.

Then the cost function for the time step is calculated as

Ci(si, qi, ri) :=

tiˆ

ti−1

L(xi(t, qisi, ri), wi(t, qisi, ri), qi)dt (3.5)

which gives the total cost function C(s, q, r) =
∑n

i=1Ci(si, qi, ri).

With these premises, it is possible to add the path constraints, the starting values of

the state variables, and also the constraints for the continuity of the states variables.

minimize

C(s, q, r) =
∑n

i=1Ci(si, qi, ri).

subject to

H(xi(t, qisi, ri), wi(t, qisi, ri), qi) ≥ 0 ∀tε[ti−1, ti],∀iε[1, n]

G(s0, r0) = 0

xi(ti−1)− si = 0 ∀iε[2, n]

wi(ti−1)− ri = 0 ∀iε[2, n]

(3.6)

Compared to the previous method, the multiple shooting obviously has many more

variables, but the variables are less coupled with each another, so the matrix of the

problem to be solved is going to be sparse. This characteristic can be exploited by

using a solver speci�cally written for sparse problem to achieve a signi�cantly easier

calculation. Contrary to the single shooting method, the simulation and optimization

of the solution are simultaneous.

Pros:

+ uses adaptive ODE/DAE solvers

+ but NLP has �xed dimensions

+ can use knowledge of x in initialization.

+ can treat unstable systems well.

+ robust handling of path constraints.

+ easy to parallelize.

- more variables than single shooting and less sparse than collocation (see below).
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3.4 Direct Collocation

When the Collocation method [19, 14] is used the time interval is discretized as in the

previous methods, but there is an additional parameter to be considered: the number

of collocation points (m). In this method, both the u and the x are approximated

as piecewise polynomial functions of degree m − 1, these functions are obtained by

interpolating the values of the inputs and variables in m points of the time step.

This interpolation can be done by using the Lagrange polynomials:

For a generic function y(t)

y(t) =
∑m

j=1 yj · lj(t)
yj = y(tj)∀jε[1,m]

lj(t) =
∏

kε[1,m]/j
t−tk
tj−tk

ẏ(t) =
∑m

j=1 yj · l̇j(t)
l̇j(t) =

∂lj
∂t

=
∑

hε[1,m]/j(
1

tj−th
·
∏

kε[1,m]/j,h
t−tk
tj−tk

)

(3.7)

In order to apply this polynomials to the problem and simplify calculations an auxiliary

variable τε[0, 1] is de�ned such that t = ti−1 + τ · (ti − ti−1), and the same collocation

points τj are used in each time step. As a consequence of this, the polynomials lj(τ) are

the same for each time step and variable. The exact values of the τj depends of which

version of the algorithm is used, but its necessary to place one of them at the start of

each time step to ensure the continuity of the state variables. Also, let us de�ne the

values of the input, state and algebraic variables in each collocation point of each time

step respectively as q, s and r, which means that each variable will contribute n · m
values.

tij = ti−1 + τj · (ti − ti−1)

ui(τ) =
∑m

j=1 qij · lj(τ) ∀iε[1, n] with ui(tij) = qij ∀i, jε[1, n]x[1,m]

xi(τ) =
∑m

j=1 sij · lj(τ) ∀iε[1, n] with xi(tij) = sij ∀i, jε[1, n]x[1,m]

wi(τ) =
∑m

j=1 rij · lj(τ) ∀iε[1, n] with wi(tij) = rij ∀i, jε[1, n]x[1,m]

(3.8)

Under these hypotheses, the derivatives of the state variables are easily calculated by

taking the derivative of the polynomials xi without forgetting the normalized time:

ẋt(τ) =
dxi(τ)

dt
=

dτ

dt
· dxi(τ)

dτ
=

1

ti − ti−1

·
m∑
j=1

sij · l′j(τ) (3.9)
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Note that if m = 1 the Lagrange polynomials are not de�ned, but this just means that

x, w and u are written as piecewise constant functions. In this case simply taking the

derivative of x would net ẋi(t) = 0 for for each time step, so its also de�ned as

ẋt =
si+1 − si
ti+1 − ti

. (3.10)

With this we have de�ned all the the relevant variables as a function of q,s and r, and

we can write the �nal form of the optimization problem to be solved:

minimize

C(q, s, r) =
´ T
0
L(x(t, s), w(t, r), u(t, q))dt

subject to

F (ẋ(t, s), x(t, s), w(t, r), u(t, q, )) = 0 ∀tε[0, T ]

H(x(t, s), w(t, r), u(t, q, )) ≥ 0 ∀tε[0, T ]

G(s0, r0) = 0

xi−1(ti−1, si−1) = si,1 ∀iε[2, n]

ẋt(τ) =
1

ti−ti−1
·
∑m

j=1 sij ∗ l′j(τ) ∀i, jε[1, n]x[1,m]

(3.11)

Like the multiple shooting method, the direct collocation introduces a very large num-

ber of variables, especially if a high number of collocation points is used. But like the

multiple shooting the matrix of the problem is sparse, so the calculation are signi�-

cantly easier. Note that in this approach only the continuity of the state variables is

imposed.

The main drawback of this method is that, contrary to the other to methods, the

discretization of the state variables depends on the grid, so the system of equations has

to be solved with a �xed time step. If this was not the case it would be possible to use

variable-step solvers that can increase the accuracy of the solutions.

+ More sparse than multiple shooting

+ Large scale, but very sparse NLP.

+ Can use knowledge of x in initialization (important in online context).

+ Can treat unstable systems well.

+ robust handling of path and terminal constraints.

- Adaptivity needs new grid, changes NLP dimensions.
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- no guarantee on the accuracy of the solution of the di�erential equations.
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Chapter 4

Optimization with Modelica

As it was previously discussed, Modelica was created as a modeling language, and by

itself it can only used for simulation purpose. But in recent years, given the growing

interest in solving dynamic optimization problems, the possibility of directly optimizing

a model written with Modelica was taken into consideration. There are di�erent ways

this functionality can be added:

Technically, it could be possible to use already existing features of Modelica to modify

a model in an optimization problem, but the resulting code would be convoluted, and

the improper use of Modelica's constructs would signi�cantly limit the modularity that

is one of the strong points of Modelica.

On the other end of the spectrum, it would have been possible to develop tool-oriented

solutions, for example Graphical User Interfaces (GUIs), within a simulation-based

software tool (this is the approach implemented in the commercial software Dymola).

The user would then set up the optimization problem by entering information in ded-

icated �elds in the GUI. The main drawback of this approach is a lack of �exibility

since the GUI can be used only with the software and method of optimization it was

designed for, and the user can only change speci�c parameters for the optimization.

For this work it was decided to use the extension Optimica, created by Johan Åkesson

and described in [2]. Optimica is completely reliant on Modelica for the de�nition

of the models while it introduces new types and constructs necessary to de�ne an

optimization problem that replace or enhance already existing types and constructs of

Modelica.

39
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4.1 Structure of Optimica

The main feature introduced by Optimica is a new class, �optimization�, which indicates

that the object will be an optimization problem, and allows the use of the other features

of Optimica. Again, an example will be used to illustrate how the code is structured:

optimization VDP_opt(

objectiveIntegrand=(x1 - 0)^2 + (x2 - 0)^2 + (u - 0)^2,

startTime=0, finalTime=10)

input Real u(start=0, fixed=true, free=true) "Control signal";

Real x1(start=0, fixed=true) "First state, velocity";

Real x2(start=1, fixed=true) "Second state, position";

equation

der(x1) = (1 - x2^2) * x1 - x2 + u;

der(x2) = x1;

constraint

u <= 0.75

end VDP_opt;

This code solves the problem of bringing a Van der Pol oscillator, described in section

2.1, from the starting condition to being at rest at position x2 = 0 in the minimum

time possible, without violating a limit on the value of the control signal. The two

codes can be compared to highlight the features of Optimica.

As mentioned earlier, this time the object belongs to the �optimization� class. Its

variables are the same as the simulation model, but this time u is declared as an

input and possesses the new attribute �free� indicating that that is the variable of the

optimization. Because of this there is no equation to prescribe the value of u(t), if there

was the system would be already determined leaving no room for optimization. There

is an additional section in the code named �constraints� where all the path constraint

can be added as inequalities. The last addition are the annotation to the object located

after its name that include the extremes of the optimization interval and the objective

function. In this case the objective function as a time integral where the integrand is

the sum of squares of the di�erence of the value of each variable from the objective

value.

In cases of practical interest the norm, according with Modelica philosophy of mod-

ularity, is to write the model of the system separately and declare it as a variable in
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Figure 4.1: JModelica.org platform architecture.

the optimization object which will explicitly contain only the information about the

optimization itself.

4.2 JModelica.org

JModelica.org [3] is an extensible Modelica-based open source platform for optimiza-

tion, simulation and analysis of complex dynamic systems. It is a result of research at

the Department of Automatic Control, Lund University, and is now maintained and

developed by Modelon AB in collaboration with academia.

Figure 4.1 represents the architecture of JModelica, the most important aspects are:

• The compiler front-ends (one for Modelica and one for Modelica/Optimica) trans-

forms Modelica and Optimica code into a �at model representation. The com-

pilers also check the correctness of model descriptions and reports errors.

• The compiler back-ends generates C code and XML code for Modelica and Op-

timica. The C code contains the model equations, cost functions and constraints

whereas the XML code contains model meta data such as variable names and

parameter values.

• JModelica.org uses Python for scripting. For this purpose, JModelica.org pro-

vides a number of di�erent Python packages that provide: integration with state
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of the art DAE and ODE solvers, interactions with the JModelica.org compilers,

and drivers for the optimization algorithms.

• JModelica also contains CasADi [4], a symbolic framework for algorithmic (a.k.a.

automatic) di�erentiation and numeric optimization; and Ipopt [24], a tool for

solving non-linear problems.

4.2.1 The standard solution algorithm: Direct Collocation with

JModelica

The method implemented with JModelica is based on the Direct Collocation described

in section 3.4. The tool start by transforming the Modelica/Optimica code of the

problem into the explicit form of the DAE system, this is then transferred to CasADi

which applies the collocation algorithm obtaining a problem in the form of equation

3.11 and determines the exact formulation of the �rst and second derivatives necessary

to construct the the gradient and hessian matrix of the objective function via symbolic

manipulation. Finally, CasADi interfaces with Ipopt to solve the resulting NLP where

the equations of the DAE system now act as equality constraints.

4.2.2 A modi�ed version of the solution algorithm: variable

elimination

The modular approach of Modelica makes it so that the model of a system contains

a great number of algebraic variables which are actually doubles of other algebraic

or state variables, or could otherwise be easily eliminated by substituting their corre-

sponding equations. For example most double variables are created by the connection

of components, just by looking at the example of the electrical connections in section

2.2 it is clear that the variables v2 to vn could be substituted by the variable v1 in every

equation.

The method described in the previous section solves the DAE system as it is, so it has to

manage all of its variables resulting in an increased computation time. Because of this

an alternative version of the previous method has been experimentally implemented:

in this version, while the model is transferred to CasADi the equation are subjected to

the Block Lower Triangular (BLT) transformation described in [9] which reorders the

equations of the system to obtain a form that can be more easily solved and eliminates

a part of the algebraic variables as described above.[18]
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4.3 OpenModelica

While OpenModelica was created with the aim of writing and simulating models, an

optimization function is currently being developed. This feature is very much under-

development at the moment, but a fully operational method of optimization is available.

4.3.1 Direct Collocation with OpenModelica

Just like with JModelica, the method currently available in OpenModelica is base on

the Direct Collocation of section 3.4, though OpenModelica approaches the problem

in a subtly di�erent way.

First the the Modelica and Optimica code is read by the compiler and transformed

into the relative DAE system, then the equations are manipulated with the symbolic

manipulation techniques described in [9] to transform the model in a semi-ODE system

F (ẋ, x, w, u, t) =⇒

ẋ = f(x, u, t)

w = g(x, u, t)
(4.1)

This operation separates the solution of the di�erential equations from the algebraic

ones and eliminates most of those, highly simplifying the problem at the cost of making

the determination of the relevant derivatives harder.

Afterwards, the collocation algorithm is applied and the �rst derivatives are determined

exactly via symbolic di�erentiation if possible, or by numerical �nite di�erences oth-

erwise. The second derivatives on the other hand are approximated numerically either

by Modelica itself with a �nite di�erences method from the �rst derivatives, or after

the problem is transferred to Ipopt as part of the resolution with a limited memory

Broyden�Fletcher�Goldfarb�Shanno (BFGS) algorithm. Contrary to JModelica, with

this method it is necessary to evaluate the derivatives anew at each iteration resulting

in increased computational time.[22]

4.4 New developments

While JModelica is still being developed and expanded, it is a fairly viable tool to be

used for optimization using the method of section 4.2.1. There are also other solution

methods that are not yet available in the stable release of the software but have already
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been successfully tested, such as the Multiple Shooting[21] described in in section 3.3,

and a new algorithm that combine the Multiple Shooting and the Collocation[17].

The optimization with OpenModelica on the other hand is not as mature, but because

of this it is also full of possibilities. Currently, there many experimental �ags available

that modify how the Collocation algorithm is implemented that could hopefully be used

to improve its performance in speci�c cases[22]. It also being studied the possibility of

integrating external tools for the calculation of the derivatives, a critical point in the

optimization, such as described in [7].



Chapter 5

Case Study

The case study used to test the potential of Modelica in modeling and optimizing

power plants is the start-up of a one pressure combined cycle. The process modeled

and optimized is a supposed warm start-up of the plant, i.e. bringing the gas turbine

from 15% to 100% of the full load, starting with a warm steam turbine shaft. The initial

phase of the transient (i.e., the gas turbine start-up and the initial steam generator

start-up) are not considered for simplicity. The objective is to bring the plant to full

load as quickly as possible, the free variables for the optimization are the current load of

the gas turbine and the de-superheating �ow rate. The main constraint of the process is

the preservation of the steam turbine: as the temperature of the steam rises, so does the

temperature of the rotor of the turbine. But because of the signi�cant thermal inertia,

a temperature gradient forms across the rotor resulting in non-uniform dilatation and

thermo-mechanical stress. Generally speaking this phenomenon also interests other

thick-walled components, such as the drum of the evaporator and the superheater

header, but in this work the rotor of the turbine is considered the critical component.

We will study two con�guration of the plant: the complete model that uses both the

load of the gas turbine and the attemperation to control the start-up, and a baseline

model that uses only the load.

The model in [10] was used as a starting point to write the model used in this thesis.

That model was a very simpli�ed version of a combined cycle, among other issues the

steam is approximated as a perfect gas, but it provided some components for this work.

45



46 CHAPTER 5. CASE STUDY

Figure 5.1: Outline of the model of the plant.

5.1 Details of the model

The quantitative data for the modeling of the combined cycle have been taken from a

plant studied in the course �Sistemi Energetici Avanzati� [1]. The main parameters of

the cycle at full load are reported here:

Gas Turbine

Power[MW] 68.095

Turbine Outlet Temperature (TOT)[K] 815

Exhaust gas mass �ow[kg/s] 197.6

Steam Turbine

Power[MW] 29.161

Evaporator Pressure[MPa] 3.240

The outline of the model, as it appears in OMEdit, is reported in �gure 5.1. The

following sections will cover the main components of the plant and modeling assumption

made for each of them.
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5.1.1 Fluids models

While the exhaust gas of the gas turbine can be reasonably approximated as an ideal

gas with constant speci�c heat, the water and steam are not so easily approximated.

The main resource for a model of water and steam, is the IF95 formulation by the The

International Association for the Properties of Water and Steam (IAPWS)[20], but the

correlation implemented in that model are implicit and fairly complicated, making them

not suitable for simulation purpose, let alone optimization. Modelica contains the IF97

formulation that uses explicit correlation that are less complicated than the IF95, but

they still impose an heavy computational load and present occasional discontinuities

that make it unsuitable for our purpose.

So, the approach used was to consider the three states of the water that come into play:

subcooled liquid, saturation, and superheated vapor, and �nd independent functions

for the variation of the properties of interest in each region and at a later stage ensure

their continuity.

Saturation First the saturation region is considered. In this state the �uid has only

one degree of freedom, so all the properties are written as a function of pressure in the

form of polynomials whose coe�cients obtained by means of linear regression of the

values of said properties taken from IF97 tables.

Subcooled liquid Second, in the subcooled region, the properties of interest are the

speci�c volume (v) and the speci�c entalpy (h). By approximating the liquid water as

an incompressible �uid, and considering the boundary condition with the saturation

region, it is possible to write the following equations:

dv(T, p) = 0

v(T, psat(T )) = vsat(T )
(5.1)

dh = cp · dT + v ∗ dp

h(T, psat(T )) = hsat(T )
(5.2)

The dependence of the speci�c volume on the pressure is neglected, and the correlation

of the saturation region is re-used:

v(T, p) = vsat(T ) (5.3)
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Since we have already determined an expression for the speci�c volume, and its varia-

tion is less pronounced than the speci�c heat's, the speci�c entalpy is evaluated as:

h(T, p) = hsat(T ) + vsat(T ) · (p− psat(T )) (5.4)

Superheated vapor Finally, the superheated steam is modeled using a cubic equa-

tion of state based upon a truncated virial expansion as described in [15]:

pr =
Tr

vr
·
[
1 +

(
C1 +

C2

Tα
r

+
C3

T β
r

+
C4

Tr

)
· 1

vr
+

(
C5 +

C6

T γ
r
+

C7

T δ
r

+
C8

Tr

)
· 1

v2r

]
(5.5)

The subscript �r� indicates that all properties are written as dimensionless numbers

using the critical temperature and pressure, the gas constant R and the molar mass of

water.

The twelve constants of the equation are determined by �tting the speci�c heat at

constant volumes and the derivatives of pressure in respect to speci�c volumes and

temperature with the data obtained from the steam tables of the National Institute of

Standards and Technology reported in [16].

With this information we can �nd the speci�c volume as as a function of p and T using

equation (5.5). As for the speci�c entalpy, we will proceed similarly to how we did for

the subcooled liquid. From thermodynamics:

(
∂hr

∂Tr

)
vr

= cv,r + vr ·
(
∂pr
∂Tr

)
vr

(5.6)

With this, using the boundary condition with the saturation region, we obtain:

hr(Tr, vr) = hr,sat(vr) +

Trˆ

Tr,sat

(
∂hr

∂θ

)
vr

dθ (5.7)

5.1.2 Gas Turbine

Because the dynamics of the gas turbine (GT) are much faster than those of the steam

cycle, it is approximated by a generator of hot gas whose temperature and mass �ow(w)

are an algebraic function of the load. In accord with the methods of regulation of a

GT with variable inlet guide vanes (VIGV), up to 50% of the full load the VIGV are
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Figure 5.2: h(load)

supposed to be closed and the exhaust gas mass �ow is constant while the Turbine

Outlet Temperature (TOT), which is the temperature of the exhaust gasses at the

outlet of the GT, grows linearly with load. Afterwards, up to full load, the VIGV are

supposed to be progressively opened and the exhaust gas mass �ow grows linearly with

the load while the TOT is constant.

TOT = TOTmin +
TOTmax−TOTmin

0.5−0.15
· (load− 0.15) load ≤ 0.5

TOT = TOTmax load > 0.5
(5.8)

w = wmin load ≤ 0.5

w = wmax +
wmax−wmin

1−0.5
· (load− 1) load > 0.5

(5.9)

The behavior just described would result in the TOT as a function of the load and

the exhaust gas mass �ow as a function of the load being piecewise de�ned functions

that are continuous but not smooth, as they would present a discontinuity of the �rst

derivative when the load is 50% of the maximum.

This fact would cause problem during the optimization because the derivative are not

de�ned in that point, so the functions are modi�ed to into continuous functions:

TOT =

[
TOTmin +

TOTmax − TOTmin

0.5− 0.15
· (load− 0.15)

]
·[1−h(load)]+TOTmax·h(load)

(5.10)

w = wmin · [1− h(load)] +

[
wmax +

wmax − wmin

1− 0.5
· (load− 1)

]
· h(load) (5.11)
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where h(load) is a continuous approximation of the Heaviside step function based on

the arctangent function as it can be seen in �gure 5.2.

5.1.3 Heat exchangers

The Heat Recovery Steam Generator (HRSG) is modeled as eight separate components

as shown in �gure 5.1. There are four banks of heat exchangers: the economizer, the

evaporator, and two parts for the superheater; and each of them has two components,

one for the gas side and one for the water/steam side. Aside from the evaporator on

the steam side, all the banks are structured in the same way.

First a thermal �node� is de�ned that contains the mass and energy balance equations

for a �nite volume:

∂Mi

∂t
= win,i + wout,i = 0 (5.12)

This mass balance states that there is no variation in the amount of �uid contained in

the �nite volume. Note that according to Modelica's conventions, all the �ow variable

are considered positive when entering the volume.

∂Ei

∂t
= Ci ·

∂Tout,i

∂t
= win,i · hin,i + wout,i · hout,i + Q̇i (5.13)

In this energy balance C is the total heat capacity of the �uid contained in the volume

and the metal walls, while the temperature used to estimate the energy is the temper-

ature of the �uid at the outlet of the volume. The �rst two terms of the right side of

the equation are the advective contributions of the mass �ows entering and exiting the

volume, while Q̇ is the heat �ow exchanged with the other side of the heat exchanger.

The are three thermal resistances in the heat exchange between the two sides of the

HRSG: convective exchange between gas and metal wall, conductive exchange through

the metal wall, and convective exchange between metal wall and water. Given the high

conductivity of the metal and the relatively high convective exchange of steam, those

thermal resistance are neglected and the metal wall on the gas side is considered to

have the same temperature of the water.

The temperatures used to model the heat �ow are the arithmetic means of the inlet

and outlet temperature of the �uids.

Tmean,i =
Tin,i + Tout,i

2
(5.14)
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So the heat �ow is calculated as:

Q̇i = Gi · (Twall,gas,i − Twall,water,i) (5.15)

The parameter G is the thermal conductance relative to the convective heat exchange

on the gas side. The value of Gi has been modeled as a function of the mass �ow of

the exhaust gas (wgas,i) as a power law:

G = Gn,i ·
(

wgas,i

wgas,i,n

)k

(5.16)

where Gn and wn are the values of the thermal conductance and mass �ow at full load.

Each bank of the HRSG on each side is modeled as a number of these thermal nodes

connected in series, outlet of each one connected to the inlet of the next

win,i+1 = −wout,i (5.17)

Tin,i+1 = Tout,i (5.18)

The thermal ports of each node of each component are connected to the thermal ports

of the component representing the other side of the bank. The ports are connected

in reverse order, �rst port of one side to the last port of the other, to model the

counter-current heat exchange.

Q̇i,water = −Q̇m−i+1,gas (5.19)

where m is the total number of nodes of the bank.

The number of thermal ports used for each banks determines the accuracy and com-

plexity of the model: more nodes means a better approximation of the heat exchange

at the cost of increased numerical complexity and vice-versa.

The distributed pressure drop on the pipes is neglected, but the presence of a valve

between the economizer and the evaporator is acknowledged to prevent evaporation of

the liquid in the economizer.

Evaporator The evaporator on water side is modeled di�erently from the other

components of the HRSG since it has to account for the phase change. Note that
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this component contains all parts of the evaporator: the drum, the risers and the

downcomers.

This model is based on the one described in [5]. The same balances of mass and

energy previously described are used, but since the water is in a two-phase state the

temperature is dependent on the pressure. So the state variables used are the pressure

of the drum and the volumetric fraction of vapor.

In order to prevent both over and under�ow a controller is set up to regulate the mass

�ow supplied by the condensation pump so that the volumetric fraction of vapor in the

evaporator is about 50%.

5.1.4 Steam turbine

The steam turbine is supposed to follow Stodola's ellipse law. Also, since the expansion

ratio is high and the variation of the temperature at inlet is low compare to the inlet

temperature itself, the law is simpli�ed into:

wsteam =
wsteam,n

pin,n
· pin (5.20)

where wsteam is the mass �ow of the steam in the turbine, pin is the inlet pressure, and

the subscript �n� indicates the properties at full load. So the steam elaborated by the

turbine depends linearly on the inlet pressure.

5.1.5 Rotor of the steam turbine

The rotor is modeled as an hollow cylinder, the heat �ow is considered one-dimensional

in the radial direction. The temperature distribution is approximated using eight

temperature nodes distributed linearly from the internal to the external radius. The

internal wall is supposed to be adiabatic, while the external wall is supposed to be at

the same temperature of the steam due to the relatively high heat transfer coe�cient

during the transient of interest.

The stress on the outer surface of the shaft is calculated following the theory of linear

deformation as described in [13]:

σ =
αE

1− ν
· (Text − Tmean) (5.21)
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where α is the coe�cient of thermal dilatation, E is Young's modulus, ν is Poisson's

ratio, Text is the temperature on the external surface of the shaft, and Tmean is the

mean radial temperature of the shaft.

For simplicity sake, the initial condition chosen for the shaft is that all the temperature

nodes are at the starting temperature of the steam. While this speci�c temperature

pro�le is unlikely, it is a reasonable starting condition.

5.1.6 Attemperation

The attemperation consist in drawing some water from the economizer and inject it

in the last part of the superheater in order to lower the temperature of the steam and

protect the most thermally strained part of the steam cycle, i.e. the last banks of pipes

of the superheater and the rotor of the �rst stage of the turbine.

The control system is set up as two nested control loops: the internal loop controls

the temperature of the steam immediately after the attemperation using the value of

the liquid mass �ow, while the outer loop controls the temperature of the steam at

the inlet of the turbine using the set point of the internal loop. Since the dynamics

of the internal loop is signi�cantly faster than the external loop, the internal loop is

approximated as an ideal control where the controlled variable perfectly follows the

set-point.

5.2 Set-up of the optimization

In order to better explain the �nal set up of the optimization problem the Optimica

code used is reported here with a following explanation:
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optimization StartupAtt

(objectiveIntegrand = (u1 - 1)^2 +

0.01 * (plant.w_att / w_att_max - 0)^2,

startTime = 0, finalTime = 5000)

CombinedCycle.Optimization.Plants.CC_Att_WarmStartup plant;

Real u1(start = 0.15, fixed = true, min = 0, max = 1);

input Real du1;

input Real u2;

parameter Real sigma_max = 2.8e8;

parameter Real w_att_max = 1.5;

equation

u1 = plant.load;

du1 = der(u1);

u2 = plant.TIT;

constraint

du1 >= 0;

du1 <= 0.1/60;

plant.sigma / sigma_max <= 1;

plant.w_att >= 0;

plant.w_att / w_att_max <= 1;

end StartupAtt;

Leaving the cost function aside for a moment, we can see that the code starts by

importing the full model of the plant with all its equations and variables.

After that a variable u1 and an input du1 are introduced, in the equation section

they are de�ned as equal to the load of the gas turbine and its time derivative, and

together they represent the �rst input of the optimization problem. The derivative du1

is introduced in order to use it in the constraints.

Then the second input u2 is introduced, in the equation section it is de�ned as equal

to the set point temperature of the attemperation.

At the end of the section two constant parameters are introduced, they are the maxi-

mum stress allowed on the rotor of the steam turbine, set at 280MPa; and the maximum

�ow of water drawn from the economizer for the attemperation, set at roughly 1% mass

�ow of water at full power.

The value of the maximum stress has been chosen in order to limit the life-time con-



5.3. SOLUTION OF THE OPTIMIZATION 55

sumption of the component, whose details are outside of the scope of this work, under

the hypothesis that the stress is not subjected to cycles that would induce fatigue.

This hypothesis is veri�ed a posteriori from the results of the optimization.

Lastly, the constraints of the problem are enforced: apart from the already discussed

limits on the stress and attemperation, the load is de�ned as non-decreasing and its

increase is limited at 10% of the full load every minute, and the attemperation mass

�ow is de�ned as non-negative. Physically, it is impossible to have an inversion of the

attemperation mass �ow, but the controller would choose negative values of the mass

�ow if the measured temperature is lower than the set-point. In reality this is solved

with a saturation of the control, but since in our model we have used an ideal controller

to simplify the process we have to impose this constraint during the optimization.

Now we can interpret the cost function: it penalizes both having a load of the gas tur-

bine lower then the full load and using the attemperation, but since the attemperation

has a weighting coe�cient of 0.01 its contribute is much smaller and becomes relevant

only when the turbine is close to full load.

It also important to note that, regardless of the software used to solve the optimization

problem, it is necessary to run a reference simulation to be used as the initial guess

of the solution algorithm. Without a user provided initial guess the solver defaults to

set the inputs to zero for the initial guess, but that is not a feasible solution for the

current model. The actual inputs of this simulation are not critical, while choosing

inputs closer to the optimal solution will lead to a faster convergence, a good software

should be able to eventually reach convergence from most feasible starting trajectory.

The reference simulation used in this work is a regular increase of the load up to full

load in about 10000 s coupled with a weak attemperation across the whole transient.

5.3 Solution of the Optimization

The optimization problem that has been described admits only one solution. At the

end of the optimization process all the software and methods converge to a more or

less precise approximation of it. We will now discuss the solutions of both the baseline

and the attemperation model with the aid of the graphs produced by JModelica of

the most relevant variables, green lines for the baseline model and blue lines for the

attemperation model.

In �gure 5.3 we can see the load of the gas turbine. The trends of the two curves are

similar, but it is clear that by using the attemperation its possible to reach the full

load more than 1000 s earlier.
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Figure 5.3: Solution of the optimization - Load.

Figure 5.4: Solution of the optimization - Stress.
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As for the trend itself, we can see that at �rst the load is increased as fast as possible,

this causes a signi�cant temperature gradient between the cold shaft of the turbine

and the steam whose temperature grows rapidly since at this point increasing the load

of the gas turbine means increasing the temperature of the exhaust gas. As it can be

seen in �gure 5.4, this continues until the stress reaches the maximum allowed value,

at which point the rate of increase of the load is signi�cantly reduced to match the

rate of increase of the steam temperature to the thermal di�usion in the blades of the

turbine. When the load reaches 50% of the full load, the regulation logic of the gas

turbine changes, the temperature of the exhaust gas remains constant, while the mass

�ow increases, so the temperature of the steam starts increasing more slowly with the

load. This permits to use an higher rate of increase and quickly reach full load.

The graph of the stress of both models present some irregularities around the time

when the respective load reaches 50%. This is due to the strong non-linearity of the

regulation logic of the gas turbine and it will be described in detail in section 6.3.

Figure 5.5 reports the temperature of the steam at the inlet of the turbine. The two

lines are almost coincident in this graph, showing that the trajectory of the stress

mainly depends on trajectory of the inlet temperature. The baseline model can obtain

this pro�le only by modulating the load of the gas turbine, while the attemperation

model can use the attemperation to reduce the temperature of the steam at a given

load, or vice-versa admit an higher load for a given value of the temperature.

From the graph of the water mass �ow used for the attemperation of �gure 5.6 we �nd

further con�rmation of this analysis. The attemperation is used as much as possible

until the full load has been reached. If the constraint on the maximum mass �ow were

relaxed, the attemperation would still be used as much as possible, and the trajectory

of the load would still have the same trend, but it would be translated to the top and

left.

Finally, �gure 5.7 shows the evaporation pressure. The main information that can be

gathered is that the evaporation pressure of the steam cycle closely follows the load of

the gas turbine.
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Figure 5.5: Solution of the optimization - Turbine Inlet Temperature.

Figure 5.6: Mass �ow drawn for the attemperation
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Figure 5.7: Solution of the optimization - Evaporator Pressure.
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Chapter 6

Results of the test campaign

We will now summarize how the test campaign was conducted and the parameters of

the performance analysis.

We have selected three optimization methods to be tested:

• standard Direct Collocation with JModelica (JMst);

• Direct Collocation with elimination of algebraic variables with JModelica (JMve);

• Direct Collocation on ODE with OpenModelica (OM).

We have prepared two model to whom the methods can be applied:

• start-up of a Baseline Combined Cycle power plant (BASE);

• start-up of a Combined Cycle power plant with the addition of the attemperation

(ATT).

Referring to the nomenclature of section 3.4, the methods were tested on both models

several times with di�erent discretizations of the time interval, the number of time

steps used are n = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], while the number of collocation

points is one for all the tests, m = 1. We will also refer to the boundary of the time

steps as evaluation points.

Since the model used is fairly simpli�ed, the ideal trajectory of our model is only an

approximation of the ideal trajectory of the real plant. Because of this, increasing the

number of collocation points in order to achieve a better approximation of solution of

the model would be useless since it would add numerical complexity without achieving

a useful payo�.

61
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Note: Because of problem of convergence of the baseline model the data for n =

[90, 100] for the JMst method are not available, and JMve has been been tested on

slightly di�erent values of n, n = [10, 20, 32, 40, 52, 58, 71, 80, 90, 100]. The cause of

this behavior will be discussed further on.

The quantities monitored to compare the performance of the algorithms, as given by

the output of the solver, are:

• �Total number of variables� (Nvar): the number of variables of the optimization

problem after it has been discretized and converted to a NLP;

• �Number of Iterations� (Niter): the number of iterations needed for the method

to reach convergence;

• �Total CPU secs in IPOPT (w/o function evaluations)� (tNLP ): the time used for

solving all the iteration of the NLP minus the time spent evaluating the relevant

functions.

• �Total CPU secs in NLP function evaluations� (teval): the time spent evaluating

the necessary function in each iteration, such as the objective function and the

derivative necessary for the gradient and the hessian matrix.
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Figure 6.1: Baseline model - Number of Variables

Figure 6.2: Attemperation model - Number of variables

6.1 Number of Variables

Figures 6.1 and 6.2 report Nvar as a function of n for each method respectively for the

Baseline and the Attemperation models. As it can be easily seen the trend is almost

linear in every case. Also, while the Attemperation model has more variables than the

Baseline one given the same method, the di�erence is not very signi�cant.

By comparing the methods we can see that the variable elimination method of JMod-

elica works as intended, it produces roughly half as many variables as the standard

method for every value of n. OpenModelica is even better from this point of view: by

transforming the problem to ODE form it further reduces the number of variables to

less than one tenth of the standard JModelica algorithm.
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Figure 6.3: Baseline model - Number of Iterations

Figure 6.4: Attemperation model - Number of Iterations

6.2 Performance analysis

Compared to the number of variables, it is more di�cult to individuate a clear trend

in the number of iterations, �gures 6.3 and 6.4 for Baseline and Attemperation models.

OpenModelica shows a steady increase in the number of iteration, it even requires

almost the same number of iterations for both model, but JModelica presents signi�cant

high spikes in the number of iterations with both methods. These spikes occur for

speci�c values of n, and are caused by the non-linearity in the behavior of the gas

turbine described in section 5.1.2.

Depending on the number of time steps used, the disposition of the evaluation points

across the time interval changes. The non-linear behavior can only be captured if the

evaluation points are dense enough in the region where the non-linearity manifest itself.

This is also the reason why the variable elimination algorithm of JModelica applied to
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Figure 6.5: Baseline model - NLP solution time

Figure 6.6: Attemperation model - NLP solution time

the Baseline model could not converge at all for certain values of n and, as mentioned

earlier, in order to obtain data it was necessary to test it for di�erent values of n.

It is important to note that OpenModelica did not su�er this problem as much as

JModelica.

As mentioned at the start of the chapter, the total time of the optimization has been

divided in two parts tNLP and teval. Figures 6.5 and 6.6 show tNLP for the two models.

It is immediately apparent that OpenModelica spends signi�cantly less time than both

of JModelica's algorithms in the solution of the NLP. Similarly, excluding the same

spikes seen in the iteration graphs, the variable elimination algorithm spends about

half the time spent by the standard algorithm. This was expected since OpenModelica

transforms the problem in ODE form and eliminates as many algebraic variables as

possible, making the NLP problem itself as simple as possible. The same happens with

the variable elimination algorithm, albeit to a lesser extent.
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By comparing the teval, the opposite pattern emerges. Figure 6.7 and 6.8 show the time

spent in function evaluation only for the two JModelica algorithms, while the graph

for OpenModelica for both models is in �gure 6.9. The graphs were separated because

the teval of OpenModelica is many times higher than the teval of JModelica. Again,

this was expected, since OpenModelica needs to re-evaluate the derivatives on each

iteration. The two JModelica algorithms continue to present the usual oscillations, the

actual di�erence between the two algorithms on this parameter is negligible.

If one were to compare to total time of solution, OpenModelica turns out to always be

the slowest software by far, but on the other hand it is also the most stable: it always

converges to a solution and the total time required for the solution depends only on

the number of variables and not on the discretization of time interval itself. While

the solution time should be improved, this reliability is a very important and useful

feature.

Regarding the two JModelica algorithms, they both su�er the same stability problem,

but the variable elimination variant is de�nitely faster than the standard algorithm, so

it can de�nitely be called an improvement.
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Figure 6.7: Baseline model - Function evaluation time

Figure 6.8: Attemperation model - Function evaluation time

Figure 6.9: OpenModelica - Function evaluation time
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Figure 6.10: Baseline model - JMve - Load

Figure 6.11: Baseline model - JMve - Stress

6.3 Discussion of the non-linearity

We will now analyze in detail the e�ects of the non-linear behavior of the gas turbine

on the optimization. In order to do this we will compare the solutions found by the

variable elimination algorithm of JModelica applied to the Baseline model with the

numbers of time steps n = [40, 58, 60]. From the previous section we have seen that

n = 40 converges fast, n = 58 converges very slowly, while n = 60 does not converge at

all. In �gures 6.10 and 6.11 the trajectories of the load and the stress for each solution

are plotted. Note how the solutions start diverging signi�cantly only only when the

50% of the full load is reached. That interval of time corresponds to where the n = 40

and n = 60 solutions present the irregularity in the trajectory of the stress. It is also

worth noting how the n = 60 solution violates the constraint on the non-decreasing
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Figure 6.12: Baseline model - JMve - Load, detail

Figure 6.13: Baseline model - JMve - Stress, detail

load.

Figures 6.12 and 6.13 are the enlargements of the previous graphs in interval from

t = 3400s to t = 4400s enhanced with x mark to indicate the evaluation points.

From these �gures it can be seen how heavily the discretization of the time interval

in�uences how the non-linearity of the gas turbine is approximated. It turns out that

discretization of the n = 58 solution is the best one, but it would have been impossible

to deduce this a priori.

For comparison, �gures 6.14 and 6.15 report the same graphs of the previous �gures

for OpenModelica. If we compare the graphs for the same number of evaluation points,

we see that the trajectory are almost the same, but OpenModelica produces smoother

trajectory in the non-linear region. Speci�cally the n = 40 solution is completely

smooth, and for the n = 60 solution the downward spike is signi�cantly reduced. This
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Figure 6.14: Baseline model - OM - Load, detail

reinforces our conclusion that OpenModelica is more stable than JModelica.

The simplest way to handle this problem would be to use a very large number of

time steps to accurately approximate all non-linearities, but that would increase the

computational cost without signi�cant bene�ts since for a large part of the time interval

an higher density of evaluation points would not improve the approximation of the

solution. It is possible to use a non-uniform grid, but it is generally impossible to

know in advance which part of the time interval needs a shorter time step. A viable

solution would be to run a �rst optimization with a lower number of nodes, see where

the non-linearity takes place, re�ne the grid in a suitable neighborhood and iterate

until a smooth solution is found. Normally special solvers that can vary their time step

during the process of solution would be used to make this process automatic, but as

mentioned at the end of section 3.4 they are not compatible with the direct collocation

method.
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Figure 6.15: Baseline model - OM - Stress, detail
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Chapter 7

Conclusions

The initial prompt of this work was to determine if Object-Oriented modeling could

be used to implement Optimal Control techniques on thermal power plants in order to

increase their �exibility and deal with the new demands of the energy market.

In order to verify that, we used the Modelica language to develop a model of a com-

bined cycle power plant. This model, while simpli�ed, well reproduces all the relevant

characteristics of the real plant. Then we considered a process of warm start-up of

the plant and we tested three di�erent methods of optimization to �nd the optimal

trajectory for all the variables of the plant during the transient.

Two methods were tried as implemented in the software JModelica, the third one was

implemented with the software OpenModelica. All the implemented methods reached

a good approximation of the optimal analytic trajectory, despite the fact that both

software are still under development regarding the optimization functionality and they

have not been validated yet.

Our test campaign revealed that the methods based on JModelica are signi�cantly

faster than OpenModelica. But on the other hand JModelica su�ers from stability

problems. In fact depending on the discretization of the time interval, the time re-

quired to solve the problem may increase a lot, or the algorithm may not converge at

all. OpenModelica does not su�er from this problem, its algorithm always reaches con-

vergence. This is due to the fact that OpenModelica uses two nested nonlinear solvers,

one for the nonlinear algebraic equations in the model, and another one for the NLP,

while JModelica solves both nonlinear problems simultaneously, so it is faster but less

robust.

While this case study is only a simple process, it is still a proof of concept that this

process can be used successfully and could be applied to di�erent types of power plant

to optimize their transitories and improve their �exibility.
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7.1 Future work

The natural continuation of this work is to further validate this process by testing it

on other types of power plants. The current candidates are:

• an Organic Rankine Cycle (ORC) fueled by the waste heat of an internal com-

bustion engine;

• a closed Joule-Brayton cycle whose working �uid is supercritical CO2;

• a once-through steam generator using molten salts as heat source.

From the point of view of the software, there is not a consolidated standard on how

this type of problem should be handled. Even the software we used, JModelica and

OpenModelica, are currently under development and their functionalities are liable to

be modi�ed and augmented with future releases. In particular there are several new

mathematical methods that are about to be released. Given that this is a relatively

new �eld, the mode developed for this work could be useful as a benchmark to test

these future methods.

After interpreting the results of our test campaign, we can point out a speci�c feature

that could considerably improve the performance of all the methods: that is the support

for variable-step solvers. Section 6.3 has shown that the accuracy in handling the

non-linearities of the model strongly depends on the discretization of the time interval.

The best way to solve this problem would be to implement an automatic estimation of

the error to detect the non-linearities and to allow the algorithm to reduce the size of

the time step in their proximity.



Appendix A

Numerical Data of the test Campaign

Baseline model JModelica standard algorithm
n 10 20 30 40 50 60 70 80 90 100

N var 5884 11294 16704 22114 27524 32934 38344 43754
N iter 24 32 34 39 52 47 57 56
t NLP 1.099 5.223 6.301 9.095 19.036 14.342 28.284 32.925
t eval 0.13 0.356 0.547 0.788 1.308 1.413 2.049 2.274

Table A.1: Baseline Model - JModelica standard algorithm

Baseline model JModelica variable elimination
n 10 20 32 40 52 58 71 80 90 100

N var 2771 5351 8447 10511 13607 15155 18509 20831 23411 25991
N iter 24 26 28 34 33 99 40 35 80 51
t NLP 0.589 1.081 2.016 3.964 5.306 46.095 9.971 10.014 22.169 15.535
t eval 0.128 0.188 0.307 0.629 0.778 2.928 1.311 1.32 3.546 2.352

Table A.2: Baseline Model - JModelica variable elimination
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Baseline model OpenModelica
n 10 20 30 40 50 60 70 80 90 100

N var 340 680 1020 1360 1700 2040 2380 2720 3060 3400
N iter 22 33 39 49 60 77 71 93 91 106
t NLP 0.166 0.304 0.489 1.142 1.215 2.11 2.293 3.869 4.247 5.352
t eval 24.77 52.82 93.52 217.0 240.1 459.05 486.8 816.0 862.5 1139

Table A.3: Baseline model - OpenModelica

Attemperation model JModelica standard algorithm
n 10 20 30 40 50 60 70 80 90 100

N var 5980 11480 16980 22480 27980 33480 38980 44480 49980 55480
N iter 53 80 118 230 99 103 143 60 111 110
t NLP 3.484 10.036 27.798 54.649 30.567 43.478 70.533 35.187 87.635 86.415
t eval 0.344 0.934 1.812 4.699 2.51 3.136 5.154 2.13 5.202 5.534

Table A.4: Attemperation model - JModelica standard algorithm

Attemperation model JModelica variable elimination
n 10 20 30 40 50 60 70 80 90 100

N var 2834 5474 8114 10754 13394 16034 18674 21314 23954 26594
N iter 30 58 108 102 73 105 148 163 184 121
t NLP 0.886 4.275 16.007 15.344 14.654 27.754 45.618 63.649 83.033 53.94
t eval 0.156 0.579 1.561 1.601 1.706 2.892 4.78 6.017 7.699 5.702

Table A.5: Attemperation model - JModelica variable elimination

Attemperation model OpenModelica
n 10 20 30 40 50 60 70 80 90 100

N var 360 720 1080 1440 1800 2160 2520 2880 3240 3600
N iter 25 40 54 65 72 85 89 93 97 101
t NLP 0.221 0.397 0.851 1.497 1.862 3.128 3.449 4.219 4.814 5.686
t eval 27.42 78.95 161.4 303.2 399.6 606.5 736.4 837.2 974.7 1169

Table A.6: Attemperation model - OpenModelica
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