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ABSTRACT 
 

Epilepsy is a complex neurological disease in which seizures constitute the main 

clinical manifestation. Nowadays it is one of the most frequent neurological disorders 

and affects around 50 million people worldwide. For about two thirds of the patients, 

seizures can be controlled through the use of antiepileptic drugs. However, for the 

remaining one third, the surgical resection of the region responsible of the production 

and propagation of seizures (Epileptogenic Zone, EZ) may be the only way to 

suppress or reduce seizures. 

Bancaud & Talairach, as part of the Saint-Anne group, developed a methodology 

called Stereoelectroencephalography (SEEG), which aims to establish the extent of 

the EZ, in order to plan its surgical resection.  SEEG is ideal for studying the 

relationships between the structures concerned in seizure production and propagation, 

and can potentially contribute to the understanding of the origin and spread of 

seizures. 

 

The present study, aims to obtain a quantitative description of the evolution of the 

synchronicity levels among brain areas before and during seizures by analyzing 

SEEG data.  

 

CLINICAL DATA 

The data used in the present study comes from the pre-surgical evaluation performed 

in 14 neurosurgical patients affected by Focal Cortical Dysplasia Type II. All the 

patients had a history of drug-resistant epilepsy and were candidates for the surgical 

removal of the epileptic focus. The recordings were performed during sleep by 

stereotactically implanted depth multi-lead electrodes (Stereo-EEG, SEEG). The 

SEEG signals were recorded using a 192-channel recording system (NIHON-

KOHDEN NEUROFAX-110) with a sampling rate of 1000Hz.  For each patient and 

recording, the information regarding the temporal moments in which the seizures 

started (ictal events) were provided by an expert neurologist. This info was obtained 

from the videos of the patients corresponding to each recording (Video-SEEG).  

Finally, bipolar montages formed by adjacent SEEG leads (of the same depth-

electrode) in grey matter were suggested by the neurologist in order to minimize the 
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common electrical noise and maximize the spatial resolution. All the recordings and 

data treatment procedures were approved by the corresponding Ethical Committee 

and all the patients provided a written informed consent. 

 

METHODS 

After converting the SEEG data from the Nihon-Kohden format into Matlab arrays 

and calculating the bipolar montages suggested by the expert neurologist, standard 

pre-processing techniques were applied over the data under the Matlab environment 

using the EEGLAB toolbox. The data was down-sampled to 250Hz in order to reduce 

the computational cost of the processing. The resampling was performed after low-

pass filtering (120Hz, order: 110) to avoid aliasing. Then two notch filters (at 50Hz 

and 100Hz, order: 414 each one) were used in order to suppress the noise of the 

electrical power line and its harmonics. In addition, a high-pass filter (0.01Hz, order: 

82500) was used in order to attenuate the DC component without removing the 

information related to the infraslow oscillations. Finally, the data were normalized by 

subtracting the mean value and dividing by the standard deviation. All the 

implemented filters were Zero-Phase Finite Impulse Response (FIR) ones.  

 

Moreover, a Principal Component Analysis-based K-means clustering method is 

proposed, to be applied into the SEEG data.  Three time intervals of interest are 

defined; they are consecutive time spans, 100 seconds each, starting 100 seconds 

before the beginning of the seizure.  On each of the intervals previously specified, the 

data is divided into short epochs (4 seconds each). Next, for each epoch, the 

decomposition into Principal Components is performed. Then, the SEEG-channels 

are grouped using the contribution (i.e. the weights of the mixing matrix) of the 

Principal Components which explain the 90% of the variance in the original data as 

features for a K-means clustering. Since the K-means algorithm requires the prior 

selection of K (the number of clusters), an exploration and evaluation of different K 

(from 2 to 15) is performed and the “ideal” one is selected based on the mean value of 

their silhouette coefficients. Finally, the representative SEEG channels per each 

partition are chosen as those closer to the centroid of each cluster.  
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Along the epochs, the different partitions obtained by applying the previously 

explained method could represent an indicator of the evolution of the levels of 

synchrony between diverse brain areas (SEEG-channels) before and during seizures. 

To my knowledge, in literature this kind of clustering hasn’t been applied yet with 

this purpose. 

Finally, since the PCA decomposition is performed separately for each epoch, a 

further indication of the evolution of this synchronicity levels might be given by the 

changes in the number of principal components needed to explain the 90% of the total 

variance over the epochs. 

 

RESULTS 

 

The evolution of the K-values along each of the time epochs was analyzed for the 

three pre-defined intervals. This evolution shows that, once the seizure starts, the 

Stereo-EEG contacts tend to be grouped into a lower number of clusters per partition. 

This also means that the average number of Stereo-EEG bipolar leads grouped per 

cluster along the epochs increases in relation to the ictal event. Furthermore, the 

evolvement of the number of principal components needed to explain the 90% of the 

variance on the original data for each of the time epochs was studied. The results 

exhibit a decline towards a lower number of components needed after the ictal event. 

All these findings suggest a higher seizure-related synchronicity among the electrical 

activity of the different brain areas covered by the Stereo-EEG electrodes. The 

statistical significance of these findings was positively evaluated according to the 

Kruskal-Wallis Test followed by a Bonferroni corrected Multiple Comparisons 

procedure. 

 

Moreover, the way in which the Stereo-EEG bipolar leads are grouped along the 

partitions was described (i.e. the names of the SEEG channels forming each group 

were presented) and the representative channels per each partition were calculated. 

However, some additional medical information should be known in order to stablish 

further conclusions in this regard. 

 

Key words: Epilepsy, Stereo-EEG, PCA, K-means Clustering, Brain Synchronicity, 

Sleep. 
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SOMMARIO 

 

L'epilessia è una malattia neurologica complessa di cui le convulsioni costituiscono la 

principale manifestazione clinica. Oggi è uno dei disturbi neurologici più frequenti e 

colpisce circa 50 milioni di persone in tutto il mondo. Per circa due terzi dei pazienti, 

le convulsioni possono essere controllate attraverso l'uso di farmaci antiepilettici. 

Tuttavia, per il rimanente terzo, la resezione chirurgica della regione responsabile 

della produzione e propagazione delle convulsioni (Zona Epilettogena, EZ) può 

essere l'unico modo per eliminare o ridurre le convulsioni. 

 

Bancaud & Talairach, come parte del gruppo Saint-Anne, hanno sviluppato una 

metodologia denominata Stereoelettroencefalografia (SEEG), mirata a stabilire 

l'entità della Zona Epilettogena, al fine di programmare la sua resezione chirurgica. 

La SEEG è ideale per lo studio dei rapporti tra le strutture interessate nella 

produzione e propagazione delle crisi epilettiche, e ha il potenziale per contribuire 

alla comprensione dell'origine e la diffusione di queste crisi. 

Nel presente studio, si propone di ottenere una descrizione quantitativa 

dell'evoluzione dei livelli di sincronicità tra aree cerebrali, prima e durante la crisi, 

analizzando dei dati SEEG. 

 

DATI CLINICI 

I dati utilizzati in questo studio derivano dalla valutazione pre-chirurgica eseguita in 

quattordici pazienti affetti da Displasia Corticale Focale (FCD) di tipo II. Tutti i 

pazienti avevano una storia di epilessia farmaco-resistente e sono stati candidati per la 

rimozione chirurgica del focus epilettico. Le registrazioni sono state effettuate 

durante il sonno tramitte l'impianto stereotassico di elettrodi di profondità (Stereo-

EEG, SEEG). I segnali SEEG sono stati registrati usando un sistema a 192 canali 

(Nihon-KOHDEN Neurofax-110) con una frequenza di campionamento di 1000Hz. 

Per ciascun paziente e registrazione, le informazioni riguardanti i momenti in cui le 

convulsioni sono state iniziate (ictal events) sono stati forniti da un esperto neurologo. 

Questa informazione è stata ottenuta dai video dei pazienti corrispondenti ad ogni 

registrazione (Video-SEEG). Infine, una serie di montaggi bipolari formati da contatti 

SEEG adiacenti (dello stesso elettrodo) allocati nella materia grigia sono stati 
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suggeriti dal neurologo con lo scopo di minimizzare il rumore di modo comune e 

massimizzare la risoluzione spaziale. Tutte le registrazioni e le procedure di 

trattamento dei dati sono state approvate dal Comitato Etico corrispondente e tutti i 

pazienti hanno fornito un consenso scritto. 

 

METODI 

Dopo convertere i dati SEEG dal formato Nihon-Kohden in array Matlab e calcolare 

dei montaggi bipolari suggeriti dal neurologo, delle tecniche di pre-elaborazione 

standard sono state applicate sui dati tramitte Matlab e il Toolbox EEGLAB. I dati 

sono stati sottocampionati a 250Hz per ridurre il costo computazionale delle 

elaborazioni successive. Il ricampionamento è stato eseguito dopo un filtraggio passa-

basso (120Hz, ordine: 110) per evitare l'aliasing. Poi due filtri notch (a 50Hz e 

100Hz, ordine: 414 ciascuno) sono stati utilizzati per sopprimere il rumore della linea 

di alimentazione elettrica e le sue armoniche. Inoltre, un filtro passa-alto (0,01Hz, 

ordine: 82500) è stato utilizzato per attenuare la componente continua senza 

rimuovere le informazioni relative alle infraslow oscillations. Infine, i dati sono stati 

normalizzati sottraendo il valore medio e dividendo per la deviazione standard. Tutti i 

filtri utilizzati sono dei Finite Impulse Response (FIR) a fase nulla. 

 

Inoltre, un metodo di clustering (k-means) basato sull'Analisi delle Componente 

Principali (PCA) da applicare nei dati SEEG e' stato proposto. Tre intervalli di tempo 

da analizzare sono definiti; sono intervalli di tempo consecutivi, di 100 secondi 

ciascuno, partendo da 100 secondi prima dell'inizio delle crisi. Su ciascuno degli 

intervalli specificati in precedenza, i dati vengono suddivisi in brevi epoche (4 

secondi ciascuna). Quindi, per ogni epoca, viene eseguita la decomposizione in 

Componenti Principali. Poi, i canali SEEG vengono raggruppati utilizzando il 

contributo delle componenti principali che spiegano il 90% della varianza nei dati 

originali (cioè i pesi della 'mixing matrix') come 'features' per una clusterizzazione 

alla K-means . Poiché il algoritmo K-means richiede la preventiva selezione di K (il 

numero di cluster), un'esplorazione e valutazione di diversi K (da 2 a 15) viene 

eseguita e quello "ideale" è selezionato in base al valore medio dei suoi coefficienti di 

Silhouette loro. Infine, i canali SEEG rappresentativi per ogni partizione sono scelti 

come quelli più vicini al centroide di ogni cluster. 
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Lungo le epoche, le diverse partizioni ottenute applicando il metodo precedente  

potrebbero rappresentare un indicatore dell'evoluzione dei livelli di sincronia tra 

diverse aree cerebrali  (SEEG canali) prima e durante la crisi. A la mia conoscenza, in 

letteratura, un metodo di questo tipo non è stato ancora applicato con lo stesso 

proposito. 

 

Infine, poiché la decomposizione PCA viene eseguita separatamente per ogni epoca, 

una ulteriore indicazione della evoluzione di questi livelli sincronicità potrebbe essere 

fornita dalle variazioni nel numero di componenti principali necessari per spiegare il 

90% della varianza totale sui epoche. 

 

RISULTATI 

L'evoluzione dei valori di K lungo ciascuna delle epoche è stata analizzata per i tre 

intervalli predefiniti. Questa evoluzione dimostra che, una volta iniziata la crisi, i 

contatti Stereo-EEG tendono ad essere raggruppati in un minor numero di cluster per 

partizione. Questo significa anche che il numero medio contatti SEEG raggruppati per 

cluster lungo le epoche aumenta in relazione alle crisi. Inoltre, l'evoluzione del 

numero di componenti principali necessari per spiegare il 90% della varianza dei dati 

originali per ciascuna delle epoche di tempo è stato studiato. I risultati mostrano un 

declino nel numero di componenti necessari dopo l'inizio delle crisi. Tutti questi 

risultati suggeriscono una maggiore sincronicità, tra l'attività elettrica delle diverse 

aree cerebrali coperte dagli elettrodi stereo-EEG, in relazione alle crisi. La 

significatività statistica di questi risultati è stata positivamente valutata secondo il test 

di Kruskal-Wallis seguito da una procedura di comparazioni multipli con correzione 

alla Bonferroni. 

 

Inoltre, il modo in cui i contatti Stereo-EEG sono raggruppati lungo le epoche è stato 

descritto (cioè i nomi dei canali SEEG formanti ciascun gruppo sono stati presentati) 

e sono stati calcolati i canali rappresentativi per ogni partizione. Tuttavia, ulteriori 

informazioni mediche al riguardo dovrebbero essere note per stabilire ulteriori 

conclusioni in questo senso. 

 

Parole chiavi: Epilessia, Stereo-EEG, PCA, K-means, Brain Synchronicity, Sonno. 
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INTRODUCTION 
 

 

 

The brain is the most complex part of the human body, and it is an exceptional one. 

This three-pound organ allows us to perform every particular task of our daily lives. It 

is the source of “intelligence, interpreter of the senses, initiator of body movement, 

and controller of behaviour” [1]. It is the origin of all the qualities that define our 

humanity [2]. 

 

When the brain is healthy, it works perfectly. However, when problems occur, they 

could lead to different kind of neurological disorders and the results can be 

devastating. Some of the most common types of disorders include: “neurogenetic 

diseases (such as Huntington’s disease and muscular dystrophy), developmental 

disorders (such as cerebral palsy), degenerative diseases of adult life (such as 

Parkinson’s disease and Alzheimer’s disease), metabolic diseases (such as Gaucher’s 

disease), cerebrovascular diseases (such as stroke and vascular dementia), trauma 

(such as spinal cord and head injury), convulsive disorders (such as epilepsy), 

infectious diseases (such as AIDS dementia), and brain tumors” [1].  

 

Epilepsy in particular, has probably been present in humans since their early 

evolution 5 million years ago [3] and for centuries the understandings of its origins 

was confounded by the dramatic and bizarre manifestations of seizures [4]. Epilepsy 

was associated with possession by evil spirits and patients with epilepsy were 

discriminated and prosecuted as being affected by magic or supernatural entities [3]. 

In more recent times the understanding of the neurological nature of epilepsy has 

evolved and it is now perceived as a focal or brain network disease [5]. 

 

Epilepsy is a generic name given to a batch of intricate brain disorders, comprising a 

broad range of causes and manifestations. The occurrence of epileptic seizures is the 

characterizing factor in this large number of disorders. [3]. Nowadays it affects 

around 50 million people worldwide [6] and it is one of the most frequent 

neurological disorders, with an incidence of 50/100000/year and a prevalence of 0.5-

1% [5].  
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In many cases epileptic seizures can be controlled by antiepileptic drugs, however, 

they are ineffective in about one third of the patients [6] [5]. In these patients the 

surgical resection of the epileptogenic zone (EZ), “the cortical region responsible for 

the onset, early organization, and propagation of seizures” [7], may be the only way to 

suppress or reduce seizures. Stereoelectroencephalography (SEEG) aims to establish, 

based on ictal anatomo-electro-clinical correlations, the extent of the EZ [8] [9], in 

order to plan the surgical resection of the cortical area [9]. It constitutes a mean for 

studying the relationships between the structures concerned in seizure production and 

propagation [5] and can potentially contribute to the understanding of the origin and 

spread of seizures [10].  

 

In the present study, the SEEG data obtained from the pre-surgical evaluation 

performed in 14 neurosurgical patients affected by Focal Cortical Dysplasia Type II 

are used in order to obtain a quantitative description of the evolution of the levels of 

synchrony among brain areas before and during seizures. This is achieved by 

applying a Principal Component Analysis-based K-means clustering algorithm over 

different epochs along the seizure events. 

 

The present thesis work is structured as follows: 

 

The Chapter 1 is an introductory one. Firstly, it gives an introduction to epilepsy, its 

classification and its relation with sleep. Then, Stereo-EEG, the concept of 

Epileptogenic Zone (EZ) and their importance in epilepsy surgery are presented. 

Finally, a general overview about the main brain rhythms found in literature is 

performed.  

 

Chapter 2 describes the Principal Component Analysis-based K-means clustering 

method applied/proposed in the present thesis work. In order to do it, first, it 

illustrates each method (PCA and K-means clustering) separately. Then, it elucidates 

how to combine them in order to achieve the goals of the present study. 
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Chapter 3 presents the results of the work. First of all, it describes the data used and 

the pre-processing methods performed over it. Then it shows the outcome of each 

step of the implemented algorithm and discusses the final results obtained. 

 

Finally, the conclusions of the work are presented and some possible future 

developments of the work are suggested. 
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CHAPTER 1 

 

An Introduction to Epilepsy, Stereo-EEG and 

Brain Rhythms 
 

 

 

1.1 Epilepsy  

 

Epilepsy is the name given to a set of complex brain disorders, comprising a broad 

range of manifestations provoked by a wide variety of causes [3]. The common factor 

in this large number of disorders is the occurrence of epileptic seizures [3]. “Epilepsy 

is a chronic condition of repeated seizures” [4]; seizures constitute the defining 

symptom [3], the principal clinical manifestations [8]. 

 

Seizures are transitory brain disruptions resulting in abnormal neuronal activity [4]. 

They can be characterized either by neuronal underactivity, generating negative signs 

and symptoms such as paralysis, impairment of consciousness and blindness, or over-

activity, producing positive symptoms such as perception of flashing lights or the 

jerking of an arm .[3]. These signs, however, depend on the location and extent of the 

affected brain regions and may be consequence of the activity of normal tissues (with 

normal cellular and network properties), considering that in some cases (as in focal or 

partial seizures), the abnormal activity can spread beyond its original boundaries [4]. 

 

Seizures characterized by an uncontrolled excessive activity of either part or all of the 

central nervous system constitute the most common form of epileptic seizures [11]  

[3],  and “is one of the most dramatic examples of the collective electrical behaviour 

of the mammalian brain”. “They can quite literally hijack the normal functions of the 

brain” [4]. 

 

Finally, it’s important to mention that, although Epilepsy is defined by the occurrence 

of seizures (which can generate further symptoms), these (seizures) could be just “the 

tip of the iceberg” of the manifestations of epilepsy. Epilepsy implies a disturbance of 
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the brain function, which could be expressed in various different ways, from the most 

observable ones  (seizures), to less obvious symptoms like sensory/psychic 

experiences, or apparently unrelated ones like depression, cognitive, behavioural 

disorders, and even sudden death. [3]. 

 

 

1.1.1  Epilepsy Classification 

 

 Epilepsy has probably been present in humans 

since their early evolution 5 million years ago. 

The first recorded evidence of epilepsy is found 

in the ancient Indian medicine (around 4500–

1500 BC) [3]. However, the first trial to describe 

and classify the disease is dated from 2000 BC. 

The Sakikku (‘all diseases’) (1067 BC), a 

Babylonian cuneiform text shown in Figure 1, is 

considered as the oldest available written 

documentation regarding seizures. It deals 

mainly with the clinical manifestations of 

epilepsy in a very descriptive and well-structured 

way. Even a distinction between seizures with 

and without loss of consciousness is stablished [8]. In this text, seizures are attributed 

to the activities of demons [3]. The description of the disease includes, for example, a 

warning sensation by the patient that is possessed by a demon, recognizes the onset 

and cries ‘it is he again’ [8] 

 

The first differentiation of seizure events from a semiological point of view is found 

in Hippocrates’ famous treatise “On the sacred disease” [8], which is also the first to 

clarify that epilepsy is just a natural brain disease and not a ‘sacred’ one [3]. After 

that, many attempts were carried out in order to classify the disease. Particularly 

relevant is the one performed in 1824 by Louis Florentin Calmeil, who individuated 3 

 
Figure 1. One face of the Babylonian 

cuneiform text of the Sakkiku (c.1050 

BC) [8].  
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types of epilepsy based on the severity of their clinical manifestations (semiology): 

‘Grand mal’, ‘Petit mal’ and ‘Abscences’. [3] 

 

 ‘Grand mal’ epilepsy, also known as ‘generalized tonic-clonic’ [3], is 

characterized by severe neuronal discharges in all areas of the brain. They may 

include the cortex, deeper parts and even in the brain stem [11]. Sometimes the 

discharges transmitted through the spinal cord cause generalized tonic seizures (the 

patient falls to the ground and rigidly extends all extremities) followed by clonic 

spasmodic muscle contractions (jerking in all extremities) [4]. During the attack the 

patient may ‘swallow’ his tongue, have difficulty for breathing, and the signals 

transmitted from brain to the viscera might cause urination or defecation. It usually 

lasts from few seconds to some minutes (3 or 4) and is also characterized by a post-

seizure depression of the entire nervous system [11]. 

 ‘Petit mal’ involves the thalamo-cortical brain activating system [3] and is 

defined by the presence of dizziness, head turning, arm extension, or 

unresponsiveness. The patient usually  experience from 3 to 30 seconds of reduced 

consciousness with some twitch-like contractions of muscles usually in the head 

region (for example, blinking of the eyes). It could or not precede grand mal attacks 

[11]. 

 ‘Absences’ are characterized by short interruptions of consciousness. The 

patient stop his current activity, and although his senses are aroused, he is temporary 

impeded from impressions [3]. 

 

The current classification of epileptic seizures was proposed in 1981 by the 

Commission on Classification and Terminology of the International League Against 

Epilepsy. It was predetermined to be phenomenological, taking into account that at 

that time, the knowledge about the underlying neural mechanisms and anatomical 

aspects of seizures was limited. This classification is widely accepted nowadays and 

is presented in Table 1 [4].  
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 In this way, although the 

details of the classification are 

under continuous discussion, 

seizures can be allocated into 

two main categories: focal (or 

partial) and generalized [4]. 

 

 Focal seizures derive 

from a small group of neurons 

(the seizure focus) and their 

symptoms depend on the 

location of the focus in the 

brain. They can be classified 

as simple partial when there is 

no alteration of 

consciousness, or complex 

partial when there is an 

alteration [4]. However, there 

is still some deliberation in 

literature regarding this 

classification, taking into 

account that consciousness 

impairments are difficult to 

define [3]. 

 

Very often focal epilepsy is caused by localized lesions or abnormalities in the brain 

such as a tumor, a destroyed area of brain tissue, a scar tissue affecting the adjacent 

areas or a congenitally unbalanced circuitry [11] 

 

The onset of a focal seizure is generally anticipated by symptoms called auras. They 

represent the earliest manifestation of a focal seizure and are caused by the electrical 

 

Table 1.  International classification of epileptic seizures 

proposed by the Commission on Classification and 

Terminology of the International League Against Epilepsy 

(1981) [4]. 
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activity originated in the focus. Examples of auras include peculiar sensations such as 

a sense of fear or the perception of a specific odor [4]. 

 

In some cases, the strong electric signals originated in the focus could spread further, 

excite the mesencephalic portion of the brain and generate a grand mal attack [11]. In 

this case it is said that the focal seizure has ‘secondarily generalized’ [4]. 

 

 Generalized seizures comprise both brain hemispheres since the beginning 

and start without an aura. They are also called ‘primary generalized’ in order to 

differentiate them from seizures that originate in a focus and then generalize 

secondarily.  They can be also divided into convulsive or non-convulsive depending 

on whether the clinical manifestations include tonic or clonic movements. [4] 

 

Finally, in the Appendix A, a 5-tier classification of epilepsy is reported. It is 

presented here since it considers epilepsy from different levels, providing a holistic 

view of the disease. In fact, two of these five tiers (semiological characteristics of the 

seizures and seizure frequency) define the epileptic seizures, while the other three 

(etiology, related medical conditions and location of the epilepsy) define what is 

producing the epilepsy and the location of the brain abnormality. 

 

1.1.2  Focal Cortical Dysplasia (FCD) 

 

Focal cortical dysplasia is a malformation of cortical development [12]. It was first 

identified by Taylor and colleagues in 1971. At that time they reported the 

morphological and cellular abnormalities found in brain tissue from therapeutic 

resections. Taylor considered FCD as a developmental malformation, a view that is 

still shared by researchers nowadays. [13] 

 

The cause of FCD is not well established neither an explanation for its ability to cause 

seizures. Apparently both neurodevelopmental abnormalities and possible premature 

neurodegeneration are related [13]. Moreover, FCD may involve any part of the 

brain, may vary in size and location and may be multifocal. It is also responsible for 



21 

 

almost half of the intractable epilepsy cases, but at the same time it is characterized 

by good treatment outcomes [12]. In fact, drug treatment is usually ineffective, while 

surgical treatment has proved to be curative in many cases [13].  According to the 

literature, 60–80% of patients remain seizure-free after surgery [12]. 

 

Various classifications of the complex structural abnormalities of focal cortical 

dysplasia have been proposed. Currently, three types of cortical dysplasia are 

recognized according to the histopathological findings [12].  The most recent 

classification (2011) is presented in Table 2. 

 

Table 2. Classification system of focal cortical dysplasia by Blumcke et al. 2011 [12]. 

 

In particular, FCD type II, also referred as FCD 

type Taylor [12], “is one of the most common 

neuropathological findings in tissue resected 

therapeutically from patients with drug-

resistant epilepsy”. Its semiology however, is 

diverse, and not specific to the particular 

pathology [13].  

 

As stated before, epileptic seizures in FCD are 

difficult to control with pharmacological 

treatment and are usually intractable. Then, the 

surgical treatment emerges as the next therapeutic option; Procedures as the resection 

of lesion, lobectomies and even hemispherectomies are usually performed [12]. In 

order to do them, pre-surgical evaluations oriented to determine the epileptogenic 

focus must be done. Positron Emission Tomography (PET), Diffusion tensor imaging 

 
Figure 2. T1 weighted volumetric 

coronal image. Typical imaging 

appearance of FCD type II. An area of 

increased signal in the subcortical 

region is shown [12]. 
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(DTI), Magnetoencephalography (MEG) and Magnetic resonance imaging (MRI) are 

often the first methods to be used [13], while Intracranial EEG can be performed 

when the other methods result insufficient [12]. Figure 2 shows the typical Magnetic 

Resonance Imaging appearance of FCD type II. 

1.1.3 Epilepsy and Sleep 

Sleep is a set of active brain states in which many important biological mechanisms 

take place (e.g. memory consolidation or plasticity). Based on EEG, sleep can be 

classified into two main categories: rapid eye movement (REM) sleep and non-REM 

(NREM) sleep. In addition, NREM sleep can be subdivided into four stages. Stages 

I/II are considered light sleep, while stages III/IV are part of the deep sleep phase. 

This set of stages is cyclic throughout the night, with a period of around 90 minutes. 

Deep sleep appears mainly in the first part of the night, while REM sleep tends to 

occur during the morning. Moreover, “the transition between wakefulness and sleep 

and between different sleep stages is often gradual and the mechanisms controlling 

these transitions are poorly understood” [14]. Figure 3 shows a typical hypnogram 

describing the different stages of sleep. 

 
 

Figure 3.  Normal hypnogram. Notice how deep sleep occurs in the first parts of the night and 

REM sleep towards morning [14]. 

 

The potential relationship between sleep and epilepsy has been recognized since 

ancient times [8]. For more than 2000 years, scientists have perceived the 

bidirectional connection among them [15]. However, till some decades ago, the 
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knowledge in this field was based only on clinical observations [8] regarding mainly 

the relationship between seizures timing and the sleep-wake cycle [15]. While in the 

last years, the use of video-EEG and polysomnography has importantly enlarged the 

previous observations [8]. 

 

In 1880, Féré followed the seizure occurrence for a three-month period in 

hospitalized patients, identifying that nearly two-thirds of them occurred between 8 

p.m. and 8 a.m. and that insufficient sleep seemed to activate seizures. He further 

observed that the sleep onset and awakening were periods of particular vulnerability 

for nocturnal seizures, that nocturnal seizures most often occurred near the end of the 

sleep period (around 5 a.m. to 6 a.m.) and less often 1–2 hours after sleep onset and 

that diurnal seizures were clustered in the early morning and late afternoon [8]. 

 

More recently, video-EEG monitoring techniques suggest that “sleep appears to 

activate frontal seizures more often than temporal seizures. Secondary generalization 

of partial seizures tends to occur more often during sleep (28%) compared to 

wakefulness (18%), and frontal lobe seizures tend not to secondarily generalize 

during sleep. In addition,  57% of frontal lobe seizures arose from sleep compared to 

only 44% of neocortical temporal, 40% of mesial temporal, and 13% of parieto-

occipital lobe seizures” [8]. 

 

In literature it is commonly accepted that epileptic seizures are more likely to happen 

in NREM than in REM sleep [16]. NREM sleep tends to facilitate partial seizures, 

especially at stages 1 and 2 (lighter stages, non-SWS), while REM sleep seems to 

inhibit them [17]. In fact, seizures rarely occur during REM sleep [14]. Moreover, the 

neural networks generating wakefulness, NREM and REM sleep engender diverse 

physiological characteristics which influence the likelihood of having a seizure. Two 

of the main state-specific factors that determine seizure propagation are the degree of 

synchronization of cellular discharges and the presence or absence of antigravity 

muscle tone. On the one hand, NREM sleep is characterized by a state of EEG 

synchronization and a relative preservation of antigravity muscle tone. 

Thalamocortical rhythms and synchronous oscillations of cortical neurons that 
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generate sleep spindles, K complexes and tonic background slow waves are activated 

during NREM, promoting seizure propagation during this particular stage [8] [14]. In 

this phase, “the recruitment of a critical mass of neurons needed to initiate and sustain 

a seizure occurs” [16]. On the other hand, REM sleep is characterized by 

desynchronization of the EEG and loss of skeletal muscle tone. This 

desynchronization of the EEG blocks seizure propagation during REM phases and 

wakefulness. The absence of antigravity muscle tone during REM sleep impedes the 

expression of seizures, while its preservation during NREM allows the appearance of 

seizure-related movements [8]. 

 

Finally, it is particularly important for the present study to mention that in some types 

of epilepsy, such as FCD Type II (Taylor), has been demonstrated an increase in the 

risk of sleep-related seizures [18].  

 

1.2 Stereo-EEG (SEEG) 

 

During the last decades significant improvements have been done in the field of 

epilepsy surgery, leading to the development of various techniques, concepts and 

methodologies aimed to increase the safety, accuracy and efficacy of both presurgical 

evaluations and surgical interventions [9]. 

 

Back in the first half of the last century Penfield & Jasper were the firsts to point out 

the usefulness of preoperative electrocorticography in epileptic patients [9] [8]. Since 

them, many studies have indicated the potential advantages of recording electrical 

activities of brain structures using implanted cortical electrodes. However, the first 

attempts were based on ‘free hand’ techniques, leading to an imprecise targeting of 

the intracerebral structures [9]. Essential enhancements were achieved thanks to the 

employment of stereotactic methods for targeting intracranial structures, which allow 

a precise identification of non-visualized anatomic structures by using a three-

coordinate system and by the introduction of the concept of Epileptogenic Zone (EZ) 

[8]. 
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Human-oriented stereotactic devices were designed by Spiegel and Wycis in 1947 

and the first reports regarding their employment in recordings from deep brain 

structures are dated to 1950 [8]. Without a doubt, the arrival of stereotactically guided 

studies decidedly improved the safety and accuracy of these procedures [9]. In 

addition, the use of stereotactical methods applied to epileptic patients in the 

Neurosurgical Unit of the Saint-Anne Hospital in Paris inspired the view of epilepsy 

as a “dynamic process, with a spatialtemporal, often multidirectional, organization, 

which is best defined referring to a 3-dimensional arrangement” and lead to the origin 

of the concept of Epileptogenic Zone (EZ)  [8]. 

 

Hence, Bancaud & Talairach, as part of the Saint-Anne group, developed a complete 

new methodology called Stereoelectroencephalography (SEEG), which aims to 

stablish, based on  ictal anatomo-electro-clinical correlations, the extent of the 

cortical areas involved in the ictal discharge (the EZ) [8] [9], in order to plan the 

surgical resection of the cortical area [9]. SEEG makes possible to define in 3D the 

spatio-temporal organization of the epileptic activity by using arrangements of 

intracerebral electrodes placed in precise determined locations [8] [19]. Moreover, it 

makes possible to access deep cortical structures, which is not feasible by other 

methods, like subdural grids recordings [8]. And it’s well tolerated by most of the 

patients, with overall complication rates around the 5% (while 13% using subdural 

grids) [19] 

 

SEEG is ideal for studying the relationships between the structures concerned in 

seizure production and propagation [19] and has notably contributed to the 

understanding of the origin and spread of seizures [10], leading to the creation of 

some initial models of seizure organization [19]. However, as a presurgical tool, this 

kind of invasive recordings may be used only when the non-invasive techniques fail 

to correctly localize the EZ, i.e. when there are incoherencies among the anatomical, 

electrical and clinical findings. Currently around 35% of the patients require SEEG 

evaluation [8]. 
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1.2.1 Electrodes Placement 

Once a patient is classified as candidate for SEEG evaluation, the electrodes 

implantation strategy is established depending on the clinical, neurophysiological and 

anatomical information characterizing each particular patient [9]. Then, prior to the 

surgery for implanting the electrodes, fiducial markers are placed in the patient’s head 

and MRI analyses are executed.  After that, with the patient under general 

anaesthesia, a stereotactic frame is placed on the head of the patient, a computer 

tomography (CT) and a cerebral angiogram are performed and the electrodes are 

placed according to the information obtained from both CT and angiography and the 

previous plan established by the doctors. Once the electrodes have been placed, the 

head frame is removed and postoperative CT scans and scull X-rays are executed in 

order to confirm the surgery results.  After the surgery (usually the day after), the 

patient is transferred to an Epilepsy Monitoring Unit, were the recordings are 

performed. The monitoring phase is generally no longer than a month and after it 

finishes, the electrodes are removed under local anaesthesia and the patient goes in a 

‘holiday’ period prior to the surgery oriented to the resection of the epileptogenic 

zone [20]. Figure 21 illustrates the electrode implantation procedure. 

 

Figure 4.  Example of SEEG electrode implantation. A) Preoperative MR image and 

intraoperative digital angiogram fused. B) Fluoroscopic image and digital angiogram fused 

during electrode implantation. C) Live fluoroscopic image and preoperative MRI fused during 

implantation. D) Intraoperative post-implantation image MRI – CT fused. E) Final implantation 

[20]. 
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Figure 5 .  Electrode implantation. 1) The skull is drilled, guided by the stereotactic system. 2) A 

monopolar coagulator probe is inserted and the dura is opened. 3) The implantation bolt is 

screwed into the skull, guided by the stereotactic system. 4) The final depth distance for the 

electrode (D3) is measured/calculated [(Target-DuraDistance +D1)-D2=D3]. 5) Final position and 

fixation of the electrode, preventing displacements and CFS leaks. [23] 

 

 

1.2.2 Electrophysiological Seizure Stages 

 

From an electrophysiological point of view, the temporal evolution of seizures can be 

described by four phases [21, 22]: 

 

 Preictal phase, is the time span before the actual seizure. Its duration is variable; 

it can last from minutes to days. Moreover, patient specific mood changes are 

related with it; however, they are not experienced by all the subjects. From an 

electrical point of view, the presence of high power spikes is a characterizing 

sign. By the end of this phase, high frequency ripples appear, indicating the 

beginning of the seizure onset. 

 Ictal phase, is the interval in which the seizure is really developed. In this stage 

the brain literally experiences an ‘electrical storm’, which leads to important 
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cardiovascular, metabolic and electrophysiological changes that could go together 

with symptoms like depression, anxiety or fear (during the ‘auras’ mainly). 

 Postictal phase, is a neuronal recovery/refractory stage which occurs immediately 

after the seizure. It is characterized by a slight electrical activity. 

 Interictal phase, is the stage between seizures (between the postictal and the 

preictal phases). Particular symptoms could be present also in this phase in a 

subject specific way. 

 

1.2.3 The Epileptogenic Zone (EZ)  

 

The epileptogenic zone (EZ) is the “cortical area(s) capable of generating epileptic 

seizures whose surgical removal or disconnection will result in seizure freedom” [8] 

even after taking out all the antiepileptic medication. The scope of epilepsy surgery is 

to completely remove the epileptogenic zone while saving the eloquent cortex  (i.e. 

“areas of cortex that, if removed, will result in loss of sensory processing or linguistic 

ability, minor paralysis, or paralysis” [24]). Therefore, the presurgical evaluation in 

patients with intractable epilepsy is oriented to identify the EZ. However, diagnostic 

methods nowadays are not able to determine directly the exact location and extent of 

the EZ. Indeed, in patients who become seizure free after surgery, the only conclusion 

that can be done is that the EZ was included in the resected area, while is not possible 

to figure out if a smaller resection would have had the same result. So that, diverse 

diagnostic methods should be applied in order to estimate in the best possible way the 

location and extent of the EZ. Actually, combining the information about the 

localization of some other measurable cortical zones (ictal onset zone, irritative zone, 

epileptogenic lesion, ictal symptomatogenic zone, and functional deficit zone), the 

hypothesis about the localization of the EZ can be improved. If there is certain 

concordance regarding the localization of these zones, increases the probability of 

including the epileptogenic zone in the resected area [8]. 

Below, a short description regarding these zones is performed, according to [8]: 

 

 The symptomatogenic zone, is ‘the cortical area generating the initial ictal 

symptomatology when activated by epileptic seizures’. Usually, the ictal symptoms 

http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Senses
http://en.wikipedia.org/wiki/Paresis
http://en.wikipedia.org/wiki/Paralysis
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start after the propagation of the seizure activity. So that, it is rare to find an overlap 

between the symptomatogenic zone and the epileptogenic one. However, the EZ is 

generally located close to the symptomatogenic zone. For example, a localized 

somatosensory aura at the beginning of a seizure suggests that the EZ lies located in 

the vicinity of the corresponding primary sensory area. 

 

 The irritative zone, is the cortical region which generates interictal 

epileptiform discharges. It is not necessary part of the epileptogenic zone and can be 

affected by different factors as the type of epilepsy, the state of consciousness, 

changes in temperature, age, presence of anesthesia, and use of anticonvulsants etc.  

 

 The ictal (or seizure) onset zone, is the cortical area that ‘initiates clinical 

seizures’. 

 

 The epileptogenic lesion, is the name given to a cerebral abnormality detected 

by the surgeon (as a reminder, morphological brain abnormalities are the prevalent 

cause of focal epilepsies). The lesion is potentially detected using neuroimaging 

techniques as CT or MRI. However, epileptogenic lesions are usually small and 

difficult to detect. In addition, their extent may be underestimated using MRI, 

especially in patients with MCD. In MCD in particular, the cortex beyond the lesion 

may appear normal on imaging but abnormal at a microscopic level and may be part 

of the epileptogenic zone. Generally, the epileptogenic lesion is part of the 

epileptogenic zone or at least lies close to it (it is an immediate neighbor). However, 

not all the lesions are epileptogenic and it is impossible to predict their epileptogenic 

nature using neuroimaging techniques. So that, video-EEG monitoring, and 

sometimes invasive recordings, are needed in order to find out the relationship 

between the irritative and seizure onset zones and the structural lesion obtained 

through imaging. These zones (irritative and seizure onset zone) must be overlapping 

the lesion or be immediate neighbors in order to consider the lesion as an 

epileptogenic one. 
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 The functional deficit zone, is the brain area with abnormal functioning during 

the interictal period. Finding this zone has a limited value in the localization of the 

epileptogenic zone. According to its correlation to the other zones it can simply 

support the previous hypothesis regarding the location of the EZ, or lead to additional 

tests (like iEEG). 

 

The main techniques used in order to measure the different cortical zones are: MRI, 

SPECT, PET, EEG, Video-EEG and iEEG. Invasive monitoring is used when 

unexplainable discrepancies in the other tests are found. However, since iEEG cover a 

limited cortical area, a prior clear hypothesis regarding the location of the seizure 

onset zone should exist in order decide where to place the intracranial electrodes. 

 

Finally, it is important to mention that the epileptogenic zone is composed by an 

‘actual’ and a ‘potential’ seizure onset zones. The actual seizure onset zone is the area 

of cortex in which the seizures currently recorded emerge. Sometimes, seizures could 

persist even after the complete resection of the actual seizure zone, because other 

region in the cortex that previously did not generate seizures starts generating 

seizures. It is said that the potential seizure onset zone reaches the threshold for 

seizure generation. Nowadays it is impossible to measure these potential seizure onset 

zones prior to surgery [8]. 

 

1.3 Brain Rhythms 

 

The brain cortical electrical activity presents different kind of oscillations 

characterized by certain ranges of amplitudes and frequencies. These oscillations are 

referred as brain rhythms or brain waves. The intensity of these waves is determined 

primarily by the number of neurons and fibres that fire in synchrony with others, not 

by the total level of electrical activity in the brain. In fact, strong asynchronous 

signals could nullify each other since they have opposing polarities. In normal healthy 

people, the main EEG rhythms are called alpha, beta, theta, and delta [11]. 
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Alpha and beta waves were introduced by Berger in 1929. The delta rhythm was 

suggested by Walter (1936) to nominate the frequencies below the alpha range. He 

also considered the theta waves as those having frequencies within the range of 4–7.5 

Hz. The term ‘gamma’ (to refer to the waves of above 30 Hz) was proposed by Jasper 

and Andrews in 1938. And the notion of a theta wave was introduced in 1944 by 

Wolter and Dovey [25]. They are all presented in Figure 6. 

 

 

 

Figure 6. Different types of EEG waves/rhythms [26] 
 

 

 Alpha waves (α) are the most prominent rhythm in the brain [25]. They occur 

at frequencies between 8 and13 Hz and are typically sinusoidal (there is often an 

asymmetry in the rhythm with the right side being lightly higher in voltage [27]). 

Alpha rhythms appear in the posterior half of the head and are usually found over the 

occipital region of the brain [25], reason why they are also known as the posterior 

dominant rhythm [27] (anyhow, they can also be recorded from the parietal and 

frontal regions [11]). 
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They are typical in normal adult people in awakeness, and in a quiet, resting state.  

During deep sleep, the alpha waves disappear [11]. Usually, they are also produced 

when the eyes are closed, and are reduced or eliminated by opening the eyes, hearing 

unfamiliar sounds, by anxiety, mental concentration or attention [25].  When the 

attention is directed to some specific mental activity, the alpha waves are replaced by 

asynchronous, higher-frequency, lower-voltage beta waves. Figure 7 shows the effect 

of the eyes opening-closing on the alpha waves [11]. 

 

The origin and physiological significance of alpha waves is still unknown [25]. It is 

recognized that Alpha waves don’t occur in the cerebral cortex without cortical 

connections with the thalamus. So that, it is believed that they result from 

spontaneous feedback oscillation in the thalamocortical system [11]. 

 

 

Figure 7. Effect of eyes opening-closing on alpha waves. The alpha rhythm is replaced by 

an asynchronous, higher frequency, lower voltage activity (beta waves) [11]. 

 

 

 Beta waves (β) occur at frequencies above 13Hz [27] (in the range 14-26Hz 

in some literature [25]). They are recorded mainly in the frontal and central-parietal 

regions [25] [11] during the specific activation of these parts of the brain [11]. They 

are associated with active thinking, active attention, focus on the outside world, or 

solving concrete problems [25]. Their activity is often increased during drowsiness 

and in patients receiving sedating medication, particularly barbiturates or 

benzodiazepines [27]. 

 

 Theta Waves (θ) have frequencies from 4 Hz to less than 8Hz [27]. They 

commonly occur in the parietal and temporal regions [11] and appear while 

consciousness shifts towards drowsiness. They are associated with the access to 

unconscious material, creative inspiration and deep meditation [25]. They also occur 

during emotional stress, particularly during disappointment and frustration, and are 
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characteristic of many brain disorders [11]. Apparently they have a thalamic origin. 

[25] 

 

 Delta waves (δ) refer to frequencies below 4Hz. They are primarily associated 

with deep sleep [27] but may be also present in waking state [25].  They usually have 

greater voltages (two to four times) than the other types of brain waves and can occur 

in the cortex independent of the activities in lower regions of the brain [11]. In fact, 

the transection of the fiber tracts from the thalamus to the cerebral cortex, which 

blocks thalamic activation of the cortex and eliminates the alpha waves, does not 

block delta waves in the cortex. This indicates that there is some mechanism in the 

cortical neuronal system, which can cause delta waves, independent of lower 

structures in the brain [11]. 

 

 Frequencies above 30 Hz correspond to the gamma range (sometimes called 

‘fast beta’). The amplitudes of these rhythms are very low and their occurrence is 

rare, however, their detection can be used as confirmation in some brain diseases. 

[25] 

 

 Frequencies under 1Hz (infraslow oscillations), have been recently raising the 

interest of the scientific community. Infraslow oscillations are prominent during 

sleep, but their functional meaning is still unknown [28]. In addition, they could 

explain the “yet enigmatic aggravation of epileptic activity during sleep” [29]. More 

about infraslow oscillations can be found in [28-31]. 

 

 Rhythms at frequencies higher than the normal activity range of EEG, mainly 

in the range of 200–300 Hz, have been found in animals, but they don’t play any role 

in clinical neurophysiology [25]. 
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CHAPTER 2 

 

Methods 

 
 

This chapter aims to introduce the mathematical and statistical methods chosen for 

the processing of the Stereo-EEG data. Their actual application to the SEEG data and 

the results obtained will be described in the next chapter. 

 

2.1 Principal Component Analysis (PCA) 

 

“Principal component analysis (PCA) is the most widely known technique of attribute 

reduction by means of projection” [32]. It is an orthogonal linear transformation that 

transforms data to a new coordinate system in a way that the greatest variance comes 

to lie on the first axis, the second greatest variance on the second axis, and so on [33]. 

The purpose of this method is to obtain a transformation that replaces a set of 

attributes with a lower number of new attributes obtained as their linear combination, 

without causing a loss of information [32].  

 

Let’s denote 𝑋′ = [𝑋1, 𝑋2, … , 𝑋𝑝] as a random vector with covariance matrix 𝛴 and 

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0. Let’s consider then the linear combination: 

 

𝑌1 = 𝑎1
′ 𝑋 = 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯ + 𝑎1𝑝𝑋𝑝 

𝑌2 = 𝑎2
′ 𝑋 = 𝑎21𝑋1 + 𝑎22𝑋2 + ⋯ + 𝑎2𝑝𝑋𝑝 

⁞ 

𝑌𝑝 = 𝑎𝑝
′ 𝑋 = 𝑎𝑝1𝑋1 + 𝑎𝑝2𝑋2 + ⋯ + 𝑎𝑝𝑝𝑋𝑝 

 

Under this consideration, the first Principal Component corresponds to the linear 

transformation 𝑎1
′ 𝑋 which maximizes 𝑉𝑎𝑟(𝑎1

′ 𝑋), subject to the constraint  𝑎1
′ 𝑎1 = 1 

(unit norm constraint):  
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max
𝑎1

𝑉𝑎𝑟(𝑎1
′ 𝑋) = 𝑎1

′ 𝛴𝑎1 

𝑠. 𝑡.  𝑎1
′ 𝑎1 = 1  

 

The first principal component represents a vector in the direction of maximum 

variance in the space of the original attributes [32]. The second Principal Component 

corresponds to the linear transformation 𝑎2
′ 𝑋  which maximizes 𝑉𝑎𝑟(𝑎2

′ 𝑋), under the 

constraints 𝐶𝑜𝑣(𝑎1
′ 𝑋, 𝑎2

′ 𝑋) = 𝑎1
′ 𝛴𝑎2 = 0 and 𝑎2

′ 𝑎2 = 1. In this way, the i-th 

Principal Component is the 𝑎𝑖
′𝑋 which maximizes  𝑉𝑎𝑟(𝑎𝑖

′𝑋), under the constraints 

𝑎𝑖
′𝑎𝑖 = 1 and 𝐶𝑜𝑣(𝑎𝑖

′𝑋, 𝑎𝑘
′ 𝑋) = 𝑎𝑖

′𝛴𝑎𝑘 = 0, for 𝑘 < 𝑖. Where 𝑎𝑖
′𝑋, with 𝑖 = 1, … , 𝑝  

are the Principal Components (or scores) and the coefficients 𝑎𝑖 are the corresponding 

weights [34]. 

 

From another perspective, the principal components could be considered as virtual 

sources which mixed in a weighted manner (𝑋′ = 𝑀𝑌′) would generate the original 

signal X. Under this consideration, the matrix 𝑀 takes the name of “mixing matrix” 

[35]. 

 

The 𝑝 principal components are orthogonal to each other. So that, they are also 

uncorrelated and can be ordered according to a “relevance indicator”. In fact, the first 

principal component explains the greatest proportion of variance in the data, the 

second explains the second greatest proportion of variance, and so on [32]. 

 

The coefficients 𝑎𝑖 can be interpreted as the weights of the attribute 𝑋𝑗 in determining 

the component 𝑌𝑖. At the same time, 𝑉𝑎𝑟(𝑌𝑖) =  𝜆𝑖 represents a measure of the 

proportion of total variance explained by the principal component 𝑌𝑖. For this reason, 

the index 

𝐼𝑘 =
𝜆1 + 𝜆2 + ⋯ + 𝜆𝑘

𝜆1 + 𝜆2 + ⋯ + 𝜆𝑝
 

 

expresses the percentage of total variance explained by the first 𝑘 principal 

components and provides an indication of the amount of information preserved by the 

first 𝑘 components. 
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In order to determine the number of principal components to be used, it is possible to 

consider the components which exceed a threshold 𝐼𝑚𝑖𝑛 considered reasonable. 

Usually, the number of components to be used is chosen considering the components 

which explain around 80% − 90% of the variance, in order to avoid excessive loss of 

information.  

∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝑝
𝑖=1

∗ 100 = 80% − 90% 

 

2.2 Clustering: K-means Algorithm 

 

The aim of clustering analysis is to find out the “natural grouping(s)” of a set of 

objects. It is a “statistical classification technique for discovering whether the 

individuals of a population fall into different groups by making quantitative 

comparisons of multiple characteristics” [36]. Cluster analysis does not use any 

category labels to tag objects. It is an unsupervised learning technique with an 

exploratory nature; it aims to find a structure in the data without any prior labeling or 

information about the groups.  

 

Clustering algorithms can be divided into two categories: hierarchical and partitional. 

Hierarchical algorithms find the clusters either in an agglomerative or divisive way; 

in the former one, each data point corresponds to one cluster and they merge 

successively the most similar pairs of clusters, forming a cluster hierarchy. In the 

latter, all the data points belong initially to one cluster and they divide recursively 

into small clusters. On the other hand, partitional algorithms find all the clusters 

concurrently as a partition of the data, without imposing a hierarchical structure [36] 

 

The “most popular and the simplest partitional algorithm is the K-means”, first 

published in 1955 [36]. The main reasons for its popularity are its simplicity, ease of 

implementation, efficiency and empirical success [36] [37]. 
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The scope of the K-means algorithm is to divide M points in N dimensions into K 

non-empty, non-overlapping, non-subordinated clusters, minimizing the within-

cluster sum of squares; each observation belongs to the cluster with the nearest mean 

[38]. In order to do it, the algorithm follows three main steps [32]. The clustering 

procedure is summarized in Figure 8. 

 

1. K elements of the dataset are randomly chosen as the cluster centroids/means 

(the sample space is initially partitioned into K clusters). 

 

2. Iteratively each element/point is assigned to the cluster with the most similar 

centroid (i.e. the one which minimizes the distance to the observation/point). 

The distance from the observation to the centroid is calculated. If the 

observation is closest to its own cluster, then it stays there, otherwise, it goes 

to another cluster. 

 

3. For each new cluster, the new centroid is calculated as the mean of the 

elements in the cluster. Then, it goes back to the second step. If at any 

iteration no element changes cluster in respect to the previous iteration, the 

algorithm stops. 

(a)  (b)  (c)       

(d)   (e)  

 

Figure 8.  K-means application example. (a) Input data set (two dimensions, three clusters). (b) 

three seed points are selected as center of the clusters and there is an initial assignment of the 

data points to the clusters. (c) (d) intermediate iterations. (d) the algorithm converges, it’s the 

final iteration [36]. 
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The algorithm has two main drawbacks. First, the K number of clusters must be 

specified in advance. In addition, as the iteration proceeds, the solutions could be 

trapped into local minima due to the non-exhaustive search nature of the algorithm 

[37] [39] [40]. In order to avoid being trapped in local minima, the algorithm could 

repeatedly start from different randomly selected sets of initial centroids and at the 

end, return the partition with the lowest sum of distances over all replicates [41].  

 

2.2.1  Measures of Distance 

The most common distance measures implemented in cluster analysis algorithms are 

the Euclidean distance, the Euclidean squared distance and the Manhattan or City 

distance.  

 

The Euclidean measure corresponds to the shortest geometric distance between two 

points. For an n-dimensional dataset, the distance between two observations           

𝑥𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑛)  and 𝑦𝑖 = (𝑦1, 𝑦2, … , 𝑦𝑛) is defined as: 

       

𝑑 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

 

A faster way of determining this distance is by using the squared Euclidean distance 

which calculates the above distance squared: 

         

𝑑𝑠𝑞 = ∑(𝑥𝑖 − 𝑦𝑖)
2

𝑁

𝑖=1

 

 

 Finally, the Manhattan measure calculates a distance between points based on a grid; 

for going from one point to the other it considers the path including two sides of a 

rectangle having as vertex the points of interest as shown in Figure 9.  
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Figure 9. Euclidean distance measure vs. Manhattan distance measure [42]. 
 

2.2.2  Silhouette Coefficients and Silhouette Diagram 

There are some performance indicators which could be calculated about the final set 

of K clusters generated; cohesion, overall cohesion, separation, overall separation and 

the silhouette coefficient are part of them [32]. Considering 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} as the 

set of K clusters,  

 

The cohesion is defined as 

 

𝑐𝑜ℎ(𝐶ℎ) = ∑ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑘)
𝑥𝑖∈ 𝐶ℎ
𝑥𝑘∈ 𝐶ℎ

 

 

While the overall cohesion is given by 

 

𝑐𝑜ℎ(𝐶) = ∑ 𝑐𝑜ℎ(𝐶ℎ)

𝐶ℎ ∈ 𝐶

 

 

The first one is an indicator of homogeneity of the observations within each cluster 

𝐶ℎ, while the second one is referred to the overall partition. One cluster is preferable 

over others in terms of homogeneity if it has a smaller cohesion. 

 

The separation on the other hand, is an indicator of inhomogeneity between pairs of 

clusters. It is defined as 
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𝑠𝑒𝑝(𝐶ℎ, 𝐶𝑓) = ∑ 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑘)
𝑥𝑖∈ 𝐶ℎ
𝑥𝑘∈ 𝐶𝑓

 

 

While the overall separation of the partition is given by 

 

𝑠𝑒𝑝(𝐶) = ∑ 𝑠𝑒𝑝(𝐶ℎ, 𝐶𝑓)
𝐶ℎ∈ 𝐶
𝐶𝑓∈ 𝐶

 

 

In terms of inhomogeneity, one partition is preferred over others if it has a higher 

overall separation.  

 

One more indicator of the quality of the clustering is represented on the silhouette 

coefficient, which is a combination of cohesion and separation measures. Three steps 

are necessary in order to calculate the silhouette coefficient for an observation 𝑥𝑖 

[32]: 

 

1. Calculate the mean distance 𝑢𝑖 of 𝑥𝑖 from all the remaining observations 

belonging to the same cluster.  

 

2. For each cluster 𝐶𝑓 different from the cluster to which 𝑥𝑖 belongs, calculate 

the mean distance 𝑤𝑖𝑓between 𝑥𝑖 and all the observations in 𝐶𝑓. Determine the 

minimum among the distances 𝑤𝑖𝑓 by varying the cluster 𝐶𝑓 (let’s call 𝑣𝑖 that 

minimum distance). 

 

3. The silhouette coefficient of 𝑥𝑖 is defined as  

 

𝑠𝑖𝑙ℎ(𝑥𝑖) =
𝑣𝑖 − 𝑢𝑖

max (𝑢𝑖, 𝑣𝑖)
 

It varies between −1 and 1. Negative values indicate that “the mean distance 𝑢𝑖 of the 

observation 𝑥𝑖 from the points of its cluster is greater than the minimum value 𝑣𝑖 of 

the mean distances from the observations of the other clusters”, so that, the 
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membership of 𝑥𝑖 in its cluster is not desirable and it’s not well characterized.  Under 

ideal conditions, 𝑢𝑖 should be as close as possible to 0 and the silhouette coefficient 

should be positive.  

 

The coefficients can be plotted in silhouette diagrams, in which the observations are 

in the vertical axis, divided by clusters, and the values of the coefficients are 

presented in the horizontal axis. The silhouette diagram shows how well the data are 

separated into the K clusters [42]. In addition, the overall silhouette coefficient of a 

partition can be calculated as the mean of the silhouette coefficients for all the 

observations in the dataset. In fact, a quantitative way of comparing different 

solutions (partitions) is to look at the average silhouette values for the different cases; 

higher values are preferable [41]. Figure 10 shows some examples of Silhouette 

diagrams. 

  

Figure 10.  Examples of silhouette diagrams. In the diagram on the left, the third cluster shows 

some points with low silhouette values and some with negative ones, indicating that the cluster is 

not well separated. In the diagram on the right, the clusters show high silhouette values, 

indicating that the clusters are well separated [41]. 
 

 

2.3 PCA-based K-means Clustering 

 

A Principal Component Analysis-based Clustering method is proposed, to be applied 

into the SEEG data. In this section, a general overview of the process is presented. 

The details of its implementation are described on Chapter 3.  

 

The idea is to obtain a representation of the evolution of the synchronicity levels 

among brain areas before and during seizures. In order to do it, three time intervals of 
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interest were defined; they are consecutive time spans, 100 seconds each, starting 100 

seconds before the beginning of the seizure.  On each of the intervals previously 

specified, the data is divided into short epochs (4 seconds each). Next, for each epoch, 

the decomposition into Principal Components would be performed. Then, the SEEG-

channels would be grouped using the contribution (i.e. the weights of the mixing 

matrix) of their Principal Components (from those which explain the 90% of the 

variance in the original data) as features for a K-means clustering. Since the K-means 

algorithm requires the prior selection of K (the number of clusters), an exploration 

and evaluation of different K (from 2 to 15) would be performed and the “ideal” K 

would be selected based on the mean value of their silhouette coefficients. Finally, 

the representative SEEG channels per each partition would be chosen as those closer 

to the centroid of each cluster. The entire procedure is summarized in Figure 11. 

 

 

 

Figure 11.  PCA-based K-means clustering to be applied over each epoch of the SEEG signal 

time intervals previously defined.   
 

Along the epochs, the different partitions obtained by applying the previously 

explained method could represent an indicator of the evolution of the synchronicity 

levels between diverse brain areas (SEEG-channels) before and during seizures.  

 

PCA 
SEEG Channels  K-means 
Clustering using the PCA 

weights as features. 

Performance Evaluation 
based on the Silhouette 

Coefficients. 

K-means Clustering (with 
the ideal K) and Selection 

of the representative 
SEEG channel. 
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Finally, since the PCA decomposition is performed separately for each epoch, a 

further indication of the evolution of this synchronicity levels might be given by the 

changes in the number of principal components needed to explain the 90% of the total 

variance over the epochs. 
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CHAPTER 3 

 

Data Analysis and Results 

 

 
 

3.1 Patients and Data Acquisition 

 
The data used in the present study comes from the pre-surgical evaluation performed 

in 14 neurosurgical patients affected by Focal Cortical Dysplasia Type II. All the 

patients had a history of drug-resistant epilepsy and were candidates for the surgical 

removal of the epileptic focus. 

 

The recordings were performed during sleep by stereotactically implanted depth 

multi-lead electrodes (Stereo-EEG, SEEG) in order to precisely localize the 

epileptogenic zone and related/connected areas. The position of the electrodes was 

determined based on non-invasive clinical assessment.  

 

SEEG activity was recorded from platinum-iridium semiflexible multi-contact 

intracerebral electrodes, with a diameter of 0.8mm, a contact length of 1.5 mm, an 

inter-contact distance of 2mm and a maximum of 18 contacts per electrode (Dixi 

Medical, Besancon, France). The placement of the electrodes was verified by post-

implantation CT scans. 

 

In addition, EEG (from the scalp), Electro-ocular activity and subelemental 

electromyographic activity were recorded.  Both EEG and SEEG signals were 

recorded using a 192-channel recording system (NIHON-KOHDEN NEUROFAX-

110) with a sampling rate of 1000Hz. The data was recorded and exported in the EEG 

Nihon-Kohden format.  

 

All the recordings and data treatment procedures were approved by the corresponding 

Ethical Committee (Niguarda Hospital, Milan, Italy) and all the patients provided a 

written informed consent. 
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Moreover, for each patient and recording, the information regarding the temporal 

moments in which the seizures started (ictal events) were provided by an expert 

neurologist. This info was obtained from the videos of the patients corresponding to 

each recording (Video-SEEG).  Finally, bipolar montages formed by adjacent SEEG 

leads (of the same depth-electrode) in grey matter were suggested by the neurologist 

in order to minimize the common electrical noise and maximize the spatial resolution 

[43]. 

 

3.2 Data Preprocessing 
 

Firstly, the acquired data was converted from the Nihon-Kohden format into Matlab 

arrays in order to do all the processing under the Matlab environment. This was done 

through customized Matlab scripts. Then, all the non-SEEG channels were discarded, 

the bipolar montages suggested by the expert neurologist were calculated and 

standard pre-processing techniques were applied over the SEEG data. All the pre-

processing was executed using the EEGLAB toolbox.  

 

 
 
 
 
 
 
 
 

                   
Figure 12.  Data pre-processing. It was performed under the MATLAB environment and the 

EEGLAB Toolbox.  On the left: electrode arrangement in the patient. On the right: SEEG signal 

for all the channels. 

 

Pre-Processing 
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The data was down-sampled to 250Hz in order to reduce the computational cost of 

the processing. The resampling was performed after low-pass filtering (120Hz, order: 

110) to avoid aliasing. Then two notch filters (at 50Hz and 100Hz, order: 414 each 

one) were used in order to suppress the noise of the electrical power line and its 

harmonics. In addition, a high-pass filter (0.01Hz, order: 82500) was used in order to 

attenuate the DC component without removing the information related to the 

infraslow oscillations. Finally, the data were normalized by subtracting the mean 

value and dividing by the standard deviation. All the implemented filters were Zero-

Phase Finite Impulse Response (FIR) ones. The complete pre-processing procedure is 

synthetized in Figure 13. Finally, all the events of interest were manually added to the 

main dataset into the EEGLAB toolbox. 

 

 

 

 
 

 
Figure 13.  Data pre-processing sequence performed under the MATLAB environment and the 

EEGLAB Toolbox. *In the actual procedure, the resampling was performed after the LPF to 

avoid aliasing and before the remaining filters in order to reduce their computational cost. 

 

 

 

 

 

 

 

Data Normalization 
Substracting the mean and dividing by the standard deviation 

Resampling* 
Downsampling from 1000Hz to 250Hz 

Filtering 
LPF (120Hz) Notch (50Hz) Notch (100Hz) HPF (0.01Hz) 

Channel Selection 
All the non-SEEG Channels were discarded 

Format Conversion 
Nihon Kohden (*.eeg) to Matlab Arrays (*.mat) 

EEGLAB Toolbox 

MATLAB Script 
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3.3 Application of the PCA-based K-means Clustering method 

 

The implemented algorithm uses the main Matlab structure defined by the EEGLAB 

toolbox. It reads the SEEG signal, detects a set of events (“pre”, “seizure”, “post”, 

”post_end”) previously inserted into EEGLAB, reads the corresponding event 

latencies and according to them, defines the time intervals to be studied (Pre, Seizure, 

Post) (See Figure 14). Each one of these time intervals is 100 seconds long. The 

“seizure” interval starts in the moment in which the seizure begins, according to the 

information provided by the neurologist. The “pre” interval commences 100 seconds 

before the seizure begins, and the “post” interval initiates immediately after the end of 

the “seizure” one. 

 

Then, over the time intervals of interest, the data is divided into short epochs (4 

seconds each one). Then, for each epoch, a decomposition into Principal Components 

is performed. Next, considering only the first Principal Components which explain 

the 90% of the variance, the SEEG-channels are grouped using the contribution (i.e 

the weights of the mixing matrix) of these Principal Components as features for a K-

means clustering. The distance measure implemented in the cluster analysis algorithm 

is the Euclidean squared distance. 

 

The scope of the K-means algorithm is to divide M points (SEEG Channels) in N 

dimensions (Number of Principal Components) into K clusters. The clustering has an 

exploratory nature; it aims to find a structure in the data without any prior labeling or 

information about the groups. The idea is to find out the “natural grouping” of the set 

of SEEG Channels. 

 

The k-means algorithm has two main drawbacks. First, the K number of clusters must 

be specified in advance. In addition, as the iteration proceeds, the solutions could be 

trapped into local minima due to the non-exhaustive search nature of the algorithm 

[55, 57-58].  
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Figure 14.  Example of Stereo-EEG signal corresponding to one of the seizures under analysis 

(Patient 2, seizure #1). A 500 time window is presented. The events and time intervals of interest 

(Pre, Seizure, Post) are specified.  Each one of the three time intervals is 100 seconds long. Over 

each interval the data was divided into short epochs (4 seconds each one). 
 

In order to avoid being trapped in local minima, the algorithm repeatedly starts from 

different randomly selected sets of initial centroids and at the end, returns the 

partition with the lowest within cluster distance (i.e. the sum of the distance between 

the centroid and all the samples of the cluster) over all replicates. In the present 

implementation the algorithm performs 500 replicates and gives as output the ‘best 

partition’ according to the previously expressed criteria. 

 

On the other hand, in favor of dealing with the need of specifying ‘a priori’ the K 

number of clusters, a performance measure based on the silhouette diagram was 

implemented and applied over a set of different K partitions. In particular, the k-

means clustering was applied with different K, ranging from 2 to 15 and the ‘best’ 

one according to the performance indicator remained as the ideal K for the 

correspondent epoch.  

 

As stated before, the performance measure implemented in order to choose the ideal 

K is based on the silhouette diagram. Explicitly, after performing all the possible 

partitions (with K from 2 to 15), their corresponding silhouette coefficients and 

Pre Seizure Post 
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silhouette diagrams are obtained. If there is no partition containing miss-classified 

channels (i.e. there are no negative silhouette coefficients), the partition having the 

higher mean of the silhouette coefficients is considered the ideal one. If all the 

partitions have miss-classified channels, the one with the highest mean of the 

negative region of the silhouette diagram (i.e. the one with the highest mean among 

the negative silhouette coefficients, which would be also the one with the lowest 

miss-classification) is considered the ‘best’ one. Finally, if some partitions have miss-

classified channels and some do not, the partitions lacking of miss-classification are 

considered the best and among them, the one with the highest mean of the silhouette 

coefficients is chosen as the ideal one. 

 

 

 

 

 

Figure 15.  Example of the application of the performance measure implemented in order to 

choose the ideal K based on the silhouette diagram. Top:  the k-means clustering is applied with 

different K, ranging from 2 to 15.  Bottom: the ‘best’ one according to the performance indicator 

remains as the ideal K for the correspondent epoch (K=2 in this case).  
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Then, once the ideal K is selected, for each cluster inside the partition, the 

representative channel is chosen as the closest one to the centroid of the 

corresponding cluster.  

 

An overview of the different steps applied over each signal epoch is presented on 

Figure 16. 

 

 

Figure 16.   Pipeline of the algorithm applied over each signal epoch. 

 

Moreover, since this procedure is applied to all the epochs along the time intervals 

corresponding to the period before and during the epileptic seizures, the changes of K 

over the epochs could describe the evolution of the synchronicity levels between 

diverse brain areas (SEEG bipolar leads) along the epochs (and along the seizure). An 

additional indicator related to this evolution may be found on the variation of the 

number of PCA components required in order to explain the 90% of the variance on 

the original data over the different epochs, taking into account that the PCA 

decomposition is performed separately for each epoch.  
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3.4. Results and analysis for one seizure example 

 

In this section the final results regarding the application of the PCA-based K-means 

Clustering algorithm to one of the seizure cases analyzed will be discussed in detail. 

In particular, the Stereo-EEG signal corresponding to the seizure example presented 

previously in Figure 14 will be studied. For that particular patient, 36 bipolar leads 

were analyzed according to the suggestion made by the neurologist. On Figure 14, a 

500 time window is presented. The events and time intervals of interest (Pre, Seizure, 

Post) are specified.  Each one of the three time spans is 100 seconds long and over 

each interval the data was divided into short epochs (4 seconds each one). 

 

3.4.1 Evolution of the SEEG bipolar leads grouping along the time 

epochs.  

 

In Figure 17-19 is presented the sequence of silhouette diagrams for each epoch along 

the three time intervals under study. Figure 17(a) shows the silhouette diagrams 

progression for the “pre” time interval, while (b) and (c) exhibit the sequence found 

for the “seizure” and “post” intervals respectively. In the figure, the epochs evolve 

from left to right and from top to bottom. 

 

The “Pre” interval shows different partitions with K ranging from 2 to 15, some of 

them including miss-classified observations (SEEG bipolar leads) according to the 

silhouette criteria (i.e. they have negative silhouette coefficients). In this interval, 

during the first 23 epochs it is possible to observe high values of K (14 or 15), while 

in the last two epochs the K  drops till the lowest value allowed (K=2). The “Seizure” 

interval exhibits a K value equal to 2 for most of the 25 epochs forming the 100 

seconds time interval. Next to it, the “Post” time span shows K values from 2 to 15, 

but opposite to the “seizure” interval behavior,  in the “post” one most of the K have 

the maximum value allowed (K=15). 
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Figure 17.   Sequence of silhouette diagrams for each epoch along the ‘Pre’ interval. The epochs evolve from left to right and from top to bottom. 
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Figure 18.   Sequence of silhouette diagrams for each epoch along the ‘Seizure’ interval. The epochs evolve from left to right and from top to bottom. 
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Figure 19. Sequence of silhouette diagrams for each epoch along the ‘Post’ interval. The epochs evolve from left to right and from top to bottom. 
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The K values evolution previously described is presented in a clearer way on Figure 

20. It shows the changes of the number of groups (K value) found per partition along 

the epochs. The dotted red lines constitute the end of each of the three time intervals 

under study. The red line named C represents the beginning of the seizure according 

to the information provided by the neurologist.  

 
Figure 20.  K values evolution along the time epochs. The dotted red lines constitute the end of 

each of the three time intervals under study. The red line named C represents the beginning of 

the seizure according to the information provided by the neurologist (or the end of the “pre” 

time interval). While P1 and P2 constitute the end of the “seizure” and “post” intervals 

respectively. 

 

 

Considering that, once the seizure starts, the Stereo-EEG bipolar leads are grouped 

into a lower number of clusters per partition, the results obtained may suggest an 

increase in the synchronicity levels among brain areas related with the seizure 

beginning for this particular case (i.e. for the patient and seizure under analysis). 

 

On Figure 21 the number of observations (SEEG contacts) per cluster along the 

epochs is presented. Each circle represents one cluster; its position indicates the 

number of observations forming that particular group, while the number inside each 

circle represents the number of clusters with the same number of elements for a 

certain epoch. In this way, for example, for the first epoch of the ‘pre’ interval, the 

algorithm found a partition composed by 12 clusters; five of them formed by one 

observation (SEEG leads), four groups with two elements, two clusters with three, 

one with five and one with twelve.  
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In addition, in the same figure, explicit differences on the behavior among the three 

time intervals can be distinguished. The “pre” interval is characterized by having a 

high number of clusters with a small number of elements per group. This behavior 

changes radically with the beginning of the seizure. So that, during most of the 

‘seizure’ interval the partitions found are composed by a few groups containing more 

observations if compared to the previous interval. Finally, the ‘post’ time span 

exhibits similar characteristics to the ‘pre’ interval (i.e. high number of groups with 

few elements forming each of them) for most of the epochs.  Moreover, the average 

number of channels per cluster along the epochs is shown on Figure 22. Again, it 

becomes clear how, once the seizure starts, the average number of SEEG bipolar 

leads grouped per cluster increases. Those findings suggest once more a higher ictal-

related synchronicity among the contacts under study.  

 

The Appendix B shows, for each one of the 14 patients analyzed, the average results 

obtained regarding the K values evolution and the average number of observations 

(SEEG channels) per cluster along the epochs. Similar behaviors to the one 

previously described were found. The statistical significance of these results will be 

analyzed later in this Chapter.  

 
Figure 21. Number of observations (SEEG channels) per cluster along the epochs. Each circle 

represents one cluster; its position indicates the number of observations forming that particular 

group, while the number inside each circle represents the number of clusters with the same 

number of elements for a certain epoch. The dotted red lines constitute the end of each of the 

three time intervals under study. The red line named C represents the beginning of the seizure 

according to the information provided by the neurologist (or the end of the “pre” time interval). 

While P1 and P2 constitute the end of the “seizure” and “post” intervals respectively. 
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Figure 22. Average number of observations (SEEG channels) per cluster along the epochs. The 

dotted red lines constitute the end of each of the three time intervals under study. The red line 

named C represents the beginning of the seizure according to the information provided by the 

neurologist (or the end of the “pre” time interval). While P1 and P2 constitute the end of the 

“seizure” and “post” intervals respectively. 

 

It is important to mention that although the temporal moments corresponding to the 

beginning of the seizure were indicated by an expert neurologist. The postictal 

starting points (the end of the seizure) were not provided. This causes some 

uncertainty while trying to associate the findings of this study with the end of the ictal 

phase and the beginning of the postictal one. 

 

Besides, the way in which the SEEG bipolar leads are grouped on the partitions found 

by the algorithm along the 75 time epochs is presented on Figure 23. In this case, for 

each epoch, the channels belonging to the same cluster have the same color. It is clear 

again how a decrease in the number of groups appears in correspondence to the 

seizure starting point. An example of this grouping is shown on TABLE XX. On the 

left, are presented the names of the SEEG bipolar leads forming each cluster inside 

the partition found for the first epoch of the ‘pre’ interval and the number of channels 

per each group. On the right, the same information is provided regarding the first 

epoch of the ‘seizure’ interval. The bipolar leads written in bold characters constitute 

the representative channels for each cluster (i.e. those which are closer to the centroid 

of each cluster).   
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Furthermore, Figure 24 exhibit the representative channels found per each partition 

along the different time epochs. The blue dots correspond to channels which are 

equally distant to the centroid of their cluster and are considered both as 

representative ones for that cluster. The figure provides another perspective regarding 

the grouping evolution along the three intervals; since there are more groups during 

the ‘pre’ and ‘post’ intervals when compared to the ‘seizure’ one, the same happens 

with the number of centroids found. 

 
Figure 23.  Stereo-EEG leads grouping along the partitions found. For each epoch, the channels 

belonging to the same cluster have the same color. The dotted red lines constitute the end of each 

of the three time intervals under study. 

 

 
Figure 24. Representative channels found per each partition along the different time epochs. The 

blue dots represent channels which are equally distant to the centroid of the cluster and are 

considered both as representative ones for that cluster. The dotted green lines constitute the end 

of each of the three time intervals under study. 
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‘Pre’ Interval – 1
ST

 Epoch 

SEEG Bipolar  

Leads per  

Cluster 

Number of  

SEEG Leads  

per Cluster  

G11-G12 1 

J3-J4 

E3-E3 

2 

F11-F12 

M5-M6 

2 

G13-G14 

S6-S7 

2 

H10-H11 1 

G2-G3 

N9-N10 

P11-P12 

3 

H13-H14 1 

X12-X13 1 

T4-T5 

X1-X2 

L2-L3 

L7-L8 

S2-S3 

S3-S4 

H1-H2 

E6-E7 

F1-F2 

M1-M2 

N1-N2 

P1-P2 

12 

J5-J6 1 

K4-K5 

F6-F7 

2 

T1-T2 

E9-E10 

M10-M11 

3 

T6-T7 

L5-L6 

J1-J2 

K1-K2 

N16-N17 

5 

 

‘Seizure’ Interval – 1
ST

 Epoch 
SEEG Bipolar  

Leads per  

Cluster 

Number of  

SEEG Leads  

per Cluster 

T1-T2   

T4-T5   

T6-T7   

X1-X2   

G2-G3   

L2-L3   

L7-L8   

S2-S3   

H1-H2   

H10-H11 

J1-J2   

J3-J4   

E2-E3   

K1-K2   

F1-F2   

M1-M2   

N1-N2   

N9-N10  

N16-N17 

P11-P12 

20 

X12-13 

G11-G12 

G13-G14 

L5-L6   

S3-S4   

S6-S7   

H13-14 

J5-J6   

E6-E7   

E9-E10  

K4-K5   

F6-F7   

F11-F12 

M5-M6   

M10-11 

P1-P2   

16 

 

Table 3. SEEG bipolar leads grouping example. Left: names of the SEEG bipolar leads forming 

each cluster inside the partition found for the first epoch of the ‘pre’ interval and the number of 

channels per each group. Right: the same information is provided regarding the first epoch of 

the ‘seizure’ interval. The bipolar leads written in bold characters constitute the representative 

channels for each cluster. 
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Some additional medical information should be known in order to stablish further 

conclusions about the way the SEEG channels are grouped and about the 

representative channels found after the analysis carried out.  For example, 

information with reference to the SEEG channels corresponding to the epileptogenic 

areas according to the pre-surgical evaluation performed by the neurologist or the 

position of the SEEG electrodes inside the brain would surely contribute to a better 

understanding of the present results and on the setting down future development 

tracks for the present project. This will be further discussed on Chapter 4. 

 

3.4.2 Principal Components evolution along the time epochs.  

 

As stated before, the weights of the mixing matrix corresponding to the components 

which explain the 90% of the total variance in original data were used as input for the 

K-means clustering in order to obtain a quantitative description of the brain 

synchronicity evolution over the established time epochs.  

 

Since the PCA decomposition is performed separately for each epoch, a further 

indication of the evolution of this synchronicity levels might be given by the changes 

in the number of principal components needed to explain the 90% of the total 

variance over the epochs. Principal Component Analysis is usually used to re-express 

large datasets in a way that only the first few components account for as much of the 

variability possible. So that, if the number of components needed to explain the 90% 

of the total variance is compared from the decomposition results for two epochs, the 

one with the lower number of components may be characterizing a higher 

synchronicity among the electrical signals originating on the different Stereo-EEG 

leads considered in the decomposition. 

 

Figure 25 shows, for the seizure example under study in the present chapter, the 

average evolution of the number of principal components needed to explain the 90% 

of the variance on the original data for each one of the different time epochs 

considered for the analysis. This evolution shows that the number of principal 
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components needed to explain the 90% of the variance over the epochs reaches the 

minimum value closely after the beginning of the seizure.   

 

In the Appendix B, the mean principal components evolution obtained for each one of 

the 14 patients is presented.  These results replicate the behaviour previously found.  

This decline towards a lower number of components closely after the ictal event may 

represent a higher seizure-related synchronicity among the electrical signals (brain 

areas) originating on the different Stereo-EEG bipolar leads considered in the 

decomposition.  

 

 
Figure 25.  Evolution of the number of principal components needed to explain the 90% of the 

variance for each one of the different time epochs considered in the present study. In this case, 

the evolution for the seizure presented in Figure 14 is described. 
 

 

 

 

3.5 Statistical Significance of the results for the population analyzed 

 

In the same Appendix (B) are shown the figures corresponding to the average results 

obtained for each one of the 14 patients analyzed. In particular, the appendix shows 

the evolution of the K values and the changes in the average number of observations 

(SEEG channels) per cluster and in the number of principal components explaining 

the 90% of the variance in the original data along the epochs. In this section, the 

statistical significance of these results will be discussed. 
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From the average results obtained for each patient, the mean number of groups found 

during the ‘pre’ and ‘post’ intervals was determined. The same calculation was 

performed for the evolution of the average number of channels per cluster and the 

number of components. In addition, from the results regarding the evolution of K and 

the principal components, the minimum value over the ‘seizure’ interval was 

computed. In the case of the average numbers of channels per cluster, the maximum 

value corresponding to the ‘seizure’ interval was calculated. The results are presented 

on Table 4 and were used in order to statistically test the differences found between 

the ‘seizure’ interval and the other ones. On Figure 26 the corresponding boxplots are 

presented. 

 

 
 Number of Groups vs. 

Epochs 

Average Number of 

Channels per cluster vs. 

Epochs 

Number of Principal 

Components (90%Var) 

vs. Epochs 

Patient Mean 

Pre 

Min 

Seizure 

Mean 

Post 

Mean 

Pre 

Max 

Seizure 

Mean 

Post 

Mean 

Pre 

Min 

Seizure 

Mean 

Post 

1 6.14 2.00 7.20 8.86 18.50 9.10 14.34 10.00 15.56 

2 7.66 2.00 6.85 10.62 18.00 10.79 11.88 6.67 13.29 

3 13.36 2.00 4.84 3.07 17.00 9.44 12.08 12.00 18.92 

4 2.00 2.00 5.52 20.50 20.50 11.49 16.52 13.00 16.60 

5 7.02 2.33 5.38 9.99 14.67 11.34 12.12 8.00 11.71 

6 11.72 2.00 3.32 5.02 16.00 10.77 12.36 4.00 12.72 

7 5.50 2.00 3.56 10.13 16.00 10.87 13.96 4.50 11.52 

8 13.96 2.00 6.32 3.45 17.00 11.83 11.72 1.00 11.12 

9 2.00 2.00 ----- 21.50 21.50 ----- 12.76 5.00 ----- 

10 4.12 2.00 12.88 10.56 16.00 3.26 14.60 3.00 11.80 

11 8.30 2.00 7.80 7.77 16.00 8.58 12.84 6.00 12.07 

12 6.24 2.00 2.28 12.12 17.50 15.87 15.42 9.50 14.74 

13 8.52 6.88 8.88 8.48 8.49 8.03 12.87 10.67 15.04 

14 10.56 2.00 7.12 5.80 17.50 10.49 9.76 3.00 9.84 

          

Mean 7.65 2.37 6.30 9.85 16.76 10.14 13.09 6.88 13.46 

SD 3.76 1.30 2.74 5.47 3.00 2.83 1.73 3.71 2.56 
 

 

Table 4. Parameters considered in order to perform the statistical testing procedure. 
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Figure 26.   Boxplots corresponding to each of the parameters’ evolution under analysis. 
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Considering the low number of samples (14 patients) analyzed on the present study, it 

is not proper to assume that the data obtained is normally distributed. So that, it is 

necessary to perform a statistical test which doesn’t have any particular constraint 

regarding the data distribution.  The Kruskal-Wallis Test fills this requirement. It is 

the non-parametric alternative to the one-way Analysis of Variance (ANOVA) and an 

extension of the Wilcoxon rank sum test for more than two groups. It compares the 

medians of the ranks associated with the group samples in order to test for the null 

hypothesis that all samples are drawn from the same population (or from populations 

with the same distribution) [44].  This hypothesis would be rejected if  𝑝 < 0.05 . The 

present testing procedure aims to evaluate the statistical significance of the difference 

found between the ictal-related behavior and the behavior along the ‘pre’ and ‘post’ 

intervals. 

 

On Table 5 the p-values obtained for each of the three cases under consideration (i.e. 

number of groups, average number of channels per cluster and number of components 

along the epochs) are presented. The p-value is considered significant if lower than 

0.05.  

 

 

Number of Groups vs. 

Epochs 

Average Number of 

Channels per cluster vs. 

Epochs 

Number of Principal 

Components (90%Var) vs. 

Epochs 

p-value 0.00002933* p-value 0.0001* p-value 0.0001* 

 

Table 5.  P-values corresponding to the Kruskal-Wallis Test performed for the 3 cases under 

consideration. *The information regarding the patient 9 was not included in these calculations 

since no information regarding the ‘post’ interval is available. 

 

 
According to the p-values obtained, the null hypothesis can be rejected in all the 

cases. Then, for the three parameters analyzed, the ‘pre’, ‘seizure’ and ‘post’ intervals 

are statistically different. 

 

The analysis performed compared the several groups together, but the conclusion 

obtained in this way might be too general. For the present analysis in particular, a 

specific comparison between the ‘seizure’ interval and each of the other ones is 
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needed. So that, a Bonferroni corrected Multiple Comparisons approach was 

executed. This allows for the pairwise comparison required. In Figure 27 the outcome 

provided by the multiple comparison test performed in Matlab is provided.  In the 

figure are shown, for each group, the estimated medians with the comparison 

intervals around them. Disjoint comparison intervals (i.e. no overlapping, lacking of 

intersection) indicate a significant statistical difference among groups, while those 

overlapping imply that there is no evidence for rejecting the null hypothesis when 

comparing that particular couple of groups. 

 

A)  

B)  
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C)  

Figure 27.  Bonferroni corrected Multiple Comparisons outcome. a) Number of Groups vs. 

Epochs.   b) Average Number of Channels per Cluster case vs. Epochs. c) Number of Principal 

Components (90%var) vs. Epochs. The estimated medians with comparison intervals around 

them are shown. Disjoint comparison intervals indicate a significant statistical difference among 

groups, while those overlapping imply that there is no evidence for rejecting the null hypothesis 

when comparing that couple of groups.  

 

The results indicate, for each of the three cases analysed, that there is a significant 

difference between the ’seizure’ and ‘pre’ groups. So the test rejects the null 

hypothesis that the data in these two groups comes from the same distribution. The 

same is true when comparing the ‘seizure’ group and the ‘post’ one. This suggests 

that the previously discussed seizure-related increase on the level of synchronization 

among brain areas is statistically significant. Nonetheless, since no information was 

provided regarding the end of the seizures, the minimum value of the ‘seizure’ 

interval was used for the testing procedure. A more proper evaluation could be 

performed by using the mean values for the whole duration of the seizure, if it was 

known. 

 Finally, from the multiple comparisons procedure it is also possible to 

conclude that there is not a significant difference between the ‘pre’ and the ‘post’ 

groups, so the test does not reject the null hypothesis that these two groups come 

from the same distribution. There is no convincing evidence to affirm that they differ. 

This may suggest that the alterations on the synchronicity levels related with the ictal 

event are not preserved during the ‘post’ interval. 
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CHAPTER 4 

 

Conclusions and Future Developments 

 

 
4.1 Discussions and Conclusions 

 

Stereoelectroencephalography (SEEG) is a methodology used in the pre-surgical 

evaluation of epileptic patients in order to establish the extent of the Epileptogenic 

Zone (EZ) and plan its surgical resection.  SEEG is ideal for studying the 

relationships between the structures concerned in seizure production and propagation, 

and can potentially contribute to the understanding of the origin and spread of 

seizures. 

 

In the present study, the SEEG data obtained from the pre-surgical evaluation 

performed in 14 neurosurgical patients affected by Focal Cortical Dysplasia Type II 

are used in order to obtain a quantitative description of the synchronicity levels 

evolution among brain areas before and during seizures. This is achieved by applying 

a Principal Component Analysis-based K-means clustering algorithm over different 

epochs (4 seconds each) along three consecutive predefined time intervals (‘pre’, 

’seizure’, ‘post’) around the seizure events. Each interval is 100 seconds long.  The 

“seizure” interval starts in the moment in which the seizure begins, according to the 

information provided by the neurologist. The “pre” interval commences 100 seconds 

before the seizure begins, and the “post” interval initiates immediately after the end of 

the “seizure” one. So that, a 300 seconds time span is covered, starting 100 seconds 

before the beginning of the seizure. 

 

Since the population under analysis is affected by focal seizures, which derive from a 

small group of neurons (the seizure focus) and then spread further, the initial 

hypothesis was to expect a progressive increase in the levels of synchronization 

among brain areas when moving from the ‘pre’ interval towards the ‘seizure’ one, 

reaching a maximum during the ictal event. 
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The evolution of the K-values along each of the time epochs was analyzed for the 

three pre-defined intervals. This evolution shows that, once the seizure starts, the 

Stereo-EEG contacts tend to be grouped into a lower number of clusters per partition. 

This also means that the average number of Stereo-EEG bipolar leads grouped per 

cluster along the epochs increases in relation to the ictal event. Furthermore, the 

evolvement of the number of principal components needed to explain the 90% of the 

variance on the original data for each of the time epochs was studied. The results 

exhibit a decline towards a lower number of components needed after the ictal event. 

All these findings suggest a higher seizure-related synchronicity among the electrical 

activity of the different brain areas covered by the Stereo-EEG electrodes. The 

statistical significance of these findings was positively evaluated according to the 

Kruskal-Wallis Test followed by a Bonferroni corrected Multiple Comparisons 

procedure. 

 

Moreover, the way in which the Stereo-EEG bipolar leads are grouped along the 

partitions was described (i.e. the names of the SEEG channels forming each group 

were presented) and the representative channels per each partition were calculated as 

those closer to the centroid of each cluster. However, some additional clinical 

information should be known in order to stablish further conclusions in this regard. 

 

In fact, although the temporal moments corresponding to the beginning of the seizure 

were indicated by an expert neurologist, further information would be needed in order 

to improve the understanding of the results here obtained: 

 

 The postictal starting points (the end of the seizure) were not provided. This 

causes some uncertainty while trying to associate the findings of this study with the 

end of the ictal phase and the beginning of the postictal one. 

 Information regarding the SEEG channels corresponding to the epileptogenic 

areas according to the pre-surgical evaluation performed by the neurologist would be 

useful in order to make a comparison between the representative channels found in 

the present study and the epileptogenic ones identified by the clinicians, allowing 

finding out if there is any potential relationship between them. 
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 Knowing the position of the SEEG electrodes inside the brain would make 

possible to relate the present findings to anatomical brain areas, allowing to have a 

clearer idea about how to proceed with future steps/developments of the present study 

(e.g. to define how to perform a connectivity analysis over the brain regions involved 

in the seizure process). 

 Since the SEEG signals from the population analyzed were recorded during 

sleeping periods, obtaining the hypnogram describing the sleep stages’ evolution for 

each patient would be fruitful in order to evaluate the influence of the sleep stage to 

the synchronicity levels found in the present thesis work. 

4.2 Future Developments 

 

In this section some possible future developments for the present thesis work are 

suggested. Some of them were already briefly discussed in the previous section in 

regard to the additional medical information needed in order to improve the 

understanding of the results here obtained. 

 

 Modifying the epochs’ length  

Here, fixed 4 seconds long time epochs were analysed. However, the Stereo-EEG 

signals exhibit different kinds of electrical activity. By defining shorter time epochs a 

more detailed description of the seizure evolution could be performed. Another 

possible track would be to develop an adaptive algorithm able to stablish the epochs’ 

length according to the SEEG signal evolution. 

 

 Relationship with Sleep 

As presented before, the potential relationship between sleep and epilepsy has been 

recognized since ancient times [8] [15]. In literature it is commonly accepted that 

epileptic seizures are more likely to happen in NREM than in REM sleep [8, 14-16].  

In fact, NREM sleep tends to facilitate partial seizures, especially at stages 1 and 2 

(lighter stages, non-SWS), while REM sleep seems to inhibit them [17]. Moreover, in 
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some types of epilepsy, such as Focal Cortical Dysplasia Type II, has been 

demonstrated an increase in the risk of sleep-related seizures [18].  

 

If the related sleep stages corresponding to the acquired data are not provided by the 

neurologist, they could be identified from the recordings by using one of the spectral 

procedures found in literature [45-48]. Analysing that information together with the 

results obtained in the present study would be helpful in order to evaluate the 

contribution made by sleep to the synchronicity levels found in the present thesis 

work and would either confirm what has been previously found in literature or 

suggest new findings regarding the relationship between the different stages of sleep 

and seizures.  

 

 

 Connectivity Analysis 

“Neurons and neural populations do not function as islands onto themselves. Rather, 

they interact with other such elements through their afferent and efferent connections 

in an orchestrated manner” [49]. Nowadays, how these cortical regions communicate 

one to each other, i.e. the concept of brain connectivity, beyond the simple mapping 

of their activity, is becoming a central topic in neuroscience [50] [51].  

The concept of brain connectivity can be subdivided into three main categories: 

Structural, Functional and Effective Connectivity. Effective connectivity is 

particularly interesting for our purposes, since it describes the interactions between 

brain regions, taking into account the direction of the information flow among them 

[7]. So that, it aims at describing causal influences [5].  Effective connectivity can be 

estimated using model-based techniques, or data-driven ones. Model-based 

techniques, such as Structural Equation Modeling (SEM) and Dynamic Causal 

Modeling (DCM) are based on an a priori model specifying the causal links (i.e. the 

structural graph must be previously known), allowing the assessment of some a priori 

proposed causal interactions [5, 51-53]. They are considered confirmatory methods 

for some hypothesis, rather than exploratory ones [52]. On the other hand, data-driven 

techniques do not specify any a priori model about neuronal interactions, allowing the 

estimation of effective connectivity directly from the signals when no prior 

knowledge is available [51].  
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A large group of effective connectivity measures are based on the concept of Granger 

causality (GC) [7]. Some of the techniques developed under the GC method are: the 

Directed Transfer Function (DTF), the Partial Directed Coherence (PDC) and the 

direct DFT (dDFT). All of them are frequency domain approaches, and all are based 

on a Multivariate Autoregressive (MVAR) modelling [54]. More detailed information 

about connectivity analysis can be found in [55-66]. 

 

As a further development for the present study, a Granger Causality connectivity 

analysis could be performed over the previously identified brain areas involved in the 

seizure evolution (among or within them). This approach would probably contribute 

to the understanding of the mechanisms underlying the origin and spread of epileptic 

seizures, focusing on the relationship between the cortical areas involved before, 

during and after them. 

 
 Phase Coupling Within and Between Brain Regions 

In order to continue contributing to the understanding of the mechanisms underlying 

the origin and spread of epileptic seizures, a further study regarding the phase 

coupling between brain oscillations (within and between the brain regions involved in 

the seizure) during the whole process could be performed. 

 

On brain dynamics, diverse transient local oscillations are generated. These are able 

to “mediate coordinated interactions within and between different neuronal 

subsystems” [67]. In order to study their relationship, some already available phase 

coupling methods might be useful. Three main approaches are distinguished in 

literature: They are based either on the Hilbert Transform [68, 69], Wavelets [67, 70] 

or High Order Spectra Analysis [71-75].  The previously cited methods could be also 

used in order to improve the understanding about the influence of the Infraslow 

Oscillations in the production of seizures. 
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APPENDIX A 

 

Five-Tier Epilepsy Classification 

 
In [8] a 5-tier classification of epilepsy is proposed. It is presented here since it 

considers epilepsy from different levels, providing a holistic view of the disease. In 

fact, two of these five tiers (semiological characteristics of the seizures and seizure 

frequency) define the epileptic seizures, while the other three (etiology, related 

medical conditions and location of the epilepsy) define what is producing the epilepsy 

and the location of the brain abnormality. The 5 proposed tiers are presented below: 

 

Tier 1: Epilepsy 

The first Tier defines the location of the epileptogenic zone. The precision of the 

location varies depending on the number and type of diagnostic procedures performed 

(EEG, MRI, PET, SPECT, iEEG, etc.). The following subdivisions can be defined: 

 

1. Focal: epileptogenic zone located within one cortical lobe 

a. Frontal 

b. Perirolandic 

c. Temporal 

2. Neocortical temporal 

a. Mesial temporal 

b. Parietal 

c. Occipital 

d. Other 

3. Multilobar: epileptogenic zone affects more than one brain lobe 

a. Bilobar homotopic: epileptogenic zone affects two homotopic brain lobes 

(bitemporal, bifrontal, etc.) 

b. Other 

4. Generalized: epileptogenic zone is bilateral, diffusely distributed affecting most of 

or the entire brain cortex. 

 



79 

 

Tier 2: Semiological seizure classification 

It refers to the clinical expression of a patient with epilepsy. Here the classification is 

made according exclusively to the clinical semiology, independent of the results of 

other tests (EEG, MRI, PET, SPECT, etc). It relies only on the clinical observation 

made by the physician (video recordings), by the patient itself or other direct 

observers.  

 

1. Auras 

a. Somatosensory auras 

b. Visual auras 

c. Auditory auras 

d. Gustatory auras 

e. Olfactory auras 

f. Autonomic auras 

g. Abdominal auras 

h. Psychic auras 

2. Autonomic Seizures 

3. Dialeptic Seizures 

4. Motor Seizures 

a. Simple Motor Seizures 

i. Myoclonic seizures 

ii. Clonic Seizures 

iii. Tonic Seizures 

iv. Versive Seizures 

v. Tonic-Clonic Seizures 

vi. Epiletic Spasms 

b. Complex Motor Seizures 

i. Automotor seizures 

ii. Hypermotor seizures 

iii. Gelastic Seizures 

5. Special Seizures 

a. Atonic seizures 
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b. Akinetic seizures 

c. Astatic seizures 

d. Negative myoclonic seizures 

e. Hypomotor seizures 

f. Aphasic seizures 

 

According to this model, the evolution of a seizure could be expressed by linking the 

seizure components/stages by arrows.  For example: 

Left visual auraleft hand clonic seizure (AOC*)  generalized tonic-clonic seizure. 

*AOC = Alteration of consciousness 

 

Tier 3: Etiology  

Epilepsies are produced by multiple etiologies. Sometimes one of the causes could 

play a dominant role (for example, seizures caused by a tumor) while in other cases 

it’s almost impossible to isolate a single etiological factor (for example, ‘genetic’ 

epilepsy, where multiple genes contribute to the generation of seizures). However, 

there are always multiple causes, even if there is a single dominant one. 

 

1. Hippocampal sclerosis 

2. Tumor 

a. Glioma 

b. Dysembrioplastic neuroepithelial tumor 

c. Ganglioglioma 

d. Other 

3. Malformations of cortical development (MCD) 

a. Focal MCD 

b. Hemimegalencephaly 

c. MCD with epidermal nevi 

d. Heterotopic grey matter 

e. Hypothalamic hamartoma 

f. Hypomelanosis of Ito 

g. Other 
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4. Malformations of vascular development 

a. Cavernous angioma 

b. Arteriovenous malformation 

c. Sturge–Weber syndrome 

d. Other 

5. Central nervous system infections 

a. Meningitis 

b. Encephalitis 

c. Abscess 

d. Other 

6. Central nervous system inflammation 

a. Rasmussen encephalitis 

b. Vasculitis 

c. Other 

7. Hypoxic-isquemic brain injury 

a. Focal ischemic infarction 

b. Diffuse hypoxic-ischemic injury 

c. Periventricular leukomalacia 

d. Hemorrhagic infarction 

e. Venous sinus thrombosis 

f. Other 

8. Head trauma 

a. Head trauma with intracranial hemorrhage 

b. Penetrating head injury 

c. Closed head injury 

d. Other 

9. Inheritable conditions 

a. Presumed genetic cause 

b. Tuberous sclerosis 

c. Progressive myoclonic epilepsy 

d. Metabolic syndrome 

e. Channelopathy 
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f. Mitochondrial disorder 

g. Chromosomal aberration 

h. Other 

10. Structural brain abnormality of unknown cause 

11. Other 

12. Unknown etiology  

 

 

Tier 4: Seizure frequency 

Important for the management of the patient, which is focused mainly on reducing the 

frequency and intensity of epileptic seizures. 

 

1. Daily seizures:  

One or more seizures per day 

2. Persistent seizures:  

Less than one seizure per day but at least one seizure/6 months 

3. Rare or no seizures:  

Fewer than one seizure every 6 months 

4. Undefined:  

Seizure frequency cannot be specified because of unknown seizure frequency, 

recent onset of epilepsy or recent surgery of epilepsy 

 

Tier 5: Related medical conditions 

Provides information regarding non-etiological conditions the patients may be 

suffering. For example: Previous surgical procedures, depression, mental retardation, 

hemianopia, etc. 
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Below two examples of classification according to the 5-tiers system are presented: 

Case (Patient X): 

Tier 1 (Epilepsy Location): Right frontal 

Tier 2 (Semiological Seizure Type): Left hand clonic seizures generalized tonic-

clonic seizure 

Tier 3 (Etiology): Right frontal malformation of cortical development 

Tier 4 (Seizure frequency): Undefined 

Tier 5 (Related medical conditions): Postsurgical left hand paralysis, right frontal 

lobectomy (January, 2008) 

 

Case (Patient Y): 

Tier 1 (Epilepsy Location): Generalized (Lennox-Gastaut syndrome) 

Tier 2 (Semiological Seizure Type): Generalized astatic seizures, Dialeptic seizures, 

Generalized tonic seizures, Generalized tonic-clonic seizures 

Tier 3 (Etiology): Diffuse hypoxic-ischemic injury 

Tier 4 (Seizure frequency): Daily 

Tier 5 (Related medical conditions): Severe mental retardation, left hemiparesis 
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APPENDIX B 
 

 

 

Average Results for the Population under study 

 

 

 

 

In this Appendix are shown the figures corresponding to the average results obtained 

for each one of the  14 patients analyzed. In particular, the appendix shows the 

evolution of the K values and the changes in the average number of observations 

(SEEG channels) per cluster and in the number of principal components explaining 

the 90% of the variance in the original data along the epochs.  

 

 

 Evolution of K along the epochs: 

 

a) 

 

b) 

 
c) 

 

d) 

 
 



85 

 

e) 

 

f) 

 
g) 

 

h) 

 
i) 

 

j) 

 
k) 

 

l) 
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m) 

 

n) 

 
 

Figure 28. Patients’ average evolution of the number of groups found by the algorithm along the 

epochs. (a-n) correspond to patients 1-14 respectively. The dotted red lines constitute the end of 

each of the three time intervals under study. The red line named C represents the beginning of 

the seizure according to the information provided by the neurologist (or the end of the “pre” 

time interval). While P1 and P2 constitute the end of the “seizure” and “post” intervals 

respectively. 
 

 

 Number of principal components needed to explain the 90% of the variance 

along the epochs: 

 

a) 

 

b) 

 
c) 

 

d) 
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e) 

 

f) 

 
g) 

 

h) 

 
i) 

 

j) 

 
k) 

 

l)
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m) 

 

n) 

 
 

Figure 29. Patients’ average evolution of the number of principal components needed to explain 

the 90% of the variance for each one of the different time epochs. (a-n) correspond to patients 1-

14 respectively. The dotted red lines constitute the end of each of the three time intervals under 

study. The red line named C represents the beginning of the seizure according to the information 

provided by the neurologist (or the end of the “pre” time interval). While P1 and P2 constitute 

the end of the “seizure” and “post” intervals respectively. 

 

 

 

 Average number of channels per cluster along the epochs: 

 

a) 

 

b) 

 
c) 

 

d) 
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e) 

 

f) 

 
g) 

 

h) 

 
i) 

 

j) 

 
k) 

 

l) 

 



90 

 

m) 

 

n)  

 
 

 
Figure 30.  Patients’ mean evolution of the average number of channels per cluster along the 

epochs. (a-n) correspond to patients 1-14 respectively. The dotted red lines constitute the end of 

each of the three time intervals under study. The red line named C represents the beginning of 

the seizure according to the information provided by the neurologist (or the end of the “pre” 

time interval). While P1 and P2 constitute the end of the “seizure” and “post” intervals 

respectively. 


