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Abstract

The capability to land autonomously and precisely is a key factor for
future missions. Scientific interesting regions are often located in haz-
ardous terrains, and it is not always possible to define a landing area
in advance, for example when dealing with asteroids or comets, that
are too small and too far to be observed with such a great accuracy.
Therefore, an autonomous system able to select a safe landing area
in a particular interesting region increases enormously the mission
flexibility. In this thesis, an hazard detection system based on a single
camera working in the visible spectrum is presented. Artificial Neural
Networks are exploited to process the camera outputs and landing
site is selected with a dedicated algorithm. A routine to validate the
landing sites chosen has been developed, in order to assess the haz-
ard detection system level of safety through the comparison with the
ground truth solution, developed with NASA LRO mission elevation
data. Various design iterations are tested and compared to choose
the best definitive hazard detection system. At the end, the design of
a facility dedicated to test vision based autonomous navigation and
hazard detection systems currently under development at PoliMi is
presented.

Key words: Hazard detection, autonomous landing, artificial neural
networks, experimental facility
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Sommario

La capacità di atterraggio preciso e autonomo è fondamentale per
le missioni spaziali future. Regioni scientificamente interessanti si
trovano spesso in aree pericolose, così come non è sempre possibile
scegliere un luogo di atterraggio in anticipo, ad esempio quando si
tratta di corpi celesti lontani e di piccole dimensioni, come comete ed
asteroidi, la cui superficie non può essere analizzata con sufficiente
precisione. Dunque, un sistema di rilevamento del pericolo capace
di scegliere un luogo di atterraggio in autonomia aumenta enorme-
mente la flessibilità della missione. In questa tesi viene presentato un
sistema di rilevamento del pericolo (hazard detection system) basato
su una monocamera che opera nello spettro del visibile. Vengono
sfruttate reti neurali artificiali per processare le immagini proveni-
enti dalla camera e scegliere un luogo di atterraggio sicuro. Questo
viene validato da una routine apposita, la quale controlla se il luogo
scelto è sicuro anche sulla mappa di pericolosità reale, sviluppata con
dati altimetrici della missione LRO della NASA. Varie iterazioni nel
progetto del sistema vengono paragonate alla versione finale in ter-
mini di prestazioni. Infine, viene esposto il progetto di una facility
attualmente in sviluppo destinata al test e alla validazione di sistemi
di navigazione autonoma e rilevamento del pericolo basati su sensori
ottici.

Parole chiave: Rilevamento pericolo, atterraggio automatico, reti
neurali artificiali, laboratorio sperimentale

V





Acknowledgments

I would like to thank Prof. Michèle Lavagna to have supervised my
work with her great experience, giving me the chance to develop such
an interesting research. My deepest gratitude to Paolo Lunghi, Ph.D.
candidate who patiently advised me in every situation sharing his
knowledge and his time, making this work possible.
A special thanks to all my friends at PoliMi, in particular Stefano,
Matteo, Riccardo, Giulio, Claudio, Andrea, Vincenzo, Amedeo that
lightened the hard journey towards the end. Also, an honorable men-
tion to my lifelong friends, which fortunately are too many to be cited
in a single page.
My greatest gratitude to my parents, that not only allowed and sup-
ported me in any of my choice, but most of all because the education
they gave me, which I have been able to understand only in recent
times. The same goes for my sister, who made my life easier paving
the way in front me, and to my aunt and Antonio, whose door is al-
ways open for me. This thesis is primarily because of them.
Eventually, I want to thank my girlfriend, Benedetta, who has the
special power to make my life colorful and to make me feel happy.

VII





Contents

Ringraziamenti VII

1 Introduction 1
1.1 Autonomous planetary landing . . . . . . . . . . . . . 1
1.2 Hazard Detection and Avoidance . . . . . . . . . . . . 6

1.2.1 Definition of hazard . . . . . . . . . . . . . . . 6
1.2.2 Landing phases and Hazard Detection and Avoid-

ance . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Sensors for autonomous landing systems . . . . 9
1.3.2 Automatic Guidance and Navigation Control Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Hazard Detection techniques . . . . . . . . . . 13
1.3.4 Facilities . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Development tools used . . . . . . . . . . . . . . . . . 18
1.5 Thesis objectives and structure . . . . . . . . . . . . . 19

2 Artificial Neural Networks 21
2.1 Feed-Forward Artificial Neural Networks . . . . . . . . 21

2.1.1 From the Biological Neuron to the Multilayer
Neural Network . . . . . . . . . . . . . . . . . . 21

2.1.2 Training . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3 Empirical notes on how to train effectively . . . 35

2.2 Other types of Neural Networks . . . . . . . . . . . . . 37
2.2.1 Self-Organizing Maps . . . . . . . . . . . . . . 37

3 ORACLE+ hazard detection system 39
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Image loading and indices extraction . . . . . . 40

IX



3.1.2 SOM networks . . . . . . . . . . . . . . . . . . 40
3.1.3 Main Feedforward ANN . . . . . . . . . . . . . 41
3.1.4 Secondary Feedforward ANN . . . . . . . . . . 41
3.1.5 Hazard map computation . . . . . . . . . . . . 42
3.1.6 Landing Site selection . . . . . . . . . . . . . . 42
3.1.7 Training set creation . . . . . . . . . . . . . . . 43
3.1.8 Results . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Training, validation and test datasets 49
4.1 Ground Truth Hazard Maps from Digital Elevation Model 49
4.2 Training, Validation and Test datasets . . . . . . . . . . 53

5 Architecture of the Hazard Detection System 57
5.1 Input image preprocessing . . . . . . . . . . . . . . . . 58
5.2 Indices extraction . . . . . . . . . . . . . . . . . . . . . 60
5.3 Neural Network simulation: hazard map computation 65
5.4 Landing site computation algorithm . . . . . . . . . . . 67
5.5 Landing Site Validation algorithm . . . . . . . . . . . . 72

5.5.1 Optimization of the landing site candidates rank-
ing . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Discarded Architectures . . . . . . . . . . . . . . . . . 75

6 Performances assessment: tests and results 91
6.1 Hazard maps . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Landing site selection . . . . . . . . . . . . . . . . . . . 93
6.3 Computational performances . . . . . . . . . . . . . . 107

6.3.1 Performances removing the blur filter . . . . . . 116
6.4 Discarded architectures performances . . . . . . . . . 120

6.4.1 Comparison between final and discarded versions177
6.5 Test on real images . . . . . . . . . . . . . . . . . . . . 180

7 Facility for autonomous planetary landing simulation 187
7.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . 187
7.2 Design variants and trade-offs . . . . . . . . . . . . . . 188
7.3 Components . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3.1 Planetary mockup . . . . . . . . . . . . . . . . 190
7.3.2 Robotic arm . . . . . . . . . . . . . . . . . . . . 194
7.3.3 Lightning system . . . . . . . . . . . . . . . . . 198



8 Conclusions 199
8.1 Future developments . . . . . . . . . . . . . . . . . . . 200

Bibliografia 201

A Activation functions iii

B Test dataset ix





List of Figures

1.1 Functional architecture for an autonomous landing sys-
tem. Red boxed subsystems are studied in this thesis. . 4

1.2 Surface features . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hazard Detection and Avoidance during the Landing

Phase in celestial bodies without atmosphere. . . . . . 9

2.1 The biological neuron. . . . . . . . . . . . . . . . . . . 22
2.2 Rosenblatt’s perceptron. . . . . . . . . . . . . . . . . . 23
2.3 Artificial neuron scheme. . . . . . . . . . . . . . . . . . 24
2.4 Scheme of a Feedforward Multilayer Artificial Neural

Network . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 ORACLE+ system architecture. . . . . . . . . . . . . . 39
3.2 Directions used to compute mean and standard devia-

tion in a single mobile window. . . . . . . . . . . . . . 41
3.3 Training set creator, ORACLE+. . . . . . . . . . . . . . 44
3.4 Lunar image used for training and corresponding haz-

ard map computed with fuzzy logic. . . . . . . . . . . 44
3.5 Test image. Planar region with craters and different

soil albedos. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Test image. Dark region with different slopes and long

edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Test image. Floor of the crater "Moore F". . . . . . . . 46

4.1 DEM photorealistic rendering and corresponding haz-
ard map. Intermediate rendering maps that concur to
create (b) are shown in Fig. 4.2 . . . . . . . . . . . . . 53

4.2 Intermediate stage renderings for the hazard map com-
putation. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

XIII



4.3 Renderings at 10◦, 45◦, 80◦and respective ground truth
hazard maps. These images have been used for the
training dataset. . . . . . . . . . . . . . . . . . . . . . 55

5.1 Hazard Detection system architecture. . . . . . . . . . 57
5.2 Perspective Tranformation. FoV: 60◦, altitude: 2000 m,

pitch: 7.1◦, yaw: 7.1◦, roll: 0.1◦ . . . . . . . . . . . . . 59
5.3 Intermediate phases to image gradient computation . . 62
5.4 Laplacian of Gaussian with σ = 0.5, representation as

a continuous function (a) compared to the approxi-
mated discrete kernel used in the hazard detection sys-
tem indices extraction. . . . . . . . . . . . . . . . . . . 63

5.5 Laplacian of Gaussian with σ = 0.5 . . . . . . . . . . . 64
5.6 Feedforward ANN scheme. Activation functions are

sketched for both the hidden and the output layer. . . 65
5.7 Effects of the light blurring filter adopted on the hazard

map are almost imperceptible to the eye. . . . . . . . . 66
5.8 RMSE trend during training. It is possible to notice the

initial oscillation of the RMSE due to the aggressive
irprop algorithm settings adopted. . . . . . . . . . . . 67

5.9 Image reference frame. . . . . . . . . . . . . . . . . . . 68
5.10 Intermediate phases of the landing site search algo-

rithm: (a) Original hazard map. (b) Threshold of the
original map with θmax = 0.3. (c) Size score compu-
tation, thresholded with rCLSij ≤ rmin. dmin = 3 m,
egnc = 15m. (d) Diversion score computation: NLS is in
set in the image center. (e) Safety score computation:
average hazard index inside CLS radius . . . . . . . . . 71

5.11 Last phases of the landing site search algorithm: (a)
Global score computation: highest (red) area repre-
sents the best landing candidate (b) Landing site in
the original lunar image. . . . . . . . . . . . . . . . . . 72

5.12 Version A, architecture. . . . . . . . . . . . . . . . . . . 76
5.13 Directional mean and standard deviation computed on

the central column direction for 4×4 mobile window. . 77
5.14 Directions used to compute mean and standard devia-

tion in a single mobile window in the original hazard
detection system. . . . . . . . . . . . . . . . . . . . . . 78

5.15 Version B, architecture. . . . . . . . . . . . . . . . . . . 78



5.16 Image gradient computed through Sobel filter . . . . . 79
5.17 Version C, architecture. . . . . . . . . . . . . . . . . . . 80
5.18 Effects of Laplacian of Gaussian filter on the original

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.19 Version D, architecture. . . . . . . . . . . . . . . . . . 82
5.20 Effects of the edge detector based on LoG filter with

σ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.21 Effects of the edge detector based on Canny filter with

σlow = 0.4 and σhigh = 0.1 . . . . . . . . . . . . . . . . 84
5.22 Version F, architecture. . . . . . . . . . . . . . . . . . . 85
5.23 Version G, architecture. . . . . . . . . . . . . . . . . . 86
5.24 Version H, architecture. . . . . . . . . . . . . . . . . . 87
5.25 Version I, architecture. . . . . . . . . . . . . . . . . . . 88
5.26 Version L, architecture. . . . . . . . . . . . . . . . . . . 89
5.27 Version M, architecture. . . . . . . . . . . . . . . . . . 90

6.1 RMSE computation: images with 15◦ Sun elevation in
the test dataset. . . . . . . . . . . . . . . . . . . . . . . 93

6.2 RMSE computation: images with 80◦Sun elevation in
the test dataset. . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Trend of various HD system performances changing
the threshold of the computed hazard map. . . . . . . 97

6.4 Trend of TP/FP considering average, maxima, minima
of TP and FP values among the test dataset images. . . 98

6.5 Ground truth and computed hazard map comparison
for a DEM not present in the test dataset rendered at
10 ◦ Sun elevation angle. In (d), red means False Pos-
itive, green True Positive, white False Negative . . . . . 104

6.6 Ground truth and computed hazard map comparison
for a DEM not present in the test dataset rendered at
45 ◦ Sun elevation angle. In (d), red means False Pos-
itive, green True Positive, white False Negative . . . . . 105

6.7 Ground truth and computed hazard map comparison
for a DEM not present in the test dataset rendered at
80 ◦ Sun elevation angle. In (d), red means False Pos-
itive, green True Positive, white False Negative . . . . . 106

6.8 Ground truth and computed hazard map comparison,
test image 1. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 108



6.9 Ground truth and computed hazard map comparison,
test image 2. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 109

6.10 Ground truth and computed hazard map comparison,
test image 3. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 110

6.11 Ground truth and computed hazard map comparison,
test image 4. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 111

6.12 Ground truth and computed hazard map comparison,
test image 5. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 112

6.13 Ground truth and computed hazard map comparison,
test image 6. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 113

6.14 Ground truth and computed hazard map comparison,
test image 7. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 114

6.15 Ground truth and computed hazard map comparison,
test image 8. In (d), red means False Positive, green
True Positive, white False Negative . . . . . . . . . . . 115

6.16 Hazard map RMSE of the 8 test images, with or with-
out the blur filter. . . . . . . . . . . . . . . . . . . . . . 117

6.17 CPI of the 8 test images, with or without the blur filter. 118
6.18 MLV of the 8 test images, with or without the blur filter. 118
6.19 First False Positive position in the landing sites ranking

for the 8 test images, with or without the blur filter. . . 119
6.20 RMSE comparison between final HD architecture and

version A on the test dataset. . . . . . . . . . . . . . . 123
6.21 RMSE, version A: images with 15◦ Sun elevation in

the test dataset. . . . . . . . . . . . . . . . . . . . . . . 123
6.22 RMSE, version A: images with 80◦Sun elevation in the

test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 124
6.23 Comparison between final HD version and version A in

terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 124
6.24 Resulting landing sites on test images 3 and 4. Green

represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 126



6.25 Comparison between ground truth and HD version A
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 126

6.26 RMSE comparison between final HD architecture and
version B on the test dataset. . . . . . . . . . . . . . . 128

6.27 RMSE, version B: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 128

6.28 RMSE, version B: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 129

6.29 Comparison between final HD version and version B in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 130

6.30 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 131

6.31 Comparison between ground truth and HD version B
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 131

6.32 RMSE comparison between final HD architecture and
version A on the test dataset. . . . . . . . . . . . . . . 133

6.33 RMSE, version C: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 133

6.34 RMSE, version C: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 134

6.35 Comparison between final HD version and version C in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 134

6.36 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 136

6.37 Comparison between ground truth and HD version C
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 136

6.38 RMSE comparison between final HD architecture and
version D on the test dataset. . . . . . . . . . . . . . . 138

6.39 RMSE, version D: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 138

6.40 RMSE, version D: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 139

6.41 Comparison between final HD version and version D in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 139



6.42 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 140

6.43 Comparison between ground truth and HD version D
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 141

6.44 RMSE comparison between final HD architecture and
version E on the test dataset. . . . . . . . . . . . . . . 143

6.45 RMSE, version E: images with 15◦ Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 143

6.46 RMSE, version E: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 144

6.47 Comparison between final HD version and version E in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 144

6.48 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 145

6.49 Comparison between ground truth and HD version E
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 146

6.50 RMSE comparison between final HD architecture and
version F on the test dataset. . . . . . . . . . . . . . . 148

6.51 RMSE, version F: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 148

6.52 RMSE, version F: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 149

6.53 Comparison between final HD version and version F in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 150

6.54 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 151

6.55 Comparison between ground truth and HD version F
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 151

6.56 RMSE comparison between final HD architecture and
version G on the test dataset. . . . . . . . . . . . . . . 153

6.57 RMSE, version G: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 153

6.58 RMSE, version G: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 154



6.59 Comparison between final HD version and version G in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 155

6.60 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 156

6.61 Comparison between ground truth and HD version G
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 156

6.62 RMSE comparison between final HD architecture and
version H on the test dataset. . . . . . . . . . . . . . . 158

6.63 RMSE, version H: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 158

6.64 RMSE, version H: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.65 Comparison between final HD version and version H
in terms of CPI and MLV. . . . . . . . . . . . . . . . . . 159

6.66 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 160

6.67 Comparison between ground truth and HD version H
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.68 RMSE comparison between final HD architecture and
version I on the test dataset. . . . . . . . . . . . . . . . 163

6.69 RMSE, version I: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 163

6.70 RMSE, version I: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 164

6.71 Comparison between final HD version and version I in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 164

6.72 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 165

6.73 Comparison between ground truth and HD version I
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 166

6.74 RMSE comparison between final HD architecture and
version L on the test dataset. . . . . . . . . . . . . . . . 168

6.75 RMSE, version L: images with 15◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 168



6.76 RMSE, version L: images with 80◦Sun elevation in the
test dataset. . . . . . . . . . . . . . . . . . . . . . . . . 169

6.77 Comparison between final HD version and version L in
terms of CPI and MLV. . . . . . . . . . . . . . . . . . . 170

6.78 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 171

6.79 Comparison between ground truth and HD version L
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 171

6.80 RMSE comparison between final HD architecture and
version M on the test dataset. . . . . . . . . . . . . . . 173

6.81 RMSE, version M: images with 15◦ Sun elevation in
the test dataset. . . . . . . . . . . . . . . . . . . . . . . 173

6.82 RMSE, version M: images with 80◦ Sun elevation in
the test dataset. . . . . . . . . . . . . . . . . . . . . . . 174

6.83 Comparison between final HD version and version M
in terms of CPI and MLV. . . . . . . . . . . . . . . . . . 175

6.84 Resulting landing sites on test images 3 and 4. Green
represents a True Positive, red a False Positive, white a
False Negative. . . . . . . . . . . . . . . . . . . . . . . 176

6.85 Comparison between ground truth and HD version M
hazard map. . . . . . . . . . . . . . . . . . . . . . . . . 176

6.86 Trend of average CPI in the test set images . . . . . . . 177
6.87 τ computational performance trend among the various

architectures. Red horizontal line marks the reference
τ = 1 of the final HD version. . . . . . . . . . . . . . . 177

6.88 Trend of average MLV in the test set images . . . . . . 178
6.89 Trend of various HD system performances changing

the threshold of the computed hazard map, discarded
version E. . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.90 Lunar real surface image, Larmor Q crater floor, NAC
frame M151726155R, courtesy of NASA/GSFC/ASU. . 181

6.91 Real lunar test image . . . . . . . . . . . . . . . . . . . 182
6.92 Real lunar test image . . . . . . . . . . . . . . . . . . . 183
6.93 Real lunar test image . . . . . . . . . . . . . . . . . . . 183
6.94 Real lunar test image . . . . . . . . . . . . . . . . . . . 184
6.95 Giordano Bruno crater, oblique view. . . . . . . . . . . 184



6.96 Comet 67P Churyumov-Gerasimenko, Philae backup
landing site C (Photo: ESA) . . . . . . . . . . . . . . . 185

6.97 Comet 67P Churyumov-Gerasimenko, Imhotep region
(Photo: ESA) . . . . . . . . . . . . . . . . . . . . . . . 186

7.1 Milling test with Styrofoam. It is possible to spot the
high granularity of the material. . . . . . . . . . . . . . 191

7.2 Milling tests on the RenShape R© BM 5460 with a ball
cutter of 5 mm and 12 mm . . . . . . . . . . . . . . . 192

7.3 Mitsubishi PA10-7C degrees of freedom. (Credits: PA10
reference manual) . . . . . . . . . . . . . . . . . . . . 194

7.4 Mitsubishi PA10-7C spatial operative range. (Credits:
PA10 reference manual) . . . . . . . . . . . . . . . . . 196

7.5 MSC Software Adams model of relative positions of
robotic arm and diorama, front mounting. . . . . . . . 197

7.6 MSC Software Adams model of relative positions of
robotic arm and diorama, lateral mounting. . . . . . . 197

A.1 Heaviside activation function. . . . . . . . . . . . . . . iii
A.2 Linear activation function. . . . . . . . . . . . . . . . . iv
A.3 Ramp activation function. . . . . . . . . . . . . . . . . v
A.4 Logistic sigmoid activation function. . . . . . . . . . . vi
A.5 Hyperbolic tangent activation function. . . . . . . . . . vi

B.1 Colormap adopted for the hazard map graphical rep-
resentation. . . . . . . . . . . . . . . . . . . . . . . . . ix

B.2 Test image 1, 80◦Sun inclination angle. . . . . . . . . . x
B.3 Test image 2, 15◦Sun inclination angle. . . . . . . . . . x
B.4 Test image 3, 80◦Sun inclination angle. . . . . . . . . . xi
B.5 Test image 4, 15◦Sun inclination angle. . . . . . . . . . xi
B.6 Test image 5, 80◦Sun inclination angle. . . . . . . . . . xii
B.7 Test image 6, 15◦Sun inclination angle. . . . . . . . . . xii
B.8 Test image 7, 80◦Sun inclination angle. . . . . . . . . . xiii
B.9 Test image 8, 15◦Sun inclination angle. . . . . . . . . . xiii





List of Tables

4.1 Parameters used for POV-Ray renderings. . . . . . . . . 51

6.1 Hazard map RMSE. . . . . . . . . . . . . . . . . . . . . 95
6.2 Hazard detection system performances. . . . . . . . . 99
6.3 List of optimal landing site search function weights:

each row is a combination of optimal weights. . . . . . 100
6.4 First false positives in the landing site candidates rank-

ing for the test dataset. . . . . . . . . . . . . . . . . . . 101
6.5 Hazard map RMSE for the DEM outside the test dataset

exploited to validate the performances after the land-
ing site search weights optimization. . . . . . . . . . . 102

6.6 Hazard detection system performances for the DEM
outside the test dataset exploited to validate the per-
formances after the landing site search weights opti-
mization. . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7 First false positives in the landing site candidates rank-
ing for the DEM outside the test dataset exploited to
validate the performances after the landing site search
weights optimization. . . . . . . . . . . . . . . . . . . 103

6.8 Hazard map RMSE removing the blur filter. . . . . . . 116
6.9 Hazard detection system performances, results remov-

ing the blur filter. . . . . . . . . . . . . . . . . . . . . . 117
6.10 First false positives in the landing site candidates rank-

ing for the test dataset images, results removing the
blur filter. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11 Hazard map RMSE, version A. . . . . . . . . . . . . . . 122
6.12 Hazard detection system performances, version A. . . . 125
6.13 Hazard map RMSE, version B. . . . . . . . . . . . . . . 127
6.14 Hazard detection system performances, version B. . . . 130
6.15 Hazard map RMSE, version C. . . . . . . . . . . . . . . 132

XXIII



6.16 Hazard detection system performances, version C. . . . 135
6.17 Hazard map RMSE, version D. . . . . . . . . . . . . . . 137
6.18 Hazard detection system performances, version D. . . . 140
6.19 Hazard map RMSE, version E. . . . . . . . . . . . . . . 142
6.20 Hazard detection system performances, version E. . . . 145
6.21 Hazard map RMSE, version F. . . . . . . . . . . . . . . 147
6.22 Hazard detection system performances, version F. . . . 150
6.23 Hazard map RMSE, version G. . . . . . . . . . . . . . . 152
6.24 Hazard detection system performances, version G. . . . 155
6.25 Hazard map RMSE, version H. . . . . . . . . . . . . . . 157
6.26 Hazard detection system performances, version H. . . 160
6.27 Hazard map RMSE, version I. . . . . . . . . . . . . . . 162
6.28 Hazard detection system performances, version I. . . . 165
6.29 Hazard map RMSE, version L. . . . . . . . . . . . . . . 167
6.30 Hazard detection system performances, version L. . . . 170
6.31 Hazard map RMSE, version M. . . . . . . . . . . . . . 172
6.32 Hazard detection system performances, version M. . . 175

7.1 Feature comparison between an indoor and an outdoor
facility. . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2 Feature comparison between a drone-based and a robotic
arm based facility. (*): excluding extremely high cost
all-conditions robots . . . . . . . . . . . . . . . . . . . 190

7.3 Milling machine characteristics . . . . . . . . . . . . . 191
7.4 RenShape R©BM 5460 specifications. . . . . . . . . . . . 192

B.1 Test dataset characteristics . . . . . . . . . . . . . . . . ix



Chapter 1

Introduction

T
HE most important topics concerning this work are hereby briefly
presented. This chapter discusses the concept of autonomous
landing capability for spacecraft, thematic which this thesis deals

with through the creation of hazard maps to support the landing site se-
lection.
To understand the choices made by the author, it is also necessary to
present the state of the art for what concerns navigation and landing re-
lated technologies like active and passive sensors. Moreover, an overview
of the current european facilities dedicated to the simulation of vision-
based landing systems will be introduced.

1.1 Autonomous planetary landing

Safe and precise landing are a mandatory characteristics of space sys-
tems in future missions. Nowadays, some of the most advanced space
probes include the capability to land semi-autonomously on the sur-
face of a celestial body, that is typically the Moon, Mars, or a Near
Earth Objects (NEO). Semi-autonomous landing refers to the ability
of a lander to execute in autonomy a series of programmed com-
mands that have as scope a safe landing, integrating on board sensors
informations with the predefined mission profile.
Speaking about the Moon, for example, it is possible to mention the
recent Chang’e 3 mission. Featuring a lander and a rover, it is the first
chinese mission to have performed a lunar soft landing. During the
last phases of the powered descent to the surface, the Descent Camera
is exploited to avoid obstacles on the terrain and select a low hazard
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landing site [1]. Russian led Luna missions have a long heritage in
lunar landers and rovers, starting with the first human object hitting
the Moon with Luna-2 in 1959. In particular for the planned missions
Luna-25 and Luna-27, an hazard detection and an autonomous navi-
gation systems could be provided by ESA, such as part of the scientific
payload [2]. India has its Chandrayaan program, in which a first or-
biter (Chandrayaan-1) is already been successful. Chandrayaan-2, a
lander capable of soft landing, is planned to be launched in 2017.
It will exploit hazard avoidance and autonomous navigation through
cameras [3].
Mars has been object of numerous mission and studies in the past,
but many more are still to come. Probably the most famous mis-
sion is the Mars Science Laboratory (MSL) by US space agency NASA.
Active guidance systems have been adopted to increase the landing
precision to 20 km [4]. It can be considered a first iteration towards
the autonomous landing of future spacecraft: no hazard detection
systems were available on board, and the rover Curiosity landing site
has been a priori determined, without the possibility of a real-time
retargeting by the spacecraft. Quite interesting is the first use of the
skycrane, that is a structure devoted to soft-land the rover to the Mars
surface through ropes, hovering distant from the terrain. In any case,
the automation of this landing system is limited to the execution of
predetermined phases. ESA’s ExoMars program intends to deliver an
orbiter, a lander and a rover to Mars, with two separate missions:
ExoMars 2016 (orbiter and lander), Exomars 2018 (rover). Also in
this case, there is not a fully autonomous landing system capable of
real-time terrain analysis and retargeting, but the landing site is pre-
determined with a large error ellipse: 104 km × 19 km for ExoMars
2018 [5]. Another NASA mission, planned for launch in 2020 is Mars
2020. It is a rover based on Curiosity, but with different scientific in-
struments on board. The atmospheric entry and landing systems are
the same as the one exploited for MSL, that are possible to be con-
sidered as semi-automatic. An interesting project is ESA’s Phootprint,
a Phobos sample return mission study to be launched in 2022 de-
voted to investigate which process is most likely the one that formed
the martian moons. Four segments constitute the mission: Propul-
sion Module, Lander/Orbiter, Earth Return Vehicle, Re-entry Capsule
[6]. The lander itself is responsible to the selection of the sample site
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when inserted in orbit around Phobos.
A great scientific interest comes also from asteroids and Near Earth
Objects (NEO) in general. The Asteroid Impact Mission, for example,
is an ESA project devoted to the exploration of the binary asteroid
Didymos and to assess planetary defense capabilities. Together with
the Double Asteroid Redirection Test (DART), it composes the Asteroid
Impact and Deflection Assessment (AIDA). DART is a single impactor
spacecraft that hits the smaller member of the binary asteroid to
change its orbital period. AIM probe determines the momentum and
other physical characteristic transfers due to DART impact. Another
important project is OSIRIS-REx mission, designed to return samples
from the carbon-rich Bennu asteroid to study the origin of carbon-
based life. To pick a sample from the surface, the spacecraft features
Touch-And-Go Sample Acquisition Mechanism (TAGSAM) sample col-
lector: a burst of nitrogen gas pushes the asteroid surface regolith
inside the sampler’s chamber. Touch and go was chosen to eliminate
the risks deriving from a landing onto an asteroid. The selection of
the candidate sample site is performed through topographical map-
ping with OSIRIS-REx LASER Altimeter (OLA), a scanning LIDAR [7].
When talking about landings on objects in space, ESA’s Rosetta mis-
sion must be taken in consideration. Along with its lander Philae, it is
investigating the comet 67P/Churyumov–Gerasimenko. It is the first
mission in human history to rendezvous with a comet, escort it as it
orbits the Sun, and deploy a lander to its surface [8]. Philae landing
site have been chosen by the Landing Site Selection Group (LSSG)
after receiving images from Rosetta onboard OSIRIS and NAVCAM
cameras. Landing sequence has been loaded to the Philae lander af-
ter it has been computed on Earth.
Due to the telecommunication delays between the spacecraft and the
ground segment, a modern landing system must feature a high level
of autonomy too, being able to adapt and change landing site during
the landing phase, almost to the touchdown. Various reasons could
drive a landing site to be changed during the descent: a failure in an
on-board system, dictating an immediate landing in the nearest and
safest possible site, a scientific interesting spot detected real-time, the
need to avoid one or more hazardous areas in the region designated
to land on. In any case, the on board systems must have the author-
ity and the ability to detect unpredicted events and to compute an
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Figure 1.1: Functional architecture for an autonomous landing system. Red boxed
subsystems are studied in this thesis.

adequate solution autonomously. In literature, it is common to refer
to Autonomous Guidance, Navigation and Control (AGNC) when allud-
ing to an on board system devoted to safely maneuver the spacecraft
with a certain logic, especially towards a safe touchdown with the
planetary surface. It is a closed-loop set of subsystems (Fig. 1.1) de-
signed to be able to scan the area around the landing site, to check
if it is possible to reach for the nominal target site with the required
level of safety and, if not, to search for an alternative spot that meets
the landing requirements. In such an occurrence, a new landing tra-
jectory towards the updated target landing site should be calculated,
followed by the execution of a divert maneuver. The capability to
select another landing site whenever it is requested is provided by
a vision-based Guidance, Navigation and Control (GNC) chain, com-
posed by three main components:

• Adaptive Guidance (AG) system;

• Hazard Detection (HD) system;

• Vision based Navigation (VN) system.
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In addiction, a landing site selection algorithm selects the most suitable
landing spot on the surface.
A quick review of the subsystems is given:

Sensors. They supply the input to the whole system. Usually, inertial
systems (IMU), passive optical devices (star trackers, cameras), active
optical tools (LIDAR), active radio-waves equipments (RADAR) are
exploited. Typically, raw input is processed to extract, to enhance, to
transform data useful to the next blocks, i.e. vision based navigation
and hazard detection.

Visual based Navigation (VN). This subsystem reconstructs the dy-
namic state of the spacecraft through the informations coming from
optical sensors, that is merged with outputs from traditional sensors,
like Inertial Measurement Units (IMU) and altimeters, to provide rel-
ative or absolute navigation.

Hazard Detection system (HD). This subsystem transforms the input
image from the camera into a hazard map, in which each pixel repre-
sents the hazardousness of the corresponding input subspace, taking
into account slopes, shadows, terrain roughness. Through such map,
the landing site selection algorithm computes the most suitable spot
on the surface for the spacecraft to land on.

Adaptive Guidance (AG). Once the target landing site is known, AG
subsystem computes the trajectory to reach for the target, taking into
account current lander dynamics and constraints, such as fuel con-
sumption, target visibility and lander control authority.

Control system and actuators. The control system determines the
magnitude of the command to the actuators comparing the current
kinematic and dynamic parameters with the ones computed by the
AG to reach for the target landing site.

This thesis, developed at Department for Aerospace Science and
Technology of Politecnico di Milano, focuses on the detection and
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the avoidance of hazardous areas on the surface of celestial bodies,
with particular attention to our natural satellite the Moon, making
possible for a guidance and navigation control system to drive the
spacecraft to a safe landing site. Specifically, a single camera coupled
with an artificial neural network is exploited to provide not only a
robust and reliable, but also a cost effective and computational light
hazard detection system.

1.2 Hazard Detection and Avoidance

1.2.1 Definition of hazard

Talking about rocky celestial bodies, danger is represented by mor-
phological features that make difficult or impossible for the spacecraft
to land and to operate safely and compliant with the mission require-
ments. Such hazardous characteristics are craters, rocks and slopes.
Obviously, danger depends not only on the particular terrain feature

Figure 1.2: Surface features
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itself, but also on the size and the characteristics of the lander: as a
huge spacecraft would see a certain rock like a little stone, another
one could not be able to operate or even worse be damaged with
the same conditions. Or a particular slope might be well handled or
not depending on legs of the lander. Thus, it is necessary to assess
the hazard index taking into account both the planet surface and the
spacecraft. Moreover, dealing the present work with hazard detection
through a camera operating in the visible spectrum, shadows must be
considered hazardous, being de facto areas outside the sensor field of
view.

1.2.2 Landing phases and Hazard Detection and Avoidance

Generally speaking, a landing maneuver for planets with no atmo-
sphere like the Moon, can be divided into four sub-phases:

• Deorbit burn and coasting phase: the spacecraft is usually
considered to begin the landing from a low altitude parking or-
bit or from an hyperbolic trajectory in case of direct landing
from a transfer orbit. Performing a first engine burn, the space-
craft is injected in an elliptical transfer orbit with periselene lo-
cated at about 10 - 20 km height.

• Main brake: performed at the periselene of the transfer orbit,
main brake phase occurs when the spacecraft main propulsion
system is activated at max thrust to decrease as fast as possible
the most of the orbital velocity. At the end of the maneuver
the spacecraft performs a pitch-up maneuver and the hazard
detection system starts to operate.

• Approach: between 2500 and 1500 m in altitude main engine
thrust is reduced to be able to maneuver. Hazard Detection
and Avoidance tasks take place in this phase: the target land-
ing site is finalized, and one or more divert maneuvers can be
performed.

• Terminal descent: when it is reached the vertical of the desig-
nated landing site, at about 50-20 m height, a constant speed
descent at about 3 m/s is maintained until the touchdown.
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As stated, Hazard Detection and Avoidance deals with the approach
phase. If necessary during the descent, such maneuver would follow
a process similar to the following:

1. Hazard Detection and Avoidance (HDA) maneuver begins be-
tween 2500 and 1500 m in altitude at the so-called HDA High
Gate, after performing pitch-up maneuver, the lander is sup-
posed to have an almost vertical attitude with a vertical velocity
and an horizontal velocity respectively in the order of 15-30 m/s
and 10-20 m/s.

2. Large Scale Hazard Avoidance Maneuver is accomplished:

(a) HDA system scans the current landing area in input from
the camera and build the relative hazard map. An algorithm
selects the most suitable landing site, that is not depending
only on the pure hazardousness threshold, but it must take
into account many other parameters, such as fuel consump-
tion needed to reach for it and distance from an eventual
mission nominal landing site.

(b) Landing trajectory is computed taking into account vehicle
dynamic characteristic, attitude, current trajectory, fuel on
board. Thus, the consequent diversion maneuver is com-
manded. The target point for the trajectory is defined HDA
Low Gate and it is located between 600 and 350 m on the
vertical with respect to the landing site. Velocities drop to
5-10 m/s (vertical) and below 5 m/s (horizontal). Attitude
is vertical with engine nozzles pointing perpendicular to the
terrain.

3. The Small Scale Hazard Avoidance Maneuver is performed:

(a) the HDA system scans again the landing area, computing
the relative hazard map. If it is necessary, algorithms update
the landing site with the most fitting one.

(b) Up to date trajectory is computed and the new diversion
maneuver is commanded. Target point, called Terminal
Gate, is now located just few meters above the selected
landing site.
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4. Terminal Descent: With a vertical attitude and a null horizontal
velocity, the last phase consists in a constant vertical velocity
descent until the touch down.

Figure 1.3: Hazard Detection and Avoidance during the Landing Phase in celestial
bodies without atmosphere.

1.3 State of the art

1.3.1 Sensors for autonomous landing systems

RADAR altimeter The RAdio Detection And Ranging (RADAR) al-
timeter exploits reflection of electromagnetic waves onto a surface to
compute the relative distance. In particular, timing the interval be-
tween sending of the signal and receiving the echo, it is possible to
understand the distance between the transmitter and the ground onto
which the beam has been reflected. They are mounted on landers in
order to have a precise altitude measurement, a fundamental param-
eter to know when it is necessary to turn on the propulsion system to
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perform a correct and precise landing maneuver. Typically, their res-
olution allows them to compute a reliable altitude value below 2000
m [9]. Because of the low spatial resolution of these devices, they
cannot be used to detect morphological features of the terrain.
The same approach of the RADAR altimeter can be exploited to iden-
tify obstacles on the planetary surface: reducing the waves beam
emitted, it is possible to increase the spatial resolution, but of course
a lower area is scanned. Thus, the Millimeter Wave RADAR [9]
(MMW), must embed a device able to change the beam direction,
in order to scan a sufficient terrain area. In space applications, due
to tribological and maintenance issues, mechanisms are preferably
avoided, hence it is necessary to change the direction of the waves
beam without mechanically rotating the antenna. An example of
such an approach is represented by reconfigurable-plasma refraction
antenna [9].

LIDAR Following the same physical principle of the RADAR, the LIght
Detection And Ranging system, utilizes echoes of a light source onto
a surface instead of radio waves. Being light’s wavelength much
smaller than radio waves’, it is possible to detect much smaller ob-
stacles or discontinuities of the terrain profile. On the other hand,
such a high frequency of the wave can yield to false values when en-
countering suspended particles in atmosphere with dimensions of the
order of the wavelength of the beam emitted.
Through a such concentrated beam, a LIDAR can be exploited as an
altimeter from much higher heights with respect to a radio waves
based counterpart [10, 11]. With respect to a camera operating in
the visible spectrum, the LIDAR has less limitations due to its intrin-
sic active nature. Even though it is a very promising technology as
navigation equipment, technical complexity, high price and electrical
power needs [12] are still to be overcome for a common implemen-
tation on space missions. Nevertheless, through technological and
economical improvements, future mission are expected to rely heav-
ily on such instrumentation.

Camera Cameras are passive optical devices, usually working in vis-
ible spectrum. The core component is the Charge-Coupled Device
(CCD): a small doped silicon board highly photosensitive divided into
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pixels. As photons hit a pixel, it converts the intensity of the incom-
ing light beam to electrons, depending on the amount of photons
received. It is thus possible to reconstruct the image computing the
number of electrons per pixel. Cameras can present different Field
of Views (FoV) and in general horizontal FoV is different from verti-
cal FoV to have a privileged direction. It is a mature technology in
both terrestrial and space applications with respect to LIDAR, while
it is cheaper and less power consuming than RADAR. It is also widely
used because of the low power consumption and the ease of use,
due to the fact that the output of a camera is already the image it-
self. More, the image depth is an important parameter that represents
the intensity resolution that is possible to reach. Number of pixels
present on the CCD yields the image resolution of the output picture.
The higher the resolution, the more detailed picture is possible to ob-
tain. On the other hand, more memory and computational power is
needed to process and storage images. The absence of any moving
part makes the camera a very reliable sensor.
Anyway, due to its passive intrinsic nature, camera performances are
affected by the different light conditions in the various operating sit-
uations. Nevertheless with a pure single camera configuration, being
the output image bi-dimensional, it is not possible to directly obtain
an estimation of the depth information, with consequent problems in
computing steepness and differences in height of the planetary sur-
face.

1.3.2 Automatic Guidance and Navigation Control Systems

Many architectures to provide a AGNC have been developed and
are currently in progress by both space agencies and private compa-
nies. Generally speaking, they integrate measurements from multiple
sensors, exploiting inertial and relative navigation techniques. The
reader should note that the following systems –with the only excep-
tion of ALHAT– are mainly navigation systems, with very low capa-
bilities in terms of hazard detection. Indeed, HD is probably the less
investigated area of the whole AGNC chain. An overview of the most
notable architectures devoted to planetary navigation is presented
hereafter.
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SINPLEX The Small Integrated Navigator for Planetary EXploration
(SINPLEX) [13] is an autonomous navigation architecture in design
and test phase. Developed by a consortium headed by the DLR insti-
tute, it is designed to be lighter than current counterparts and to yield
high precision landing phase on planets and small celestial bodies
and/or rendezvous with other spacecrafts [14]. Low mass is obtained
through a miniaturization and integration of the various components.
SINPLEX can count on various sensors:

• LASER altimeter

• IMU

• Star tracker

• Navigation Camera (NavCam) with dedicated image processing
unit

Both Crater Navigation and Feature Tracking are available for known
surface bodies. On lunar landings, it is designed to yield a landing
precision of 100 m at 1σ, while 1 m on asteroid landings [15].

ALHAT The Autonomous Landing and Hazard Avoidance Technol-
ogy is in active testing phase at NASA [16]. Its main focus is to pro-
vide a AGNC system that needs almost null a priori knowledge on the
terrain which the spacecraft has to land on [17]. It packs an hazard
detection and avoidance system, navigation and guidance support.
Main component is the Flash LIDAR, that allows ALHAT to be able to
guide the spacecraft in any light condition through Terrain Relative
Navigation (TRN), HDA, and Hazard Relative Navigation (HRN), cou-
pled with IMU, star tracker, altimeter, doppler velocimeter. It aims a
landing precision within tens of meters if lunar navigation assets are
present and/or lunar map of the area are known by the system. Oth-
erwise, landing precision falls down to less than 1 km as magnitude
[18].

Lion Co-funded by ESA, ASTRIUM and ONERA, Lion is an Absolute
Visual Navigation system based on surface features matching [19].
Due to this, it exploits previous mission data through an offline process
[20], in which the system prepares the various landmarks to be used
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during the autonomous navigation process through an Harris Laplace
feature extractor (see [21] for a brief description of image features
extractors). Then, the online process [20] is activated to compute the
estimation of the spacecraft state. During features matching, among
the various matches, three sets of recognized features are used for po-
sition, velocity, attitude computation, discarding the others through a
RANSAC algorithm [19].

1.3.3 Hazard Detection techniques

The vast majority of HD system exploits the creation of hazard maps
to provide the most suitable target landing site. Various parameters,
such as maximum terrain slopes and rocks height, together with the
spacecraft characteristics, contribute to the creation of such hazard
maps. The notable difference among HD system is about how they
are able to create such maps. The most relevant techniques are pre-
sented.

Mono-camera Mono-camera systems are cheap and reliable, and their
output is already in form of image, thus it is easily processable. On
the other hand, they are not able to directly yield depth information
and HD systems performances based on cameras are strongly influ-
enced by light conditions during operations. To generate the hazard
map, HD systems with a single camera relies typically on shadow-
based vision techniques [22, 23] or on shape from shading algorithms,
that is able to reconstruct depth through intensity of the reflected
incoming light beams [24, 25]. An example of single camera HD
system proposed by ESA exploits shape from shading techniques to
compute slopes, histogram thresholding to isolate shadows, standard
deviation of the pixels intensities to measure surface roughness [26].
Such three maps are then integrated in a total hazard map on which
landing candidates that respect lander and safety requirements are
computed. Another approach with single camera is proposed in [27].
Here, an image segmentation algorithm through local intensity clus-
tering identifies regions as safe or unsafe. It can be considered an
extension of more conventional shadow thresholding based image
processing techniques. A completely different image processing tech-
nique that exploits a single camera is the so called structure from mo-
tion [28]. Used often in terrestrial vehicular applications [29] for ac-
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tive safety systems, it is a set of techniques that allows to reconstruct
the shape of the object by successive frames, knowing the kinematics
of the camera during the image frame acquisitions. It constitutes the
hazard detection system’s core in [30], where an autonomous heli-
copter with a camera on board is able to compute slopes and surface
roughness: through the boolean version of such two maps and tak-
ing into account the helicopter footprint, it is possible to compute the
suitable landing sites.

Stereo camera Stereo camera techniques exploits the difference in
perspective of the acquired images to compute depth. The larger
the baseline, the more precise third dimensional information is cal-
culated. An algorithm for hazard detection is implemented in [31]:
an algorithm dedicated to the slope estimation produces an elevation
map with the two cameras and fits the points of such map to compute
slopes. A second algorithm, always based on stereo vision, detect
rocks: surface plane is thresholded to discard noise and negligible
features. Deviation of the remaining features is computed, and av-
eraging the highest points in the regions, the height of the rock is
computed. Also a shadow based rock detection algorithm is present,
to be used especially at higher altitudes.

LIDAR The most relevant hazard detection performed through LI-
DAR is ALHAT system. Clearly, due to its active nature, it does not
relies on external light sources, therefore the hazard map is based on
surface roughness, slopes, distance from the nearest hazardous fea-
ture. Also in this case, the three maps are generated one by one and
then integrated in the final hazard map. Specifically they are gener-
ated through a flash LIDAR, that creates a 128×128 px image with
each pixel corresponding to intensities of the return laser pulse. The
maximum of such intensities is registered and its correspondent time
of flight is multiplied by speed of light over two in order to obtain the
range for that pixel. Using a perfect camera projection for the com-
puted laser rays, a 3D cloud of points is obtained in LIDAR’s reference
frame. Transforming data into Universal Transverse Mercator frame,
it is possible to obtain a computed Digital Elevation Model (DEM) of
the surface. Such calculated maps are then correlated with the on-
board DEMs, computed through previous missions, and a Terrain Rel-
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ative Navigation (TRN) algorithm estimates spacecraft position [32].
Another example is represented by [33], in which hazard maps are
exploited to compute landing sites onto Mars surface. In such work,
not only the HD system, but also a terrain simulator has been devel-
oped to be able to tailor every system before laboratory or real world
tests.

1.3.4 Facilities

An experimental facility represents a mandatory step to the integra-
tion of a system in actual aerospace operations. The laboratory en-
vironment allows the development and the validation of breadboard,
engineering, protoflight and flight models increasing the Technology
Readiness Level (TRL) of the system under development. Moreover,
using actual space-hardware, it is possible to assess the real-time per-
formances and to understand the various coupling effect between the
constituents of the system.

TRON The Testbed for Robotic Orbital Navigation is a facility lo-
cated at DLR in Bremen dedicated to the simulation of lunar landing
phase, in particular to provide the environment to qualify optical nav-
igation sensor breadboards to TRL 6 [34]. It consists in a dark room1,
with two walls devoted to host the lunar dioramas. A KUKA 7 DoF
robotic arm is mounted onto a rail guide to be able to simulate nav-
igation of the spacecraft, whose sensors are mounted onto the end
effector of the arm. Another rail guide drives the 4 DoF illumination
system that simulates sunlight color temperature onto lunar surface.
Note that TRON is designed with in mind the possibility to serve as
testbed not only for cameras, but also LIDAR and active devices in
general. That is why it has been opted for a 3D diorama [34]. The
manufacturing process of the diorama itself is made in house by DLR.
Milling process and polyurethane foam have been selected to provide
the correct accuracy needed to have a reliable navigation simulation
environment. Matte powder based coating for the diorama assures
optical requirements of the model surface to be coherent with lunar
soil ones. Scale factors to represent space environment varies from

1Necessarily covered with black matte fabric to not allow any unwanted reflection to
undermine the simulation fidelity.
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real scale 1:1 to 1:50000, limited by manufacturing precision and
availability of high resolution DEMs [35, 34].

VisiLab VisiLab is a test bench set up to validate vision-based navi-
gation systems. It is located in Noordwijk, The Netherlands at ESA -
ESTEC. It is composed by a lunar diorama, a support for the camera
to simulate spacecraft trajectory, an illumination system, a calibra-
tion framework [19, 20]. It is devoted to the validation of the Lion
AGNC system (Sec. 1.3.2). Mock-up specifications for the lunar sur-
face have been taken from the NASA LRO mission data. In particular,
Moon South Pole has been selected for the diorama because of its
scientific interest [19]. Manufacturing process has been performed
at DLR Bremen, the same as the one for the TRON facility. As cam-
era support it has been used a 4 DoF2 structure, instead of a typical
robotic arm [20].

VBNF The Vision-Based Navigation Facility (VBNF) is a test bed and
proof of concept for vision-based navigation systems, to increase their
on-board autonomy [36]. Located at Thales Alenia Space premises in
Italy, it simulates the Entry, Descent and Landing (EDL) phase of a
lander. It is composed by:

• a quadricopter drone: endurance of 15 minutes, it packs as pay-
load the camera, the trajectory control board the serial radio for
a total flight mass of 2.7 Kg;

• the Tracking system, used to track position and attitude of the
drone to the trajectory control workstation;

• the diorama, a huge 8×8 m in scale 1:300 representing some
important features of Mars surface;

• the simulator/image processing workstation, used to validate
the mock-up features.

An important remark: the VBNF does not simulate the dynamics of
the spacecraft, it is a facility designed to validate vision based mod-
ules, components in charge of acquiring and processing images dur-
ing the Entry Descent and Landing (EDL) phases.

2three translational direction, rotation about pitch axis
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PLGTF The Precision Landing GNC Test Facility (PLGTF) is an Eu-
ropean Space Agency (ESA) outdoor facility developed with the pur-
pose to validate GNC techniques to be used on future Moon and Mars
missions. Its core component is a drone, whose flexibility allows to
mount camera and LIDAR based GNC systems. PLGTF is capable to
emulate a lander dynamics during the powered descent phase in at-
mospheric and non-atmospheric planetary environments [37]. The
facility is composed by:

• Flight segment. An Unmanned Aerial Vehicle (UAV) helicopter
based on the Schiebel CAMCOPTER S-100, adequately modified
to suit the PLGTF needs of payload (camera and LIDAR);

• Ground segment. Ground stations, test site, and logistic infras-
tructures compose the ground segment. Ground stations are
devoted to control the module necessary to validate the experi-
ment under test (M3 Service Module), measuring and estimat-
ing the dynamic behavior of the drone and to control the drone
itself simulating lander descent. Test site has been selected in
the Morocco desert, near Zagora city, because of the terrain
resemblance with Mars’ and Moon’s. Both lunar and martian
descent trajectories have been simulated at the drone manufac-
turer premises, showing the feasibility and the validation capa-
bilities of the facility. For details, see [37].

HOMER Airbus Space and Defense HOver ManoEuvRe (HOMER) is
a demonstrator capable to hover and to perform soft landings, de-
signed to be a landing platform for planetary exploration and an ag-
ile platform for space mobility [38]. It is currently in advanced test
phase, with first hover ground test passed. It is not designed exclu-
sively as test-bed for hazard detection or navigation, but its flexibility
guarantees the operations of HOMER from space debris mitigation to
autonomous planetary landing, tailoring the payload for every differ-
ent mission requirement.

Morpheus NASA’s Morpheus is a testbed for validate and test plane-
tary landing systems. Its primary payload is ALHAT, the guidance sys-
tem described in Section 1.3.2. It is composed by a liquid methane/liq-
uid oxygen propelled rocket and it is capable to land vertically and



18 Introduction

autonomously. Among the various test, on the 29th of May, 2014,
Morpheus, driven by ALHAT, accomplished its first safe landing in
dark [39]. Before Morpheus, a UH-1H ’Huey’ helicopter has served
as test-bed for 12 tests of the ALHAT system.

1.4 Development tools used

The first hazard detection system design iteration, called ORACLE+,
was developed totally in Matlab R© environment, with the hardware-
in-the-loop dedicated program written in C++. Neural networks
have been trained through the Neural Networks Toolbox in Matlab R©

and then exported to C++.
Nevertheless, it has been decided to start a migration towards Free
and Open Source Software (FOSS) tools also for development, in or-
der to be independent from proprietary licenses and to be as cost
effective as possible. Such a shift has began during the development
of the ultimate version of the hazard detection system, and currently,
only the creation of the images and corresponding ground truth haz-
ard maps (Chapter 4) is still based on Matlab R©.
Many possibilities were open to choose the programming language,
the various libraries to train the networks and so on. It has been de-
cided to trade-off various features that languages have to offer. In
particular, Python and C++ have been selected as programming lan-
guages. The first is easy to use and has a huge community driving
excellent libraries development for scientific and engineering applica-
tions, without mentioning the great compatibility that SciPy libraries
have with the Matlab R© file format. It has been chosen as a develop-
ment language to perform all the various accessory tasks that are not
part of the hazard detection program itself that goes in the hardware,
such the validation of the results, performances computation, cre-
ation of the datasets and so on. Instead, whenever high performances
were requested, C++ has been preferred, thanks to its tremendous
computational speed. Hence, training of the network and the actual
hazard detection program are written in C++.
For image processing, OpenCV 2.4.10 [40] libraries have been used
in both C++ and Python thanks to the already present bindings.
Neural network training is performed exploiting the Fast Artificial
Neural Networks (FANN) libraries [41]. Many others machine learn-
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ing libraries have been tried, also in Python environment, but none
of them was direct to use, flexible and computationally efficient as
FANN. C++ compiler used is GNU’s g++ 4.9.2.

1.5 Thesis objectives and structure

This thesis has two main objectives:

• to design an hazard detection system able to select a safe land-
ing site on the surface of the Moon using a single camera. It
must possess the following requirements:

1. At least two safe landing sites shall be identified in case a
re-targeting is requested;

2. At least 90% of the landing sites found by the hazard detec-
tion system shall be true positives, in particular the target
landing site and the backup site shall be true positives;

3. The hazard detection system shall be computationally light
enough to operate real time on space qualified hardware.

• to design a facility to validate the hazard detection system pro-
posed.

The work proposed has the following structure: in Chapter 2 a pre-
sentation of the main tool exploited to create the hazard detection
system, the Artificial Neural Network, is given. A short section deal-
ing the ORACLE+ hazard detection system, by which this thesis is
inspired, is proposed in Chapter 3. Chapter 4 explains how ground
truth images and hazard maps are artificially crafted to form a com-
plete dataset to train and test the hazard detection system. Chapter 5
analyzes the definitive architecture and the most significant design
iterations of the hazard detection system, to compare their perfor-
mances in Chapter 6. Then, Chapter 7 presents the facility design, to
conclude the thesis in Chapter 8, where conclusions and future work
suggestions are given.
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Chapter 2

Artificial Neural Networks

T
HIS chapter introduces the reader to a branch of the vast world
of machine learning: the Artificial Neural Networks (ANN).
In particular, Feedforward ANN are the principal tool utilized

to develop the research proposed. Moreover, a very concise introduc-
tion about another kind of neural networks, the Self-Organizing Maps
(SOM) will be presented, due to their presence in the early development
stage of the work subject of this thesis.

2.1 Feed-Forward Artificial Neural Networks

2.1.1 From the Biological Neuron to the Multilayer Neural Net-
work

The human brain is characterized by an enormous amount of neu-
rons: it is estimated a number of 20 billion cerebral cells composes
the brain with 60 trillion connecting synapses [42]. Therefore it is a
massively parallel system. Actually neuronal events1 are several order
of magnitude slower with respect to silicon-based processes: millisec-
ond order of magnitude against nanoseconds [43]. This is mainly due
to the conversion between chemical electrical and again chemical sig-
nal occurring at the synapsis. Nevertheless, the human (or mammals
in general) cortex is definitely faster in all that processes involving

1In neurobiological science, with neuron event it is intended an information processing
between a neuron and its neighborhood. Being the brain characterized by a huge level of
parallelization, the amount of time spent by an impulse to be transmitted from one neuron
to the ones connected is almost the same as the elapsed time between two single cells.
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recognition, robust motion control and perception2. Again, this is due
to its incredible number of synapses between the neurons, that allows
such a great computational power. The structure of a biological neu-

Figure 2.1: The biological neuron.

ron is shown in Fig. (2.1): from the cell body (also called soma), axon
and dendrites develops. They are respectively transmission lines and
receptive zones of the neuron itself [44]. An axon is much longer and
has fewer branches, whereas the dendrites features a great number
of short ramifications [45]. Morphologically the first has a smooth
surface, while the second is much more irregular. This difference is
imputable to the fact that the dendrite is responsible for the majority
of the inputs through those dendritic irregularities, called spines.
Such structure, pioneered by the neuroscientist Ramón y Cayál [46],
inspired the model of the first artificial neural unit: the Perceptron,
created in 1957 by Frank Rosenblatt at the Cornell Aeronautical Lab-
oratory [47]. Originally, the perceptron was a binary classifier: a map
from a vector of real components x to a binary value y:

y(x) =

1 if
∑
i

wixi + b > 0

0 otherwise

where wi represents the weights of the synapses, b the bias, a term not
depending on the value of the input and used to shift the threshold
of the output. The learning process for a perceptron corresponds to
the correct selection of the connection weights and the bias through a

2All processes related to the natural and/or artificial intelligence.
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Figure 2.2: Rosenblatt’s perceptron.

"training" process, in order to be able to assign coherently the binary
output to an input, that in general is not included in the training set.
Soon, it became clear that the perceptron, and even a single layer
of more than one perceptrons, cannot be trained to classify patterns
that are not linearly separable [48], like the XOR problem. Due to
this fact, research on artificial neural networks stagnated, up to when
it has been recognized that a multilayer neural network with two or
more layers can solve also non linear patterns [49].
An artificial neuron represents an evolution of the perceptron model:
the general architecture remains quite similar, apart from the pres-
ence of a transfer function - the so-called activation function - that
processes the input signal in any desired fashion, whereas the per-
ceptron outputs binary values depending on the threshold imposed3.
Thus, it is possible to think of the perceptron as an artificial neuron
with a Heaviside transfer function. A single artificial neuron, the core
constituent of a neural network, is depicted in Fig. (2.3). It is possible
to distinguish, from left to right [44]:

Synapses. They represents the connections with the input of the neu-
ron. Each synapse is characterized by a weight that multiply the
respective input signal. For a matter of notation, an input sig-
nal xi connected to the i-th synapse attached to the neuron j is
multiplied by a weight wji. Also a bias value bj is used in order

3In general, one could use any kind of activation function, therefore binary or other
functions yielding discrete outputs. Typically, continuous function bounded to [-1,1] or to
[0,1] output are used because of the necessity to have a differentiable function in the back-
propagation training algorithm.
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Figure 2.3: Artificial neuron scheme.

to increase or decrease the net input of the activation function.

Summation node. All the inputs converge to an adder and are lin-
early combined.

Activation Function. Used to map the signal after the summation
node usually in the range [0,1] or [-1,1]. Most used functions
are hyperbolic tangent, linear function, logistic sigmoid (see Ap-
pendix A).

Mathematically speaking, a neuron process an information this fash-
ion:

yj = φ(vj) (2.1)

in which it has been defined the net output:

vj =
m∑
i=1

wjixi + bj (2.2)

where m is the number of inputs xi to the neuron j with output yj.
Each input has a corresponding weight wji.
It is also very frequent to include the bias into the same expression as
the inputs, adding a synaptic weights equal the bias with input signal
1 for i = 0:

yj = φ

(
m∑
i=0

wjixi

)
(2.3)

Hence, it is possible to notice the elementary operations performed
by the artificial neural cell.
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Figure 2.4: Scheme of a Feedforward Multilayer Artificial Neural Network

To be able to extract higher order statistics and recognize more
difficult pattern, a multilayer artificial neural network is necessary
[50, 44]. In particular, a Feedforward artificial neural network fea-
tures one or more hidden layers (Figure 2.4) connected to the input
and the output layers. It is common to refer to a fully connected net-
work if all the neurons in each layer are synaptically linked to ev-
ery neuron of the adjacent following layer, otherwise the network is
partially connected. Structure of a multilayer feedforward network
features [44]:

• Neurons’ activation functions are differentiable. Typically, func-
tions are also nonlinear and bounded to unit value for perfor-
mances in both training and output quality. Appendix A pro-
poses a list of the most used transfer functions in neural net-
works.

• The network has one or more hidden layers.

• The network features a high degree of inter-neural connectivity
through synaptic weights.

The simplicity of a single neuron hides the complexity of a network:
power and strength of ANNs come from the parallel distribution of
the architecture and the ability to learn. Learning is intended as the
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ability to generalize: after a training process, the network, if well
trained and well structured, is able to produce a coherent output,
given a new input that has been not provided to the net during train-
ing. Especially for nonlinear functions, hidden layers neurons act as
feature detectors. Their ability is to nonlinearly map the input space
in a more profitable "feature space", in which input’s informations are
more easily distinguishable [44]. Capabilities of a neural network in-
clude [44, 51]:

Nonlinearity. Multilayer ANN are intrinsically nonlinear, although
single neurons can be both linear and nonlinear due to their
activation function. Being the great majority of problems non-
linear, this is one of the most crucial property of such networks.

Input-output function. The overall ANN may be intended as a black
box with a transfer function able to map input to output. Well
performed training modifies synaptic weights in such a way that
the transfer function behaves well. Being training algorithms
automatic once provided input and target output (see Sec. 2.1.2
for deeper analysis on ANN training), user does need not know
the transfer function itself, but just to train the net. Such a
characteristic allows to model very complex systems or to spot
features difficult to catch, without the needs of a strict mathe-
matical and/or physical formalization of the system under anal-
ysis.

Robustness and adaptivity. Neurons’ weights can change in time dur-
ing operations to adapt to the environment, as in Adaptive Res-
onance Theory (ART). In this case, the trade is between stability
and plasticity [52]. Moreover, the intrinsic robustness of the
networks, deriving from their generalization feature, yields a
great noise rejection capability and they can thus deal with par-
tial and/or corrupted input data providing a meaningful output
anyway. Even more, robustness of the net can be also exploited,
in case of an hardware implementation, with a neuron failure.
Performances will be certainly be degraded, but the neural sys-
tem is still capable to manage the input output relation. It is
possible also to implement a modification in the training algo-
rithm to have better robustness [53].

Computational efficiency on parallel structures. Due to its highly
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parallel structure, the neural networks well fits a parallel com-
puting architecture. Nowadays, tendency to increase number
of cores and CPU promises even better performances in the fu-
ture for the neural networks. In particular, GPU with thousands
of computing cores and very fast memories are definitely well
suited for fast trainings.

2.1.2 Training

There are three main families of learning for the various types of
neural networks:

Supervised. The training data is supplied with desired output vector
(also called target vector). Scope of the training is to make the
learner able to produce the correct output when a new input is
presented [54, 55]. The present thesis deals mainly with this
kind of machine learning.

Reinforced. A learner reacts to environmental stimuli producing an
output. Acting on the environment itself, the learner is rewarded
or punished depending on the goodness of its action. Aim is
to be able to maximize the number of rewards (or vice versa
for punishments). This kind of learning is particularly used in
control systems theory [54, 55].

Unsupervised. The learner receives input data, but no training tar-
gets (as in supervised) nor rewards (as in reinforced) are given.
The goal of such training is to find recurrent patterns in the
input data. It is particularly useful for data mining of large
datasets, in order to reduce their dimensions, without reducing
the space of informations contained at the beginning [54, 56].

Specifically for this thesis, supervised learning has been employed to
train multilayer ANNs, while unsupervised learning for SOMs (see
Sec. 2.2). It is possible to identify two signal directions in a feed-
forward network [44]: a function (or input) signal, that is the input
signal propagating rightward (Fig. 2.4) layer by layer to the output;
an error signal, originated at the output layer and back-propagating
leftward towards the input layer. This last signal will drive the prince
of the supervised training algorithms: the back-propagation algorithm
that is a gradient descent based one. Among supervised learning
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methods, the most common are batch learning and online (or stochas-
tic) learning. They differ on how the error between the target and
the actual output is computed.
Consider a training sample T :

T = {x(n), t(n)}Nn=1 (2.4)

where x(n) represents the vector of N inputs, t(n) the vector of N
targets. N is the dimension of the overall training set. Indicating with
yj(n) the output of the neuron j in the output layer by the stimulus
x(n), it is possible to define the j-th neuron’s error signal as:

ej(n) = tj(n)− yj(n) (2.5)

That for all the neurons in the output becomes the total error in
quadratic form:

E|(n) =
1

2

∑
j∈C

e2j(n) (2.6)

where C contains all the neurons in the output layer.
Taking into account the overall training set, constituted by N exam-
ples, it is possible to define also the mean error energy over the training
set as:

Eav =
1

N

N∑
n=1

E(n) (2.7)

=
1

2N

N∑
n=1

∑
j∈C

e2j(n) (2.8)

that is function of the synaptic weights, though not explicitly shown.
As stated, batch and stochastic learning differ of the error taken into
account to update neurons’ weights. In batch learning, they are ad-
justed after the presentation of all the samples in T , hence a suitable
cost function to minimize though training can be Eav. In stochastic
learning instead, correction of the neurons’ free parameters occurs
sample by sample: each time a pair {x(n), t(n)} is presented, weights
are updated taking into account the error of that specific sample only.
It is possible to express some considerations about the two methods:

• Batch learning involves a gradient descend that takes into ac-
count all the samples, and thus can be shown that its conver-
gence to a minimum is guaranteed [44]. Note that convergence
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is in general towards a local minimum of the error function.
Online learning instead, because the gradient descent direction
depends on the sample analyzed, is less subjected to be trapped
in local minima.

• Batch requires much more memory to run, but can be easily
parallelized. On the other hand, stochastic version is easier to
implement and requires less memory, but it is composed intrin-
sically by serial operations.

In any case, the back-propagation algorithm is common to both the
learning types.

The back-propagation algorithm.

The algorithm is the same for both batch and online learning, with
the difference in the error computation. In the following, the error
function to be minimized will be written as E and in case of batch
learning one should refer to Eq. 2.7. There are two phases distin-
guishable:

Forward phase. Synaptic weights are unaltered, input signal is prop-
agated towards the output layer and error ej = (tj − yj) is com-
puted. j represents the output neuron index.

Backward phase. Error signal is back-propagated from the output
layer towards the input neuron by neuron. For every neuron
it is computed the local gradient, and weights are updated ac-
cording the Delta rule (Eq. 2.16).

It has been already defined the net output (Eq. 2.2). Output signal of
a neuron j is:

yj(n) = φ(vj(n)) (2.9)

The core of the algorithm is to apply a correction ∆wji(n) to the
synaptic weight wji(n). Such a correction is proportional to the er-
ror direction of variation. Through the chain rule it is possible to
make explicit such a derivative:

∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)
(2.10)
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Analyzing each term of the chain, through Equations (2.6, 2.5, 2.9,
2.2):

∂E(n)

∂ej(n)
=ej (2.11)

∂ej(n)

∂yj(n)
=− 1 (2.12)

∂yj(n)

∂vj(n)
=φ′j(vj(n)) (2.13)

∂vj(n)

∂wji(n)
=yi(n) (2.14)

that yields
∂E(n)

∂wji(n)
= −ejφ′j(vj(n))yi(n) (2.15)

Note that with ′ operator is intended the derivative with respect to
the value inside parentheses.
Now, the rule to update weights is:

∆wji = −η ∂E(n)

∂wji(n)
(2.16)

where η is the learning-rate parameter. Equation 2.16 is known in
literature as Delta rule. The minus sign is requested in order to per-
form a gradient descent towards the (local in general) minimum.
Defining the local gradient δj(n) = ∂E(n)/∂vj(n), through partial
derivatives in Eqs. 2.11 ,the delta rule can be rearranged as:

∆wji = ηδj(n)yi(n) (2.17)

Because error signal ej(n) expression depends on the layer in which
the neuron is, its expression has to be computed accordingly.
If neuron j is part of the output layer, expression is straightforward:
desired response is directly known through the error signal itself in
Eq. 2.5. Hence, local gradient and delta rule are provided:

δj(n) = ejφ
′
j(vj(n)) (2.18)

∆wji = ηδj(n)yj(n) (2.19)

For what concerns hidden layer neurons, desired response is not so
straightforward: backward directed error signal starting from the out-
put layer toward input must be taken into account. Exploiting chain
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rule once again, local gradient can be redefined for a hidden layer
neuron as:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)
(2.20)

= − ∂E(n)

∂yj(n)
φ′j(vj(n)) (2.21)

where j neuron belongs to hidden layer.
To compute partial derivative ∂E(n)/∂yj(n) it is necessary to go back
to Eq. 2.6. Identifying with subscript k a neuron in output layer,
whose neurons belongs to space C, the quadratic form of the error
can be written as:

E(n) =
1

2

∑
k∈C

e2k(n) (2.22)

it is possible to compute the unknown partial derivative in Eq. 2.20:

∂E(n)

∂yj(n)
=
∑
k

ek
∂ek(n)

∂yj(n)
(2.23)

Exploiting again the chain rule allows us to write:

∂ek(n)

∂yj(n)
=
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
(2.24)

and reminding Eq. 2.5, rewritable as: ek(n) = tk(n) − φk(vk(n)) and

that the net output of neuron k is vk(n) =
m∑
j=0

wkj(n)j(n), where m is

the total number of inputs:

∂ek(n)

∂yj(n)
= −φ′k(vk(n))wkj(n) (2.25)

Therefore Eq. 2.23 becomes:

∂E(n)

∂yj(n)
= −

∑
k

ekφ
′
k(vk(n))wkj(n) (2.26)

= −
∑
k

δk(n)wkj(n) (2.27)

Through Eq. 2.26 and Eq. 2.20 it is finally possible to express the local
gradient for a hidden layer neuron as:

δj(k) = −φ′k
∑
k

δk(n)wkj(n) (2.28)
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Note that activation function φmust be differentiable (see Appendix A
for the most used activation functions).
One may notice that the back-propagation algorithm approximates
the steepest descent to update the neuron weights. The learning rate
parameter, can be tuned to provide a more aggressive algorithm, if
increased, or vice versa. Care must be put in selection: a too high
value could yield an unstable descent, while a too low one makes the
training slow [51, 57, 44]. A part from using advanced algorithms
with adaptive learning rate, a simple method to increase the learning
rate avoiding instability is to include a momentum term in the delta
rule equation:

∆wij(n) = α∆wji(n− 1) + ηδj(n)yi(n) (2.29)

where α is the momentum constant. This expression is usually called
in literature generalized delta rule [44].

Other training algorithms

In this thesis, many training algorithms has been used to investigate
their performances. Training time can be significantly reduced se-
lecting a different method. This paragraph has the only intention to
make the reader conscious about the existence of more refined meth-
ods, compared to the classical gradient descent. For technical details
of the algorithms, it is possible to refer to the bibliography.

• Resilient Backpropagation (Rprop). A very efficient first order
batch optimization algorithm, it is one of the fastest available.
It features an independent learning rate for each weight of the
network. Weights are updated taking into account the sign of
the gradient, not its magnitude [58]. The algorithm is divided
in two parts: updating individual learning rates and update the
weights. A pseudocode would look like:

while epochs<epochs_max:
compute new error gradient;
for each weight:

if previous and current error gradient has same sign:
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increase delta;
update weight with delta;

else
decrease delta;
update weight with delta;

end if
end for
epochs++ ;

end while

where "delta" represents the magnitude of the weight update pa-
rameter, responsible of the magnitude by which a neuron weight
has to change.
Christian Igel and Michael Hüsken proposed an even faster ver-
sion of the algorithm [59].

• Gauss – Newton method. Improvement of the classical Newton
optimization method that involves computation of second or-
der derivatives of the total error function to create the Hessian
matrix [60]. In G–N algorithm instead, Jacobian matrix is cal-
culated to approximate Hessian, therefore only first derivatives
of the error function with respect to the weights. The training
process is:

while epochs<epochs_max:
compute Jacobian matrix;
compute approximated Hessian;
for each weight:

update weights;
end for
epoch++;

end while

where weights update involves the approximate Hessian H =

JTJ as stated in [60]. Problems of convergence may arise if
product JTJ is not invertible [60].

• Levenberg − Marquardt. This method can be intended as the
combination of a steepest descent pure gradient algorithm plus
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the Gauss Newton implementation [61]. It solves the non in-
vertible eventuality introducing a term in the Hessian approxi-
mation: H = JTJ+µI where µ is the combination coefficient and
I is identity matrix. When the combination coefficient is almost
null, the L−M methods is exactly the same as the Gauss Newton
one. For high values of µ instead, the method approaches the
pure first order gradient descent [60, 55, 44]. Pseudocode is
the same as in G−N method, apart from the computation of the
Hessian.

• Scale Conjugate Gradient (SCG). This is a second order algo-
rithm that exploits the conjugate gradient optimization tech-
nique. One of the main advantages of the SCG training algo-
rithm is the low usage of memory, requiring only o(N), where
N is number of the weights in the network [62]. Moreover, it
is particularly suited for unexperienced users, because it is fully
automated. No manual selection of learning rate, momentum
constant by the user. The scaled conjugate gradient results one
order of magnitude faster than standard back-propagation [62].

Stopping criteria

The main parameter to take into account is to achieve a good level
of generalization capability, that means to avoid over-fitting or under-
fitting. The first refers to the problem occurring when the network is
"too trained" and memorize the data without understanding the un-
derlying function or pattern between the various inputs, that is, for
example, to learn the noise inside the training set. Under-fitting is
the opposite: whenever a network is unable to generalize because of
the excessive complexity of the set. To overcome the last, usually it is
sufficient to increase the synapses of the network, adding layers and
neurons in general, or to pre-process the input to better distinct the
various features hidden in the model.
There are several options to stop a training: maximum number of
epochs and training time are usually exploited to prevent slow o non-
converging trainings to keep on going indefinitely. None of them
takes into account the effective "goodness" of the trained net. Statisti-
cal regularization techniques may be adopted to prevent the weights
to assume extreme values [63], thus they work limiting the weights
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space inserting or decreasing the probability of more complex model
(i.e. Bayesian learning [55, 63, 64]).
The most used approach is cross-validation [44]: the data set is di-
vided into three subsets:

• Training subset, that represents the data actually subjected to
the training algorithm and that will forge the model the training
network will approximate;

• Validation subset, used to validate and to stop the training when
a certain constraint is true;

• Test subset, to assess the performances reached by the artificial
neural network through the training.

Typical proportions between subsets are in the order (60, 20, 20)
respectively for training, validation, test. The motivation of this ap-
proach is to validate the model on data different from the one used
to compute neural network parameters in training.
Normally, through training algorithms, the mean squared error of the
output decreases epoch by epoch. It starts large with weights just ini-
tialized randomly, decreases rapidly and then slows down approach-
ing the local minimum of the surface error. To end the training ob-
taining a good generalization capability, looking at the training error
is not enough. Through the validation set the network is periodically
tested during the training and mean squared error (or other perfor-
mance parameter) is evaluated: if the validation subset error is at a
local minimum (that is when for N consecutive validation subset error
increases), training is stopped to prevent over-fitting [44, 51, 57].

2.1.3 Empirical notes on how to train effectively

Due to the fact that for large datasets and complex network archi-
tectures, training may be time and resource consuming activity, a
short series of advices mainly reported from personal experience and
[44, 51, 65] to train fast and effectively is here presented.

• Online and batch learning. If large parallelized computing frames
are available, it is usually better to use batch training, because
of the large number of optimization techniques available. Oth-
erwise, stick with the simpler online version, that saves memory
too.



36 Artificial Neural Networks

• Selecting the dataset. The importance to choose the right sam-
ples in dataset is fundamental: the most various examples will
be given to the network during training, the better performances
will be achieved during operations. Avoiding similar data pre-
vent the training to be unnecessary over-headed without im-
proving performances in generalization.

• Normalization and transformation of the inputs. It is usually a
good norm to normalize all the inputs to have average value
about zero, so to not incur in the case where all the inputs are
of the same sign and thus to update the weights of the first
layer with the same sign (proportional to the local gradient).
This provokes the weights to increase or decrease at each iter-
ation all together, with consequent slow convergence. Another
good practice is to scale inputs such that their covariances are al-
most the same: this yields the same importance to all the inputs
present in the dataset. On the other hand, if some inputs are
less important than others, their values should be scaled down.
Third good practice should be to decorrelate inputs, in order to
have a diagonal like system of equation in which one input does
not depends on the other.

• Symmetric sigmoids. Especially for hidden layers neurons, use
symmetric sigmoids as activation functions because they yield
faster convergence due to the fact that their output -that is the
input of the next layer- is more likely with average zero. That
gives a higher first derivative magnitude, that eventually drive
the delta rule to be larger4. Care must be posed to prevent over-
flow when the input to the sigmoid function is very large in mod-
ulus, for example assigning -1 or 1 for every input x ≥ |β| where
β is a convenient constant.

• Initialization of the weights. A good initialization of the weights
can tremendously reduce the amount of training time. There
exist both empirical and theoretical derived approaches. See
[44, 51, 65]

• Learning rate and momentum selection. Choosing a proper value
for the learning rate yields much faster convergences. It is more

4Not true for algorithms like the Rprop because their weights updates are not proportional
to the magnitude of the gradient
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convenient to use different learning rates for each weights, in
order to optimize each neuron. Ideally, the learning rate value
should decrease when the error starts oscillating and increase
otherwise. Many algorithms to adapt individually learning rate
of every neuron exist in literature [65]. Adding the momentum
term increases stability of the algorithm.

2.2 Other types of Neural Networks

Another kind of artificial neural network architectures is now pre-
sented: they have been used in this research study and they are also
planned to be investigated in future works to affine the hazard detec-
tion algorithm.

2.2.1 Self-Organizing Maps

Self-Organizing Maps (SOM) differ from the previously debated feed-
forward networks due to the fact that the correct output is not known
a priori. Therefore, no performance quantity -like MSE- used to mea-
sure the behavior of a supervised trained network can be used.
Each time an input vector, representing the environment, is presented
to the SOM, the network’s internal parameter are changed. If such
changes are correctly driven, the SOM is able to map the space into
its output space, that depends on the dimension chosen for the out-
put layer of the network [51]. Hence, the SOM is able to create a
representation of the environment. The most well-known network of
this kind is the Kohonen’s [66].
These maps work through a topological principle, inspired by visual
cortex of the brain in mammals, that is able to recognize three dimen-
sional objects even though it is a bi-dimensional (planar) structure.
Kohonen maps are relevant in the definition of the neighborhood,
that is to create the correct topological structure during the learning,
to transform the input in a n-dimensional output space (typically bi-
dimensional) and thus lowering the space dimensions without loos-
ing informations.
For bi-dimensional case, a Kohonen net features a single computation-
al/output layer fully feedforward connected with the input layer. The
output layer is composed by a lattice of neurons. The objective of the
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learning process is to make a topological map in which every region
of the lattice is specialized to map certain input regions [66].

Learning process algorithm for Kohonen nets.

Let be n the dimension of the input vectors, m the number of neu-
rons in the computational layer. For every computational unit, it is
possible to define a radius r that includes the corresponding units
in the neighborhood of the current unit. Each neuron of the lattice
computes the euclidean distance between the input x and its weight
vector w. A neighborhood function φ computes during the training
the relation between the current unit and units inside or outside to
the radius r.
After initialization of the n-dimensional network weights and selec-
tion of the initial radius r, initial learning rate η, neighborhood func-
tion φ, the algorithm develops in such a way:

while epochs < epochs_max
-Selection of current input vector ξ;
-Compute unit k with min distance;
-Weights vectors of the unit are updated:
wi = wi + ηφ(i, k)(ξ −wi) for i = 1 : m;

-epochs ++;

The update of the weights attracts the neurons of the neighbourhood
towards the input ξ. With a sufficient number of iterations and a
complete enough input space, also the computational units’ weights
should distribute uniformly. If learning process is well performed, the
resulting Kohonen net should be able to statistically quantify correctly
the input space in their discrete output space [51, 44].



Chapter 3

ORACLE+ hazard detection
system

I
N the following sections, a description of the ORACLE+ haz-
ard system architecture, developed at Politecnico di Milano by
Alessio E. Colombo [67] and inspired by Simone Bernardi’s OR-

ACLE system [68], will be presented to the reader. To understand the
reason that encouraged further development in the present thesis, it will
be also depicted in Sec. 3.2 the main problems that affected the previous
work.

3.1 Architecture

The Hazard Detection System designed in [67] is specifically tailored
for lunar landings. It is designed to process images from a single
camera and to provide to the system a landing site. It is composed by
(Fig. 3.1):

Figure 3.1: ORACLE+ system architecture.
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• Image preprocessing and indices extraction algorithms;

• 3 Self Organizing Networks that cluster indices extracted from
the image before actual processing by feedforward neural net-
works;

• 2 Feedforward multilayer artificial neural networks: the Main
one, devoted to the computation of the hazard index, the Sec-
ondary one, to improve the capability of the Main one, in par-
ticular to recognize slopes;

• Creation of the hazard map through the output of the feedfor-
ward neural networks;

• Landing site selection algorithm.

3.1.1 Image loading and indices extraction

The image acquired by the camera is firstly converted in 8 bit gray
scale. Then 3 mobile windows of dimension respectively 8×8, 16×16,
32×32 extract the indices to be classified through the Kohonen maps:
mean µ and standard deviation σ:

µ =
1

N

N∑
i=1

Ii , σ =

√∑N
i=1(Ii − µ)2

N − 1
(3.1)

where N represents the number of pixel considered for the mean, Ii
the intensity of the i-th pixel.
Indices are computed in four directions for every window size as de-

picted in Fig. 3.2. Therefore for every window a vector of 8 elements
is obtained. Values are normalized to prevent neurons saturation,
with domains transformed to [0,5] and [0,10] for mean and stan-
dard deviation respectively.

3.1.2 SOM networks

Three Kohonen nets, one per window, are exploited in order to reduce
the input space for the Main feedforward multilayer neural network.
Computational layers dimensions for the SOMs have been selected in
10× 10 neurons. Thus, the three nets are able to categorize the input
into 100 classes.
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Figure 3.2: Directions used to compute mean and standard deviation in a single mobile
window.

3.1.3 Main Feedforward ANN

Outputs of the three SOMs are assembled to form the overall input
for the Main feedforward network. There are 4 indices to assess haz-
ardousness of a particular surface region:

• Safe. A planar region without craters, rocks, shadows and slopes.

• Slightly safe. Like safe, but with a certain surface roughness.

• Unsafe. Highly rough area, with eventual fractures.

• Highly unsafe. Regions with dangerous morphological struc-
tures, such as crater rims, harsh surfaces, high slopes and shad-
ows.

3.1.4 Secondary Feedforward ANN

A second Feedforward network has been added in order to better
classify slopes and hazard index in general: it is fed with outputs
of the Main ANN, the mean across overall the pixels of the small
window and the maximum standard deviation value encountered in
the 4 directions for any single window. A slope is typically bounded
by an edge, that is a strong variation in pixel intensity, thus it is easy
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identifiable with standard deviation. Thus, combining its results with
the Main feedforward network, better classifications are possible.

3.1.5 Hazard map computation

Output of the two feedforward networks is combined to provide one
hazard value for every small window, so that an hazard map side will
be divided by eight with respect to the original image. The actual
output from the Main ANN is a four elements vector, in which each
component belongs to domain [0,1]. Ideally, output should be an in-
teger 1 corresponding to the hazard index of the region analyzed, 0
for the remaining elements. Actually, if training has been well per-
formed, output will be elements approaching 1 and the others al-
most 0 for a correct identification of the hazardousness. Secondary
ANN, instead, yields a 4 elements output vector with values’ domain
of [1,4], assigning for each window an additional scalar parameter.
Such a coefficient can modify the hazard index of the Main multilayer
ANN in order to increase accuracy and flexibility. The Hazard Index
(HI)1 for the window i is computed:

HIi = ci,1oi,1 + ci,2oi,2 + ci,3oi,3 + ci,4oi,4 (3.2)

where oi,j is output element j of window i from the Main multilayer
network, ci,j is output element j of window i from Secondary multi-
layer network.

3.1.6 Landing Site selection

To select the landing site, the hazard map is analyzed dividing it in
a series of different hazard levels and selecting in each of them the
most suitable landing site. The lack of a ground truth coerces to not
impose a priori any maximum or minimum threshold, but every level
of the hazard map is shifted downward of a quantity corresponding
to the mean between minimum and maximum of the hazard indices
found in the image. Hence, every negative value is considered safe,
whereas a positive level will be assigned to unsafe levels. To calculate
the best landing site, first of all, area and centroid of the safe regions
are circumscribed. Areas that are too small with respect to the lander

1Original italian nomenclature: "Livello di Pericolosità (LDP)"
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footprint are immediately discarded. Then, the landing site ellipse is
computed on the remaining regions:

• distance of hazard pixels from the centroid are computed: start-
ing from the centroid itself, towards eight directions, pixel by
pixel the program approaches the first hazardous spot;

• the centroid is shifted in a more safe position: depending on
the polygonal shape of the safe region, centroid could also be
nearby a dangerous point;

• an ellipse centered in the new centroid is computed. Its semi-
axes are enlarged up to the pixel before an unsafe point.

After the computation of all the landing site candidates, it is necessary
to select the best one for every level. Therefore for each ellipse it is
computed the distance functional:

F =
√
A2 + d2obstacles + d2borders (3.3)

where A represents the landing site area, dobstacles and dborders respec-
tively the distance between the landing site candidate and the nearest
obstacle and the distance between the candidate and the image bor-
ders.
Site that maximizes functional F will be chosen as candidate for that
level. After this phase a vector containing at most as many elements
as the number of levels are available. To choose among those, a sec-
ond functional is exploited:

Ffinal =
√
F 2 + level2 (3.4)

where F is the functional computed in Eq. 3.3, level the hazard level
of the corresponding functional F . Therefore maximization of Ffinal

takes into account also the hazard index.

3.1.7 Training set creation

In a first design iteration, artificial lunar surface images have been
used to perform training, but they have been discarded soon after-
wards because they were judged unrealistic [67]. Hence, real lunar
images have been used to train the neural networks in the hazard
detection system. In order to create an automatic training system,
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without the need of manually specify the hazardousness of a region,
it has been implemented a fuzzy logic based interpreter, whose archi-
tecture is shown in Fig. 3.3.

Figure 3.3: Training set creator, ORACLE+.

Also in this case, three windows spanning the whole training im-
age are present. Windows dimensions have been kept the same 8×8,
16×16, 32×32 px as in the hazard detector. Per each window, mean
µ and standard deviation σ of the whole pixels distribution are com-
puted, and a fuzzy logic block extrapolates the hazard index. An
additional fuzzy logic block combines the three single hazard indices
to give a single value. To have a precise description of the system and
the fuzzy logic rules adopted, see [67].
An example of hazard map through the fuzzy logic based system is
given in Fig. 3.4.

(a) Camera image (b) Hazard map

Figure 3.4: Lunar image used for training and corresponding hazard map computed
with fuzzy logic.
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3.1.8 Results

Some of the results by A.E. Colombo are presented to have an idea
of what the old hazard detection system was capable of. Following
test images are not included in the training set, thus are completely
unknown by the hazard neural systems. Note that all the test images
hereby depicted are real lunar photographs. A first example is rep-
resented in Fig. 3.5: a planar area dominated by a low albedo, with
a couple of dangerous craters in the center and some smaller ones
randomly distributed. Flat terrain seems correctly cataloged as safe,
while the various craters and nearby areas are considered unsafe. On
the other hand, large part in center bottom image appear dangerous,
although they appear as safe as the other planar regions in the pic-
ture.

Another test image is presented in Fig. 3.6. Particularly critical in

(a) Camera image (b) Hazard map

Figure 3.5: Test image. Planar region with craters and different soil albedos.

this case is the capability of the hazard detection system to under-
stand the long edges and the different heights of the features present
in the picture. The central plateau’s edges are almost recognized, but
hazard indices looks like not always coherent with the roughness or
the apparent slope of the image, especially planar areas that are cata-
loged as dangerous. Nevertheless, the general structure of the image
looks recognized by the networks: edges of the plateau is almost ev-
erywhere recognized, such as the majority of small craters present.
In Figure 3.7 a picture of the crater Moore F floor is shown as test

image. It is characterized by numerous fractures and a very irregular
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(a) Camera image (b) Hazard map

Figure 3.6: Test image. Dark region with different slopes and long edges.

terrain, a part from small areas that looks like the most fitting landing
site candidates. In the relative hazard map, the system catalogs the
upper area as the most dangerous, probably misled by the change in
albedo. Fractures are recognized correctly as a dangerous area, but
some small regions in between should have been output as safe, or at
least not completely unsafe. On the other hand, the big planar area
in the left hand side of the picture is coherently computed as safe.

(a) Camera image (b) Hazard map

Figure 3.7: Test image. Floor of the crater "Moore F".
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3.2 Limitations

In Section 3.1.8 a qualitative overview has been proposed for the haz-
ard map computation. It has been noted that the hazard maps tends
to understand correctly part of the features of the various test im-
ages, even if they are characterized by imprecisions and sometimes
wrong measurements of the hazard index. Anyway, the main prob-
lem of the hazard detection architecture is the completely non objec-
tive ground truth. In fact, the system described in Sec. 3.1.7 cannot
be said to yield a true ground truth: no morphological values of the
lunar surface have been used to compute hazard index of the images.
Therefore, even a perfectly resulting hazard map computed by neural
network cannot be said to be good or not, due to the fact that no
validations can be made because of the lack of a true hazard map to
compare the computed map with. Moreover, the output of the main
ANN –trained with the dataset created with a fuzzy-logic interpreter–
was corrected through the secondary ANN manually assigning the
target that the HD system should have provided, as guessed by the
user. Hence, ORACLE+ system is constrained to the operator’s subjec-
tive judgment about the hazardousness of the various lunar surfaces,
making this systems results not reliable.
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Chapter 4

Training, validation and test
datasets

A
S it has been pointed out in Chapter 3, the robustness of a haz-
ard detection system can be assessed only by an objective valida-
tion process. Hence, it has been developed a ground truth gen-

eration program that allows radically better training and performances
assessment of the system through the use of high accuracy artificial im-
ages.

4.1 Ground Truth Hazard Maps from Digital Eleva-
tion Model

The choice to train and test the neural network through artificial im-
ages provides solid benefits with respect to the use of real images,
where no actual ground truth is available:

• An accurate and objective knowledge about safe and unsafe land-
ing sites. That is thanks to the fact that physical parameters,
like slopes and roughness, are known in the artificial images
through DEM and rendering data, and therefore they can be
cross-checked with the lander characteristics to provide a mea-
surement of the hazardousness of an area.

• Multiple image with different parameters of the same area are pos-
sible. Changing Sun inclination or lander attitude it is possible to
expand the capability of the neural network, training it to deal
with different situations. Those two values are always available
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on-board a spacecraft, but almost never included in real images
metadata.

On the other hand, artificial images needs to be realistic enough to
provide a coherent dataset to the neural network. Otherwise, the sys-
tem may be not useful at all when tested on real lunar images, due to
training set incoherence. Thus, it has been exploited one of the rich-
est and most accurate DEM data available, that is the Lunar Recon-
naissance Orbiter Camera (LROC) set [69]. The available resolution
of the complete lunar surface is 100 m/px, with several subregions re-
leased at a higher detail between 2 and 5 m/px. Such value is anyway
too low for hazard detection and in general navigation during the last
phases of the descent. Therefore, small scale detail has been added
by inclusion of fractal noise, craters and boulders [70, 71, 72]. Frac-
tal noise has been added through the diamond-square algorithm [73]
that modifies the altitude of points between the DEM data randomly
in the values range of the segment length, yielding a realistic effect.
It should be noted that a simple interpolation of the DEM original
points would surely smooth the terrain surface but would increase
only virtually the resolution, without adding any detail to the lunar
soil, resulting therefore useless to increase the details of the lunar
surface. Craters has been inserted artificially following the real statis-
tical distribution present in the lunar surface, while their morphology
is built taking into account empirical data deriving from lunar craters
observations [74, 71]. Their largest size is equal to the maximum non
reproducible by the original DEM resolution. Hence, only small scale
craters are artificially added. Through all these improvements, reso-
lution of the DEM has been improved to 0.3 m/px [70]. At this point,
a photorealistic image is rendered trough ray-tracing techniques pro-
vided by the software POV-Ray [75], taking into account the camera
parameter summarized in Table 4.1. This DEM image is colored with
a grayscale texture with colors spacing between 0.3 (darkest) and 0.8
(brightest) out of 1. Color is selected according to the surface rough-
ness: brighter where terrain is rougher and darker where smoother.
Rendering is performed taking into account Sun light, radiosity and
setting the ambient light source –to simulate inter-diffuse reflection–
to 1%.
About each DEM point, a circular window of the dimensions of the

lander’s footprint selects the corresponding nearby points, and it is
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Table 4.1: Parameters used for POV-Ray renderings.

Camera model pinhole
Image resolution 1024×1024
Angle 60◦

Color 8 bit gray scale

thus possible to compute slopes and roughness of that specific surface
area, directly from DEM data.
Slope is quantified as the inclination of the mean plane composed
by the circular window points, approximated through a least square
approximation. Through the plane equation

z = ax+ by + c (4.1)

where x, y, z represents respectively the two window coordinates and
the height, it is straightforward to obtain the slope S:

S = arctan(
√
a2 + b2) (4.2)

Roughness R is instead taken into account through the difference
between the maximum and minimum deviation of the DEM window
points i with respect to the mean plane:

R = max
i
{zi − (axi + byi + c)} −min

i
{zi − (axi + byi + c)} (4.3)

Directly in POV-Ray, coordinates transformation from DEM to camera
perspective is executed and it is possible to impose the safety con-
straints:

• S ≤ Smax

• R ≤ Rmax

• The point is in light.

At this point, hazard map ground truth is calculated:

• Slope, roughness and shadows boolean maps are computed ap-
plying a threshold according with the safety constraints Smax,
Rmax and shadow presence. In these maps, 1 will be assigned in
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unsafe value, 0 to safe ones. They represent the boolean textures
that will generate three intermediate images necessary to create
the ground truth hazard map. In particular, the rendering of the
three boolean maps is computed with these parameters:

– Shadows map rendering: no diffuse ambient lights nor their
radiosity due to Sun light are rendered, only direct Sun
light. White texture is used for terrain. A map composed of
net shadows result.

– Slopes map rendering: diffuse ambient light is computed,
while direct Sun light is off. Texture map used is the boolean
slopes map. This way, a map depicting only safe and unsafe
slopes is obtained for the whole image.

– Roughness map rendering: light parameters are the same as
for the slopes rendering map, but texture map is the rough-
ness boolean and therefore it results a picture with safe and
unsafe points considering only roughness of the terrain.

• Through boolean renderings of slopes, roughness and shadows,
hazard map HMAP is computed, having care to normalize to 1
the hazard index:

HMAP = max
i

{
1

3
(S +R),W

}
(4.4)

where S,R,W are respectively the slopes, roughness, shadows
boolean maps (Fig. 4.2).

An hazard index of 0 means a safe location, 1/3 unsafe with re-
spect to roughness or slope, 2/3 unsafe for both roughness and slopes,
1 unsafe for being in shadow, that are areas out of the camera field of
view. Thus it is an hazard value increasing from 0 –safest– to 1 –most
unsafe–.
Eventually, two Gaussian pyramids downsample the image resolu-
tion down to match the output size of the neural network. As it
will be properly explained in Chapter 5, downsample is necessary
mainly due to computational performances reasons, that cannot be
omitted since the whole hazard detection system must run real-time.
Moreover, a downsample allows to relate nearby pixels, obtaining a
much smoother ground truth hazard map. This increased continuity
in pixels’ hazard index theoretically facilitates the training process of
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(a) DEM rendering (b) Hazard map

Figure 4.1: DEM photorealistic rendering and corresponding hazard map. Intermediate
rendering maps that concur to create (b) are shown in Fig. 4.2

(a) Slopes map (b) Roughness map (c) Shadows map

Figure 4.2: Intermediate stage renderings for the hazard map computation.

the ANN, since it is much more effective approximating a continuous
function with respect to a discontinuous one [70].

4.2 Training, Validation and Test datasets

As introduced in Chapter 2, an adequate training set is fundamental
to obtain a neural network capable to yield great generalization per-
formances. The various features that are expected to be encountered
during operational run-time should be included as completely as pos-
sible. To achieve such a goal, it has been generated a set of 98 images
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and hazard map ground truth from 34 different DEMs. Such a dataset
is composed by:

• Training dataset. 72 doublets1 with Sun inclination angle of 10◦,
45◦, 80◦. Therefore, 26 different DEMs rendered at 3 different
Sun inclination angles has been used. So, the network will be
trained with images characterized by net shadows, when the
Sun inclination value is low, and with pictures where the var-
ious features are less sharp, when the Sun looks higher to the
planetary surface.

• Validation dataset. 4 DEMs creating 12 doublets with Sun incli-
nation angle of 10◦, 45◦, 80◦ have been exploited. As said in
Chapter 2, this set is used to assess the error performances of
the network while training in order to avoid over-fitting trough
early stopping.

• Test dataset. 8 doublets generated with 4 DEMs at 15◦and 80◦.
This set is exploited once the network has completed the train-
ing, to assess the performances of the overall hazard detection
system. It is not used for training purposes. Test dataset is avail-
able to the reader in Appendix B.

DEMs used in each one of the three sets are different with respect to
the ones used in another set, so that it is possible to have a perfor-
mances evaluation of the hazard detection system on images totally
uncorrelated with respect to the training.
As the reader may have noticed, almost the whole Sun inclination
angle spectrum has been utilized to both train and test the network.
This is a fundamental issue, since the hazard detection system pro-
posed in this thesis is aimed to deliver a safe landing site with every
light inclination. Azimuthal position of the Sun, instead, is fixed at
15◦, since it does not enrich the training set coherence: hazard detec-
tor has not a preferred direction in the image frame plane.

1From now on, with doublets it will be intended a pair of lunar surface image rendering
and its relative ground truth hazard map.
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(a) Rendering at 10◦ (b) Rendering at 45◦ (c) Rendering at 80◦

(d) Hazard Map, 10◦ (e) Hazard Map, 45◦ (f) Hazard Map, 80◦

Figure 4.3: Renderings at 10◦, 45◦, 80◦and respective ground truth hazard maps. These
images have been used for the training dataset.
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Chapter 5

Architecture of the Hazard
Detection System

I
N this chapter the current architecture of the system will be pre-
sented. The most important alternatives that have been inves-
tigated during the design and the development of the hazard

detection system will be briefly discussed.

With respect to the system described in Chapter 3, the current version
is definitely simpler, as it can be seen in Figure 5.1:

Figure 5.1: Hazard Detection system architecture.

• Image preprocessing and loading has remained mainly unchanged:
8 bit gray color depth is maintained. Only resolution of the in-
put frame has been increased to 1024×1024;
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• The three Self-Organizing Maps have been removed. The way
they were implemented did not yield performances increasing:
a clustering of the data coming from the image processing it is
redundant, due to the fact that the image is already cataloged
through its extracted indices;

• The secondary Feedforward Multilayer Artificial Neural Network
have been removed: through a better image features mining, a
larger and smarter training dataset with true ground truth haz-
ard maps available, a single –and even smaller in terms of neu-
rons and layers– Feedforward multilayer ANN is perfectly capa-
ble to operate.

Therefore it is possible to refer to a new system architecture,
shown in Fig 5.1

1. Image loading and preprocessing: the raw image is acquired.
Image perspective correction is applied if needed.

2. Indexes extraction: image is segmented at different scales with
various indices and low level informations are extracted.

3. image indices are processed by a feedforward back-propagation
artificial neural network and arranged in the hazard map.

4. Target Landing Site search. Computed hazard map is exploited
to select the most suiting landing site.

5.1 Input image preprocessing

Image is first of all loaded in 8 bit gray scale and if it is rectangular in
shape, it is cropped to square size. Dimensions of the processed im-
age are defined by the maximum centered square that is contained in
the original rectangular image. Then, a resizing occurs if image width
(or height, since it is now squared) size is greater than 1024 px, since
the overall hazard detection software is programmed to work with
1024 × 1024 input images. Such a size have been selected because
of the compatibility with many of space proven camera devices. Note
that this preprocessing function is not needed if the images used are
the artificial ones described in Section 4.1, since they are already
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1024×1024 px in size. Instead, image crop and resizing will be ex-
ploited during the tests on real lunar images (Sec. 6.5), where their
resolution is in general different. At this stage, if it is needed, another
image processing routine is called: due to the fact that the system is
designed to operate with images shot from a vertical attitude as the
spacecraft is assumed to start the hazard detection phase in vertical
attitude at the HDA High Gate point of the landing phase (Section
1.2.2 presents the whole maneuver in details), it is possible to correct
any small deviation from the vertical attitude through a perspective
transformation [70]. It may be the case when the lander is descending
with a non completely vertical attitude. Such image transformation
is computed under the hypotheses of planar surface. The knowledge
of the altitude, the aperture of the camera Field of View (FoV) cone
and the current attitude of the spacecraft, allows to compute the pro-
jection of the image points in real world reference. Then, such points
are converted in the camera frame and it is possible to compute the
perspective transformation matrix that allows to transform the origi-
nal image into the perspective view [76, 77, 78]. An example of such
image processing routine effect is depicted in Fig. 5.2.

Moreover, if the images are provided by a real camera, radial and

(a) Original image (b) Transformed image

Figure 5.2: Perspective Tranformation. FoV: 60◦, altitude: 2000 m, pitch: 7.1◦, yaw:
7.1◦, roll: 0.1◦

tangential distortions generated by the lens imperfections are cor-
rected.
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5.2 Indices extraction

Significant indices are extracted from the image in order to supply
the following neural network with the most appropriate informations
to achieve high performances maintaining an elevated computational
efficiency. As the reader may grasp, many kinds of indices have been
evaluated to provide the best results. The most significant discarded
versions of the indices extraction algorithm are reported in Sec. 5.6.
In general, the informations to extract from a lunar surface image,
must be such that the network is able to detect the various planetary
soil features that make a site unsuitable to land on, such as slopes,
craters, scraps, as correctly as possible. To accomplish this task with
a single camera, it has been exploited either zeroth, first and second
differential orders of the gray scale image pixels intensity.
Zeroth order indices allow to have a reference value from which the
network can understand the general brightness of the area analyzed
in the acquired image. One the other hand, higher orders are dedi-
cated to detect the various features present on planetary surface de-
tecting variations -and how fast the variation occurs- of pixels inten-
sity. Moreover, it has been adopted a multi-scale approach for the
various indices: exploiting multiple scales of the image through the
downsample of the original one, makes possible for the network to
understand depth and relative distances of the objects and the fea-
tures present in the image under analysis [79]. Specifically, the cur-
rent version of the hazard detection system consists of two sets of
indices:

• Window-based indices. Three different mobile windows are ex-
ploited to compute mean µ and standard deviation σ of the pixel
intensities of partial image regions. Sizes of those windows have
been chosen balancing computational performances and results
accuracy in terms of landing sites found by the neural network.
Three windows sS, sM , sL of size respectively of 4×4, 8×8,
16×16 px have been selected.
The two statistical indices used are defined as:

µ =

∑N
i=1 Ii
N

(5.1)

σ =

√∑N
i=1(Ii − µ)2

N − 1
(5.2)
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where I corresponds to the intensity of the i-th pixel, N is the
number of pixels inside the considered image window. Mean
helps the network to reconstruct the general intensity of the
window considered, and it is particularly useful to distinguish
shadows -or deep space- from the rest of the planetary surface.
Standard deviation is exploited to yield a first assessment on the
variations, with respect to the mean value, of the window inten-
sity, providing the net a general trend of the features present in
the current window.

• Global indices. Image gradient (grad) and Laplacian of Gaus-
sian (LoG) are computed on the whole image. These two opera-
tors have been approximated through convolution with custom
5×5 linear kernels. The image is then downsampled to match
the dimensions of the window-based indices, therefore down to
256×256, 128×128, 64×64. Those very dimensions allow to
match the output size of the window-based indices processing.
Image gradient, that represents the first order derivative filter, is
implemented with two directional expanded 5×5 Prewitt [80]
filters kernels, PH and PV that approximate the image gradient
respectively in the horizontal and vertical directions [81]:

PH =


2 1 0 −1 −2

2 1 0 −1 −2

2 1 0 −1 −2

2 1 0 −1 −2

2 1 0 −1 −2

 (5.3)

PV =


2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

−1 −1 −1 −1 −1

−2 −2 −2 −2 −2

 (5.4)

After convolving the original image with each one of them, el-
ements i and j of the output matrices GH and GV are summed
up to have the magnitude of the image gradient Grad:

Grad(i, j) =
√
G2

H(i, j) +G2
V (i, j) (5.5)

Eventually, the maximum value between the various element in



62 Architecture of the Hazard Detection System

(a) Image to be analyzed (b) Horizontal gradient

(c) Vertical gradient (d) Total image gradient

Figure 5.3: Intermediate phases to image gradient computation

Eq. 5.5 is exploited to normalize the overall gradient matrix. It
has been preferred to normalize with the current image relative
maximum and not with the absolute maximum in order to have
the most discrete possible values among the local gradient re-
sults. That is meaningful because the "reference" absolute value
is already present in form of mean µ for the neural network.
Laplacian of Gaussian (LoG) filter [82] is a second order differ-
ential edge detector that combines a Gaussian smoothing filter
with a Laplacian operator [77]. The Gaussian filter allows a
noise reduction, while the Laplacian operator tracks the zero-
crossing of the intensity function of the image, that represents
maxima of such function: edges.
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Analytically, it can be expressed as proposed in [76, 77]:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (5.6)

where x, y are image coordinates, σ is the standard deviation of
the Gaussian filter, defining the radius of the filter and therefore
its sensitivity to reject noise. For the current hazard detection,
being the image enough noise-free, a small σ = 0.5 have been
selected. Such a function, often referred to as the "mexican hat"
due to its shape, is shown in Fig. 5.4. Discrete approximated
kernel to operate the LoG directly as a convolutional filter is
thus:

0.044792 0.046806 0.056407 0.046806 0.044792

0.046806 0.31675 0.71463 0.31675 0.046806

0.056407 0.71463 −4.9048 0.71463 0.056407

0.046806 0.31675 0.71463 0.31675 0.046806

0.044792 0.046806 0.056407 0.046806 0.044792

 (5.7)

(a) Continuous function (b) 5×5 kernel

Figure 5.4: Laplacian of Gaussian with σ = 0.5, representation as a continuous function
(a) compared to the approximated discrete kernel used in the hazard detection system
indices extraction.

Effects of the Laplacian of Guassian filter used for the hazard de-
tection indices extraction on a lunar surface picture are depicted
in Fig. 5.5.
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(a) Image to be analyzed (b) LoG

Figure 5.5: Laplacian of Gaussian with σ = 0.5

As it is possible to spot in Fig. 5.5, Laplacian of Gaussian filtered
image recognizes well edges, thus depicting craters and scraps
borders with high accuracy. It results especially useful to identify
very small features, such as small rocks and roughness.

In addiction to the indices extracted and processed from the camera
image, also Sun inclination angle is passed to the feedforward artifi-
cial neural network, normalized between 0 and 1 dividing it by π/2.
That value helps the ANN to understand the various features with dif-
ferent contrast levels: an image with a low Sun inclination angle will
be characterized by net shadows and accordingly a greater overall
sharpness. Hence, in the case of a general training process involving
an input space where features at low Sun inclinations and features at
high Sun inclination are balanced, the network will be facilitated in
the recognition and hazard index assignment of areas characterized
by great contrast, thus lower Sun inclination angle. So, providing
that angle, the network can distinguish the same features at different
light conditions.
Summarizing, the overall input to the neural network is composed by
13 indices:

• µ and σ for the three different mobile windows, thus 6 in total;

• LoG and gradient at three different image scales, thus 6 in total;

• Sun inclination angle.
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It is important to underline that every input value is normalized to
unity value in order to not incur in neurons saturation during the
signal propagation among network’s layers.

5.3 Neural Network simulation: hazard map compu-
tation

After the assembly of the various indices, the total input is fed into
the feedforward artificial neural network. It consists in a simple 15
neurons single hidden layer, fully connected network. Output layer
is a scalar value representing the hazard index of a the hazard map
image. Activation functions exploited in the network are: hyperbolic
tangent for the hidden layer, limiting the neurons output to [-1,1];
logistic sigmoid for the output layer, constraining the total output to
the continuous set [0,1], where 0 represents a completely safe hazard
map pixel, while 1 the most hazardous index. Thus for each input
sample of 13 values, a single double number depicting the hazard
value is computed by the network (Fig. 5.6). To relate each one of

Figure 5.6: Feedforward ANN scheme. Activation functions are sketched for both the
hidden and the output layer.

the output pixels with their neighborhoods, a very light blur filter is
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implemented. Its convolutional kernel is:
0.0075758 0.0075758 0.0075758 0.0075758 0.0075758

0.0075758 0.015152 0.015152 0.015152 0.0075758

0.0075758 0.015152 0.75758 0.015152 0.0075758

0.0075758 0.015152 0.015152 0.015152 0.0075758

0.0075758 0.0075758 0.0075758 0.0075758 0.0075758

 (5.8)

It has been chosen such a light filter to prevent a too radical change
of the pixels hazard index. In fact, an average or median filter per-
formed on an unsafe pixel yields a relaxation of the pixel’s hazard
index, thus theoretically increasing the probability of false positive
landing sites. As in can be noted in Fig. 5.7, the hazard map after the
blurring filter is almost identical to the original.

(a) Hazard map, no blur (b) hazard map, blurred

Figure 5.7: Effects of the light blurring filter adopted on the hazard map are almost
imperceptible to the eye.

The size of the neural network, which was much bigger in the
original hazard detection system [67], has been drastically reduced
without compromising performances: thanks to the enhanced indices
extracted from the image, combined with a more significant training
set, the neural network is facilitated in the various planetary surface
features recognition. Note that a smaller network can reduce signifi-
cantly the training time required.
Training of the ANN has been performed through C++ FANN library,
exploiting the train and validation datasets described in Section 4.2.
Training algorithm used is the irprop technique, the one proposed
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by Christian Igel and Michael Hüsken as a faster variant of the re-
silient backpropagation (see Sec. 2.1.2), setting learning rate to 0.75
and momentum to 0.8 to achieve a quite aggressive learning (see the
initial oscillations of the RMSE in Fig. 5.8). A custom early stop tech-
nique has been coded: validation dataset is used as usual to verify
the RMSE of the network output with respect to the target, but not
only the classical fixed number of consecutive iterations determines
the reach for a local minimum of the validation error. Indeed, to pre-
vent a too early stop due to the aggressiveness of the algorithm, also a
validation considering the minimum of the error found in the overall
training session is performed. This last validation is used to check if
an absolute minimum of the error function is found during training.

Figure 5.8: RMSE trend during training. It is possible to notice the initial oscillation
of the RMSE due to the aggressive irprop algorithm settings adopted.

5.4 Landing site computation algorithm

Once the hazard map is available, the hazard detection system calls
the landing site selection routine. The suitable sites for the lander are
ranked according three parameters:

1. Minimum hazard index;

2. Maximum landing area;
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3. Minimum distance from the Nominal Landing Site (NLS), in or-
der to maximize the probability to find another landing site in
case of necessary re-targeting.

The general scheme of the algorithm proceeds assigning three indices
per landing site candidate, one per each of the just said parameters.
Afterward, the three indices are merged to form the overall candi-
date’s skill, and all the landing sites are sorted through the relative
total hazard index in a global ranking.
To operate, the algorithm refers to the reference frame in Figure 5.9.

Figure 5.9: Image reference frame.

It is centered in the upper left corner of the image, aligned with image
borders. The simple transformation in Equation 5.4 links the image
space (pixels) with the actual surface space (meters):

[x y]T = dresss[i j]
T (5.9)

where (x, y) represent the coordinates of a point expressed in meters,
(i, j) the same point in pixels; dres and ss respectively the original im-
age resolution in meters per pixel and the size in pixels of a side
of the small mobile window used to extract the image indices. The
knowledge of a sufficiently enough resolution is required to estimate
landing sites properly, since their size must be compared with the ac-
tual dimension of the footprint of the lander, and thus the two values
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must be in real world units mandatory. As stated in Section 5.1 also
camera FoV and attitude are considered as available to the hazard
detection system.
The algorithm develops through the following passages:

• The maximum safety threshold is applied to the hazard map,
yielding a boolean map where True represents safe pixels, and
False otherwise. This operation allows to easily and efficiently
mark as unsafe all the False cataloged pixels. In the current haz-
ard detection suite such a threshold is set to θmax = 0.3 for the
ground truth hazard map: theoretically, it can be considered a
θ = 0.33 out of 1 value for a safe landing site, but due to the
blurring filter present to relate nearby pixels (see Sec. 5.3), the
unsafe areas are lightly lowered in hazard index due to the con-
volution operation with nearby safer pixels. True pixels, that are
points such as θij ≤ θmax, are classified as Candidate Landing
Sites (CLS);

• For each True pixel, the size score rCLSij is calculated as the dis-
tance from the nearest unsafe (False) pixel. The higher the dis-
tance, the better the score;

• Considering the size of the lander and the navigation errors, a
landing site must be chosen accordingly. Modeling the landing
spot as a circle, its radius dimension is constrained as:

rCLSij ≥ rmin =
dfootprint

2
+ egnc (5.10)

where rmin represents the minimum radius for the landing site,
dfootprint indicates the footprint diameter of the lander and egnc
accounts for the imprecision of the Guidance and Navigation
System at the desired confidence level. Every CLS that does not
respect this constraint is excluded from the landing site candi-
dates;

• The Diversion score dCLSij is computed for the remaining CLSs.
It represents the distance from the NLS:

dCLSij =
√

(xCLSij − xNLS)2 + (yCLSij − yNLS)2 (5.11)

in which xNLS and yNLS represents the metric coordinates of the
NLS, such as xCLSij , yCLSij for the CLS in image frame position
i, j.
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• The Safety score zCLSij is calculated as the average between all
the hazard indices contained inside the circle centered in CLSij

with radius rCLSij .

• Size score rCLS, diversion score dCLS and safety score zCLS are
normalized to 1 through the respective maximum value found
in the current hazard map, and therefore they acquire the same
magnitude one each other.

• The Global score lCLSij can now be computed:

lCLSij = wT

 r̃CLSij

1− d̃CLSij

1− z̃CLSij

 (5.12)

where w represents the vector of the weights that provides the
flexibility to choose which of the three scores should be more
considered during the landing site choice. It is clearly composed
by three scalar values, each per score. The tilde (~) graphical
sign represents a normalized variable.
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(a) Hazard Map (b) Threshold application (c) Size score

(d) Diversion score (e) Safety score

Figure 5.10: Intermediate phases of the landing site search algorithm: (a) Original
hazard map. (b) Threshold of the original map with θmax = 0.3. (c) Size score
computation, thresholded with rCLSij ≤ rmin. dmin = 3 m, egnc = 15 m. (d)
Diversion score computation: NLS is in set in the image center. (e) Safety score
computation: average hazard index inside CLS radius
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(a) Candidates ranking (b) Landing site

Figure 5.11: Last phases of the landing site search algorithm: (a) Global score compu-
tation: highest (red) area represents the best landing candidate (b) Landing site in the
original lunar image.

Once that the ranking of the various landing site candidates is avail-
able, the first element in such a vector represents the selected Target
Landing Site (TLS), characterized by the highest score.

5.5 Landing Site Validation algorithm

In order to be able to evaluate scientifically and objectively perfor-
mances of the hazard detection system, a landing site validation pro-
gram has been developed. Such an algorithm is also necessary to
compare the various hazard detector versions that have been devel-
oped in the past months. It is based on the landing site computation
routine described in Sec. 5.4 and its main scope is the quantification
of the following parameters:

• True Positive landing sites. Candidates generated through the
neural network hazard map whose positions are safe also in the
ground truth: they are correctly identified landing sites;

• False Positive landing sites. Candidates that instead are in an
unsafe area of the ground truth hazard map, and therefore they
represent a wrong identification performed by the neural net-
work;
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• False Negative landing sites. Areas considered unsafe by the neu-
ral network that are instead safe on the ground truth hazard
map: they represent a wrong identification performed by the
neural network.

• First False Positive occurrence among the landing site candidates
ranking.

General criteria to validate the hazard detection system with are based
on these general rules:

• if a landing site exists, it must be found;

• no false positive landing site should be computed, due to the
fact that they represent a complete mission failure;

• false negatives are tolerated, but only if at least a correct iden-
tified landing site exists in order to not picture a critical treat to
the mission.

To satisfy these requirements, it is therefore necessary that the target
landing site computed by the HD system is a true positive. Moreover, in
order to assure the possibility for the spacecraft to re-target towards a
new landing site in case of necessity, it is mandatory that at least the
first 2 candidates in the landing site ranking are true positives for any
test set image. The optimization of the performances of the hazard
detection architecture, also taking into account re-targeting needs, is
discussed in Sec. 5.5.1.
The algorithm to validate the landing sites found by the neural net-
work is structured as the following:

• Ground truth hazard map of the analyzed lunar surface image is
computed with the corresponding landing sites1. Hazard thresh-
old is set to 0.3/1;

• Hazard detection system’s hazard map is calculated through the
neural network, with the corresponding landing sites2. Hazard
threshold can be tailored to optimize the results;

1From now on: "True landing sites"
2From now on: "ANN landing sites"
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• A True map (TMAP) is generated, thresholding the ground truth
hazard map with the threshold 0.3, that is:

TMAP = HMAPGT ≤ θmax (5.13)

where HMAPGT is the ground truth, θmax is the maximum haz-
ard index allowed. TMAP represents the safe pixels onto which
the hazard detection software must find the landing sites in or-
der to provide a suitable landing spot for the lander;

• True Positives and False Positives computation. Every ANN land-
ing site candidate is "tested" onto the TMAP: if it is completely
included, that means that every pixel of its radius is where the
thresholded ground truth is True, it is classified as True Positive
(TP). Otherwise, even if a single pixel is not part of the TMAP,
it is considered as a False Positive (FP);

• False Negatives computation. The ANN computed hazard map is
thresholded with the θANN selected to create the FNMAP:

FNMAP = HMAPANN ≤ θANN (5.14)

where HMAPANN corresponds to the neural network generated
hazard map. In FNMAP, True value is assigned where the local
hazard index is less or equal than the custom threshold. Then,
each true landing site candidate is "tested" onto the FNMAP:
if it is located entirely in a False pixel set of the FNMAP, it is
classified as a False Negative (FN);

• First False Positive. ANN landing site candidates are sorted trough
their hazard indices. From the first in ranking –that represents
the TLS–, a cycle analyzes every candidate after the other until
the first False Positive is identified.

5.5.1 Optimization of the landing site candidates ranking

Performances of the HD system depend on many internal parameters.
Besides choosing different architectures of the image indices extrac-
tion routine, increasing the size of the ANN, adding SOM or other dif-
ferent items, it is possible to achieve the maximum performances of a
fixed architecture optimizing the hazard index threshold adopted for
the computed map and the three landing site search program weights
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introduced in Section 5.4.
In general, performances of HD system will be the better the higher
the number of true positives identified, the worse the higher number
of false positives occurred. Such a performance is adjusted acting on
the hazard threshold allowing a greater or minor number of hazard
map pixels to be included in the landing site candidates. On the other
hand, optimization of the weights allows to modify the found landing
site candidates sorting in the ranking. Therefore, assuming at least
one TP and one FP have been found, an action on the weights will
directly influence the position of the first false positive found in the
ranking of the landing site candidates. Ideally, the best possible per-
formances coincide with the totality of landing sites computed to be
true positives, no false positives, no false negatives. Being in prac-
tice almost impossible to achieve such a perfection, the optimization
process should maximize the number of true positives, minimizing
the amount of false positives and false negatives. Additionally, in the
case of FP occurrence, it should be at least in position 3 in the overall
candidates ranking, in order for the spacecraft to be able to re-target
towards a safe backup landing site in case the selected is not pos-
sible to be reached for. A detailed analysis about the performances
optimizations is done in Section 6.2.

5.6 Discarded Architectures

The most representative attempts made during the survey of the best
image indices extraction routine are presented to the reader. In Sec-
tion 6.4 their performance comparison will be discussed. Between
the various tries, both architectures with and without Kohonen net-
works have been tested. Nevertheless, the feedforward network used
in all the architectures counts a single hidden layer with 15 neurons,
in order to have a coherent comparison among all of them. Moreover,
after the network processing of the image extracted inputs, the same
very slight blur filter (see Eq. 5.8) is applied to the hazard map gener-
ated, in order to relate nearby pixels explicitly, and not only through
the internal weights of the neurons.
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Version A

Figure 5.12: Version A, architecture.

This version is inspired by ORACLE+ architecture: the three Koho-
nen networks with size 10×10 are maintained prior the feedforward
multilayer ANN, but the secondary ANN is removed (Fig. 5.12). The
indices used in this version are exactly the same exploited in the orig-
inal architecture of the hazard system [67], but half of mobile win-
dows dimensions are used to obtain an hazard map image resolution
of 256×256 px instead of 128×128:

• For window size 4×4 px:

– directional mean

– directional standard deviation

• For window size 8×8 px:

– directional mean

– directional standard deviation

• For window size 16×16 px:

– directional mean

– directional standard deviation

To prevent neurons saturation during the signal propagation in the
neural network, mean is normalized to [0,5], while standard devi-
ation to [-10,10]. As an example, in Figure 5.13 the two statistical
indices computed for the central column of the smaller mobile win-
dow are shown.
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(a) Original Image

(b) Mean (c) Standard deviation

Figure 5.13: Directional mean and standard deviation computed on the central column
direction for 4×4 mobile window.

To remind the reader the meaning of directional computed in-
dex, the sketch depicting the various directions is proposed again in
Fig. 5.14.
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Figure 5.14: Directions used to compute mean and standard deviation in a single mobile
window in the original hazard detection system.

Version B

Figure 5.15: Version B, architecture.

No Kohonen nets are exploited in this version, as the indices extracted
from the image are directly fed into the ANN. Such indices are:

• For window size 4×4 px:

– Mean of the whole mobile window pixels

– Standard deviation of the whole mobile window pixels

• For window size 8×8 px:

– Mean of the whole mobile window pixels

– Standard deviation of the whole mobile window pixels

– Image gradient through Sobel filter

• For window size 16×16 px:

– Mean of the whole mobile window pixels
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– Standard deviation of the whole mobile window pixels

– Image gradient through Sobel filter

• Sun inclination angle

The horizontal and vertical gradients (gradx and grady) through the
Sobel filter are achieved performing convolution on the image with
kernels:

H =

 1 2 1

0 0 0

−1 −2 −1

 V =

−1 0 1

−2 0 2

−1 0 1

 (5.15)

and the total gradient (grad) show in Fig. 5.16 for every image pixel
in position i, j is straightforward:

grad(ij) =
√

gradx(i, j)2 + grady(i, j)
2 (5.16)

To prevent neurons saturation, mean is normalized to [0,1] standard

(a) Original image (b) Image gradient

Figure 5.16: Image gradient computed through Sobel filter

deviation to [-1,1], gradient to [0,1], Sun inclination angle to [0,1].
Note that the gradient theoretically has domain up to infinity. There-
fore to normalize the Sobel output it has been exploited the output
generated by a white line in black field, that express the maximum
gradient possible for a 8 bit gray scale image. It resulted equal to
1020. In any case, thanks to the robustness of the neural networks,
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even if such normalization is not extremely precise the difference in
ANN output is negligible. What really matters to obtain a reliable
and efficient network is to be coherent in training and ANN execu-
tion, that is using the same scale. For what concern Sun inclination,
it is normalized through the maximum possible Sun elevation of 90◦.
Every window processed with the Sobel filter is downsampled to 1×1
px through a series of Gaussian pyramids.

Version C

Figure 5.17: Version C, architecture.

No Kohonen nets are exploited in this version, as the indices extracted
from the image are directly fed into the ANN. Such indices are:

• For window size 4×4 px:

– Directional Mean of the mobile window pixels as in Version
A

– Directional Standard deviation of the mobile window pixels
as in Version A

• For window size 8×8 px:

– Directional Mean of the mobile window pixels as in Version
A

– Directional Standard deviation of the mobile window pixels
as in Version A

– Image gradient through Sobel filter

– Laplacian of Gaussian with σ = 0.5

• For window size 16×16 px:
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– Directional Mean of the whole mobile window pixels

– Directional Standard deviation of the whole mobile window
pixels

– Image gradient through Sobel filter

– Laplacian of Gaussian with σ = 0.5

• Sun inclination angle

Normalization is performed in this version too: mean to [0,5], stan-
dard deviation to [-10,10], gradient to [0,10], Laplacian of Gaussian
to [-10,10], Sun inclination angle to [0,1]. Image gradient normaliza-
tion has been handled as in version B. Following the same approach
used for the gradient for the LoG, the normalization coefficient com-
puted is: 1250.71. The effect of the LoG filter is shown in Fig. 5.183.

(a) Original Image (b) LoG

Figure 5.18: Effects of Laplacian of Gaussian filter on the original image.

3In order to have a visualization of the LoG effects its values have been converted to
positive because of the -png format limitations. Due to that, such picture does not represents
the actual input fed into the ANN, but only a representation suitable to the human eye



82 Architecture of the Hazard Detection System

Version D

Figure 5.19: Version D, architecture.

This is the first version to introduce global indices over the traditional
window-based indices. No SOM has been used. Indices extraction
procedure is the following:

• Window-based:

– Mean of the whole mobile window pixels for windows sizes
of 4×4, 8×8, 16×16

• Global:

– Binary map generated through edge detector based on LoG
with σ = 0.8

– Standard deviation with 5×5 kernel

• Sun inclination angle

Global indices, as base image to process, use the map generated
through the mean computed with the window-based approach. Bi-
nary image for the edges is calculated skeletonizing the output of the
gradient after applying the threshold σ. This way, value 1 identifies
an edge, 0 otherwise (Fig. 5.20).
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(a) Original Image (b) Edges with LoG

Figure 5.20: Effects of the edge detector based on LoG filter with σ = 0.8.

Image topological skeleton is exploited in order to have thin edges
on the output image, even if the zero crossing borders of the objects
in the picture are wide. Standard deviation in this version of the HD
system is computed across the 5×5 neighborhood of the considered
pixel and it is normalized between [-1,1]. Mean domain is trans-
formed to [0,5].

Version E

An enhanced version D, where the architecture remains the same
as the one in Figure 5.19. Once again no Kohonen nets, and edge
detector uses a Canny filter[83] instead of a Laplacian of Gaussian,
while the standard deviation is computed with a smaller 3×3 kernel.
Hence, the indices:

• Window-based:

– Mean of the whole mobile window pixels for windows sizes
of 4×4, 8×8, 16×16

• Global:

– Binary map generated through edge detector based on Canny
filter with σlow = 0.04 and σhigh = 0.1

– Standard deviation with 3×3 kernel

• Sun inclination angle
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Canny filter, also known as the optimal edge detector in literature[83,
84], works smoothing the input image with a Gaussian filter, then
applying a gradient -such as Prewitt or Sobel filters- and threshold-
ing out spots of the image characterized by a non-maximum gradient
magnitude (non-maxima suppression). Great novelty of the Canny
based edge detector is the use of two threshold to obtain an hystere-
sis: after the first gradient reduction through the low threshold σlow, if
the magnitude of the pixels derivative is higher than the high thresh-
old σhigh, it should be an edge. In the case of a pixel is in between
the two thresholds, it is set to zero unless it is directly topologically
connected on the image to a pixel with a gradient higher than σhigh
[83]. Edge detection with the selected Canny filter is shown in Fig-
ure 5.21. Standard deviation filter is the same used in version D with

(a) Original Image (b) Edges with Canny

Figure 5.21: Effects of the edge detector based on Canny filter with σlow = 0.4 and
σhigh = 0.1

a smaller kernel equal to 3×3 px and it is normalized to [-10,10].
Mean domain is bounded to [0,5]. Clearly the edge detector output
is binary as in version D.
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Version F

Figure 5.22: Version F, architecture.

This version proposes a lighter variant with respect to version C: in
intermediate mobile window LoG and gradient are remove to inves-
tigate the effects of maintaining only such filters on the largest scale.
Moreover, mean and standard deviation are eliminated from the large
window. To clarify, indices extraction proceeds as:

• For window size 4×4 px:

– Directional Mean of the mobile window pixels as in Version
A

– Directional Standard deviation of the mobile window pixels
as in Version A

• For window size 8×8 px:

– Directional Mean of the mobile window pixels as in Version
A

– Directional Standard deviation of the mobile window pixels
as in Version A

• For window size 16×16 px:

– Image gradient through Sobel filter

– Laplacian of Gaussian with σ = 0.5

• Sun inclination angle

Mean and standard deviation are normalized respectively to [0,5]
and [-10,10]. Gradient to [0,10] and LoG to [-10,10] through the
same procedure used in version C.
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Version G

Figure 5.23: Version G, architecture.

Version that includes also the overall mean of the image:

• For window size 4×4 px:

– Laplacian of Gaussian

• For window size 8×8 px:

– Mean of the whole window pixels

– Gradient through Sobel filter

– Laplacian of Gaussian

• For window size 16×16 px:

– Gradient through Sobel filter

• Mean computed on the whole

• Sun inclination angle

Sobel filter domain: [0,10], Laplacian of Gaussian: [-10,10], mean:
[0,5]. It has been inserted the mean calculated on the whole image to
investigate the feedforward neural network capability to handle dif-
ferent albedos. Unfortunately, the datasets available are composed by
images with terrain optical characteristics quite similar among them,
and therefore, no actual testing was possible to quantify the capabil-
ity of the network to recognize hazard index for similar features with
different albedos.
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Version H

Figure 5.24: Version H, architecture.

Almost identical to Version G, but it has been removed the gradient
in the intermediate window:

• For window size 4×4 px:

– Laplacian of Gaussian

• For window size 8×8 px:

– Mean of the whole window pixels

– Laplacian of Gaussian

• For window size 16×16 px:

– Gradient through Sobel filter

• Mean computed on the whole image

• Sun inclination angle

Sobel filter domain: [0,10], Laplacian of Gaussian: [-10,10], mean:
[0,5].
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Version I

Figure 5.25: Version I, architecture.

What differences mainly this version is the use of a median filter dur-
ing the indices extraction routine.

• Window based:

– For window size 8×8 px:

∗ Mean of the whole window pixels
∗ Standard deviation of the whole window pixels

– For window size 16×16 px:

∗ Mean of the whole window pixels
∗ Standard deviation of the whole window pixels

• Global, computed after application of a median filter with kernel
size 5×5 and image downsample through Gaussian pyramids
down to 256×256:

– Standard deviation with a 3×3 kernel.

– Binary map generated through edge detector based on LoG
with σ = 0.5

• Global, computed after application of a median filter with kernel
size 5×5 and image downsample through Gaussian pyramids
down to 128×128, 64×64:

– Binary map generated through edge detector based on LoG
with σ = 0.5

• Sun inclination angle
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The choice to insert a median filter has been done to smooth down-
sampled image in order to investigate the capability to identify vast
sloping regions in the image, probably the most difficult surface prop-
erty to recognize. Indeed, the median filter associated with the Gaus-
sian pyramid tends to blur small scale surface features like craters and
terrain roughness, leaving therefore only higher scale characteristics.

Version L

Figure 5.26: Version L, architecture.

Kohonen networks are proposed again in order to assess the perfor-
mances of the current hazard detection system architecture’s indices
extraction routine (see Sec. 5.2), if it is assisted by SOM input space
reduction. Two versions will be proposed, differing in which input is
preprocessed by Kohonen maps. This first sees all the indices being
fed to three SOMs, one per window size (or resulting image down-
sample), as shown in Figure 5.25. The indices are:

• Window based:

– For window size 4×4 px:

∗ Mean of the whole window pixels
∗ Standard deviation of the whole window pixels

– For window size 8×8 px:

∗ Mean of the whole window pixels
∗ Standard deviation of the whole window pixels

– For window size 16×16 px:

∗ Mean of the whole window pixels
∗ Standard deviation of the whole window pixels
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• Global

– Laplacian of Gaussian with a 5×5 kernel and σ = 0.5.

– Image gradient through Prewitt filter.

• Sun inclination angle

LoG and image gradient are both downsampled to 256×256, 128×128,
64×64 px to match dimensions of the output of the window based in-
dices extraction. Mean is normalized to [0,5], standard deviation to
[-10,10], image gradient to [0,1] and LoG to [-1,1]. Note that the
global indices are normalized through the relative maximum value,
intending the highest in that specific image and not in absolute. That
allows the output of the filters to be always extended to the maxi-
mum also if the current picture to analyze has low gradients or LoG,
situation very frequent with high Sun elevation images. The three
Self-Organizing Maps have size of 10×10 neurons each.

Version M

Figure 5.27: Version M, architecture.

Again a version exploiting Self-Organizing Maps. The difference with
the previous one is only the fact that not all the inputs are prepro-
cessed by Kohonen nets, as hereby specified:

• Mean and standard deviation are fed into SOM

• LoG and image gradient are directly processed by the feedfor-
ward ANN

All the three Kohonen networks are composed 10×10 neurons.



Chapter 6

Performances assessment:
tests and results

P
ERFORMANCES of the hazard detection system will be hereafter
objectively quantified. A statistical analysis is accomplished on
the test set in order to validate the system, assessing its capa-

bility to yield safe results in the various operative conditions a lander
is subjected to. At this point, the hazard detection system presented in
this thesis is almost complete: the ANN has been trained with a large
dataset, its parameters have been optimized and a validation routine
to check objectively the correctness of the found landing sites is ready.
Moreover, a comparison with the previous architecture iterations shown
in Chapter 5 is presented to justify the current selection. Firstly, the haz-
ard maps generated through the ANN are related with the ground truths
crafted following the procedure described in Chapter 4. Afterward, cor-
rectness of computed landing site candidates is discussed and quantified.

6.1 Hazard maps

Evaluation of the accuracy of the neural network output is performed
through the Root Mean Square Error (RMSE) statistical index, com-
paring the computed hazard map pixels with respect to the corre-
sponding ground truth ones. Clearly, to coherently assess hazard map
goodness, such as any other parameter of merit concerning the neu-
ral network, it is necessary to refer to the test dataset. As specified
in Chapter 4, the test set is completely uncorrelated with respect to
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the pool of data exploited for the training. In this way the ability of
the system to give a proper response also in conditions not explicitly
considered during the project phase is assured, and the avoidance of
over-fitting phenomena is verified. As parameter of merit for the eval-
uation of the quality of an hazard map, the Root Mean Square Error
(RMSE) has been adopted. It is defined as:

RMSE =

√∑N
i=1(ŷi − yi)2

N
(6.1)

in which N is the number of pixels of the hazard map, ŷi represents
the i-th pixel’s intensity, yi is instead the i-th point of the regression
line computed between the points of the ground truth and the com-
puted hazard map. The less the RMSE is, the better result the ANN
has achieved, because it means that the computed hazard map is well
approximating the ground truth with similar corresponding pixels in-
tensities. In this case, the points in the plot ground truth versus com-
puted hazard map tends to stick nearby the linear regression line.
Indeed, if such a low RMSE is achieved, even if the regression line
does not represents the bisecting line of the plot, it is just a matter
of neural network’s hazard map threshold tailoring, that, speaking in
terms of the plot, represents the interception with the ordinate axis
and the slope of the regression line.
In Figures 6.1 and 6.2, regression lines per each test image are pro-
posed to the reader. The 8 test dataset images are listed following the
Appendix B sorting. Quantitatively speaking, the RMSE results are
shown in Table 6.1.

A low RMSE is in general observed, with a total average among
the test dataset of 7.1%. In particular, and it will be seen also in
the majority of the discarded architectures, the 80◦ Sun inclination
angle images have a lower RMSE: an average of 6.2%, opposite to
the low Sun elevation dataset that registers a 8.0%. In Figure 6.2 it is
possible to notice that the network understands the hazard threshold
upper limit, that does not goes up to 1 due to the lack of shadows.
A general behavior that is observed is the positive y-axis interception
point of the regression line: it means that for completely safe areas
the network is anyway assuming that –even if it is lower than the
threshold of 0.28– they do not deserve the safest index. Such a highly
conservative behavior could be the reason of the great number of false
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(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.1: RMSE computation: images with 15◦ Sun elevation in the test dataset.

negative landing sites occurring during computation, as it will be seen
in Section 6.2.

6.2 Landing site selection

The performances assessment proceeds with the quantifications of
the correct and incorrect landing sites found. As described in Chap-
ter 5 such evaluation depends on the number of True Positives, False
positives, False Negatives occurred. Two indicators are introduced:

• Correct Prediction Index (CPI). It is defined as:

CPI =
nTP

nTP + nFP
(6.2)

where nTP is the number of True Positives encountered, nFP the
number of False Positives. Note that the denominator nTP+nFP
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.2: RMSE computation: images with 80◦Sun elevation in the test dataset.

equates the total number of landing sites found by the neural
network. CPI is bounded between [0,1] where 1 means that the
hazard detection system landing site candidates are all correct,
0 the opposite – the higher the better –;

• Missed Landing sites Value (MLV). Introduced to quantify how
many actual landing sites the neural network does not recog-
nizes as such, it is defined as:

MLV =
nFN

nFN+nTP
(6.3)

where nFN is the number of False Negatives landing sites, thus
the lower the MLV the better the performance. The MLV param-
eter is secondary in importance with respect to the CPI, because
a high number of False Negatives does not represent a direct
threat to the mission, whereas a high number of False Positives
does.
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Test image Sun elevation [ ◦] RMSE [-]
1 80 0.054663
2 15 0.073666
3 80 0.068877
4 15 0.082522
5 80 0.070002
6 15 0.084193
7 80 0.053992
8 15 0.079053
Mean (Sun 15◦) 0.079859
Mean (Sun 80◦) 0.061884
Mean (all) 0.070871
Max (all) 0.084193
Min (all) 0.053992

Table 6.1: Hazard map RMSE.

To perform the numerical computations, a footprint dfootprint = 3 m
and a navigation error egnc = 15 m at 3 σ confidence have been con-
sidered.
The presence of multiple parameters to be optimized concurrently re-
quires theoretically a Multi-Objective Optimization (MOO). In partic-
ular, an elitist variant of the NSGA-II genetic algorithm [85] has been
approached as first attempt. Due to the fact that computational cost
of the optimization grows linearly with the number of objectives [86],
a smart choice allows to drastically reduce the onerous optimization
time. With this considerations in mind, the first optimization program
have been executed with the following objectives:

• maximization of the minimum first positive position in the candi-
dates ranking between the test dataset images, normalized with
the total number of found landing site candidates in the corre-
sponding image;

• maximization of the minimum Correct Predictions Index (CPI)
value between the test dataset images.

As it is possible to notice, both of the two objectives are bounded to
domain [0,1]. A population of 200 individuals has been generated to
perform the MOO.
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For what concerns the constraints of the optimization it has been se-
lected:

• hazard index threshold of the computed hazard map between
0.25 and 0.30;

• sum of the landing site weights equal to 1;

• landing site selection weights between 0 and 1.

The optimization process, performed in Matlab R© environment on the
personal computer described in Section 1.4, have been run more than
once. In any case, more than one day was requested to reach for a
solution, which was not in any case satisfactory, due to the fact many
local stationary points are present in the CPI function, as it is shown
in Figure 6.4. Because of this CPI function irregularity, individuals
of the genetic algorithm population do not converge properly, being
them "fooled" by such local minima (maxima). An increasing of the
individuals quantity would have probably improved the convergence
quality, but no enough powerful computer was available to run such
a onerous multi-objective optimization.
To overcome this issue, a two step optimization has been performed:

• a sensitivity analysis has been done on various performance pa-
rameters, such as CPI, MLV and ratio between TP and FP, versus
the threshold of the computed hazard map. This allowed to as-
sess very quickly how the performances of the hazard detection
system change with the hazard threshold and to choose conse-
quently the best value;

• a single-objective optimization (SOO), where variables to opti-
mize are only the landing site weights, and the objective is the
position of the first false positive found, since it is the only pa-
rameter that landing site weights modify. Genetic algorithm has
been ditched in favor of Particle Swarm Optimization (PSO) al-
gorithm because of the faster convergence rate experimented on
the SOO.

For what concerns the first, the various important trends resulting
from the computations on the usual test dataset images are depicted
in Figure 6.3. As expected, a clear increasing in the average of true
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(a) True Positives (b) False Positives

(c) CPI (d) MLV

Figure 6.3: Trend of various HD system performances changing the threshold of the
computed hazard map.

positives amount is observed: raising the threshold, a greater quan-
tity of landing sites candidates is found. Nevertheless, it is possi-
ble to state the same for the false positives: percentage increasing
of the mean is even higher than the true positive, as shown by the
higher derivative of the FP curve in Figure 6.3b. In absolute values
the growth of true positives minimum between test images outnum-
bers the corresponding false positives increasing up to threshold of
0.28 (Figure 6.4), where the curve slope becomes negative. Indeed,
whereas the TP increasing ratio is quite constant (Fig. 6.3a), the FP
curve is characterized by a non negligible derivative increasing at
0.28 of threshold, clearly visible in Figure 6.3b. Therefore, it has been
decided to opt for a computed hazard map threshold of 0.28.
One could also argue why it has not decided to set such a threshold

to 0.25, value at which the false positives are less. The reason is clear
looking at MLV and TP trends (Fig. 6.3), in particular the MLV max-
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Figure 6.4: Trend of TP/FP considering average, maxima, minima of TP and FP values
among the test dataset images.

ima and the TP minima curves: to allow the hazard detection system
to be able to spot a significant number of landing sites in any condi-
tion, the maximum MLV of about 0.99 present at threshold 0.25 have
been considered too low. The same can be understood looking at the
true positive minima trend. Moreover, the CPI observes not signifi-
cant variations from 0.25 to about 0.28, meaning that the percentage
of true positive found with respect to the total –that is increased with
0.28– is almost the same.
Results for the analysis run on the test set are summarized in Ta-
ble 6.2. An average CPI of over 0.96 shows that the HD system’s
landing site candidates are correct for the vast majority. In particu-
lar, the lowest CPI recorded amounts to only 0.919 for test image 8,
showing that in any case at least almost the 92% of the landing sites
found are correct. Surprisingly, the hazard detection system scored an
higher CPI on the 80◦ Sun inclination test subset, which is actually
characterized by lower light gradients and therefore less sharp fea-
tures representations, resulting harder to understand in theory. The
MLV is instead in general a quite high 0.87, with the 15◦ Sun inclina-
tion test subset showing a lower 0.83, that is 0.08 points better than
the performances on the 80◦. Hence more landing sites are in general
understood with high contrast shadowy images, as one could expect.
With the less sharp intensity variation of high Sun elevation images,
the network tends to spread the high hazard indices of dangerous sur-
face features in the neighbor pixels, resulting conservative in terms of
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.989796 0.969275
2 15 0.953125 0.907793
3 80 0.997890 0.919898
4 15 0.956642 0.699551
5 80 0.992126 0.906528
6 15 0.979257 0.840152
7 80 0.920916 0.854177
8 15 0.919192 0.868450
Mean (Sun 15◦) 0.952054 0.828986
Mean (Sun 80◦) 0.975182 0.912470
Mean (all) 0.963618 0.870728
Max (all) 0.997980 0.969275
Min (all) 0.919192 0.699551

Table 6.2: Hazard detection system performances.

safety, but it considers many safe small spots nearby higher hazard in-
dex places as unsafe. That is the reason of an higher MLV for the 80◦

subset. In Figures 6.8 to 6.15 at the end of the chapter are shown
the hazard maps computed by the HD system on the test set.
In any case, the most important performance to evaluate is the posi-
tion of the first false positive encountered in the landing sites candi-
dates ranking. As specified in Section 5.5.1, in order to guarantee the
possibility to re-target the lander towards a new landing site if the
first target was discovered, the first false positive should be at least
3rd in the ranking. Many PSO optimizations with various initial con-
ditions have been performed in order to find different combinations
of weights that yield an optimal result. The triplets of calculated op-
timal landing site search weights are listed in table 6.3. Selecting one
of the rows of table 6.3 guarantees that the most dangerous position
of the first false positive in the landing site candidates ranking among
the images of the test dataset is 3.

Although for the HD system performances on the test dataset the
selection of one of the rows in Table 6.3 is equivalent in terms of first
positive occurrence in the landing sites ranking, it has been decided
to opt for the triplet [0.63636 0.27273 0.090909], as it represents a
good balance between the first two coefficients, relative to the land-
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Landing site radius Mean hazard index distance from NLS
0.8 0.1 0.1

0.81818 0.090909 0.090909
0.72727 0.18182 0.090909

0.75 0.16667 0.083333
0.76923 0.15385 0.076923
0.63636 0.27273 0.090909
0.66667 0.25 0.083333
0.69231 0.23077 0.076923
0.71429 0.21429 0.071429
0.61538 0.30769 0.076923
0.64286 0.28571 0.071429
0.66667 0.26667 0.066667
0.57143 0.35714 0.071429

0.6 0.33333 0.066667
0.625 0.3125 0.0625

Table 6.3: List of optimal landing site search function weights: each row is a combina-
tion of optimal weights.

ing site radius and to the mean hazard index, and has the highest
value among the third, that weights the distance from the Nominal
Landing Site (NLS). Indeed the others have equal or lower weight for
the distance to the NLS that would yield a negligible contribution of
the third weight on the candidates ranking. With such weights, the
first false positive occurrence in the landing site candidates ranking
for the test dataset images is listed in Table 6.4
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Test image Sun elevation [ ◦] Position of first FP
1 80 177
2 15 41
3 80 298
4 15 4
5 80 149
6 15 58
7 80 3
8 15 23

Mean (Sun 15◦) 31.5
Mean (Sun 80◦) 156.75

Mean (all) 94.125
Max (all) 298
Min (all) 3

Table 6.4: First false positives in the landing site candidates ranking for the test dataset.
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Due to the fact that the optimization has been performed on the
test set, the same on which performances have been computed, an-
other DEM not present in the test dataset has been used to confirm
the quality of the system. Three images of such a DEM have been
generated at 10◦, 45◦, 80 ◦ to obtain a complete quantification at dif-
ferent light conditions. Their respective ground truth and computed
hazard maps are shown in Figures 6.5 to 6.7. As it is possible to

Image Sun elevation [ ◦] RMSE [-]
1 10 0.082593
2 45 0.057524
3 80 0.060675
Mean (all) 0.066931
Max (all) 0.082593
Min (all) 0.057524

Table 6.5: Hazard map RMSE for the DEM outside the test dataset exploited to validate
the performances after the landing site search weights optimization.

notice in Table 6.5, less than 6.7% in average was recorded for the
RMSE of the three images, with a peak of 8.2% for the one character-
ized by the lowest Sun elevation angle. As expected, these values are
perfectly in line with the test dataset results in Table 6.1.

For what concerns the performances about the landing site candi-

Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 10 0.942308 0.858472
2 45 0.987399 0.846702
3 80 0.978610 0.917406
Mean (all) 0.96944 0.87419
Max (all) 0.987399 0.917406
Min (all) 0.942308 0.846702

Table 6.6: Hazard detection system performances for the DEM outside the test dataset
exploited to validate the performances after the landing site search weights optimization.

dates selection, Table 6.6 shows very satisfactory CPI values always
over 0.94, with a peak of 0.99 for the 45 ◦ Sun elevation angle image.
The average MLV of 0.87 is almost the same of the test dataset perfor-
mances records in Table 6.2. Testing the HD system with the optimal
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[0.63636, 0.27273, 0.090909] landing site selection weights, first
false positives occurrences in the three images are equal or greater
than 15th position, as summarized in Table 6.7. It is possible to con-
sider this test a success.

Test image Sun elevation [ ◦] Position of first FP
1 10 15
2 45 138
3 80 90

Mean (all) 81
Max (all) 138
Min (all) 15

Table 6.7: First false positives in the landing site candidates ranking for the DEM
outside the test dataset exploited to validate the performances after the landing site
search weights optimization.
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.5: Ground truth and computed hazard map comparison for a DEM not present
in the test dataset rendered at 10 ◦ Sun elevation angle. In (d), red means False
Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.6: Ground truth and computed hazard map comparison for a DEM not present
in the test dataset rendered at 45 ◦ Sun elevation angle. In (d), red means False
Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.7: Ground truth and computed hazard map comparison for a DEM not present
in the test dataset rendered at 80 ◦ Sun elevation angle. In (d), red means False
Positive, green True Positive, white False Negative
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6.3 Computational performances

The importance of a computationally efficient hazard detection sys-
tem is clear: a real-time analysis has to be executed during the de-
scent of the lander. Hence, particular care has been invested in re-
ducing the execution time of the HD software. On the other hand,
no compromises with respect to the HD results have been made. As
introduced in Section 1.4, it has been exploited the high efficiency of
C++ programming language to develop a "flight-like" version of the
hazard detection system. All the calculations have been performed on
a Intel R© CoreTM i7-4712HQ CPU clocked @ 2.3 GHz paired to 16 Gb
of DDR3 memory. The machine runs 64 bit Ubuntu 15.04 GNU/Linux
as operative system. To properly estimate the computational weight
of the proposed HDA system, a profiling analysis has been carried
out. Gperftools [87], a tool released by Google under BSD license,
has been selected as main profiler; as verification, obtained result
have been crosschecked with the Linux GNU’s time command [88]. In
order to avoid modern processors’ automatic multi-thread splitting of
a running process, the system has been forced to run in single-thread
configuration by properly setting processor affinity. In each profil-
ing test, the hazard detector runs in a cycle for 1000 times, while the
sampling frequency of the Google profiler has been set to 250 Hz (the
highest possible value) to maximize the precision in runtime estima-
tion. Gperftools registered 56 666 hits at 250 Hz, for a total time of
226.66 s, while for the time command the correspondent CPU time
resulted 235 s. Taking into account the possible overhead that can
affect measurements differently with the two methods, the values are
comparable and the hazard detection system mean runtime can be
considered of 230 ms. The main bottleneck has been identified in the
indices extraction routine, that requires about the 65% of the total.
Such measurements were expected, since image process algorithms
are computationally demanding, especially when performed in a se-
rial fashion. In actual highly parallel hardware units, such as Field
Programmable Gate Arrays (FPGA), are extremely faster in those sort
of calculations.
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.8: Ground truth and computed hazard map comparison, test image 1. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.9: Ground truth and computed hazard map comparison, test image 2. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.10: Ground truth and computed hazard map comparison, test image 3. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.11: Ground truth and computed hazard map comparison, test image 4. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.12: Ground truth and computed hazard map comparison, test image 5. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.13: Ground truth and computed hazard map comparison, test image 6. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.14: Ground truth and computed hazard map comparison, test image 7. In (d),
red means False Positive, green True Positive, white False Negative
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(a) Lunar surface (b) Ground truth

(c) Computed hazard map (d) Landing Sites Validation

Figure 6.15: Ground truth and computed hazard map comparison, test image 8. In (d),
red means False Positive, green True Positive, white False Negative
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6.3.1 Performances removing the blur filter

As stated in Section 5.3, a very slight blur filter is applied after the
hazard map has been computed by the artificial neural network in
order to relate the near pixels one with the other. Hazard map per-
formances removing the blur filter from the HD system are summa-
rized in Table 6.8: RMSE is increased in average of about 1% both
in 15 ◦ and 80 ◦ image subsets with respect to the HD with the blur
filter. A comparison of the RMSE with or without the blur filter is in
Figure 6.16. Landing site candidates identification performances are

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.067585
2 15 0.082091
3 80 0.075522
4 15 0.091924
5 80 0.078826
6 15 0.095384
7 80 0.063034
8 15 0.091215
Mean (Sun 15◦) 0.090154
Mean (Sun 80◦) 0.071242
Mean (all) 0.080698
Max (all) 0.095384
Min (all) 0.063034

Table 6.8: Hazard map RMSE removing the blur filter.

listed in Table 6.9: a slight increasing is registered in the low incli-
nation dataset CPI, vice versa in the 80◦ subset, as it is possible to
appreciate in Figure 6.17. Although the overall average results a bit
higher for the CPI, the MLV for the high Sun elevation images scored
a high 0.93, a value much higher than 0.91 as in the definitive ver-
sion of the HD system where the blur filter is still present (Fig. 6.18).
For what concerns the first false positive occurrence, it is possible to

notice in Table 6.10 and Figure 6.19 that performances are dramati-
cally decreased, due to the lower MLV.
Talking about computational performances, the suppression of the

blur filter is negligible. In conclusion, the blur filter is maintained
because of the too much increased MLV for the 80◦ Sun inclination
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Figure 6.16: Hazard map RMSE of the 8 test images, with or without the blur filter.

Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.987952 0.973906
2 15 0.960000 0.903421
3 80 0.994012 0.942441
4 15 0.953529 0.689773
5 80 0.990385 0.922346
6 15 0.986635 0.825282
7 80 0.923858 0.877338
8 15 0.933442 0.894146
Mean (Sun 15◦) 0.958401 0.828155
Mean (Sun 80◦) 0.974052 0.929008
Mean (all) 0.966227 0.878582
Max (all) 0.994012 0.973906
Min (all) 0.923858 0.689773

Table 6.9: Hazard detection system performances, results removing the blur filter.
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Figure 6.17: CPI of the 8 test images, with or without the blur filter.

Figure 6.18: MLV of the 8 test images, with or without the blur filter.

test subset, that could mine the hazard detection system capability to
find enough landing sites.
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Test image Sun elevation [ ◦] Position of first FP
1 80 134
2 15 41
3 80 197
4 15 45
5 80 132
6 15 48
7 80 3
8 15 10

Mean (Sun 15◦) 116.5
Mean (Sun 80◦) 26

Mean (all) 71.25
Max (all) 197
Min (all) 3

Table 6.10: First false positives in the landing site candidates ranking for the test
dataset images, results removing the blur filter.

Figure 6.19: First False Positive position in the landing sites ranking for the 8 test
images, with or without the blur filter.



120 Performances assessment: tests and results

6.4 Discarded architectures performances

The same tests done on the hazard detection system are performed
on the various alternative architectures presented in Chapter 5, and
their results compared. Due to the fact that the various architectures
could be also very different in output, it has been proceeded selecting
the minimum computed hazard map threshold for which the HD system
yielded at least one landing site per test image. Hazard threshold pre-
cision is set to 10−2. No optimization have been performed on the
various discarded architectures because of the great computational
effort requested. Therefore, the parameter regarding the first false
positive found in the landing site candidates ranking is not taken into
account.
Considering the computational efficiency, all the discarded architec-
tures exist only in their Matlab R© version, therefore they are not com-
parable with respect to the profiling done on the final version in Sec-
tion 6.3. Moreover, development version of the last HD design it-
eration is written in Python and uses NumPy and OpenCV libraries.
Hence, to have a coherent comparison of the various computational
costs, a Matlab R© version has been developed for the definitive ver-
sion too. It has been recorded a CPU time of such version of 6.15 s.
Computational performances τ will be assessed for every version as a
fraction of the time T requested by the very last mentioned Matlab R©

variant of the final HD system:

τ =
t

T
(6.4)

where t represent the CPU time of the HD version under analysis and
T = 6.15 s

Test images 3 and 4 are used as template to able the reader to vi-
sualize the various behavior of the surveyed HD version. They rep-
resent the same lunar area with two very different Sun inclination
angles: 80◦ and 15◦. Such a choice makes the reader aware of the
performances with different light conditions, without complicating
the presentation with all the test pictures. Quantification of the per-
formances are indeed shown for every element of the test dataset
through the RMSE, CPI, MLV parameters defined above in Sections 6.1
and 6.2.
Landing site selection weights are set arbitrarily to 0.5, 0.2, 0.1 re-
spectively for radius, hazard index and distance from the nominal
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landing site, although they do not influence the quality parameters
used to measure the various versions performances, because they
only modify landing site candidates positions in the ranking.
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Version A

Hazard map threshold is set to 0.16. τ is 0.18 for a CPU time of 1.10
s. Hence version A is computationally lighter than the definitive HD
version.

Hazard map

Performances of the HD architecture in Section 5.6 are depicted in
Table 6.11 and a comparison with the definitive version is presented
in Figure 6.20. The average RMSE results below 10% and hazard

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.08459
2 15 0.085187
3 80 0.097306
4 15 0.1149
5 80 0.13918
6 15 0.10932
7 80 0.061617
8 15 0.10439
Mean (Sun 15◦) 0.103451
Mean (Sun 80◦) 0.095673
Mean (all) 0.099562
Max (all) 0.13918
Min (all) 0.061617

Table 6.11: Hazard map RMSE, version A.

maps computed from images characterized by an higher Sun eleva-
tion angle scored a lower error compared to the others. In any case
the error difference between the two inclination sets is less than a
negligible 1%. This means that version A of the hazard detection sys-
tem behaves almost independently for what concerns Sun elevation
angle and hazard map RMSE. Indeed, the highest similarity between
ground truth and computed hazard map belongs to the test image
7, whereas test image 5, whose Sun inclination parameter is 80◦ too,
registered the worst performance of the whole set.
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Figure 6.20: RMSE comparison between final HD architecture and version A on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.21: RMSE, version A: images with 15◦ Sun elevation in the test dataset.

Landing sites

As readable in Table 6.12 and Figure 6.23, parameters are very dif-
ferent between the images with low and high Sun elevation angle.
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.22: RMSE, version A: images with 80◦Sun elevation in the test dataset.

(a) CPI (b) MLV

Figure 6.23: Comparison between final HD version and version A in terms of CPI and
MLV.

Whereas at 15◦ the network seems to be very conservative missing
almost the totality of the true landing sites (MLV mean over 0.99)
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.558791 0.581159
2 15 1.000000 0.998562
3 80 0.545576 0.525463
4 15 0.991071 0.980207
5 80 0.675642 0.748394
6 15 1.000000 0.998261
7 80 0.331575 0.327474
8 15 1.000000 0.990871
Mean (Sun 15◦) 0.997768 0.991975
Mean (Sun 80◦) 0.527896 0.545623
Mean (all) 0.762832 0.768799
Max (all) 1.000000 0.998562
Min (all) 0.331575 0.327474

Table 6.12: Hazard detection system performances, version A.

and yielding the 99.78% of true positives in average, at 80◦ both
values fall down to almost 50%. In case of CPI, such a value is not
acceptable, because it states that the target landing site has the same
probability to be a true positive or a false positive. Assessing a total
CPI average of 0.76 the version A seems to be limited to operations
with low Sun inclination angles, and therefore it falls out of the re-
quirements for the hazard detection system studied in this thesis.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.24: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.25: Comparison between ground truth and HD version A hazard map.
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Version B

Hazard map threshold is set to 0.10.
τ is 13.42 for a CPU time of 82.52 s. Thus version B is sensibly com-
putationally heavier than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.13 and a comparison with the definitive version is presented
in Figure 6.26.

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.028041
2 15 0.11745
3 80 0.027092
4 15 0.12489
5 80 0.029482
6 15 0.14058
7 80 0.028601
8 15 0.12088
Mean (Sun 15◦) 0.028304
Mean (Sun 80◦) 0.12595
Mean (all) 0.077127
Max (all) 0.14058
Min (all) 0.027092

Table 6.13: Hazard map RMSE, version B.

Average RMSE for the whole test set remains lower than 8%. Al-
though Sun elevation angle is supplied to the network, Table 6.13
shows a drastic difference among images with low and high inclina-
tion angle: the 80◦ set scored a very low 2.8% average error with
respect to the ground truth, whereas the 15◦ set increases the RMSE
mean up to 12.6%. Recalling the definition of RMSE (Equation 6.1),
it represents the data dispersion about the regression line. In Fig-
ures 6.27 and 6.28 it is possible to notice that even though 80◦ test
subset registered a much lower RMSE, corresponding regression lines
are characterized by a very low angular coefficient (Fig. 6.28). There-
fore, as the hazard threshold grows, the quality of the computed haz-
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Figure 6.26: RMSE comparison between final HD architecture and version B on the
test dataset.

ard map decreases. This behavior may suggest the use of an hazard
index threshold adaptable to the current Sun inclination angle.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.27: RMSE, version B: images with 15◦Sun elevation in the test dataset.



Performances assessment: tests and results 129

(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.28: RMSE, version B: images with 80◦Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.14,
while in Figure 6.29 a comparison with the final HD system is pre-
sented. The extreme different behavior of the HD version B with
respect to the two Sun inclination angle subsets is confirmed taking
into account the landing site candidates computed. In 15◦ images no
false positives are found, with a perfect CPI=1 in all the four cases.
On the other hand, the low hazard threshold adopted makes the HD
to miss the majority of landing sites present in the ground truth: the
average MLV for this Sun inclination test subset surpasses 0.99. Per-
formances on high Sun elevation images are quite poor: the best CPI
is recorded in test image 5 with a mere 0.42, meaning that more
than half of the computed landing site candidates are false positives.
MLV is sensibly lower in this case, with an average of 0.29. These
values are easily understandable looking at Figures 6.30 and 6.31,
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.383553 0.299453
2 15 1.000000 0.998921
3 80 0.341503 0.243744
4 15 1.000000 0.995294
5 80 0.420718 0.367892
6 15 1.000000 0.999367
7 80 0.340317 0.237552
8 15 1.000000 0.999400
Mean (Sun 15◦) 1.00000 0.998246
Mean (Sun 80◦) 0.371523 0.287160
Mean (all) 0.685761 0.642703
Max (all) 1.00000 0.999400
Min (all) 0.340317 0.237552

Table 6.14: Hazard detection system performances, version B.

(a) CPI (b) MLV

Figure 6.29: Comparison between final HD version and version B in terms of CPI and
MLV.

where the 80◦ computed hazard map is almost completely missing
hazardous areas.
This version, being limited to operations with low Sun elevation an-
gles only, does not satisfy system requirements.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.30: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.31: Comparison between ground truth and HD version B hazard map.
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Version C

Hazard map threshold is set to 0.15.
τ is 23.77 for a CPU time of 146.19 s. Thus version C is computation-
ally heavier than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted
in Table 6.15 and a comparison with the definitive version is pre-
sented in Figure 6.32. Also in HD version C RMSE is lower for 80◦

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.06788
2 15 0.11941
3 80 0.094068
4 15 0.12413
5 80 0.12163
6 15 0.14419
7 80 0.064186
8 15 0.12778
Mean (Sun 15◦) 0.12888
Mean (Sun 80◦) 0.086941
Mean (all) 0.10791
Max (all) 0.14419
Min (all) 0.064186

Table 6.15: Hazard map RMSE, version C.

Sun inclination angle test subset. As previous versions, 15◦ subset
has a higher angular coefficient of the regression line, as depicted in
Figures 6.33 and 6.34. Difference in RMSE is not particularly signif-
icant, assessing the average between the two inclination subsets of
about 3%.

Landing sites

Landing sites computation performances are depicted in Table 6.16,
while in Figure 6.35 a comparison with the final HD system is pre-
sented. In this HD version it is possible to notice an improvement in
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Figure 6.32: RMSE comparison between final HD architecture and version A on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.33: RMSE, version C: images with 15◦Sun elevation in the test dataset.

the identification of correct landing sites with the 80◦ subset, with a
CPI=0.69, means that more than 2 candidates out of three are cor-
rectly understood. With the low inclination subset the network as-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.34: RMSE, version C: images with 80◦Sun elevation in the test dataset.

(a) CPI (b) MLV

Figure 6.35: Comparison between final HD version and version C in terms of CPI and
MLV.

sesses a good CPI=0.92. Total CPI average is the best recorded up to
now between the discarded versions: 0.81.



Performances assessment: tests and results 135

Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.762776 0.491012
2 15 0.890086 0.929196
3 80 0.680342 0.450205
4 15 0.947624 0.735573
5 80 0.790599 0.607094
6 15 0.963470 0.905593
7 80 0.537498 0.387166
8 15 0.875456 0.656697
Mean (Sun 15◦) 0.919159 0.806765
Mean (Sun ◦) 0.692804 0.483869
Mean (all) 0.805982 0.645317
Max (all) 0.963470 0.929196
Min (all) 0.537498 0.387166

Table 6.16: Hazard detection system performances, version C.

MLV for the low inclination subset is decreased to 0.81, whereas for
the 80◦ test images is 0.48. The general increase in the overall per-
formance of this architecture with respect to versions A and B can be
also observed qualitatively in Figure 6.37, where the most hazardous
area of the high Sun elevation test image 3 in the upper-left of the
frame is identified, even if without great accuracy. Small scale dan-
gerous zones are still almost no identified for the same test image.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.36: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.37: Comparison between ground truth and HD version C hazard map.
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Version D

Hazard map threshold: 0.12.
τ is 0.30 for a CPU time of 1.87 s. Thus version D is computationally
lighter than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.17 and a comparison with the definitive version is presented
in Figure 6.38. Version D performs terribly bad in both low and high

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.093038
2 15 0.2131
3 80 0.094844
4 15 0.2815
5 80 0.092447
6 15 0.26911
7 80 0.096226
8 15 0.23252
Mean (Sun 15◦) 0.249058
Mean (Sun 80◦) 0.094139
Mean (all) 0.1716
Max (all) 0.2815
Min (all) 0.092447

Table 6.17: Hazard map RMSE, version D.

Sun inclination angle test images. A part from the worst total average
registered up to now in the RMSE value, from Figures 6.39 and 6.40
the regression line between ground truth and computed hazard maps
predicts a completely wrong comprehension of the terrain features by
the ANN. With 15◦ images angular coefficient of the regression line
is even negative. Moreover, the fact that more or less every regres-
sion line in the test set is horizontal (about null angular coefficient),
means that the ANN interprets the input as it were a flat surface,
without understanding any of the terrain features.
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Figure 6.38: RMSE comparison between final HD architecture and version D on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.39: RMSE, version D: images with 15◦Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.18,
while in Figure 6.41 a comparison with the final HD system is pre-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.40: RMSE, version D: images with 80◦Sun elevation in the test dataset.

sented. A very poor performance is recorded in landing sites iden-

(a) CPI (b) MLV

Figure 6.41: Comparison between final HD version and version D in terms of CPI and
MLV.

tification too: CPI average stops at 0.37, while MLV is over 0.99 for
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.290323 0.998534
2 15 0.200000 0.999460
3 80 0.407407 0.997983
4 15 0.600000 0.998910
5 80 0.576923 0.997559
6 15 0.294118 0.999209
7 80 0.465116 0.996207
8 15 0.153846 0.999200
Mean (Sun 15◦) 0.311991 0.999195
Mean (Sun 80◦) 0.434942 0.997571
Mean (all) 0.373467 0.998383
Max (all) 0.600000 0.999460
Min (all) 0.153846 0.996207

Table 6.18: Hazard detection system performances, version D.

every image in the test dataset. In Figures 6.43 it is possible to notice
that version D architecture is unable to completely understand even
large shadows, usually the easiest feature to detect for the neural net-
work.
This HD version does not fulfill the system requirements.

(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.42: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.
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(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.43: Comparison between ground truth and HD version D hazard map.
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Version E

Hazard map threshold: 0.08.
τ is 0.31 for a CPU time of 1.90 s. Thus version E is computationally
lighter than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.19 and a comparison with the definitive version is presented
in Figure 6.44. RMSE performances looks better than version D:

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.08988
2 15 0.12129
3 80 0.11232
4 15 0.13375
5 80 0.14111
6 15 0.16121
7 80 0.070602
8 15 0.13049
Mean (Sun 15◦) 0.13669
Mean (Sun 80◦) 0.10348
Mean (all) 0.12008
Max (all) 0.16121
Min (all) 0.070602

Table 6.19: Hazard map RMSE, version E.

an average error of 12% is computed among all the test images. In
Figures 6.45 and 6.46, angular coefficient of the various regression
lines seems much more similar to a theoretical perfect result of a
bisecting line. Even in this version E of the HD system, RMSE is
lower for high Sun elevation images, but regression line coefficient is
higher instead in the 15◦ subset.

Landing sites

Landing sites computation performances are depicted in Table 6.20,
while in Figure 6.47 a comparison with the final HD system is pre-
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Figure 6.44: RMSE comparison between final HD architecture and version E on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.45: RMSE, version E: images with 15◦ Sun elevation in the test dataset.

sented.
Version E holds the best CPI result among all the discarded ver-

sions up to now for the average among all the images: 0.88, with an
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.46: RMSE, version E: images with 80◦Sun elevation in the test dataset.

(a) CPI (b) MLV

Figure 6.47: Comparison between final HD version and version E in terms of CPI and
MLV.

amazing 0.98 for the high Sun inclination subset. MLV is quite high
due to the hazard index of 0.08, the lowest among all the HD archi-
tecture variants. It is possible to spot in Figures 6.49 the effects of
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 1.000000 0.997884
2 15 0.722222 0.997666
3 80 1.000000 0.998715
4 15 0.830832 0.899072
5 80 1.000000 0.990947
6 15 0.814346 0.970138
7 80 0.906250 0.967914
8 15 0.768116 0.969078
Mean (Sun 15◦) 0.783879 0.958988
Mean (Sun 80◦) 0.976562 0.988865
Mean (all) 0.880221 0.973927
Max (all) 1.00000 0.998715
Min (all) 0.768116 0.899072

Table 6.20: Hazard detection system performances, version E.

(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.48: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

the edge detector based on the Laplacian of Gaussian filter: edges in
general are sharply identified. In the particular case of craters with
high Sun elevation , the boolean output of the edge detector does not
recognizes the center of a small crater as hazardous in the case of
high Sun elevation because of the low pixel intensity variation if no
shadows are present. Indeed, it is able to identify as hazardous only
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(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.49: Comparison between ground truth and HD version E hazard map.

the edge of the crater.
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Version F

Hazard map threshold: 0.30.
τ is 5.61 for a CPU time of 34.47 s. Thus version F is computationally
heavier than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted
in Table 6.21 and a comparison with the definitive version is pre-
sented in Figure 6.50. Root Mean Square Error is much lower with

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.02833
2 15 0.054577
3 80 0.034552
4 15 0.060832
5 80 0.038253
6 15 0.07037
7 80 0.028943
8 15 0.04721
Mean (Sun 15◦) 0.058247
Mean (Sun 80◦) 0.032520
Mean (all) 0.045384
Max (all) 0.07037
Min (all) 0.02833

Table 6.21: Hazard map RMSE, version F.

respect to the well performing version E. The maximum, registered in
test image 7, is a mere 7%. Nevertheless, it ought be reminded that
RMSE represents the data deviation with respect to the regression
line. Hence, looking at Figures 6.51 and 6.52, data is very "packed"
about the regression line, but the angular coefficient of this very last
line is quite low, indicating a difficulty for HD version E to grasp
image features at higher hazard indices, or in other terms, an under-
estimation of the high hazardous areas in the images.
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Figure 6.50: RMSE comparison between final HD architecture and version F on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.51: RMSE, version F: images with 15◦Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.22,
while in Figure 6.53 a comparison with the final HD system is pre-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.52: RMSE, version F: images with 80◦Sun elevation in the test dataset.

sented. The HD system did not found any true positive landing site
for test image 7. Therefore all the performance computations involv-
ing such quantity are performed on the remaining test dataset images
and they are signed with the star symbol(*). Dramatic failure occurs
during the analysis of the 80◦subset: CPI average remains low at 0.28,
without any landing site found in test image 7. Performances on the
low inclination subset are definitely better, with a CPI of 0.81.
MLV parameter oscillates between 0.42 and 0.98 for an average of
0.71, therefore not a particularly bad result, compared to the previ-
ous versions. In any case, due to the very poor performances regis-
tered for the CPI of the high Sun elevation angle test images, version
F does not meet the system requirements.
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.023836 0.448718
2 15 0.949580 0.979943
3 80 0.041695 0.600000
4 15 0.898386 0.844126
5 80 0.046346 0.418994
6 15 0.936170 0.946029
7 80 0* -*
8 15 0.805596 0.713463
Mean (Sun 15◦) 0.897433 0.870890
Mean (Sun 80◦) 0.027969 0.48924*
Mean (all) 0.462701 0.70732*
Max (all) 0.949580 0.979943
Min (all) 0 0.418994

Table 6.22: Hazard detection system performances, version F.

(a) CPI (b) MLV

Figure 6.53: Comparison between final HD version and version F in terms of CPI and
MLV.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.54: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.55: Comparison between ground truth and HD version F hazard map.
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Version G

Hazard map threshold: 0.30.
τ is 41.29 for a CPU time of 253.94 s. Thus version G is computation-
ally heavier than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.23 and a comparison with the definitive version is presented
in Figure 6.56. RMSE numerical results quality looks averagely good:

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.12604
2 15 0.10403
3 80 0.14903
4 15 0.1325
5 80 0.03877
6 15 0.13615
7 80 0.10778
8 15 0.13439
Mean (Sun 15◦) 0.12677
Mean (Sun 80◦) 0.1054
Mean (all) 0.11609
Max (all) 0.14903
Mi (all)n 0.03877

Table 6.23: Hazard map RMSE, version G.

error remains 10% for the high inclination subset, 13% for the other.
A strange behavior, with respect to the other 7 pictures is recorded
in test image 5, where the regression line (Fig.6.58) resulted nearly
horizontal with a very high y-axis interception point. This is a clear
proof of the complete misunderstanding by the network of such test
image: the hazard index in the computed hazard map is bounded
between about 0.6 and 0.8, while the ground truth hazard indices
sweep from 0 to 0.7.
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Figure 6.56: RMSE comparison between final HD architecture and version G on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.57: RMSE, version G: images with 15◦Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.24,
while in Figure 6.59 a comparison with the final HD system is pre-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.58: RMSE, version G: images with 80◦Sun elevation in the test dataset.

sented. The HD system did not found any landing site for test image
5. Therefore all the computations involving such quantity are per-
formed on the remaining test dataset images and they are signed with
the star symbol(*). Version G results one of the worst architecture
variants developed: CPI total average, not considering test image 5,
is a bare 0.18, making highly likely for the hazard detection system
to choose a false positive as target landing site. In particular, perfor-
mances on 80◦ test subset is tremendously bad: CPI amounts to 0.04.
MLV records an average of 0.72, much increased by the ugly perfor-
mance of the neural network on the test image 5, where no landing
site at all was found.
Hazard detection version G architecture definitely does not meet the
requirements.
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.028421 0.967665
2 15 0.269051 0.539434
3 80 0.014771 0.986320
4 15 0.234721 0.278271
5 80 -* 1.000000
6 15 0.430739 0.802533
7 80 0.077778 0.894260
8 15 0.178231 0.297642
Mean (Sun 15◦) 0.278186 0.479470
Mean (Sun 80◦) 0.040323* 0.962061
Mean (all) 0.17624* 0.720766
Max (all) 0.430739 1.000000
Min (all) 0.014771 0.278271

Table 6.24: Hazard detection system performances, version G.

(a) CPI (b) MLV

Figure 6.59: Comparison between final HD version and version G in terms of CPI and
MLV.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.60: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.61: Comparison between ground truth and HD version G hazard map.
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Version H

Hazard index threshold is set to 0.30.
τ is 11.28 for a CPU time of 69.40 s. Thus version H is computation-
ally heavier than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.25 and a comparison with the definitive version is presented
in Figure 6.62. High Sun elevation images recorded a better RMSE

Table 6.25: Hazard map RMSE, version H.

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.060165
2 15 0.10087
3 80 0.074371
4 15 0.13123
5 80 0.12926
6 15 0.12793
7 80 0.066836
8 15 0.13299
Mean (Sun 15◦) 0.12326
Mean (Sun 80◦) 0.082659
Mean (all) 0.10296
Max (all) 0.13299
Min (all) 0.060165

value of 8.3% in average, with the other subset increasing the error
to 12.4%. As it has been noted during the previous versions exam-
inations, the RMSE only does not mean the goodness of the results.
Indeed, it is possible to see from the RMSE plots in Figures 6.63 and
6.64 the angular coefficient of the regression line to be more similar
to a 45◦ bisecting line in the case of 15◦ test subset, meaning that in
such case the neural network can approximate with more precision
all the various features present in the image, from the lowest to the
highest hazard index.
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Figure 6.62: RMSE comparison between final HD architecture and version H on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.63: RMSE, version H: images with 15◦Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.26,
while in Figure 6.65 a comparison with the final HD system is pre-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.64: RMSE, version H: images with 80◦Sun elevation in the test dataset.

sented. Landing site selection resembles HD version G, as it is pos-

(a) CPI (b) MLV

Figure 6.65: Comparison between final HD version and version H in terms of CPI and
MLV.

sible to spot looking at Figures 6.61 and 6.67. Very bad general
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.001425 0.989362
2 15 0.214443 0.493287
3 80 0.004525 0.990712
4 15 0.228482 0.333154
5 80 0.158990 0.964452
6 15 0.390956 0.851547
7 80 0.017291 0.863636
8 15 0.168107 0.290434
Mean (Sun 15◦) 0.250497 0.492105
Mean (Sun 80◦) 0.045558 0.952040
Mean (all) 0.148027 0.722073
Max (all) 0.390956 0.990712
Min (all) 0.001425 0.290434

Table 6.26: Hazard detection system performances, version H.

average behavior, as the mean of CPI in the whole test dataset stops
at 0.15, with the 80◦ subset results not reaching even for the 0.05.
MLV oscillates from 0.99 to 0.29.
In any case, such low performances make the version H of the hazard
detection system not able to meet the requirements.

(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.66: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.
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(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.67: Comparison between ground truth and HD version H hazard map.
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Version I

Hazard map threshold has been set to 0.22.
τ is 0.25 for a CPU time of 1.55 s. Thus version I is computationally
lighter than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.27 and a comparison with the definitive version is presented
in Figure 6.68. Small RMSE (average: 0.04) values characterize the

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.034152
2 15 0.11945
3 80 0.039452
4 15 0.16812
5 80 0.038324
6 15 0.1488
7 80 0.032687
8 15 0.13278
Mean (Sun 15◦) 0.14229
Mean (Sun 80◦) 0.036154
Mean (all) 0.089221
Max (all) 0.16812
Min (all) 0.032687

Table 6.27: Hazard map RMSE, version I.

high Sun elevation angle test subset. Nevertheless, from Figures 6.69
it can be seen that the regression line angular coefficient is very low.
So far, every architecture with such characteristic has been found to
bad perform. For what concerns the low Sun elevation angle test
subset, RMSE grows up to a mean of 0.14 between the four images.

Landing sites

Landing sites computation performances are depicted in Table 6.28,
while in Figure 6.71 a comparison with the final HD system is pre-
sented. Poor performances also for this HD version I: CPI for 15◦
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Figure 6.68: RMSE comparison between final HD architecture and version I on the test
dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.69: RMSE, version I: images with 15◦Sun elevation in the test dataset.

and 80◦ is respectively 0.50 and 0.24. Hence, this architecture has
more probability to find a false positive than a true positive target
landing site. MLV is significant, with an average of 0.81 among all
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.70: RMSE, version I: images with 80◦Sun elevation in the test dataset.

(a) CPI (b) MLV

Figure 6.71: Comparison between final HD version and version I in terms of CPI and
MLV.

the images of the test subset.
Due to the very low CPI values encountered, hazard detection system
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.238716 0.637596
2 15 0.461538 0.998921
3 80 0.280852 0.643610
4 15 0.473684 0.995115
5 80 0.370531 0.638401
6 15 0.692308 0.997156
7 80 0.069398 0.593074
8 15 0.391304 0.994620
Mean (Sun 15◦) 0.504709 0.996453
Mean (Sun 80◦) 0.239874 0.628170
Mean (all) 0.372292 0.812312
Max (all) 0.692308 0.998921
Min (all) 0.069398 0.593074

Table 6.28: Hazard detection system performances, version I.

architecture version I does not meet the requirements.

(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.72: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.
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(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.73: Comparison between ground truth and HD version I hazard map.
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Version L

Hazard map threshold is set to 0.30.
τ is 0.91 for a CPU time of 5.6 s. Thus version L is slightly computa-
tionally lighter than the definitive HD system.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.29 and a comparison with the definitive version is presented
in Figure 6.74. Table 6.29 shows an average error of 20%, with a 23%
registered for the low Sun elevation angle dataset. Looking at the
data dispersion in Figure 6.75 and 6.76 it is possible to notice that the
points tend to cluster about certain hazard values, probably because
of the presence of the Kohonen networks in the architecture. In any
case, regression lines have often a very high interception point with
the ordinate axis plus a low inclination, symptom of a bad recognition
of the surface hazardousness.

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.19869
2 15 0.26633
3 80 0.19381
4 15 0.24503
5 80 0.17656
6 15 0.25591
7 80 0.12923
8 15 0.15783
Mean (Sun 15◦) 0.23127
Mean (Sun 80◦) 0.17457
Mean (all) 0.20292
Max (all) 0.26633
Min (all) 0.12923

Table 6.29: Hazard map RMSE, version L.
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Figure 6.74: RMSE comparison between final HD architecture and version L on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.75: RMSE, version L: images with 15◦Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.30,
while in Figure 6.77 a comparison with the final HD system is pre-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.76: RMSE, version L: images with 80◦Sun elevation in the test dataset.

sented. CPI is low in any case apart from test image 6. The average
for the 15◦subset stops at 0.52, meaning roughly a landing site out
of two is a false positive is extremely dangerous. Not to mention the
terrible 0.09 for the high Sun inclination test subset in which is sta-
tistically almost certain to select a false positive as landing site. MLV
are high, with an average of 0.95. Version L is clearly not suitable as
an hazard detection system and it does not meets the requirements.
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.078358 0.937662
2 15 0.520833 0.969212
3 80 0.074504 0.945744
4 15 0.668593 0.938865
5 80 0.204940 0.922651
6 15 0.857143 0.944478
7 80 0.010000 0.966292
8 15 0.032258 0.999800

Mean (Sun 15◦) 0.519707 0.963089
Mean (Sun 80◦) 0.091951 0.943087

Mean (all) 0.305829 0.953088
Max (all) 0.857143 0.999800
Min (all) 0.010000 0.922651

Table 6.30: Hazard detection system performances, version L.

(a) CPI (b) MLV

Figure 6.77: Comparison between final HD version and version L in terms of CPI and
MLV.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.78: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.79: Comparison between ground truth and HD version L hazard map.



172 Performances assessment: tests and results

Version M

Hazard map threshold is set to 0.25.
τ is 0.93 for a CPU time of 5.75 s. Thus version B is slightly computa-
tionally lighter than the definitive HD system. The three SOMs have
dimension 10×10.

Hazard map

Hazard map RMSE of the HD architecture in Section 5.6 is depicted in
Table 6.31 and a comparison with the definitive version is presented
in Figure 6.80. Table 6.31 shows a high RMSE average of 17%,

Test image Sun elevation [ ◦] RMSE [-]
1 80 0.093156
2 15 0.23059
3 80 0.11137
4 15 0.25558
5 80 0.15831
6 15 0.23041
7 80 0.059275
8 15 0.23458

Mean (Sun 15◦) 0.23779
Mean (Sun 80◦) 0.10553

Mean (all) 0.17166
Max (all) 0.25558
Min (all) 0.059275

Table 6.31: Hazard map RMSE, version M.

particularly increased by the 15◦ subset that records a 24% error.
High elevation images seem to be better understood, as shown by the
10.5% error. Tendency to cluster about some hazard indices is present
here too like in version L, sign that this behavior is determined by
the presence of the Kohonen networks. The situation seems a bit
better with respect to version L, not only because of the lower RMSE,
but also because of the regression line inclination and interception
with ordinate axis, apart from test image 2 (Fig. 6.81), where the
regression line has a negative slope.



Performances assessment: tests and results 173

Figure 6.80: RMSE comparison between final HD architecture and version M on the
test dataset.

(a) Test image 2 (b) Test image 4

(c) Test image 6 (d) Test image 8

Figure 6.81: RMSE, version M: images with 15◦ Sun elevation in the test dataset.

Landing sites

Landing sites computation performances are depicted in Table 6.32,
while in Figure 6.83 a comparison with the final HD system is pre-
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(a) Test image 1 (b) Test image 3

(c) Test image 5 (d) Test image 7

Figure 6.82: RMSE, version M: images with 80◦ Sun elevation in the test dataset.

sented. A slight improvement with respect to version L, but totally
unsafe in any case: for 80◦ subset the CPI is as low as 0.17. Situa-
tion is better for the other subset, where the HD version M reaches
for 0.61, a value in any case too dangerous. MLV average amounts to
0.89. Because of the low CPI registered, version M does not meet the
requirements.
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Test image Sun elevation [ ◦] CPI [-] MLV [-]
1 80 0.125366 0.775446
2 15 0.371069 0.979063
3 80 0.127104 0.811250
4 15 0.789047 0.933104
5 80 0.373568 0.878161
6 15 0.816054 0.962438
7 80 0.047210 0.808696
8 15 0.457490 0.977655

Mean (Sun 15◦) 0.608415 0.963065
Mean (Sun 80◦) 0.168312 0.818388

Mean (all) 0.388364 0.890727
Max (all) 0.816054 0.979063
Min (all) 0.047210 0.775446

Table 6.32: Hazard detection system performances, version M.

(a) CPI (b) MLV

Figure 6.83: Comparison between final HD version and version M in terms of CPI and
MLV.
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(a) Landing Sites, test image 3 (b) Landing Sites, test image 4

Figure 6.84: Resulting landing sites on test images 3 and 4. Green represents a True
Positive, red a False Positive, white a False Negative.

(a) True hazard map, test image 3 (b) Computed hazard map, test image 3

(c) True hazard map, test image 4 (d) Computed hazard map, test image 4

Figure 6.85: Comparison between ground truth and HD version M hazard map.
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6.4.1 Comparison between final and discarded versions

Two bar graphs are presented to easily visualize the trend of the two
most important parameters of merit for the various versions: CPI and
τ . In particular the average among all the test set images is shown in
Figure 6.86, and it is possible to notice that only the definitive hazard
detection system is able to assess a CPI over 0.9, as requested by the
system requirements. (Section 1.5)

Figure 6.86: Trend of average CPI in the test set images

Figure 6.87: τ computational performance trend among the various architectures. Red
horizontal line marks the reference τ = 1 of the final HD version.
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Looking at the graph in Figure 6.87, version C and E are the
best among the discarded in terms of landing site candidates perfor-
mances. Unfortunately, version C results too heavy computationally
speaking with a τ of 23.77. Looking instead at the MLV trend in Fig-
ure 6.88, it is possible to notice that the final version does not score
the lowest MLV among the HD versions. Nevertheless, it is worth to
remind the lower importance of the MLV with respect to the CPI as
performance indicator.
Focusing on version E, a sensitivity analysis of the landing site per-

Figure 6.88: Trend of average MLV in the test set images

formances with respect to the threshold have been done to be sure
that the definitive version of the hazard detection system is the best
performing. Such analysis is presented in Figures 6.89: being the
average CPI a decreasing monotonic function, maximum is reached
at the minimum threshold of 0.09. It is possible to conclude without
further doubts that the definitive version of the HD system is the best
performing in terms of landing sites performances.
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(a) True Positives (b) False Positives

(c) CPI (d) MLV

Figure 6.89: Trend of various HD system performances changing the threshold of the
computed hazard map, discarded version E.
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6.5 Test on real images

The very same neural network and algorithm has been also tested
on real lunar images and photos taken by Rosetta mission of the
67P/Churyumov–Gerasimenko comet. Being unknown the Sun incli-
nation angle, it has been briefly hypothesized looking at the photos,
and this information lack is particularly critical for the performances
of the HD system. Moreover, in these images there is no ground truth
to quantitatively test the hazard maps with. Thus, results are to be
intended just as an example of the generalization capabilities of the
neural network and must be not intended as a valuable result of the
proposed architecture. Anyway, the choice of the photos was dictated
by the presence of relevant morphological features, that could have
challenged the system.

Moon

In Figure 6.90, taken by LROC Narrow Angle Camera, depicting part
of the Larmor Q crater floor, it is possible to spot some fractures on the
surface in the lower left hand side half, while the rest of the image
is characterized by diffuse roughness due to craters. In its relative
hazard map (Fig. 5), the neural network seems to have qualitatively
understood the terrain features, assigning a distributed high hazard
value to the rough region at top right hand side and about maximum
value precisely where fractures are located.

In Figure 6.91 the surface is characterized by a diffuse roughness.
The small scale craters are recognized correctly as dangerous, such
as the deep shadows. It must be pointed out that the quality of this
image is quite low, and the shadow is not completely black in the
original .png format gray intensity matrix. Indeed, in the two darkest
spots in the bottom and in the left hand side of the image, such as the
abrupt altitude change that cuts the image in anti-diagonal position,
the highest hazard index is not assigned by the neural network, but
it is in any case given a hazard index high enough for them not to be
considered as possible landing sites.
Figure 6.92 represents a rough depression surrounded by what looks

like safer planar areas. Although once again the network understand
in general small scale hazards and rough regions, the evaluation of
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(a) Lunar image (b) Hazard map

Figure 6.90: Lunar real surface image, Larmor Q crater floor, NAC frame M151726155R,
courtesy of NASA/GSFC/ASU.

the slope change in the central left hand side of the picture is more
difficult to judge, where the neural network depicts as safe the dark-
est part, which looks like a small valley with a crater in the center
and therefore could be an hazardous area. The smooth region in the
bottom right hand side seems to be correctly identified as the safest
area in the image.
Figure 6.93 looks in general well understood, apart from the upper

left corner, where an apparent sloppy area is classified as safe. The
same mistake happens in the bottom left corner in a small area on the
left of the sharp edge marked correctly in red. The two main smooth
planes in the upper half of the image are correctly understood: safe
excluding the small craters and the edges present.
In Figure 6.94 to the deep shadow is not assigned a completely haz-

ardous index, and this is probably due to the fact that the .png file
was not composed of zeros in that area, but contained small non-null
intensities that have fooled the network. The smoothest plane region
nearby the image center is well considered safe, while rough planar
areas have –again correctly– an intermediate hazard index. Abrupt
altitude changes are recognized, such as the one in the central por-
tion of the frame. In Figure 6.95 crater Giordano Bruno on the Moon
is depicted in an oblique view. It is worth to point out that the neural
network have been trained with images shot by a vertical attitude,
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(a) Lunar image (b) Hazard map

Figure 6.91: Real lunar test image

therefore this test case falls out of the operational range of the haz-
ard detection system. In any case, for the sake of curiosity and to
test the limit of the neural network comprehension capabilities, Fig-
ure 6.95 has been fed into the HD system. The corresponding hazard
map – always Figure 6.95 – shows that the neural network is able
to grasp the main features present: outer space in black is perfectly
recognized, crater sides and edges have an high hazard index. Also
slopes in foreground are marked in general as dangerous, though not
as hazardous as it should be, especially small areas where the neural
network thinks to be a landing suitable spot. The identified target
site (small red circle), seems well recognized as a safe area.



Performances assessment: tests and results 183

(a) Lunar image (b) Hazard map

Figure 6.92: Real lunar test image

(a) Lunar image (b) Hazard map

Figure 6.93: Real lunar test image
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(a) Lunar image (b) Hazard map

Figure 6.94: Real lunar test image

(a) Lunar image (b) Hazard map

Figure 6.95: Giordano Bruno crater, oblique view.
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67P/Churyumov-Gerasimenko

The great interest of both the scientific community and private com-
panies in small celestial bodies pushed to test the same hazard sys-
tem used for lunar images on 67P/Churyumov-Gerasimenko. Not
many suitable images are available for the purpose, and even less are
equipped with data the neural network should need to be as much
efficient as it can. The hazard detection system have been tested on
67P images to assess the robustness of the system in an ambient that
is completely different from the one which it has been designed for,
that is the Moon.
A first test is performed on a frame taken by Rosetta OSIRIS camera

(a) 67P image (b) Hazard map

Figure 6.96: Comet 67P Churyumov-Gerasimenko, Philae backup landing site C (Photo:
ESA)

depicting the Philae backup landing site C. The image is quite differ-
ent to the ones the neural network has been trained with, especially
because of the OSIRIS camera optical characteristics, that are oppo-
site to the pinhole simulated with POV-Ray. So said, once again the
network understand the main morphological features: foreground
planar areas are classified safe, their rough edges unsafe. Deep space
in the top of the picture is correctly assumed unsafe, such as an inter-
mediate dangerous classification is given to rough regions. Landing
site found in the bottom region looks like a legitimate choice. Another
test has been done on the Imhotep region of 67P comet and it is pre-
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(a) 67P image (b) Hazard map

Figure 6.97: Comet 67P Churyumov-Gerasimenko, Imhotep region (Photo: ESA)

sented in Figure 6.97. Such an area is composed by many well distinct
features: a planar plateau with sharp boulders and rifts, developing
from the center to the top of the picture, surrounded by an irregular
area full of craters and high sloped sides. In the relative computed
hazard map, the system seems to have qualitatively understood haz-
ard trends of the various areas: deep blue (safe) for the planar area
apart from the irregularities, green and red (unsafe) for the most of
the rest. Landing site selected seems adequately safe.



Chapter 7

Facility for autonomous
planetary landing simulation

T
HE design of a hardware-in-the-loop test environment dedicated
to the analysis of optical planetary landing systems is presented.
This facility will be hosted in PoliMi DAER premises and will be

devoted to integration and validation of the various subsystems involved
in the landing phase. Motivations and benefits to the hazard detection
and avoidance system deriving from the facility are explicated. Two
main design variants are taken into account and their pros and cons
discussed.

7.1 Motivations

An Hazard Detection and Avoidance system based on optical sensors
requires some additional information regarding spacecraft attitude
and trajectory, camera model and external environment. Space mis-
sions performed during the past years registered a great quantity of
data, and a large portion is freely available to use. Unfortunately,
they usually lack of most of the metadata fundamental to perform
a proper simulation. Moreover, the largest part of planetary images
available are taken with narrow angle cameras from great distances
and thus they are not representative of the optical sensor that an haz-
ard detection system exploits. Hence, it is difficult to exploit such
data for testing and validation of hazard detection algorithms.
As it has been presented in Chapter 4, synthetic images have been
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exploited to develop the hazard detection algorithms. Therefore, the
system needs to be validated with experimental data to verify its be-
havior in an actual environment. Moreover, the various subsystems
composing the HDA need to be tested to assess their coupling effects
on each other, such as their performances and run-time when work-
ing together. To increase the TRL of the HD algorithms up to TRL 5
experimental data are needed.
Due to the fact that increasing the TRL of all the autonomous landing
related algorithms is a common priority for the whole Department
of Aerospace Science and Technology (DAST) at PoliMi, it has been
decided to develop a facility in house.

7.2 Design variants and trade-offs

A first study has been performed considering the advantages and dis-
advantages of a indoor facility with respect to an outdoor one. In the
last one, a flying device with the sensor assembly goes over a real rel-
evant environment that simulates the lunar surface, whereas for an
indoor facility a terrain simulator – typically smaller than the outdoor
version – and the sensor assembly is moved reproducing in scale the
landing maneuver. Pros and cons of the two solutions are presented
in table 7.1. A second study compares the way to maneuver the sen-
sors assembly to simulate the lander trajectory. Two solutions have
been considered: a drone and a robotic arm. The first carries the
navigation and HD sensors on a large scale environment, but cannot
easily reproduce the lander dynamics. On the contrary, the robot al-
lows to simulate with great precision the spacecraft dynamics through
its end effector movements, but its range is much more limited with
respect to the drone. The comparison between the two solution is
summarized in Table 7.2. At the end of the trade-off, the preferred
architecture is an indoor facility, with lander dynamics simulated by
a robotic arm.

7.3 Components

To be cost effective, the selection of the components has been dic-
tated by resources already available at PoliMi, whenever this choice
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Outdoor Indoor
Simplicity: no lightning system, no
terrain model (+)

Complexity: terrain model and
lightning system (-)

Scale more similar to a real maneu-
ver (+)

Larger scale factor(-)

Weather and time dependent (-) Weather and time independent (+)
Requires a large outdoor location
representative of the lunar terrain (-)

No trip expenses (+)

Additional safety requirements for
free flying devices in outdoor envi-
ronment (-)

Total control on the experimental
activity (+)

Requires wireless equipment for sen-
sors data (-)
Total: -2 Total: +1

Table 7.1: Feature comparison between an indoor and an outdoor facility.

would not undermine the quality of the result. The facility is there-
fore composed by:

• Lunar terrain mockup. 3D diorama manufactured in house at
PoliMi through a Computer Aided Manufacturing (CAM) milling
process.

• Robotic arm. A 7 DoF Mitsubishi PA-10 with dedicated controller
to reproduce the lander dynamics real-time in the facility envi-
ronment.

• Lightning system. Fundamental to recreate as close as possible
real lunar surface light conditions.

• Sensors assembly. Mounted onto the end effector of the robotic
arm it comprehends:

– Camera: 8 bit grayscale frames with 1024×1024 px resolu-
tion. Field of view between 50◦ and 70◦.

– 6 DoF Inertial Measurement Unit (IMU).

– Range sensor to simulate landing LASER altimeter.

• Control PC. Compute trajectory to be execute by the robotic arm.
It simulates lander dynamics in closed-loop simulations.
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Drone Robotic arm
Indoor and outdoor operations (+) Indoor only* operation (-)
Cheap (+) Expensive (-)
Gimbaled camera to simulate atti-
tude control (-)

Full attitude control (+)

Low precision lander dynamics re-
production (-)

High precision lander dynamics
reproduction (+)

Requires wireless transmitter and re-
ceiver (-)

Wired connections (+)

High operational spatial range (+) Low operational spatial range (-)
Total: 0 Total: 1

Table 7.2: Feature comparison between a drone-based and a robotic arm based facility.
(*): excluding extremely high cost all-conditions robots

• Test PC. Algorithms under test run on this platform. In closed-
loop simulations is connected to the Control PC.

7.3.1 Planetary mockup

First parameter to take into account to properly craft the lunar sur-
face mockup is the necessary terrain resolution. Taking into account
the beginning for the hazard detection and avoidance maneuver at
about 2000 m in altitude (Sec. 1.2.2) and an envelope of the PA10
robotic arm of 1 m, it is possible to assume the maximum scale factor
equal to 2000:1. Accuracy at touchdown is expected in the order of
10 m mainly due to navigation errors. With the assumed scale factor
of 2000:1, minimum accuracy at touchdown in the simulated envi-
ronment is equal to 5 mm. Since the terrain resolution should be
at least one order of magnitude higher than the landing accuracy, it
results a required lunar surface mockup resolution of 0.5 mm at mini-
mum.
At PoliMi laboratories a numerical controlled milling machine is avail-
able with the specifications listed in Table 7.3. Some preliminary
tests have been performed the best fitting material for the diorama.
No particular mechanical requirements are requested to the diorama,
except to not deform under its own weight. Instead, the choice is
determined by optical requirements: the material must be able to be
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Working area 600×1200 mm
Cutting tool Ball nose cutter

diameter: 5 mm
Position accuracy <0.01 mm
Maximum milling depth 70 mm

Table 7.3: Milling machine characteristics

representative enough of the lunar surface optical characteristics as
seen by a grayscale camera. In particular:

• The surface roughness should be lower than the required DEM
resolution. If not, material imperfections would interfere with
the simulation, jeopardizing fidelity and accuracy of the results
due to the introduction of light diffusion and reflections. A first
test performed on Styrofoam, whose granularity is in the order
of 1 mm, showed these effects (Fig. 7.1);

• The density should be as low as possible in order to speed up
the milling process and require a lighter and simpler support
structure,

• Costs and availability from local suppliers should be optimized.

Figure 7.1: Milling test with Styrofoam. It is possible to spot the high granularity of
the material.
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Following these considerations, it has been selected as material for
the lunar surface mockup the RenShape R© BM 5460 urethane foam
characterized by the specifications in Table 7.4. In Figure 7.2a and
7.2b are displayed two different tests on the BM 5460, performed
respectively with a ball cutter diameter for the milling machine of 5
mm and 12 mm and photographed in b/w.

Once a suitable material is selected, it has been proceeded with

Density 700 kg/m3

Thermal expansion coeff. 5e-5 K-1

Deflection temperature 75-80 K
Flexural strength 25-30 MPa
Compressive strength 25-30 MPa
Compressive modulus 1250-1350 MPa
Hardness 60-65 Shore D
Sheet dimensions 1500×500×100 mm

Table 7.4: RenShape R©BM 5460 specifications.

(a) 5 mm cutter diameter (b) 12 mm cutter diameter

Figure 7.2: Milling tests on the RenShape R© BM 5460 with a ball cutter of 5 mm and
12 mm

the selection of the DEM to be adopted in the lunar surface mockup.
Some constraints drove the choice:

• operational envelope of the robotic arm;

• camera Field of View;

• milling machine working area;
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• size available of RenShape sheets.

The size of the terrain model surface has been decided to be 2000×2400
mm, given by the assembly of 8 RenShape sheets measuring 1200×500
mm each. Of the 100 mm of total thickness, 70 are used for the
milling machine to create the lunar terrain shape, while 30 are avail-
able to connect the mockup with the support structure beneath.
The DEM region selected reflects the following criteria:

• relevant terrain features present on the lunar surface should be
included;

• real elevation data present

• artificial artifacts due to erroneous data interpolation should be
avoided and eventually removed.

As stated in Chapter 4, NASA Lunar Reconnaissance Orbiter (LRO)
data have been exploited to obtain reliable lunar surface informa-
tions. For the mockup surface DEM, a 14400×12000 px portion of the
far side of the Moon in the GLD100 WAC Global DTM dataset have
been selected. At first, a downsample to remove the DEM artifacts is
performed and the resolution of the DEM is reduced to 2401×2001.
Then details are added to increase resolution to 9601×8001 px by
adding craters, boulders and fractal noise as described in Section 4.1.
Such DEM resolution allows the mockup to be at 0.25 mm/px. In ad-
dition, depth of the DEM has been rescaled to make use of the whole
vertical space available.
Discrepancies between the numerical DEM and the milling machine
made mockup can be introduced with the assembly process of the 8
urethane sheets. Moreover, the cutting tool of the milling machine
limits accuracy of small carved surfaces, even though the nominal
precision in positioning is lower than 0.01 mm. Indeed, once crafted
the diorama, it is calibrated to quantify the milling and assembling
processes inaccuracies, correcting the end effector – carrying the sen-
sors assembly – location in the computation of ground truth trajec-
tories. The Digital Elevation Model of the physical surface of the
mockup is computed during the calibration, and it must achieve the
same resolution goal of 0.5 mm in the three dimensions of the nu-
merical DEM. The calibrated DEM is then used as base onto which
reconstruct ground truth trajectories in the test phase. This can be
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performed with a LASER 3D scanning or with dense matching from
images. The instrumentation and the know-how needed for both the
techniques are already available at PoliMi. The natural color of the
RenShape sheets is a light brown, but early tests reveal that no further
corrections of the surface color should be required, being the images
acquired in 8 bit grayscale bright enough (see Figure 7.2). Anyway,
the lack of diffuse light on planets without atmosphere, even if this
effect can be reproduced increasing the contrast between light and
shadow through the lightning system intensity, could require the ap-
plication of paint on the diorama. Further tests on attainable image
contrast are required to assess such a necessity.

7.3.2 Robotic arm

A Mitsubishi PA10-7C robotic arm is available at DAST. It features 7
DoF (see Fig. 7.3) capable to handle a 10 kg payload in a operative
spatial range of 1.03 meters from its shoulder joint (Fig. 7.4). Its
weight amounts to 40 kg, making it easy to carry. Its kinematic

Figure 7.3: Mitsubishi PA10-7C degrees of freedom. (Credits: PA10 reference manual)
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performances are:

• Operative speed.

– About S1 axis (shoulder): 28.5◦/s.

– About S3 axis (elbow): 57.0◦/s.

– About W2 axis (wrist): 180◦/s.

• Position repeatability: ±0.1 mm

Two configurations have been identified, with a different relative
position among the robotic arm, the lunar surface mockup and the
camera. Each one has its advantages and disadvantages in terms of
support structure complexity for the diorama and arm capability ex-
ploitation.

Front mounting

In this configuration diorama and robotic arm mounting base are par-
allel as shown in Figure 7.5. Through such configuration the arm
spatial operative envelope is totally exploited and therefore the max-
imum surface of the diorama is reachable for. On the other hand, a
reduced positioning capability of the sensor assembly on the end ef-
fector occurs due to the limited usage of the W2 (wrist) axis.
It is possible to exploit this configuration fixing the diorama to the
ground, without the needs of a complex structure, or mount it per-
pendicular to the terrain with a supporting system as shown in Fig-
ure 7.5. The arm is positioned consequently.

Lateral mounting

Diorama and robotic arm mounting base are perpendicular one to the
other as shown in Figure 7.6. In this case the maximum robotic arm
end effector motional capability is exploited, due to the fact that the
W2 axis regulates directly the camera inclination about the roll axis.
With respect to the front mounted arm configuration, in this case it
is not possible to exploit all the spatial operational envelope of the
robotic arm end effector, resulting in a smaller simulation space at
the same scale factor. Anyway, landing trajectories develops in a pre-
ferred direction and therefore an asymmetrical working area is not so
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Figure 7.4: Mitsubishi PA10-7C spatial operative range. (Credits: PA10 reference
manual)
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Figure 7.5: MSC Software Adams model of relative positions of robotic arm and dio-
rama, front mounting.

Figure 7.6: MSC Software Adams model of relative positions of robotic arm and dio-
rama, lateral mounting.

penalizing.
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Due to the fact that the use of the seventh DoF of the robotic arm al-
lows to simulate more complex trajectories, the lateral mounted con-
figuration is preferred.

7.3.3 Lightning system

It is devoted to guarantee the realistic light environment during the
simulation operations. For non atmospheric celestial bodies like the
Moon, diffuse lights should be avoided. At this scope, the lightning
system is composed by:

• Light source. A 5600 K LED array with a narrow beam angle and
characterized by an high Color Rendering Index (CRI). Already
available in PoliMi premises, it can be adjusted according to the
Sun elevation desired for the simulation.

• Dimming system. A non-reflective black structure dedicated to
prevent external Sunlight and internal reflections to interfere
with the simulation.

Theoretically, a good lightning system should provide sharp undis-
torted shadows on the mockup.
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Conclusions

An autonomous, vision based hazard detection system able to au-
tonomously find safe landing sites during a lunar landing maneuver
have been proposed in this work. It exploits an image processing al-
gorithm to extract image features that are fed into a Feedforward Arti-
ficial Neural Network (ANN) trained with synthetic lunar images cre-
ated ad hoc. The ANN outputs generates an hazard map, onto which
landing sites candidates are computed taking into account landing
site area, landing site hazard index, and landing site distance from
the Nominal Landing Site. Tests have been performed on a different
dataset with respect to the one used train the network, in order to
assess performances on never seen images. A program to validate the
landing sites computed has been developed, in order to assess objec-
tively the hazard system performances in terms of True Positive, False
Positive, False Negative landing sites, respectively a correctly identi-
fied, a wrongly recognized and a missed correct site. Over 90% of
the landing sites identified by the system are safe, and a safe target
is always selected. In the worst case encountered among the tests
performed, first false positive found was ranked not worse than 3rd
(average ranking: 94) allowing a backup solution in case of problems
by the guidance system in computing a new landing trajectory. More-
over, execution time on a single thread of a laptop CPU of the hazard
detection and landing site selection algorithms lasts only 230 ms and
therefore real time compatible CPU times operations are expected us-
ing real hardware. Hence, all the requirements listed in Section 1.5
are satisfied. Promising results come also from tests of the hazard
detection system on real lunar and 67P/C-G images, remarking the
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system robustness on different environments and increasing the pos-
sible application of the system to all the celestial bodies without at-
mosphere.
A preliminary design for a facility dedicated to test and validate the
hazard detection system plus navigation algorithms has been pro-
posed: a suite of navigation sensors (a navigation camera, an IMU
and a range sensor) are moved by a robotic arm over a lunar diorama,
reproducing landing maneuvers in a scaled environment; a dimming
system ensures a complete control over the scene illumination, pro-
viding realistic lighting conditions.

8.1 Future developments

For what concerns the hazard detection system, many options can be
walked through in order to try to enhance the performances:

• extension of the images dataset to include different altitudes
in order to make the artificial network able to discriminate be-
tween a boulder and a small stone depending on the altitude;

• investigation of an adaptive hazard threshold depending on the
Sun elevation angle in order to further optimize the HD system
performances;

• implementation of other machine learning items, such as cas-
cade neural networks, or deep learning techniques;

• refining of training datasets with the inclusion of more accurate
renderings;

• investigation of other image processing technique to provide still
not tried inputs to the neural network;

The facility, which is currently at the detailed design stage, has the
ultimate goal to provide the testbed for open-loop and closed-loop
simulations not only of navigation and hazard detection, but in gen-
eral visual based autonomous systems.
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Appendix A

Activation functions

Heaviside function

Also known as threshold function, Heaviside’s maps the input to a
binary output, as shown in Fig. A.1:

Figure A.1: Heaviside activation function.

H(x) =

{
1 if x ≥ 0

0 if x < 0



iv Activation functions

Linear function

Linear proportionality between input and output. Due to the fact
that it is not bounded, also weights and and neuron output will not
be. This leads to much longer training times with respect to bounded
activation functions[89]. Its definition is of course:

y = ax (A.1)

Figure A.2: Linear activation function.

where a is a real constant.

Ramp

Linear function in a specified domain. Useful to not saturate the neu-
ron output as a pure linear function does (see Sec. A). In the pre-
sented version, it is centered in the origin (0,0) both in input and
output axis to provide a odd function.

It may be written as:

R(x) =


−1 if R(x) < −1

ax if − 1 ≤ R(x) ≤ 1

1 if R(x) > 1



Activation functions v

where a is a real constant.

Figure A.3: Ramp activation function.

Logistic sigmoid

Bounded between [0,1], it is one of the most used activation func-
tions. It is monotonically increasing, and acts as a threshold function
for inputs approaching plus or minus infinity. It is differentiable, thus
it is exploitable in many efficient training algorithms. It is defined as:

logsig(x) =
1

1 + e−ax
(A.2)

where a is a real constant.



vi Activation functions

Figure A.4: Logistic sigmoid activation function.

Hyperbolic tangent

Another kind of sigmoid function, as popular as the logistic sigmoid.
Bounded between [-1,1], it is computationally more efficient with
respect to the logistic sigmoid[65].

Figure A.5: Hyperbolic tangent activation function.
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The hyperbolic tangent function appears as:

tanh(x) =
1− e−2x

1 + e−2x
(A.3)

but in the programs developed in this thesis, it has been implemented
an equivalent version [90], that is faster to compute.

tansig(x) =
2

1 + e−2x
− 1 (A.4)
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Appendix B

Test dataset

The test dataset is composed by 8 doublets of lunar surface image and
relative hazard map ground truth. All the images have been gener-
ated through LROC data, adding fractal noise and features to increase
resolution, as described in Chapter 4. The whole test dataset has the
following characteristics:

Table B.1: Test dataset characteristics

Altitude 2000 m
Camera attitude vertical
Sun inclination 15◦ or 80◦

Sun azimuth 15◦

Hazard maps are represented through the colormap in Figure B.1,
that sweeps from blue (safe) to red (unsafe).

Figure B.1: Colormap adopted for the hazard map graphical representation.



x Test dataset

Test image 1

(a) DEM image rendering (b) Hazard map

Figure B.2: Test image 1, 80◦Sun inclination angle.

Test image 2

(a) DEM image rendering (b) Hazard map

Figure B.3: Test image 2, 15◦Sun inclination angle.



Test dataset xi

Test image 3

(a) DEM image rendering (b) Hazard map

Figure B.4: Test image 3, 80◦Sun inclination angle.

Test image 4

(a) DEM image rendering (b) Hazard map

Figure B.5: Test image 4, 15◦Sun inclination angle.



xii Test dataset

Test image 5

(a) DEM image rendering (b) Hazard map

Figure B.6: Test image 5, 80◦Sun inclination angle.

Test image 6

(a) DEM image rendering (b) Hazard map

Figure B.7: Test image 6, 15◦Sun inclination angle.



Test dataset xiii

Test image 7

(a) DEM image rendering (b) Hazard map

Figure B.8: Test image 7, 80◦Sun inclination angle.

Test image 8

(a) DEM image rendering (b) Hazard map

Figure B.9: Test image 8, 15◦Sun inclination angle.


