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Abstract

Modern software development processes are evolving from sequential to in-
creasingly agile and incremental paradigms. Verification, unavoidable step
of a correct software production, cannot get left behind by this new quickly
changing practice. Advances in verification techniques have been considerable
in the past years, and feasibility has been achieved on always greater systems.
Nevertheless, we believe that verification and modern development processes
are still not going at the same pace in terms of incrementality.

Classical verification algorithms are applied when a complete specification
of the model to verify is available, and several development costs and efforts
have been already spent. Today more than ever, the description of a system
changes continuously during the phase of analysis, asking for periodical ad-
justments in its specifications. Various parts are often only sketched waiting
for further enrichment, which is sometimes delegated to third parties. The
classical scenario is, therefore, not applicable anymore: it becomes essential
coming up with light iterative methods formal verification methods, that can
be applied also to incomplete models at each stage of the design and develop-
ment phases, contributing more incisively to developers choices.

With particular focus on two main verification techniques, model checking
and deductive verification, we study a way to integrate them into this incre-
mental context. The idea is to supply each step of the design phase with a way
to prove behaviors of incomplete systems or only single components. Step-
wise model checking can be augmented by a simple incremental deductive
system generator that justifies why the system actually meets some requested
temporal specification (if this is the case). This kind of infrastructure can
bring a useful contribution in cases and refinements where matters of safety,
starvation or liveness are critical, and, in general, guide the choices of the
developer that faces different designs.

The main idea is to combine two approaches presented in literature: on
one side we would like to exploit a procedure of model checking that sup-
ports systems that are not completely specified, on the other side we study a
mechanism to build deductive proofs using information gathered during model
checking. This thesis deals with the construction of these incremental deduc-
tive proofs of linear temporal logic properties in incomplete systems that are
completed progressively when the system gets refined.





Sommario

I processi di sviluppo del software, un tempo sequenziali, si stanno ora evol-
vendo verso paradigmi sempre più agili ed incrementali. La verifica formale,
fase fondamentale del processo di produzione del software, deve dunque adat-
tarsi a queste pratiche in continuo cambiamento. I progressi nelle tecniche
di verifica sono stati considerevoli negli ultimi anni, soprattutto grazie alla
loro attuabilità su sistemi di sempre maggiori dimensioni. Ciò nonostante,
notiamo ancora un disallineamento tra le tecniche di verifica ed i processi di
sviluppo moderni, in termini di metodologie incrementali.

Gli algoritmi di verifica classici vengono applicati in fasi già conclusive,
quando le specifiche fornite sono pressoché complete e diversi costi di sviluppo
sono già stati sostenuti. Oggigiorno, però, la descrizione di un sistema durante
la fase di analisi è in continua evoluzione e richiede dunque frequenti modifiche
alle specifiche. Infatti, diversi moduli vengono spesso solo abbozzati in attesa
di un successivo arricchimento o direttamente affidati a terze parti. Lo scena-
rio classico non è dunque più attuale: diventa essenziale elaborare metodi di
verifica più leggeri ed iterativi, applicabili anche a modellizzazioni incomple-
te del software durante qualsiasi fase della pianificazione e dello sviluppo, in
modo da contribuire in maniera più incisiva alle scelte degli sviluppatori.

Incentrando la nostra ricerca sulle tecniche di model checking e verifica
deduttiva, valutiamo una soluzione per integrarle nel contesto incrementale.
L’obbiettivo è quello di affiancare ad ogni fase del design una procedura che
prova i comportamenti di interi sistemi incompleti e di loro singoli moduli,
fornendo supporto per integrare le informazioni ottenute in modo frammen-
tato. Mostriamo come il model checking incrementale può essere arricchito
da un semplice generatore di prove deduttive che, quando il sistema in analisi
rispetta un dato requisito, ne giustifica il perché. Questo tipo di supporto può
fornire un contributo utile in ambiti in cui proprietà di safety, starvation e li-
veness sono critiche, e in generale guidare lo sviluppatore software che affronta
qualsiasi tipo di design.

In questa tesi combiniamo insieme due diversi approcci provenienti dalla
letteratura: da una parte utilizziamo una procedura di model checking che
supporta sistemi specificati in modo incompleto [MSG15], dall’altra studiamo
il meccanismo di costruzione di prove deduttive sfruttando direttamente le
informazioni generate dalla procedura di model checking [PZ01, PPZ01].

Dopo aver introdotto il nostro lavoro nel panorama della verifica formale,
presentiamo gli approcci che hanno ispirato il nostro lavoro; poi introduciamo



il nostro contributo, una tecnica di verifica ibrida applicabile in maniera flessi-
bile a specifiche parziali confrontate con requisiti espressi in logica temporale,
e risolviamo la problematica di comporre insieme prove deduttive ottenute a
diversi livelli di dettaglio. Successivamente, presentiamo la validazione della
nostra tecnica ottenuta tramite il tool ChIPS. Infine, chiariamo il nostro ap-
proccio tramite un case study che descrive un sistema di invio di messaggi e
concludiamo descrivendo lo stato dell’arte ed i futuri sviluppi di questo lavoro.
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1 Introduction

Software systems are usually produced through a sequence of development
steps. These transform the initial, high level model of the system into the fi-
nal artifact. Producing a correct software is becoming a cumbersome activity.
Regardless of the used development technique, software is usually never cor-
rect at the first attempt: the final version is obtained by evaluating different
design decisions and comparing the behaviors of components that can be used.
Furthermore, software systems are rapidly growing in their functionality and
scale, increasing this way the probability of errors, and the considerable dam-
age caused by them. Because of the mentioned reasons, verification becomes
essential to the software creation process.

Literature offers a wide range of approaches to supervise software behaviors,
aimed at enhancing the quality and reliability of systems. Most of these ap-
proaches go under the name of formal methods. They are formal in the sense
that they use a number of mathematical theories such as logic, automata and
graph theory, to name some of them. They provide theories, techniques, and
tools that support modeling and analysis of software systems under develop-
ment. Modeling allows the developer to describe the system with respect to
the properties he/she is interested in verifying. Analysis helps software engi-
neers in checking the correctness, reliability, and robustness of their planned
designs.

Formal methods can be used at different stages of the software development
cycle: at the beginning, when an high level design of the system is considered,
or at the end, when the final implementation of the system is available. Since
their effectiveness tends to diminish with the size of the analyzed object, it
is preferable to perform formal methods at early stages of the process, when
the formalization of the system and the checked modules are still small, and
errors cheaper to fix.

A wide area of formal methods is covered by verification methods. With
verification we mean the process of applying a manual or automated technique
that is supposed to establish whether software possesses properties of interest.
Among others, model checking and theorem proving are two well-established
techniques of verification. If effectively integrated at an early stage, they guide
the design process towards a reliable system and allow to save considerable
expenses before products are realized.
Model Checking was pioneered by Clarke and Emerson [CE82] and by

Quielle and Sifakis [QS82] independently in the 1980s. It is an automatic
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Chapter 1 Introduction

technique that verifies the model of a finite state system against its specifica-
tion, expressed as a logic formula. The model describes which behaviors the
system may exhibit, whereas the property dictates their peculiarities. The
model checker exhaustively explores all possible behaviors of the model in a
systematic manner, to verify if they match the property of interest. If a be-
havior that violates the property is found, it is returned as a counterexample.
The system model can be automatically generated from the implementation of
the system or outlined by hand. The property is often expressed as a temporal
logic formula.
Theorem Proving, or Deductive Verification, is an alternative approach to

model checking. It requires expressing both the system and the requested
property as mathematical logic statements. The starting point is a formal
system, where a set of axioms and inference rules are defined. The goal is
to derive that the property is a theorem of the checked model, i.e., given
the statements of the model, it is demonstrated that the property holds, by
performing the steps of the proof. The main benefit of deductive verification
is the possibility to actually explain how the system meets its specification.
Theoretically, this method can be applied to any model and specification, only
limited by the mathematical skills of the user. In practice, proving a program
requires checking the validity of a great number of statements. This technique
has therefore flourished thanks to automated theorem provers.

From falsification to verification Model checking and deductive verification
are usually considered as very different methods, with different application
contexts: the first one works to exclude some behavior we do not want a
system to take on; the second works to justify why a system follows some
positive behavior. On one side we are proceeding by “falsification”, on the
other by “verification” [PPZ01].
In the traditional version of model checking, a positive output appears to

have a slightly “weaker” justification than a negative one. When the answer
is negative, this is supported by a counterexample that shows how the system
violates the requirement, but there is no additional explanation of a positive
answer. What is missing is a way to show how the search for a counterexample
has failed.
Model checking is usually used to find counterexamples and, therefore, iden-

tify faults in the design. A dual approach consists of generating a deductive
proof of the fact that there are no counterexamples, i.e., the system does in
fact satisfy the specification. In [PZ01] and [PPZ01], Peled et al. proposed
a technique to do this: while performing model checking, by exhaustively
searching the state space of the model, they collect the source material to
feed an automated theorem rules generator, to prove the specification in that
model.

2
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From complete to partial specifications Software development processes
are constantly evolving towards more flexible procedures, due to the need of
accommodating changing user requirements and of reducing the time of the
product release. With regard to this, there still seems to be a substantial
mismatch between verification and development processes, that highly focus
on agile and incremental, iterative methods to create software. Formal veri-
fication techniques still assume that the formalizations of systems should be
completely available before they are applied. This is, unfortunately, not the
case. Recent development of software engineering calls for agile methods of
verification able to support development at each step. While sequential, wa-
terfall models only allowed for checks performed at the end, new development
cycles ask for techniques that can also deal with incomplete specifications.
More precisely, the goal is to make verification techniques follow this main-
stream and be more flexible, modular and incremental, going at the same pace
as all other steps of the software life-cycle. The benefit of such techniques is
that the unavailable modules can be developed and verified independently
from the system.
In literature, several contributions to software verification have dealt with

incompleteness in its various forms. We consider in particular [MSG15], that
introduces an incremental model checking procedure, integrated with a way
to initially specify models that supports incompleteness, a useful concept to
deal with cases where some functionalities might be developed later or by
third parties. They allow encapsulation of software sub-parts into unspecified
components. At the time of replacing these with known descriptions, they
only need to be checked with the constraints previously computed.

Thesis statement Verification techniques require a solid basis of logic and
mathematical reasoning. Despite the utility of logic tools in computer science
is unquestionable, it still deals with skepticism of practitioners for being too
formal and leading to a theoretic approach worthless to the world of software
development. Logic proceedings are not fully appreciated yet; the main stream
goes nowadays in another direction. Recently, though, more promising signals
are arriving from the communication and the hardware industries, that, where
reliability is critical, are starting to use formal methods, or even develop their
own. We believe that, in a field that is not strictly scientific but conditions
almost every action of our everyday lives, some precise and formal methods
will eventually be appreciated. Our work brings some insight on techniques
and uses of logic verification that should start to ease off the practitioners
hesitancy.
Considering the pros and cons of model checking and deductive verification,

this thesis proposes an approach to integrate the two mentioned verification
techniques in the context of incompletely specified systems, that are nowadays
needed to allow an agile development process of software.

3
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In Section 1.1 we deal with observations that inspired our research and in
Section 1.2 we analyze in detail the original contributions of this thesis within
the context of combined and modular verification techniques for software sys-
tems.

1.1 Motivation
Our research is mainly justified by the following statements:

I Verification is based on a given model. Models usually describe systems
up to some level of abstraction. The model checking result “is only as
good as the model of the system” [BK08]. It is effective in exposing at
the developer attention potential design errors, but the failure to find
counterexamples does not necessary imply the correctness of the real
system, that could have been incorrectly described, or oversimplified.

Idea. Model checking techniques provide an answer based on the search for
a counterexample; whenever a property is satisfied model checking tools do
not provide any justification. On the contrary, deductive verification explains
why a given model satisfies a property by providing a proof that the property
of interest is a theorem for that model.

I The model checker can contain software faults. Despite its use, we need
not to forget, it is a software itself.

Idea. Since the modeling process is itself subject to errors, it can easily happen
that the model checking procedure is inaccurate. This asks for some method
that supports model checking by detailing and describing which behaviors
the procedure is taking into account and which not. The need for a proof is
motivated by the fact that “intuition often fails to grasp the full intricacy of
the algorithm” [PZ86].

I By-hand proofs can be ambiguous and subjective.

Idea. Algorithmic methods are generally preferred over the ones that require
considerable human skills. Manually building proofs is time consuming and
also error prone. Furthermore, at each refinement, or after any change, manu-
ally building the proof from scratch can be discouraging. On the other hand,
the automated generation of the proof is convenient and fast. It also needs
human supervision but offers a good starting point. We look for a method
to collect information during the model checking procedure to feed the auto-
mated theorem rules generator. This way, not only the resolution of the proof
will be automated, but also its setup.

I Model checking does not support generalization and parametrization of
systems. In its classical definition, it does not treat the possibility to
analyze incomplete models.

4
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Idea. Model checking in its classical definition might return answers not as
general as the user might hope. This speaks in favor of an incremental re-
finements approach supported by a modular model checking technique. This
would allow more flexibility to the initial design and guarantee a checking
procedure that follows the changes in the model step by step. We would like
our method to support evolutionary system development, by allowing partial
specification and analysis of selected aspects of a system.

I Once-in-a-lifetime verification is not agile. It is often difficult, even
impossible, to apply formal methods to a complete system.

Idea. The study of a compositional technique to perform deductive verifica-
tion inspired our work. We attempt to verify different parts of the system
separately, and then make conclusions on the whole program. A modular way
of doing verification could bring back the importance it deserves. Modular-
ity can, on one side, be something less painful to those that were never able
to appreciate it, and on the other, assist in a better way the ones that were
always indulgent and purposeful with it, in spite of its slow and unfriendly
functioning.

I No formal method is likely to be suitable for analyzing every aspect of a
complex system.

Idea. Combining two different approaches can be a practical solution to this
issue, ideally benefiting from the advantages of both. On one side the con-
ciseness and effectiveness of the negative answer given by model checking, on
the other the advantage of proofs to be more explanatory.

To conclude, the union of these motivations makes us see the utility of
supplying a tool to fill that empty space left by the too concise answers of
model checking with a complete and convincing argument of the validity of a
property in a system that gets refined over time.

1.2 Original contributions and structure of the thesis
This work was conceived from the union of two research ideas. On one side, in
[MSG15], Menghi et al. investigate different ways to making software verifica-
tion techniques more agile, specifically through a modular procedure of model
checking. On the other side, [PZ01, PPZ01] describe research on enhancing
the linear temporal logic model checking process with additional features, by
exploiting its information to justify model specification properties.
We believe that joining the purposes of the mentioned approaches in a

common direction could lead to interesting and original content.
More precisely, the contributions of this work include:

5



Chapter 1 Introduction

I A deductive proof verification approach which supports incomplete mod-
els. In this framework the proof must justify why a model satisfies or
possibly-satisfies (depending on later refinements) a specific property;

I A technique that is able to manage these proofs in an incremental way.
Whenever an incomplete model is refined, the new proof is not built all
over again but is obtained by computing a set of sub-proofs which are
plugged into the initial master proof;

I A case study which exemplifies the applicability of the approach and a
prototype tool that validates the contribution of this thesis.

The final goal is to support agile programming techniques with, not only
incremental model checking, but also a simple deductive system generator
that proves a property in a given system. One may consider this infrastruc-
ture to be only necessary in cases and refinements in which it is advisable
to formally explain why the system satisfies a requested property (usually
safety/starvation-critical) but we believe any developer would benefit from it.
Taking into consideration the limits of both model checking and deductive

verification, an hybrid approach, intersecting the advantages of both, can also
help using none as a black box giving out a result, and both as guides to un-
derstand the mechanisms of the modeled system, giving insight on the real one.

The thesis is organized as follows:

I Chapter 2 contains the concepts necessary to understand the basic ideas
of our approach, outlined in the following chapter. It presents prelim-
inary notions on the selected formalisms used to model systems and
their required properties. In particular, we introduce automata and
linear temporal logic syntax and semantics. Then, we provide a back-
ground on the two verification techniques we focus on: model checking
and deductive verification, exploiting the deductive capability of logic
of inferring new facts from given facts;

I Chapter 3 describes our proposed approach to incremental proofs of in-
complete systems with particular attention to the steps of the procedure
described in [MSG15] that we extended to create the proofs, and to the
steps of [PZ01], that we modified to support incomplete systems. We
show how to combine the strength of the two different approaches con-
sidered;

I Chapter 4 briefly describes ChIPS, a Java module implemented to vali-
date our proposal of algorithm. ChIPS extends the tool CHIA developed
by [MSG15]1;

1CHIA tool is available at http://home.deib.polimi.it/menghi/Tools/IncModChk.html
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1.2 Original contributions and structure of the thesis

I Chapter 5 presents a well known case study from literature [AY01], used
to analyze and better explain our approach. It represents a sending
message system on which we prove a liveness property of interest for
sequential systems;

I Chapter 6 contains an overview of the state of the art of the topics related
to this work. It includes a general section on the problem of automa-
tizing verification, a section on model checking and one on deductive
verification. Then, it presents the literature that integrates these two
approaches in various ways. Finally it shows how modularity and in-
completeness have been dealt with in both model checking and theorem
proving;

I Chapter 7 reports the conclusion of our work with a discussion of the
method presented and suggests new directions of research.
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2 Background and used formalisms

This chapter provides the reader with the background notions necessary to
understand this thesis. First, Section 2.1 describes formalisms that allow to
model the system under development, and explains how these models can
be iteratively refined. Section 2.2 specifies how it is possible to express the
requirements of the system under development, with a particular focus on
functional properties. Section 2.3 explains how it is possible to check whether
the system possesses the properties of interest. We consider the automata-
based model checking procedure, with particular attention to the intersection
automaton that is built. A distinction is made between two semantics for
complete and incomplete systems. Moreover, the section describes a procedure
of modular replacement checking that can be used after an incomplete model
is refined. Finally, Section 2.4 introduces specific deductive rules that can be
used to derive information from the model checking procedure and build a
deductive proof.

2.1 Modeling the system

Model checking techniques are applied to different modeling formalisms de-
pending on the system the developer is considering and on the properties of
interest. In this work we consider sequential systems, that are developed using
a top-down hierarchical development strategy. For this reason we choose to
use incomplete Büchi automata ([MSG15]) which are an extension of the well
known Büchi automata ([Büc90]).

Section 2.1.1 presents an overview of the two formalisms upon which incom-
plete Büchi automata are based: Finite State Automata and Büchi Automata.
Section 2.1.2, instead, specifies the modeling formalisms used to support in-
complete systems, i.e., incomplete Büchi automata. Finally, Section 2.1.3 de-
scribes the formalisms for their refinements.

2.1.1 Complete models

The formalism chosen to represent a system usually depends on the character-
istics of this. Here follows the description of two widely used kind of automata,
each of which runs on finite and infinite words, respectively.
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Finite State Automata

A finite-state automaton (FSA) or finite-state machine (FSM) ([Mea55]) is a
mathematical model of computation that represents an abstract machine as a
set of states. Informally, states represent the possible system configurations;
some of these can be defined as accepting, and when reached, mark the val-
idation of the input. Transitions are the functions that determine the next
configuration of the system. In the most common version of FSAs, they are
labeled with a set of propositions (AP, atomic propositions) that show what
condition is needed for the state of the system to change. Given a set of
mathematical propositions AP, an FSA is mathematically defined as follows:

Definition 2.1 (Finite State Automaton [Mea55]). A non-deterministic finite
state automaton (FSA) over finite words M is a tuple

〈
Σ,Q,∆,Q0, F

〉
, where

Σ = 2AP is the finite alphabet, Q is the finite set of states, ∆ ⊆ Q × Σ × Q is
the transition relation, Q0 ⊆ Q is the set of initial states, and F ⊆ Q is the set
of final states.

If we consider a sequence or a string of characters v belonging to the alpha-
bet Σ, with length |v |, we can define:

Definition 2.2 (FSA run [CGP99]). A run ρ ofM is a mapping ρ : {0, 1, . . . , |v |}
7→ Q such that:

1. The first state is an initial state, that is, ρ(0) ∈ Q0;

2. Moving from the ith state ρ(i) to the i + 1st state ρ(i + 1) upon reading
the ith input letter v(i) is consistent with the transition relation. That
is, for 0 ≤ i < |v |, (ρ(i), v(i), ρ(i + 1)) ∈ ∆.

An accepting run of a FSA corresponds to a run in the automaton starting
from an initial state ρ(0) until a state ρ(v) ∈ F.

Büchi Automata

Since software systems are often designed to run on infinite inputs, we model
executions as infinite sequences of states. The simplest automaton over infinite
words is a Büchi automaton (BA), which basically has the same structure of
a FSA, but is used to recognize infinite words, formed by a finite prefix,
which is followed by a suffix repeated infinitely many times. FSAs are easily
translatable to BAs using a stuttering rule, as explained in [PW97, PWW98].

Definition 2.3 (Büchi Automaton [Büc90]). A non-deterministic Büchi au-
tomaton (BA) M is a FSA

〈
Σ,Q,∆,Q0, F

〉
where the set of final states F of

the FSA is used to define the acceptance condition for infinite words (also
called ω-words). Hence, for Büchi automata, F is usually called the set of
accepting states.

10



2.1 Modeling the system

A run of a Büchi automaton M over an infinite word v ∈ Σω (where the
superscript ω indicates an infinite number of repetitions) is defined in almost
the same way as a run of a finite automaton over a finite word, except that
now |v | = ω. Thus, the domain of a run is the set of all natural numbers.

Definition 2.4 (BA accepting run [CGP99]). Let in f (ρ) be the set of states
that appear infinitely often in the run ρ. A run over an infinite word is
accepting if and only if in f (ρ) ∩ F , ∅, that is, when some accepting state
appears in ρ infinitely often.

The language Lω (M) ⊆ Σωconsists of all the ω − words accepted by M.

2.1.2 Incomplete models

Software development techniques are nowadays incremental and iterative.
Modeling incomplete systems has, therefore, become necessary in this con-
text. To support the description of systems that are not completely specified,
incomplete finite state automata consider the possibility to represent transpar-
ent states (opposed to regular ones), that are replaced in a second development
phase with other automata.

Definition 2.5 (Incomplete Finite State Automaton [MSG15]). A non-determi-
nistic incomplete finite state automaton (IFSA)M is a tuple

〈
Σ, R,T,Q,∆,Q0, F

〉
,

where Σ is the finite alphabet, R is the finite set of regular states, T is the finite
set of transparent states, Q is the finite set of states such that Q = T ∪ R and
T ∩ R = ∅, ∆ ⊆ Q × Σ ×Q is the transition relation which allows the definition
of transitions that connect states of Q irrespective of their type, Q0 ⊆ Q is the
set of initial states and F ⊆ Q is the set of final states.

As specified in Definition 2.3, software systems are usually designed not to
halt during their executions, therefore we need Incomplete Büchi Automata,
that extend IFSAs by supporting infinite words. They are an extended version
of BAs, designed to support incomplete specifications and their refinements.
BAs can be formalized as follows:

Definition 2.6 (Incomplete Büchi Automaton [MSG15]). A non-deterministic
incomplete Büchi automaton (IBA) is an FSA

〈
Σ,Q,∆,Q0, F

〉
, where the set of

final states F of the FSA is used to define the acceptance condition for infinite
words (ω-words). As in the case of BAs F identifies the set of accepting states.

Given an ω-word v = v0v1v2..., a run represents an execution of an IBA.

Definition 2.7 (IBA run [MSG15]). A run ρ : {0, 1, 2, ...} 7→ Q over v ∈ Σω is
defined for an IBA as follows:

1. ρ(0) ∈ Q0,
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Chapter 2 Background and used formalisms

2. ∀ i ≥ 0, (ρ(i), vi, ρ(i + 1)) ∈ ∆ ∨ ((ρ(i) ∈ T ) ∧ (ρ(i) = ρ(i + 1))).

As it is explained in [MSG15], we can distinguish between three possible
types of run:

I A run is accepting when some accepting state appears in ρ infinitely
often and all states of the run are regular;

I A run is possibly-accepting when some accepting state appears in ρ in-
finitely often and there is at least one state in the run that is transparent;

I A run is not accepting in all other cases.

A Büchi automatonM accepts a word v if and only if there exists an accepting
run of M on v. The language Lω (M) ⊆ Σωconsists of all the words accepted
by M.
M does not accept v if and only if it does not contain any accepting or

possibly accepting run for v.
Finally,M possibly accepts a word v if and only if it does not accept v and

there exists at least a possibly accepting run of M on v. Lωp (M) ⊆ Σω is
the language of all words possibly-accepted by M. The language of accepted
words can be obtained if we build an automata Mc from M by removing all
its transparent states and their relative incoming and outgoing transitions.

2.1.3 Refining incomplete models
As previously mentioned, an incomplete model contains a set of transparent
states that represent components whose behavior will be later described. The
design of a system usually progresses through a set of development steps that
concern the refinement of transparent states [MSG15]. Each substitution of
a transparent state of the initial incomplete modelM with a sub-automaton,
that specifies the behavior of the system inside that state, is a refinement
round. The specific sub-automaton that is substituted is called replacement.
From a formal point of view, the concept of refinement relation v, that

allows an iterative improvement of the model of the system, is defined as
follows:

Definition 2.8 (Refinement [MSG15]). Let PM be the set of all possible IBAs.
An (I)BAN is a refinement of an IBAM, i.e.,M v N 1 if and only if ΣM ⊆ ΣN
and there exists some refinement relation R ∈ QM ×QN , such that:

1. ∀q0
M
∈ Q0

M
there exists a q0

N
∈ Q0

N
such that (q0

M
, q0
N

) ∈ R. If q0
M
∈ RM ,

q0
N

must also be unique;

2. ∀q0
M
∈ Q0

N
there exists exactly one q0

M
∈ Q0

M
such that (q0

M
, q0
N

) ∈ R;

1In the original work [MSG15], the symbol � identifies the refinement relation.
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3. ∀(q0
M
, q0
N

) ∈ R, if qN ∈ TN then qM ∈ TM ;

4. ∀(q0
M
, q0
N

) ∈ R, if qN ∈ FN then qM ∈ FM ;

5. ∀(q0
M
, q0
N

) ∈ R and ∀a ∈ ΣN , the following holds:

a) (qM, a, q′M ) ∈ ∆M → (∃q′
N
|((qN , a, q′N ) ∈ ∆N ∧ (q′

M
, q′
N

) ∈ R) ∨
((qM ∈ TM ) ∧ ∃q′′

N
|(qM, q′′N ) ∧ (q′′

N
, a, q′

N
)));

b) (qN , a, q′N ) ∈ ∆N → ((∃q′
N
|(qM, a, q′M ) ∈ ∆M ∧ (q′

M
, q′
N

) ∈ R) ∨
(qM ∈ TM ));

6. ∀(qM, qN ), (q′
M
, q′
N

) ∈ R such that (qM, a, q′M ) ∈ ∆M and (qN , a, q′N ) ∈
∆N , if qM ∈ FM ∩ TM then qN ∈ FN .

A refinement relation preserves every behavior of the original model M in
the refined model N and states that, to every behavior of N , corresponds a
behavior of M. In addition, the refinement relation preserves the language
containment relation. This means that if a word was satisfied (not satisfied)
in M, it remains satisfied (not satisfied) in N . On the contrary, if the word
was possibly satisfied in M, can now be satisfied, possibly satisfied or not
satisfied, in the refinement N .
While we refer to the new version of the model as refinement, we refer to the

sub-automaton that substitutes a transparent state s ∈ TM as replacement,
that is formally defined as follows:

Definition 2.9 (Replacement [MSG15]). Given an IBAM = 〈ΣM, RM,TM,QM,
∆M,Q0

M
, FM

〉
, the replacement Rt of the transparent state t ∈ TM is de-

fined as a triple
〈
Mt,∆

inR
t ,∆outR

t

〉
. Mt =

〈
Σt, Rt,Tt,Qt,∆t,Q0

t , Ft

〉
is the (I)BA

that encodes the automaton to be substituted to the state t, and ∆inR
t ⊆

{(s′, a, q) |(s′, a, t) ∈ ∆M and q ∈ Qt }, ∆outR
t ⊆ {(q, a, s′) |(t, a, s′) ∈ ∆M and q ∈

Qt } are its incoming and outgoing transitions, respectively, which specify how
the replacement is connected to the states ofM. Rt must satisfy the following
conditions:

1. t < Q0
M
→ Q0

t = ∅;

2. t < FM → Ft = ∅;

3. ∀(s′, a, t) ∈ ∆M , ∃(s′, a, q) ∈ ∆inR
t ;

4. ∀(t, a, s′) ∈ ∆M , ∃(q, a, s′) ∈ ∆outR
t ;

Depending of the morphology of the replacement considered, four different
types of run can be executed. A finite internal run starts from an internal
state of the replacement and reaches an outgoing transition of the replacement.
An infinite internal run starts from an internal state of the replacement and
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reaches an accepting state internal to the replacement without ever exiting it.
A finite external run starts from an incoming transition of the replacement and
reaches an outgoing transition of the replacement. Finally, an infinite external
run, starts from an incoming transition of the replacement and reaches an
accepting state inside the replacement without leaving the replacement.
Given these four kinds of runs defined over IBAs, it is also possible to distin-

guish between the three types described in Section 2.1.2: accepting, possibly
accepting and not accepting.
Given a replacement Rt and a word v ∈ Σ∗, we say that:

I Rt internally accepts (possibly accepts) the finite word v ⇔ ∃ an internal
finite accepting (possibly accepting) run of Rt on v;

I Rt externally accepts (possibly accepts) the finite word v ⇔ ∃ an external
finite accepting (possibly accepting) run of Rt on v;

I Rt internally accepts (possibly accepts) the infinite word v ⇔ ∃ an in-
ternal infinite accepting (possibly accepting) run of Rt on v;

I Rt externally accepts (possibly accepts) the infinite word v ⇔ ∃ an ex-
ternal infinite accepting (possibly accepting) run of Rt on v.

A replacement Rt of a transparent state t of M can be plugged into the
model M obtaining a refinement N =M ./ Rt of M. The alphabet of the
refined model N is the union of the alphabet of the incomplete model with
the alphabet of the replaced sub-automaton. The set of regular states of the
refined model is the union of the regular states of Rt and M. The new set
of transparent states corresponds to the one of M except for the transparent
state that has just been replaced. The transitions of the refined model include
all the transitions of the original model (with the exception of the transitions
that reach and leave the transparent state replaced) and all the transitions
of the replacement with its incoming and outgoing transitions (that link it
to the rest of M). The set of initial states of the refined model include all
initial states of M (except for the transparent state that is substituted, if it
was initial), and the ones of its replacement Rt . The set of accepting states
of M ./ Rt include all the accepting states of M (except for the transparent
state that is substituted, if present), and the ones of its replacement Rt .

2.2 Formalizing the specification
Once the developer has proposed a (preliminary) design, he/she may want to
check if it possesses certain properties, such as liveness or safety conditions.
Safety properties are usually described as “nothing bad ever happens” and
liveness properties as “something desirable will eventually happen”. Numerous
combinations deriving from these two classes exist (see [MP89]).
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In verification, we check the model against a formal representation of the
property of interest. Notice that the specification formalism used to describe
a property is strictly connected to the way the system is modeled and the
granularity used to model it, as observed in [Wah08]. There are plenty of
ways to specify requirements for a system; the formalization techniques are
divided into informal, semi-formal and formal techniques. Focusing on the
latter, different types of formalisms are available. They all mainly differ for
complexity and expressiveness.

Linear Time Temporal Logic (LTL) is one of the most widely used specifi-
cation languages for reactive systems [Pnu77]. The reasons of our interest in
LTL are, first, the need of consistency with the two work that that inspired
ours [PZ01, MSG15], second, its strong relation with Büchi automata that
allows to use a model checking algorithm based on automata.

Temporal logic allows specifying behaviors in systems that evolve over time.
These formalisms have played a crucial role in applications oriented to ver-
ification of programs, protocols and, more generally, abstracted automatic
systems. The language of temporal logic defines its predicates over infinite
sequences of states. In general, each formula is satisfied by a set of formulas
and falsified by another set. When interpreted over an execution of a system,
a formula expresses a property of that computation.

The most powerful kind of temporal logic is CTL*, from which CTL (Com-
putational Tree Logic), describing properties of a computation tree, and LTL
(Linear Temporal Logic), providing a description of events along a computa-
tion tree path, are derived.

In the following subsections we introduce syntax and semantics of LTL,
and we present the procedure necessary to decorate the states of the claim
automaton with the sub-formulae valid in it, according to the method used in
[PZ01].

2.2.1 Syntax and semantics of LTL

LTL formulae can be obtained by combining atomic propositions with the
boolean connectors ¬, ∧, ∨ and→. It includes three temporal unary operators:
X (“next”, or #), F (“future”, “eventually”, or ^) and G (“globally”, “always”,
or �) and two temporal binary operators: U (“until”) and R (“release” or V).

The minimal set X , U, ∧, ¬ can be used to derive all other operators.
Semantically, considering a ω-words v = v0v1v2 . . . in Σωdefined over the

alphabet Σ = 2AP and being vi = vivi+1 . . . a suffix of v, the satisfaction
relation |= is defined by:
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v |= true
v |= a ⇔ a ∈ A0
v |= φ1 ∧ φ2 ⇔ v |= φ1 and v |= φ2
v |= ¬φ ⇔ v 6 |= φ

v |= Xφ ⇔ v1 |= φ
v |= φ1Uφ2 ⇔ ∃ j ≥ 0 | v j |= φ2 and ∀0 ≤ i < j, vi |= φ1

2.2.2 LTL to automata
The BA needed by the model checking procedure to describe the specification
is obtained with the classical translation algorithm from an LTL formula to
an equivalent Büchi automaton ([GPVW95]). Note that this procedure also
provides the LTL sub-formulae related to each state. The method is based
on the fact that we can build an automaton which accepts all and only the
infinite traces represented by an LTL formula.
The pattern used to provide the translation is made by the following steps:

1) Formula rewriting, 2) Core translation, 3) Degeneralization, 4) Optimiza-
tion.

The first step concerns the translation of the LTL formula into its Negation
Normal Form, which means that the negation operator ¬ is only applied to
variables and the only other allowed Boolean operators are conjunction (∧)
and disjunction (∨). Every formula can be brought into this form by replacing
implications and equivalences by their definitions, using De Morgan’s laws to
push negation inwards, and eliminating double negations.

The second step concerns the translation of the LTL formula into the cor-
responding Generalized Büchi Automaton, defined as follows:

Definition 2.10 (GBA [CGP99]). A Generalized Büchi Automaton is a tuple〈
Σ,Q,∆,Q0, F

〉
where Σ represents the finite alphabet, Q the finite set of states,

∆ ⊆ Q × Σ ×Q is the transition relation, Q0 ⊆ Q is the set of initial states and
F ⊆ 2Q the acceptance component.
In a GBA, a run ρ is accepting if for each set Pi ∈ F, in f (ρ) ∩ Pi , ∅.

Note that the only thing that changes with respect to the formalism intro-
duced in Definition 2.3 is the acceptance component. In some situations, it
can be more convenient to work with automata that have several accepting
sets (this is the meaning of F being a subset of the power-set of Q). More
intuitively, an infinite word is accepted by a GBA if the execution passes an
infinite number of times through at least one state in each element of F.
The third step of the translation refers to the degeneralization algorithm to

switch from a GBA to its equivalent BA, expanding the size of the automaton
by a factor of n+1 ([CGP99]). However, in general, the constructed automaton
is small.

The fourth step employs various techniques to reduce the size of the ob-
tained automaton.
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2.2.3 Labeled Generalized Büchi Automata

Labeled Generalized Büchi Automata are a variant of GBAs that is worth
mentioning because it allows moving labels from transitions to states, keeping
the same semantic meaning ([GPVW95]). This convention results particularly
useful to express exactly what temporal property holds in each state of the
system.

Definition 2.11 (LGBA [PZ01]). A Labeled Generalized Büchi Automaton is a
tuple B =

〈
Σ,Q,∆,Q0, F , L

〉
where Σ, Q and Q0 are defined as in its equivalent

GBA, whilst this time ∆ ⊆ Q×Q , F ⊆ 2Q×Q is the set of acceptance sets and
L : Q → Σ is a labeling function of the states.
A run of the automaton B is an infinite sequence of Q-states α = q0, q1, ...

such that q0 ∈ Q0 , and for every i ≥ 0, (qi, qi+1) ∈ ∆. A run is accepting if for
every F ∈ F , (qi, qi+1) ∈ F for infinitely many i’s. The language accepted by
an automaton B, denoted by L(B), is the set of (labeled) sequences that are
accepted by the automaton.

When an LTL formula is converted into a LGBA, a tableau construction
is used to assign a sub-formula to each state. The LGBA Φ̄ associates to
each state p a formula η(p). The formula η(p) is obtained through a tableau-
like construction. This construction iteratively splits the formula η(p) to be
considered into two sub-formulae

(∧mp

i=1 v
p
i

)
and

(∧np

j=1 #ψp
j

)
, the first of which

must hold in the current state, and the other, prefixed by the # operator, must
hold in the next state [PZ01].

�A↔ A ∧#�A
^A↔ A ∨#^A

AUB ↔ B ∨ (A ∧#(AUB))
ARB ↔ (A ∧ B) ∨ (B ∧#(ARB))

(2.1)

Essentially, the rules presented in Equation 2.1 are iteratively applied until
a fixed point is reached. At this point we know everything that must be
valid in the examined state, and it is possible to proceed to the following one,
generating a new state that will be labeled with those formulae that appeared
prefixed with # in its parent node. At the end of the procedure, the formula
contains only literals and formulae prefixed by the # operator.
The initial tableau, for a set S of formulae, corresponds to a unique node,

labeled by S itself. The expansion of a tableau is triggered by applying a rule
to one of the leaves nodes (a node without children).
To reduce the number of expansion rules, we will assume the initial set S to

be formed by formulae in negation normal form. The application of whichever
formula, will preserve this property. The expansion rules of LTL tableau are
listed in Table 2.1, where symbols S and Λ indicate sets of formulae, A and B
are formulae, and comma “,” represents the union of set theory. The classical
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rules just serve as a re-writing in terms of nodes labeled with formulae sets.
The temporal rules are written for the operators �, ^, U, and R, and are
based on the relative fixed-point equation for the same operator, that we have
just listed in Equation 2.1. Finally, the rule for # is the one that allows to
terminate the analysis of a state (the one where all literals in Λ are true, and
cannot be further analyzed). The child of the expanded node represents a new
state, the following one, where all formulae A such that #A is requested in
the previous state, are valid. We can say that, whilst the classical rules and
the ones for �, ^, U and R are static, the rule for # is dynamic, concerning a
state and all its consecutive. As in propositional logic, when a node contains
both an atom and its negation, it must not be expanded, being contradictory.

Classical rules

A∧B,S
A,B,S (∧) A∨B,S

A,S B,S (∨)

Temporal rules

�A,S
A,#�A,S (�) ^A,S

A,S #^A,S (^)

AUB,S
B,S A,#(AUB),S (U) ARB,S

A,B,S B,#(ARB),S (R)

Λ,#A1, ...,#An

A1, ...,An
(#), where Λ is a set of literals

Table 2.1: Expansion rules of LTL tableau

Termination Branches can terminate when they contain two complementary
literals (in this case the node is closed). Other branches can however keep ex-
panding in an infinite cycle. Differently from classical propositional tableaux,
that always expand towards simpler formulae, here we can keep getting the
same formulae infinitely. To avoid cycles of this kind, a loop checking proce-
dure stops expanding the formulae when a node with some already existing
label is generated.
The procedure to extend a formula can be explained as follows:

Definition 2.12 (Node expansion [Wol85]). Let n be a non-contradictory node
of a tableau T labeled with the set of formulae S. Let S

S0
(R) be a unary

expansion rule and S
S0 S1

(R) a binary expansion rule, where R corresponds
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to a an arbitrary logic operator. Then, the tableau T ′ resulting from T by
expanding node n through rule (R) can be obtained from T by adding, for
i = 0 (in case of unary rule) and i = 0, 1 (in case of binary rule):

1. a new node ni as a child of T , if no node labeled with Si appears in T ;

2. an edge from n to mi , if mi is a node of T labeled by Si .

In other words, if the child of some node n should be assigned the label Si ,
but there already exists some other node mi with label Si , then, the new node
is not created, but we add an edge from n to mi . This way we guarantee that
the construction of any tableau terminates.

Being η(p) the formula associated to the state p of the automaton Φ̄, that
is obtained through the tableau-like procedure just described, we introduce
two other results specified in [PZ01]:

Proposition 2.1 ([PZ01]). For every state p of Φ̄, we define µ(p) = ¬η(p), i.e.,
µ(p) =

(∨ mp

i=1¬v
p
i

)
∧

(∨np

j=1 #¬ψp
j

)
.

Roughly speaking, this means that every state p of the negated claim au-
tomaton can be decorated with a formula η(p). The negation of each of this
formula, µ(p), represents the actual temporal sub-formula that holds in the
non-negated claim.

The following lemma follows immediately from the construction of the au-
tomaton Φ̄:

Lemma 2.1 ([PZ01]). If a node p in the constructed LGBA has n immediate
successors, p1, . . . , pn, then η(p) →

(∨n
i=1 #η(pi )

)
. Equivalently, ∧n

i=1 #µ(pi )
→ µ(p).

This basically means that, each formula applied to a state p of the negated
claim automaton as a decoration, implies the disjunction of all formulae valid
on the successors of p. Because of Proposition 2.1, this is equivalent to say
that the conjuntion of the positive formulas associated to the successors of p,
imply the formula in p.

Example 2.1. To exemplify the content of this section we here show how to
obtain η(pi ) and µ(pi ) for every state i of the requested claim, following
the procedure described in Section 2.2.3. We consider the requested claim
φ = �♦p: “always eventually p”. According to the procedure of model check-
ing that will be described in Section 2.3.1, we need to build the automaton
equivalent to the negation of the needed property, therefore, ¬φ = ♦�¬p.

Figure 2.1 represents the tableau decomposition of the formula.

19



Chapter 2 Background and used formalisms

♦�¬p ≡ φ(1)

�¬p(2)

¬p,#�¬p(3)

�¬p = (2)

#♦�¬p(4)

♦�¬p = (1)

Figure 2.1: LTL tableau for ♦�¬p

Node (1) represents the initial formula to be decomposed. We apply the rule
of expansion (♦) from Table 2.1 and obtain nodes (2) and (4). By applying the
rule of expansion (�) to (2) we obtain (3), that is composed by a literal and
a #-formula, so we can apply the dynamic rule of Table 2.1, concluding �¬p.
We observe that such formula already exists in the expansion tree at node
(2), therefore we stop expanding and return the formula contained in the last
numbered node of the branch: (3) = ¬p,#�¬p. On the right branch we apply
the dynamic rule to node (4) obtaining the same formula as the one in node
(1). This means we can return the formula contained in the last numbered
node of the branch: (4) = #♦�¬p
The descripted procedure can be used to define a LGBA accepting the

infinite words satisfying the formula. The set Q contains the nodes returned by
the algorithm. The obtained LTL formulae are assigned to the negated claim
nodes as described in [GPVW95]. Here it is even simpler: we observe that the
node (1) corresponds to the root and has no incoming nodes. Therefore, the
formula (4)= #♦�¬p derived from it corresponds to the initial condition of the
automaton, therefore cannot but be on the initial node p1. As a consequence
(3) = ¬p ∧#�¬p is assigned to the second node p2.
According to Proposition 2.1 we can calculate µ(p1) as ¬η(p1) = p ∨ #♦p

and µ(p2) as ¬η(p2) = #�♦p. All µ(pi ) are the sub-formulae that used when
computing the proof.

2.3 LTL model checking
Model checking can be framed in an automata-based approach ([VW86]). In
this approach, the temporal formula φ is transformed into an equivalent au-
tomaton Φ whose language corresponds to the one of φ. Verifying if some
model M satisfies the specification φ becomes then a question of verifying if
the language of M is included in the language of Φ, which corresponds to
L(M) ⊆ L(Φ). By exploiting the properties of BAs that are closed under
intersection and complementation, it is derived that the mentioned condition
is equivalent to L(M) ∩ L(Φ) = ∅, i.e., the intersection between M and the
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automaton representing the negation of the property Φ̄, is empty. Note that
Φ̄ is usually directly obtained by the negation of the LTL formula φ, rather
than from the complement of the automaton Φ.

In Section 2.3.1, we present the algorithm as it was introduced in [VW86,
CVWY92], to check systems formalized as BAs, therefore completely specified.
In Section 2.3.2, instead, we describe the algorithm modified by [MSG15] to
support systems represented as IBAs, therefore incompletely specified.

2.3.1 Checking complete models

The classic algorithm can be summarized in three steps:
1) Creating the automaton of the negated property: the user might decide

to design the model manually directly as a Büchi automaton, or to have it
translated from a linear temporal formula with a time complexity that is
exponential in the size of the formula, namely O(2 |¬φ |), being |¬φ| the size of
the negated translated formula.
2) Building the intersection automaton: Once the automata representing

the model and the negated claim are available, the intersection automaton
can be built.

Definition 2.13 (Intersection between two BAs [CGP99]). The intersection
automaton I between a BA M =

〈
ΣM,QM,∆M,Q0

M
, FM

〉
and a BA Φ̄ =〈

ΣΦ̄,QΦ̄,∆Φ̄, Q0
Φ̄
, FΦ̄

〉
is another BA

〈
ΣI,QI,∆I,Q0

I
, FI

〉
defined as follows:

I ΣI is the union of the two alphabets of the intersected automata;

I QI = QM×QΦ̄×{0, 1, 2}. The third component of states is affected by the
accepting conditions of the two automata. Its role is to guarantee that
accepting states of bothM and Φ̄ occur infinitely often in an execution;

I ∆I is the set of transitions
(〈

qi, q′j, x
〉
, a,

〈
qm, q′n, y

〉) where (
qi, a, qm

)
∈

M and
(
q′j, a, q

′
n

)
∈ Φ̄, i.e., the local components agree with the tran-

sitions of the two automata. The third component depends on the ac-
cepting conditions of both:

– if x = 0 and qm ∈ FM , then y = 1;

– if x = 1 and q′n ∈ FΦ̄, then y = 2;

– if x = 2, then y = 1;

– otherwise, y = x;

I Q0
I
= Q0

M
×Q0

Φ̄
× {0};

I FI = QM ×QΦ̄ × {2}.
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Notice that I accepts the intersection language L(M) ∩ L(Φ). The set of
final states does not correspond to the Cartesian product of the F sets of the
two automata to be intersected because, while accepting states from both can
appear individually infinitely often, they may appear together only finitely
many times. The constructed automaton accepts its runs exactly when states
from FM and from FΦ̄ happen infinitely many times.
Building the intersection automaton costs like 3 · |QM | · |QΦ̄ |, where |QM | is
the number of states of the model and |QΦ̄ | is the number of states of the
automaton that translates the negated property φ.
3) Checking the emptiness of the intersection automaton: the model check-

ing result depends on the emptiness of the intersection automaton. If the
intersection is empty, the property is satisfied. If it is not, φ is violated.
Checking the emptiness of a Büchi automaton consists in searching its en-
tire state space for accepting runs, as stated in Definition 2.4. In particular,
verifying the non-emptiness of our intersection automaton (i.e., showing that
there exists a behavior of the model that does not satisfy the property) is
equivalent to finding a strongly connected component (i.e., a maximal set of
nodes where each node is reachable from all others), that contains at least an
accepting state and that is reachable from any initial state of the model. This
corresponds to an accepting run for the automaton. If L(I) is not empty,
then there is a counterexample that can be expressed as a run starting from
the initial state of the intersection automaton, and reaching, through a finite
prefix, a periodic sequence of states.
The algorithm originally used to find strongly connected components is Tar-
jan’s depth first search [Tar72], with linear complexity in the number of states
and transitions O(|QI | + |∆I |). A double DFS was explained in [CVWY92]
using a more efficient algorithm to solve this problem. The two searches are
nested: the first one calls the second one; this one can either terminate the
entire algorithm or resume the first search from where it had been interrupted.
The basic principle on which this double search is founded is that the first
search looks for accepting states. As soon as one is found, the second search
starts, looking for a cycle through this state. If the second search fails, the
algorithm resumes the first search, that backtracks from the accepting state
found. If a cycle is found, the algorithm terminates with true, a counter-
example exists. The first DFS stack will contain a run from the initial state
to an accepting state. The accepted word is an example of a fair execution of
the system that does not satisfy the property ϕ.

2.3.2 Checking incomplete models

The traditional approach just described has been modified in [MSG15] to
deal with systems modeled through incomplete BAs, to support the modern
development process that has become more agile. In this section we describe
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the modifications needed to the original model checking algorithm. We remind
that the possibility to check incomplete systems offers various benefits. For
example, it allows to check a planned design at early stages of the development
cycle of software, it lets the developer encapsulate complex parts into abstract
modules to examine the design at different abstraction levels, and it gives the
opportunity to distinguish between specifications that are already satisfied by
the system and those that depend on how the abstract modules will be later
developed.

Supporting incompletely specified systems implies the use of a more com-
plicated procedure than the one described in Section 2.3.1. Incomplete Model
Checking can return three values: yes, no (like classical model checking) or
possibly-yes ([MSG15]).

First, we introduce a three value BA semantic for the satisfaction of the
formula φ in the model M. Let us consider the semantic function ‖MΦ‖

that returns values true, false or unknown depending on whether the model
described by the IBA M satisfies, possibly satisfies or does not satisfy the
claim represented by the BA Φ. In the first case, all behaviors of the system
satisfy the claim. In the second case, there exists at least a behavior of the
system that does not depend on the incomplete parts and that violates the
claim. In the third case, finally, whetherM satisfies φ or not, depends entirely
on the incomplete parts to be completed.
Considering this distinction from the point of view of language containment,

we refer to Lω (M) ∈ Σω as the language formed by the words accepted byM,
and to Lωp (M) ∈ Σω as the language formed by the words possibly-accepted by
M. The following definition links the three possible outputs of model checking
to the conditions related to the languages accepted by the model automaton.

Definition 2.14 (Three value BA semantic [MSG15]). Given an incomplete BA
M and a BA Φ̄ which specifies the accepted behaviors of M,

‖MΦ‖ = T ⇔ Lω (M) ∪ Lωp (M) ⊆ Lω (Φ) (2.2)
‖MΦ‖ = F ⇔ Lω (M) * L(Φ) (2.3)
‖MΦ‖ = ⊥ ⇔ Lω (M) ⊆ L(Φ) and Lωp (M) * Lω (Φ) (2.4)

The first equation means that the model satisfies the claim if and only
if all its behaviors (also the ones crossing transparent states) are included
in the set of behaviors allowed by the claim. The second means that there
exists a behavior of the system that is not included in the ones allowed by the
claim. The third one describes the situation where all behaviors of the model
are included in the set of behaviors allowed by the claim, but there exist a
possible behavior (a run that crosses at least a transparent state) that is not
included in the language accepted by the claim.
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Given an IBA M and an LTL formula φ, the model checking problem
concerns the problem of checking whether the model satisfies, possibly satisfies
or does not satisfy the property φ, i.e., ‖MΦ‖ is equal to true (T), false (F)
or maybe (⊥).
[MSG15] revisited the model checking procedure of Section 2.3.1 to take into

account models that are incomplete Büchi automata. The procedure works in
five subsequent steps:

1. Creation of the automaton Φ̄ (this phase is unmodified);

2. Extraction of the automaton Mc , that contains all the accepting be-
haviors of the system, and construction of the intersection automaton
I =Mc ∩ Φ̄ that contains the behavior ofMc that violate the property;

3. Emptiness check of Ic . If Ic is not empty, the condition L(M)∩L(Φ̄) ,
∅ equivalent to Condition 2.3 is matched, which means that the property
is not satisfied and every infinite word in the intersection automaton is
a counterexample;

4. Computation of the intersection I =M∩ Φ̄ of the incomplete modelM
and the automaton Φ̄ associated with the property φ;

5. Emptiness check of I. Since condition L(M) ⊆ L(Φ̄) has already been
checked, two cases now arise: if Lp (M) ⊆ L(Φ̄), then the property
is satisfied (regardless of the model refinement proposed); if Lp (M) *
L(Φ̄), there exist some refinement of M that violates the property and
we are in the case of possible satisfiability.

The definition used to compute the automaton in phase 4, is modified as
follows:

Definition 2.15 (Intersection between BA and IBA [MSG15]). The intersection
automaton I between an IBA M and a BA Φ̄ is a BA

〈
ΣI,QI,∆I,Q0

I
, FI

〉
where:

I QI = ((RM × RΦ̄) ∪ (TM × RΦ̄)) × {0, 1, 2} is the set of states. As in the
classical intersection algorithm for BAs [CGP99], the labels 0, 1 and 2
indicate that no accepting state is entered, at least one accepting state
ofM is entered, and at least one accepting state ofM and one accepting
state of Φ̄ are entered, respectively. MI = TM × RΦ̄ × {0, 1, 2} represents
the set of mixed states.

I ∆I = ∆c
I
∪ ∆

p

I
. ∆c

I
is the set of transitions (

〈
qi, q′j, x

〉
, a,

〈
qm, q′n, y

〉
)

where (qi, a, qm ) ∈ ∆M and (q′j, a, q
′
n ) ∈ ∆Φ̄. ∆

p

I
corresponds to the set

of transitions where M is in a transparent state while Φ̄ moves from a
state to another.
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ΣI , Q0
I
and FI are obtained as in Definition 2.13.

When a property is possibly satisfied, [MSG15] describes a procedure to
compute sub-properties that represent the weakest condition on the replace-
ments of the transparent states.

2.3.3 Constraints and refinement checking

An incomplete automaton can be iteratively refined by replacing transparent
states with automata designed by the developer ([MSG15]).
When planning a new replacement, the developer is assisted and guided

through its creation by a constraint which contains a set of sub-models for
the unspecified components. The computation of the constraint is triggered
when the model checking result is unknown. The constraint is computed to
expresses an upper-bound on those characteristics that the model refinement
must satisfy, in order for the final model to satisfy the claim.

Definition 2.16 (Constraint and sub-properties [MSG15]). A constraint C con-
tains a set of sub-properties for the replacements of the transparent states
t1, t2, . . . , tn ∈ TM , to guarantee that φ is satisfied. A sub-property is mainly
made by a tuple

〈
P̄t,∆

inP
t ,∆outP

t

〉
, where P̄t is the automaton that encodes

the weakest condition on the replacement of the state t that violates φ, and
∆inP
t amd ∆outP

t , called in-transitions and out-transitions respectively, specify
how the model automaton P̄t is related to the original model.

[MSG15] associates to each incoming trin ∈ ∆inP
t and outgoing transition

trout ∈ ∆outP
t a color label, that specifies how the sub-automaton of the sub-

property is connected to other states of the model. Green indicates that an
incoming transition is reachable from an initial state of the intersection with-
out passing through mixed states; red indicates those outgoing transitions
from which an accepting state of the intersection automaton is reachable with-
out passing through mixed states; yellow indicates both incoming transitions,
reached by the initial state passing through mixed states, and outgoing tran-
sitions from which it is possible to reach an accepting state passing through
mixed states. When an outgoing transition of a sub-property S̄t is labeled
with yellow, the acceptance of a run passing through S̄t does not depend on
t itself, but on other transparent states replacements.

The goal of the refinement process (see Section 2.1.3 ) is to find a set of
automata, one for each transparent state, such that each of them satisfies the
sub-property related to it, and the whole set, therefore, satisfies the entire
constraint. This allows the developer to only prove the single sub-properties
against the proposed replacements and not the initial property φ against the
refined model. [MSG15] proposes a procedure to check if the replacement of
the transparent state satisfies, possibly-satisfies or does not satisfy the corre-
sponding sub-property.
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Definition 2.17 (Refinement Checking [MSG15]). Given a particular refine-
ment round, where the developer refines the transparent state t ofM through
the replacement Rt , the refinement checking problem is to compute whether
the refined automaton N obtained by plugging the replacement Rt of the
transparent state t into the model M, satisfies, does not satisfy or possibly
satisfies the property φ.

The refinement checking process includes the need to compute an intersec-
tion automaton between each replacement Rt and the sub-property S̄t related
to the same transparent state t. The intersection structure is defined as fol-
lows:

Definition 2.18 (Extended intersection between replacement and sub-property
[MSG15]). The intersection It between a replacement Rt =

〈
Mt,∆

inR
t ,∆outR

t

〉
and the corresponding sub-property S̄t =

〈
P̄t,∆

inP
t ,∆outP

t

〉
is an automaton

which is obtained by the intersection of the automata associated with Rt and
S̄t (Mt ∩P̄t), and a set of incoming and outgoing transitions that corresponds
to the parallel execution of the transitions of Rt and S̄t .

Given the constraint C computed for the system M, for each transparent
state t, we distinguish three cases: the replacement Rt does not satisfy the
constraint if its extended intersection with the sub-property S̄t allows to reach
a red outgoing transition or an internal accepting state of S̄t from a green
incoming transition or from an internal state of S̄t ; the replacement Rt satisfies
the constraint C if the extended intersection automaton does not allow to reach
any internal accepting state of S̄t or any of its yellow outgoing transitions.
[MSG15] demonstrates that checking a replacement Rt versus its constraint
C corresponds to checking the refined automaton N against its property φ.

2.4 Proof of M-validity of property φ
In this section, we briefly introduce the concept of deductive system and the
utility of its rules to build proofs. Then, we describe the approach of Peled et
al. ([PZ01]) that uses ad hoc rules to infer knowledge from an intersection au-
tomaton built in the model checking procedure. A final example is illustrated
to explain the rules and results presented in [PZ01].
A proof has the purpose of rigorously explain the reason why a statement

holds. A way of proving the validity of a property over a model is, for example,
by using a deductive system. Deductive systems use inference rules to generate
new knowledge starting from known axioms.
As specified in [MP91], a deductive system consists of the following elements:

I a set of axioms. This is a set of valid formulas that are taken as basic
properties of the operators in the language;
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I a set of rules. Rules provide patterns by which new valid formulas
can be derived from other formulas whose validity has been previously
established. A rule has the general form p1, ...,pk

q . It consists of a list of
formulas p1, . . . , pk , called premises, and a formula q, called conclusion
of the rule. Such a rule states that if we have already established the
validity of p1, . . . , pk , then we may infer the validity of q.

[PZ01] considers an intersection automaton that represents the combined state
spaces of the automaton M (representing the model of a system) and the
automaton Φ̄ (representing the negation of a requirement for that system).
According to their procedure, this automaton can be used to produce a tem-
poral proof of the fact that I =M ∩ Φ̄ is empty, i.e., it does not contain any
accepting path.

Notice that the automata used in this section are LGBAs (see Definition
2.11), as in [PZ01]. The rules here described are modified in the contribution
of this thesis (Chapter 3) to be used with automata with incompletely specified
models.

The intersection automaton used in the procedure corresponds to the clas-
sical intersection computed between automata, enriched by failed nodes.

Definition 2.19 (Failed state [PZ01]). A failed node (or failed state), is a node
(q, p), where L(q) < L(p), i.e., the label on the model state q does not satisfy
the propositional assignment on the claim state p, which is the LTL formula
η(p) (see Proposition 2.1).

More intuitively, “failed” is referred to the fact that the state represents
a system configuration where the negated property is not satisfied. From a
practical point of view, failed nodes are the ones without successors, the leaves
of the intersection automaton. On the contrary, a successful node is a node
where the negated property could be satisfied, i.e., a node (q, p) where the
propositional assignment of q satisfies the one in p.

The idea introduced by [PZ01] is to analyze the intersection automaton by
visiting the automaton from the failed nodes to the initial nodes, searching
for a counterexample that, in case the modelM does not satisfy the property
φ, is not found.
To build a sound and complete proof system, [PZ01] suggests to consider

four kinds of correctness assertions that we outline here. q represents the state
coming from the model automatonM and p represents the state coming from
the Φ̄ automaton.

Failure axiom FAIL. Let (q, p) be a failed node. Then, we can conclude
that

q |= µ(p) (2.5)

27



Chapter 2 Background and used formalisms

The justification for this axiom is simple: the node has failed because we
have checked the label of the incoming transition state q against the proposi-
tional claim leading to p, and the propositional claim has failed to hold. Thus,
q |= ¬prop(p). But, note that ¬prop(p) → µ(p). Therefore, q |= µ(p).

Successors rule SUCC. Let (q, p) be a successful node, the model state q
has m successors q1, . . . , qm and the claim state p has n successors p1, . . . , pn.
Then, we have

q → {q0, . . . , qm }
For each 1 ≤ i ≤ m, qi |=

∧
j=1,n µ(pj )

q |= µ(p)
(2.6)

The validity of this proof rule derives from the correctness of the construc-
tion. In particular, Lemma 2.1. The interested reader may find additional
information in [BCG95]. Note that the failure axiom can be seen as a trivial
case of the successors rule, with no premises.
This rule is necessary to propagate formulas valid on already failed portions

of the automaton to states that directly lead to these, with only one transition.
It is a one step induction.

Induction rule IND. Let C be a strongly connected component in the con-
sidered automaton. Let Exit(C) be the set of nodes not in C, with an incoming
transition from a node in C. We consider the case where the SCC C does not
satisfy at least one acceptance condition (let us remind that in a Labeled Gen-
eralized Büchi Automaton, an accepting run is a run that passes an infinite
number of times in at least one state of each element of F, the accepting set).

For each (q, p) ∈ Exit(C), q |= µ(p)
For each (q, p) ∈ C, q → successor (q)

For each (q, p) ∈ C, q |= µ(p)
(2.7)

Notice that defining a set that contains the nodes reached by states inside
the SCC but not beloging to it, is similar to identifying the successors of a
trivial SCC. The Induction rule is a generalization of the Successors rule, that
allows to consider the SCC as a single macro-node of the graph.

Conjunction rule CONJ. This rule allows conjoining any pair of conclusions
made on a given state along with making temporal logic interferences.

qinit |= µ(p1), . . . , qinit |= µ(pn ), (µ(p1) ∧ . . . ∧ µ(pn )) → φ

qinit |= φ
(2.8)
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The last premise, (µ(p1) ∧ . . . ∧ µ(pn )) → φ, stating that the conjunction
of µ(pi ) implies the required property, assumes a given sound and complete
propositional temporal logic.
Now, let us assume we are given a deductive system H consisting of the

FAIL axiom and SUCC, IND and CONJ rules just described. The goal is
to build a derivation, called proof, that establishes the validity of a formula
stating that a model M satisfies the property φ, using the axiom and rules.

The axiom and the rules are only schemas. They therefore need to be in-
stantiated, i.e., their symbols are substituted with the real states and formulae
belonging to the automaton to which they are applied. For example, the ax-
iom q |= µ(p) only acquires a meaning when we consider the real model state
q2 as instantiation of the variable q and the real claim state p1 as instantiation
of the variable p.
A proof in the system H represents a sequence of rows, each of which

contains a formula p (a temporal formula, in our procedure). The row states
the validity of p, supported either from an axiom or the application of another
rule.

Given a proof consisting of the lines ϕ1, . . . , ϕn, we say that this is a proof
of ϕn, the last formula of the proof. We say that ϕn is a theorem of the logic.
From now on, we may use ϕn, or an instantiated version of it, in subsequent
proofs as though it were an axiom.
In particular, the desired output of the proof built in [PZ01] is a final

statement that represents the satisfaction of the property φ by the model of
the analyzed system M.

Proposition 2.2 ([PZ01]). If a property φ is true in all executions of our sys-
tem, then we say φ is a valid property of a model M, i.e., M |= φ, where the
symbol |= denotes the satisfaction relation for linear temporal properties.

[PZ01] shows that, given an empty intersection automaton, demonstrating
that the property φ is satisfied by every execution of the automaton starting
from its initial states (q0, p0), corresponds to say that the whole model satisfies
it. Moreover, according to Proposition 2.1, the claim φ can be seen as a
conjunction of LTL formulae.

Theorem 2.1 ([PZ01]). Assume L(M ∩ Φ̄) = ∅. Then, for every initial state
(q0, p0) of I =M ∩ Φ̄, (M, q0) |= φ. Thus, M |=

∧
(q0,p0)∈QI0

µ(p0).

To better explain the applicability of each rule, here follows a basic example.

Example. We consider the intersection automaton graph in Figure 2.2. The
depicted graph represents an intersection automaton deriving from a simple
switch system model M with the automaton Φ̄ associated with the claim
φ = �♦p. M presents two states q1 (labeled with p) and q2 (labeled with t),
being q1 initial, with transitions q1 → q2 and q2 → q1.
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(q1, p1)
#^�¬p

(q2, p1)
#^�¬p

(q2, p2)
#�¬p ∧ ¬p

(q1, p2)
#�¬p ∧ ¬p

Figure 2.2: An example intersection automaton

The intersection automaton I presents four nodes, three of which are regu-
lar nodes (continuous border) and one is failed (dashed border). The nodes are
labeled with their model associated state (q1 or q2) and their claim associated
state (p1 or p2). In addition, the label contains a LTL formula that decorates
the state, representing η(p1) or η(p2) according to the claim associated state
of the considered node.

Rule Fail is applicable to node (q1, p2) in the intersection of Figure 2.2.
This node is indeed failed because the propositional assignment of the model
state L(q1) = p does not comply with the propositional assignment of the
negated property state L(p2) = #�¬p ∧ ¬p, being p and ¬p obviously a con-
tradiction. We can, therefore, state:

−

q1 |= µ(p2) = p ∨#^p

Rule Succ is applicable to node (q2, p2) that is a single node without a
self loop but with successors (trivial SCC). Considering that the model state
q2 has only one successor q1 and that the claim state p2 only has itself as a
successor, the rule works as follows:

q2 → {q1} successors
q1 |= µ(p2) = p ∨#^p
q2 |= µ(p2) = p ∨#^p

Rule Ind is applicable to the strongly connected component C = {(q1, p1),
(q2, p1)}. According to the rule, we need to identify the set Exit(C) = {(q2, p2),
(q1, p2)} corresponding to those nodes that are directly reached from one node
of C but are not part of C itself. Applying the rule, we obtain:
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q1 |= µ(p2) = p ∨#^p
q2 |= µ(p2) = p ∨#^p
q1 → {q2} successors
q2 → {q1} successors
q1 |= µ(p1) = #�^p
q2 |= µ(p1) = #�^p

This rule allows to propagate knowledge we possess on previously discarded
nodes to more complex components on the graph that are located “above”
them (meaning further from failed nodes and closer to initial ones).

Rule Conj is the rule that allows us to conclude the proof and draw
together all partial conclusions made until now.

q1 |= µ(p2) = p ∨#^p
q1 |= µ(p1) = #�^p
(#�^p ∧ (p ∨#^p)) → �^p conjunction of conclusions
q1 |= φ = �^p

Referring to the example just described, we would like the reader to note
that, if the rules are written in this order, the conclusions of each rule are
used as premises to the following rules. The chain is easily solved:

q1 |= µ(p2) from FAIL is applied to SUCC that outputs q2 |= µ(p2). Both
conclusions of FAIL and SUCC are used in IND, that derives that q1 |= µ(p1)
and q2 |= µ(p1). Finally, the validities gathered on the initial state q1 can
feed the last rule, stating q1 |= φ, which corresponds to saying that the whole
model satisfies the property, thus the property is a theorem of the model.

q1 |= φ → M |= φ
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3 Contribution

In this chapter we present the technique proposed to build a proof starting
from a model checking procedure that supports incomplete systems. Our
procedure is activated in case the model checking algorithm verifies that the
analyzed system satisfies (or simply “might satisfy”) the submit requirement.
These are the cases where the model checker outputs “yes” or “possibly-yes”,
since the search for a counterexample has failed.

The techniques and the formalisms on which our approach is based, have
been extensively explained in Chapter 2. Section 3.1 outlines the procedure
proposed in this thesis to compute incremental proofs; Section 3.2 describes
the construction of an initial proof that justifies why the initially provided in-
complete description of the system satisfies the requested property. This first
step is final in case the model is already completely defined, or if the user is
satisfied with a partial explanation of its checking process. Differently, when-
ever the initial description of the system was incomplete, with modules left
unspecified, the developer might later request to replace these parts with lower
level descriptions. Our procedure uses the constraint computation method of
[MSG15] to guide the developer through the design of new components. If
the proposed refined model does not fail the given condition, it is possible to
compute single sub-proofs dedicated to the only replaced states and carry on
with the completion of the master proof. Section 3.3 shows the construction
of sub-proofs that justify in which way the replacement of a single module
satisfies or possibly-satisfies the constraint. Finally, Section 3.4 explains how
to link the initial incomplete proof with the related sub-proofs of the newly
specified components and understand the dependency relation among these.

3.1 High level outline

The final goal is to build incremental deductive proofs of Linear Time Tem-
poral Logic (LTL) properties for incomplete systems, that are completed pro-
gressively when the system gets refined. A deductive system is assembled
by analyzing the intersection automaton between the model of the system
and the negation of the required property, through the study of its strongly
connected components, that supplies rules and validities for the formal sys-
tem. Whenever the system gets partially or completely refined by replacing
a transparent state with a more complex specification, an ad hoc sub-proof is
computed for the replacement and then is plugged into the initial proof. The
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final and complete framework that we obtain works as described in Figure 3.1.

Incomplete Model Checking

model M
negated
claim ¬φ

NoYes Possibly-yes

Complete
master
proof

End of
procedure

Computation of
sub-properties

Incomplete
master
proof

Replacement
checking

replacement

YesNo Possibly-yes

End of
procedure

Complete
master
proof

Incomplete
master
proof

Plug into
master
proof

no more states
to refine

∃ states yet
to refine

chose
other

Figure 3.1: Integration of the proof computation in an incomplete model check-
ing framework

We start from the classic procedure of LTL automata-based model check-
ing to deal with incomplete model specifications [MSG15]. As described in
[MSG15], our input is the model of the system (represented as an IBA, a
possibly incomplete Büchi automaton) M and the formalization of the nega-
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3.1 High level outline

tion of the property that we would like to check, ¬φ (expressed as BA). For
consistency with [MSG15, CGP99], we label the transitions of the model with
subsets of propositions belonging to the alphabet of the automaton. Note
that, when the claim (property of interest) is considered, the transitions are
labeled with boolean expressions, therefore including negative propositions.
This is because, being the model a description of something we observe or are
willing to create, we must know what holds and where. If a proposition is not
mentioned on a transition, this means that is not true. Instead, the fact that
the claim includes propositional formulae allows the representation of a set
of transition, i.e., all those that satisfy that propositional formula. The two
conventions are equivalent from an expressivity point of view.

Within the procedure of Incomplete Model Checking presented in Figure 3.1,
the automata-based model checking framework builds the intersection au-
tomaton I =M ∩ ¬φ, as described in Definition 2.13. Three possible cases
arise: the intersection is not empty and the existing accepting run only de-
pends on regular states (No, the property is not satisfied by the model), the
intersection is empty (Yes, the property is satisfied by the model), or the
emptiness of the intersection depends on further refinements of incomplete
states, i.e., there exists a possible accepting run (Possibly-yes, the property
is possibly satisfied by the model). In this last case, there is no accepting
run only crossing regular states, but there is at least one path through mixed
states that is possibly accepting.

In the first case, no proof is built. In the second one, a complete deductive
master proof is built and closed at the first step. Incomplete models where the
satisfiability of the property does not depend on the refinement of the trans-
parent states also fall into this case. Finally, in case of possible satisfiability,
we proceed with an incremental construction of the deductive proof. A first
master proof is set up, as a starting grid for later sub-proofs to be plugged
in. In parallel with the computation of this incomplete proof, according to
[MSG15], a constraint is computed, corresponding to a set of sub-properties
(one for each transparent state) that guides further developments of states yet
to be specified.
Once the constraint is available, the developer is encouraged to come up

with a refinement of the model initially provided. In particular, he/she can
decide to substitute the transparent states predisposed during the initial, more
high level phase of the system description, with more detailed sub-automata.
Our framework allows to check these new components (called replacements,
expressed as (I)BAs) individually against the corresponding sub-property (ex-
pressed as a BA plus incoming and outgoing transitions) and compute a sub-
proof only for this part, using the intersection automaton calculated with the
sub-property and the replacement referred to the same transparent state. The
incremental step, Replacement Checking, allows to proceed without checking
and proving the whole system from scratch. The three cases just described
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are obtained again: if at least one non-empty intersection (No) case occurs,
the property is not satisfied and the proof is nullified: the developer is en-
couraged to try another replacement. If only empty intersection (Yes) cases
occur, the sub-proof can be completed and closed: its conclusion can now be
used to solve the possible dependencies created in the master proof related to
that transparent state. Finally, any possibly empty intersection (Possibly-yes)
case leads to a partial completion of the deductive proof and the need to fur-
ther refine the system. In this case no dependency can be resolved, but other
replacements are expected.
Our proposed approach is considered in the context of a bigger framework:

we are adding deductive proofs to the modular model checking approach of
[MSG15] and at the same time are including the chance to proceed in an
incremental way in [PZ01].
The next sections of the chapter describe the base step, the master proof

construction (Section 3.2), the inductive step corresponding to the construc-
tion of sub-proofs for every transparent state of the model (Section 3.3), and
finally a procedure to join the obtained results (Section 3.4).

3.2 Computing the master proof

This section provides the description of the first step of the contribution of this
thesis: the construction of the master proof. Both when the model checker
returns true and when it outputs possibly-true, it is possible to build a deduc-
tive proof of the fact that the input model satisfies or possibly satisfies the
required property. We refer to the initial proof as master proof because it is
in bijective correspondence with the first provided version of model (master)
and it is also the grid referenced by further results.
Algorithm 3.1 shows the point where we insert our contribution inside the

model checking framework. If the model checker returns 0 (no), it means that
a counterexample has been found and the procedure ends directly (Lines 3- 4).
Line 6 is executed if the model checking procedure returns values 1 (yes) or -1
(possibly-yes). The procedure BuildProof is called and returns a complete
proof, in case the model checker verifies that the property is satisfied by the
model, or an incomplete proof, in case of possible-satisfaction of the claim.

Algorithm 3.1 Model checking with deductive proof
1: procedure CheckingWithProof(M, Φ̄)
2: I ←M ∩ Φ;
3: if ModelChecking(I) = 0 then
4: return false;
5: else
6: return BuildProof(I(M ∩ Φ̄));
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The complete procedure to compute the master proof is presented in Algo-
rithm 3.2 (BuildProof). The algorithm includes six different steps:

I Extend the intersection automaton (Line 2): the intersection automaton
described in [MSG15] is enriched by considering also failed states (Defi-
nition 2.19), configurations of the model that fail to satisfy the negated
property. These are needed as a base case for the deductive proof. This
function is extensively explained in Section 3.2.1.

I Creation and update of a dependency-graph (initialized at Line 3): we
create a data structure that maps each validity statement (key) derived
from the intersection to a set of other validities it depends on (values).
These validities need first to be resolved, i.e., a complete proof that
states that they are valid must exist in order for the key validity to
be completely proven too. Section 3.2.5 describes how the dependency
graph is used and updated at each new rule creation.

I Strongly connected components (SCCs) identification and sorting (Lines
4- 5): we use a classical Tarjan’s algorithm [Tar72] that takes a directed
graph (the extended version of the intersection automaton) as input
and produces a partition of its nodes into SCCs. This unsorted set is
later sorted through a partial order that guarantees that, whenever a
component is used to generate a rule of the proof, all the other compo-
nents reachable from it, have already been analyzed. This procedure is
described in Section 3.2.2.

I Dangerous strongly connected components rejection (structure initialized
at Line 6): we build a data structure that contains information about
the graph components that need to be discarded. These parts contain
accepting cycles, and, therefore, would never appear in the intersection
automaton if the model was complete and the model checker had re-
turned “yes”. These components are indeed still reachable because the
used model is incomplete. Once the model is completely refined, they
will never be accessible again. This explains why we need to exclude
them from the proof (and also delete all dependencies of other compo-
nents on them). Section 3.2.3 clarifies this process.

I Rules building (Lines 7- 9): according to each SCCs characteristics, a
different rule among RuleFail, RuleSucc, and RuleInd is chosen,
as thoroughly described in Section 3.2.3.

I Conjunction of rules (Line 10): a conjunction rule is necessary to con-
nect all conclusions drawn on the SCCs of the graph. Section 3.2.4 de-
scribes this last phase.
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Algorithm 3.2 Deductive proof construction
1: procedure BuildProof(I)
2: Iext ←ExtendIntersection(I); . Algorithm 3.3
3: Proo f .depGraph ← (QIext , {});
4: Proo f .SCC ←Tarjan(Iext);
5: Proo f .SCC ←Sort(Proo f .SCC); . Algorithm 3.4
6: Proo f .re jects ← {};
7: Proo f .rules ← {};
8: for scc ∈ SCC do
9: Proo f .rules ← Proo f .rules ∪BuildRule(scc); . Algorithm 3.5

10: Proo f .rules ← Proo f .rules ∪RuleConj(Φ̄,Iext ); . Algorithm 3.9
11: return Proof;

The construction of the extended intersection automaton, the SCCs sorting,
the rules building and conjunction are phases already introduced in [PZ01]
that have been modified to cope with incompleteness and a different formalism
(BAs instead of labeled generalized BAs). The dependency graph and rejects
structures are, instead, a novelty of our approach, introduced to supply the
proof entity with more flexibility. The first one provides the ability to keep
trace of which statements are final and which ones are only guaranteed under
certain assumptions. The second one provides the ability to exclude from the
reasoning the components that would not appear in a closed proof (because
leading to a counterexample).

Example. We introduce an example that we are going to use through this
chapter to support the description of the steps of the proposed procedure.
The system under analysis is a railway crossing system. It may assume a
number of different configurations, some of which fully defined (modeled by
the states q1, q3, q5, and q6), others transparent (modeled by the states q2
and q4), to be later substituted with more detailed automata.
The presented model concentrates on the critical region of the described

crossing. We establish that a train is considered to be out of the critical
region (intersection of the rails with the street) when it has left the crossing.
We model this situation with the propositional atom out. Its opposite, ¬out,
describes the situation in which at least one train car is still passing through
the crossing. As far as the state of the bar is concerned, we express through
low the situation where the bar blocks the passage of vehicles on the street,
clearing the way of the train. ¬low means that the bar has been raised.

We remind that, according to the convention used for transitions labeling
of the model, whenever a propositional statement does not appear on a tran-
sition, it means that its negation holds. Between the first four states, the
fundamental requirement to step from a configuration to the other is that the
security bar is in its lowered state. Therefore, on the first three transitions
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low ∧ ¬out holds. The condition to exit state q4 is out . The cycle between
states q5 and q6 corresponds to a situation where the bar is lowered again,
even if the train is not in the critical area.

We request a basic safety property “The bar is lowered at least until the
train gets out of the critical area”, formalized as lowU out. The model of this
simple example is presented in Figure 3.2 and the automaton corresponding
to the negation of the LTL claim ¬φ = ¬(lowU out) = (¬low R¬out) has
been translated to its equivalent Büchi automaton according to [GO01] and
is represented in Figure 3.3.

q1 q2 q3 q4 q5 q6
low low low out

out

low ∧ out

Figure 3.2: Model of railway crossing system

p1 p2
!low∧!out

!out Σ

Figure 3.3: Negation of the property for the railway crossing system

As described in Section 2.2.2, we can derive the linear temporal logic for-
mulae valid on the property automaton states following an LTL tableaux
procedure of decomposition of the initial LTL formula corresponding to the
negated claim ¬φ. This information is used to decorate the information of the
proof.

Specifically for this example, we build the tableau in Figure 3.4 similarly to
how done in the example of Section 2.2.2.

¬lowR¬out(1)

¬low,¬out(2)

T(3)

T = (3)

¬out,#(¬lowR¬out) (4)

¬lowR¬out = (1)

Figure 3.4: LTL tableau for ¬lowR¬out
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From the two nodes squared with dotted lines, we deduce (4) = η(p1) =
#(!lowR!out)∧!out and (2) = η(p2) =!low∧!out. Later, we derive the positive
formulae (according to Proposition 2.1: µ(p) = ¬η(p)), and we obtain µ(p1) =
#(lowUout)∨out and µ(p2) = low∨out. For now, though, the proof is written
using µ(p1) and µ(p2) to denote the sub-formulae valid on states p1 and p2.
For clarity purposes, the LTL formulae will be mapped onto the proof only at
the end.

3.2.1 Extending the intersection

The intersection automaton needs to undergo two modifications. First, we
unify into a single all the states that correspond to the same tuple < q, p >

where q is a state of the model and p is a state of the claim and have a
different number ∈ {0, 1, 2} as third component (see Definition 2.13). Sec-
ond, we decorate the intersection by adding failed states, that will be crucial
later, in order to let the initial rules of the proof fire. The complete pro-
cedure is outlined in Algorithm 3.3. The algorithm is applied to the inter-
section automaton I =

〈
ΣI,QI,∆I,Q0

I
, FI

〉
built from the IBA representing

the model M =
〈
ΣM,QM,∆M,Q0

M
, FM

〉
and the BA representing the claim

Φ̄ =
〈
ΣΦ̄,QΦ̄,∆Φ̄,Q

0
Φ̄
, FΦ̄

〉
. We remind that Q represents the set of states of the

referred automaton, Q0 is the set of initial states of the automaton, and ∆

represents the set of transitions between two states of the automaton.

Algorithm 3.3 Extension of intersection automaton
1: procedure ExtendIntersection(I(M ∩ Φ̄))
2: Iext ← CollapseNodes(I);
3: QCP ←CartesianProduct(QM ,QΦ̄);
4: for (q′, p′) ∈ QCP do
5: reachable ← f alse;
6: if (q′, p′) < QI ∧ q′ < Q0

M
then

7: for (q, p) ∈ Predecessors(q′, p′) do
8: if (q, p) ∈ QI then
9: ∆Iext ← ∆Iext ∪ {(q, p), a, (q′, p′)};

10: reachable ← true;
11: if reachable then
12: QIext ← QIext ∪ (q′, p′);
13: return Iext ;

Nodes collapsing (Line 2). Nodes is used in this section with the the same
meaning of state. As noted in [CGP99], a simpler intersection where {0, 1, 2}
are not necessary can be obtained in cases where either the model or the
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claim only contains accepting states. In those cases, the procedure of nodes
collapsing is even simpler, only requiring to ignore the third label with values
{0, 1, 2} and not having to collapse any nodes since, given a model state qi
and a claim state pj , there only exist at most two nodes with label (qi, pj ).
Nevertheless, also in situations where both automata contain non-accepting
states, we should consider a simplified version of intersection.

The simplification collapses all states that show the same first two compo-
nents of the label (q and p) keeping the node that has the higher number as a
third component. Given three nodes (in the most complicated case) (qi, pm, 0),
(qi, pm, 1) and (qi, pm, 2), we obtain a new node (qi, pm ) having as incoming
transitions the union1 of the incoming transitions of the three unified nodes
and, similarly, as outgoing transitions, the union of the outgoing transitions
of all unified nodes. Whenever a cycle is found among {0, 1, 2} components
with the same first two labels, it is translated into a loop on the new node,
that is marked as accepting.

Figure 3.5 shows an example of what the output of this step should look
like. In this case we collapse {(q2, p2, 0), (q2, p2, 1), (q2, p2, 2)} into (q2, p2) and
{(q1, p1, 0), (q1, p1, 1)} into (q1, p1). Notice that, since the set of nodes deriving
from q2 ∈ QM and p2 ∈ QΦ̄ contains an accepting node, we can collapse the
whole set into a unique accepting node.

q1, p1, 0 q1, p1, 1 q2, p1, 1

q2, p2, 2

q2, p2, 1 q2, p2, 0

q1, p1 q2, p1

q2, p2

(a) Before collapsing (b) After collapsing

t

t

t

p

¬pt

¬p

¬p

¬p

t

p

t ¬p

¬p

Figure 3.5: Example of nodes collapsing

This procedure assures that no information is lost for the purpose of the
proof. As a matter of fact, the counter labels {0, 1, 2} are, in principle, used

1 Union must be considered with its meaning in set theory.
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to guarantee that accepting states from both the automata (together, not
individually) appear infinitely often. Since the intersection has been calculated
in its classical version, if any cycle between states exists, it is already been
spotted during this procedure. If the cycle appears among three states with
same q and p, we keep track of it by adding a loop on the node into which
the nodes are collapsed. If the cycle appeared among nodes with different q
and p components, it is preserved by the procedure.

The rules of the presented approach are based on the semantic content of the
nodes of the model and the claim, combined. Their combination, irrespective
of the third component of the node, has the same meaning. For the purposes
of the proof, then, it is absolutely legitimate to disregard labels {0, 1, 2}. This
choice indeed simplifies our algorithms of proof construction but does not
change anything in the semantic of the automaton.

Failed A failed node is a node obtained by combining two transitions whose
labels are conflicting, i.e., the propositional assignment on the model transition
does not satisfy the propositional formula on the claim transition. A failed
transition is an outgoing transition from a regular node, entering a failed node.
Failed nodes do not have successors.

Definition 3.1 (Failed state and transition). Let qi, q′i ∈ QM and pm, p′m ∈ QΦ̄.
If there exists a transition (qi, a, q′i ) ∈ ∆M and a transition (pm, b, p′m ) ∈ ∆Φ̄
with a , b, then (q′i, p′m ) ∈ QI is a failed node (failed state) and, being {} an
empty label,

(
〈qi, pm〉 , {},

〈
q′i, p′m

〉)
∈ ∆I is a failed transition.

Notice that the failed node (q′i, p′m ) could already belong to the intersection
automaton. This happens if q′i and p′m are the destination nodes of two
transitions (the first in the model and the second in the automaton of the
negated property) that are labeled with the same symbol. We only add a failed
node if it did not previously exist in the original non-extended intersection.
Figure 3.6 shows the cases that can arise when extending the intersection au-

tomaton computed in [MSG15] with the addition of failed nodes. Figure 3.6a
represents the situation where all the labels going from qi to q′i and from pm to
p′m do not match, therefore a failed node (q′i, p′m ) is created and its incoming
transition from (qi, pm ) holds no propositional letters. Figure 3.6b represents
the situation where a new node (q′i, p′m ) could be created both as a destina-
tion of a transition labeled “c” coming from (qi, pm ), and as a destination
of a failed intersection (deriving from the non-matching transitions (qi, a, q′i )
and (pm, b, p′m )). Notice that the intersection has been computed according to
[MSG15] procedure before starting the process of adding failed nodes; there-
fore transition

(
〈qi, pm〉 , c,

〈
q′i, p′m

〉)
already exists and node (q′i, p′m ) does to.

No failed transition is added. A last possible case is described in Figure 3.6c:
node (q′i, p′m ) existed in the original intersection, because q′i and p′m are des-
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tination of two transitions with the same label, “c”. No failed transition is
added from (qi, pm ).

qi q′i

pm p′m

qi, pm q′i, p′m

M states

Φ̄ states

I states

(a) Creation of new failed node

qi q′i

pm p′m

qi, pm q′i, p′m

M states

Φ̄ states

I states

(b) Creation of new non-failed node

qi q′i

pm p′m

qx

py
qi, pm q′i, p′m

qx, py

M states

Φ̄ states

I states

(c) New failed node not created

a

b

{}

a

c

b

c

c

a

b

c

c

c

Figure 3.6: Failed nodes generation: possible cases

Lines 5- 12 of Algorithm 3.3 refer to the procedure used to add failed nodes
to the intersection automaton built by [MSG15]. To prevent from comput-
ing the intersection automaton all from scratch, failed nodes can be found
considering all combinations of the Cartesian product between model states
and claim states that do not belong to the already computed intersection.
We only extract the combinations that did not previously appear, excluding
nodes generated by the combination with an initial model state (because they
would not conclude any existing path). For each possible new failed node,
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we consider all possible nodes of the original intersection that could lead to
it and, then, add the corresponding failed transitions (Lines 7 - 10). Finally,
we add the failed node (Line 12).

Another way to obtain the same result is to directly modify the intersec-
tion rule used in [MSG15], by adding the possibility to build failed transitions
whenever model and claim transitions do not match. In case these new tran-
sitions led to not previously existing nodes, their destination nodes are added
too, as failed nodes.

Failed nodes are needed to create a starting point for the proof, in fact its
axioms. They correspond to the end of a run that does not cycle on accepting
states, and, therefore, does not allow the model to satisfy the negated property.
Keeping in mind the purpose of a failed node, in the remainder of the section
we treat as “failed” also the nodes belonging to the original intersection that
have no successors. Exactly as the failed nodes just added, they are, in fact,
representative of non accepting runs that end.

Semantics of the intersection automaton For the purpose of our proof,
we should consider the intersection automaton with a particular semantic
that derives from the correspondence between Büchi automata and a Kripke
structures. A translation procedure between the two formalisms is introduced
in [CGP99].
Definition 3.2 (From Kripke structures to Büchi automata [CGP99]). AKripke
structure

〈
Q, R,Q0, L

〉
where L : S → 2AP, can be transformed into a Büchi au-

tomaton A = 〈Σ,Q ∪ {ι},∆, {ι},Q ∪ {ι}〉, where Σ = 2AP, such that (q, a, q′) ∈ ∆
for q, q′ ∈ Q if and only if (q, q′) ∈ R and a = L(q′). In addition, (ι, a, q) ∈ ∆
if and only if q ∈ Q0 and a = L(s).

Figure 3.7 exemplifies this concept. (q1, p1) is an initial node of the structure
which does not hold any valid proposition: it is not entered by any transition.
The propositional atoms that are true in state (q2, p1) are all the ones derived
from the state’s incoming transitions: a and !b. To obtain the propositions
true in state (q2, p2), we conjoin the proposition on its incoming labels: !a∧!b∧
Σ =!a∧!b.
This justifies the fact that, for our proof, we do not always consider the

real initial states of the intersection automaton, but those directly reached by
these, when the first ones are semantically empty.
Definition 3.3 (Semantically empty node). Let q be a node of the automaton
M. q is semantically empty if it has no incoming transitions, i.e., when the
system is in state q, no proposition prop ∈ Σ is true.
To conclude the description of the intersection extension step, in Figure 3.8,

we show the intersection automaton of the previously presented railway cross-
ing example of Figure 3.2. According to the definition of intersection au-
tomaton for incomplete automata (Definition 2.15) and to our extension, we
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q1, p1 q2, p1 {} {a∧!b}

q2, p2 {!a∧!b}

(a) Intersection automaton (b) Semantics on states

a

!b

!a∧!b

Σ

Figure 3.7: Semantics of intersection automaton

can observe four mixed states (q2, p1), (q4, p1), (q2, p2), and (q4, p2) (double
dotted line) with their corresponding constrained transitions (also dotted), a
failed node (q5, p1) (dashed line) with its corresponding failed transition (also
dashed).

States (q5, p2) and (q6, p2) are marked with a red area because they form a
component that has to be rejected. This basically means that, if the system
gets refined in a way that satisfies the constraints computed for it, that area
can never be reached, and, therefore, does not take part in the proof. This
concept is explained in Section 3.2.3.

q1, p1 q2, p1 q3, p1 q4, p1 q5, p1

q2, p2 q3, p2 q4, p2 q5, p2 q6, p2

a a

!b

!a∧!b

a

!a∧!b

!b

a

Σ

a b

Σ

b

a ∧ b

Figure 3.8: Intersection automaton for the railway crossing example

3.2.2 Identification of strongly connected components

The purpose of this section is to understand how to treat the components
of the intersection automaton and how to organize them for the construction
of the rules. There is a bijective correspondence between a SCC and a rule
of our proof. We remind the SCCs definition specifically for our intersection
atomaton.
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Definition 3.4 (SCCs of an automaton [Tar72]). Given an automaton I =
〈ΣI,QI,∆I, Q0

I
, FI

〉
, a strongly connected component of I is a maximal set of

states C ⊆ QI , such that for all {(q, p), (q′, p′)} ⊆ C, both (〈q, p〉 , a, 〈q′, p′〉) ∈
∆I and (〈q′, p′〉 , b, 〈q, p〉) ∈ ∆I , for arbitrary a and b, i.e., both (q, p) and
(q′, p′) are reachable from each other.

In other words, two vertices of a directed graph are in the same component
if and only if they are reachable from each other. The considered component
is strongly connected if each state of the automaton appears in exactly one
SCC. Any state, that is not on a directed cycle, forms a SCC all by itself:
for example, a vertex whose in-degree or out-degree is 0, or any vertex of an
acyclic graph.

One of the most famous algorithms to find SCCs is the Tarjan’s algorithm
([Tar72]), which allows to find SCCs in linear time. We use this algorithm
to identify the components of our intersection automaton. The procedure de-
scribed is based on a depth-first search that begins from an arbitrary starting
node and performs subsequent depth-first searches conducted on any nodes
that have not been found yet.

Algorithm 3.4 Sorting of SCCs
1: procedure Sort(origSCCs)
2: sortedSCCs ← {};
3: mapToSucc ← {};
4: for scc ∈ origSCCs do
5: mapToSucc.set(scc, Successors(scc));
6: while sortedSCCs.size < origSCCs.size do
7: key = random(mapToSucc.keys);
8: if key.getList = ∅ then
9: for x ∈ mapToSucc.keys such that x.getList.contains(key) do

10: x.getList .remove(key);
11: sortedSCCs.add(key);
12: return ordSCC;

After this basic step, we sort the set of SCCs to make sure that it satisfies
the naturally induced partial order ≺, formally defined as follows:

Definition 3.5 (Naturally induced partial order ≺ [PZ01]). Let C and C ′ be two
SCCs belonging to the same automaton. Then C ≺ C ′if there is a transition
from some state in C to some state in C ′.

Algorithm 3.4 describes how to establish this order. In our proof we need to
complete the proof related to all the components C ′ such that C ≺ C ′, before
we start dealing with C. origSCCs represents a support list that contains all
SCCs, while sortedSCC represents the new sorted list to be filled. Lines 3 - 5
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create a map that contains the SCCs, as key values, and for each one of these
contains the list of all SCCs reachable from the key (key itself excluded). In
lines 6 - 11, we pick a random SCC: if it does not have any successor, it is
inserted in the sorted list. Already processed SCCs are eliminated from the
map and so are the pointers to them. The sorted list sortedSCCs is returned
by the procedure.

In our railway crossing example, we first obtain the following map:



〈q1p1 → {q2p1}〉
〈q2p1 → {q2p2, q3p1}〉
〈q3p1 → {q4p1}〉
〈q4p1 → {q4p2, q5p1}〉
〈q5p1 → {}〉
〈q2p2 → {q3p2}〉
〈q3p2 → {q4p2}〉
〈q4p2 → {q5p2q6p2}〉
〈q5p2q6p2 → {}〉


This may lead, for example, to the following partially ordered sequence: q5p1,
q5p2q6p2, q4p2, q4p1, q3p2, q3p1, q2p2, q2p1, q1p1.

3.2.3 Rules writing
We propose an extension of the rules presented in Section 2.4, that coincides
with the formulation of [PZ01]. They are here modified and enriched for two
main reasons: first, we would like them to support Büchi automata, whilst
labeled generalized Büchi automata were previously considered; second, the
original rules only supported completely specified systems. Now, they can be
used on incomplete systems.
Each rule instance is composed of its premise and conclusion parts. Each

procedure describing the construction of a rule initializes these two fields, fills
them appropriately, and returns the entire data structure. Conclusions are
valid only if all their premises are valid. In our rules, two kinds of premises are
used: validities with a structure stateM |= µ(stateΦ̄) or stateM |=P µ(stateΦ̄)
(Definition 3.6 and 3.7) and state-successors-definitions of the form stateM →
successors(stateM ) (Definition 3.8). Conclusions, instead, can only be validi-
ties.
Validities can be sure-validities (derived from executions of the model that

satisfy the claim without depending on the replacement of transparent states)
or possible-validities (depending on further refinements). Two different situa-
tions can determine that a validity is possible:

1. Validities referring to a model state that is still transparent are possible
because no final conclusion can be derived in this case. Depending on
the replacement that will substitute it, the validity can later become

47



Chapter 3 Contribution

sure, or remain possible (if the replacement contains transparent states
itself).

2. All validities inside the conclusion of a rule that contains possible va-
lidities in its premise are tagged as “possible”, inductively.

Only when all the uncertainties in the premise have been solved and the
conclusion is not referred to a transparent state itself, we can consider the
conclusion as sure.

Definition 3.6 (Sure-validity). Given a state q ∈ RM (being R the set of regular
states of automatonM) and a linear temporal logic formula µ(p) correspond-
ing to state p ∈ QΦ̄ , we say that q |= µ(p) if the configuration of the system
M in state q satisfies the logic formula expressed by µ(p). The statement
q |= µ(p) is called sure-validity and we say that q models µ(p).

Note that with “configuration of M in q” we mean the conjunction of all
propositions of q’s incoming transitions (see Paragraph “Semantics of the
intersection automaton” of Section 3.2.1 for detail).

In incomplete systems, it can happen that the state q that models some
formula µ(p) is not specified yet, but only contains a condition of entrance
and of exit. To support this kind of situation, we introduce the concept of
possible-validity.

Definition 3.7 (Possible-validity). Given a state q ∈ QM and a linear temporal
logic formula µ(p) corresponding to state p ∈ QΦ̄ , we say |=P defines the
relation of possible-satisfiability between a model state q and the sub-formula
of state p of the claim when either q ∈ TM or the fact that q satisfies µ(p)
depends on the replacement of other transparent states of the model. The
statement q |=P µ(p) is called possible-validity and we say that q possibly
models µ(p).

The second type of premises, state-successors-definition, describes, formally,
the relation of successivity among model states in the intersection automaton.

Definition 3.8 (State successors definition). We say that q → {q1, q2, . . . , qm },
i.e., q1, q2, . . . , qm ∈ QM are successors of q ∈ QM , iff there exist transitions
(〈q, p〉 , a, 〈q1, p′〉), (〈q, p〉 , a, 〈q2, p′〉), ..., (〈q, p〉 , a, 〈qm, p′〉 that belong to ∆I ,
where a can be any label and p and p′ any state of the claim automaton.

According to the characteristics of each SCC, a different rule is chosen and
built. Algorithm 3.5 shows how the rule assignment works. For each SCC,
three sets of states are created to help discriminating among situations. C
represents the set of all states belonging to the same SCC. Exit(C) contains
all states that are directly reached by a node inside the SCC, but do not
belong to C. Enter (C) contains all predecessors of C that are outside of C.
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Algorithm 3.5 Choice of rule for each SCC
1: procedure BuildRule(scc)
2: C ← states ∈ scc;
3: Exit(C) ←((successors of scc states)< scc) < Proo f .re jects;
4: Enter (C) ←((predecessors of scc states)< scc) < Proo f .re jects;
5: if !(C.size = 1 ∧ Enter (C) = ∅) then
6: if C.size > 1 then
7: if ∃x ∈ C t.c. x ∈ FIext then
8: Proo f .re jects ← Proo f .re jects ∪ {scc};
9: Proo f .SCC ← Proo f .SCC \ {scc};

10: else
11: return RuleInd(scc);
12: else
13: c ← C.onlyNode;
14: if c ∈ FIext then
15: if (∃ self-loop on c ∈ ∆Iext∧!c.isMixed) then
16: Proo f .re jects ← Proo f .re jects ∪ {scc};
17: Proo f .SCC ← Proo f .SCC \ {scc}; . 3.9a-b
18: else
19: if Exit(C) = ∅ then
20: return RuleFail(c); . 3.9c, 3.10a-c
21: else
22: if (∃ self-loop on c ∈ ∆Iext ∧ c.isMixed) then
23: return RuleInd(C); . 3.10b
24: else
25: return RuleSucc(c); . 3.9d, 3.10d
26: else
27: if Exit(C) = ∅ then
28: return RuleFail(c); . 3.9e-g, 3.10e-g
29: else
30: if ∃ self-loop on c ∈ ∆Iext then
31: return RuleInd(C); . 3.9f, 3.10f
32: else
33: return RuleSucc(c); . 3.9h, 3.10h

The if-condition at Line 5 excludes from the proof the formal initial states
(semantically empty as explained in Paragraph “Semantics of the intersection
automaton” of Section 3.2.1) and possible unreachable states.

The second macro-distinction is made between SCCs with more than one
node (Lines 6- 11) and SCCs with only one node (Lines 13- 33). These include
both trivial SCCs2, and also the single states with a self-loop.

2An SCC is trivial if made of a single vertex c and (c, c) is not an edge, non-trivial otherwise.
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For SCCs of more states two cases are possible. If there is at least one ac-
cepting node, this corresponds, indeed, to a dangerous component (a behavior
of the system violating the property) that will never be reached if the model
is correctly refined; the component is added to a red-list rejects (Lines 8- 9).
If there are no accepting states RuleInd is applied (Line 11).
For one-node-SCCs, the choice is more articulated, since we also need to dif-

ferentiate between regular and mixed states. As far as regular states are con-
cerned, according to various nested conditions, we cover the following cases:

I A single accepting node with a self-loop corresponds to an accepting run
and it is therefore rejected (Lines 16- 17);

I We apply RuleFail both to an accepting node with no successors (Line
20), and to a non-accepting node with no successors (except possibly
for itself) (Line 28);

I We apply RuleSucc to a trivial SCC (no loops) with successors (Lines
25 and 33).

I We apply RuleInd to a non accepting node with a self-loop and other
successors (this counts as a non-trivial SCC, Lines 23 and 31);

(a) REJ (b) REJ (c) FAIL (d) SUCC

(e) FAIL (f ) IND (g) FAIL (h) SUCC

Figure 3.9: Schematization of one-node-SCC cases

As far as mixed states are concerned, we remind that they are states whose
content is still unknown. Their content will be clear once they get replaced
with other sub-automata.

Mixed accepting states with a self-loop do not need to be rejected, because
they are not final yet, needing a replacement that can change their internal
behavior. With mixed states no difference is made between accepting and non-
accepting states. The kind of rule is decided in the same way as with regular
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states. We make sure, though, that the conclusion is marked as possible,
meaning that, whatever validitiy it holds, it needs to be further verified.

Figure 3.9 shows the different scenarios we might encounter when analyzing
components of the graph with only one regular node. Figure 3.10 is its equiv-
alent for mixed stats. Notice that, along Algorithm 3.5 we have taken note
of which line refers to the cases represented in the two figures.

(a) FAIL (b) IND (c) FAIL (d) SUCC

(e) FAIL (f ) IND (g) FAIL (h) SUCC

Figure 3.10: Schematization of one-mixed-node-SCC cases

Components to reject

We maintain a list of components of the intersection automaton that are not
supposed to belong to a safe intersection automaton. In fact, they represent
behaviors that possibly violate the property. Conversely, in our approach, we
want to prove that the property is possibly satisfied.
In the railway crossing example, we exclude the component {(q5, p2), (q6, p2)}

(notice that is it marked with a red area in Figure 3.8). Note that, if the
transparent state q4 is properly replaced, there will be no transitions going
from the mixed state (q4, p2) to the component that we are excluding, which
means that the property is possibly satisfied.

RuleFail (Algorithm 3.6)

The failure axiom is applied to all failed states of the intersection automa-
ton (added through the procedure described in Section 3.2.1) and to already
existing states of the original intersection automaton that have no successors
(and have not already been rejected).

Axiom (Failure axiom (RuleFail)). Let (q,p) be a failed node. Then, we can
conclude that q |= µ(p).
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The justification for this axiom is simple: the node has failed because we
have checked the propositional labels of state q’s incoming transitions against
the temporal formula on p, and the LTL formula has failed to hold. Thus,
q |= ¬η(p). But, note that ¬η(p) = µ(p) (see Proposition 2.1). Therefore,
q |= µ(p), which specifies that the formula µ(p) holds in the state q.
Notice that states without successors are obviously not leading to any dan-

gerous cycle, e.g., a counterexample. They represent the end of a branch of
the graph in which the search for counterexamples has failed. If the used
model state is transparent, the validity output is possible, otherwise sure.

Algorithm 3.6 Apply RuleFail to SCC
1: procedure RuleFail(q, p)
2: rule.prem ← {};
3: if q ∈ TM then
4: rule.concl ← BuildValidity(q, p, possibly);
5: else
6: rule.concl ← BuildValidity(q, p, satis f y);
7: return rule;

In our example (Figure 3.8), we apply the failure axiom to node (q5, p1), that
is accepting and has no successors. Since q5 is a regular node, the conclusion
is sure.

−

q5 |= µ(p1)

Another example of RuleFail application is given in another rule, that
derives from node (q4, p2), that is mixed and failed (considering the compo-
nent {(q5, p2), (q6, p2)} as already rejected), thus corresponding to the case of
Figure 3.10a. Since q4 is a transparent node, the conclusion is possible.

−

q4 |=P µ(p2)

RuleSucc (Algorithm 3.7)

The successors rule is applied to trivial SCCs, i.e., single states without any
self-loop. We modified the “Successor rule” [PZ01] (see Section 2.4).

Proposition (Successors Rule (RuleSucc)). Let (q,p) be a successful node,
such that p has n successors p1, . . . , pn, and q has m successors q1, . . . , qm.
Then, from the premises s → {s1, . . . , sm }, and For each 1 ≤ i ≤ m, qi |=∧

j=1,n µ(pj ), we derive the conclusion q |= µ(p).
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This means that, given information on what holds in (q, p) successors and
being (q, p) a node that does not exhibit any criticality, we can propagate its
“safeness” upwards. The validity of this proof rule stems from the correctness
of the construction. Indeed, note that the failure axiom is a special case of
the successors rule when the addressed node has no successors.

Algorithm 3.7 Apply RuleSucc to SCC
1: procedure RuleSucc(q, p)
2: qSucc ← {};
3: pSucc ← {};
4: rule.concl ← {};
5: for q′ s.t. ∃(〈q, y〉, a, 〈q′, y′〉) ∈ ∆Iext do
6: rule.prem ← rule.prem ∪ [q → {q′}];
7: if q.isTrasp then
8: rule.prem ← rule.prem ∪ [q → {q}];
9: for q′ s.t. ∃(〈q, y〉, a, 〈q′, y′〉) ∈ ∆Iext do

10: qSucc ← qSucc ∪ {q′};
11: for p′ s.t. ∃(〈x, p〉, a, 〈x ′, p′〉) ∈ ∆Iext do
12: pSucc ← pSucc ∪ {p′};
13: for (q′, p′) ∈ qSucc × pSucc do
14: if (q′ ∈ TM ∨ depGraph(q′, p′) , ∅) then
15: rule.prem ← rule.prem ∪BuildValidity(q′, p′, possibly);
16: depGraph(q, p) ← depGraph(q, p) ∪ (q′, p′);
17: else
18: rule.prem ← rule.prem ∪BuildValidity(q′, p′, satis f y);
19: if (q ∈ TM ∨ depGraph(q, p) , ∅) then
20: rule.concl ← rule.concl ∪BuildValidity(q, p, possibly);
21: else
22: rule.concl ← rule.concl ∪BuildValidity(q, p, satis f y);
23: return rule;

The behavior of the Successors Rule is described in Algorithm 3.7. Notice
that, at Line 8, we consider the fact that a transparent node is a successor of
itself (i.e., it is represented with a self-loop because inside that state the run
can progress).

In our railway crossing example (Figure 3.8), we find an application of this
rule to node (q3, p1) of the intersection automaton, that corresponds to the
case of Figure 3.9d, an accepting node with successors and no loops. The
possible-validity of the conclusion is determined by the presence of a possible-
validity in the premises of the rule.
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q3 → {q4}
q4 |=P µ(p1)
q3 |=P µ(p1)

RuleInd (Algorithm 3.8)

The induction rule is applied to any non-trivial component that has no ac-
cepting state (otherwise it would have been rejected).

Proposition (Induction Rule (RuleInd)). Let C be a SCC of I. Let Exit(C)
be the set of states not in C, with an incoming arrow from a node in C.
Then, from the facts that For each (q, p) ∈ Exit(C), q |= µ(p) and For each
(q, p) ∈ C, q → succ(q), we can derive that For each (q, p) ∈ C, q |= µ(p).

Algorithm 3.8 Apply RuleInd to SCC
1: procedure RuleInd(scc)
2: C ← states ∈ scc;
3: Exit(C) ←successors of states ∈ scc;
4: rule.prem ← {};
5: rule.concl ← {};
6: for (q′, p′) ∈ Exit(C) do
7: if (q′ ∈ TM ∨ depGraph(q′, p′) , ∅) then
8: rule.prem ← rule.prem ∪BuildValidity(q′, p′, possibly);
9: depGraph(q, p) ← depGraph(q, p) ∪ (q′, p′);

10: else
11: rule.prem ← rule.prem ∪BuildValidity(q′, p′, satis f y);
12: for q ∈ C ∧ q′ s.t. ∃(〈q, y〉, a, 〈q′, y′〉) ∈ ∆Iext do
13: rule.prem ← rule.prem ∪ [q → {q′}];
14: if q.isTrasp then
15: rule.prem ← rule.prem ∪ [q → {q}];
16: for (q, p) ∈ C do
17: if (q ∈ TM ∨ depGraph(q, p) , ∅) then
18: rule.concl ← rule.concl ∪BuildValidity(q, p, possibly);
19: else
20: rule.concl ← rule.concl ∪BuildValidity(q, p, satis f y);
21: return rule;

Notice that, at Line 15 of Algorithm 3.8, we consider the fact that a traspar-
ent node is a successor of itself (i.e., it is represented with a self-loop because,
inside that state, the run can progress).
In the railway crossing example, we can apply the induction rule to node

(q4, p1), that is mixed, with successors and a loop, corresponding to the case
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of Figure 3.10b. The conclusion is only possible both because it is referred to
the transparent state q4, and because one premise for the rule (q4 |=P µ(p2))
is possible.

q4 → {q4, q5}
q5 |= µ(p1)

q4 |=P µ(p2)
q4 |=P µ(p1)

A more elaborate example of application of RuleInd is presented in the
case study of Chapter 5, where a SCC with more than one state is analyzed.

3.2.4 Rules conjunction
The final goal of this step is to establish a proof that σ |= φ for every execution
σ of the automaton intersectionM. This is expressed byM |= φ (see Theorem
2.1).

RuleConj is useful to unify all conclusions that have been found in the pre-
vious rules. In general, it allows to build conclusions on the initial states, that
here represent the whole model. Due to our choice of using Büchi automata
and the semantics described in Paragraph “Semantics of the intersection au-
tomaton” of Section 3.2.1, in some cases we require a particular choice of
initial states. Roughly speaking, the “initial states” do not always correspond
to the initial states (q0, p0) ∈ Q0

I
of the intersection automaton. To explain

this concept, we refer to Figure 3.11. Intuitively, the choice is based on the
requirement that an initial node needs to be semantically non-empty.

{}

{a} {b}

... ...

{b ∧ c}

{a} {d}

Proof initial Proof initial Proof initial

(a) First scenario (b) Second scenario

a b

... ...

a b
c

d

Figure 3.11: Artificial initial node choice

In Figure 3.11a we can observe that the real initial node is semantically
empty because it does not have any incoming transition. Therefore, we use
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its immediate successors as artificial initial states for RuleConj. On the
contrary, in Figure 3.11b, we observe that the initial node is not empty because
it is reached by the incoming transitions labeled with “b” and “c”. We can,
therefore, use it as requested in rule RuleConj. Notice that, when analyzing
an intersection automaton, we could have a mixed situation, e.g., if we had
two initial states, one of which is semantically empty and the other is not,
we should use one convention (using its successors) in the first case, and the
other convention (use the real initial node) in the second case.
Recalling the definition of semantically empty node, i.e., a state that does

not contain propositions (see Definition 3.3), we can define the initial node
used for the proof.
Definition 3.9 (Artificial Initial Node). Let q0 be a semantically non-empty
state of Q0

M
, or an immediate successor of an initial state ofM that is seman-

tically empty. Then q is an artificial initial node (state) for the automaton
M.
To these artificial states, we can apply the conclusive rule of the proof.

Proposition (Conjunction Rule (RuleConj)). 1. Let q0 be an artificial initial
node belonging to QM. Let p1, . . . , pn be all the states of Φ̄ such that (q0, pi )
is a node in the intersection. Then, apply RuleConj, which takes q0 |=
µ(p1), . . . , q0 |= µ(pn ) and ∧

i=1,n µ(pi ) → φ as premises, and concludes q0 |=
φ. 2. Apply RuleConj to all artificial initial states of M.

Algorithm 3.9 Apply RuleConj to conclude the proof
1: procedure RuleConj(φ,I)
2: rule.prem ← {};
3: init ← Arti f icial InitStates(M);
4: for i ∈ init do
5: for p such that (i, p) ∈ QIe xt do
6: if i ∈ TM ∨ depGraph(i, p) , ∅ then
7: rule.prem ← rule.prem ∪BuildValidity(i, p, possibly);
8: depGraph(q0, φ) ← depGraph(q0, φ) ∪ (i, p);
9: else

10: rule.prem ← rule.prem ∪BuildValidity(i, p, satis f y);
11: rule.prem ← rule.prem∪ [Conjunction(claimStates)→ φ];
12: if depGraph(q0, φ) , ∅ then
13: for i ∈ init do
14: rule.concl ← BuildValidity(i, φ, possibly);
15: else
16: for i ∈ init do
17: rule.concl ← BuildValidity(i, φ, satis f y);
18: return rule;
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Algorithm 3.9 outlines the steps of this final rule. Line 3 represents the
choice of the artificial initial states to be performed at the beginning of the
rule construction. Notice that, by deriving that all artificial initial states of
the model satisfy the property, we intend to say that the whole model (i.e.,
all the paths that it can generate) satisfies the property (Theorem 2.1).

The conjunction in our railway crossing example (Figure 3.8) is built in the
following rule: the conclusion is only possible both because the model contains
transparent states, and because the validities contained in the rule’s premise
are still possible.

q2 |=P µ(p1)
q2 |=P µ(p2)
µ(p1) ∧ µ(p2) → φ

q2 |=P φ

3.2.5 Dependency graph

The dependency graph is a structure that supports the computation of the re-
placements sub-proofs. It is needed to keep trace of the dependencies between
rules in the proof. The validities in the conclusion of a rule can be “possible”
only if they refer to a model state which is still transparent, or if any of their
premises are “possible” too. As an example, let us consider a rule of this form:

q2 → {q2, q3}
q3 |=P µ(p1)
q2 |=P µ(p2)
q2 |=P µ(p1)

The dependency graph structure (depGraph) is a map that links each key-
entry (a SCC) with a list of other SCCs (depList) on which its validity depend.
If we consider the rule above, for example, the key (q2, p1) is mapped to the
depList {(q3, p1), (q2, p2)} indicating that, for q2 |=P µ(p1) to become a sure-
validity (q2 |= µ(p1)) we first need to solve the possible-validities q3 |=P µ(p1)
and q2 |=P µ(p2). Solving a dependency is a process that requires to go
through a refinement of the model. Suppose, for this explanation, that q3 is
transparent in the initial model, and that the developer replaces this state
with a complete Büchi automaton that satisfies the constraint computed as
described in [MSG15]. This means that a sub-proof stating that q3 |= µ(p1)
is built and this sure-validity can ultimately be used at higher levels. The
element (q3, p1), that corresponds to the first one in the depList of the entry
(q2, p1) of the depGraph can now be eliminated. The possible-validity q2 |=P
µ(p1) now only depends on (q2, p2), that refers to the same model state q2 and
will be, therefore, solved by a preceding rule, rather than from a refinement
yet to come.
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3.2.6 Output of the proof

I Node (q5, p1). RuleFail. q5 |= µ(p1) = #(lowUout) ∨ out

I SCC = {(q5, p2), (q6, p2)}. Rejected.

I Node (q4, p2). RuleFail. q4 |=P µ(p2) = low ∨ out

I SCC = (q4, p1), Exit(SCC) = {(q5, p1), (q4, p2)}. RuleInd.

q4 → {q4, q5}
q4 |=P µ(p2) = low ∨ out
q5 |= µ(p1) = #(lowUout) ∨ out
q4 |=P µ(p1) = #(lowUout) ∨ out

I SCC = (q3, p2), Exit(SCC) = (q4, p2). RuleSucc.

q3 → {q4}
q4 |=P µ(p2) = low ∨ out
q3 |=P µ(p2) = low ∨ out

I SCC = (q3, p1), Exit(SCC) = (q4, p1). RuleSucc.

q3 → {q4}
q4 |=P µ(p1) = #(lowUout) ∨ out
q3 |=P µ(p1) = #(lowUout) ∨ out

I SCC = (q2, p2), Exit(SCC) = (q3, p2). RuleInd.

q2 → {q2, q3}
q3 |=P µ(p2) = low ∨ out
q2 |=P µ(p2) = low ∨ out

I SCC = (q2, p1), Exit(SCC) = {(q3, p1), (q2, p2)}. RuleInd.

q2 → {q2, q3}
q3 |=P µ(p1) = #(lowUout) ∨ out
q2 |=P µ(p2) = low ∨ out
q2 |=P µ(p1) = #(lowUout) ∨ out

I RuleConj.

q2 |=P µ(p1) = #(lowUout) ∨ out
q2 |=P µ(p2) = low ∨ out
µ(p1) ∧ µ(p1) → φ = lowUout
q2 |=P φ = lowUout

Listing 3.1: Deductive proof of M |= φ for the railway crossing system
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For clarity and completeness of the proof output, we now map subformulas
indicated and memorized as µ(claimState) with the real LTL subformulas.
These can be calculated as described at the beginning of this section with the
tableau in Figure 3.4, as explained theoretically in Section 2.2.2.

After this last step, the output of the railway crossing example is shown as
in the Listing 3.1.

3.3 Computing the sub-proofs

This section integrates the procedure described in Section 3.2 with a method
to compute sub-proofs by exploiting the Replacement Checking procedure de-
scribed in Section 2.3.3 ([MSG15]). Considering a transparent state t ∈ QM ,
our sub-proof shows why a chosen replacement Rt (Definition 2.9), i.e., a sub-
automaton that substitutes state t, satisfies (or possibly-satisfies) the sub-
property S̄t computed for state t (Definition 2.16).

This procedure supports the incremental development modus operandi of
designers with the opportunity to compute an ad hoc proof circumscribed to
only the replaced state. Indeed, proving a single module at a time, without
having to consider the entire refined system, saves the user a considerable
effort at each refinement round.

After this module is proven, the information derived can be plugged into the
master proof, allowing to solve its rules whose conclusions are still only pos-
sible. We are speaking of the rules whose premise contains possible-validities
connected to the mentioned state t.

While in Section 3.2 we used the intersection between an automaton repre-
senting the model M and an automaton representing the negated claim Φ̄ to
derive the master proof, in the this section we use the intersection between
the replacement Rt and the sub-property S̄t to build the sub-proof related to
state t.

The procedure to compute a sub-proof that specifies why a replacement
satisfies the related condition (Rt |= St) is very similar to the one to compute
a proof that the model satisfies the requested claim (M |= φ). The only
difference is represented by the steps to extend the intersection automaton.
Since Rt and S̄t are not simple automata, the intersection between them is
defined in a slightly different way than the one betweenM and Φ̄, as explained
in Definition 2.18. The structure we need to analyze, in this case, is a Büchi
automaton with in-transition and out-transitions in addition.

In the next two sections we describe how the intersection structure needs
to be modified and how the rules can be applied by analyzing it.
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3.3.1 Intersection for the sub-proof

Algorithm 3.10 shows the modifications needed to the extended automaton
It calculated as the intersection between the sub-automaton Mt of the re-
placement Rt of state t, and the sub-automaton P̄t of the sub-property S̄t
calculated for state t.

Algorithm 3.10 Extension of intersection automaton for the sub-proof
1: procedure ExtendIntersectionSubproof(It)
2: Itext ←ExtendIntersection(It,Rt, S̄t);
3: transitionsToPorts();
4: inportsToInitialStates();
5: f indArti f icial InitialStates();
6: addBlueOutports();
7: return Itext ;

The algorithm includes a first phase (Line 2) that performs the same trans-
formations of the procedure ExtendIntersection that we used for the mas-
ter proof (Algorithm 3.3). In this function, the phase of nodes collapsing re-
mains unchanged and so does the rule to add failed states to the intersection
computed as in [MSG15] (specified in Definition 2.18).
We keep the same semantics described in Paragraph “Semantics of the inter-

section automaton” of Section 3.2.1. This means that inside each state of the
intersection automaton, all and only the propositions that label its incoming
transitions are valid.
The additional aspect we need to consider is the presence of incoming and

outgoing transitions. First of all, we would like to complete the in-transitions
by adding also their source state, and the out-transitions by adding their
destination state (Line 3). For this reason we introduce the concept of port.

Definition 3.10 (In-ports and out-ports). Let It be the intersection computed
between the replacement Rt and it sub-property S̄t . And let ∆inI

t and ∆out I
t

be its in-transitions and out-transitions. Then, for each trin ∈ ∆inI
t , the source

state of trin is called in-port and for each trout ∈ ∆out I
t , the destination state

of trout is called out-port.
According to the color that marks trin (trout), its source (destination) state

inherits the same label (Red, Yellow, or Green, as specified in Section 2.3.3).

The intersection computed in [MSG15] represents incoming transitions sour-
ces and outgoing transitions destinations by only showing the model state that
composes the intersection state. Our procedure requests expanding this port
(that is currently labeled with a model state q) by adding the information
from the claim for each existing node of the intersection that is related to
node q. Basically, considering n ports labeled with the model state q, if the

60



3.3 Computing the sub-proofs

intersection automaton I =M∩ Φ̄ contains the states (q, p1), ..., (q, pn ), these
states are added to the intersection automaton It = Rt ∩ S̄t in substitution of
the n ports labeled with q.

Line 4 indicates the step to transform the sub-property in-ports to the
initial states of the analyzed automaton. The produced states are semantically
empty (since we are not considering any edge that enters them), so artificial
initial states (Definition 3.9) need to be chosen. Line 5 corresponds to this
choice. They are the immediate successors of the in-ports of the intersection
automaton and the proof is started from here.
Compared to in-ports, the role of out-ports is more interesting. We need to

add a new type of out-port that we mark with blue color label (Line 6). We
now distinguish three possible colors for out-ports.

Red ports are never reached if the provided replacement satisfies or possibly-
satisfies the sub-property (i.e., when the construction of the sub-proof is trig-
gered). As a matter of fact, we remind that the situation that a developer
must avoid at every cost when he/she designs a replacement Rt for state t is to
design a component that allows S̄t to reach an outgoing transition marked as
red from an incoming transition marked as green. For this reason, red ports
never appear in the analyzed intersection and we should not worry about
them.

Yellow ports appear in intersections and have the meaning of postponing the
problem to the next reached mixed state. They should be therefore considered
as failed states because, in some way, once the run has reached this state, it
is out of the danger indicated by the sub-property.

Blue ports: sub-properties, and consequently the intersection automaton
It , do not include the outgoing transitions that do not lead to a possibly-
violating or violating run. Constraints, indeed, show only yellow and red
out-transitions. Differently from [MSG15], we are also interested in making
“non existing” out-transitions explicit, to specify any possible link of the sub-
intersection automaton with the exterior. We add these transitions and the
corresponding destination states to the intersection and call them blue tran-
sitions and blue ports.

Definition 3.11 (Blue port). Given a transparent state t of an incomplete
model M, its replacement Rt , and its sub-property S̄t , a blue port is a node
of the intersection automaton (Rt ∩ S̄t) that can be reached from states of
the intersection sub-automatonMt ∩ Pt , but does not already correspond to
a yellow or a red port.

Blue ports are important for our purposes because we need to add all pos-
sible intersection states that can be reached by a run when leaving a sub-
property. Indeed, as we observed in Paragraph “Failed” of Section 3.2.1, failed
states indicate the end of a non-accepting path of the intersection automaton.
We could, therefore, think of out-ports as the end of a sub-run (the one that
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crossed the sub-property) that has not been trapped inside of it (it is not
accepting, at least inside the sub-property). Blue and yellow ports acquire
this role.
At the end of the ExtendIntersectionSubproof algorithm, the states

of the new intersection present a label of the form (qt j , (qt, pi, x), y), being
composed by three elements:

I a first label qt j where t represents the transparent state t ∈ TM of the
master model M and j represents the label of the state of the replace-
ment M t ;

I a second label (qt, pi, x) coming from the sub-property related to t;

I a third label computed according to the intersection rule described in
Definition 2.13.

Because of the procedure of nodes collapsing, we can always ignore the third
component after we have marked as accepting all states that have the third
component equal to 2.
We now continue the railway crossing example presenting the computed

constraint, two possible replacements for its transparent states, and the con-
struction of their intersections.

Example. Let us consider the model in Figure 3.2: we would like to replace
state q2 with the replacement in Figure 3.12a, and state q4 with the replace-
ment in Figure 3.12b. The replacement for q2 contains a transparent state
itself, q22 .

q1

q21

q22

q23

q3

q3

q3

q41 q42

q5

low
low

low

low

low

low out out

(a) Replacement for q2 (b) Replacement for q4

Figure 3.12: Replacements for the railway crossing example

In Figure 3.13, we consider the constraint C computed for the refinement of
the system. The incoming and outgoing transitions are marked with arrows
that reach squared boxes that represent the entrance and exit points of the
sub-property.
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q1

q2, p1, 2 q2, p2, 2

q3q3

low

low low

¬out

¬low ∧ ¬out

Σ

q3

q4, p1, 2 q4, p2, 2

q3

q5

low low

out

¬out

¬low ∧ ¬out

Σ

(a) Sub-property for q2 (b) Sub-property for q4

Figure 3.13: Sub-properties for the railway crossing example

The sub-property S̄q2 in Figure 3.13a contains an automaton P̄q2 , that has
two states with self-loop and a transition connecting them. State (q2, p1, 2)
can be entered through the green in-port q1 and exited through the yellow
out-port q3. State (q2, p2, 2) can be exited though port q3. The sub-property
S̄q4 , in Figure 3.13b, contains two runs that may yield to a violation of φ: in
the first case, the sub-property is entered though the yellow q3 port on the left,
(q4, p1, 2) is crossed, then (q4, p2, 2), and the sub-property is exited through the
red port q5; in the second case, the sub-property is entered directly from the
yellow port q3 on the right, (q4, p1, 2) is crossed and finally the red out-port
is reached.

q1

q21, (q2, p1, 2)

q23, (q2, p1, 2) q22, (q2, p1, 2)

q3, p1 q3, p2 q22, (q2, p2, 2)

q23, (q2, p2, 2)low

lowlow
¬out

¬low ∧ ¬out

Σ

low

low
low

Figure 3.14: Intersection automaton for Rq2 and its sub-property

The intersections between the replacements of states q2 and q4 and their
corresponding sub-properties are represented respectively in Figure 3.14 and
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Figure 3.15. They are obtained using the procedure described in [MSG15] and
follow the Definition 2.18.

We assume that a node collapsing step has already been performed on the
intersections that we analyze in Figure 3.14 and Figure 3.15.
In the first shown intersection, we observe some of the features just de-

scribed. We have added the failed transition and node (q23, (q2, p2, 2)) marked
with a dashed line. Then we have transformed the out-going yellow transitions
to q3 into two yellow out-ports (q3, p1) and (q3, p2). These are the states of in-
tersection that are associated to the label q3 that indicated the out-transitions.
The green in-port has become the nominal initial node and the one directly
reached from it, (q21, (q1, p2, 2)), has acquired the role of artificial initial node.
Finally, no blue port needs to be added because q3 is the only possible

exit from the sub-property computed for q2. We also find the mixed states
(q22, (q2, p1, 2)) and (q22, (q2, p2, 2)) deriving from the presence of the transpar-
ent state q22 in the replacement.

q3

q41, (q4, p1, 2)

q42, (q4, p1, 2) q42, (q4, p2, 2)

q5, p1 q5, p2

low

Figure 3.15: Intersection automaton for Rq4 and its sub-property

The intersection automaton for q4 shows two failed states (q42, (q4, p1, 2))
and (q42, (q4, p2, 2)), and an artificial initial node (q41, (q4, p1, 2)). Moreover,
we observe that the red out-port to (q5, p2) is never reached. The blue out-port
(q5, p1) is not reachable, therefore is eliminated before computing the proof.

3.3.2 Rules application

Once the intersection automaton is prepared in the described way, we can
proceed with the same steps of Algorithm 3.2 (BuildProof). The SCCs are
identified and sorted, and, then, the Algorithm 3.5 (BuildRule) is applied to
each of them. Each rule contributes to the update of the dependency-graph
as described in Section 3.2.5. Finally, the sub-proof is closed by using the
conjunction rule (Section 3.2.4).
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Note that, when analyzing a state of the intersection (qt j , (qt, pi, x), y), re-
lated to the state qt j of the replacement and to state (qt, pi, x) of the sub-
property, we can write validities like qt j |= µ(pi ) in place of qt j |= µ(qt, pi, x)
just as we did with the claim, i.e., we can consider only the state of the orig-
inal claim that concurred to build the sub-property state. This is based on
the following assumption.

Assumption. A sub-property is a tuple S̄t =
〈
P̄s,∆

inP
s ,∆outP

s

〉
and the replace-

ment it is checked against is a tuple Rt =
〈
Mt,∆

inR
t ,∆outR

t

〉
(see Section 2.3.3).

Our proof corresponds to justifying why the replacement automaton Mt sat-
isfies the formula corresponding to the sub-automaton P̄t . After using the
collapsing nodes algorithm, our sub-property automaton P̄t always has the
same shape (or a sub-part of it) and semantics content of the negated claim
automaton. The additional information that a sub-property S̄t holds, aside
the sub-automaton, are its incoming and outgoing transitions. The informa-
tion carried by the in/out-transitions is already dealt with by the refinement
checking procedure of Definition 2.17 and is correct.

Let us clarify this statement with the following observations:

I When a run enters the intersection automaton built between the replace-
ment Rt for state t and the sub-property S̄t , the dangerous situations
that can arise (and that we would like to avoid) are:

1. The run enters the intersection and remains trapped inside of it,
cycling infinitely on its states. We should not worry about this
situation: our construction of the sub-proof is indeed only trig-
gered if a previous refinement checking procedure has output yes
or possibly-yes. We do not run into situations where an accepting
cycle is possible, because this case is already excluded by the model
checking procedure;

2. The run starts from a green port and exits the intersection through a
red port. Through a redefined concept of intersection between sub-
property and replacement (excluding red out-transitions, trans-
forming yellow out-transitions into ports, adding blue ports), we
deal with this situation. All dangerous situations are excluded
and only failed runs are considered (where failed is referred to the
negated claim).

I Our procedure is correct given the correctness of the approach of [MSG15]
to check that the sub-property is satisfied by the analyzed replacement.

We formalize these observations as follows:
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Theorem 3.1 (Transparent state conclusion). For every transparent state t ∈
TM, it holds:

t |=
n∧
j=1

µ(pj ) ⇐⇒




t |=P
∧n

j=1 µ(pj ) ∧

Mt |=
∧n

j=1 µ(pj ) ∧

∀out-transition∈ ∆out I
t ∈ {Y ellow, Blue}

(3.1)

On the left side, we have a proposition that states that a transparent state
semantically entails the conjunction of all formulas valid on the states of the
claim. This is equivalent to the conjunction of the three conditions on the
right side of the equation. The first conjoined condition represents the in-
formation we derive from the master proof. During the construction of the
master proof, we collected a series of t i |=P

∧n
j=1 µ(pj ), one for each combi-

nation of ti ∈ TM and claim state pj ∈ QΦ̄. Unfortunately, we were only able
to compose a possibly-validity referred to state t, waiting for its replacement.
Indeed, only now we can reach sure-validities. The second conjoined condition
basically represents the fact that a run that enters the replacement does not
cycle infinitely inside of Mt . Proceeding with the analysis of the replacement
of t and its behavior against the computed sub-property, we have now infor-
mation on what is surely-valid in it. The third condition expresses the fact
that a run that enters S̄t , does not exit from a red out-transition.

3.4 Plugging the sub-proofs into the master proof
At this stage, we know how to build a master proof and also sub-proofs for the
initially incomplete states. Now, we would like to put together all the results.
Basically, we would like to show that, while [PZ01] has already described

how to prove that a property is satisfied by a fully specified model, we can also
prove that the same property can still be satisfied by a model that has not
been refined yet. Our proof is incomplete and is finished only when acceptable
refinements for the initial model are provided. In Section 3.2, we showed how
to build the proof for the initial incomplete modelM expressed as an incom-
plete Büchi automaton. In Section 3.3, we showed how the general procedure
of Section 3.2 can be applied, with some modifications, also to sub-automata
representing replacements for transparent states of M. In this section, we
would like to propose a methodology to keep track of which parts of the ini-
tial proof depend on further refinements of the model (and, iteratively, which
parts of a replacement depend on other replacement themselves). Thanks
to an appropriate data structure, we can solve dependencies at higher levels
(when the model is still not completely refined) with the output obtained at
lower levels (completely specified replacements).
We organize the dependency system as a tree structure, whose nodes cor-

respond to the master proof (root) and other sub-proofs. Each node has its
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Master proof

Sub-proof q2 Sub-proof q4

Sub-proof q22

Figure 3.16: Tree of dependencies between proofs

own depGraph (see Section 3.2.5), that is a map where the keys are the single
intersection automaton states, each of which has a depList connected, a list
of all those states that need to be “solved” before concluding a sure validity
about the key.
Let us consider the railway crossing model in Figure 3.2: we would like to

replace state q2 with the replacement in Figure 3.12a, and state q4 with the
replacement in Figure 3.12b. The replacement for q2 contains a transparent
state itself, q22 . We therefore have a master proof for the whole model, two
sub-proofs respectively for states q2 and q4, and an additional sub-sub-proof
for state q22 . Figure 3.16 represents the hierarchy to follow when solving the
dependencies. Each node has its own depGraph structure.

We describe the steps of dependency resolution performed by the procedure
of proof plugging once that all replacements are available and the refined
model N of M is finally complete. Table 3.1, Table 3.2, and Table 3.3 help us
to describe the succession of steps using numbered arrows.
First of all, we solve the dependencies of those sub-proofs whose automata

do not contain any transparent states anymore. This corresponds to having all
dependency lists empty in the depGraph related to the considered sub-proof.
When all depList’s fields of a node of the tree are empty, the sub-proof can be
considered closed. According with its conclusion, all its ancestors nodes can
be updated.
This is the case of the sub-proof related to q4 and the one related to q22

(we assume a replacement for q22 that satisfies the constraint computed like
in [MSG15]) [Arrows (1)]. This allows to conclude that q22 |= µ(p1) ∧ µ(p2),
which means q22 |= φ and that q4 |= µ(p1) ∧ µ(p2), from which q4 |= φ. Notice
that the conclusion on state q2 is still possible (q2 |=P φ), at this stage; instead
the sub-proof related to q4 and the sub-sub-proof related to q22 provide sure-
conclusions. This means that we can proceed with substituting all possible-
validities present in the sub-proof referring to q2 with sure-validities [Arrows
(2)]. Notice that the dependencies where the key and the content of depList is
the same are artificial because they are the ones related to a transparent state.
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It is the case of q22 p1 → q22 p1(T ). Nevertheless, we mark them as dependent
anyways to keep track of replaced states. At this point, all depLists in the
graph of q2 are empty, therefore, we conclude q2 |= φ [Arrow (3)].

❶ ❶

❷

❷

❸

Table 3.1: Resolution of dependencies. Steps 1-3

We can now use both final conclusions about q4 [Arrows (4)] and q2 [Arrow
(5)], to update the master proof graph, by turning possible-validities into sure-
validities. Note that this can be done by updating the entries of the depGraph
of the master proof by removing any dependency on validities related to q4
in their depLists. [Arrows (4)] allow to unlock several dependencies: the keys
(q4p2), (q4p1), (q3p2) and (q3p1) have now empty depLists. [Arrow (5)] cancels
the dependency of (q2p1) on (q2p2), while (q2p1) still depends on q3p1.

❹

❺

Table 3.2: Resolution of dependencies. Steps 4-5
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[Arrow (6)] shows how to use the fact that (q3p2) is now free from de-
pendencies, to delete the element (q3p2) from the depList of (q2, p2). Finally
[Arrow (7)] unlocks the last key: also the dependency list of (q2p1) is now
empty. We can, therefore, conclude that M |= φ [Arrow (8)].

❻

❼

❽

Table 3.3: Resolution of dependencies. Steps 6-8
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4 Tool support: ChIPS

ChIPS, Checker Initializing Proof Systems, is a Java module that complements
CHIA1, an existing tool that supports automata-based verification. ChIPS is a
prototype stand-alone application realized in Java 7. It is a deductive proof
generator initialized by the results of the model checking procedure.

ChIPS has been realized as a proof of concept, with the purpose of showing
how software development can benefit from the deductive proof generation
method proposed in this thesis. For this reason, we implemented the pro-
cedure in charge of computing the master proof described in the first part
of our contribution (Section 3.2) and leave the incremental part of sub-proofs
(Section 3.3) to future developments. We describe the architecture of the
application, that allows to build a proof associated with the intersection au-
tomaton created during the model checking procedure between a model and a
property that the user would like to check, both described through XML files.
Section 4.1 introduces CHIA, the existing model checking tool on which

ChIPS is designed. In Section 4.2, we describe how ChIPS extends CHIA to
produce deductive proofs and, in Section 4.3, we describe an example of user
interaction with the ChIPS console.

4.1 The CHIA tool

CHIA has been developed by [MSG15] as a proof of concept to validate their
research on model checking for incompletely specified systems. It has been
developed as a Maven multi-module project. The interaction with the user is
managed through a command-line shell which allows to load the model and
the claim from XML files, check whether the model satisfies the claim, and save
the results of verification on XML output files.

CHIA is composed of different sub-modules. The CHIAAutomata module con-
tains the classes used to manage BAs and IBAs. The CHIAAutomataIO module
provides the classes to load and save a BA, IBA and IntersectionBA from and
to the appropriate XML files. Finally the CHIAChecker module contains classes
that allow to check if a model satisfies, possibly-satisfies, or does not satisfy
the properties of interest.
The proof building procedure is triggered after the model checking proce-

dure has been performed and has returned a yes or possibly-yes output. ChIPS

1CHIA: CHecker for Incomplete Automata.
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exploits the CHIA architecture to load and save automata from XML files, its
intersection procedure, and its model checking result.

4.2 A Checker Initializing Proof Systems: ChIPS

ChIPS uses the infrastructure of CHIA by including the modules from the
corresponding repository2.

ChIPS is launched by executing its Main class, that enables the ChIPS con-
sole, a command-line shell to interact with the tool, that is implemented with
the support of the Cliche library [cli]. The ChIPS console extends the one of
CHIA, and benefits from all its functions. We can load a model that we would
like to analyze, the claim to to be considered, perform the model checking
procedure, and save the constraints.
The description of the ChIPS module is organized in four sections: Figure 4.2.1

introduces the classes that describe BAs and IBAs, by explicitly modeling
their state space. Section 4.2.2 describes the module used to load and save
BAs and IBAs, Section 4.2.3 describes the classes which allow to compute the
proof, and Section 4.2.4 describes the user interface.

4.2.1 Modeling

BA

- automataGraph: DirectedPseudograph
- initialStates: Set<State>
- accceptStates: Set<State>

BADecorated

- ltlMap: Map<State,String>

+ BADecorated(...)
+ addDecoration(...)

IntersectionBA

- mixedStates: Set<State>
- constrainedTransitions: Set<Transition>

IBA

- transparentStates: Set<State>

- propositions: Set<IGraphProposition>

+ getLtlMap()

Figure 4.1: The class diagram of the modeling classes

The BA and IBA classes are used to represent claims and models. They are con-
tained in the CHIAAutomata module of the tool CHIA. The BA class describes
Büchi automata as graphs, with regular states, initial states, accepting states,
and transitions decorated with propositions. In particular, the automaton
graph is represented through the DirectedPseudograph class of the JGraphT

2The CHIA tool is available at http://home.deib.polimi.it/menghi/Tools/IncModChk.html
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library [jgr], that allows to create a directed graph with both loops and mul-
tiple edges between two states.
The BA class is extended by IBA, that contains also transparent states, and

IntersectionBA, that provides mixed states and constrained transitions.
The BADecorated class of ChIPS (Figure 4.1) enriches the information held

by the automaton states. In particular, in addition to the name and the id
of each state, we associated a string representing the LTL formula valid on
that state, according to the procedure described in Section 2.2.2. The automa-
ton has an additional attribute, ltlMap, that associates an LTL formula to
each state of the claim. The method addDecoration() allows to write this
additional information into the automaton.

4.2.2 Input and output
To load and save automata, we exploit the CHIAAutomataIO module. This
module provides the classes to manage the input and output of the automata
from/to XML files (whose structure is validated against their schema defini-
tions).

The chips.io package contains the BADecoratedReader and
ElementToBADecoratedTransformer classes, and the corresponding state
transformer ElementToBADecoraedStateTransformer. These classes man-
age the input of our extended version of BAs for the representation of the
claim. The corresponding class diagram is presented in Figure 4.2.

I BADecoratedReader is used to load a BADecorated from an XML file. It
extends the corresponding BAReader class (that extends the XMLReader
itself) by adding the possibility to read the string attribute that contains
the LTL formula for each state of the automaton;

I ElementToBADecoratedTransformer transforms an XML element, which
represents a BADecorated, into the corresponding JAVA object. It inher-
its from the corresponding ElementToBATransformer for regular BAs.
This class overrides the method transform() to load states decorated
with an LTL formula;

I ElementToBADecoratedStateTransformer transforms an XML element,
which represents a BADecorated state, into the corresponding State
object. The class extends the ElementToBAStateTransformer.

Listing 4.1 describes the XML input file of the claim represented in Figure 3.3,
while Listing 4.2 presents an example of the XML file that corresponds to the
railway crossing system model introduced in Figure 3.2.
Each file is composed by three different parts: the tag < propositions >

defines the list of all possible < proposition > of the automaton alphabet.
Their value is specified in a < value > attribute. < states > delimits the
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ElementToBATransformer

+ ElementToBATransformer(...)
+ transform(...)
- loadStates(...)
- loadPropositions(...)
- loadTransitions(...)

BADecoratedReader

+ BADecoratedReader(...)
+ read(...)

ElementToBADecoratedTransformer

+ ElementToBADecoratedTransformer(...)

ElementToBADecoratedStateTransformer

+ ElementToBADecoratedStateTransformer(...)
+ transform(...)

BAReader

+ BAReader(...)
+ read(...)

XMLReader

IBAReader

+ IBAReader(...)
+ read(...)

+ XMLReader(...)

ElementToBAStateTransformer

- ba: BA
- stateFactory: StateFactory

+ ElementToBAStateTransformer(...)
+ transform(...)

+ transform(...)
- loadStates(...)

+ read(...)

Figure 4.2: The class diagram of the chips.io.in package

list of states of the automaton. Each state, denoted by a < state > tag,
contains the mandatory attributes id (unique numeric identifier), name and
optional boolean attributes like accepting, initial and transparent that
are set to true in case these characteristics are associated to the given state.
The < transitions > tag delimits a list of transitions of the automaton.
Each transition, specified by using the < transition > tag, has the id, the
source, the destination, and the propositions to describe the source state,
the destination state and the propositions that trigger the passage from one
state to the other. The id fields need to be unique.

1 <?xml ve r s i on ="1.0" encoding="UTF−8"?>
2 <ba>
3 <propos i t i on s >
4 <propo s i t i on value="SIGMA"/>
5 <propo s i t i on value=" l "/>
6 <propo s i t i on value="t "/>
7 </propo s i t i on s >
8 <sta t e s >
9 <s ta t e id ="1" name="p1 " i n i t i a l =" t rue " accept ing=" true "

10 l t l ="X( ( ! l )R( ! t ))"/>
11 <s ta t e id ="2" name="p2 " accept ing=" true " l t l ="( ! l ) ^ ( ! t )"/>
12 </s ta t e s >
13 <t r an s i t i o n s >
14 <t r a n s i t i o n id ="1" source ="1" d e s t i n a t i on ="1" p r opo s i t i o n s ="! t "/>
15 <t r a n s i t i o n id ="2" source ="1" d e s t i n a t i on ="2" p r opo s i t i o n s ="! l ^ ! t "/>
16 <t r a n s i t i o n id ="3" source ="2" d e s t i n a t i on ="2" p r opo s i t i o n s="SIGMA"/>
17 </t r an s i t i o n s >
18 </ba>

Listing 4.1: XML file corresponding to the claim BA presented in Figure 3.3
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Since ChIPS uses the LTL formula that labels each state in the generation of
the proof, we added an attribute to the XML tag referring to the state. These
attributes decorate the state with information about the LTL formula valid on
it. In the CHIA input file, the tags < state > contain an id (unique numeric
identifier), a name, optional boolean attributes like accepting, initial and
transparent that are set to true in case these characteristics corresponds
to the considered state, and ltlFormula attribute that contains a string rep-
resenting the formula valid on the considered state. The LTL formula is
expressed through the following operators:
Temporal operators: X as “next”, F as “eventually”, G as “always”, U as

“until”, R as “release”.
Logic operators: ^ as “and”, || as “or”, ! as “negation”, -> and <-> as

simple and double implication.
In Listing 4.1, we highlight in red the added ltl attribute of state.

1 <?xml ve r s i on ="1.0" encoding="UTF−8"?>
2 <iba>
3 <propos i t i on s >
4 <propo s i t i on value=" l "/>
5 <propo s i t i on value="t "/>
6 </propo s i t i on s >
7 <sta t e s >
8 <s ta t e id ="1" name="q1 " i n i t i a l =" t rue " accept ing=" true "/>
9 <s ta t e id ="2" name="q2 " accept ing=" true " t ransparent=" true "/>

10 <s ta t e id ="3" name="q3 " accept ing=" true "/>
11 <s ta t e id ="4" name="q4 " accept ing=" true " t ransparent=" true "/>
12 <s ta t e id ="5" name="q5 " accept ing=" true "/>
13 <s ta t e id ="6" name="q6 " accept ing=" true "/>
14 </s ta t e s >
15 <t r an s i t i o n s >
16 <t r a n s i t i o n id ="1" source ="1" d e s t i n a t i on ="2" p r opo s i t i o n s=" l "/>
17 <t r a n s i t i o n id ="2" source ="2" d e s t i n a t i on ="3" p r opo s i t i o n s=" l "/>
18 <t r a n s i t i o n id ="3" source ="3" d e s t i n a t i on ="4" p r opo s i t i o n s=" l "/>
19 <t r a n s i t i o n id ="4" source ="4" d e s t i n a t i on ="5" p r opo s i t i o n s="t "/>
20 <t r a n s i t i o n id ="5" source ="5" d e s t i n a t i on ="6" p r opo s i t i o n s="t "/>
21 <t r a n s i t i o n id ="6" source ="6" d e s t i n a t i on ="5" p r opo s i t i o n s=" l ^ t "/>
22 </t r an s i t i o n s >
23 </iba>

Listing 4.2: XML file for the model IBA presented in Figure 3.2

The XML file containing the IBA has the same structure as the one used in
CHIA. It contains the < state > tag and attribute of a BA input file, with
the exception that a state can have an attribute transparent and that the
transitions cannot contain negated propositions.
We use classes from CHIAAutomataIO that manage the output of the inter-

section automaton written on a suitable XML file.
In addition to these, we designed two classes to print our output in text

files:

I ProofWriter is used to print the proof associated with a model and a
claim previously loaded into a file in the specified path;
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I DepGraphWriter is used to print the graph that contains the depen-
dencies between the validities of the proof, into a file in the specified
path.

Figure 4.3 contains a UML class diagram that describes the structure
and relations of the described classes with the CHIA tool. All three writ-
ers are called during the procedure that performs model checking and then
builds a deductive proof (triggered by the method checkAndBuildProof in
ChIPSAutomataConsole).

CHIAAutomataConsole

+ check(String)

ChIPSAutomataConsole

+ checkAndBuildProof(intersectionPath, proofPath, graphPath)

ChIPSAutomataConsole

- f: File

ProofWriter

DepGraphWriter

+ DepGraphWriter(ProofBuilder,File)

- graphFile: File

+ writeDepGraph()

- proof: ProofBuilder

- intersectionAutomaton: IntersectionBA

+ write()
+ IntersectionWriter(IntersectionBA,File)

+ ProofWriter(ProofBuilder,File)

- proofFile: File

+ writeProof()

- proof: ProofBuilder

Figure 4.3: The class diagram of the chips.io.out package

4.2.3 Building the proof

The main package of our module is chips.prover, that contains all the ele-
ments to gather the necessary information to build the rules of the proof. The
rules are created and managed through the classes of package chips.rule. The
specific lines of the proofs, the rows, are dealt with by package chips.row.
Figure 4.4 presents the UML class diagram of the chips.prover package,

that contains the classes involved in the generation of the proof.

I ProofBuilder contains the entry point used to run the proof construc-
tion. It requires an IntersectionBA as input. It has an instance of
IntersectionBuilderProver that provides all the methods useful to
deal with the intersection automaton, an instance of SCCDealer that
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Mag

- mag: Set<State>

ProofRule

+ ProofRule(...)
+ ruleBuilder(IntersectionBuilderProover,...)

IntersectionBuilderProver

- extIntersection: IntersectionBA

ProofBuilder

- intersectionBuilderProver

SCCdealer

- sccList: List<DirectedSubgraph<State,Transition>>

- intersectionBuilder: IntersectionBuilder

- extendIntersection()
- checkItToAdd(State,State)

- extIntersection: IntersectionBA
- addFailedStateToIntersection(State,State,State)

+ getExtIntersection(): IntersectionBA
+ getOrigIntersectionBuilder(): IntersectionBuilder

- collapseNodes()

- inMag: Set<Transition>
- higher: State

- addToMag(State,IntersectionBuilderProver)

- outMag: Set<Transition>

+ Mag()

- chooseHigher()

- sccListOfSucc: List<Set<Integer>> 
- checkList: List<Boolean>

- sccOrderNew: List<Integer>
- dealer : SCCdealer
- rejects: Set<DirectedPseudograph>

+ ProofBuilder(IntersectionBuilder)

- rulesList: List<Rule>
- depGraph: Map<State,Set<State>>

+ startMaster()

- removeFromInMag(Transition)
- removeFromOutMag(Transition)

+ startSorter(IntersectionBA)
- fillSuccessors(DirectedGraph)
- sortSCC()

+ getSccOrderNew(): List<Integer>
- removeSCC(Set<State>)

Figure 4.4: The class diagram of the chips.prover package

analyzes SCCs and sorts them, a set of rejected SCCs (rejects), a
list of rules (rulesList), and map that records validities dependen-
cies (depGraph). This class orchestrates the creation of the proof
through the method startMaster(), that implements Algorithm 3.2
(BuildProof);

I IntersectionBuilderProver extends the IntersectionBuilder of the
CHIAChecker module (that computes the intersection between a model
IBA and a claim, BA), by providing several methods that allow to ma-
nipulate the graph and extend it as needed (see Section 3.2.1);

I SCCdealer manages the identification of SCCs and their sorting with the
method startSorter() that uses the private methods fillSuccessors()
and sortScc();

I Mag is a class functional to the procedure of nodes collapsing described
in Section 3.2.1. A Mag is a macro state representing all the inter-
section automaton states deriving from the same model and claim
states. This kind of object is used in the method collapseNodes of
the IntersectionBuilderProver.
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In Figure 4.4, we also represented the ProofRule class from package chips.rule
to show that, after the ProofBuilder has predisposed everything to start
computing the proof, it calls the constructor of the rule, ruleBuilder().
Figure 4.5 presents the UML class diagram associated with the chips.rule

package.

ProofBuilder

- rulesList: List<Rule>

+ startMaster(...)

RuleFAIL

+ RuleFAIL(...)
+ buildFail(...)

ProofRule

- premises: List<Rule>
- depGraph: Map<State,Set<State>>

+ ruleBuilder(...)
+ ProofRule(...)

- conclusions: List<Rule>

RuleSUCC

+ RuleSUCC(...)
+ buildSucc(...)

RuleIND

+ RuleIND(...)
+ buildInd(...)

RuleCONJ

+ RuleCONJ(...)
+ buildConj(...)

+ ProofBuilder(...)
+ getRulesList(...)

Figure 4.5: The class diagram of the chips.rule package

I ProofRule is an abstract class that describes a rule. It contains the
attributes premises, conclusions and an instance of depGraph. It is
extended by four different deductive rules. ruleBuilder() is a static
factory method that implements the logic of Algorithm 3.5, by choosing
to build a different rule based on the characteristics of the analyzed
SCC;

I RuleFAIL implements the logic described in Algorithm 3.6;

I RuleSUCC implements the logic described in Algorithm 3.7;

I RuleIND implements the logic described in Algorithm 3.8;

I RuleCONJ implements the logic described in Algorithm 3.9.
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Figure 4.6 presents a UML class diagram of the classes contained in the chips.row
package. It is a package that only worries about correctly formatting the gath-
ered information into each proof row. For organization purposes we choose
to use a unique parent class with a toString() method that each kind of
inheriting instance overrides for its purpose.

Validity

- modelState: State

- possiblyFlag: boolean

ProofRow

+ ProofRow()
+ toString()

SuccDefinition

- predecessor: State
Conjunction

+ Conjunction(Set<State>)
+ toString()+ toString()

+ Validity(State,boolean)

- claimState: State
- successors: Set<State>

+ SuccDefinition(...)
+ toString()

- claimStates: Set<State>

Figure 4.6: The class diagram of the chips.row package

I ProofRow is the parent class: all possible rows composing the proof
derive from it;

I Validity allows to build a sure-validity (Definition 3.6) or a possible-
validity (Definition 3.7), depending on the value of the possiblyFlag;

I SuccDefinition allows to express the definition of a state’s successors
(as specified in Definition 3.8);

I Conjunction is a particular row that only appears in the premise of the
Conjunction rule. It basically allows to state that the conjunction of
all the LTL formulae that decorate the states of the claim automaton
implies the initial requested property.

4.2.4 Initial framework
The chips.framework package contains the classes used to run ChIPS. The
main method in Main launches the command-line shell ChHIPSConsole, that
extends the CHIAConsole. Two working modes are available: by typing
“aut” we access the ChIPSAutomataConsole, that allows to start the proce-
dure to build the master proof (Section 3.2), whilst with “rep” we access the
ChIPSReplacementConsole, that deals with the construction of sub-proofs.
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By extending CHIAAutomataConsole, the ChIPS console inherits all the
methods that execute commands to load the model, the claim, and perform
the model checking procedure. This, in particular, is managed through the
module CHIAChecker, that allows to check if the loaded model IBA satisfies,
does not satisfy or possibly-satisfies the loaded claim BA (or BADecorated, in
our case). In addition to the inherited methods, our console implements:

ChIPSConsole

+ ChIPSConsole()

+ replacementMode()

ChIPSAutomataConsole

- masterBuilder: ProofBuilder

ChIPSReplacementConsole

+ exit()

+ automataMode()

+ ChIPSAutomataConsole()
+ checkAndBuildProof(String,String,String)
+ loadDecoratedClaim(String)

+ ChIPSReplacementConsole()

Main

+ main(String[])

CHIAAutomataConsoleCHIAConsole

+ CHIAConsole()

+ replacementMode()
+ automataMode()

+ CHIAAutomataConsole()

+ changePolicy(String)
+ check(String)

Figure 4.7: The class diagram of the chips.framework package

I loadDecoratedClaim() allows the user to load an XML file that corre-
sponds to an enriched BA, a decorated claim automaton;

I checkAndBuildProof() is the central method of our approach. It first
calls the method check() from its parent class that computes the model
checking procedure. Then, depending on the satisfaction value result
(i.e., if it is different from “notsatisfied”), the procedure that builds
the master proof is started. At the end of it, both the proof and the
dependency-graph are printed out.
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4.3 Interaction with the tool
We present an example of the interaction the user can have with ChIPS. After
running ChIPS the user can choose between the automata and the replacement
mode.

ChIPS > aut

The aut command allows the user to enter the automata mode, opposed to
the command rep, that allows to access the replacement mode.

ChIPSmaster > cp NORMAL

The cp command activates the method changePolicy. It allows the user to
switch between a KRIPKE policy (set by default) and a NORMAL policy.

ChIPSmaster > lm <modelFilePath >

The lm commands stands for loadModel and allows the user to load the IBA
that represents the system he/she wants to analyze by specifying the path of
the XML file defined as showed in Listing 4.2.

ChIPSmaster > lcd <claimFilePath >

The ldc command stands for loadDecoratedClaim; specifically it loads the
XML file in the specified path (like, for example, the one in Listing 4.1) as the
DecoratedBA that represents the claim with LTL formulae as states attributes.

ChIPSmaster > ckbp <intersectionFilePath >
<proofFilePath > <graphFilePath >

The ckbp command stands for checkAndBuildProof. This is the central
command to activate our procedure. It performs model checking using CHIA’s
modules and, when the result is yes or possibly-yes, uses the result to build the
proof. The user must specify the path of three files to be created or overwritten
where the tool can output the structure of the intersection automaton used,
the content of the deductive proof, and the dependency-graph structure.

ChIPSmaster > exit

exit allows the user to exit the mode he/she has entered. If used from
ChIPS >, it exits the console.
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In this chapter, we analyze an academic case study to evaluate the appli-
cability of the proposed approach. The case study has been considered in
[MSG15, AY01] and represents a communication protocol, in charge of send-
ing a message. An initial, high level and incomplete model of the system M
is represented in Figure 5.1 as an incomplete Büchi automaton (see Defini-
tion 2.6). When the system is started, the automaton moves from the initial
state to the first transparent module, send1, which represents a function per-
forming the first attempt to send a message. If the first try succeeds, the
final state q3 is entered. If the first attempt is not successful, the system
activates a second function, send2, that tries to send the message again, for
example by using a different communication device. If this attempt succeeds,
the accepting state q3 is reached, otherwise the abort state q2 is reached. The
system can move from one state to another using the limited set of actions
{start, ok, f ail, success, abort} that define its alphabet.

q1 send1 send2

q3 q2

start fail

ok ok fail

success abort

Figure 5.1: Model of the system in charge of sending a message

The developer might want to know whether this initial design satisfies the
requirements of the system. Consider, for example, the liveness property
“whenever a message is sent, then it will eventually reach the receiver” for-
malized in linear temporal logic as φ = �(send → ♦success). The developer
may want to know if it is satisfied in its incomplete design.

The incomplete model checking procedure helps to find out if the model of
this system satisfies or possibly satisfies φ. The model checking procedure
intersects the IBA representing the model M with the BA representing the
negation of the property φ. In Figure 5.2, we show the BA Φ̄ equivalent to the
LTL formula ¬�(send → ♦success).
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p1 p2

Σ

send ∧ ¬success

¬success

Figure 5.2: Automaton representing the negated claim

The deductive proof exploits the LTL formulae associated with each state
of the claim. As explained in Section 2.2.2, these formulae are obtained from
the tableau associated with ¬φ, which is represented in Figure 5.3. Note that
su is a shortcut for the proposition success and se for send. According to
Proposition 2.1 from [PZ01], we can express the sub-formulae, on the states
of Φ̄, as η(p1) and η(p2).

♦(se ∧ �¬su)(1)

se ∧ ¬su(2)

se,¬su(3)

se,¬su,#�¬su(4)

�¬su(5)

¬su,#�¬su(6)

�¬su = (5)

©♦(se ∧ �¬su) (7)

♦(se ∧ �¬su)

Figure 5.3: LTL tableau for ¬�(send → ♦success)

I η(p1) = #♦(send ∧ �¬success) - It is derived by following the right branch of the
tableau and by applying the rules of Table 2.1. Below node (7), we find a formula
that already exists in the same branch: it indeed corresponds to the one on the
root (1). Therefore, we return the formula of the last numbered node of the tree,
(7), as representative of state p1. Note that this formula is assigned to the initial
node of the BA Φ̄ since (1) has no incoming nodes. For Proposition 2.1, µ(p1) =
#�(¬send ∨ ♦success).

I η(p2) = �¬success∧ send - It is derived by following the left branch of the tree. After
applying a dynamic rule (with the “next” symbol) to node (6), we find the �¬success
formula, that is already present in node (5). We therefore perform a conjunction of
the formulae held in the parents of the nodes with the repeated formula. Node (4),
parent of (5), contains {send,¬success,#�¬success} and node (6), parent of the leaf
of the branch, contains {¬success,#�¬success}. By conjoining these two formulae, we
obtain that η(p2) = #�¬success ∧ ¬success ∧ send. According to the first fixed-point
equation in 2.1, we derive η(p2) = (#�¬success∧¬success)∧ send = �¬success∧ send.
For Proposition 2.1, µ(p2) = ¬send ∨ ♦success.
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In the next sections, we simulate a scenario where incomplete model check-
ing ([MSG15]) is applied to the just described model and claim automata,
followed by the construction of the master proof (see Section 5.1). Then,
we assume the initial system refined using two example replacements for the
transparent states, that are used, along with the constraint computed like
in [MSG15], to perform a procedure of replacement checking ([MSG15]) that
allows to build two specific sub-proofs (Section 5.2). At each refinement step,
the newly computed sub-proof allows to solve the dependencies related to it
(see Section 5.3).

5.1 Master proof building

Let us consider the model and claim automata introduced in the last section.
The incomplete model checking procedure verifies if the model of this system
already satisfies or if it possibly satisfies φ. In the second case, the model
checking procedure return a ⊥ value (see Definition2.14), meaning that M
possibly satisfies φ. In this case, the developer may use the presented proce-
dure to compute a master proof that shows why the model does not contain
any accepting run that satisfies the negated property, but contains possibly
accepting runs that could violate the property.

q1, p1, 0

send1, p1, 0 send1, p2, 0

q3, p1, 1 q3, p2, 1

send2, p1, 0 send2, p2, 0

q2, p1, 1

q2, p2, 1

q2, p2, 2 q2, p2, 0

start

fail

ok

fail

ok

success

fail

ok

abort

ok

fail

abort

abort

abort

Σ

send∧!success

!success

Σ

send∧!success

!success

Figure 5.4: Intersection automaton for the sending message example
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In Figure 5.4, we represent the intersection automaton computed between
the model M and the negated automaton Φ̄, associated with the property φ.
The states marked with a dotted border (mixed states) and the transitions
identified with dotted lines (constrained transitions) are obtained by combin-
ing transparent states of the model and transitions executed in their replace-
ments with states and transitions of the claim. The runs that involve these
states and transitions are possible runs since they depend on how transparent
states are refined.
Figure 5.4 also shows, on a red background, a cycle among the accepting

states that, if reached, determines a violation of the property. The three
states involved represent a dangerous component, that is rejected from the
graph during the procedure of proof building, as explained in Section 3.2.3.
As specified in the Paragraph “Nodes collapsing” of Section 3.2.1, the first

step of the proof generation concerns the collapsing of nodes that derive from
the same model and claim states. In the case study under analysis, the pro-
cedure collapses (q2, p2, 0), (q2, p2, 1) and (q2, p2, 2) into the node (q2, p2) and
converts the transitions among these three nodes into a self-loop insisting on
the new one. For all other states of the automaton, only the first two compo-
nents of their labels are memorized.

q1, p1

send1, p1

artificial
initial node

send1, p2

q3, p1 q3, p2
FAIL

send2, p1 send2, p2

q2, p1 q2, p2

REJECT

FAIL

FAIL

IND IND

IND IND

Figure 5.5: Graph analyzed for the rule generation

Furthermore, the algorithm extends the intersection automaton with failed
states (Paragraph “Failed” of Section 3.2.1). This step does not have any effect
on the current intersection since all possible combinations between a state of
the model and a state of the claim have already been included in the original
intersection.
The graph depicted in Figure 5.5 represents the simplified intersection au-
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tomaton. This version of the automaton is analyzed to identify all strongly
connected components and to establish a partial order relation ≺ among them,
as specified in Definition 3.5. C ≺ C ′ means that if there is an edge from a
node in C to a node in C ′, it is necessary to consider C ′ before C. This or-
der assures that, each time a component is analyzed, all the SCCs that are
reachable from it, have been already processed.
The SCCs are identified by the Tarjan’s([Tar72]) algorithm and are later

sorted according to the mentioned partial order: (q3, p2), (q2, p1), (q3, p1),
(q2, p2), (send2, p2), (send2, p1), (send1, p2), (send1, p1).
After the succession of SCCs has been computed, each of them is processed

to identify the kind of correctness assertion that can be derived from it. In
this particular case, all SCCs are composed by a single node. We remind
the reader to make reference to Figure 3.9 and Figure 3.10 that should help
distinguish between cases.
Since (q3, p2) is a regular, non-accepting, failed node (Figure 3.9g), the

RuleFail is triggered. The same rule is applied to the states (q2, p1) (sit-
uation of Figure 3.9e) and (q3, p1) (Figure 3.9g), since in both cases the states
are regular, non-accepting, with no successors except for themselves. Differ-
ently, (q2, p2) is a non-trivial SCC composed by a single accepting node. As
specified in Figure 3.9a, this condition leads to a dangerous situation. The
component is rejected from the proof, and so is the transition from (send2, p2)
leading to it, since any safe replacement of the transparent states would not
allow any run to reach (q2, p2). Note that, in case the refined system did
not comply with the specification, the procedure of proof building would have
not started. For this reason, the only interesting components for the proof,
are the ones that form an empty intersection automaton. Finally, (send2, p2),
(send2, p1), (send1, p2), (send1, p1) are all mixed nodes that present both a
self-loop and successors: RuleInd is applied according to Figure 3.10b. No-
tice that in Figure 5.5 the rules to be applied are indicated on the side of each
component.
The sorted list of SCCs is used to build the rules that produce the mas-

ter proof. Listing 5.1 schematizes the deductive reasoning that proves that
the model in Figure 5.1 possibly-satisfies the requirement φ = �(send →
♦¬success). At a later stage, when the transparent states get refined, the
procedure progressively builds dedicated sub-proofs that eventually solve the
dependencies on hold. Indeed, we note that certain rules present conclusions
that are final, i.e., sure-validities (see Definition 3.6), as for example the three
RuleFail at the beginning of the listing. Others, instead, present conclusions
that are not final yet, i.e., possible-validities (see Definition 3.7) that depend
on the resolution of the uncertainty of rules built on earlier processed SCCs.
For example, this is the case of the three RuleInd applied to the components
(send2, p2), (send2, p1), (send1, p2), (send1, p1).
Note that the validities in the conclusion of a rule are possible if the same
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rule presents at least a possible-premise, or if the state upon which the va-
lidity is built is mixed. A validity in the premise is possible if there exists a
previous rule, showing the same validity as a possible-conclusion. We remind
that the symbol |=P marks the possible-validities present in both premise and
conclusion of rules.

1. Using the RuleFail axiom on the node (q3, p2), we obtain
q3 |= µ(p2) = ¬send ∨ ♦success

2. Using the RuleFail axiom on the node (q2, p1), we obtain
q2 |= µ(p1) = #�(¬send ∨ ♦success)

3. Using the RuleFail axiom on the node (q3, p1), we obtain
q3 |= µ(p1) = #�(¬send ∨ ♦success)

4. Node (q2, p2) is rejected.

5. Applying the RuleInd to the SCC = (send2, p2),
where Exit(SCC) = {(q3, p2)}, we obtain:

send2 → {q3}
q3 |= µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p2) = ¬send ∨ ♦success

Applying line 1 as a premise to line 5, we obtain
send2 |=P ¬send ∨ ♦success

6. Applying the RuleInd to the SCC = (send1, p2),
where Exit(SCC) = {(send2, p2), (q3, p2)}, we obtain:

send1 → {send2, q3}
q3 |= µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p2) = ¬send ∨ ♦success
send1 |=P µ(p2) = ¬send ∨ ♦success

Applying lines 1, 5 as a premise to line 6, we obtain
send1 |=P ¬send ∨ ♦success

7. Applying the RuleInd to the SCC = (send2, p1),
where Exit(SCC) = {(send2, p2), (q2, p1), (q3, p1)}, we obtain:

send2 → {q2, q3}
q2 |= µ(p1) = #�(¬send ∨ ♦success)
q3 |= µ(p1) = #�(¬send ∨ ♦success)
send2 |=P µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p1) = #�(¬send ∨ ♦success)
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Applying line 1, 2, 5 as premises to line 7, we obtain
send2 |=P #�(¬send ∨ ♦success)

8. Applying the RuleInd to the SCC = (send1, p1),
where Exit(SCC) = {(send1, p2), (send2, p1), (q3, p1)}, we obtain:

send1 → {send2, q3}
send1 |=P µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p1) = #�(¬send ∨ ♦success)
q3 |= µ(p1) = #�(¬send ∨ ♦success)
send1 |=P µ(p1) = #�(¬send ∨ ♦success)

Applying line 3, 6, 7 as premises to line 8, we obtain
send1 |=P #�(¬send ∨ ♦success)

9. Using rule CONJ, we obtain:

send1 |=P µ(p1) = #�(¬send ∨ ♦success)
send1 |=P µ(p2) = ¬send ∨ ♦success
µ(p1) ∧ µ(p1) → φ = �(¬send ∨ ♦success)
send1 |=P φ = �(¬send ∨ ♦success)

Applying line 6, 8 as premises to line 9, we obtain
send1 |=P �(¬send ∨ ♦success) = φ

Listing 5.1: Deductive proof of M |= φ for the sending message system

During the application of RuleConj, note that send1 has been chosen as
the artificial initial node, instead of the nominal initial node q1, representative
of all model M automaton, because it is the first reachable node that is not
semantically empty (as specified in Definition 3.9), whereas the nominal initial
node of this automaton q1 does not contain any information, since it has no
incoming transitions.

The possible-conclusion send1 |=P µ(φ) of the final rule means that the
master proof is not complete.

5.2 Computing the sub-proofs

When the developer refines a transparent state, he/she can consequently trig-
ger the computation of its dedicated sub-proof and then update the master
proof by solving the lines that depend on the refinement of the considered

89



Chapter 5 Case study

transparent state. The sub-proof computation procedure exploits the sub-
property and the replacement for a specific transparent state.

A sub-property indicates those behaviors that should be forbidden to any
replacement of the considered state, in order for the whole system to work
properly. In particular, any run leading to a red outgoing transition must
be avoided because it corresponds to a behavior of the system that violates
the requirement. The runs leading to yellow outgoing transitions, moreover,
should be possibly avoided, since they help reaching dangerous areas of the
intersection automaton. Nevertheless, for the purposes of this proof, they are
treated as perfectly admissible runs.
Figure 5.6a-b presents the sub-properties associated with the transparent

states send1 and send2, computed according to [MSG15]. The one associated
with the replacement of send1 indicates that any run that passes through this
state by entering the incoming green transition q1 and exiting through one of
the outgoing yellow transitions send2 (marked with the abbreviation se2) is a
run that possibly violates the claim. The term possibly indicates that we are
not already violating φ, but we are also not guaranteeing that the run will not
reach a red outgoing transition, i.e., a violating run, in the transparent states
reached after the one under analysis. The sub-property for the replacement of
send2, instead, specifies that any run entering the state send2 through a yellow
in-transition send1 and exiting through the red out-transition q2, is possibly
violating (since we are not sure that the yellow incoming port is reachable).

q1

se1, p1, 0 se1, p2, 0

se2se2

star t

f ail f ail

Σ

se ∧¬su

¬suc

se1

se2, p1, 0 se2, p2, 0

se1

q2

f ail f ail

f ail

Σ

se ∧¬su

¬suc

(a) Sub-property for send1 (b) Sub-property for send2

Figure 5.6: Sub-properties for the sending message example

At this stage, the question is whether it is possible or not to refine the
system (i.e., to find a suitable replacement for send1 and send2) in such a way
that the modelM not only possibly-satisfies, but finally satisfies the required
property φ = �(send → ♦¬success).

Figure 5.7 represents the proposed replacement for state send1. It specifies
that, by firing the transition coming from q1 labeled with start, it is possible
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q14 q15
q1

se2

q3

start send

ok

fail

Figure 5.7: Replacement for state send1

to reach the state q14. The automaton Msend1 , by sending a message, moves
from q14 to q15. State q15 is connected to the outgoing transition send2 labeled
with the proposition f ail, and the outgoing transition q3 labeled with ok.

The framework uses this replacement in the sub-proof computation. An
intersection automaton between this and the sub-property of Figure 5.6a is
computed as Rsend1 ∩ S̄send1 . As done for the computation of the master
proof, the sub-proofs computation requires to modify the intersection struc-
ture computed with respect to the definition of [MSG15] (Definition 2.18).

q1

q14, p1 q14, p2

q15, p1 q15, p2

se2 se2

s
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e
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send

f
a
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f
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Figure 5.8: First extention step for automaton Rsend1 ∩ S̄send1

More precisely, it is necessary to collapse the nodes with the same first two
components (in this case study this phase has no impact), and add the failed
nodes, configurations of the replacement that fail to satisfy the sub-property,
that did not originally belong to the intersection computed in [MSG15] (see
Paragraph “Failed” of Section 3.2.1). Here, the failed state (q14, p2) and the
failed transition with empty label 〈q1, {}, (q14, p2)〉 are added.. Figure 5.8 shows
the intersection automaton Isend1 = (Rsend1 ∩S̄send1 ) after this step has been
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applied.
Then, the procedure considers the need of adding blue ports (see Definition

3.11) to the intersection structure. Blue ports complete the information about
all the possible exits from the replacement automaton than a run can take.
In this case, an out-transition that is not considered by the sub-property (be-
cause not dangerous) is q3. The procedure, therefore, adds two out-transitions
〈(q15, p1), {}, q3〉 and 〈(q15, p2), {}, q3〉, which correspond to two out-ports q3,
marked with color blue.

Finally, the procedure transforms the out-ports into states, by replicating
them for all the claim states that could be reached from that point. We
explicitly specify the combination between the model state of the ports and
the state of the sub-property which they are intersected with. Notice that
all states derived from the expansion of out-ports are failed nodes, since an
out-port lacks successors, by definition.
Figure 5.9 describes the state of the intersection automaton after these two

steps have been performed. First the blue port q3 has been added. Later, both
the yellow out-port send2 and the blue q3 ports have been split into states
representing the intersection of the model state of the port and a reachable
claim state.
We consider the incoming port as the real initial node of the intersection au-

tomaton and, therefore, the nodes directly reached by it, (q14, p1) and (q14, p2),
as artificial initial nodes (see Definition 3.9) to be used in the proof.

q1

q14, p1 q14, p2

q15, p1 q15, p2

se2, p1 q3, p1 se2, p2 q3, p2
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Figure 5.9: Second extention step for automaton Rsend1 ∩ S̄send1

A quick observation of this simple graph shows that all nodes correspond
to trivial SCCs. The computation of the partial order relation specified in
Definition 3.5, returns the following relations:

(q14, p1) ≺ (q15, p1), (q15, p2);
(q15, p1) ≺ (send2, p1), (q3, p1);
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(q15, p2) ≺ (send2, p2), (q3, p2).
It is therefore possible to choose the following order to process the SCCs:
(q14, p2), (q3, p2), (q3, p1), (send2, p2), (send2, p1), (q15, p2), (q15, p1), (q14, p1)
The sub-property computation procedure does not require to reject any

component. Since all the components are non-accepting, non-mixed single
states, the RuleFail is applied to the components that have no successors
(it is the case of Figure 3.9g) and RuleSucc to the ones with successors
(Figure 3.9h).
Listing 5.2 presents the sub-proof computed from the automaton previously

described.

I Nodes (q14, p2), (q3, p1), (q3, p2),(send2, p1),(send2, p2). RuleFail.
q14 |= µ(p2), q3 |= µ(p1), q3 |= µ(p2), send2 |=P µ(p1), send2 |=P µ(p2)

I SCC = (q15, p1), Exit(SCC) = {(send2, p1), (q3, p1)}. RuleSucc.

q15 → {send2, q3}
q3 |= µ(p1) = #�(¬send ∨ ♦success)
send2 |=P µ(p1) = #�(¬send ∨ ♦success)
q15 |=P µ(p1) #�(¬send ∨ ♦success)

I SCC = (q15, p2). Exit(SCC) = {(send2, p2), (q3, p2)}. RuleSucc.

q15 → {send2, q3}
q3 |= µ(p2) = ¬send ∨ ♦success
send2 |=P µ(p2) = ¬send ∨ ♦success
q15 |=P µ(p2) = ¬send ∨ ♦success

I SCC = (q14, p1), Exit(SCC) = {(q15, p1), (q15, p2)}. RuleSucc.

q14 → {q15}
q15 |=P µ(p1) = #�(¬send ∨ ♦success)
q15 |=P µ(p2) = ¬send ∨ ♦success
q14 |=P µ(p1) = #�(¬send ∨ ♦success)

I RuleConj.

q14 |=P µ(p1) = #�(¬send ∨ ♦success)
q14 |=P µ(p2) = ¬send ∨ ♦success
µ(p1) ∧ µ(p2) → φ = ♦(send ∧ �¬success)
q14 |=P φ = ♦(send ∧ �¬success)

Listing 5.2: Deductive sub-proof of send1 |= φ
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The conclusion q14 |=P φ is equivalent to say send1 |=P φ. The replacement
is complete, but the out-port send2 is still a transparent state, therefore the
conclusion is still possible and not sure yet. Briefly, the validities derived from
the first bullet line of Listing 5.2 represents the conclusions derived on the out-
ports and the failed node (q14, p2). It can be observed that they all represents
sure-validities with the exception of the two related to send2. These trivial
statements are used to derive the conclusions of the following rules. Notice
that whenever the premise of a rule contain a possible validity, the conclusion
is marked as possible too. RuleConj is based on the artificial initial node
q14 directly reached by the in-port q1.
After the sub-property presented in Figure 5.6b has been computed, the

replacement in Figure 5.10 is proposed for the transparent state send2. State
q16 is the destination of the in-transition 〈send1, f ail, q16〉. By sending a mes-
sage, the automaton moves from q16 to q17. After waiting for one transition
(reaching q18), the system either moves towards q19 by acknowledging the data
transmission, or moves towards q20 if the timeout interval has passed. Both
states guarantee a retry action that leads back to q16. State q21 corresponds to
a failure state that is not reachable from the other states of the replacement.
q19 is the source of the out-transition 〈q19, ok, q3〉 and q21 is the source of the
out-transition 〈q21, f ail, q2〉.

q16 q17 q18

q20

q19

q21

se1

q2

q3

fail send wait

ack

timeout

retry

retry

ok

fail

Figure 5.10: Replacement for state send2

The replacement of send2 is checked against the related sub-property in
Figure 5.6b. Figure 5.11 represents the intersection computed between them.
With respect to the intersection output by the replacement checking procedure
in [MSG15], we applied various modifications. First, the nodes with different
third component {0,1,2}, but deriving from the same model and claim states,
have been collapsed into a unique one. Since all possible combinations be-
tween the states of the replacement and the ones of the sub-property already
appeared in the intersection, there were no failed nodes to be added. The
blue port q3 was added. Finally, it was replicated for the two claim states.
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Notice that the red port q3 belonging to the sub-property of send2 can never
be reached.

q16, p1

q17, p1

q18, p1

q20, p1q19, p1

q16, p2

q17, p2

q18, p2

q20, p2 q19, p2

q3, p1 q3, p2 q2

se1 se1

f
a
il

s
e
n
d

send

w
a
it

ac
k t .out

r
e
tr
y

ok

r
e
tr
y

f
a
il

s
e
n
d

w
a
it

ack
t .o

ut

r
e
tr
y

ok

r
e
tr
y

Figure 5.11: Extention of intersection automaton Rsend2 ∩ S̄send2

The proposed procedure requires to identify the strongly connected com-
ponents of the graph and to sort them according to the partial or-
der relation of Definition 3.5. Through Tarjan’s SCCs search algorithm
we find two trivial components, (q3, p2), (q3, p1) and two non-trivial ones,
SCC1 = {(q16, c2,1), (q17, c2,1), (q18, c2,1), (q19, c2,1), (q20, c2,1)} and SCC2 =
{(q16, c2,2), (q17, c2,2), (q18, c2,2), (q19, c2,2), (q20, c2,2)}.
A suitable processing order can, therefore, be (q3, p2), (q3, p1), SCC2, SCC1.

By analyzing these SCCs and applying a rule to each one, the sub-proof in
Listing 5.3 is obtained.

I Nodes (q3, c2,1), (q3, c2,2). RuleFail. q3 |= µ(p1), q3 |= µ(p2)

I SCC1 = {(q16, p1), (q17, p1), (q18, p1), (q19, p1), (q20, p1)},
Exit(SCC1) = {(q17, p2), (q3, p1)}. RuleInd.

q3 |= µ(p1) = #�(¬send ∨ ♦success)
q17 |= µ(p2) = ¬send ∨ ♦success
q16 → {q17}
q17 → {q18}
q18 → {q19, q20}
q19 → {q16, q3}
q20 → {q16}
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q16 |= µ(p1) = #�(¬send ∨ ♦success)
q17 |= µ(p1) = #�(¬send ∨ ♦success)
q18 |= µ(p1) = #�(¬send ∨ ♦success)
q19 |= µ(p1) = #�(¬send ∨ ♦success)
q20 |= µ(p1) = #�(¬send ∨ ♦success)

I SCC = {(q16, c2,2), (q17, c2,2), (q18, c2,2), (q19, c2,2), (q20, c2,2)},
Exit(SCC) = {(q3, c2,2)}. RuleInd.

q3 |= µ(p2) = ¬send ∨ ♦success
q16 → {q17}
q17 → {q18}
q18 → {q19, q20}
q19 → {q16, q3}
q20 → {q16}
q16 |= µ(p2) = ¬send ∨ ♦success
q17 |= µ(p2) = ¬send ∨ ♦success
q18 |= µ(p2) = ¬send ∨ ♦success
q19 |= µ(p2) = ¬send ∨ ♦success
q20 |= µ(p2) = ¬send ∨ ♦success

I RuleConj.

q16 |= µ(p1) = #�(¬send ∨ ♦success)
q16 |= µ(p2) = ¬send ∨ ♦success
µ(p1) ∧ µ(p2) → φ = �(¬send ∨ ♦success)
q16 |= φ = �(¬send ∨ ♦success)

Listing 5.3: Deductive sub-proof of send2 |= φ

Similarly to the sub-proof for the transparent state send1, the conclusion
q16 |= φ is equivalent to say send2 |= φ, being q16 the artificial initial node of
the replacement. Since the replacement is complete, i.e., it does not contain
any transparent state, the proof is complete too. All the validities presented
are indeed sure-validities.

5.3 Plugging the sub-proofs into the master proof

Notice that the sub-proof just computed for send2 is final, i.e., it does not
contain possible-validities. The derived conclusion, send2 |= φ can, therefore,
be considered sure. On the other hand, the proof related to send1 is not
complete because, when computed, its result depended on the replacement of
send2. This means it is possible to proceed and use the results of the second
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sub-proof to update the ones of first sub-proof, along with the ones of the
master proof.

Table 5.1 represents the depGraph structure that describes the dependencies
between master proof and its sub-proofs, before starting the plugging proce-
dure. It is immediate to see that the depList corresponding to the sub-proofs
for send2 is empty (therefore, the proof is marked as closed). The depList
usually contains, for each key specified on the left (a specific SCC of the in-
tersection graph) the list of which components the key depends on. More
practically, to the component of the second replacement q16p1, corresponds a
sure-validity in the proof, i.e., its decision does not depend on solving other
possible-validities. Instead, if q16p1 had depended on another component, it
would have been necessary to wait until the component in its depList was
sure, in order to proceed and mark q16p1 as sure too.

Let us have a look at the first two columns: the key send1p1 depends on the
components send1p2 and send2p1. The symbol (t) indicates that the key of
that line refers to a transparent state itself. When sure conclusions are derived
about send1 and send2 (this is our case, since the columns of the sub-proofs
for send1 and send2 are marked as closed), we can easily see that all elements
in the depList of the master can be eliminated. When a depList is empty, the
conclusion on the bottom can be declared sure.

Master proof (M)
key depList Sub-proof (send1) Sub-proof (send2)

send1p1 send1p2,send2p1(T) key depList key depList
send1p2 send2p2(T) q14p1 q15p1,q15p2 q16p1 /

q3p1 / q14p2 / ... ...
q3p2 / q15p1 send2p1 q20p1 /

send2p1 send2p2(T) q15p2 send2p2 q16p2 /
send2p2 (T) send2p1 (T) ... ...

q2p1 / send2p2 (T) q20p2 /
q3p1 / q3p1 /
q3p2 / q3p2 /

closed
(send2) q16 |= φ

Table 5.1: Resolution of dependencies - step 1

In this case study, after the replacement proposed for send2 has been sub-
stituted with the transparent state, we can remove from the depLists of the
master proof and the sub-proof for send1 all the occurrences of components
related to send2. This step is represented in Table 5.2. Now also the depLists
related to the sub-proof of send1 are empty and the proof is closed.
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Master proof (M)
key depList Sub-proof (send1) Sub-proof (send2)

send1p1 send1p2,����send2p1(T) key depList key depList
send1p2 ����send2p2��(T) q14p1 ����q15, p1,���q15p2 q16p1 /

q3p1 / q14p2 / ... ...
q3p2 / q15p1 ����send2p1 q20p1 /

send2p1 ����send2p2��(T) q15p2 ����send2p2 q16p2 /
send2p2 ��(T) send2p1 ��(T) ... ...

q2p1 / send2p2 ��(T) q20p2 /
q3p1 / q3p1 /
q3p2 / q3p2 /

closed closed
(send1) q14 |= φ (send2) q16 |= φ

Table 5.2: Resolution of dependencies - step 2

Finally, also the occurrences related to send1 can be eliminated. We empty
the last dependency that was left in the master proof (see Table 5.3), and can
declare the master proof closed too.

Master proof (M)
key depList Sub-proof (send1) Sub-proof (send2)

send1p1 ����send1p2��(T) key depList key depList
send1p2 / q14p1 / q16p1 /

q3p1 / q14p2 / ... ...
q3p2 / q15p1 / q20p1 /

send2p1 / q15p2 / q16p2 /
send2p2 / send2p1 / ... ...

q2p1 / send2p2 / q20p2 /
q3p1 / q3p1 /
q3p2 / q3p2 /

closed closed closed
(M) send1 |= φ (send1) q14 |= φ (send2) q16 |= φ

Table 5.3: Resolution of dependencies - step 3

The obtained proof is composed by a master proof related toM, containing
the initial skeleton of the final proof, and by two sub-proofs corresponding to
the transparent states of the initial model send1 and send2. Since the two pro-
posed replacements are completely specified, no additional refinement round
is needed. By using the dependency graph to keep track of dependencies and
delete the ones solved, the proof can be declared complete when all depLists
are empty and each column referring to a (sub)proof is marked as “closed”.
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Incremental methods of verification are designed to support the current agile
development processes. Ad hoc formalisms have been defined to iteratively
specify the model of the system. Verification and its techniques are pro-
foundly dependent on the specific frameworks in which the analyzed problem
is considered [GPB02]. This means that the solutions found to verify if the
properties of interest holds, are various in different contexts. It is very diffi-
cult to find a universally recognized better practice in this area. In Section 6.1
we present the state of the art on the different formalisms used to express
incompleteness in the modeling process. When the model and the properties
of interest have been formalized, the verification methods need a renovation
that includes an enrichment of the procedure to support a greater number
of situations. Section 6.2 presents the state of the art on the model checking
approaches proposed in literature. Finally, Section 6.3 presents an overview
on the main approaches that have combined the model checking technique
with features derived from deductive verification to offer a more complete
verification output, similarly to the result this thesis aims to obtain.

6.1 Modeling incomplete systems

Different formalisms to represent incompleteness of systems have been pro-
posed over time. Each of them is associated to a particular refinement process
dependent on the characteristics of the formalism itself.
A specific notation engineered to express specifications is represented by Hi-

erarchical State Machines (HSMs, [AY01]). This formalism includes ordinary
states and superstates that are HSMs themselves. The entry state is a unique
ordinary state, whilst exit states can be more than one. Entry and exit states
connect the single HSM to the ones at higher or lower levels. Two are the
advantages of HSMs: first, the possibility to specify systems in a step-wise
refinement way using superstates and their ability to specify modules ad dif-
ferent levels of detail; second, the possibility to replace multiple superstates of
the machine with the same specified HSM. Note that the refinement process
of HSMs is applied by connecting a superstate of a HSM to a replacement of
it (which is another HSM).
Another formalism considered to represent systems is Labelled Transition

Systems (LTS). Since LTSs are not suitable to express incompleteness features
and distinguish between different levels of granularity, Larsen and Thomsen
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[LT88] extended them through Modal Transition Systems (MTSs). Differently
from LTSs that only include one kind of transitions, MTSs present necessary
and admissible transitions (also called possible by [CBFU07]). Several notions
of refinements for MTSs have been proposed in literature, as indicated in
[UABD+13].
Similarly to an MTS, a Kripke MTS (KMTS, [HJS00, SG04]) divides neces-

sary and possible behaviors of a system by using two kinds of transitions sets:
must ( must

−−−−→) and maybe (
maybe
−−−−−−→) transitions. The set of maybe transitions

is included in the set of must transitions. An KMTS considers abstract states
of the system M as representatives of a set of concrete states of the system
M ′ which refines M. The main difference with the MTS formalism, is that
here states are labeled instead of transitions. An abstract state is labeled with
atomic propositions that are satisfied or not satisfied by all the concrete states
ofM ′. Some propositions on the label of a state ofM may be left unspecified
and assigned only when the M is refined is refined with M ′. Notice that
[HJS00, SG04] have presented solutions for the refinement process of KMTSs.
LTSs are considered in [GPB02] as systems that have been set up in an

unknown environment. The interaction between the environment and the LTS
is triggered through actions that label the transition of the LTS. The interface
operator ↑ specifies the set of the actions A of the model which are observable
from the environment. This operator describes how the model interacts with
this environment. The refinement step corresponds to the specification of the
environment in which the model is executed.
[SS13] has introduced a particular variation of LTS, where the set of states

is partitioned into regular states and transparent states, special states that
can represent more complex components still unknown. This is similar to
what is done my [MSG15] in the context of Büchi automata. These systems
are called Incomplete Labelled Transition Systems (ILTS).
A particular kind of Statecharts ([Har87]) has been presented in [GMSS13,

GMSS14]. Classical Statecharts are a structured graphical formalism used
to describe reactive systems. Evolving Statecharts can be considered as in-
complete hierarchical Statecharts, that support step-wise specification. Their
hierarchical architecture is what makes them appropriate for incremental mod-
eling. An algorithm to transform Statecharts into the equivalent ILTS ([SS13])
is presented in [GMSS13] to allow the verification process.

6.2 Model checking and incompleteness

Model checking was born following two different general approaches. The first
was independently developed by Clarke and Emerson [CE82] in the United
States and by Queille and Sifakis [QS82] in France. It was introduced under
the name of temporal model checking mainly because specifications are here
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expressed in temporal logic, according to the definition of Pnueli [Pnu77]. Sys-
tems are here described as finite state transition systems and the procedure
consists of checking if the system is a model for the given specification. The
second approach, instead, uses a specification formalized through an automa-
ton. The system automaton is compared to the automaton representing the
desired specification to establish if the first’s behavior is conform to the second
one’s. Literature presents different versions of conformity, among which we
cite language inclusions introduced in [HK90] (the one that probably became
more successful), refinement orderings [CPS93], and observational equivalence
[FGK+96]. Vardi and Wolper ([VW86]) showed how the two approaches could
be related, expressing the temporal model checking in terms of automata.
Model checking has been used in contexts where the model to be checked

was incomplete at first, and later refined in a step-wise manner. The checking
techniques are obviously strictly dependent on the modeling formalism used
and on the specification expression. The claim is usually formalized as an
LTL formula, a CTL formula (see Section 2.2) or directly as an automaton.
[AY01] considers the model checking of Hierarchical State Machines with

respect to both LTL and CTL properties. As far as the procedure to verify
CTL formulae is concerned, usually after the refinement process, a HSM is
converted into a flat Finite State Machine (expanded structure), by recursively
substituting each box of the structure with the corresponding FSM. In [AY01],
though, this step is avoided, allowing the complexity of the original algorithm
to decrease exponentially. As to specifications given as automata, given a
HSM K and an automaton A which may be obtained from an LTL formula,
the model checking problem is to solve the automaton-emptiness problem, i.e.,
to check whether L(A) ∩ KF is empty, being KF an expanded version of K .
[UBC09] introduces the concept of safety properties and scenarios used to

synthesize MTSs that represent the upper and lower bounds, respectively, on
the behaviors of a system. Safety properties therefore include all the possible
behaviors the system can exhibit, and scenarios include less behaviors than
the ones the final model should present. Model checking is performed by
merging the MTS that represents the safety property with the MTS that
represents the scenario. This procedure returns the MTS equivalent to their
least common refinement. From the analysis of the obtained system, it is
possible to infer if the scenario is satisfied, possibly satisfied or not satisfied
in the model synthesized from the property.
The model checking on systems specified as Kripke MTS was mainly ad-

dressed using CTL to specify the property ([CDEG03]).
As we mentioned in Section 6.1, Giannakopoulou et al. ([GPB02]) consid-

ers system models specified with LTSs extended by an additional interface
operator ↑, that defines the interaction of the model with its unknown envi-
ronment. The model checking procedure consists in verifying that the model
combined with the environment does satisfy the claim also specified in terms
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of a (deterministic) LTS. The traditional approach that returns yes/no answer
is modified to obtain yes (when the model satisfies the claim in all the possible
environment), no (when the the model violates the claim in all environments),
and maybe (in the other cases).
[SS13] proposes a model checking algorithm to be used with ILTSs. In

addition to verifying if the requirements hold, their procedure outputs a set of
constraints for the unspecified components, if necessary. After the components
have been specified, the verification can be performed in an isolated way only
between the new components and the constraints, similarly to what is done
in [MSG15].

6.3 Combining model checking and deductive
verification

Each formal method was developed and applied with different intents and
within different contexts. Nevertheless, experiments from literature ([CW96])
have demonstrated that often the integration of different formal methods to
work towards a same goal may allow adding up their strengths, while alleviat-
ing some of their weaknesses. Many works witness there is no such a distinc-
tion anymore between model checking based approaches and theorem-proving
based approaches. Several contributions have in fact considered a combina-
tion of these techniques. To quote from [TC02]: “Traditionally, model checkers
have been viewed as decision procedures that return yes/no answers reflecting
the “correctness” of the system being analyzed.” With the development of
techniques that could exploit model checking results, many have agreed that
the idea of using proofs to provide information that justifies the result can
be of great interest to the users of model checkers. Most of these works, like
[PZ01] and [PPZ01], have focused on cases where finding a counter-example
is not feasible. Others works, like [TC02] and [GC03], have explored the com-
plimentary approach, by enriching the verification output in case the model
checking procedure returned a negative answer.
In general, the interest has been dedicated to find ways to certify the cor-

rect behavior of software, be this represented as programming code or as an
abstract model of it. [HNJ+02] and [KV04], among others, argue for the need
of a proof certificate, that confirms the correctness of a successful model check-
ing run. This is achieved by using the potentiality of deductive verification to
provide intuition that justifies why the program works.
In particular, [KV04] accompanies a positive answer to the model checking

query with a certificate whose correctness can be checked automatically and
symbolically. Differently from [PZ01] and our work, it does not present a
deductive proof that is useful to the user to evaluate design choices, but a
certificate to be verified automatically. Their idea is profoundly supported
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by the need of compact solutions for the verification of large systems, while
[PZ01] guarantees a better support with smaller examples.

[Nec97], instead, introduces the proof-carrying code (PCC), an interesting
example of certifying the behavior of a program that is not trusted. Their work
is used by [HNJ+02] to prove safety temporal properties through small cor-
rectness deductions, by manipulating the results of model checking through a
technique of lazy abstraction that supplies annotations. [Nec97] and [HNJ+02]
both work on code rather than on a separately constructed abstract model of
it. In addition, their local checks are performed at the level of the edges of
the analyzed graph, similarly to what we propose and differently from [PZ01],
that employs transition labeled models.
As already mentioned, [GC03] presents another approach that makes use

of the information gathered by a model checker but the goal is exactly the
opposite of the other mentioned works. This time the annotations are provided
in case of counter-example generation. Their motivation is driven by the
excessive conciseness of a small counterexample given in terms of states and
transitions of the model, therefore bound to the modeling formalism used.
Even though with different aims, the witness generation for ACTL (a subset
of universally-quantified CTL) that they propose is similar to the concept
that [PZ01] and our work use for generating proofs of satisfaction for LTL
properties.
Several other works have devised proof systems for model checkers. These

enrichment of the model checking procedure is encoded in different formula-
tions through different works in literature. Among the contributions that deal
with result certification it is worth highlighting some.
[Nam01] developed, in parallel with [PZ01] and [PPZ01], a proof system and

algorithm for symbolic representation, in particular for the µ-calculus. Other
works that have faced this issue in the context of µ-calculus are [Kic] and
[YL97]. [TC02] extended Namjoshi’s work in the case of local model-checking,
presenting a special data structure, the support sets, to generate “diagnostic-
information generation” and “justification generation”. Model checking results
([CGMZ95, Sti95]) are used both to explain why a Kripke structure fails to
satisfy a temporal property, and to return a portion of the system, witness,
that is responsible for the property being satisfied.
Other attempts to combine model checking with deductive verification are

presented in [JS94, RSS95], where the result of model checking is accepted as
an axiom by the theorem prover. To overcome the limit of model checking
to only treat finite state systems, [RSS95] attempts to verify the finite parts
of complex systems automatically to narrow the state space that needs to
be analyzed deductively. The same idea is followed by [YL97, Spr98] using
explicit state model checkers and generating tableau proofs.
All these approaches decorate the model checking result with pieces of infor-

mation and annotations that are obviously strictly connected to the modeling
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formalism and, therefore, the architecture of the model checker used. Never-
theless, we observe two common issues:

I All the mentioned methods [PZ01], [PPZ01], [Nam01], [HNJ+02], [Nec97],
and [TC02] describe various ideas to instrument tools to produce formal
proofs of the model checking verdict. Nonetheless, a long run still has to
be covered before the contribution of the verification tools can be reused
in the certification process, which is the future challenge to be faced;

I [Nam03] arises a legitimate issue by observing that using deductive veri-
fication on abstracted models still fails to describe the missing link from
the abstract program leading back to the concrete one: justifications
for both positive and negative answer of the model checking query, are
therefore not always really meaningful for the purposes of the designer.

We finally mention a few examples in literature that have contributed to
develop Compositional verification, a technique based on breaking up the ver-
ification of a system into smaller tasks that involve performing the verification
of its components separately, and then combining the proofs. Works that have
implemented this idea are [LT88], that presents a compositional correctness
proof, [McM99], where theorem proving has been used to prove conditions
for sound compositional reasoning, [FMS98] that performs deductive verifi-
cation on modular systems, [LSW95] that shows a methodology to build a
state-based proof which is oriented to the formalization of constraints for con-
current software systems. This procedure aims at reducing the dimension of
the verification problem under investigation, by exploiting compositionality
and abstraction aspects.
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Software pervades every aspects of our modern lives. While the software devel-
opment process has nowadays reached maturity in many aspects, its correct-
ness can never be achieved in its entirety. Fortunately, verification methods
supply a substantial help in locating the errors in the designs and in the code.

Regrettably, software verification is still often seen as a heavy burden that
slows down the production process. The hard work of the formal methods
engineers is to introduce and integrate new software reliability techniques and
tools that respond to the market demand. Flexibility and modularity are
definitely two of the most important features that successful solutions should
present.

In literature, several contributions to software verification have dealt with
incompleteness in its various forms, promoting incremental perspectives and
modular approaches. An interesting number of works has instead addressed
the issue of combining different techniques to resolve diverse aspects of verifi-
cation in an integrated way.

This thesis has weighed the advantages and drawbacks of model checking
and deductive verification techniques, and has suggested a novel approach to
perform deductive verification on incompletely specified systems by exploiting
the results obtained through model checking.

This chapter presents the final considerations about our procedure of incre-
mental deductive proofs construction. Section 7.1 describes the contribution
of our methodology together with its limits, while Section 7.2 discusses some
possible future works.

7.1 Contributions and limits

This thesis has analyzed the features of two different formal verification tech-
niques and evaluated the benefits that their use can bring during the design
phase. Within this context, we may summarize our contributions as follows:

I We considered the incremental model checking approach presented in
[MSG15]; their procedure offers an infrastructure to model incompletely
specified systems and reason on them to analyze required properties an
their satisfiability. In our work, we exploited their structures and results
to automatically feed a procedure of deductive proof generation;
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I We considered the approach described in [PZ01, PPZ01], that integrates
model checking with the possibility to generate deductive systems that
describe the computed intersection automaton. Our idea was to modify
this work to proceed in a modular way, by taking into consideration an
initially incomplete model that is refined step by step;

I By combining the two mentioned works, this thesis extrapolated an in-
tegrated approach that follows the developer from the beginning to the
end of the design phase according to the following scenarios:

– When a complete (or incomplete) model is considered against a sat-
isfied requirement, our approach allows to prove why this happens,
by deriving the requirement as a theorem of the model;

– When an incomplete model is considered against a possibly-satisfied
requirement, our approach builds a deductive proof that is incom-
plete itself and, to be completed, requires information coming from
the model refinement;

– When an incomplete model is refined by substituting the incom-
plete modules with suitable replacements (checked against the ap-
propriate constraint), we are able to build ad hoc proofs for only
the considered new portions of the model.

I We provide a methodology to link results related to sub-parts of the
model to the ones related to the whole model. Our procedure uses a
data structure that contains information about the hierarchy that relates
the computed proofs and the dependencies among each other. Proofs
associated to lower level components contribute to complete the ones
associated to the higher level modules.

I We validated our approach through the realization of a prototype tool
that receives, as inputs, descriptions of a model and a requested property
and implements the algorithms to build a deductive proof to be output
to the user;

I We tested the feasibility of the technique in a case study that models
the functioning of a communication channel system. In the case study,
we built a master proof associated to the incomplete initial system and
later provided some example refinements to show how the entire flow of
the approach work.

Our contribution presents two additional advantages with respect to other sys-
tem verification solutions: we include the benefits of an incremental method-
ology and the benefits of a widely used technique such as model checking
enriched by a justification of a positive output.
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Even though our approach is able to prove properties of a lot of systems, one
of its main drawbacks is that, at the current stage, it only supports sequential
systems. Deductive proofs are indeed interesting also for concurrent systems.
Nevertheless, in some cases, concurrent systems can be expressed as if they
were sequential, by simply using variables assignment as they where constant
propositions.

Another limitation of our approach is the time requested to compute proofs.
Without doubt, a considerable wait is added to the already known complexity
of model checking. We believe, nevertheless, that the insight and information
gained by the proof completely repays the computational effort. In any case,
the output is provided to the designer as a deductive proof to ponder, therefore
the “human time” required covers the time overhead we added to traditional
verification.

In conclusion, our approach represents an exploration of applicable tech-
niques to the problem of agile verification. As a proof of concept, we re-
engineered the procedure suggested in [PZ01] to be inserted in an existing
model checking framework for incomplete systems.

7.2 Perspectives for future work

The directions for future improvements are various, from both theoretical and
implementative perspectives. We would like to explore:

I the possibility to extend the approach to concurrent systems;

I the chance to consider sets of fairness conditions, in addition to the user
specified claim. This would require adding different versions of deductive
rules;

I modeling formalisms alternative to Büchi automaton, such as fair tran-
sition systems and modal transition systems (that could better grasp
the essence of programs states and their evolution, especially in case of
concurrency);

I the possibility to handle situations where both the system and the prop-
erty are incompletely specified: including incomplete properties, would
help inferring additional properties and investigate behaviors that we
might want to request to systems;

I more complex case studies that could help understand the scalability
of the methodology. The thesis has evaluated the presented approach
using a simple case study representative of many interesting features.
However, it would be interesting to consider different scenarios and apply
the procedure to bigger benchmarks;
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I a completion of the prototype tool proposed in this thesis. We intend to
implement the sub-proofs generation and the resolution of dependencies
to supply a complete framework that might be used with bigger models,
guiding the user from the beginning to the end of the design process.

Our work was inspired by the idea of widening the range of agile methods
of formal verification. A modular technique to perform model checking and
together initialize deductive systems can be an example for other original and
agile methods that help the integration of verification within the development
process.
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