
Politecnico di Milano

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Re-engineering of Aerial Drone Autopilot Firmware with

Reactive Programming

Relatore: Prof. Luca Mottola

Tesi di Laurea di:

Endri Bregu

Matricola 804686

Anno Accademico 2014�2015

To my family

Acknowledgments

It is a pleasure to thank those who made this thesis possible with advices, critics

and observations.

I would like to thank my supervisor Prof. Luca Mottola. Without his help and

support, this thesis would not have been possible.

A special thanks to the students of the lab and especially to the �Salotto Sibaritico�

group for these three years.

A profound thanks to Fabjola for the a�ection and care shown during these years

and especially in life.

I owe my deepest gratitude to my families and friends. They were always sup-

porting me and encouraging me with their best wishes.

Abstract

Nowadays, drone-related technologies are growing rapidly. Although they are

widely used in the military �eld, their lower costs are enabling their spread both in the

professional and in the hobbyist �elds. At the same time, a rapid growth of developer

communities contributing to drone-related software development is overtaking. The

largest open-source community in this �eld is Ardupilot. Every 5-6 months a new

version of their software is released with new features up-to-date with the always

evolving new boards.

The board, along with the rotors, is the main piece of hardware that composes

a drone. The board is equipped with a �rmware which is the component in charge

of collecting the sensors' output and use it to plan engine adjustments in order to

achieve a stable �ight.

The Ardupilot �rmware uses a control loop, which manages sensor readings and

executes tasks periodically. These tasks process the sensor data and send information

to the engines. The computation on incoming data is performed in any case, even

if pieces of data detected by sensors do not vary. We would rather like to run a

system that reacts only to new sensor readings, thus optimizing the system response

and decreasing the computation time. This improvement enables the execution of a

larger number of control tasks giving a further increase in the drone's �ight stability.

The Reactive Programming Paradigm, with its peculiarity of dynamically react-

ing to changes in input values, seems to be a natural �t for drone control loops; but

nobody applied it to them before.

In this thesis we explain how we applied this paradigm to the Ardupilot �rmware

and how we overcame hardware and software limitations of the existing reactive

programming libraries when integrated with the Ardupilot �rmware by developing a

brand-new open-source library.

We evaluate the performance of our custom �rmware comparing two di�erent

�ight plans executed with the original and custom �rmware. Thanks to the data

obtained, we are able to demonstrate that our custom �rmware is more precise at

positioning the vehicle and more e�cient in terms of computation time compared to

the original one.

Sommario

L'uso più comune dei droni ad oggi è stato quello militare, ma i recenti sviluppi

tecnologici in questo campo con la conseguente diminuzione dei loro costi ha reso

accessibile al pubblico il loro acquisto. Inoltre, questo fenomeno ha dato luogo ad

un sostanziale aumento del software per il controllo di droni da parte delle comunità

di sviluppatori. Una delle più importanti e più attive oggigiorno è Ardupilot.

Un drone è generalmente costituito da due componenti principali: i motori ro-

tazionali e la scheda di controllo. Su quest'ultima viene installato il �rmware del

drone: un software di controllo che garantisce un volo stabile leggendo i dati forniti

dai sensori e utilizzandoli per governare i motori.

Nel caso di Ardupilot, il �rmware svolge le sue funzioni per mezzo di un ciclo di

controllo eseguito periodicamente, che quindi raccoglie dati anche in assenza di una

loro variazione. Ci siamo resi conto che sarebbe meglio avere un sistema che, anziché

agire in modo periodico, reagisca alle variazioni dei dati in ingresso.

Ciò porterebbe ad ottimizzare la risposta del sistema stesso a ridurre il tempo

richiesto per la computazione rendendo possibile l'esecuzione di altre funzionalità di

controllo che migliorino a loro volta la stabilità del drone durante il volo.

Il Reactive Programming Paradigm (Paradigma di Programmazione Reattiva) ci

è sembrato essere particolarmente adatto allo scopo, proprio per la sua intrinseca

capacità di reazione dinamica alle variazioni dei dati in ingresso.

In questa tesi spieghiamo come abbiamo applicato questo paradigma al �rmware

di Ardupilot e come abbiamo sviluppato nella sua interezza una libreria open-source

per il Reactive Programming date le incompatibilità sia software che hardware di

quelle già esistenti con le più utilizzate schede di controllo.

La valutazione del nostro �rmware modi�cato è stata fatta tramite l'analisi di

due piani di volo, il primo eseguito con il �rmware originale, il secondo con quello

modi�cato. Dai dati ottenuti si evince che il nostro �rmware garantisce, rispetto a

quello originale, una maggiore precisione nel posizionamento del drone e una mag-

giore e�cienza per quanto riguarda i tempi di computazione.

Contents

1 Introduction 1

1.1 General context . 1

1.2 Motivation . 2

1.3 Outline . 3

2 State of the art 5

2.1 Reactive programming . 5

2.1.1 Basic abstraction . 6

2.1.2 Evaluation model . 7

2.1.2.1 Pull-based . 7

2.1.2.2 Push-based . 8

2.1.2.3 Push versus Pull . 8

2.1.3 Glitch avoidance . 8

2.1.4 Lifting operations . 10

2.1.5 Multidirectionality . 10

2.1.6 Support for distribution . 10

2.1.7 Tools . 11

2.2 Multicopters . 12

2.2.1 Overview . 12

2.2.2 Autopilot suite . 14

2.2.2.1 Hardware . 16

2.2.2.2 Firmware . 18

2.2.2.3 GCS (Software) . 19

2.2.2.4 SITL Simulator . 22

3 Analysis of Ardupilot Implementation 25

3.1 Code structure . 25

3.1.1 Main loop . 26

3.1.2 Fast loop . 26

3.1.3 Scheduler . 26

3.1.4 Running new code . 29

i

Contents

3.1.5 Flight modes . 31

4 Re-engineering of Ardupilot's Flight Control 35

4.1 ReactiveCpp . 35

4.1.1 Problems . 35

4.1.2 Solution . 36

4.2 Example in a control loop . 43

4.3 Ardupilot re-engineering . 46

4.3.1 Overview . 46

4.3.2 Setup . 53

4.3.3 Main Loop . 54

4.3.4 Fast Loop . 56

4.3.5 Scheduler . 57

5 Evaluation 59

5.1 SITL . 59

5.1.1 Yaw . 60

5.1.2 Pitch and Roll . 63

5.1.3 Error altitude . 66

5.2 Code execution . 70

5.3 Summary . 72

6 Conclusions & Future Work 77

Bibliography 81

ii

List of Figures

1.1 Drone con�guration . 2

2.1 Push-based versus Pull-based evaluation model 7

2.2 Glitch avoidance . 9

2.3 Quadcopter con�guration . 14

2.4 Quadcopter . 15

2.5 Flight controllers . 16

2.6 Pixhawk . 18

2.7 Mission planner . 20

2.8 APM Planner . 21

2.9 DroidPlanner 3 . 21

2.10 SITL simulator . 23

3.1 Auto �ight mode . 32

3.2 RTL �ight mode . 33

4.1 Propagation example . 42

4.2 Example solution . 42

4.3 Example of control loop . 44

4.4 Example of control loop with reactive library 45

4.5 Arducopter . 47

4.6 Fast loop . 48

4.7 Sensors dependency . 50

4.8 Dependency tree between signals . 55

5.1 Flight plan . 61

5.2 Pitch, Roll and Yaw . 62

5.3 Error in yaw of the original Firmware 62

5.4 Error in yaw of the reactive Firmware 62

5.5 Error in yaw on original and reactive �rmware 64

5.6 Error in roll and error in pitch of the original �rmware 65

5.7 Error in roll and error in pitch of the reactive �rmware 66

iii

List of Figures

5.8 Amplitude of the Roll and DesRoll parameters 67

5.9 Error in pitch on original and reactive �rmware 68

5.10 Error in roll on original and reactive �rmware 69

5.11 Altitude graph . 70

iv

List of Tables

5.1 Average and standard values of the error in yaw, �rst scenario. . . . 63

5.2 Average and standard values of the error in yaw, second scenario. . . 63

5.3 Average error in pitch and roll values 65

5.4 Standard deviation of pitch and roll parameters 66

5.5 Average error of the altitude of full �ight plan 67

5.6 Average error of the altitude of modi�ed �ight plan 70

5.7 Main loop duration . 71

5.8 Fast loop duration . 72

v

List of Tables

vi

List of Listings

2.1 Example reactive programming . 6

2.2 Glitch avoidance example . 8

2.3 Lift example . 10

2.4 Start SITL . 23

3.1 Main loop . 27

3.2 Fast loop . 28

3.3 Scheduler . 30

3.4 Ten hz loop . 31

4.1 ListOfFunctions.h . 37

4.2 ListOfFunctions.cpp . 38

4.3 ReactiveCpp.h . 40

4.4 ReactiveCpp.cpp . 41

4.5 Declaration of objects . 49

4.6 Barometer and GPS reading . 49

4.7 AHRS update . 51

4.8 Attitude control . 51

4.9 Inertial navigation and current location objects 52

4.10 Modi�ed setup code . 53

4.11 Method related to sensor check . 56

4.12 Fast loop modi�ed . 56

4.13 GPS and barometer signals . 58

5.1 DataFlash logs . 71

5.2 Original ardupilot example . 74

5.3 Reactive ardupilot example . 75

6.1 Using C++11 standard . 78

vii

List of Listings

viii

Chapter 1

Introduction

"Flying is learning how to throw yourself at the ground and miss."

Douglas Adams

1.1 General context

In recent years, we have seen a rapid growth of UAV's (Unmanned Aerial Vehi-

cle) technology. Primarily this technology has only been used in the military �eld.

Because of the creation of autopilots at a reasonable price and the fast growth of

developer communities that are constantly developing drone �rmwares, there was

a big spread of this technology in the professional and hobbyist �elds. A drone is

controlled by a remote control (allowing pilots to control the vehicle manually) or

by a ground control station (allowing pilots to create a �ight plan that includes a

set of waypoints and some �ight modes). Some of the most used applications (us-

ing ground control station) include surveying, maintenance and surveillance tasks,

transportation [27], search and rescue [2].

The two main components that make a drone �y are the autopilot and the

�rmware. Other components can be connected in order to permit the controlling

vehicle (as the two control tools mentioned above) or the accurate detection of ve-

hicle information (using additional sensors). In Figure 1.1 a simple con�guration of

a drone suite is shown. This con�guration includes an autopilot with some com-

ponents installed (RC receiver and GPS module), a radio control transmitter or a

ground control station, a battery and �nally the quadcopter which contains all these

components except the control tools. In the autopilot is also installed the �rmware

which manages sensor readings and executes tasks that make the drone �y.

Ardupilot is an open source autopilot platform created from the DIY Drones

community, able to control autonomous multicopters, �xed-wing aircraft and ground

rovers. It is based on the Arduino platform. Its tools for altitude detection evolved

from using thermopile technology to the use of Inertial Measurement Unit (IMU) that

1

1. Introduction

Figure 1.1: Drone con�guration. The main components are shown for a general
overview [4].

combine the accelerometer, gyroscope and magnetometer sensors. In addition other

sensors can be installed such as GPS or sonar to provide more accurate information

about position or altitude.

Referring to the �rmware, a very important aspect is how the system manages

these sensor values. We want to have vehicles that react immediately to new sensor

readings. For example, when external factors are so strong as to a�ect the desired

position, the system should notice it and adjust the vehicle position. Another funda-

mental aspect is that no computation must be done when the sensors do not detect

new values (or at least the computation time must be decreased). Decreasing the

computation time, the system has more time to execute other tasks. This implies

an optimized use of battery (one of the limitations of drones is the autonomy, for a

simple quadcopter the autonomy is about 20 minutes)

1.2 Motivation

The goal of this thesis is to modify an existing �rmware (Ardupilot) using the

reactive programming paradigm [5]. This paradigm consists in systems able to di-

rectly react to input changes or input environment changes in general. When a value

changes, all the values depending on it are updated according to a dependency tree

between variables or objects (starting from the sensor values). We can compare this

paradigm with spreadsheet programs like Microsoft Excel. When a value changes,

2

1.3. Outline

all the cells depending on that value directly change.

Reactive implementations of control loops, especially on a drone autopilot, are

absent in the state of the art, although the reactive programming paradigm is taking

more and more attention in the programming community. The motivation of this

thesis is thus to apply it in the control loop of a drone to explore if it could bring to

any sort of improvements.

First of all we are going to study the existing tools based on this paradigm. All

these tools use libraries not suitable for Ardupilot due to hardware limitations such

as the lack of multithreading or software limitations such as the lack of support

for libraries like Boost or STL (both based on the latest standard of C++ not yet

supported from Ardupilot). The only solution is to create a library of reactive pro-

gramming from scratch (see ReactiveCpp in Section 4.1). Using this library we have

modi�ed the data �ow that passes by the sensors up to the engines. The Ardupilot

project supports a "pull-based" model in which data are pulled from sensors only

when they are needed. With the reactive programming paradigm, Ardupilot is going

to use a "push-based" model where data are pushed from sensors only when there

are new values. The problem with the original solution is that the data request is

done with a predetermined frequency, thus if one sensor does not change its state,

the objects that require its values will get the same data and will recompute the

same results.

The purpose of this thesis is to avoid unnecessary computation in case of un-

changed sensor values. The data must be transmitted only when the sensors detect

new data to avoid wasting time on unnecessary computation.

1.3 Outline

The �rst part of the implementation phase consists in the creation of a new library

in C++ using reactive programming. The existing ones, such as TBB (Threading

Building Blocks) and Boost , use libraries not suitable for Ardupilot �rmware due

to hardware limitations. They also use STL (Standard Template Library of C++)

and C++11 standard that are not yet fully supported from Ardupilot. ReactiveCpp

is one solution created for the implementation phase. It simply creates �signals�

that have two lists of function pointers. When a signal is alerted, it executes all the

functions on the �rst list (functions related to the signal value) and all the functions

on the second list (functions that alert signals depending from it).

In the second part of implementation phase we present how this tool can be

introduced in a control loop and then how we use it on Ardupilot project. We consider

only the part of the project that refers to the data �ow from sensors (gyroscope,

magnetometer and barometer) to the main objects that make use of it, such as

AHRS object (Attitude and Heading Reference System). We use the "pull-based"

3

1. Introduction

model to check if the sensors have detected new values, then with the reactive library

(using "push-based" model) the propagation of new data takes place.

Finally we evaluate this custom �rmware comparing its log �les with those of the

original �rmware. We study the behavior of the vehicle in altitude, pitch, roll and

yaw variables comparing the error (di�erence between the desired and real value of

each parameter) related to these two generated �ight logs. Another test consists in

seeing how the code execution change from the original �rmware to the custom one

(time execution of the main loop). It is useful to understand if the reactive library

has a�ected the time execution of the main loop after the modi�cations and see if

the computation time is decreased.

From now on we give the general context and the general goals of this thesis with

a brief description of this work.

In Chapter 2 there is a description of the actual state of the art related to this

work. In Section 2.1 we describe what is the reactive programming paradigm and

also we give a brief introduction of its properties and tools that make use of it are

introduced. In Section 2.2 we describe in what the multicopter technology consists

focusing the attention on the hardware, software and �rmware that characterize a

multicopter.

Chapter 3 presents the code structure of the Ardupilot �rmware. It is divided in

�ve subsections that explain how the main loop works (3.1.1), in what the fast loop

consists (related to the critical part of the main loop, see Subsection 3.1.2), in what

the scheduler consists and how it manages the tasks (3.1.3), an alternative way to

run new code without using directly the scheduler (3.1.4) and eventually in the last

Subsection (3.1.5) some of the most important �ight modes used by a multicopter

are shown.

Chapter 4 is focused on the main problem encountered during the implementation

phase. It is divided in three sections. In Section 4.1 we show the main problem

using the existing tools (4.1.1) and one possible solution (4.1.2) that consists on an

implementation of an alternative reactive programming library in C++. In Section

4.2 is shown how this library can be used on a generic control loop and eventually

in Section 4.3 it is shown how this library can be used on Ardupilot project.

Chapter 5 presents the evaluation phase. It describes the behavior of the system

using the reactive programming library implemented in Section 4.1. To compare the

original system with the modi�ed one we compare two �ight plans generated by the

two systems. In Section 5.1 is shown how we compare the �ight plans using only

the simulator and the respective results. In Section 5.2 are compared two log �les

generated from tests done on physically drones. In Section 5.3 there is a summary

of the entire evaluation chapter.

Finally, Chapter 6 draws the conclusion, recaps the results obtained and suggests

some ideas that can be done as extensions of this work.

4

Chapter 2

State of the art

"I do not fear computers. I fear the lack of them."

Isaac Asimov

In this chapter we are going to present the state of the art related to this work

focusing the attention on the two main topics, the reactive programming paradigm

and the Unmanned Aerial Vehicle (UAV).

We have divided this chapter in two sections to have a clear overview about

the two main topics. In the �rst topic we are going to describe in what reactive

programming paradigm consists, some of the most important properties and a list

of tools using this paradigm. In the second section we are going to describe what an

UAV is and what is needed for a complete developing suite.

2.1 Reactive programming

Reactive programming describes systems that are reactive in the sense that they

directly adapt to changing inputs or a changing input environment in general. If an

input value is updated, reactive systems directly recompute the depending output

values, so that the output always re�ects the current input. We can compare it

with spreadsheet programs like Microsoft Excel. When a value changes, all the

cells depending on that value directly change. For years, implementing reactive

systems, has been done with the observer pattern, which has several drawbacks (it

is error-prone, update-triggering code is scattered throughout the system, it is not

possible to compose di�erent reactions, etc.). Therefore, better solutions, like event-

driven programming (EDP) [9] or aspect-oriented programming (AOP) [14], have

been developed. These solutions have their advantages over the observer pattern, but

some problems still remain (e.g. dependencies must be manually encoded and event

handlers have yet to implement updates explicitly). Using reactive programming, the

5

2. State of the art

output of the example in Listing 2.1 would be 10, because line 3 would be considered

as a constraint instead of an assignment.

Listing 2.1 Example reactive programming

1 val a = 2

2 var b = 3

3 val c = a + b

4 b = 8

5 println(c)

Now we are going to describe the properties that constitute the taxonomy [5] of

reactive programming paradigm along six axes:

1. basic abstractions

2. evaluation model

3. glitch avoidance

4. lifting operations

5. multidirectionality

6. support for distribution

These properties are discussed in detail below.

2.1.1 Basic abstraction

The basic abstractions in a reactive language are reactive primitives that facilitate

the writing of reactive programs, just like primitive operators (assignments) and

values (numbers) are basic abstractions in an imperative language. Most of reactive

languages provide behaviors and events:

� In reactive programming literature, behavior is the term used to refer to time-

varying values. It continuously changes over time and a basic example of a

behavior is time itself. Most reactive programming languages express beha-

vior in time units (a primitive seconds to represent the value of the current

seconds of a minute or a behavior whose values is 2 times the current seconds

is expressed in terms of seconds as seconds*2)

� On the other side, an event is the term used to refer to the streams of value

changes. Events do not continuously change over time, they occur at discrete

points in time (keyboard button press, new sensor values, updated values etc.).

Those two basic abstractions can be seen as dual to each other and one can be

used to represent the other [8].

6

2.1. Reactive programming

Figure 2.1: Push-based versus Pull-based evaluation model

Most languages provide primitive combinators to �lter the events or just combine

they. For example, a merge and �lter combinators are provided by Flapjax [16] and

FrTime [7].

2.1.2 Evaluation model

The evaluation model of a reactive programming language is concerned with how

changes are propagated across a dependency graph of values. From the programmer's

point of view, when a value changes, the propagation should happen automatically.

When a change is veri�ed, dependent computations must be noti�ed. Therefore, the

design decision is to choose which component initiates the propagation of change. In

the reactive programming literature, there exists two evaluation models:

� Pull-based

� Push-based

2.1.2.1 Pull-based

In the pull-based model, the computation that requires a value need to �pull� it

from the source (consumer should pull data from the producer, Figure 2.1). The �rst

implementation of reactive programming languages such as Fran [11] use this eval-

uation model. It o�ers the �exibility that the computation requiring that value has

the liberty to only pull the new values when it actually needs it. So the propagation

is driven by the demand of new data (demand-driven).

7

2. State of the art

2.1.2.2 Push-based

In the push-based model, when new data are available, the source �push� the

data to its dependent computation (producer should push data to the consumer,

Figure 2.1). The propagation is driven by availability of new data (data-driven).

This approach is used by almost all implementations of reactive programming. This

usually involves calling a registered callback or a method [23]. A push-based model

is used by the most implementations of reactive programming such as Flapjax [16],

Scala.React [15] and FrTime [7].

2.1.2.3 Push versus Pull

Each of those two models has its advantages and disadvantages. The pull-based

model �ts well in reactive systems where sampling is done on event values that change

continuously over time. The push-based model works well in reactive systems that

require instantaneous reactions. Most of the existing tool in reactive programming

use only one of those two models and some other tools use both. In the pull-based

model, behavior need not to be initialised, it will be initialised and then recomputed

on demand. In the other model, the push-based one, the behaviors must be initialised

explicitly to make sure they hold a value.

2.1.3 Glitch avoidance

This property is another one that needs to be considered by a reactive language. A

glitch is veri�ed when a value is propagated but it is not a �fresh� value. For example,

when a computation is run before all its dependent expressions are evaluated [7]. Lets

consider the example in Listing 2.2. The value of var2 is expected to be always as

that of var1. The value of var3 is expected to be always as var1 + var2 (the twice

of var1). If the value of var1 changes to 2, the expected value of var2 is 2 and the

expected value of var3 is 4. However, in a reactive programming implementation that

does not consider the glitch avoidance, in a �rst instance the value of var2 will be

changed on 2 and the value of var3 in 3. It will be necessary another computation to

calculate the �nal value of var3 (from var1 and the new value of var2). This example

is shown in Figure 2.2.

Listing 2.2 Glitch avoidance example

var1 = 1
var2 = var1 * 1
var3 = var1 + var2

In the reactive programming literature, this inconsistent view of data is known

as a glitch [7]. This can happen only in languages using a push-based evaluation

8

2.1. Reactive programming

Figure 2.2: Glitch avoidance

9

2. State of the art

model.

Another important aspect of this property is that a reactive implementation

should avoid unnecessary recomputations of values that do not change. Referring to

the example in Figure 2.2, if var1 is updated to the same value (var1 = 1), the values

of var2 and var3 do not need to be recomputed.

2.1.4 Lifting operations

In the reactive programming literature the conversion of an ordinary operator to

a variant that can operate on behavior is known as lifting. It transforms a function

in reactive function and it registers a dependency graph in the application's data�ow

graph. The reactive functions can be applied to reactive values and will return a

reactive variable.

Listing 2.3 Lift example

1 : l i f t : f (T) −> f l (Behavior<T>)

2 : f l (Behavior<T>) −> f (Ti)

In Listing 2.3, �T� is a non behavior type while �Behavior� is a behavior type

holding values of type �T�. So, lifting an operator �f� that was de�ned to operate

on a non-behavior value transforms it into a lifted version ��� that can be applied

on a behavior.

2.1.5 Multidirectionality

This property gives us the direction of change's propagation. It can be unidirec-

tional when the propagation happens in one direction or multidirectional when it

happens in more directions. With multidirectionality, changes in derived values are

propagated back to the values from which they were derived. For example, if we

have two variables that depend on each other, when one of those variables change,

the other changes too. This property is similar to the multidirectional constraints in

the constraint programming paradigm [25].

2.1.6 Support for distribution

Recently, many interactive applications (e.g., Web applications and mobile ap-

plications) are becoming increasingly distributed. It has motivated the need for

support for distribution in a reactive language. It enables to create dependencies

between computations that are distributed on multiple nodes. For example, a value

depends by the sum of other two values situated in two di�erent nodes. However,

the main characteristics of distributed programming such as latency and network

10

2.1. Reactive programming

failures, make di�cult to ensure consistency in a dependency graph based on more

nodes. Only a few tools like Flapjax [16] support this property. However, in these

languages glitches are avoided only locally.

2.1.7 Tools

Here we are going to give a brief summary of the libraries on C++ language using

reactive programming. We are focusing only to C++ language because it is what we

are going to use in implementation phase. The three main libraries are:

� cpp.react [21]

� SodiumFRP [22]

� RxCpp [17]

C++React (cpp.react) is a reactive programming library for C++11. It provides

abstractions to handle change propagation and data processing for a push-based

event model. It enables coordinated, multi-layered and potentially parallel execu-

tion of callbacks. All this happens implicitly, based on declarative de�nitions, with

guarantees regarding

� update minimality - nothing is re-calculated or processed unnecessarily;

� glitch freedom - no transiently inconsistent data sets;

� thread safety - no data races for parallel execution by avoiding side e�ects.

The core abstraction of the library are

� signals, reactive variables that are automatically recalculated when their de-

pendencies change

� event streams as composable �rst class objects.

Signals speci�cally deal with aspects of time-varying state, whereas event streams

facilitate event processing in general.

Additional features include

� a publish/subscribe mechanism for callbacks with side e�ects;

� a set of operations and algorithms to combine signals and events;

� a domain model to encapsulate multiple reactive systems;

� transactions to group related events, supporting both synchronous and asyn-

chronous execution.

11

2. State of the art

RxCpp is a C++ implementation of the Reactive Extensions library. It is a branch of

Reactive Extensions (Rx) implemented from Microsoft. The Reactive Extensions can

be thought of as an asynchronous algorithm and collection library. Instead of using

�std::iterator� pairs, RxCpp uses observable as the collection interface and observer

as the iterator interface.

SodiumFRP is implemented in C#, C++, Java, Haskell and Scala (other lan-

guages are going to be added). This library is based on Flapjax [16], Yampa [13],

scala.React [15] and a number of other Functional Reactive Programming tools.

Some features are:

� Goals include simplicity and completeness.

� Applicative style: Event implements Functor and Behavior implements Applic-

ative.

� Instead of the common approach where inputs are fed into the front of a mono-

lithic 'reactimate', Sodium allows you to push inputs in from scattered places

in IO.

� Integration with IO: Extensible to provide lots of scope for lifting IO into FRP

logic.

� Push-based imperative implementation.

2.2 Multicopters

A multicopter is a mechanically simple aerial vehicle whose motion is controlled

by speeding or slowing multiple downward thrusting motor/propeller units. In this

section we are going to introduce the UAV technology.

2.2.1 Overview

Drones are more formally known as Unmanned Aerial Vehicles (UAV). Essen-

tially, a drone is a �ying robot. The aircraft may be remotely controlled or can

�y autonomously through software-controlled �ight plans (GCS) in their embedded

systems working in conjunction with GPS. UAVs have most often been associated

with the military but they are also used for search and rescue, surveillance, tra�c

monitoring, weather monitoring and �re�ghting, among other things.

More recently, the unmanned aircraft have come into consideration for a number

of commercial applications. In 2013, Amazon announced a plan to use drones for

delivery in the not too distant future. The service, known as Amazon Prime Air, is

expected to deliver orders inside a 10-mile radius of a ful�llment center within 30

minutes.

12

2.2. Multicopters

In late 2012 Chris Anderson, Editor-In-Chief of Wired magazine [28], retired to

dedicate himself to his personal drones company, 3D Robotics [1]. Personal drones

are currently a hobbyist's item most often used for aerial photography, but the market

and potential applications are both expected to expand rapidly.

The drones are classi�ed in three categories

� Copters

� Planes

� Rovers

In this thesis we are going to refer only to UAVs (Copter category).

Copter is capable of the full range of �ight requirements from fast paced FPV

(First Person View) racing to smooth aerial photography to fully autonomous com-

plex missions which can be programmed through one of the well-developed software

ground stations. The entire package is designed to be safe, feature rich, open-ended

for custom applications and increasingly easy to use even for novice users. There

are some types of copters classi�ed from their number of motors/propellers (Heli-

copter, Tricopter, Quadcopter, Hexacopter and Octacopter). Here we are going to

describe the characteristics of a quadcopter that we are going to use later on the

implementation and test phases.

The main characteristics are:

� Utilize di�erential thrust management of independent motor-prop units to

provide lift and directional control

� Bene�t from mechanical simplicity and design �exibility

� A capable payload lifter that's functional in strong wind conditions

� Redundant lift sources can give increased margin of safety

� Varied form factor allows convenient options for payload mounting.

There are two types of con�guration for the quadcopter. The �X� con�guration and

the �+� con�guration as shown on Figure 2.3. Intuitively, in the �X� con�guration,

the pitch and roll axes both have two counter-rotating propellers each, on each side.

In the '+' con�guration the quadcopter has just one on each side. Moving (pitching)

forward in this con�guration will leave the vehicle with lesser stability in the roll

axis. From now on we will consider only the �X� con�guration.

The quadcopter in Figure 2.4 is the simplest type of multicopter, with each

motor/propeller spinning in the opposite direction from the two motors on either

side of it (i.e. motors on opposite corners of the frame spin in the same direction).

13

2. State of the art

Figure 2.3: Quadcopter con�guration

A quad copter can control it's roll and pitch rotation by speeding up two motors

on one side and slowing down the other two. So for example if the quad copter wants

to roll left it would speed up motors on the right side of the frame and slow down

the two on the left. Similarly if it wants to rotate forward it speeds up the back two

motors and slows down the front two. The quadcopter turns (aka �yaw�) left or right

by speeding up two motors that are diagonally across from each other, and slowing

down the other two.

Horizontal motion is accomplished by temporarily speeding up/slowing down

some motors so that the vehicle is leaning in the direction of desired travel and

increasing the overall thrust of all motors so the vehicle shoots forward. Generally

the more the vehicle leans, the faster it travels.

Altitude is controlled by speeding up or slowing down all motors at the same

time.

2.2.2 Autopilot suite

Here in this subsection we are going to introduce two components that make a

UAV �y and other two optional components that helps on controlling the vehicle

or simulating a �ight plan without the hardware. In Subsection 2.2.2.1 are listed

three of the most common �ight controllers. In Subsection 2.2.2.2 we are going to

present the Ardupilot �rmware. In Subsection 2.2.2.3 are listed three Ground Control

14

2.2. Multicopters

Figure 2.4: Quadcopter

15

2. State of the art

Figure 2.5: Flight controllers

Stations (GCS) and in the last one (Subsection 2.2.2.4) we are going to introduce

the simulator (SITL), very useful for who want to test the �rmware without the

hardware.

2.2.2.1 Hardware

There are three main autopilots (Pixhawk, APM2.6 and PX4, all sold by 3DRo-

botics [1]) that run the Ardupilot software (Figure 2.5). In addition there are clones

of those boards (like HKPilot32 [12], a clone of Pixhawk). Here are the summary of

those three best choices.

Although these boards have di�erent CPU performance and di�erent sensors, the

user experience is almost identical and supported features are still very similar. The

best �ight controller is the Pixhawk. This board has an ARM CPU and it is based on

the earlier PX4 with more enhancements. Pixhawk is the latest and most advanced

of the three boards, with the fastest CPU, most RAM, backup acceleormeters and

gyros, and supports backup compass and GPS.

The APM2.6 is the �nal edition of the traditional AVR CPU based ardupilot

�ight controllers. The APM was one of the �rst �ight controllers and now with the

version 2.6 was optimized to the fullest to bring us the rich capabilities that got us

so far. Unfortunately the ArduCopter �rmware now consumes all the available 8

bit AVR memory and CPU performance (especially for multicopters with more than

four motors from ArduCopter 3.3 and later), so we can no longer add additional

enhancements.

The PX4 was the �rst ARM based board to run multicopters. It was developed,

like the Pixhawk, from the PX4 team. It has slower CPU and less RAM than the

Pixhawk and its only advantage is the price and its small size.

Pixhawk: This board (Figure 2.6) is an advanced autopilot system designed by the

PX4 open-hardware project and manufactured by 3D Robotics. It features advanced

processor and sensor technology from ST Microelectronics® and a NuttX real-time

16

2.2. Multicopters

operating system, delivering incredible performance, �exibility, and reliability for

controlling any autonomous vehicle. The bene�ts of the Pixhawk system include

integrated multithreading, a Unix/Linux-like programming environment, completely

new autopilot functions such as sophisticated scripting of missions and �ight be-

havior, and a custom PX4 driver layer ensuring tight timing across all processes.

These advanced capabilities ensure that there are no limitations to your autonom-

ous vehicle. Pixhawk module is accompanied by new peripheral options, including

a digital airspeed sensor, support for an external multi-color LED indicator and an

external magnetometer. All peripherals are automatically detected and con�gured.

Key features

� Advanced 32 bit ARM Cortex® M4 Processor running NuttX RTOS

� 14 PWM/servo outputs (8 with failsafe and manual override, 6 auxiliary, high-

power compatible)

� Abundant connectivity options for additional peripherals (UART, I2C, CAN)

� Integrated backup system for in-�ight recovery and manual override with ded-

icated processor and stand-alone power supply

� Backup system integrates mixing, providing consistent autopilot and manual

override mixing modes

� Redundant power supply inputs and automatic failover

� External safety button for easy motor activation

� Multicolor LED indicator

� High-power, multi-tone piezo audio indicator

� microSD card for long-time high-rate logging

Microprocessor:

� 32-bit STM32F427 Cortex M4 core with FPU

� 168 MHz/256 KB RAM/2 MB Flash

� 32 bit STM32F103 failsafe co-processor

17

2. State of the art

Figure 2.6: Pixhawk

Sensors:

� ST Micro L3GD20 3-axis 16-bit gyroscope

� ST Micro LSM303D 3-axis 14-bit accelerometer / magnetometer

� Invensense MPU 6000 3-axis accelerometer/gyroscope

� MEAS MS5611 barometer

2.2.2.2 Firmware

Ardupilot (also ArduPilotMega - APM [3]) is an open source unmanned aerial

vehicle (UAV) platform, able to control autonomous multicopters, �xed-wing aircraft,

traditional helicopters and ground rovers. It was created in 2007 by the DIY Drones

community [10]. It is based on the Arduino open-source electronics prototyping

platform. The �rst Ardupilot version was based on a thermopile, which relies on

determining the location of the horizon relative to the aircraft by measuring the

di�erence in temperature between the sky and the ground. Later, the system was

improved to replace thermopiles with an Inertial Measurement Unit (IMU) using a

combination of accelerometers, gyroscopes and magnetometers.

Today, the ArduPilot project has evolved to a range of hardware and software

products, including the APM, Pixhawk/PX4 and HKPilot32 line of autopilots, and

the ArduCopter, ArduPlane and ArduRover software projects. In this thesis we are

going to use a Pixhawk board and ArduCopter software project.

18

2.2. Multicopters

The free software approach from Ardupilot is similar to that of the PX4/Pixhawk

and Paparazzi Project [19], where low cost and availability enables its hobbyist use

in small remotely piloted aircraft, such as micro air vehicles and miniature UAVs.

The customizability of ardupilot allows it to be very popular in the DIY �eld.

This allows for a multitude of uses such as multicopter and �xed plane drones. This

customizability also allows a variety of additional parts to be used by the use of

di�erent connectors and transmitters to allow for di�erent uses depending on the

operator preferences. The customizability and ease of installation has allowed the

Ardupilot platform to be integrated for a variety of missions. The use of a ground

station control (GCS like Mission Planner) has allowed the Ardupilot board to be

used for mapping missions, search and rescue, and surveying areas.

2.2.2.3 GCS (Software)

A Ground Control Station is an operator control unit for unmanned aerial vehicle.

It is de�ned as a unit where an operator (pilot) can send and receive instruction to

one or more vehicles that have been deployed and to visualize and control the vehicle

during development and operation, both indoors and outdoors. With a �exible soft-

ware architecture it supports multiple UAV types/autopilot projects. The purpose

of the Ground Control Station is real-time monitoring of an UAV.

Those are some of the most used Ground Control Station:

Mission Planner is a fully featured GCS running on the Windows Operating

System (Figure 2.7). Its features include:

� Con�gure APM/Pixhawk/HKPilot32 settings for UAV

� Radio control accelerometer and gyroscope calibration

� Install Rover/Plane/Copter �rmware (original �rmware or custom ones)

� Connection with the vehicle through telemetry

� Creations of �ight plans (a set of waypoints and �ight modes)

� Point-and-click waypoint entry, using Google Maps/Bing/Open street maps/-

Custom WMS (Web Map Service)

� Select mission commands from drop-down menus

� Download mission log �les and analyze them

� Interface with a PC �ight simulator to create a full hardware-in-the-loop UAV

simulator

� In �ight HUD (Head-Up Display) view

19

2. State of the art

Figure 2.7: Mission planner

APM Planner is a multi OS fully featured GCS. It runs on MAC OS X, Win-

dows and Linux (Figure 2.8). Its features include:

� Con�gure and calibrate APM /Pixhawk/HKPilot32 autopilot for autonomous

vehicle control

� Upload the latest �rmware to the autopilot

� Plan a mission with GPS waypoints and control events

� Connect a Radio to view live data and initiate commands in �ight

� View vehicle status and �ight data using the head-up display (HUD) area of

the Flight Data screen

Tower (DroidPlanner 3) is a GCS for the Android OS 4.0 and above (Figure

2.9). Its features include:

� Speci�cally designed for multirotors

� New telemetry screen showing quick glanceable info: HUD, battery, RSSI,

distance

� Easy to use Home, Land, and Loiter buttons

� New guided mode with changeable altitude

� Quick mode switching

� New planning screen for quick mission generation

20

2.2. Multicopters

Figure 2.8: APM Planner

� Easy and powerful mission editing tools

� Basic radio TX setup

� Pre�ight checklist

Figure 2.9: DroidPlanner 3

In the implementation and test phases we will use these GCS (Mission Planner

and APM Planner) to load our custom �rmware, to calibrate the compass, acceler-

ometer and radio control and to open the log �les of each �ight. we will never use

Tower, however we describe it because is one of the most used for Android platform.

21

2. State of the art

2.2.2.4 SITL Simulator

The SITL (Software In The Loop) simulator allows us to run Ardupilot without

any hardware. It is a build of the autopilot code using an ordinary C++ compiler,

giving us a native executable that allows to test the behavior of the code without

hardware.

HITL (Hardware In The Loop) simulation is a very useful way of testing the

Ardupilot code, but it has a number of limitations that make it less suitable for

some tasks. The main limitations are:

� it can not run all of the autopilot code, as the low level driver code does not

see suitable inputs for a test �ight when the hardware is sitting on the desk

� we can not use the sort of advanced programming tools (such as debuggers and

memory checkers) that are so useful in normal C++ development

The SITL build of ArduPilot overcomes these limitations. It still runs the same

code, but this time as a native executable on our PC, and uses some C++ tricks to

emulate the hardware of the APM/Pixhawk board at the register level, so the key

low level hardware drivers (such as the ADC, gyros, accelerometers and GPS) all

run in the same way that they would run in a real �ight. In Figure 2.10 is shown a

screenshot of this simulator. It is composed by three windows:

� MAVProxy Command Prompt

� Console

� Map

The SITL arrange these three tools so we can observe the status and send commands

at the same time to the vehicle.

To start this simulator, the user must be on the ardupilot/ArduCopter folder

(referring to the copter vehicle) of the ardupilot project. An example of commands

for the SITL are shown on Listing 2.4. In line 1, sim_vehicle sets all the parameters

of the copter and than open the console and map window where the �ight is shown.

In line 3 it is loaded the �ight plan (a set of way points that composte the �ight

plan). From line 5 to 8 are shown the commands given to the vehicle to start the

�ight (arming throttle, then passing to auto mode with throttle at 1500).

22

2.2. Multicopters

Figure 2.10: SITL simulator

Listing 2.4 Start SITL

1 sim_vehic le . sh −w −−conso l e −−map −−a i r c r a f t t e s t
2
3 wp load . . / Tools / au to t e s t / copter_miss ion . txt
4
5 l e v e l
6 arm t h r o t t l e
7 auto
8 rc 3 1500

23

2. State of the art

24

Chapter 3

Analysis of Ardupilot

Implementation

3.1 Code structure

In this chapter we are going to describe how the ArduCopter code runs. It is

divided in �ve parts which we believe are useful to understanding the structure of the

project and are fundamental to the implementation of a modi�ed �rmware using a

library based on the reactive programming paradigm. In Subsections 3.1.1, 3.1.2 and

3.1.3 are shown the three most important parts of the �rmware (the main loop, the

fast loop and the scheduler) and described how they work. Subsection 3.1.4 presents

an alternative mode to run a new code on Ardupilot project (instead of using main

loop, fast loop or directly the scheduler). In Subsection 3.1.5 are described the main

�ight modes that we are going to use later on test phase.

The basic structure of ArduPilot is divided into 5 main parts:

� vehicle directories - are the top level directories that de�ne the �rmware for

each vehicle type (Plane, Copter, Rover and AntennaTracker).

� AP_HAL - is a hardware abstraction layer for the ArduPilot project. The

AP_HAL consists of a set of headers (.h) that de�ne the classes and methods

that should be implemented if ardupilot should run in a new device/architec-

ture. The code contained in HAL is usually quite low level and close to the

hardware.

� libraries - all the set of libraries used by the project (it includes the AP_HAL

library).

� tools directories - is refereed to script �les that permit to con�gure the computer

for the ardupilot project, that permit to start the simulator or to set parameters

25

3. Analysis of Ardupilot Implementation

(like the home position and the set of waypoints nedded to the SITL simulator

etc.) .

� external support code - on some platforms we need external support code to

provide additional features or board support. Currently some of the external

trees are PX4NuttX (the core NuttX [18] RTOS used on PX4 boards) and

PX4Firmware (the base PX4 middleware and drivers used on PX4 boards).

In this chapter we refer only to copters code that is the ArduCopter directory of the

ardupilot project.

3.1.1 Main loop

ArduCopter.pde is the main �le of the ArduCopter project. It starts by running

two subroutines, setup() and loop().

� setup() - called once at boot

� loop() called continuously

The main loop cycles in a continuous manner enabling the software to read the input

and to respond appropriately. In this loop (Listing 3.1) is called the fast_loop()

function and the scheduler. The main loop manages the time to give to the scheduler.

At �rst is calculated how much time the fast_loop takes, then, after fast_loop ends,

the available time is given to the scheduler that executes all the possible tasks (a task

is a function that must be called at a given frequency). It also updates a counter

(mainLoop_count) that is used to control how often di�erent loops are executed.

3.1.2 Fast loop

The fast_loop() is the critical function of the main code. In Listing 3.2 we can

�nd all the instructions that must be called at the highest priority. The fast_loop is

directly called from the loop and not from the scheduler because it guarantees the

execution in each cycle.

3.1.3 Scheduler

The most �exible way to run a function at a given interval is to use the scheduler.

So, creating a function to ArduCopter.pde, we can simply add it to the scheduler_tasks

array (an array that contains a list of tasks that are going to be called from the

scheduler). There are two types of task lists. The �rst list is for slow CPUs like

APM2 and the other list is for high speed CPUs like Pixhawk. In Listing 3.3 it is

shown how the scheduler is initialized on the project. Here we can �nd all the tasks

except the fast_loop. If there is enough time to execute a set of tasks, they will be

26

3.1. Code structure

Listing 3.1 Main loop

1 // Main loop
2 void loop (){
3 // wai t f o r an INS sample
4 i n s . wait_for_sample () ;
5
6 uint32_t t imer = micros () ;
7 // check loop time
8 perf_info_check_loop_time (t imer − fast_loopTimer) ;
9
10 // used by PI Loops
11 G_Dt = (f loat) (t imer − fast_loopTimer) / 1000000.0 f ;
12 fast_loopTimer = timer ;
13
14 // f o r mainloop f a i l u r e monitoring
15 mainLoop_count++;
16
17 // Execute the f a s t loop
18 fast_loop () ;
19
20 // t e l l t he s chedu l e r one t i c k has passed
21 schedu l e r . t i c k () ;
22
23 // run a l l the t a s k s t h a t are due to run . Note t ha t we
24 // on ly have to c a l l t h i s once per loop , as the t a s k s
25 // are schedu l ed in mu l t i p l e s o f the main loop t i c k .
26 // So i f they don ' t run on the f i r s t c a l l to the s chedu l e r
27 // they won ' t run on a l a t e r c a l l u n t i l s c h edu l e r . t i c k ()
28 // i s c a l l e d again
29 t ime_ava i lab le = (t imer + MAIN_LOOP_MICROS) − micros () ;
30 s chedu l e r . run (t ime_ava i lab le) ;
31 }

27

3. Analysis of Ardupilot Implementation

Listing 3.2 Fast loop

// Fast loop
stat ic void fa s t_loop () {

// IMU DCM Algorithm
read_AHRS () ;

// run low l e v e l r a t e c o n t r o l l e r s t h a t on ly r e qu i r e IMU data
a t t i tude_cont ro l . ra te_contro l l e r_run () ;

// send ou tpu t s to the motors l i b r a r y
motors_output () ;

// I n e r t i a l Nav
r ead_ine r t i a () ;

// run the a t t i t u d e c o n t r o l l e r s
update_flight_mode () ;

// update home from EKF i f necessary
update_home_from_EKF () ;

// check i f we ' ve landed
update_land_detector () ;

}

28

3.1. Code structure

executed. The set of tasks will be chosen by the scheduler considering their priority

and frequency of execution.

Each row is composed by three parameters. The �rst parameter is the task name.

The second gives us the frequency in which the task should be called (in 2.5ms units

in our case using Pixhawk, in 10ms units in case of APM2). If we need to call a

function at 50hz, we must set this parameter to 8 (400hz/50hz), to call a function at

400hz we must set it at 1. The third parameter is the max time beyond which the

tasks should not run (value in microseconds). This parameter helps the scheduler

to avoid making the call unless there is enough time left to run the task. When

scheduler.run() is called it is passed the amount of time (in microseconds) available

for running tasks, and if the worst case time for this task would mean it would not

�t before that time runs out then it will not be called.

The tasks in AP_Scheduler tables must have the following attributes.

� they should never block

� they should never call sleep functions when �ying (an autopilot, like a real

pilot, should never sleep while �ying)

� they should have predictable worst case timing

3.1.4 Running new code

Another way to run a new code is to add the function in one of the existing timed

loops. It can be useful when the programmer wants to add more tasks that maybe

run at the same frequency. In this way it can be avoided to create other rows on the

scheduler_tasks list. Those functions listed below are called at the right frequency

by the scheduler except the fast_loop (called directly by the main loop).

� fast_loop : runs at 400hz (called from main_loop)

� �fty_hz_logging_loop : runs at 50hz (called from the scheduler in line 38 of

Listing 3.3)

� ten_hz_logging_loop: runs at 10hz (called from the scheduler in line 37)

� three_hz_loop: runs at 3.3hz (called from the scheduler in line 24)

� one_hz_loop : runs at 1hz (called from the scheduler in line 28)

There is no real advantage to this approach over the above approach except in the

case of the fast_loop. Adding the function to the fast_loop will mean that it runs

at the highest possible priority (i.e. it is nearly 100% guaranteed to run at 400hz).

If we want our new code to run at 10hz we could add it to one of the case

statements in the ten_hz_logging_loop() function found in ArduCopter.pde (Listing

3.4).

29

3. Analysis of Ardupilot Implementation

Listing 3.3 Scheduler

1 /*
2 1 = 400 hz
3 2 = 200 hz
4 4 = 100 hz
5 8 = 50hz
6 20 = 20hz
7 40 = 10hz
8 133 = 3hz
9 400 = 1hz
10 4000 = 0.1 hz
11 */
12
13 stat ic const AP_Scheduler : : Task scheduler_tasks [] PROGMEM = {
14 { rc_loop , 4 , 10 } ,
15 { throt t l e_loop , 8 , 45 } ,
16 { update_GPS , 8 , 90 } ,
17 { update_batt_compass , 40 , 72 } ,
18 { read_aux_switches , 40 , 5 } ,
19 { arm_motors_check , 40 , 1 } ,
20 { auto_trim , 40 , 14 } ,
21 { update_alt itude , 40 , 100 } ,
22 { run_nav_updates , 8 , 80 } ,
23 { update_thr_average , 4 , 10 } ,
24 { three_hz_loop , 133 , 9 } ,
25 { compass_accumulate , 8 , 42 } ,
26 { barometer_accumulate , 8 , 25 } ,
27 { update_notify , 8 , 10 } ,
28 { one_hz_loop , 400 , 42 } ,
29 { ekf_check , 40 , 2 } ,
30 { crash_check , 40 , 2 } ,
31 { landinggear_update , 40 , 1 } ,
32 { lost_vehic le_check , 40 , 2 } ,
33 { gcs_check_input , 1 , 550 } ,
34 { gcs_send_heartbeat , 400 , 150 } ,
35 { gcs_send_deferred , 8 , 720 } ,
36 { update_mount , 8 , 45 } ,
37 { ten_hz_logging_loop , 40 , 30 } ,
38 { f i f ty_hz_logging_loop , 8 , 22 } ,
39 { fu l l_rate_logg ing_loop , 1 , 22 } ,
40 { perf_update , 4000 , 20 } ,
41 } ;

30

3.1. Code structure

Listing 3.4 Ten hz loop

// ten_hz_logging_loop
// shou ld be run at 10 hz
stat ic void ten_hz_logging_loop () {

/* b l o c k o f i n s t r u c t i o n s */

/* your new func t i on c a l l here */
our_new_function () ;

}

3.1.5 Flight modes

In this subsection we are going to give a brief description of what is a �ight mode

and how it works (listing some of the most important used in the test phase). The

�ight mode is simply a function that manage the data to send to the motors. For

example, in �Land� �ight mode, the copter slows down the motors until the copter

lands. They are divided in �ight modes that requires GPS lock and �ight modes

that do not require GPS lock. The fast_loop function checks at every loop if there

are updates about the �ight mode (if there are inputs about �ight mode from GCS

or radio control). This check is done on fast_loop because it is considered a very

important function (when a change of �ight mode is required, it should always be

changed).

Some of the most important �ight modes are:

� Stabilize

� AltHold

� Loiter

� Auto

� RTL

Stabilize mode allows us to �y the vehicle manually. This �ight mode we are going

to use for the tests on the autopilot to calculate the loop time that we will explain

later on Chapter 5.

In AltHold mode (Altitude Hold Mode), the copter maintains a consistent alti-

tude while allowing roll, pitch, and yaw to be controlled normally. When this �ight

mode is selected, the throttle is automatically controlled to maintain the current

altitude. Roll, pitch and yaw operate the same as in �Stabilize� mode (the pilot

directly controls the roll and pitch lean angles and the heading). To calculate the

altitude, the �ight controller uses the barometer to estimate it or, if enabled, a Sonar

will provide even more accurate altitude maintenance.

31

3. Analysis of Ardupilot Implementation

Figure 3.1: Auto �ight mode

Loiter mode automatically attempts to maintain the current location, heading

and altitude. The pilot may �y the copter in �Loiter� mode as if it were in manual.

Releasing the sticks, the copter will continue to hold position. In this �ight mode it

is required a GPS installed on the quadcopter for the position maintenance.

In Auto mode the copter will follow a pre-programmed mission script (Figure 3.1)

stored in the autopilot which is made up of navigation commands (i.e. waypoints) and

�do� commands (change altitude, change �ight mode, slow down or speed up etc.).

�Auto� mode incorporates the altitude control from �AltHold� mode and position

control from �Loiter� mode and should not be attempted before these modes are

�ying well.

In return to launch (RTL) mode, the copter navigates from its current position

to hover above the home position (see Figure 3.2). The home position is always

supposed to be the copter's actual GPS takeo� location or the location where tha

copter was in when it was armed. So �RTL�, like �Loiter� and �Auto�, is a GPS-

dependent. The copter will �rst rise to RTL_ALT before returning home or will

maintain the current altitude if the current altitude is higher than RTL_ALT. The

default value for RTL_ALT is 15m.

In Chapter 5 we are going to use �Auto� �ight mode with �RTL� and �Loiter�

incorporated to test the �rmware with the SITL simulator.

32

3.1. Code structure

Figure 3.2: RTL �ight mode

33

3. Analysis of Ardupilot Implementation

34

Chapter 4

Re-engineering of Ardupilot's

Flight Control

In this chapter we describe the process from the problems found until the im-

plementation phase. In Section 4.1 the main problem and one possible solution are

shown. The existing tools using reactive programming paradigm can not be used on

Ardupilot for hardware and software limitations that we are explaining later. The

solution in this case is to implement from scratch a library (ReactiveCpp) for this

language paradigm. Section 4.2 presents how this solution can be applied to a control

loop and �nally, in Section 4.3, we are going to apply this solution to the Ardupilot

code.

4.1 ReactiveCpp

In this section we describe the main problem we have encountered on the imple-

mentation phase. It is divided in two subsections. In the �rst one the problem is

described and in the second subsection our solution that includes the implementation

of a new library is described.

4.1.1 Problems

The tools we have mentioned in the state of the art (see Subsection 2.1.7 for

more information) do not work with Ardupilot on Pixhawk or APM board for some

hardware and software limitations that we are going to explain now. These tools

use other libraries that are di�cult to port for ARM architecture (in this case for

Pixhawk board). The react.cpp library uses Boost and TBB library [20]. The �rst

one (used also by Sodium library) provides free peer-reviewed portable C++ source

libraries.

35

4. Re-engineering of Ardupilot's Flight Control

TBB Intel® Threading Building Blocks (Intel® TBB) lets us easily write parallel

C++ programs that take full advantage of multicore performance, that are portable

and composable, and that have future-proof scalability. It widely uses C++ template

for task parallelism. In this case the lack of multithreading is an hardware limitation.

It is used only on cpp.react library and allows the multithreading access. This

technique is used when an object depends from two or more objects and it must

check if the propagation can takes place or it should wait a response from all the

other objects.

Boost Boost is a set of libraries for the C++ programming language that provides

support for tasks and structures such as linear algebra, pseudorandom number gen-

eration, multithreading, image processing, regular expressions, and unit testing. It

provides free peer-reviewed portable C++ source libraries. Boost library is used by

almost all the tools mentioned before.

STL The Standard Template Library (STL) is a software library for the C++

programming language that in�uenced many parts of the C++ Standard Library.

It provides four components called algorithms, containers, functional, and iterators.

This library is used by all the tools mentioned in the state of the art.

The problem is that porting these libraries for ARM architecture involves large

costs in terms of memory. There are some guides that explain how to cross-compile

these libraries but their size is not acceptable for the ARM board. The STL library

is not yet supported from Ardupilot project (std template and lists are not yet im-

plemented for Ardupilot project). Therefore another library exists, uClibc++ (micro

controller C++ library), that adapts STL for ARM processor. The version is ported

in the NuttX (see Section 3.1, external support code for Ardupilot) and we can �nd

it in the NuttX repository in the misc/ directory. Anyway it is not compatible with

all the boards and it is currently in development.

All these libraries on C++ make use of STL library. As further contribution

we decided to create a new library from scratch to avoid these problems (the Reac-

tiveCpp library). Avoiding these libraries, the new library can be used also in other

boards. Below is shown the structure of this library and how can be used on a control

loop.

4.1.2 Solution

The idea is to not use libraries like Boost, TBB and STL (or uClibc++). In our

implementation we need to use lists but since they are managed from STL (std::list)

we must implement them from zero. We speci�cally need lists of function pointers.

A simple structure of our list (ListOfFunctions) is shown in Listing 4.1 where the

36

4.1. ReactiveCpp

struct is composed by a node that points to NULL or to another node and a void

(*function)(void) that is a pointer to a function. This is the structure of our list of

function pointers. In Listing 4.2 the two main methods that we need later for our

library implementation (append and call methods) are shown:

� The append(&f) method is simply a push-back implementation. It appends to

the the list a pointer to function.

� The call() method executes all the functions of the list. It scrolls the entire list

and for each pointer to function runs the correspondent function.

Listing 4.1 ListOfFunctions.h

1 class ListOfFunct ions {
2
3 private :
4 struct node
5 {
6 void (* f unc t i on) (void) ;
7 node * l i n k ;
8 }*p ;
9
10 public :
11 Lis tOfFunct ions () ;
12
13 //Add element at the end o f the l i s t
14 void append (void (*) (void)) ;
15
16 //Execute a l l t he f unc t i on s o f the l i s t
17 void c a l l () ;
18
19 } ; // Lis tOfFunct ions

Now, having the implementation of the list without the STL, we can use it on

ReactiveCpp library. In Listing 4.3 we have considered as a �stream� all the functions

related to one node of the graph that are going to be called when an �alert� is

triggered. Each stream is composed by two lists and an integer value (Listing 4.4):

� bind_list is a list with all the function pointers that characterize a single stream.

� stick_list is a list with function pointers that launch other streams.

� value is an integer that permit us to know when the stream is triggered (if it

changes we have new data, the call method is called)

We have implemented two types of constructs:

37

4. Re-engineering of Ardupilot's Flight Control

Listing 4.2 ListOfFunctions.cpp

1 #inc lude " Lis tOfFunct ions . h"
2
3 Lis tOfFunct ions : : L i s tOfFunct ions (){
4 p=NULL;
5 }
6
7 //Add element at the end o f the l i s t
8 void ListOfFunct ions : : append (void (* func) (void))
9 {
10 node *q ,* t ;
11
12 i f (p == NULL)
13 {
14 p = new node ;
15 p−>func t i on = func ;
16 p−>l i n k = NULL;
17 }
18 e l s e
19 {
20 q = p ;
21 whi l e (q−>l i n k != NULL)
22 q = q−>l i n k ;
23 t = new node ;
24 t−>func t i on = func ;
25 t−>l i n k = NULL;
26 q−>l i n k = t ;
27 }
28 }
29
30 //Execute a l l the f unc t i on s o f the l i s t
31 void ListOfFunct ions : : c a l l ()
32 {
33 node *q ;
34 f o r (q = p ; q != NULL ; q = q−>l i n k){
35 void (* f) (void) = q−>func t i on ;
36 f () ;
37 }
38 }

38

4.1. ReactiveCpp

� stream() creates an independent signal. It is triggered when the value is up-

dated to a new value.

� stream(stream &s1,) creates a signal that depends from one or more signals.

It is triggered when the value is updated (in this case it is updated from the

other dependent streams)

The three main methods of an object of this library are:

� push(int) - updates the value of the stream. Then it will be valuated if the new

value is di�erent from the last one. If the value is the same the method will

return nothing, if the value is di�erent the method will call bind_list.call() and

stick_list.call() to start the propagation of new data.

� bind(void (*)(void)) - adds a function pointer to the bind list

� stick(void (*)(int)) - adds a function pointer to the stick list (generally used to

create a dependency between two streams)

Lets do a simple example to understand better how the library works. In Figure

4.1 is shown a dependency graph. The �S� is our signal from which depends other

streams like �A�, �B� and �C�. It has a value (value = 23 in this case), a bind_list

with s1, s2 and s3 (function pointers) and a stick_list with a, b and c (function

pointers to other streams). From stream �A� depends other three streams (�X�,

�Y� and �Z�). When we read a new value with S.push(newValue), if it is di�erent

from the last one, the value of �S� will be updated and the �ow of changes will be

in the order of the bold arrow, simulating the depth �rst search algorithm [26].

In the same example, if Z depends from A and from B, both will have on stick_list

the function pointer �z�. This implies the execution of stream Z twice. As we said

on the state of the art, this is a common problem for reactive language tools and

having the limitations described before on this section, it is impossible to manage

the concurrency (Z must wait A and B to do a valuation if there is a propagation to

do). One solution is to create a dependency between the sum of value of stream A

and value of stream B, so Z depends on A+B and not anymore from the two streams

separately. It can be done adding a pull-based style in the streams depending from

more than one stream (mixing push and pull styles [24]). Another solution is to

manage this dependency on the code. Considering the same example, if we know

that A and B depends from S, if A run, B will run after. One solution is to cut the

dependency of Z from A and leave only that from Z to B (like in Figure 4.2). In this

case, every changes of Z will be propagated only once in A and only once in B. This

problem we will �nd later on the Ardupilot code, where some objects depend from

more then one object.

Here we describe the properties of our library referring to the taxonomy [5] of

reactive language paradigm mentioned in Section 2.1.

39

4. Re-engineering of Ardupilot's Flight Control

Listing 4.3 ReactiveCpp.h

1 #ifndef __REACTIVE_CPP__
2 #define __REACTIVE_CPP__
3
4 #include <s t d l i b . h>
5 #include <s td i o . h>
6 #include <ListOfFunct ions . h>
7 #include <ListOfFunct ions2 . h>
8
9 namespace a l e r t {
10
11 class stream {
12
13 public :
14 stream () ;
15 stream (stream &s1) ;
16 stream (stream &s1 , stream &s2) ;
17 int getValue () ;
18
19 void push (int) ;
20 void bind (void (*) (void)) ;
21 void s t i c k (void (*) (int)) ;
22
23
24 private :
25 typedef void (stream : : * func_ptr_t_) (int) ;
26 func_ptr_t_ func_ptr_ ;
27
28 typedef void (* func_stream) (int) ;
29 func_stream f_s ;
30
31 struct stream_impl ;
32 stream_impl * impl ;
33 } ;
34 }
35 #endif // __REACTIVE_CPP__

40

4.1. ReactiveCpp

Listing 4.4 ReactiveCpp.cpp

1 #include "ReactiveCpp . h"
2
3 namespace a l e r t {
4 struct stream : : stream_impl {
5
6 int value ;
7 Lis tOfFunct ions b ind_l i s t ;
8 Lis tOfFunct ions s t i c k_ l i s t ;
9
10 void push_value (int newvalue){
11 i f (this−>value == newvalue)
12 return ;
13 this−>value=newvalue ;
14 }
15 } ;
16
17 stream : : stream (){
18 this−>impl = new stream_impl () ;
19 this−>func_ptr_ = &stream : : push ;
20 }
21
22 stream : : stream (stream &s1){
23 this−>impl = new stream_impl () ;
24 this−>func_ptr_ = &stream : : push ;
25 s1 . s t i c k (this . push (s1 . getValue)) ;
26 }
27
28 int stream : : getValue (){
29 return this−>impl−>value ;
30 }
31
32 void stream : : bind (void (* func) (void)){
33 this−>impl−>bind_l i s t . append (func) ;
34 }
35
36 void stream : : s t i c k (void (* func) (int)){
37 this−>impl−>s t i c k_ l i s t . append (func) ;
38 }
39
40 void stream : : push (int newValue){
41 i f (this−>impl−>value == newValue)
42 return ;
43 this−>impl−>value=newValue ;
44 this−>impl−>bind_l i s t . c a l l () ;
45 this−>impl−>s t i c k_ l i s t . c a l l (this−>impl−>value) ;
46 }
47 }

41

4. Re-engineering of Ardupilot's Flight Control

Figure 4.1: Propagation example

Figure 4.2: Example solution

42

4.2. Example in a control loop

Basic abstraction In this library we have implemented only streams of data. It

is a type of signal. When something happens, the stream is triggered and then

functions are executed (behavior of a signal triggered).

Evaluation model A push-based model was chosen. The data must be propagated

when new values are available and not when they are required.

Lifting ReactiveCpp provides lifting operators that transform ordinary C++ func-

tions into behaviors. The programmer has to manually retrieve the value of a be-

havior in order to use it with primitive operations.

Multidirectionality The library does not support the multidirectionality. Data

are propagated from signals (the root of the graph dependency) to the leafs (leaf and

other nodes are streams in this case).

Glitch avoidance It does not support the glitch avoidance. The programmer has

to detect the critical paths and manage them on the code. Multithreading helps

avoid it, but in our case we can not make use of it.

Support for distribution It is not implemented with the idea to use it on dis-

tributed systems, so it does not support this feature.

4.2 Example in a control loop

As we described in Chapter 3, the main core of the Ardupilot code is the main

loop. Here we will explain how the reactive programming (especially using Reac-

tiveCpp library) can be introduced in a control loop.

We are going to consider this simple example of control loop in Figure 4.3. It is

about a vehicle with a GPS sensor installed on it. On each loop, the vehicle always

calls:

� moveVehicle()

� printCurrentPos()

43

4. Re-engineering of Ardupilot's Flight Control

Figure 4.3: Example of control loop

The �rst method (moveVehicle()) needs to know the current position, so it calls

the calcPosition() method. The same thing is repeated from calcPosition() with the

readGPS() method. The printCurrentPos() method just writes on the log �le the

current position.

The goal of this control loop is to maintain always the same position of the

vehicle. As we know, the vehicle can move from its desired position due to wind or

other external factors. In this example it is calculated every loop where the vehicle

is and if it has moved from the desired position, command are sent to turn it to the

desired position. This control is done always. It makes sense if the external factors

exist always and does not make sense when the vehicle stays at the same position

for a long period of time. If the GPS does not detect new positions, it is a waste

of memory and CPU usage to recompute unnecessarily these functions, especially in

case of bigger loops.

The idea is to create a graph dependency through the reactive programming. We

can set as signal the value of GPS. When it changes, we simply inform all the values

depending on that value (Figure 4.4).

44

4.2. Example in a control loop

Figure 4.4: Example of control loop with reactive library

In this modi�ed example, in each loop we can check if the GPS has read new

values. We can simply use readGPS() method, in other more complex we can put

together all the methods related to sensor reading in one single method. It is done

with the pull-based approach because we are going to read the value of the signal.

It is not the library style because we are not yet using it. When the checkGPS()

realizes that new values are available, a propagation of changes is started from the

GPS signal. Unlike the original style where the computation �ow goes from the

moveVehicle() to readGPS(), in this case we have an inverted computation �ow, from

GPS sensor to moveVehicle() and in addition at the end we have the printCurrentPos()

method. It is added here because it depends by GPS.

The di�erence between the two styles is that with reactive programming we can

avoid unnecessary execution of functions. If the sensor changes at each cycle (vehicle

moving or external factors too strong), there is no di�erence. If the vehicle is stopped

for a long time and external factors do not e�ect the vehicle moving, themoveVehicle()

method is called only once until new data is read from GPS sensor. If the loop runs

at 100Hz (100 times at second) and the vehicle is moving for 2 seconds and for other

2 is stopped, with the original code the moveVehicle() will be called 400 times and

with the modi�ed one this method will be called 200 times (in the last 2 seconds it

45

4. Re-engineering of Ardupilot's Flight Control

will stays in listening for new data). In the modi�ed example there will be a "waste

of time" by checking for new data (a control should be performed at each cycle) but

anyway the total time (especially if the "computation path" is long) will be lower

then the original one. The time saved from the unnecessary execution of functions

can be used in some ways:

� allowing the system to execute other additional functions permitting a more

accurate control of the vehicle

� allowing the system to re-check for new values from sensors more than once at

loop (in Ardupilot it can not be veri�ed because sensors are read once at loop)

4.3 Ardupilot re-engineering

In this section we are going to explain all the changes we made on the Ardupilot

project (in particular on the ArduCopter sub-project). In Subsection 4.3.1 there is

a description of our choices related to the part of the code that can be personalized.

There is a detailed description of all the parts that we are going to change, thus

allowing us to understand the changes made. The main changes are explained on

subsections related to setup (4.3.2), main loop (4.3.3), fast loop (4.3.4) and scheduler

(4.3.5).

4.3.1 Overview

In Figure 4.5 is graphically shown how the ArduCopter code runs. There is an

initial phase where all the variables are initialized (setup()). Then, the main loop

(loop()) is executed and it runs until the execution of the entire vehicle terminates.

In the main loop is called a method that waits for an INS sample (inertial sen-

sor that mixes the accelerometer, gyroscope and magnetometer data), the fast loop

(fast_loop()) and then with the remaining time the scheduler (the available time is

passed and the scheduler choose a set of tasks that can be run). Data are sent at any

loop to the motors (motors input). In the same �gure, the instructions that calculate

the available time immediately after the fast loop call are not shown for simplicity.

In Figure 4.6 we can see which methods are called on fast loop. As we said in

Subsection 3.1.2, in fast loop are called methods with the highest priority (need to

be called at any loop)

46

4.3. Ardupilot re-engineering

Figure 4.5: Arducopter

47

4. Re-engineering of Ardupilot's Flight Control

Figure 4.6: Fast loop

In Listing 4.5 are shown the variables we will manage to create a dependency �ow

from sensors to the �nal output. In lines 1, 2 and 3 there are three sensors managed

from ardupilot to calculate the position of the vehicle.

� gps (if installed) gives the 2D position

� barometer is used to calculate the altitude (a sonar sensor gives more accurate

information about the altitude)

� ins (inertial sensor) provides 3D orientation by integrating gyroscopes and fus-

ing this data with accelerometer data and magnetometer data (it uses the board

sensors)

In line 5 it is shown the ahrs object that is created from the combination of the

three sensors listed before. An AHRS (Attitude and Heading Reference System),

like an interial sensor, provides a 3D orientation. In line 6 is shown the interial_nav

that gives all the information about our vehicle like position and velocity. In current

location (current_loc) is stored the position of the vehicle that is used on other

methods to send commands or to compare it with the destinations and so on.

48

4.3. Ardupilot re-engineering

Listing 4.5 Declaration of objects that manage the sensor data. The �rst three
objects manage the main sensors of the board (gps, barometer, accelerometer, mag-
netometer and gyroscope). The other objects (except the current location that is a
struct depending on ahrs) are created passing to the constructor some sensor data.

1 AP_GPS gps ;
2 AP_Baro barometer ;
3 AP_Inert ia lSensor i n s ;
4
5 AP_AHRS_DCM ahrs (ins , barometer , gps) ;
6 AP_InertialNav_NavEKF ine r t i a l_nav (ahrs) ;
7 AC_AttitudeControl a t t i tude_cont ro l (ahrs , aparm) ;
8 AC_PosControl pos_control (ahrs , iner t ia l_nav , a t t i tude_cont ro l) ;
9
10 struct Locat ion current_loc ;

From these lines of code we can see the dependency between these senors and

objects (see Figure 4.7)

Let us analyze now how many times these sensors are read from the Arducopter

code. Referring to the scheduler initialization (see Subsection 3.1.3) we can see two

methods witch refer to the barometer and gps reading (simpli�ed in Listing 4.6).

These two methods run at 50hz (second parameter is 8 and correspond to 50hz). We

have new data of GPS and barometer every eight loops.

Listing 4.6 Barometer and GPS reading

1 /*
2 1 = 400 hz
3 2 = 200 hz
4 4 = 100 hz
5 8 = 50hz
6 */
7
8 AP_Scheduler : : Task scheduler_tasks [] PROGMEM = {
9 { update_GPS , 8 , 90 } ,
10 { barometer_accumulate , 8 , 25 } ,
11 } ;

In Listing 4.7 is shown how often the ahrs (Attitude and Heading Reference

System) and ins (accelerometer, magnetometer and gyroscope) are updated.

� In the �rst part is shown how often the ahrs is called to check for new values

(see the full code in Listing 3.2 on Section 3.1.2)

� read_AHRS() called from the fast_loop is a method that call the update

method of AHRS (other instructions are not shown in this method)

49

4. Re-engineering of Ardupilot's Flight Control

Figure 4.7: Sensors dependency. Is shown the dependency between the sensors man-
aged from the Ardupilot (Arducopter sub-project in this case).

50

4.3. Ardupilot re-engineering

� the update method of AHRS at one point read the ins sensor and update the

ahrs variable.

Listing 4.7 AHRS update. (Attitude and Heading Reference System). Here is shown
only a piece of fast_loop (see Listing 3.2 in Subsection 3.1.2).

1 stat ic void fa s t_loop () {
2 // IMU DCM Algorithm
3 // −−−−−−−−−−−−−−−−−
4 read_AHRS () ;
5 }

1 stat ic void read_AHRS(void) {
2 // Perform IMU ca l c u l a t i o n s and ge t a t t i t u d e i n f o
3 //−−−
4 ahrs . update () ;
5 /* i n s t r u c t i o n s */
6 }

1 void AP_AHRS_DCM: : update (void) {
2 /* i n s t r u c t i o n s */
3 i n s . update () ;
4 /* i n s t r u c t i o n s */
5 }

The attitude_control (see Listing 4.8) calls the rate_controller_run() method on

fast_loop (each loop). The main function of this method is to call rate controllers

and send output to motors object. To the motors is set the roll, pitch and yaw

passing as input three variables that depend from ahrs object (see line 2,3 and 4 of

the second part of Listing 4.8). The attitude control variable is called at each loop

like the ahrs (immediately after and depending on the new values of ahrs object).

Listing 4.8 Attitude control

1 stat ic void fa s t_loop () {
2
3 // run low l e v e l r a t e c o n t r o l l e r s t h a t on ly r e qu i r e
4 // IMU data
5 at t i tude_cont ro l . ra te_contro l l e r_run () ;
6 }

1 void AC_AttitudeControl : : ra te_contro l l e r_run () {
2 motors . s e t_ r o l l (rate_to_motor_roll (_rate_target . x)) ;
3 motors . set_pitch (rate_to_motor_pitch (_rate_target . y)) ;
4 motors . set_yaw (rate_to_motor_yaw (_rate_target . z)) ;
5 }

51

4. Re-engineering of Ardupilot's Flight Control

The last two objects we are going to describe are inertial_nav and current_loc.

The �rst part of Listing 4.9 shows how often inertial_nav is used (called). It is read

from fast loop (so at any loop) with the read_inertia() method. This method calls the

update method of this object. In other words from fast_loop is updated the interial

navigation object. The update consists in updates of velocity and position estimates

using latest information from accelerometers augmented with GPS and barometer

readings. Then the inertial_nav is used on every �ight mode method which require

the current position and velocity (almost all the �ight modes).

The current_loc depends from inertial_nav object but it changes at 50hz (see

third part of Listing 4.9)

Listing 4.9 Inertial navigation and current location objects

1 stat ic void fa s t_loop () {
2 // I n e r t i a l Nav
3 // −−−−−−−−−−−−−−−−−−−−
4 read_ine r t i a () ;
5 }

1 stat ic void r ead_ine r t i a () {
2 // i n e r t i a l a l t i t u d e e s t ima t e s
3 ine r t i a l_nav . update (G_Dt) ;
4 }

1 AP_Scheduler : : Task scheduler_tasks [] PROGMEM = {
2 { run_nav_updates , 8 , 100 } ,
3 } ;

1 stat ic void run_nav_updates (void) {
2 // f e t c h p o s i t i o n from i n e r t i a l nav i ga t i on
3 ca l c_pos i t i on () ;
4 }
5
6 // ge t l a t and lon p o s i t i o n s from i n e r t i a l nav l i b r a r y
7 stat ic void ca l c_pos i t i on () {
8 // p u l l p o s i t i o n from i n t e r i a l nav l i b r a r y
9 current_loc . lng = ine r t i a l_nav . get_longitude () ;
10 current_loc . l a t = ine r t i a l_nav . ge t_la t i tude () ;
11 }

These objects we have just described are very related among each other. When

an update method related to each of these object is called, it executes all the code

even if there are no new values. For example, if ahrs does not change for 20 loops

(the update method of the ahrs object is called once at loop), the inertial navigation

object (interial_nav object) will execute the update code at any loop having always

the same values. In this thesis we are going to avoid this behavior introducing the

52

4.3. Ardupilot re-engineering

reactive programming paradigm on the propagation of sensor changes. Referring to

Figure 4.7, the �ow of changes of the sensors is not performed in order from sensors

to �nal objects. For example, the ins.update() is called only when it is needed from

ahrs even if ahrs depend from it. Ardupilot code performs so a pull-based model.

The main problem is that a lot of code is executed when is not needed. In the next

subsections we are going to describe the main changes to the Ardupilot code using

the ReactiveCpp library. All these objects are going to call their update method

only when there is a change on their parents node. From now on we are going to

create signals for each object and we will refer almost always to these.

4.3.2 Setup

In order to initialize the signals, the only way to do that is on the setup code. It

is called once at boot and it is used to initialize all the variables used by ArduCopter.

In Listing 4.10 are shown the signals that we are going to use. We are not going to

use for now the gps_state and barometer_state (we are going to explain after this

decision in subsection 4.3.5).

Listing 4.10 Modi�ed setup code. It is shown where the new code (signal initial-
ization) is added

1 void setup () {
2
3 a l e r t : : stream ins_state ;
4 a l e r t : : stream gps_state ;
5 a l e r t : : stream barometer_state ;
6 a l e r t : : stream ahrs_state ;
7 a l e r t : : stream iner t i a l_nav_state ;
8
9 void (* i n s_a l e r t) (void) = &read_AHRS ;
10 ins_state . bind (i n s_a l e r t) ;
11
12 void (* ahrs_a le r t) (void) = &read_ine r t i a ;
13 void (* a t t i tude_cont ro l_a l e r t) (void) = &check_att i tude ;
14 ahrs_state . bind (ahrs_a le r t) ;
15 ahrs_state . bind (a t t i tude_cont ro l_a l e r t) ;
16 ins_state . s t i c k (pushAHRS) ;
17
18 void (* i n e r t i a l_nav_a l e r t) (void) = &ca l c_pos i t i on ;
19 ine r t i a l_nav_state . bind (ine r t i a l_nav_a l e r t) ;
20 ahrs_state . s t i c k (pushInert ia lNav) ;
21
22 }

Referring to Listing 4.10, when the ins_state is triggered, some instructions are

53

4. Re-engineering of Ardupilot's Flight Control

going to be executed and at the end the ahrs_state is called. On the ahrs_state

call, other methods related to ahrs are going to be called and at the end, just like

with the ins_state, the signals depending on ahrs object are going to be called, like

inertial_nav state. The same thing is going to happen with this signal and at the

end it is not going to call other signals (in our case the propagation ends here).

In Listing 4.10, from line 8 until end, we can see the creation of dependency

between our three signals. In parallel, in Figure 4.8 are shown the signals graphically.

� In line 9 is created a function pointer related of read_AHRS() method. Then

in line 10 it is added to the bind_list of ins_state signal. This characterize the

behavior of this signal. Every time ins_state is triggered, the read_AHRS()

method is going to be called.

� In lines 12 to 16 we are going to initialize and choose the behavior of ahrs_state

signal. In lines 12 and 13 are created two function pointers to read_inertia()

and check_attitude() methods. In lines 14 and 15 these two function pointers

are going to be added to the bind_list of ahrs_state signal de�ning in this

way the behavior of ahrs_state signal. In line 16 we are going to create a

direct dependency between ahrs_state and ins_state adding on the stick_list

of ins_state the push method of the ahrs_state. The ins_state is going to �rst

call all methods depending on it, then at the end it is going to trigger the other

signals depending on it (ahrs_state.push(value) in this case).

� In lines 18-20 we are going to add the calc_position() method to the bind_list

of inertial_nav_state signal, and then we are going to add to the stick_list of

ahrs_state the push method of this signal creating another dependency between

these two signal.

4.3.3 Main Loop

In the setup subsection, we see how signals are depending on each other, starting

from the ins_state. In Figure 4.8, ins_state signal is triggered after an �alert�.

The other signals depending by other signals are triggered when the parent signal

terminates the execution of all the functions on bind_list and starts the execution of

the functions on the stick_list (a list of method that contain the push() method of

child nodes). Returning to the �alert� signal, it is referred to the push() method of

the ins_state signal. In Listing 4.11 we have added a new method (check_sensors())

on the main loop. We simply call the push(..) method on ins_state signal passing as

input the last time the code has read new values about gyroscopes, accelerometers

and magnetometers. This value always changes when there are new values read on

these sensors. This �alert� de�ne the start of the propagation values.

54

4.3. Ardupilot re-engineering

Figure 4.8: Dependency tree between signals. Here are shown the signals we are
going to use for a better propagation of sensor changes. Each signal is triggered
when the object to which it was connected has made an update (for example when
a read_AHRS() is called, the ahrs signal is triggered). The �alert� means that new
values are available.

55

4. Re-engineering of Ardupilot's Flight Control

Listing 4.11 Method related to sensor check

1 void loop () {
2 check_sensors () ;
3 . . .
4 . . .
5 }

1 // check i f s ensors are updated
2 stat ic void check_sensors (){
3 ins_state . push (i n s . get_last_sample_usec ()) ;
4 }

4.3.4 Fast Loop

In the fast loop (Listing 4.12) we have removed some lines of code. As we can

see the read_AHRS(), read_inertia() and attitude_control.rate_controller_run() are

removed from fast loop. These belong now to the signal behaviors explained before.

The check_attitude() correspond to attitude_control.rate_controller_run() (in line

13 of Listing 4.10). We have added the ins.update() instruction here because it should

be called at any loop. In the original code of ArduCopter it is called at any loop by

the read_AHRS().

Listing 4.12 Fast loop modi�ed. Here are shown the lines of code we have removed
and one instruction added (ins.update()). The other instructions remained the same
like Listing 3.2.

1 stat ic void fa s t_loop () {
2
3 // IMU DCM Algorithm
4 // −−−−−−−−−−−−−−−−−−−−
5 //read_AHRS () ;
6
7 // run low l e v e l r a t e c o n t r o l l e r s t h a t on ly
8 // r e qu i r e IMU data
9 // a t t i t u d e_con t r o l . ra te_contro l l e r_run () ;
10
11 // I n e r t i a l Nav
12 // −−−−−−−−−−−−−−−−−−−−
13 // read_iner t ia () ;
14
15 i n s . update () ;
16
17 }

Compared to the original code, the fast loop code (the critical part of code of

56

4.3. Ardupilot re-engineering

ArduCopter) is lighter. The instructions that we have removed from fast_loop do

not need to be called at any loop. They are going to be called only when new

data are available, avoiding so the execution of unnecessary code. In the worst case

(having always new values from the sensors), the Ardupilot will take the same time to

process the sensors data. With a lighter fast loop, the time available for the scheduler

is bigger. It enables the scheduler to run more tasks then the original code, having

a better response of the system in general.

4.3.5 Scheduler

The scheduler is the part of code least a�ected by these changes. It is important

to consider it because here, other check_sensors methods (related to other sensors)

can be included. We have not considered the GPS and barometer sensors before

because they have a di�erent frequency (50hz) unlike the main loop (400hz). A

solution to include these two sensors in the dependency tree is to create a method

that checks for new values at the right frequency. In Listing 4.13 is shown a peace

of code that can be combined with the above changes to introduce a dependency

between GPS, barometer and ahrs objects. A check_sensors_�fty() method is called

from the scheduler at 50hz frequency only for GPS and barometer readings. In the

setup, the main changes are lines 9-13. The pointer to function to read_AHRS() is

changed from ins_alert to _alert (it does not anymore depend only from ins). In line

12 and 13 is created the dependency between ahrs and the other two sensors. In 8

loops, the ahrs in the worst case can be updated 10 times (8 from the ins called at

any loop, 1 time from gps and 1 time from barometer).

57

4. Re-engineering of Ardupilot's Flight Control

Listing 4.13 GPS and barometer signals

1 /*
2 1 = 400 hz
3 8 = 50hz
4 */
5
6 AP_Scheduler : : Task scheduler_tasks [] PROGMEM = {
7 { check_sensors_f i f ty , 8 , 90 } ,
8 } ;

1 void setup () {
2
3 a l e r t : : stream ins_state ;
4 a l e r t : : stream gps_state ;
5 a l e r t : : stream barometer_state ;
6 a l e r t : : stream ahrs_state ;
7 a l e r t : : stream iner t i a l_nav_state ;
8
9 // vo id (* i n s_a l e r t) (vo id) = &read_AHRS ;
10 void (*_alert) (void) = &read_AHRS ;
11 ins_state . bind (_alert) ;
12 gps_state . bind (_alert) ;
13 barometer_state . bind (_alert) ;
14
15 }

58

Chapter 5

Evaluation

In this chapter we describe the behavior of the system using reactive program-

ming based library. We are going to compare it to the original ArduCopter project

(see 2.2.2.2) showing some charts. The behavior should be very similar in both

cases. The only way to compare it is to make use of generated log after each �ight

(simulated �ights or real ones). From now on we will refer to the ardupilot project

as original �rmware or original version and to the modi�ed project with a reactive

library developed as in Chapter 4 as reactive �rmware or reactive version (see the

modi�ed ardupilot with the ReactiveCpp on Section 4.3).

This chapter is divided into three parts. In Section 5.1 we are using only SITL (see

2.2.2.4) to simulate a �ight and then extract information from log �les. In Section

5.2 we are going to test the reactive �rmware on the physical vehicle and control

the real time of the main and fast loop to see how the performance is changed with

the reactive programming paradigm. In the third part (Section 5.3) we are going to

describe what can motivate a programmer to use the reactive programming paradigm

in a control loop, modifying Ardupilot project.

5.1 SITL

In this section we are going to use two �ight plans, the default one given by

the ardupilot community (Figure 5.1) and a modi�ed �ight plan that is similar to

the default one with a �Loiter� �ight mode at the waypoint (WP) number 10. A

waypoint corresponds to a sets of coordinates that identify a point in a physical space

(in our case a simulated space). The �Loiter� �ight mode takes 20 seconds, then the

�ight plan continues its path.

The two �ight plans are composed by some waypoints. Starting from the �Home�

waypoint (waypoint H in Figure 5.1), the quadcopter takes o� until it reaches an

altitude of 20m. It passes through the other waypoints with the �Auto� �ight mode

until at the end it turns back to �Home� waypoint and lands with the �Land� �ight

59

5. Evaluation

mode. The quadcopter reaches an altitude of 40m in the middle of the path (WP

number 5) and then turns back to 20m. The MAVProxy console (see Figure 2.10)

gives us some data in �real time� such as altitude, position, distance from �nish,

time passed, wind, vibrations etc. In the ArduCopter project we can not set the

values of vibrations and winds (it is possible only for ArduPlane for now).

We are going to compare the Yaw and DesYaw (yaw value and desired yaw value

of the vehicle during the �ight) of the original version to the reactive one. We will

do the same test with pitch, roll and altitude parameters. The pitch, roll and yaw

(as shown in Figure 5.2) gives us the direction (yaw) and the moving direction (pitch

and roll) of the vehicle.

� Roll - rotation around the front-to-back axis.

� Pitch - rotation around the side-to-side axis.

� Yaw - rotation around the vertical axis.

5.1.1 Yaw

In this subsection we are going to compare the desired yaw angle with the simu-

lated yaw angle of the quadcopter. Comparing these two parameters we can extract

the error (the di�erence between the two parameters). It is useful to understand how

the vehicle reacts on external factors. With the simulator, it is not possible to set

the wind or airspeed, anyway the error in yaw is generated from the simulated radio

control input and the simulated value of the yaw angle. In Figure 5.3 and Figure

5.4 are shown the graphs about the two versions of �rmware tested with the default

�ight plan.

As we can see the two graphs are very similar. In the x-axis we have the time and

in the y-axis the di�erence between desired yaw and yaw (the error in yaw). We are

going to analyze the data in detail to do a signi�cant evaluation. From the log �les,

using Mission Planner (for more information see 2.2.2.3), it is possible to extract

a text �le with all the log data. In the �ATT� attribute (attitude information) of

the log �le we can �nd information about desired and simulated values of roll, pitch

and yaw. In this case we have selected only the data where are stored information

about yaw and desired yaw. We have calculated, from these data, the average value

and the standard deviation related to the error in yaw. With the �rst value we can

understand how much is the gap between the desired and simulated values and with

the second value the distribution of these errors.

We have considered two scenarios that use only the �rst �ight plan given from the

community (the one without the �Loiter� �ight mode). In the �rst scenario we have

considered all the �ight plan from the �Home� waypoint to the end. In the second

scenario we have cut o� the parts where the copter reaches a waypoint because if

60

5.1. SITL

Figure 5.1: Flight plan. It is composed by a set of waypoints (WP). In WP 5 the
quadcopter reaches an altitude of 40m than return back at 20m.

61

5. Evaluation

Figure 5.2: Pitch, Roll and Yaw. A demonstrative image to show these three param-
eters related to the three axes.

Figure 5.3: Error in yaw of the original Firmware. In the x-axis we have the time in
minutes and in the y-axis the error in degrees.

Figure 5.4: Error in yaw of the reactive Firmware. In the x-axis we have the time in
minutes and in the y-axis the error in degrees.

62

5.1. SITL

it points to another waypoint the error variation can be very high (so we did not

considered these 2 seconds needed to the vehicle to reach the right direction). In this

way we can have more information about the �vibrations� of this parameter when it

must be constant and see how the system reacts to external sensors (simulated from

a linux system in our case).

average standard dev.

original 7,367199571 38,53454587
reactive 7,012069519 37,62386149

Table 5.1: Average and standard values of the error in yaw related to the �rst
scenario. Original �ight plan considering all the path (from home to the end).

In Table 5.1 (referred to the �rst �ight plan, �rst scenario) we can see a slight

di�erence between the two versions of �rmware. The error in the reactive one is 5%

lower then the error in the original one. We have obtained a better response from

the reactive �rmware related to the vehicle direction.

average standard dev

original 0,378516129 0,760354581
reactive 0,316451613 0,680496727

Table 5.2: Average and standard values of the error in yaw related to the second
scenario. Original �ight plan considering all the path without the points where the
vehicle reaches a waypoint.

In Table 5.2 (referred to the �rst �ight plan, second scenario) the average of the

error in yaw is about 16% lower to reactive �rmware compared to the original one.

On the last image of this subsection (Figure 5.5) we have a better view of the

di�erences between the two �rmwares. The light gray one is the reactive �rmware

and the dark gray one is the original �rmware. In x-axis we have the time and in

y-axis the error in degree. The reactive's yaw error stay almost always below the

original's yaw error.

5.1.2 Pitch and Roll

In this subsection we have put together the error about pitch and roll because

these two parameters give us the direction of the moving quadcopter. We have

tested the two �rmwares only with the modi�ed �ight plan because we are going to

use the data when the vehicle is on �Loiter� �ight mode (we are going to explain

later why we need this �ight mode). We can see that they are related. DesRoll

and DesPitch are the pilot's desired roll and pitch angle in centi-degrees. Roll and

Pitch are the vehicle's actual roll and pitch angle in centi-degrees. In Figure 5.6 we

have the DesRoll, Roll, DesPitch and Pitch from the original �rmware (it can not be

63

5. Evaluation

Figure 5.5: Error in yaw on original and reactive �rmware. The di�erence between
the two errors on original �rmware (dark gray) and reactive �rmware (light gray).
Chart divided in three parts to have a better view of the di�erence between the two
�rmwares. In the x-axis we have the time in minutes and in the y-axis the error in
degrees.

64

5.1. SITL

ErrRoll ErrPitch

original 0,3347 0,4005
reactive 0,2889 0,3601

Table 5.3: Average error in pitch and roll values. The full path, from home to the
end, is considered.

Figure 5.6: Error in roll and error in pitch of the original �rmware. In the x-axis we
have the time in minutes and in the y-axis the error in degrees.

distinguish DesRoll from Roll and DesPitch from Pitch). In Figure 5.7 we have the

four parameters of the reactive �rmware. The two graphs are very similar.

We are going to do two types of calculations. First of all we are going to calculate

the average of the error in the two �rmwares like we did with error in yaw. Then

we are going to study the behavior of the system when it is in �Loiter� �ight mode

(path A-B of Figure 5.6 and Figure 5.7). In Figure 5.8 (path A-B zoomed) it is

shown that the Roll and DesRoll charts presents a sort of amplitude (the behavior of

Pitch and DesPitch is the same). In the reactive version the �amplitude� variation

is smaller with the reactive �rmware. In this case is signi�cant to calculate the

standard deviation to understand how these parameters change. The same study

can be done in other points of the graph where the copter does not change very often

the movement direction. Getting the data from the log �le, we calculate the average

errors of all the �ight plan for the �rst case (Table 5.3). The di�erence between the

error in roll of the two �rmwares is about 13-14% lower in the reactive one. The

reactive �rmware has also a lower error in pitch of about 11%. So at �rst we have

what we expected, a similar behavior using the reactive library. Calculating the

error average in roll and pitch parameters we have obtained a better response to the

inputs by the autopilot.

The second case of study for roll and pitch parameters is the study of the path A-

B. Visually the �amplitude� of the graph (Figure 5.8) in reactive �rmware is smaller

than the original �rmware. This path is referred to the �Loiter� �ight mode. It is

easiest to study this behavior in this �ight mode because the roll and pitch must

be constant, so it is easiest to study the vibrations of those parameters. Extracting

some data from the log �les we have calculated the standard deviation to see how

those values change. In Table 5.4 we can see that in the original �rmware, these

65

5. Evaluation

Figure 5.7: Error in roll and error in pitch of the reactive �rmware. In the x-axis we
have the time in minutes and in the y-axis the error in degrees.

DesRoll Roll DesPitch Pitch

original 0,343 0,3297 0,3388 0,3129
reactive 0,2272 0,2218 0,2144 0,2106

Table 5.4: Standard deviation related to pitch and roll parameters. The modi�ed
path, from A to B, is considered

four parameters have a bigger standard deviation. In the reactive one the standard

deviation is about 35% lower. In an ideal autopilot system the standard deviation

in this path must be 0.

In Figure 5.9 is shown graphically the di�erence between the error in pitch on

the original version and the error in pitch on the reactive version related to the full

�ight plan. The reactive one as we can see stays almost always below the original

version. Same thing we can deduce graphically for the error in roll from Figure 5.10.

5.1.3 Error altitude

In this subsection we are going to analyze the error in altitude. Comparing the

real altitude of the vehicle with the desired altitude we can see in the two cases

(original �rmware and reactive �rmware) how the error changes. In this subsection

we are referring only to the default �ight plan (the one without the �Loiter� �ight

plan). The three parameters of the two subsections above were extracted from the

�ATT� message of the log �les. Now, for the altitude we need for �CTUN� message

(throttle and altitude information). In this message we can �nd BarAlt (altitude

estimated from barometer), SAlt (altitude estimated from sonar), DSAlt (desired

sonar altitude), DAlt (desired altitude) and Alt (altitude). Here we are considering

only the DAlt and Alt parameters to calculate the error (the gap between the real

value and the desired value). The test is the same done before. Looking at the

graph (Figure 5.11) we can not see any di�erence between the two �ights, so we are

going to extract data to calculate the average of the error in altitude. Considering

all the path from A to F where the altitude changes four times, we do not see the

improvement. Anyway the average error is shown on Table 5.5 . The improvement

is very small, only 0.9%.

66

5.1. SITL

Figure 5.8: Amplitude of the Roll and DesRoll parameters. The trend of the graph
looks like a wave with a certain amplitude. This amplitude is bigger in the original
�rmware. In an ideal system it must be constant. In the x-axis we have the time in
milliseconds and in the y-axis the error in degrees.

average error [m]

original 0,324
reactive 0,321

Table 5.5: Average error of the altitude of the full �ight plan. The full �ight plan
from A to F in Figure 5.11

67

5. Evaluation

Figure 5.9: Error in pitch on original and reactive �rmware. The di�erence between
the two errors on original �rmware (dark grey) and reactive �rmware (light grey).
Chart divided in three parts to have a better view of the di�erence between the two
�rmwares. In the x-axis we have the time in minutes and in the y-axis the error in
degrees.

68

5.1. SITL

Figure 5.10: Error in roll on original and reactive �rmware. The di�erence between
the two errors on original �rmware (dark grey) and reactive �rmware (light grey).
Chart divided in three parts to have a better view of the di�erence between the two
�rmwares. In the x-axis we have the time in seconds and in the y-axis the error in
degrees.

69

5. Evaluation

average error [m]

original 0,061
reactive 0,049

Table 5.6: Average error of the altitude of the modi�ed �ight plan. The modi�ed
�ight plan correspond to the path B-C and D-E

Figure 5.11: Altitude graph

Lets consider now the two paths where the vehicle must stay stable at 20 meters

(path B-C and D-E of Figure 5.11). Here we can see an improvement introduced with

the reactive version. The error in an ideal system must be always 0. In this case,

looking the Table 5.6 , we can see that the copter is more stable with the reactive

�rmware. The di�erence of error values is about 19%.

5.2 Code execution

In this section we are going to extract data from the Pixhawk board. It is not

needed anymore to simulate a �ight with SITL, data are extracted from a real one.

The �ight in this case (using a radio control to send inputs to the quadcopter) consists

in a simple �ight of 20 seconds. It is impossible to execute the same set of commands

in the two cases (with the original and the reactive �rmware), but it is not necessary.

The goal of this test is to calculate the average time the main and fast loop take to

be executed.

The time of fast loop is expected to be lower in the reactive version because we

have cut o� functions that are now managed from the check_sensors() function (see

Section 4.3) on the main loop. The idea is to store data using the DataFlash library

given from ardupilot project. In Listing 5.1 we have added some lines of code on the

ArduCopter.pde.

In each loop, the numbers of clocks are memorized on count_main_loop variable

and then stored by DataFlash with the Log_Write_Data(ID, value) function on the

log �le. We have extracted those values from the two log �les using the two versions

of �rmware. In the �rst case (original version) the average number of clock cycles

for the main loop was 420990 and in the second case (reactive version) the average

70

5.2. Code execution

Listing 5.1 DataFlash logs

1 /* c l o ck counter f o r main and f a s t loop */
2 uint32_t count_main_loop = 0 ;
3 uint32_t count_fast_loop = 0 ;
4
5 /* r e g i s t e r address */
6 v o l a t i l e unsigned i n t *DWT_CYCCNT = (unsigned i n t *)0 xE0001004 ;
7
8 void loop (){
9 count_main_loop = *DWT_CYCCNT;
10 Log_Write_Data (ID_main_loop , count_main_loop) ;
11 . . .
12 . . .
13 }
14
15 void fast_loop (){
16 count_fast_loop = *DWT_CYCCNT;
17 . . .
18 . . .
19 Log_Write_Data (ID_fast_loop , *DWT_CYCCNT − count_fast_loop) ;
20 }

clock count duration [ms]

original 420990 2,505
reactive 420057 2,500

Table 5.7: Main loop duration

was 420057. Each clock have a duration of 5,95ns (Pixhawk processor at 168 MHz).

So, we can calculate the main loop time multiplying the number of clocks with the

duration of a single one (see Table 5.7)

In this test the reactive version is 5 microseconds better than the original one but

we think that doing more tests and stressing more the quadcopter, those two values

are going to be always very similar with some di�erence in order of microseconds.

The same test is done for the fast_loop function (Table 5.8). In the original version

the average number of clock cycles was 62719 and in the reactive one was 19567. So

the result of fast loop duration is about 0,37ms on the original version and about

0,11ms on the reactive one.

In other words, the code execution of the main loop has remained almost un-

changed and the code execution of the critical part of the main loop (the fast loop)

is decreased widely.

71

5. Evaluation

clock count duration [ms]

original 62719 0,3732
reactive 19567 0,116

Table 5.8: Fast loop duration

5.3 Summary

As we saw before, the performance is signi�cantly increased on the reactive ver-

sion. The use of the data �ow (from sensors to the motors input) has been optimized

updating object values only when new data is available. It is veri�ed especially when

the vehicle should maintain at least one of the four parameter (pitch, roll, yaw or

altitude) constant. In this case, it is very simple to do an evaluation on the di�er-

ence between the real and the desired value. Therefore, the performance can be an

important reason to use a reactive programming paradigm.

In this thesis we modify only a little part of Arducopter project having the

performance explained before. Modifying all the project (or creating it from scratch)

with the reactive programming it can be a very signi�cant gain in performance. By

creating from zero the tasks called from the scheduler (witch consists in sensor reading

signals) and divide them on groups by their frequency we can have a very optimized

control system. These modi�cations can be done in the other sub-projects of the

Ardupilot, such as ArduPlane or ArduRover.

In the hobbyist �eld, the precision may not be signi�cant. For a pilot, that uses a

quadcopter only to play, does not matter if the vehicle has an error in yaw lower then

10% compared to the original �rmware. Same thing can not be said if the vehicle

is for professional or military use. If the vehicle is for professional aerial �lming,

zooming in, the vibration a�ects the quality of the video. Another example are the

quadcopters used from the Italian army for the protection of military and civilian

convoys [6]. These quadcopters must collect, process and transmit with maximum

reliability and precision images and geo-referenced data on the dangers found around

the convoy. These examples explain how important can be the precision in some

scenarios.

Another reason to choose to use a reactive programming paradigm in Ardupilot is

the code writing. Lets analyze the code making some simple examples. The original

�rmware has its typical structure with:

� setup() where all objects are initialized

� fast_loop() where the critical functions are called

� scheduler that runs tasks about sensor readings and functions with their re-

spective frequency call

72

5.3. Summary

� main loop() that calls the fast loop and then calls the scheduler giving the

remaining time available

In Listing 5.2 we can see a simple code that describes the ArduCopter.pde. In List-

ing 5.3 is shown the other version using the reactive library. Some of the critical

instructions of fast_loop() are deleted because their work is done by the propagation

of sensors values. For example, adding a new task check_sensors() to the scheduler

that runs at any loop or to the main loop(), all the time a sensor changes, will change

all the variables that depend from that sensor. So the fast_loop() will be lighter.

This enables the scheduler to execute more tasks related to the control system, like

ordinary checks for the failsafe mode or tasks related to other additional sensors.

Let's analyze those two styles of writing code on Ardupilot project. This project,

as we said before, is very large and supported by a large community. Writing a code

using a reactive programming paradigm help others understand better what is the

use of a single sensor value. In the original version it is more di�cult to see where

the GPS values are used on the project. On the reactive one is su�cient to see on

the setup() the signal referred to this sensor. The signal (the GPS signal in this case)

gives all the behavior of this sensor (all the functions or objects depending on this

sensor) allowing developers to simply trace down the dependency between objects.

If it is necessary to change things related to sensor values, it is possible to change

the behavior of this sensor inside the setup() phase without searching where this

sensor is used on the entire code. Therefore, using reactive programming paradigm

on Ardupilot project makes the code more easy to understand.

73

5. Evaluation

Listing 5.2 Original ardupilot example

1 const AP_Scheduler : : s chedu le r_tasks [] PROGMEM = {
2 { rc_loop , 4 , 130 } ,
3 { throt t l e_loop , 8 , 75 } ,
4 { update_GPS , 8 , 200 } ,
5 { update_batt_compass , 40 , 120 } ,
6 { read_aux_switches , 40 , 50 } ,
7 { arm_motors_check , 40 , 50 } ,
8 . . .
9 . . .
10 } ;
11
12 void setup (){
13 // v a r i a b l e s i n i t i a l i s a t i o n
14 }
15
16 void loop () {
17 // b l o c k o f i s t r u c t i o n s
18
19 // Execute the f a s t loop
20 fast_loop () ;
21
22 // run a l l the t a s k s on the a v a i l a b l e time
23 schedu l e r . run (t ime_ava i lab le) ;
24 }
25
26 void fa s t_loop (){
27 // c r i t i c a l i n s t r u c t i o n s t ha t shou ld be always
28 // execu ted
29 f1 () ;
30 f2 () ;
31 f3 () ;
32 . . . example
33 . . .
34 }
35
36 /* a l l the f unc t i on s c a l l e d from the s chedu l e r */

74

5.3. Summary

Listing 5.3 Reactive ardupilot example

1 const AP_Scheduler : : s chedu le r_tasks [] PROGMEM = {
2 { check_sensors , 1 , 1 } ,
3 { rc_loop , 4 , 130 } ,
4 { throt t l e_loop , 8 , 75 } ,
5 { update_GPS , 8 , 200 } ,
6 { update_batt_compass , 40 , 120 } ,
7 { read_aux_switches , 40 , 50 } ,
8 { arm_motors_check , 40 , 50 } ,
9 . . .
10 . . .
11 } ;
12
13 void setup (){
14 // v a r i a b l e s i n i t i a l i s a t i o n
15
16 a l e r t : : stream gps_state ;
17
18 void (*_alert1) (void) = &read_AHRS ;
19 void (*_alert2) (void) = &do_something ;
20
21 gps_state . bind (_alert1) ;
22 gps_state . bind (_alert2) ;
23
24 }
25
26 void loop () {
27 // b l o c k o f i s t r u c t i o n s
28
29 // Execute the f a s t loop
30 fast_loop () ;
31
32 // run a l l the t a s k s on the a v a i l a b l e time
33 schedu l e r . run (t ime_ava i lab le) ;
34 }
35
36 void fa s t_loop (){
37 // c r i t i c a l i n s t r u c t i o n s t ha t shou ld be always
38 // execu ted
39 f1 () ;
40 // f2 () ;
41 // f3 () ;
42 . . .
43 . . .
44 }
45
46 // a l l the f unc t i on s c a l l e d from the s chedu l e r

75

5. Evaluation

76

Chapter 6

Conclusions & Future Work

As illustrated in this thesis, the work is positioned in the context of UAVs and

reactive programming paradigm. The goal was the re-engineering of Ardupilot using

the reactive programming paradigm.

In Chapter 2 is shown the state of the art divided in two main topics. The �rst

one is related to the reactive programming. A brief description is given, also there

are listed the main properties and some tools that use this paradigm (in C++). The

second topic is related to multicopters. In this thesis we have used only a quadcopter,

so in Chapter 2 are listed the main things that characterize a full multicopter suite for

developers (hardware, �rmware, software and other tools used for simulated �ights).

In Chapter 3 are shown how the Ardupilot code is structured (main loop, fast

loop, scheduler), how the code can be executed and some of the �ight modes used

from the simulator during the evaluation phase.

Chapter 4 presents the obstacles found during the implementation phase. In the

�rst part (Section 4.1) the problems are shown (listing some of the limits of the ex-

isting tools) and one solution is presented and also is implemented (the ReactiveCpp

library). Then, this solution is used in an example of control loop to show how can

be used. Finally, in the last section of this chapter, the Ardupilot project is modi�ed

using the ReactiveCpp library.

In Chapter 5 are shown some tests used to evaluate our work. We have used

two �ights for each test (one with the reactive �rmware and one with the custom

one). From the �ight logs, data are extracted and compared. For the altitude, pitch,

roll and yaw we have compared the error (the di�erence between the real value and

the desired value) for each parameter and then we have shown them with some

charts and tables that allowed the distinction between the two �rmwares. We have

demonstrated that our custom �rmware is more precise at positioning the vehicle

decreasing the error (the di�erence between the desired value and the real value of

a parameter) up to 35%. Then a signi�cant test was done on the code execution

verifying that the time execution of the main loop remains almost equal and the

77

6. Conclusions & Future Work

time of the fast loop (the critical part of the code) is decreased drastically. This

enables the scheduler to have more available time to execute tasks.

The goal of this work was to customize a control loop of a drone with the reactive

programming. From the state of the art, studying the existing tools we came to the

conclusion that these tools can not be used on Ardupilot. As a further contribution

we developed a brand-new open-source library (the ReactiveCpp), avoiding all the

hardware and software limitations.

However, the ReactiveCpp has some limitations that in any case does not a�ect

this work. The main limits of this library are:

� glitch avoidance is not satis�ed

� "uncomfortable" code on the initialization phase

For the �rst one, a solution is to implement the library using threads for the concur-

rency access. When a variable depends from two parent variables, when one parent

changes, it must wait for the other parent before the propagation takes place. In

this moment only the Pixhawk board support the multithreading.

The second "problem" can be avoided with the C++11 standard that is going

to be supported by Ardupilot shortly. In this case, instead of creating a function

pointer to pass to the bind list, with lambda expression, functions can be passed in

one single step like in Listing 6.1.

Listing 6.1 Using C++11 standard

1 a l e r t : : funct ion<void (int)> _alert ([] (int value){
2 read_AHRS () ;
3 do_something ()
4 pr int_values ()) ;
5
6 gps_state . bind (_alert) ;

Another challenge can be the re-implementation of the entire ArduCopter project.

The part about the libraries and HAL (Hardware Abstraction Layer) can still remain

unchanged, the part about the sensor management and the command decision can

be restructured from zero using reactive programming.

78

Bibliography

[1] 3DRobotics. 3drobotics. http://3drobotics.com/, 2015.

[2] Stuart M Adams and Carol J Friedland. A survey of unmanned aerial vehicle

(uav) usage for imagery collection in disaster research and management. In 9th

International Workshop on Remote Sensing for Disaster Response, 2011.

[3] Ardupilot. Ardupilot APM. http://ardupilot.com/, 2015.

[4] Ardupilot. Copter introduction. http://copter.ardupilot.com/wiki/

introduction/, 2015.

[5] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn

Mostinckx, and Wolfgang de Meuter. A survey on reactive programming. ACM

Computing Surveys (CSUR), 45(4):52, 2013.

[6] Cobra. Italian army - COBRA. http://www.quadricottero.com/2014/09/

mini-droni-vincolati-per-la-protezione.html, 2015.

[7] Gregory H Cooper and Shriram Krishnamurthi. Embedding dynamic data�ow

in a call-by-value language. In Programming Languages and Systems, pages

294�308. Springer, 2006.

[8] Gregory Harold Cooper. Integrating data�ow evaluation into a practical higher-

order call-by-value language. PhD thesis, Brown University, 2008.

[9] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert

Morris. Event-driven programming for robust software. In Proceedings of the

10th workshop on ACM SIGOPS European workshop, pages 186�189. ACM,

2002.

[10] DIY Drones. Diydrones. http://diydrones.com/, 2015.

[11] Conal Elliott and Paul Hudak. Functional reactive animation. ACM SIGPLAN

Notices, 32(8):263�273, 1997.

79

http://3drobotics.com/
http://ardupilot.com/
http://copter.ardupilot.com/wiki/introduction/
http://copter.ardupilot.com/wiki/introduction/
http://www.quadricottero.com/2014/09/mini-droni-vincolati-per-la-protezione.html
http://www.quadricottero.com/2014/09/mini-droni-vincolati-per-la-protezione.html
http://diydrones.com/

Bibliography

[12] HobbyKing. Hkpilot32. http://www.hobbyking.com/hobbyking/store/

__55561__HKPilot32_Autonomous_Vehicle_32Bit_Control_Set_w_Power_

Module.html, 2015.

[13] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows,

robots, and functional reactive programming. In Advanced Functional Program-

ming, pages 159�187. Springer, 2003.

[14] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.

Springer, 1997.

[15] Ingo Maier, Tiark Rompf, and Martin Odersky. Deprecating the observer pat-

tern. Technical report, 2010.

[16] Leo A Meyerovich, Arjun Guha, Jacob Baskin, Gregory H Cooper, Michael

Greenberg, Aleks Brom�eld, and Shriram Krishnamurthi. Flapjax: a program-

ming language for AJAX applications. In ACM SIGPLAN Notices, volume 44,

pages 1�20. ACM, 2009.

[17] Microsoft. Rxcpp library. https://github.com/Reactive-Extensions/RxCpp,

2015.

[18] Nuttx. Real-time operating system. http://www.nuttx.org/, 2015.

[19] PaparazziUAV. Paparazzi project. https://wiki.paparazziuav.org/wiki/

Main_Page, 2015.

[20] James Reinders. Intel threading building blocks: out�tting C++ for multi-core

processor parallelism. " O'Reilly Media, Inc.", 2007.

[21] Schlangster. cpp.react library. http://schlangster.github.io/cpp.react/,

2015.

[22] Sodium. Sodiumfrp library. https://github.com/SodiumFRP/sodium, 2015.

[23] Michael Sperber. Computer-assisted lighting design and control. PhD thesis,

Universität Tübingen, 2001.

[24] Michael Sperber. Developing a stage lighting system from scratch. In ACM

SIGPLAN Notices, volume 36, pages 122�133. ACM, 2001.

[25] Guy L Steele Jr. The de�nition and implementation of a computer programming

language based on constraints. 1980.

[26] Robert Tarjan. Depth-�rst search and linear graph algorithms. SIAM journal

on computing, 1(2):146�160, 1972.

80

http://www.hobbyking.com/hobbyking/store/__55561__HKPilot32_Autonomous_Vehicle_32Bit_Control_Set_w_Power_Module.html
http://www.hobbyking.com/hobbyking/store/__55561__HKPilot32_Autonomous_Vehicle_32Bit_Control_Set_w_Power_Module.html
http://www.hobbyking.com/hobbyking/store/__55561__HKPilot32_Autonomous_Vehicle_32Bit_Control_Set_w_Power_Module.html
https://github.com/Reactive-Extensions/RxCpp
http://www.nuttx.org/
https://wiki.paparazziuav.org/wiki/Main_Page
https://wiki.paparazziuav.org/wiki/Main_Page
http://schlangster.github.io/cpp.react/
https://github.com/SodiumFRP/sodium

Bibliography

[27] New York Times. Amazon delivers some pie in the sky. http://www.nytimes.

com/2013/12/03/technology/amazon-delivers-some-pie-in-the-sky.

html, 2013.

[28] Wired. Wired magazine. http://www.wired.com/category/magazine/l, 2015.

81

http://www.nytimes.com/2013/12/03/technology/amazon-delivers-some-pie-in-the-sky.html
http://www.nytimes.com/2013/12/03/technology/amazon-delivers-some-pie-in-the-sky.html
http://www.nytimes.com/2013/12/03/technology/amazon-delivers-some-pie-in-the-sky.html
http://www.wired.com/category/magazine/l

	Introduction
	General context
	Motivation
	Outline

	State of the art
	Reactive programming
	Basic abstraction
	Evaluation model
	Pull-based
	Push-based
	Push versus Pull

	Glitch avoidance
	Lifting operations
	Multidirectionality
	Support for distribution
	Tools

	Multicopters
	Overview
	Autopilot suite
	Hardware
	Firmware
	GCS (Software)
	SITL Simulator

	Analysis of Ardupilot Implementation
	Code structure
	Main loop
	Fast loop
	Scheduler
	Running new code
	Flight modes

	Re-engineering of Ardupilot’s Flight Control
	ReactiveCpp
	Problems
	Solution

	Example in a control loop
	Ardupilot re-engineering
	Overview
	Setup
	Main Loop
	Fast Loop
	Scheduler

	Evaluation
	SITL
	Yaw
	Pitch and Roll
	Error altitude

	Code execution
	Summary

	Conclusions & Future Work
	Bibliography

