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Abstract

A H-type Darrieus VAWT has been investigated with OpenFOAM R©. The
CFD simulation has been the test-case for the application to an external-
aerodynamics case of the lengthscale-based hybrid model DLRM (Dynamic
Length-scale Resolution Model), which operates in URANS or ILES mode
depending on the comparison of the modeled scales to what can potentially
be resolved by the computational grid and time-step. For the simulation,
the dynamic OpenFOAM R©solver pimpleDyMFoam for incompressible flows
has been chosen, and the mesh has been realized with Pointwise R©.
The rotor is composed by three untwisted blades, with dihedral NACA 0021
profiles, connected to the vertical mast by means of two horizontal supports.
The wind velocity has been set to 14.2 m/s and the turbine rotates at 41.44
rad/s, which corresponds to a tip-speed ratio of λ = 1.5. This choice stems
from the experimental inference that the turbine is very likely to stall for
λ ≤ 2. Thus, it definitely represents a crucial condition for understanding
the turbine behavior.
In order to reproduce a non-confined environment (i.e. to avoid any blockage
effect from the boundaries), a very extended domain has been considered,
which results in a ≈ 45 M-cell mesh. Moreover, the domain has been split
into an internal cylinder, integral with the turbine motion and very refined,
and an outer domain, still and coarser. The interpolations of the results at
the cylinder lateral surface have been then handled with an Arbitrary Mesh
Interface.
The final purpose of this work has been the comparison of the numerical
results to already available experimental data from tests performed in the
wind tunnel at Politecnico di Milano. Much attention has been paid to the
analysis of the wake, in terms of fluid deceleration and deflection, in both the
transversal and the longitudinal direction with respect to the flow stream.
The main aerodynamic coefficients (lift, drag, power and torque) have been
computed as well. As a result, a good agreement between the numerical
solutions and the data from tests has been observed.

Keywords: vertical-axis wind turbine, OpenFOAM, computational fluid-
dynamics, RANS/LES hybrid models, DLRM, moving mesh, Arbitrary Mesh
Interface.





Sommario

Oggetto del lavoro di tesi è l’analisi CFD di una turbina eolica ad asse ver-
ticale Darrieus di tipo H mediante il codice di calcolo OpenFOAM R©. La
simulazione rappresenta il test-case per l’applicazione a casi di aerodinamica
esterna del modello ibrido RANS/ILES DLRM (per esteso Dynamic Length-
scale Resolution Model), che opera in modalità URANS o ILES sulla base di
un confronto dinamico tra le scale modellate e quelle potenzialmente risolvi-
bili. Per la simulazione è stato adottato il solutore dinamico incomprimibile
pimpleDyMFoam, disponibile nella distribuzione ufficiale di OpenFOAM R©,
mentre la griglia di calcolo è stata realizzata mediante il generatore di griglie
Pointwise R©.
Il rotore è composto da tre pale diedre dal profilo simmetrico NACA0021, a
sezione uniforme, fissate all’asse centrale per mezzo di due piatti orizzontali.
Il vento ha una velocità di 14.2 m/s e la turbina ruota a 41.44 rad/s, cos̀ı
da ottenere un rapporto di velocità periferica λ = 1.5. Questa scelta deriva
dalle evidenze sperimentali sull’alta probabilità che la turbina vada in stallo
per λ ≤ 2, condizione decisamente interessante per studiare il funzionamento
della turbina.
Per riprodurre un flusso d’aria non confinato (ovvero evitare effetti di bloccag-
gio per via del contorno), si è preso in considerazione un dominio molto
esteso, corrispondente a ≈ 45 M di celle. Il dominio è stato poi suddiviso
in due regioni: un cilindro che racchiude la turbina, rotante solidalmente
con essa e con mesh più raffinata, e un dominio esterno, fisso e a minor
risoluzione. L’interfaccia è gestita mediante una Arbitrary Mesh Interface,
che opera un’interpolazione dei flussi delle variabili conservate attraverso le
superfici di regioni di mesh adiacenti.
Obiettivo del lavoro di tesi è stato il confronto dei risultati numerici con gli
esiti già disponibili di test sperimentali condotti presso la galleria del vento
del Politecnico di Milano. In particolare, è stato analizzato lo sviluppo della
scia, trasversalmente e longitudinalmente rispetto al flusso indisturbato, sia
in funzione del rallentamento che dell’angolo di imbardata assunto dopo
l’impatto con la turbina. Sono state inoltre calcolate le forze agenti sulle
pale del rotore, le coppie e le potenze prodotte e i coefficienti aerodinamici
di drag e lift. Il risultato mostra una buona corrispondenza tra le misure
sperimentali ed i risultati numerici.

Parole chiave: turbina eolica ad asse verticale, OpenFOAM, fluidodi-
namica computazionale, modelli ibridi RANS/LES, DLRM, mesh mobile,
Arbitrary Mesh Interface.
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Chapter 1

Introduction to Wind
Technology

Nowadays renewable resources attract quite an undivided attention in the
energetic scenario for many reasons. The strongest points in favor are surely
the environmental ecological cause and the human healthcare, since these
technologies often stand out for the lowest levels of harmful emissions. The
shortage of fossil fuels also represents a remarkable point. However, this
attitude towards the promotion of low pollutant technologies is then barely
followed by a practical commitment. If we count the hydraulic power out,
we can easily get a sense about the situation and realize that most of the
effort has yet to be made.

The set of technical and non-technical concerns to promote these tech-
nologies significantly influences the feasibility of the new methods. For in-
stance, the random variability in both time and space of sources like the
sun or the wind represents a true obstacle, since it implies variability in
energy production as well and inaccuracy in efficiency and costs estimation.
Nevertheless, even when benefits do counterbalance the related issues, these
technologies struggle to be promoted, since today’s skepticism is often triv-
ially due to our strong fuel-based tradition in energy production. Such a
radical change does require efforts and uncomfortable compromises, but the
first changes must occur in our mindset.

Specifically, this thesis deals with wind energy, which is the second most
exploited renewable source worldwide today, after water energy. It repre-
sents a countertrend if compared to the other alternative sources of energy,
since its usage keeps increasing exponentially. The growing interest from
industries and enterprises is indeed the most important proof of its poten-
tial and commercial exploitability, and these reasons are also the ones that
principally make it worth being further investigated.
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Wind technology consists in the conversion of the kinetic energy from
wind into electricity. Energy from wind has always been exploited since the
earliest times and today’s working principle is still not far from the one of
ancient windmills. The wind turns the blades of a turbine, which spins a
shaft, and this rotation can be used for diverse purposes. However, despite
its simplicity, the idea of connecting the rotor to an alternator in order to
produce electricity is quite recent. In 1981 there was no production from
wind worldwide. Today, thanks to the increasing attention to environmen-
tal preservation issues and consequent financial backing from international
governments, this technology keeps being enhanced. The world wind power
installed capacity has been estimated at 369.6 GW for 2014, which is 60
times its value for 1996 [12]. On condition that this non-linear trend of
growth will not change, it is a plausible prediction, according to [11], that
wind power might supply 22 % of electricity in 2030 for the entire world. In-
deed, even if wind technology exhibits several inborn flows (non-continuous
operation, occupation of the site, changes to landscape, acoustic emissions,
electromagnetic interferences, disorders in avifauna, high initial investment
in fixed capital), its peculiarity of environmental sustainability and its sat-
isfactory energetic outcome manage to counterweight all these weaknesses
and determine its competitiveness in a fuel-based world energetic scenario.

The first wind turbine design traces the old windmills style, since revo-
lution occurs around a horizontal rotor shaft, positioned on top of a tower
together with the generator. This is still the most common design and has
been optimized through times, leading to an upstream three-blade rotor
as the most suitable solution for power generation. Eventually, the rash
for new turbine designs led to a completely different set-up, that is, verti-
cal axis wind turbines. Indeed, despite their inborn issues, they still stand
out for two key advantages: the electrical generator can be placed at the
bottom of the machine, leading to a much less costly solution, and its rev-
olution around a vertical mast makes the overall machine less sensitive to
wind incidence, i.e. there is no need to align its receptive area with the flow
stream direction. This way, wind turbines become suitable for residential
energy production as well, since in urban environments the wind direction
is usually non predictable or even occasional. There are two main designs
for VAWTs. The first one is a S-shaped turbine called Savonius, simple in
structure and subjected to a very unstable flow field, which implies a very
low efficiency. The second one, namely Darrieus, is characterized by a num-
ber of vertically oriented airfoil blades revolving around a shaft. Both are
actually subjected to a very complex aerodynamics, with rapid fluctuations
and strong tip vortices, but since the Darrieus turbine uses an airfoil design,
its optimization gives more chances to reach a higher efficiency, which the-
oretically might border on the values of HAWTs’ efficiency.
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Specifically, this thesis focuses on a three-blade H-type Darrieus model
and aims at describing the aerodynamic field that originates from it, by sim-
ulating the flux investing the turbine through the open-source CFD software
OpenFOAM. The wake formation and extension as well as the yaw angle
that originates from the flow impacting the blades are two of the main quan-
tities that will be investigated. Torque and power generation will also be
taken into account, and lift and drag coefficients will be derived. Final goal
of this work is the comparison of the simulation outputs to the experimental
results found in literature. In this way, an adequate validated numerical
model will be provided for future studies on the machine optimization.

1.1 Implications of a Wind-Based Technology

Wind turbines are devices that convert the kinetic energy from wind into
electricity. Nowadays, there are unnumbered designs for this technology,
each fulfilling some important requirements, but at the same time unavoid-
ably presenting some limitations. Most of their weaknesses are actually
in-born flaws related to the wind, which hardly can be addressed. Thus,
it is of utmost importance to investigate first the general implications of a
wind-based technology.

Wind is a convective flux originated by air density variations due to
non-uniform heating from the sun. Its evolution is unpredictable in space
and time: small local events induce big fluctuations that spread randomly.
This is the first issue, since the input data to design wind turbines will
always be uncertain. Indeed, pure mathematical modeling lead to very
complex and non-linear formulations, as a true reflection of reality, and
a statistical approach becomes mandatory prior to design turbines. Clearly,
this implies that the more wind actual behavior deviate from the averaged
one assumed, the more the results of the analysis lose reliability. To this
purpose, the choice of a proper location is extremely important, not only
because it influences the machine performances straightforwardly, but also
because it simplifies and legitimates the analysis itself, accounting for the
difficult modeling work to be done and allowing optimization. Favorable
sites are characterized by strong wind intensity with large duration, such as
mountaintops, costal regions or offshore sites, while, on contrary, in urban
environments the wind usually does not reach a sufficiently high speed and
changes its direction too often.

Indeed, there is an admissible range of velocities for a correct functioning
of wind turbines, that is typically 5 to 30 m/s for common applications.
This thesis study case perfectly fits the restriction, since the wind speed is
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assumed to be 14.2 m/s far upstream of the machine. Precisely, if the wind
speed is below this range, the turbine is not efficient or does not work at all;
if it exceeds the higher limit, the turbine may be damaged. A few solutions
are actually possible to avoid it, such as varying the blades’ inclination to
reduce the resistant section (flag position) or using mechanical brakes to
slow the machine down, but they are just solutions to stem the problem,
which should be preferably avoided on the whole.

Figure 1.1: Typical HAWT Power Curve

Fig. 1.1 provides the typical HAWT power curve, showing how the power
output varies with wind speed. The cut-in limit marks the beginning of en-
ergy production, which initially grows with a steep trend and eventually
halts at the so-called rated power value. This energy output is then kept
constant until the cut-out limit, which represents the last admissible func-
tioning condition before breakage. Operation is theoretically possible in the
whole band in-between the cut-in and the cut-out limits. However, efficiency
results optimized (thus costs minimized) only if the wind speed exceeds the
rated value.

Nevertheless, excessive speed is generally a rare condition if compared to
insufficient speed. This is why, for instance, one of the first concerns when
building a wind turbine is to mount it on top of a tower in order to expose it
to sufficiently high wind intensity. Indeed, ground-level wind has generally
no power due to the fact that its non-null velocity field ends up as just a
chaotic motion, and at the same time the wind speed increases very slowly
with altitude (the estimate is a power of 1/7) [6].

The very last point to consider is the small density of air. If velocity
is somehow prescribed and density is very small, the only option to get a
satisfactory mass flow rate is to increase the machine front area. A high mass
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flow rate, indeed, is desirable because of its correlation to power. It stands
to reason that the costs hugely increase, not only because the dimensions
of the rotor increase, but also because the rotor needs to be supported by a
higher and more resistant tower. Maintenance becomes an issue as well.

1.2 Classification of Wind Turbines

Wind turbines always stand apart from other turbomachinery for their sin-
gular features. However, it might be interesting to arbitrarily frame them
up into the conventional classification of turbines in Pelton, Francis and Ka-
plan. The two main parameters that can be used for classification are the
motor head and the volumetric flow rate, whose correlation is provided by
Fig. 1.2. Experimental results collected in this graph show that if a turbine
works with large fluid flows, it usually cannot deal with a high head as well.
Pelton turbine results in being the most suitable for high head, while Kaplan
is the most adequate to work with high volumetric flow rate.

Figure 1.2: Turbine Classification on Their Motor Head and Flow Rate

Classification can be simplified by relating information to a single pa-
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rameter. One option is to define the specific speed as follows:

Ns =
n
√
P

H
5
4

(1.1)

where n is the rotational speed (rpm), P is the power (kW) and H the water
head (m). According to what stated before, the Pelton turbine is character-
ized by the lowest Ns, the Kaplan one by the highest. Thus, wind turbines
can technically be considered as an extreme extension of Kaplan turbines,
where the specific speed reaches the highest value. A high specific speed
implies that the turbine can deal only with small heads (denominator in Ns

definition). This makes sense, because it can be inferred from experimental
data that small heads imply high volumetric flow rates, which is trivially
true for an open device as a wind turbine.

1.3 Horizontal Axis Wind Turbines

HAWTs represent more than 90% of wind turbines today. Broadly, the ro-
tor hub is connected to a nacelle containing the generator, both of them
positioned on top of a tower. Either synchronous or asynchronous machines
can be used for connection to the electricity grid: the first solution allows
avoiding the gearbox and is globally less noisy, but it is never preferred being
much more expensive.

Figure 1.3: Upwind vs. downwind horizontal-axis wind turbine.

HAWTs are lift-based machines, i.e. revolution is mostly due to lift.
For an easy understanding of this point, a comparison to airplane wings
operation is useful. The result of a flow stream investing an airfoil is a dif-
ference in pressure, which in turn generates an overall aerodynamic force.
This can be decomposed with reference to the direction of the relative speed
between the fluid and the airfoil (in case also the airfoil is moving) into
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a drag and a lift component, respectively aligned and perpendicular to it.
Specifically, the lift force is the one that literally lifts the airplane up. Back
to wind turbines, the working principle is exactly the same, but since the
airfoil blades are secured to the hub, lifting is prevented. The consequence
is that the acting force is converted into a rotational momentum (the only
allowed degree of freedom), which spins the rotor. A drag force is actu-
ally generated as well, and balances the overall equilibrium during rotation.
However, it always occurs if an object redirects the airflow coming at it,
since motion implies an opposing force, but it does not contribute to the
machine energetic output. This behavior also accounts for its appellation as
induced drag force, meaning that it exists just because a lift force also exists.

The wider classification of HAWTs is based on their orientation being
into the wind (upwind) or in its same direction (downwind), as shown by
Fig. 1.3. In upwind machines, the rotor comes before the nacelle and is kept
oriented against the wind with some yaw mechanism. Air passes through
the blades first, with no previous deflection or interferences with other com-
ponents, thus power losses are mostly inhibited. Also, since the blades swirl
and decelerate the flow before it impacts the nacelle and the tower, the stress
on these components is much relieved. However, due to this configuration,
the blades might risk bending towards the tower, thus a more extended na-
celle is required to keep rotor and tower well separated, as well as a very
stiff connection between blades and hub. In downwind designs, instead, the
rotor is located at the back. No yaw mechanism is needed, since the nacelle
self-aligns stream-wise, and the blades do not risk striking the tower, so stiff
connections can be replaced by much less costly solutions. On the other
side, fatigue concentrates on the blades, and their flexibility is responsible
for high turbulence. This implies lower efficiency that is the reason why
upwind turbines are often preferred.

Today most successful HAWT is the upwind three-blade rotor, which
reaches the highest efficiency thanks to a good blade design, aiming at re-
ducing turbulence, and a careful choice of the materials. Indeed low inertial
materials are used, which allow a prompt acceleration if the wind speeds up,
such as laminated wood, composite materials or aluminum.

1.4 Vertical Axis Wind Turbines

These machines are just 10% of the overall wind turbines, but their architec-
tures and design options are definitively much more disparate if compared
to HAWTs. They also represent a much more recent innovation, but keeps
growing thanks to the numerous benefits and chances of optimization they
allow.
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1.4.1 Benefits of Vertical Axis Design

First of all, the rotating shaft and the tower (often required to elevate the
turbine to higher altitudes, where the wind is stronger) are aligned in the
same direction, and not perpendicular to each other. This arrangement
does not require any yaw mechanism to connect the two components nor
particular support for the electrical generator and the gearbox, which can
be simply placed at ground level. Costs are significantly reduced, since both
the machine installation and the maintenance on these components are fa-
cilitated. In particular, the initial cost reduction is a crucial advantage,
since the main factor preventing renewables from being incentivized is the
huge initial investment on fixed capital. Indeed, this marks the difference
between clean energy and fuel-based technologies, which instead involve rel-
atively low initial expenses but high operational costs, extended throughout
the whole estimated life of the plant. The key point is that, economically
speaking, it is less ventured and more trusting to distribute the financial
outlay on a long-term period and benefit from an averagely higher economi-
cal availability down-the-line in the working life of the machine, rather than
relying on an initial-time full investment whose payback is expected in a
long way off in time. This is the reason why investors are discouraged in
investing on renewables. If relieving the initial investment on wind turbines
has a much more trenchant effect on the overall expense than just caring
about the operational costs, it is then evident why this point is of utmost
importance.

Secondly, VAWTs are less sensitive to wind incidence, i.e. the turbine
is able to intake the incoming airflow from all the directions. The selection
of suitable sites is then wider, and even urban environments might be an
option, thus paving the way for residential energy production.

In the end, VAWT blades move at relatively low speed if compared to
HAWTs, which implies less noise and a minor influence on the ecosystem
(these big installations affect birds’ routes, which possibly should be kept
unaltered).

Clearly, VAWTs exhibit numerous limitations as well, which will be deep-
ened later, since a basic understanding of their structural features needs to
be gained first. For instance, their aerodynamics is crucial, as it is charac-
terized by instability and highly distorted and time-dependent wakes. Nev-
ertheless, none of the downsides can be a reason for scaling this technology
back. The counterparts to any successful innovation unavoidably come into
play, but a solution is possible only with time. VAWTs showed off in a very
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recent time and still need to be optimized, thus, at the state of the art, their
merits are definitively worthier of attention than their handicaps. Similarly,
this is the reason why also a comparison between HAWTs and VAWTs (or
within any sub-category) is still not possible in a thorough way. Trivially,
all the items fabricated to this moment rarely broke down and still work.
Since the convenience of any technology is not only related to what it does,
but also to its payback time, i.e. for how long it does it, it is still premature
to infer a realistic estimate of their return on investment and of their over-
all benefit. Moreover, as stated in the introduction, the only estimation of
their cost-effectiveness is often pointless, since their success today is mostly
related to causes far off the economical one, such as ecology.

1.4.2 Classification of Vertical Axis Wind Turbines

The Savonius and the Darrieus shapes are the main designs for VAWTs.
To describe the first one, it is useful to think of cutting a hollow cylinder
lengthwise in two specular C-shaped parts and then offsetting the two halves
to arrange them in a S configuration. The Darrieus rotor, instead, uses two
or more vertically oriented airfoil-shaped blades, revolving around the mast.
One option is that blades are curved to have their ends directly connected
to the hub, and this solution is known as the egg beater design, for under-
standable reasons. Alternatively, blades can stand out as separate objects
from the hub and are connected to it by means of struts, located at inter-
mediate span heights. If the blades are straight (i.e. untwisted and with
uniform section), the arrangement is known as giromill or H-bar design. If
they are bent into a helix shape swirling around the mast, this configuration
is simply denoted as helical-blade design.

Figure 1.4: From left: Savonius, Egg-Beater, H-Darrieus (Giromill) and
Helical-blade designs.
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Savonius and Darrieus rotors have a completely different aerodynamic
behavior. The Savonius rotor is operational due to drag forces, meaning
that it rotates because the wind pushes the blades. On contrary, the Dar-
rieus rotor is a lift-based machine, thus the same observations on HAWTs’
aerodynamics hold for this case. The different working principle is the rea-
son for the discrepancy in their performances, which will be discussed in the
next chapter.

1.4.3 Issues of Vertical Axis Design

It is a matter of fact that VAWTs struggle to reach a high efficiency, even if
in some typologies it actually halts just slightly below the values for HAWTs.
In Savonius rotors, this limitation is the foregone counterpart to a too sim-
plistic design that is responsible for high turbulence. Darrieus models, in-
stead, benefit from a more favorable design based on airfoil blades, but
they still do not reach HAWTs efficiency values. The point is that, while
HAWTs’ blades always face the wind with the optimal blade tilt angle (no
matter the rotor angular position), in Darrieus turbines the wind incident
angle on blades changes during revolution, implying that at each moment
only part of the turbine is working and another part is dissipating. From
another point of view, if HAWTs’ circular swept area always faces the wind,
on contrary VAWTs’ swept area is represented by a rectangular area (rotor
diameter times the blade span) whose active portion that faces the wind
changes during revolution, implying that the swept area is never involved
in its whole into the energy conversion process. Typical values for efficiency
are then 10-15% for Savonius rotors vs. 25-30% for Darrieus, still below the
value of 35% that can be achieved by HAWTs.

VAWTs design also involves another counterpart, regarding the machine
overall structural resistance. In HAWTs, the blades are secured to the hub
at one end and free at the other. Thus, the centrifugal force generated by
rotation weights on the blades proportionally to the distance from the free
end, i.e. the blades are mainly stressed at the juncture with the hub. By
progressively increasing the blades’ thickness consistently, the force can be
easily distributed in a more uniform way. On contrary, VAWTs blades are
always secured to the hub at two or more intermediate points of their span
(no matter if at both their ends or by means of struts). The centrifugal
force, indeed, mainly concentrates at the blade mid-span, but no solution
for strengthening this part is possible without spoiling the aerodynamics
of the whole machine and consequently its efficiency. This problem is more
evident in Darrieus than in Savonius turbines, since lift-based machines nor-
mally spin at higher rotational speeds and consequently are more sensitive
to centrifugal stress. Nevertheless, it is also true that high rotational speed
generally couples with low torque, which prevents more from wear and tear.
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For this reason, despite the sensitiveness to the centrifugal force, in the end
Darrieus turbines appear to be globally more resistant than Savonius ones.

The only disadvantage involved by low torque is the inability to self-
start. Savonius rotors are able to power up by themselves, when the wind
exceeds a certain speed. Darrieus turbines, instead, require more sophisti-
cated solutions, such as variable-pitch blades whose orientation about their
axis can be regulated depending on wind conditions (subcategory of giromill
rotors known as cyclo-turbines). An interesting solution that combines the
qualities of both the two groupings is the invention of hybrid models. A
Savonius rotor is mounted into the Darrieus one, and both spin around the
same mast. Thus, the first provides the run-up to the cruising speed, and
the second comes to play eventually. The overall machine is able to self-start
and at the same time achieves a satisfactory efficiency level.

It is interesting to notice that the evolution of VAWTs traces all the
issues just discussed. The first model has been the curved-blade eggbeater.
The transition to H rotors occurred because straight blades manage to dis-
tribute the wind aerodynamic force more equally span-wise. Nevertheless,
this model introduced the issue of the sensitivity to centrifugal stresses. So,
helical-blades have been designed, which are still independent from the hub
as in H-rotors, but not straight anymore. By swirling around the mast, they
distribute the torque more evenly and prevent from destructive pulsations
during revolution.
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Chapter 2

Theoretical Aspects of Wind
Turbines

The aim of this chapter is to provide an analytical description about the
energetic behavior of wind turbines. To this purpose, the actuator disk the-
ory has set the benchmark in wind-technology analytical modeling, since
still today it represents the trust-worthiest theoretical approach among the
available ones, and possibly the best framed in a context in which still now
theory building seems to be unapproachable. It cannot be considered as
an exhaustive analysis though, but it does represent a simplistic validated
description of energetic interaction between turbines and fluid flow. How-
ever, it is important to point out from the outset that this method has been
developed for HAWTs and no extension to VATWs has been acknowledged
yet. Nevertheless, very recently, the idea that this theory might actually be
extended as is to VAWTs as well is fighting its way. Thus, the first goal of
this chapter is to explain the theory on hand, but a brief critique about its
applicability will also provided.

2.1 The Actuator Disk Theory and the Betz effi-
ciency limit

Let us consider a HAWT, crossed by a fluid flow that is assumed as uniform,
incompressible and steady [6]. It is already evident that all these assump-
tions are definitively a stretch if dealing with air, but at the state of the
art a more detailed investigation of such a complex phenomenon is still not
possible analytically.

If wind turbines are investigated, two issues must always be considered:
there is no stator upstream and the rotor is not ducted, thus the mass flow
rate is not an assigned design choice. The first goal is then the identification
of the fluid stream that crosses the machine. The mass flow rate is only

13
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known at the rotor section, since its swept area can be used as a reference
for its computation. This value, denoted as ṁD, will then quantify the fluid
throughout the whole machine. In practice, by selecting all the upstream
and downstream cross sections whose mass flow rate equals ṁD, a stream
tube can be identified, so that the machine can be treated in the same way
as ducted turbines (Fig. 2.2). The duct section enlarges downstream since,
by impacting the rotor, the fluid decelerates without changing its density.
If the mass flow is constant, then the section must increase.

Figure 2.1: 3D view of the Wind Stream Tube across a HAWT

Figure 2.2: Wind Stream Tube [2]

This method allowing the selection of a fictitious duct for the machine
by applying the mass conservation law to the whole path, is a reverse pro-
cedure with respect to standard analyses. In fact, this principle normally
applies to fluids confined in space, but cannot be used to select that space.
This way, theory is being inferred by studying an already existent machine,
while the machine behavior should be better estimated in order to design
the machine itself. This limitation is exactly the reason why still today wind
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turbine design is mostly achieved through experimental tests and optimiza-
tion is difficult.

An important hypothesis related to the stream tube is that properties
are assumed not to change within the same cross section. In other words,
given a section of the duct, the properties of the point centered on the ma-
chine axis extend to all the points belonging to that section, and a discrete
change occurs at its boundaries. This is definitively an unrealistic hypoth-
esis (for instance, two points at infinitesimal distance cannot have different
pressure), but it allows downgrading the overall problem to one dimension.

Thus, let us select sections 0 and 3 to be considered as the machine inlet
and outlet. They are just required to be far enough from the rotor upstream
and downstream, i.e. where the velocity gradient in the axial direction is
negligible. If the pressure has the same value in both the two sections (Eqs.
2.1, 2.2), it can then be inferred that the work done by the machine equals
the kinetic energy subtracted from the fluid. This work is quantified by the
the motor head, as defined in Eq. (2.3):

P3 = P0 = Patm (2.1)

P3 − P0 = 0 (2.2)

Hm =
v2

3 − v2
0

2
(2.3)

By focusing instead on the inner region of the machine, the fluid is ex-
pected to stagnate when impacting the rotor, and its velocity reduction
should correspond to an increase in pressure. However, by rotating slowly,
the blades are not able to halt the fluid, so that the velocity does not ex-
perience any leap at the rotor section, but gradually decreases all along the
downstream path. At the same time, the pressure increases only slightly be-
fore the rotor, since no stagnation occurs, but what mostly matters is that
it experiences a sharp drop right after it. In the end, the kinetic energy lost
by the fluid cannot be retrieved, since it has been converted to mechanical
work for the turbine, while the pressure rises back to its initial value, to ad-
just itself to the atmospheric value. The pressure rise is also responsible for
a sort of diffusive effect, which further contributes to the velocity reduction
(Fig. 2.3).

By observing this behavior, it is possible to infer that dissipation is the
only reasonable explanation for it. Indeed, let us consider sections 1 and
2, being the closest to the rotor, upstream and downstream. The Bernoulli
theorem states that, in case no dissipation occurs, the fluid overall energy T
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Figure 2.3: Velocity and Pressure Trends Across the Actuator Disk [15]

must be conserved stream-wise. If losses, instead, are purposely introduced
at the rotor section, T has to decrease (Eq. 2.4). No potential energy is
included in T, but only kinetic and pressure energies are taken into account
(Eq. 2.5).

T2 < T1 (2.4)

P2

ρ
+
v2

2

2
<
P1

ρ
+
v2

1

2
(2.5)

Since section 1 and 2 are at infinitesimal distance from each other, they
have the same area. Also, for the same reason, the fluid does not experience
noteworthy changes in density. From the mass continuity equation (Eqs.
2.6, 2.7), it is then inferred that velocity cannot be subjected to any sharp
variation in the vicinity of the rotor (Eq. 2.8), which confirms what has
been observed physically.

ṁ1 = ṁ1 (2.6)

ρ1v1S1 = ρ2v2S2 (2.7)

v1 = v2 (2.8)

By putting the results together, Eqs. (2.5) and (2.8) account for the
pressure drop experienced by the fluid, thus implying that dissipation is a
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realistic explanation.
P2 < P1 (2.9)

It now stands to reason that, differently from other turbines, a wind
turbine behaves more similarly to an actuator disk purposely causing an
energy loss to the flow. For this reason, standard modeling that applies to
other machines does not hold for this case, and the turbine is better modeled
as a porous disk. It is now possible to write the momentum balance for the
control volume in-between section 1 and 2:[∫

s1

ρ−→v (−→v · −→n )dS +

∫
s2

ρ−→v (−→v · −→n )dS =
−→
T +

∫
s1

−P−→n dS +

∫
s2

−P−→n dS
]
·ṁD·

−→
i

(2.10)
T is the aerodynamic force applied from the machine to the fluid. By

switching to a lumped parameter approach, Eq. (2.10) becomes:

ρv1(−v1n)S1 + ρv2(−v2n)S2 = T + P1S1 + P2S2 (2.11)

ṁ(v2 − v1) = T + (P2 − P1)Sdisk (2.12)

T = (P2 − P1)Sdisk (2.13)

A similar procedure applied to sections 0 and 3 leads instead to Eq.
(2.14):

T = ṁ(v3 − v0) (2.14)

In the following algebraic passages, Eqs. (2.13) and (2.14) will be related
to each other. To this purpose the Bernoulli equation is also taken into
account. Indeed, it does not apply to the path 1-2, but it still holds for 0-1
and 2-3, since losses are only concentrated at the rotor section.

P0

ρ
+
v2

0

2
=
P1

ρ
+
v2

1

2
(2.15)

P2

ρ
+
v2

2

2
=
P3

ρ
+
v2

3

2
(2.16)

Eq. (2.13) is then modified, by using the results from Eqs. (2.15) and
(2.16):

T = (P2 − P1) = Sdisk = (2.17)

= ρ

(
P3

ρ
+
v2

3

2
− v2

2

2
− P0

ρ
− v2

0

2
+
v2

1

2

)
Sdisk = (2.18)

= ρ

(
v2

3

2
− v2

0

2

)
Sdisk (2.19)

(2.20)
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By equating the formulations of T expressed by Eqs. (2.14) and (2.17):

T = ṁ(v3 − v0) = ρ(
v2

3

2
− v2

0

2
)Sdisk (2.21)

ρSdiskvdisk(v3 − v0) =
1

2
ρSdisk(v3 + v0)(v3 − v0) (2.22)

vdisk =
1

2
(v3 + v0) (2.23)

The result is that velocity at the rotor section can be computed as an
average between its values far upstream and downstream. This value is
known as Froude velocity. An estimate of the power, instead, is provided
here:

W = T · vD =

= ṁ(v3 − v0) · 1

2
· (v3 + v0) =

= ρSDvD · (v3 − v0) · vD =

= ρSDvD · ((2 · vD − v0)− v0) · vD =

= ρSD · 2(vD − v0) · v2
D < 0

(2.24)

It is now possible to define a parameter, known as axial induction fac-
tor and denoted with a, which represents the velocity reduction percentage
caused the porous disk with respect to the undisturbed upstream flow ve-
locity. It must be said that this parameter collects the effects many factors
affecting the machine behavior and is extremely difficult to estimate in prac-
tice. To the purposes of this analysis, however, it is fundamental to simplify
equations and highlight the key points.

a =
v0 − vD
vD

(2.25)

The power ideally generated by the turbine is then given by Eq. (2.26):

|Ẇ | = ρSDv
3
0 · 2a(1− a)2 (2.26)

So, efficiency can now be computed as the ratio between the power just
defined and the ideal power computed by assuming that the fluid does never
change its undisturbed velocity, i.e. by using v0 instead of vdisk to define
the mass flow rate.

|Ẇ0| = ṁD ·
v2

0

2
= ρSDv0 ·

v2
0

2
= ρSD

v3
0

2
(2.27)
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η =
|Ẇ |
|Ẇ0|

=
ρSDv

3
0 · 2a(1− a)2

ρSD
v30
2

= 4a(1− a)2 (2.28)

The value of a that maximizes efficiency, according to this expression, is
1/3. If a equals this value, the maximum efficiency is given by the so-called
Betz limit, provided by Eq. (2.29):

ηmax = η(a =
1

3
) =

16

27
∼= 0.59 (2.29)

Thus the ultimate conclusion of the actuator disk theory is that the max-
imum efficiency a wind turbine can achieve in ideal conditions (no viscosity,
reversible process, etc.) is 59%. Since very strong hypotheses have been
made and in reality friction comes to play, it can be then understood why
real applications halt far below this value. Thus, reality is even less rosy
than the already bad situation depicted by this theory.

2.2 Does the Betz Limit Apply to Vertical Axis
Wind Turbines?

The actuator disk model, from which the Betz limit is derived, has not
been developed for VAWTs directly. However, on the one hand no simi-
lar theory exists nowadays which applies to them, and on the other hand
the idea that an analogous approach should also be followed for VAWTs is
strengthening up. Due to the growing number of different turbine designs,
there is an actual need to develop a similar description of the flow behav-
ior for VAWTs, and at the moment, the most accredited belief is that the
actuator disk theory might be suitable as a starting point to this case as well.

Indeed, there are a lot of substantial differences to be considered, but
most of the assumptions made by the theory can actually be easily extended
on the whole. Of course, the simplicity and ideality of its hypotheses help
the cause, that is, a lot of researches today agree that even if this method
has been developed for a specific class of turbines, the problem has been
simplified to such an extent that a generalization of the results is possible.
To further specify, no turbine modeling is considered, but just the fluid be-
havior upstream and downstream is taking into account. If the machine is
just a porous disk introducing losses, then its horizontal or vertical arrange-
ment is no more crucial. After all, no matter its shape, in ideal conditions,
any turbine would decelerate the flow and totally convert the kinetic energy
subtracted from the fluid into mechanical power.

In other words, the real issue is in the unrealistic assumptions, such as
the fact that the wind impacts the turbine in the axial direction and even
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downstream no swirl is taken into account. Thus, before wandering about
the suitability of this model for other kind of turbines, the question should
be about its applicability within the class of turbines for which it has been
developed. If all the strong hypotheses behind it are accepted, then its
extension to other turbines such as VAWTs should be a smaller issue.

2.3 Aerodynamics Overview

In this section, a brief overview of the most important aerodynamic coeffi-
cients is provided. An insight into the H-type Darrieus rotor behavior will
be also given.

2.3.1 Aerodynamic Coefficients

The power extracted from the turbine is given by Eq. (2.30). T represents
the overall torque applied to the turbine and ω is its rotational speed.

P = T · ω (2.30)

One of the most significant aerodynamic quantities is the coefficient of
power CP . In Eq. (2.31) ρ represents the fluid density, A is the machine
swept area and v0 is the far upstream fluid velocity (prior to undergo vari-
ations due to presence of the turbine).

CP =
P

1
2ρAv

3
0

(2.31)

Being dimensionless, this parameter allows comparing performances of
different turbines, no matter their dimensions or the wind conditions. The
numerator represents the power extracted de facto, while the denominator
is the overall power carried by the undisturbed upcoming fluid flow. There-
fore, this coefficient represents the extracted power fraction compared to the
extractable amount, this latter being the kinetic power of the far wind. As
expected, its maximum value must coincide with the Betz limit. Similarly,
it is possible to define a coefficient of torque, as shown in Eq. (2.32), where
R is the machine radius.

CT =
Mt

1
2ρARv

2
0

(2.32)

It must be highlighted that, if a high coefficient of power does always
represent an evidence of good functioning, the torque cannot be a univocal
estimate of the machine performances. For instance, small torque is often
desirable in order to relieve the structural stress on the turbine. However,
in many situations the ability to self-start is also required and can only be
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achieved if the torque is high enough. In the end, also lift and drag forces do
have a dimensionless equivalent too, as shown in formulae (2.33) and (2.34):

CD =
D

1
2ρAw

2
(2.33)

CL =
L

1
2ρAw

2
(2.34)

In these expressions, w is the wind relative speed computed at the blade
tip. In Eq. (2.35) v0 represents far upstream wind velocity and u is the blade
tip speed. The reason is the coherency with the numerators, as lift and drag
conventionally represent a decomposition of the overall aerodynamic force
F with regard to the direction of w and not v0.

−→w = −→v 0 −−→u (2.35)

The coefficients of lift and drag might help compare different turbines
if they are interpreted as an estimate of how the net force distributes into
the two components. However, a more proper reading of these coefficients
is on the behavior of a given machine at different operating conditions. For
instance, given an airfoil, both the two coefficients hugely vary with the flow
angle of attack, hence they truly represent an estimate of the active portion
of the machine area that is involved in lift or drag generation.

2.3.2 Insight into the H-type Darrieus Rotor: Comparison
to Other Machines

The coefficients of power and torque are typically evaluated as functions of
the tip speed ratio, denoted by TSR or λ.

TSR =
u

v0
=
R · ω
v0

(2.36)

Fig. (2.4) shows that each configuration is operational within a specific
range of λ and that two machines working at the same λ might perform
very differently. As discussed in Ch. 2.3.1, a high CP is nothing but the
goal a wind turbine aims at, so it is always trivially beneficial. On contrary,
a small CT is generally desirable, but a high one would allow self-starting.
As expected, HAWTs possess the best performance parameters, while the
Savonius models are the most slow-running machines and stand out for the
lowest power output and the highest torque. In this framework, Darrieus
rotors result as much more performing than other VAWTs, to the extent
that, in terms of CP and CT , they should be better compared to HAWTs.
Indeed, they are almost as efficient as horizontal-axis turbines.



22 CHAPTER 2. THEORETICAL ASPECTS OF WIND TURBINES

Figure 2.4: Coefficients of Power and Torque as a function of λ



Chapter 3

Governing Equations

CFD is a branch of fluid mechanics that aims at implementing numerical
methods to solve problems where fluid flows are involved. This diverse set of
techniques gained a foothold in recent times, since it often provides the only
possible solution to problems that cannot be solved analytically. Numerous
CFD software packages have been developed until today, and specifically the
open-source code OpenFOAM R©has been chosen for this thesis. Despite the
peculiarities of each code, their physical and operational baselines are very
similar to one another.

The goal of this chapter is to briefly illustrate the Navier-Stokes equa-
tions and how the physical problem is addressed in numerical codes, by
introducing the finite volume method. Also, the main turbulence models
will be broadly discussed. In the end, an insight into the model used for this
thesis, namely Dynamic Length Resolution Model, is provided.

3.1 The Navier-Stokes Equations and the Finite
Volume Method

The Navier-Stokes equations are a set of coupled differential equations that
describe how velocity, pressure, temperature and density of a moving fluid
are related. They also take unsteadiness and viscous effects into account.
The short formulation is only made up by two equations, but the fluid three-
dimensionality is inherently included. The first equation comes from the
continuity principle, which states that the mass variation within a confined
volume Ω always balances its net flux through its boundaries dΩ. If the flow
is incompressible, the result is shown by equation 3.1, where U is the fluid
velocity vector [9].

∂ui
∂xi

= 0 (3.1)

The second equation is derived from the momentum equation, which

23
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states that the total momentum is constant in closed systems. Equation 3.2
provides the simplified expression for incompressible flows, where p denotes
the fluid pressure, ν is the dynamic viscosity and b the body forces.

∂ui
∂t

+
∂ (uiuj)

∂xj
= −1

ρ

∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj

)
+ bi (3.2)

The Navier-Stokes equations represent a comprehensive description of
the fluid dynamics, but an analytical solution still does not exist for the
general 3D case. In fact, analytical solutions have been derived just for spe-
cific simple cases, and it would be incorrect to extend them to cases with
even slightly different ground hypotheses.

Thanks to the advancements in computer sciences, a new approach has
been adopted. Today, the finite volume method allows evaluating partial
differential equations in the form of algebraic ones, by discretizing them in
both time and space. Indeed, solutions are computed at discrete points on
a meshed geometry and result from a numerical procedure over time, which
starts from specified initial and boundary conditions.

The time derivative term appearing in the Navier-Stokes equations is
often discretized with a first-order backward Euler scheme, even if more
sophisticated and higher-order schemes are also available. In Eq. (3.3) the
apices denote the time-steps, and ∆t is the time step duration:

∂φ

∂t
≈ φn − φn−1

∆t
(3.3)

Space discretization, instead, is achieved by partitioning the physical
domain in a number of small volumes of arbitrary shape, named cells, and
the sought physical quantities (pressure, velocity, density) are computed at
the centroids of each cell, while the fluxes of the extensive quantities are
evaluated at the cell faces.

Figure 3.1: Colocated vs. Staggered Arrangement
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This approach is called collocated and is the one implemented in Open-
FOAM. It distinguishes from the staggered cell arrangement, since this latter
associates velocity to the cell vertices (instead of centroids) to avoid some
numerical issues (Fig. 3.1). Appropriate interpolation schemes are then im-
plemented to discretize all the terms appearing in the equations (gradient,
divergence and laplacian), but their analysis deviates from the objectives of
this discussion.

The momentum equation cannot be reversed to a function of pressure,
since it can only be solved for the pressure gradient. The pressure field
is then obtained by exploiting its correlation with velocity, set by the mo-
mentum equation itself. In doing so, a key point to consider is that this
correlation is also conditioned by the mass conservation. In fact, this lat-
ter represents a kinematic constraint on the velocity field, thus in turn the
pressure field must be built accordingly. This problem is known as pressure-
velocity coupling and allows combining continuity and momentum to derive
an equation for pressure. With some pure algebraic manipulation, and as-
suming density and viscosity to be constant, the simplified Poisson equation
is derived:

∇2p = −ρ∂
2 (uiuj)

∂xixj
(3.4)

There exist diverse strategies to implement this coupling algorithm. In
the specific case of OpenFOAM, segregated solvers like SIMPLE and PISO
follow a pressure-correction model, as follows. The discretized momentum
equation is given by 3.5:

APu
n+1
i,P +

∑
l

Alu
n+1
i,l = Qn+1 −

(
∂pn+1

∂xi

)
P

(3.5)

whereA is the coefficient matrix, with P = 1...Ncells and l = 1...Nneighbors

of P . A predicted velocity, which does not satisfy continuity, is computed
as shown in 3.6. By inserting it into the continuity equation, the Poisson
equation for corrected pressure is derived, as shown in 3.7:

u∗i,P =
Qn −

∑
lAlu

n
i,l

AP
− 1

AP
(
∂pn

∂xi
)P (3.6)

∂

∂xi

[
ρ

AP

∂pn+1

∂xi

]
(3.7)

In the end, corrected velocity is computed from corrected pressure:

un+1
i =

Qn −
∑

lAlu
n
i,l

AP
− 1

AP

(
∂pn+1

∂xi

)
P

(3.8)
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3.2 Turbulence Modeling

Turbulence is an unsteady three-dimensional regime of motion, which oc-
curs at high Reynolds numbers. Indeed, a 3D space allows sufficient flow
stretching and turning for vortex generation and a low Re would imply vis-
cous effects exceeding inertial effects, so that disturbances are prevented
from spreading [22]. This phenomenon is chaotic, but not random [19]. The
difference is slight, but fundamental for fluid dynamic modeling. A random
phenomenon is governed by a probabilistic law and is not predictable either
from a theoretical point of view. The most accurate prediction is that the
system will be at condition X with probability Y. A chaotic phenomenon,
instead, is deterministic, i.e. there exists a law prescribing its behavior as a
function of its past history. The reason why chaotic is often confused with
random is due to the strong dependency of the evolution law on the initial
conditions: if small variations occur to the initial state, the final state will be
so far from the expected one that the phenomenon appears to be random.
Indeed, also in practice it is very difficult to distinguish, since measuring
tools are often not accurate enough to appreciate differences in the initial
state and, by repeating tests, the huge discrepancy in the results is justified
by making the hypothesis of randomness.

From the point of view of CFD, the definition of turbulence as a chaotic
regime implies that there must exist formulations to describe it deterministi-
cally: its behavior is irregular, but somehow universal [8]. Such a statement
is also proved by the strong correlation to time/space as well as to ini-
tial/boundary conditions. However, at the state of the art, the causes for
the apparently random behavior of turbulence have not been understood
yet. For instance, it is still mostly unknown whether inaccuracy occurs to
equations, to the way equations are solved, or to the way side conditions
affect the solutions. For all these reasons, even if a deterministic approach
would better fit the physics of the problem, a statistical approach is manda-
tory, i.e. in the end turbulence is treated as random. Specifically, statistics
applies to the Navier-Stokes equations, as will be explained later on in this
chapter. Fortunately, this compromise, due to the lack of knowledge about
this complicated regime of motion, is supported by advanced computer and
experimental tools, which definitively mark the difference with the past.

The first investigation of vortex structures was carried by Richardson
in 1922. He introduced the idea that turbulence is made up by eddies of
different sizes, which transfer energy to one another in a cascade manner
[24]. First of all, no exact definition of eddy exists, but a proper character-
ization might be that of a local turbulent motion that is coherent to itself
in a confined region, i.e. clearly included within an area with characteristic
length l. Since the vortex is also associated to a velocity u(l), a time scale
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t(l) = l/u(l) can be identified as well. Thus,vortices can be either classified
depending on their length scale or their time scale. Thus, the energy cascade
theory can now be introduced. The basic idea is that kinetic energy enters
the largest scales of turbulence and is transferred by inviscid processes to
the smallest ones. Only at this point, dissipation occurs.

By considering Richardson’s work as a starting point, in the 40’s, scien-
tist Kolmogorov carried the first systematic analysis of turbulent flows, by
especially focusing on the velocity field to investigate the evolution of the
flow energetic spectrum. His work aimed at defining and categorizing vor-
tices on the strength of their energetic content and their dissipative behavior.
In other words, his goal was to set the threshold at which the dissipating
mechanisms would replace conservative energy transfer processes [24] [28].

Figure 3.2: Turbulent flow past a bluff body as a function of the Reynolds
number.

Three main class fields of eddies can then be identified. First of all,
the so-called integral scale vortices correspond to the highest energy content
and are the first to be generated. These low-frequency vortices are the same
order of magnitude of the problem size (for instance, a fan initially produces
vortices as big as its blades). Large vortices generate smaller vortices, at
first with no dissipation. Since direct energy conversion occurs, the second
class field is named inertial. Indeed, dissipation occurs only in the last step,
when vortices result in being so little that they prevent kinetic energy from
being further converted. Kinetic energy is then released from the flow in
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form of heat, as a consequence of the higher viscosity as well as the higher
frequency that characterize these scales. These eddies take the name from
Kolmogorov himself, since he has been the first to identify and categorize
them. Indeed, on the one hand, he agreed that an eddy preludes any defini-
tion [24], but on the other hand he managed to trace out some unmistakable
common properties. For instance, in sufficiently small domains, isotropy is
a good approximation for the behavior of vortices [17].

As it might be expected, the dimensions of the vortices (and consequently
the way they distribute among the listed class fields) are highly affected by
the Reynolds number, indeed representing the ratio of inertial forces to
viscous forces. Specifically, the bigger its value is, the more extended the
inertial scale interval will be, which means that there is a complete distinc-
tion between the two frontier characteristic scales and most of the vortices is
characterized by intermediate dimensions. The most widely used turbulence
models intrinsically make a distinction among scales and provide different
in-built approaches depending on the vortex size. For instance, the same
model might resolve some scales and model some others. For this reason,
the high Reynolds condition results in being the most favorable to allow
modeling and to verify the consistency between theory and experimental
measurements on the energy spectrum. On contrary, the extension of these
models to low-Reynolds flows is often inappropriate, since they are char-
acterized by a non-clear distinction between dissipative and non-dissipative
scales, and above all by an overall small dissipation [25].

In the following subsections, the two main turbulence families will be in-
troduced, namely the Reynolds Average Navier-Stokes and the Large Eddy
Simulations. Alongside with all the other techniques existing today, they
have been implemented to be used as an alternative to the so-called Direct
Numerical Simulations, which have the disadvantage of a very high com-
putational cost. In fact, DNS aim at resolving all the possible eddy scales
up to the Kolmogorov sublayer and, as an implication, they give optimum
results in terms of both completeness and accuracy. However, in most cases
their cost is not affordable in terms of high-level computer resources avail-
able or it might be considered not worthy for the investigation purposes.
Thus, RANS and LES have been thought up to avoid such an expense, but
of course they introduce some approximation, which translates to less data
information and less accuracy. From a very broad point of view, the first
method decomposes motion into an average value to be computed and fluc-
tuations to be modeled, while the second method distinguishes large scales
to be resolved from small ones to be modeled. A deeper insight is provided
as follows.
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3.2.1 RANS models

A time-averaged description of the flow is often satisfactory for investigation
purposes. Thus, RANS models are based on a simplified formulation of
the Navier-Stokes equations, obtained by decomposing each instantaneous
variable into a mean value and a fluctuating term [5]. Formula 3.9 shows
how this decomposition applies to the velocity field and to pressure.

ui = Ui + u′ (3.9a)

p = P + p′ (3.9b)

The definition for the mean value given by Reynolds is shown by Eq.
(3.10) in its continuous formulation and by Eq. (3.11) in the discretized
form.

U(t) = lim
T→∞

∫ T

0
u(t)dt (3.10)

U(N) = lim
N→∞

1

N

N∑
i=1

ui (3.11)

Eqs. 3.10 and 3.11 are used for steady flows. If a transient flow is in-
vestigated, the Unsteady Reynolds Average Navier-Stokes (URANS) is used,
and the new formulation for the mean value is provided by Eq. (3.12).

U(t) =
1

∆

∫ t+∆t

t
u(τ)dτ ∆t = fixed (3.12)

The given definitions for the mean value satisfy the following properties,
which are fundamental for the next passages: the mean value for u is U
(3.13), the mean value for u′ is null (3.14) and linear mapping holds (3.15).

< u >= U (3.13)

< u′ >= 0 (3.14)

〈u+ v〉 = U + V (3.15a)

〈cu〉 = cU (3.15b)

Therefore, the momentum Navier-Stokes equation becomes:

∂Ui
∂t

+
∂ (UiUj)

∂xj
= −1

ρ

∂P

∂xj
+

∂

∂xj

(
µ
∂Ui
∂xj

)
+
∂
(
〈u′iu′j〉

)
∂xj

(3.16)
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It can be noticed that the decomposition does not lead to just –let us
say– a duplicated Navier-Stokes equation. Indeed, the new equation looks
very similar to the original one, except for the fact that all the terms are
now averaged in time and, moreover, a new term ∂〈u′iu′j〉/∂xj shows up.
The reason for it is that, due to the properties listed above (3.13 to 3.15),
the fluctuation terms combine and cancel with each other, all but the term
pointed out. Specifically, this corresponds to the divergence of the Reynolds
stress tensor, already divided by density. This tensor is usually denoted by
τij and its definition is given by Eq. (3.17).

τij = ρ〈u′iu′j〉 (3.17)

To give a physical interpretation to it, how stresses distribute in a mov-
ing flow must be investigated. If the flow is still, the only possible stress
is pressure, which applies to any surface along the normal direction. On
contrary, for a moving flow, friction in-between adjacent layers moving at
different velocities gives rise to slanting forces, thus torques and correspond-
ing stresses (3.3). Differently from elastic solids, for which stresses strictly
depend on the actual strain on particles, fluid flow stresses depend instead
on the deformation rate.

Figure 3.3: Differences in Velocities among Moving Particles produce a Net
Momentum Transfer

To frame this interpretation into the Navier-Stokes equations, it can be
stated that the Reynolds stresses quantify the kinetic energy transfer from
the scales that almost resemble the average motion to the smallest turbulent
scales that dissipate energy. Thus, the obtained momentum equation is a
time-averaged equation with the addition of a single term that sums up the
overall effects of dissipation introduced by turbulence onto the flow velocity
field.

3.2.1.1. The Boussinesq Assumption

The averaged momentum equation obtained implies a completely different
perspective with respect to its original formulation. Navier-Stokes does rep-
resent a closed differential problem, while the new model adds 6 unknowns
represented by the Reynolds stress tensor components (downgraded from
a total number of 9, thanks to the tensor symmetry), thus leading to the
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so-called turbulence closure problem. This issue is generally addressed by
modeling the turbulent components as functions of the mean motion. In
fact, since all the other terms of the equation are averaged in time, the idea
is to make the equation uniform. In some models, a specific expression is de-
veloped for any component of the Reynolds stress tensor. However, a more
efficient way would be to look at the overall dissipation due to the viscous
effects of turbulence and replace the tensor with just a function of a scalar
parameter, which collects all the information given by the tensor itself. The
physical problem is still not over, since the value of this parameter needs
to be quantified each time, depending on the specific case. However, the
mathematical issue is addressed since a scalar quantity within an equation
is definitively much more manageable if compared to a full tensor.

Precisely, let us consider the Reynolds stress tensor, as defined by Eq.
(3.17). One of the strongest theories is the Boussinesq approximation, for
which the Reynolds tensor is assumed to be proportional to the mean de-
formation rate tensor Sij (3.18, 3.68). The proportionality factor, indeed, is
represented by a scalar quantity named turbulence eddy viscosity µT .

τij = 2µTSij +−2

3
ρkδij (3.18)

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(3.19)

In this formula, ρ is the fluid density, δij is the Kronecher delta and k is
the turbulence kinetic energy. This latter is defined as the sum of all normal
Reynolds stresses, as provided by equation 3.20:

k =
〈u′iu′i〉

2
=

1

2

(
〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉

)
(3.20)

The quantity µT is exactly the scalar to which the vector problem is
downgraded and holds the overall effects of turbulence. It might be seen as
an index of how much the fluid opposes an imposed deformation of its own
particles through friction. Specifically, it is a dynamic viscosity, which means
that, from a cause-and-effect perspective, the fluid resistance to deformation
is evaluated strictly in its dependency on the fluid atomic structure and not
on its kinematic behavior. In other words, µT gives information about the
fluid nature and not about the fluid motion, which instead is described by
the turbulence kinetic viscosity νT .

νT =
µT
ρ

(3.21)

The value of µT is not univocal, and actually its estimation has given rise
to different theories, all based on the Boussinesq assumption as the starting



32 CHAPTER 3. GOVERNING EQUATIONS

point. For instance, the so-called two-equation turbulence models, such as
the k − ε and the k − ω, all come from this initial hypothesis. In those
models, the time-averaged momentum Navier-Stokes equation provided by
Eq.(3.16) is manipulated to the formulation expressed by Eq. (3.22), where
a function of µT replaces the Reynolds stress tensor, as already stated. What
makes the difference among the diverse models is clearly the estimate of this
parameter. These models will be discussed in the next chapter.

∂U

∂t
+∇ ·UU = −1

ρ
∇P +

1

ρ
(µ+ µT )∇2U (3.22)

The simplification introduced by the Boussinesq assumption hugely helps
reduce the amount of computational cost, but it is important to notice that
it still remains an approximation with all the related issues. For instance,
the proportionality between stresses and deformation rate has been experi-
mentally confirmed for simple flows only (e.g. straight ducts), but it usually
does not hold for complex cases (such as ducts with strong curvatures).
Broadly, a simple formulation, obtained by downgrading the overall vector
problem to a single scalar variable, can hardly represent the set of possible
cases in its entirety.

Another weakness is that even for simple cases, if the goal is to reduce
the amount of data involved in direct simulations, then the completeness
of the results cannot be demanded either, i.e. it is impossible to get in-
formation about the whole regime of turbulence. Specifically, according to
[17], small scales are isotropic and approximately independent from bound-
ary conditions and flow steadiness. Thus, their modeling is normally doable
and correct. On contrary, large scales usually exhibit a dynamic behavior
that is intrinsically connected to the global behavior of the flow stream and
largely varies depending on the situation. For instance, it depends on the
geometry of the boundaries, on the type of fluid, or on the option of dealing
with either an internal or an external aerodynamic field. Thus, their mod-
eling requires a careful calibration on the specific study case, and this is the
reason why capturing the entire spectrum of turbulence through simplified
numerical simulations is almost impossible. These considerations might be
extended to all the turbulence models aiming at simplifying DNS, but they
are especially evident in RANS models.

3.2.1.2. Two-equation models, k − ω SST

RANS models include different subcategories, namely the linear viscosity
models, the non-linear viscosity models and the Reynolds stress models
(RSM). The so-called algebraic models belong to the first grouping, and
in turn they include one- and two-equation models. This chapter will give
a brief overview of these latter, with the final goal of introducing the k − ω
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model specifically in the SST version proposed by Menter [21]. Thus, the
focus is now on this method, since it partially enters the turbulence model
used for the simulations carried out for this thesis work. Indeed, the so-
called DLRM will eventually be discussed (see Ch. 3.2.1.3.)

Broadly, two-equation models describe the turbulence properties of the
flow by means of two conservation equations, each referred to a specific un-
known, depending on the chosen method. The two transported quantities
account for the past history of the fluid flow, in terms of convection and
diffusion of the turbulence energy. In most cases, turbulence is firstly char-
acterized by the amplitude of its fluctuations in the velocity field. This is
why the first transported quantity is straightforwardly the turbulent kinetic
energy k, already defined in Eq. (3.20).

However, k does not provide any specification about the size of the vor-
tices, thus it is straightforward that the second transported quantity should
be an estimate of the eddy scales. Since a small vortex distinguishes from a
large one because of its higher dissipation rate, a suitable quantity can be
either the so-called turbulence dissipation rate ε, which indeed leads to the
k − ε model, or the specific dissipation rate ω, which instead leads to the
k−ω model. Let us consider ε first, as provided by Eq. (3.23). It specifically
represents the rate at which the velocity fluctuations dissipate.

ε = ν〈∂u
′
i

∂xj

∂u′i
∂xj
〉 (3.23)

As previously introduced, the key point of these methods is to provide
an estimate for µT to be used in Eq. (3.22). In this case, the k − ε model
relates µT to the two transported quantities, up to a constant Cµ, as shown
by Eq. (3.24).

µT = ρCµ
k2

ε
(3.24)

By replacing the Reynolds stress tensor with this definition of µT , the
turbulence closure problem is over. In fact, Eq. (3.22) is converted into a
set of two equations in the two unknowns k and ε, as shown by (3.25) and
(3.26).

ρ
∂k

∂t
+ ρUj

∂k

∂xj
= τij

∂Ui
∂xj
− ρε+

∂

∂xj

[
(µ+ µT /σk)

∂k

∂xj

]
(3.25)

ρ
∂ε

∂t
+ ρUj

∂ε

∂xj
= Cε1

ε

k
τij
∂Ui
∂xj
− Cε2ρ

ε2

k
+

∂

∂xj

[
(µ+ µT /σε)

∂ε

∂xj

]
(3.26)
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Cε1 = 1.44 Cε2 = 1.92 Cµ = 0.09 σk = 1.0 σε = 1.3 (3.27)

Both the two equations include transport, production and dissipation
terms, modeled as just shown. Moreover, each modeled term is also opti-
mized by means of closure coefficients (see Eq. (3.27)), which are derived
empirically to help get the closest to the experimental results.

To sum up, the k − ε model is definitively a robust method, easy to
implement and very cheap from a computational point of view. However,
it also exhibits some significant weaknesses. Basically, this model has been
developed for flows characterized by high Reynolds numbers and it performs
very poorly if this hypothesis does not hold. The problem is that, even if
a fully turbulent flow is investigated, the proximity of walls usually does
represent an issue, since the flow is slowed down. As a consequence, the
k− ε approach needs to be reformulated in the near-wall regions and to this
purpose some ad-hoc damping functions are used [20]. These are simply
known as wall functions and will be discussed in the next chapter, alongside
with the stability issues they involve. In the end, because of its underlying
assumptions, the k − ε model is often not adequate for complex cases such
as high adverse pressure gradients, separation and strong streamline curva-
tures.

A valid alternative to the k − ε model is then represented by the k − ω
model, which overcomes some of the issues just discussed. Quantity ω,
namely the specific turbulence dissipation rate, is firstly defined in correlation
with ε:

ω =
ε

Cµk
(3.28)

Therefore, the new definition for the eddy viscosity µT is:

µT =
ρk

ω
(3.29)

Similarly to the k − ε model, the k − ω one is formulated through a set
of two equations that are functions of the transported quantities. Moreover,
also in this case closure coefficients improve the reliability of the results in
comparison with data from experimental tests. Equations 3.30 to 3.32 show
the standard Wilcox model.

ρ
∂k

∂t
+ ρUj

∂k

∂xj
= τij

∂Ui
∂xj
− β∗ρkω +

∂

∂xj

[
(µ+ σ∗µT )

∂k

∂xj

]
(3.30)



3.2. TURBULENCE MODELING 35

ρ
∂ω

∂t
+ ρUj

∂ω

∂xj
= α

ω

k
τij
∂Ui
∂xj
− βρω2 +

∂

∂xj

[
(µ+ σµT )

∂ω

∂xj

]
(3.31)

α =
5

9
β =

3

40
β∗ =

9

100
σ =

1

2
σ∗ =

1

2
(3.32)

To elaborate further on the meaning of ω, its first definition was given
in 1942 by Kolmogorov, who defined it as ”the rate of dissipation of energy
in unit volume and time”. He also referred to it as ”some mean frequency”
expressed by Eq. (3.33), where c is a constant and l the turbulent length
scale. Indeed, the reciprocal of ω is the time scale on which dissipation of
turbulence occurs [31].

ω = c
k1/2

l
(3.33)

This method results in being more performing than the k − ε model,
especially for wall-bounded and low-Reynolds flows. It is also superior if
high adverse pressure gradients or separation are addressed, which makes it
more suitable for external-aerodynamics problems. In the end, it benefits
from an overall higher stability. One counterpart is that much attention
needs to be paid in the mesh generation step, especially for what concerns
mesh refinement near the walls, in order to allow the best performance of
this method. However, the real shortcoming is its sensitivity to the inlet
free-stream turbulence properties, which instead moderately affects the per-
formances of the k − ε model.

In the end, the so-called Shear Stress Transport k − ω model (shortly
k − ω SST) is worth being mentioned, since it is achieving resounding suc-
cess in CFD simulations nowadays. This model does not simply represent a
variant of the standard k − ω model, but it combines the pros of both this
latter and the k−ε model. Indeed, it switches from a more performing k−ω
model applied near-wall to a standard k − ε far away, by using a blending
function to smooth the transition. In this way, it benefits from the high ac-
curacy given by the standard k−ω, but at the same time it does not bump
into its common weaknesses in the free-stream. For instance, this method
is especially well-appreciated when dealing with high adverse pressure gra-
dients and separating flows. Improvements are still needed though, since
the model is not appropriate for investigating flows with sudden changes in
strain rate (stagnation regions and regions where the flow strongly acceler-
ates) or rotating flows [20] [21].
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3.2.1.3. Wall Functions

The boundary layer can be defined as an arbitrary region of the fluid domain
where viscous effects, due to the proximity to a wall, are more pronounced
with respect to external regions. According to Prandtl’s definition, if the
undisturbed flow velocity is identified, the boundary layer extends to all the
fluid streamlines whose deceleration exceeds 1% compared to that velocity.
Within the boundary layer the fluid behavior is affected by friction, outside
of it the flow is inviscid.

Figure 3.4: Boundary Layer on an Airfoil

Let us consider a fully turbulent flow. In this condition, viscous effects
appear to be well-confined into a limited region adjoining the wall. Moreover,
let us assume that the regime of motion is statistically stationary. In the
end, let us investigate the velocity field in a local x− y system on the wall
boundary. By decomposing velocity into its mean value and its fluctuation,
the Navier-Stokes equation holds as shown by equation 3.35:

ui = Ui + u′i (3.34)

ρ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
= −∂p

∂x
+
∂

∂x

(
µ
∂ux
∂x
− ρu′xu′x

)
+
∂

∂y

(
µ
∂ux
∂y
− ρu′xu′y

)
(3.35)

The following assumptions are taken into account:

ux >> uy
∂ux
∂y

>>
∂ux
∂x

∂p

∂x
= 0 (3.36)

Equation 3.35 becomes:
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0 =
∂

∂y

(
µ
∂ux
∂y
− ρu′xu′y

)
(3.37)

The first term in equation 3.37 is the shear stress, as defined by the
Newton’s law, while the second represents the turbulent stress. The overall
stress, given by their sum, is constant throughout the boundary layer, as it
can be inferred from the equation itself. It is important to notice that 3.37 is
confirmed by experiments in the near-wall region only, and it does not apply
far away, since out of the boundary layer stresses asymptotically tend to zero.

The goal now is to investigate how the two stress components combine
with each other and in which regions one component appears to be prevalent
to the extent that it might be considered as a good approximation of the
whole stress. Indeed, if this occurs, it is possible to model that component
only instead of the whole stress: this is exactly the approximation intro-
duced by the so-called wall-functions. To these purposes, three regions with
different stress behaviors, all within the boundary layer, can be identified:

• the viscous sublayer, representing the closest region to the wall;

• the buffer layer, which is the intermediate zone;

• the log-law region, corresponding to the most external layer.

Each region is treated differently. Indeed, the first one is characterized
by negligible turbulent stress, so that the shear stress is only related to
the fluid viscosity. It is basically an estimate of the fluid opposition to the
deformation rate of its particles in accordance with the Newton’s law (3.38).

τ = µ
∂ux
∂y

(3.38)

If both the two terms of the equation are divided by the fluid density,
the right-hand side gains the dimensions of a square velocity. For the sake
of convenience, in literature this fictitious velocity is referred to as friction
velocity and denoted as uτ , but this name only stems from its dimensions
and not for the physics behind (3.40). The left-hand side, instead, keeps un-
altered, except for the dynamic viscosity µ that is replaced by the kinematic
ν.

u2
τ = ν

∂ux
∂y

(3.39)

uτ =

√
τ

ρ
(3.40)
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The following algebraic passages aim at defining two crucial quantities,
namely y+ and u+, whose diverse correlations will characterize the stress
behavior not only in this region, but also in the other ones listed above (3.43).
In other words, by defining these two variables, the problem is standardized
and the different cases are treated on a common ground. For the specific
case on hand, this standardization process simply leads to a different but
akin formulation of equation 3.39, which is exactly the law governing the
viscous sublayer (equation 3.44).

uτ
ν

=
∂

∂y

(
u

uτ

)
(3.41)

d

(
u

uτ

)
= d

(uτy
ν

)
(3.42)

u+ =
u

uτ
y+ =

uτy

ν
(3.43)

u+ = y+ (3.44)

If y+ equals the range 5− 30, turbulent stresses are no more negligible,
but they become comparable to viscous stresses. The velocity distribution
becomes very difficult to compute, since this layer is characterized by un-
steady vortices. The so-called buffer layer is then treated through both
theoretical and empirical approaches, which basically interpolate the formu-
lations achieved for the inner and outer regions and adjust the results by
means of experimental coefficients. To give an example, one of the most
used formulations is the implicit one by Spalding [27]. B is a fixed value, k
is the so-called Von Karman constant.

y+ = u+ + e−kB
[
eku

+ − 1− ku+ − (ku+)2

2
− (ku+)3

6

]
(3.45)

B = 5.5 k = 0.4 (3.46)

In the end, the most external region of the boundary layer is charac-
terized by opposite features with respect to the inner one, i.e. turbulent
effects prevail. The values for y+ are typically 35 to 50, from which it can
be inferred that the turbulent region is the most extended. As it might
be expected, the second term in equation 3.37 should be considered as the
starting point for modeling.

τ = −ρu′xu′y = (3.47)

= −u′xu′y (3.48)
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The Boussinesq assumption is adopted (3.18, 3.68), alongside with re-
lations 3.36. In particular, being ux � uy, it identifies with the overall
velocity u.

τ

ρ
= −ε

(
∂ux
∂y

+
∂uy
∂x

)
= (3.49)

= −ε
(
∂ux
∂y

)
= (3.50)

= −ε
(
∂u

∂y

)
(3.51)

At this point, the equation can be integrated only if an opportune closure
model is adopted. For instance, formulation 3.52 was provided by Prandlt:

ε = l2
(
∂u

∂y

)
(3.52)

l2 = (ky)2 k = 0.40÷ 0.41 (3.53)

The equation becomes:

u2
τ = (ky)2

(
∂u

∂y

)2

(3.54)

uτ = (ky)

(
∂u

∂y

)
(3.55)

d

(
u

uτ

)
=

1

k

duτyν
uτy
ν

(3.56)

u+ =
1

k
ln(y+) +B (3.57)

This correlation accounts for the name given to this sublayer, which in-
deed is log-law region. The value of constant B needs to be computed as a
function of the flow velocities at both the extreme boundaries of this sub-
layer, i.e. velocity is required to be known at both the interfaces with the
buffer sublayer and the outside of the overall boundary layer. Since this in-
formation is often not available in common applications, velocities are just
estimated through interpolation functions applied to different spots of the
fluid domains, and B is computed consequently. Nikuradse provided an es-
timate of 5.5 for it, while eventually Coles and Hirst corrected this value to
5 [3] [4].

Figure 3.5 gives an overview on how stresses within the boundary layer
are modeled through analytical functions. The actual trend, provided by
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experimental tests, is given by the green line. It can be noticed that the two
u+−y+ correlations only apply to the limited y+ range for which they have
been developed. The Spalding formulation (or similar) for the intermediate
region is not represented, but it simply guarantees continuity between the
two end regions.

Figure 3.5: Wall Functions

Back to the purpose of this discussion, it will be now briefly addressed
how practice comes from theory in two-equation models. The key point is
that the boundary layer differs from the outer region due to its higher gra-
dients in velocity and other quantities. On the one hand, this implies that
correct meshing is mandatory to achieve satisfactory results. For instance,
a good cell refinement is often required to capture the marked variation in
aerodynamic quantities. On the other hand, since the fluid behaves in the
near-wall layer very differently from elsewhere, the equations describing this
behavior require different boundary conditions. Nevertheless, their defini-
tion is not physically univocal, thus a variety of near-wall treatments have
actually been implemented.

The broader distinction is between low-Reynolds and high-Reynolds near-
wall treatments (respectively LRN and HRN), as shown by figure 3.6. The
first approach implies integrating the equations up to inner sublayer. Indeed,
a strong refinement is required in the near-wall zone, which means that the
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y+ corresponding to the wall-adjoining cells should be at least smaller than
1. On contrary, the second approach models the overall boundary layer as
if it was described by the log-law everywhere. Thus, wall-adjoining cells are
larger, since their centroids are assumed to be in the log-law region. Accu-
racy is somehow less regarded, but convergency and stability do improve.

Figure 3.6: Low Reynolds vs. High Reynolds Near-wall treatments

It is important to notice that the centroids of the near-wall cells must
fall on either the viscous sublayer or the log-law region. The buffer region,
instead, is never taken into account, since no modeling for the boundary
conditions is available for that region. Indeed, neither the stresses have
been rigorously determined yet. At the most, a discrete switch from one
approach to the other can be an option.

In finite volume methods’ applications, wall functions can be imple-
mented in two ways. The first solution consists in correcting the equations.
Specifically, this is achieved by adding a source term to the momentum
equation, which accounts for the difference in shear stresses between the
boundary layer and the outer domain. The second solution, instead, con-
sists in modifying the values of turbulent viscosity referred to the near-wall
cells only. The main difference is that this latter does not aim at reproducing
the velocity gradient into the equations, but simply gives the correct value
of the shear stress as an overall final result. This is typically the preferred
option in two-equation models. For instance, in k − ω models, if the new
value for turbulent viscosity is defined, the shear stress τ can be computed
and so can the friction velocity uτ . The last step is the computation of near-
wall k and ω, here denoted as kw and ωw. Specifically, kw results from the
zero-gradient condition on velocity (3.58) and ωw is eventually computed as
a function of kw itself (3.59).
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∂k

∂u
= 0 → kw (3.58)

ωw =

√
kw

C
1/4
µ kyw

(3.59)

3.2.2 LES/ILES Models

A comparison among the diverse models definitively helps introduce Large
Eddies Simulation models, since they place in-between RANS and DNS
models, from both the points of view of accuracy and computational cost.
Indeed, as discussed in the previous chapters, on the one hand Direct Nu-
merical Simulations aim at indiscriminately solve all the scales of turbulence,
but for this reason they often result in being unreasonably expensive and
unworkable for common applications. On the other hand, Reynolds Aver-
aged Navier-Stokes models focus on the mean motion only, which basically
means that no scales are actually solved, but the overall motion is solved
as a function of a fictitious mean scale. It stands to reason that, for spe-
cific cases, they might exhibit opposite weaknesses to DNS, such as scarce
accuracy.

Figure 3.7: Comparison between DNS, LES and RANS models

Thus, LES models distinguish from both, as they somehow select the
eddy scales to be solved and model the remaining ones. Therefore, they
perform better than RANS in terms of the number of data provided about
the flow, but of course they turn out to be more expensive. This is the rea-
son why it is advisable to use LES only in case RANS were not performant
enough for investigation purposes. Indeed, the real goal in every simulation
is to collect the necessary information with the minimum computational
waste: any extra datum does represent an extra cost [9]. Examples of cases
that would require LES typically involve complex geometries and/or com-
plex flow regimes: for instance, cases with significant changes in the design
or very high Reynolds numbers.
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Figure 3.8: Kinetic Energy Spectrum of a Turbulent Flow as a Function of
the wavelength k (logarithmic-scale plot).

There are substantial differences between small and large scales of vor-
tices. Broadly, large scales are more dependent on the geometry and the
aerodynamics of the overall case analyzed, while small scales are somehow
more universal [17]. For instance, these latters are characterized by a more
stable turbulence, resulting in isotropy and other common features. More-
over, large vortices correspond to a higher energy content and are responsible
for transporting the conserved quantities, while small scales dissipate, with-
out contributing to transport. For all these reasons, it makes sense to solve
large scales and model small eddies.

In order to select the resolvable scales of turbulence, it is important to
opportunely filter the overall velocity field. Expression 3.60 provides the
new decomposition for velocity:

ui = ūi + u′i (3.60)

ui is the overall velocity field, ūi includes the resolvable scales, and u′i
represents the smaller length-scales that cannot be adequately resolved on a
computational mesh. The mathematical filtering tool can be a simple local
average of the velocity field, as provided by formula 3.61. The result is
intuitively shown by figure 3.7.

ūi(
−→x ) =

∫
G(−→x −

−→
ξ )ui(

−→
ξ )d
−→
ξ (3.61)
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G(−→x −
−→
ξ ) represents the filter kernel and can be any expression provid-

ing a selection for large enough scales. For instance, it can be a box filter, a
Gaussian or a cut-off filter based on Fourier transform. The same passages
just explained for velocity also hold for pressure. It will now be shown how
this filtering procedure applies to the Navier-Stokes equations. Actually,
only the momentum equation (3.62) will be taken into account. Indeed,
since the continuity equation is linear, filtering does not affect it (3.63).

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂

∂xi

(
µ
∂ui
∂xj

)
(3.62)

∂ρui
∂xi

= 0 (3.63)

The result of filtering equation 3.62 is given by equation 3.64:

∂ρūi
∂t

+
∂ρuiuj
∂xj

= − ∂p̄

∂xi
+

∂

∂xi

(
µ
∂ūi
∂xj

)
(3.64)

Since term uiuj is difficult to compute, equation 3.64 is re-written as in
3.65, where this term is replaced by ūiūj . Actually, uiuj 6= ūiūj , thus a new
term also shows up on the right-hand side of the equation, which accounts
for this difference. Its definition is provided by equation 3.66. The reason
for such a manipulation is that this term is eventually modeled in such a
way that the computation of uiuj can be avoided.

∂ρūi
∂t

+
∂ρūiūj
∂xj

= − ∂p̄

∂xi
+

∂

∂xi

(
µ
∂ūi
∂xj

)
+
∂τSij
∂xj

(3.65)

τSij = −ρ (uiuj − ūiūj) (3.66)

τSij is called subgrid-scale Reynolds stress. However, on the one hand,
the name stress only stems from its role into the equation, but cannot be
considered as an actual physical stress to be measured. On the other hand,
also the name subgrid needs to be specified, as τSij represents the large-scale
momentum flux that arises from the small-scale motion.

As a consequence, the models used to approximate τSij are called subgrid-
scale models (SGS) or subfilter-scale models. An example is given by the
Smagorinsky model (1963), in which the Boussinesq hypothesis is used. It
basically assumes that the principal effects of τSij are increased transport
and dissipation, which in turn depend on viscosity. With some manipula-
tion from the equality between power and dissipation of the subgrid-scale
turbulent kinetic energy, the model takes the formulation provided by Eq.
(3.67). Actually, this is only one of the possible ways to deduce it, but other
procedures are also possible (heuristic methods, turbulence theories and so
on).
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τSij −
1

3
τSkkδij = µT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
= 2µT S̄ij (3.67)

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.68)

The filtered Navier-Stokes equation using this model τSij is given by Eq.
(3.69):

∂ρūi
∂t

+
∂ρūiūj
∂xj

= − ∂p̄

∂xi
+

∂

∂xi

(
(µ+ µT )

∂ūi
∂xj

)
(3.69)

The subgrid-scale eddy viscosity µT is derived by dimensional arguments.
Its formulation is shown by Eq. (3.70):

µT = C2
sρ∆̄|S̄| (3.70)

|S̄| = |S̄ijS̄ij |1/2 (3.71)

Cs is a model parameter to be defined. It often equals 0.2 for isotropic
turbulence, but depends on a number of factors, such as Re. ∆̄, instead, is
the filter length scale (i.e. the minimum resolvable scale) and is computed
as the cube root of the cell volume V to which it applies.

∆̄ = V 1/3 (3.72)

Filter width and mesh size need to be consistent. Precisely, the chosen
∆̄ must satisfy the inequality ∆̄ > h, where h is the grid size.

Back to the main discussion, it can then be stated that large-eddy sim-
ulations do represent a successful method to be used especially when more
accessible alternative approaches (such as RANS) fail. However, a physical
modeling such as the one just discussed in this chapter might be very difficult
to deal with, especially for two reasons. The first one is that the dynamic
mechanisms of the physical phenomenon might be unknown or too complex
to be modeled explicitly and exactly. For instance, this occurs when there
is a strong interaction between complex thermodynamic and hydrodynamic
mechanisms (combustion or shock/turbulence interaction). The second rea-
son is that explicit modeling often does not allow realizing some constraints
on the quantities under investigation (e.g. on the temperature or the molar
concentration of pollutants).

In those situations, the solution is represented by the so-called implicit
large-eddy simulations (ILES). They all base on the hypothesis that the
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action of the sub grid scales on the resolved scales is equivalent to a strictly
dissipative action. As a consequence, no subgrid-scale model is added to
the discretized Navier-Stokes equations and a dissipation term is introduced
either in the framework of upwind schemes for the convection (the most used
approach) or explicit artificial dissipation term, or by the use of implicit or
explicit frequency low-pass filters. The degree and order of the diffusive
term introduced both depend on the chosen scheme. Typically, a second
and/or fourth order is used, which makes the dissipation induced very close
to that implied by physical subgrid models. The difference, however, is that
an implicit viscosity replaces an explicit model inferred from inadequate
physical considerations (for the complex cases listed above) with no worse
impact on the quality of the results and, above all, the implicit version of
LES allows using more robust numerical methods. This is the key point and
also the reason why high-resolution simulations of flows today are more and
more considered [26] [1].

3.2.3 DLRM

The model used for this thesis work is a scale-adaptive hybrid RANS-LES
model, namely Dynamic Length Scale Resolution Model [23], which will be
soon introduced.

Let us consider figure 3.8 first, from the previous chapter. In LES mod-
els, the threshold between modeled and resolved scales theoretically stems
from the condition of equality between power production P and dissipation
ε, i.e. dissipative scales are the only ones to be modeled and not resolved. As
previously discussed, by resolving the largest scales instead of modeling the
whole energy spectrum, accuracy in results definitely improves. Specifically,
the model is also able to capture isolated and random flow unsteadiness.
This is, indeed, one of the achievements over RANS models, to which flow
isolated events are invisible. In fact, on contrary, in RANS models, turbu-
lent length and time scales are inferred from simple dimensional analysis
and are often overestimated, to the extent that flow unsteady local behav-
iors appear to be flattened. Moreover, RANS models are very dependent
on initial and boundary conditions, so that results are perfectly repeatable
if these conditions do not change. This aspect is another reason for their
limitations in the fluid description.

Nevertheless, LES models’ accuracy is counterbalanced by their expen-
siveness, which is sometimes comparable to DNS, especially for what con-
cerns near-wall regions. Approximations such as the already discussed near-
wall treatments can be adopted to reduce the computational cost, but for
complex flows with high Reynolds numbers good accuracy can only be
achieved through a good near-wall mesh refinement.
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Figure 3.9: Comparison RANS vs. LES

These issues have led to the implementation of hybrid models, which aim
at matching the best of the two worlds, i.e. at combining the efficiency and
cheapness of RANS models with the accuracy from LES. The basic idea is to
locally switch from one to the other according to some criteria. There is no
unique optimum compromise, and the model performance mostly depends
on the choice of the discriminating factor regulating the switch-mode of the
hybrid model itself. Indeed, for instance, some models are based on the dis-
tance of the domain cells from the wall, but diverse solutions do exist as well.

The peculiarity of DLRM is that the change is based on the local turbu-
lence length scale. Precisely, each turbulence length scale to be analyzed is
firstly compared to the minimum resolvable scale according to LES. If this
lenght-scale falls on the resolvable range of the energy spectrum allowed by
the LES model, this latter is chosen. Otherwise the length-scale is modeled
according to a standard k − ω SST model [21].

An insight into the logic behind this model is now provided, with refer-
ence to [23]. The locally minimum resolvable scale `t, which regulates the
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switch between RANS and LES, is the result of a comparison between the
local integral length scale Lt according to RANS and the local resolvable
length scale ∆f allowed by LES:

`t = min (Lt,∆f ) (3.73)

Lt can be estimated directly from the values of turbulent kinetic energy
k and dissipation ω for the standard Menter’s k − ω SST model:

Lt ∼
k1/2

ω
(3.74)

The estimate of ∆f , instead, is given by:

∆f = max (α|U |δt,∆eq) (3.75)

Both the two terms into brackets can be interpreted as estimates of
the available LES filter width, and clearly the largest one is chosen for the
model purposes. However, they differ from each other since their defini-
tions stem from the evaluation of the constraints respectively imposed by
time and space discretization, as will be soon explained. Indeed, Eq. (3.75)
re-establishes their correlation, accounting for the fact that the temporal
scales of the vortices and the spatial resolution of the grid are not inde-
pendent from each other. This feature of the filter operation is of utmost
importance, since less likely sudden changes in cell sizes or flow condition
will go uncaught.

Let us focus on term α|U |δt first. The starting point is the assumption
that the LES filter width ∆f,i of cell i is proportional to the maximum
distance covered by the corresponding fluid particle in a time step:

∆f,i ∝ Uiδt (3.76)

It is opportune to set the condition given by Eq. (3.77) to take into
account the need for a limited number of cells to actually resolve a turbulent
structure (see also [14]).

∆f,i ≥ Uiδt (3.77)

An equivalent formulation is then given by Eq. (3.78):

∆f,i = αUiδt α ≥ 1 (3.78)

where α is the proportionality constant. The goal now is to find a proper
definition for this constant. To this purpose, let us introduce the Courant-
Friedrichs-Lewy relation first. Given the discretized domain, it directly con-
ditions the choice of the time-step, as shown by Eq. (3.79):
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δt ≤ CFLmax
(Ui/δxi)max

(3.79)

Indeed, in this formula, CFLmax is chosen on the basis of the numerical
method adopted and the level of unsteadiness of the flow, while (U/δx)max
represents the ratio of velocity to cell size belonging to the cell(s) for which
this ratio is the largest of the whole mesh. Of course, once the δt is se-
lected for the case study (δt = δt̄), then the reverse formula gives the exact
definition of CFLmax for the case analyzed.

CFLmax = δt̄

(
Ui
δxi

)
max

(3.80)

Similarly to Eq. (3.80), a CFLi for any cell i can be defined, as function
of the chosen δt̄:

CFLi = δt̄

(
Ui
δxi

)
(3.81)

and it clearly must hold:

CFLi ≤ CFLmax (3.82)

In order to estimate α, it is also assumed that turbulence is normally
generated at those cells with the highest CFLi values. It must be said that
this second assumption is true in most cases, but it is not general. Anyway,
its limitations and implications will be discussed at a later time. For the
moment, let us rewrite the definition of ∆f,i given by Eq. (3.78) as a function
of the defined CFLi, which is possible thanks to Eq. (3.81):

∆f,i = αUiδt = (3.83)

= α
Uiδt

δxi
· δxi = (3.84)

= αCFLiδxi = (3.85)

The cells representing the starting point for vortex generation (here,
the ones with the highest CFLi) are normally of superior interest for the
analysis purposes. Thus, a LES model would be preferred since it gives more
accurate results than RANS. For this reason, it would be very opportune
to have the smallest ∆f,i for these cells. In fact, since it represents the
minimum length scale that is resolvable by LES, this choice would imply a
more extended range of resolvable scales allowed, and as a consequence a
higher possibility that the model switches from RANS to LES. Therefore,
the value 1 is chosen for α, as it is the minimum permitted by Eq. (3.79).
The result is that, for the cells corresponding to CFLi = CFLmax, it holds:



50 CHAPTER 3. GOVERNING EQUATIONS

∆f,max = (α)minCFLiδxi = (3.86)

= 1 · CFLmaxδxi (3.87)

To be coherent with this criterion, for which a smaller ∆f,i should be
preferred for a higher CFLi, the value of ∆f,i for all the remaining cells is
also scaled consistently, i.e. as inversely proportional to their CFLi numbers
compared to CFLmax. The conclusion is the definition for α given by Eq.
(3.88), which could be also inferred by comparing Eq. (3.87) to Eq. (3.83).

α =
CFLmax
CFLi

(3.88)

Thus, for any cell, from Eq. (3.83) it holds:

∆f,i = αCFLiδxi = (3.89)

=
CFLmax
CFLi

· CFLiδxi = (3.90)

= CFLmaxδxi (3.91)

Up to now, the procedure for defining α as in Eq. (3.88) has been dis-
cussed, but the method should be re-formulated in reverse. To sum up,
parameter CFLmax is fixed first, since it depends on the numerical method
and the level of turbulence of the case under investigation. Eventually, this
parameter allows defining the time-step δt = δt̄ each time. By defining ∆f,i

for cell i as proportional to Uiδt̄ up to a constant α ≥ 1, the method would
be over, if the value of α was just prescribed for the entire simulation, ac-
cording to some criteria. Indeed, in literature diverse estimates for α are
available, such as the value of 3 suggested by [13], which results from exper-
imental tests.

However, the peculiarity of this method is that, thanks to the assump-
tions made, α is instead dynamically defined at each step and for each cell
according Eq. (3.88). The dependence of α on both time and space is defini-
tively a plus for the method, since it allows for a more correct estimation
of the minimum integral length scale that can be locally captured by the
model. This is basically one of the main improvements this method brings
up if compared to previous formulations.

At this point, Eq.(3.91) should be further clarified. If at any step
CFLmax is prescribed a priori, as already stated, then this expression ba-
sically relates ∆f,i to the cell size δxi only. In other words, the model will
unlikely switch to LES if the mesh is too coarse. This definitively makes
sense, since typically the mesh is refined at the zones of interest, and for
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those regions the model guarantees that a more accurate method is used.

However, there might be some situation in which this does not hold.
Let us consider a meshed flow domain (for instance a flow in a duct) and
let us consider that there can exist two cells stream wise with same CFL
equaling CFLmax, namely cell A (upstream) and B (downstream). Cell A
is of intermediate size, but the velocity is high; at cell B the velocity reduces
but the mesh refinement is higher. Therefore, since for this case the model
only depends on the difference in δxi, it might happen that a RANS model
is used for cell A, while a LES model is applied to cell B. The problem is
that, if hypothetically turbulence generates in A and propagates to B, the
adoption of LES at B loses importance if only the mean turbulent motion
has been considered in A. In other words, part of the useful information has
been lost at A and using LES at B would only imply a computational waste.

This is the only inconsistency of DLRM and, specifically, it is an implica-
tion of the fact that the assumption that turbulence generates at high-CFL
cells might not be verified. Indeed, CFLmax does not take the velocity only
into account, but the ratio of the velocity to the cell dimension, while turbu-
lence generation should only depend on the physics of the problem and not
on the way the mesh is produced. It is the mesh, if anything, that should be
realized accordingly with the physical problem, i.e. a smart solution would
be to try to foresee where to expect turbulence generation and refine the
mesh in those regions.

Nevertheless, it is also true that the troubling situation just described
rarely happens. For instance, let us consider a fluid stream flowing into a
duct with a sudden section enlargement. It is very likely that the mesh is
more refined at the section change, where also the velocity is higher, and
becomes coarser downstream, where the fluid decelerates.

Back to Eq. (3.75), let us now focus on the derivation of ∆eq, which
represents an equivalent LES filter size. Parameter LSR, extensively lenght-
scale resolution, is first defined:

LSR =
∆

`di
(3.92)

The numerator is the length scale cut-off for the available LES model,
thus it represents its actual filter width. The denominator, instead, is the
value of the length scale corresponding to the lower limit of the vortex
inertial subrange:

`di ≈ 60η (3.93)
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where η is the Kolmogorov scale:

η = ν3/4ε−1/4 (3.94)

If LSR equals 1 (the best case), the filter is able to resolve all the large
scales, up to the dissipative subrange. However, in order to have a reason-
able resolution in space and time at affordable cost, also a LSR > 1 can be
accepted, within a limited specified range. Precisely, it has been observed
that, for common engineering applications, the filter still works, even if less
effectively, if LSR ≤ LSRmax = 5÷ 7. If LSR, instead, exceeds this thresh-
old, the ILES model loses its underlying hypotheses and, as a consequence,
its validity. In fact, the assumptions that the modeled scales are isotrope
and that power production equals dissipation are no more verified. When
this occurs, the DLRM opts for a RANS model by default.

Following on from all these considerations, the equivalent LES filter size
to be adopted in Eq. (3.75) is then:

∆eq = LSRmax · `di (3.95)

Back to Eq. (3.73), let us assume that the locally minimum resolvable
scale `t has now been selected. This value enters the formulation of the filter
function g:

g ≡
(
`t
Lt

)2/3

(3.96)

which, in turn, allows computing the –let us define it – filtered turbulent
viscosity µ̂T :

µ̂T = g2ρ
k

ω
(3.97)

µ̂T is the key parameter of the DLRM model, since it exactly represent
the discriminating factor that allows switching from one model to the other.

Specifically, if `t equals Lt, then g2 = 1, thus µT is led back to its
original (non-filtered) definition. In other words, in these regions the filter
is not active and a RANS model is adopted.

µ̂T = ρ
k

ω
= µT,RANS g2 = 1 (3.98)

On contrary, wherever lt equals ∆f , the original value of turbulent vis-
cosity is reduced by a factor g2 < 1. The result is a value of µ̂T as if it was
given by the numerical dissipation, thus an ILES model is implemented.

µ̂T = µT,ILES < µT,RANS g2 < 1 (3.99)



3.2. TURBULENCE MODELING 53

From a broader point of view, by comparing the local resolvable scales to
the problem turbulence length scales, the model does nothing but evaluating
if the grid resolution is high enough to allow the usage of a LES model. Any
time the mesh is considered to be too coarse (compared to the turbulence
problem investigated), a RANS model is adopted.

To understand the way the filter g2 is derived and especially why it is a
squared function, let us start from the consideration that the modeled length
scale `T can also be defined in terms of the filtered (non-resolved) variables:

`t ∼
k̂1/2

ω̂
(3.100)

This change in perspective allows relating the filtered specific dissipation
ω̂ to the filtered dissipation rate ε̂ similarly to Eq. (3.28):

ω̂ =
ε̂

Cµk̂
(3.101)

The dissipation rate is resolved by DNS, since no cheaper alternative is
available:

ε̂ = ε (3.102)

Therefore, from Eqs. (3.28), (3.101) and (3.102):

ω̂ =
ωk

k̂
(3.103)

and from Eqs. (3.74), (3.100) and (3.101) an expression for the filtered
turbulent kinetic energy can be found:

k̂ = g(`t, Lt)k (3.104)

where the equality holds in turn due to the equality of the proportionality
constants from Eqs. (3.74) and (3.100). It is now explained how the filter
function g is derived up to its formulation expressed by Eq. (3.96). In this,
`t is computed according to Eq. (3.73) and Lt is calculated as:

Lt '
k1/2

Cµω
(3.105)

In regions where turbulence cannot be resolved, i.e. where Lt < ∆f in

Eq. (3.74), the filter function g is set equal to 1 in order to have k̂ = k in
Eq. (3.104). However, there is no need to compute the filtered turbulent
variables explicitly. A filtered turbulent viscosity µ̂T can be defined directly
from the non-resolvable turbulent length and time scales:
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µ̂T ∼
`2t
tt

(3.106)

tt ∼
1

ω̂
(3.107)

Here the time scale has been computed directly in terms of the filtered
(non-resolved) variables, in conformity with the derivation of the length
scale `t in Eq. (3.100). By putting together Eqs. (3.100), (3.103), (3.104)
and (3.107), it is straightforwardly proved why the model ends up with the
formulation given by Eq. (3.97), which includes a squared g function.

To recap, no matter the two-equation turbulent model used, in any case
the derivation of g will lead to formulation given by Eq. (3.96) [14]. The
novelty, however, is that g has been applied to k and not directly to µT ,
as shown by Eq. (3.104), which accounts for the final result given by Eq.
(3.97). The peculiarity is that this formulation includes g2 instead of g.
Thus, the goal now is to explain the implications of this choice to under-
stand its reasons.

Let us consider both the two options of applying g or g2 to µT in Eq.
(3.97) and let us compare them. The filter function is first required to equal
1 as ∆f equals the integral length of the modeled scales Lt, to reinstate
the original RANS formulation given by Eq. (3.98). Both the two filter
functions fit this requirement, thus the choice of the most suitable option
does not depend on this point.

lim∆f→Lt g = 1 (3.108)

lim∆f→Lt g
2 = 1 (3.109)

The second requirement is that the filter function should tend to zero as
the filter width ∆f tends to zero. Again, both g and g2 fulfill this condition,
which represents an opposite situation to the one addressed before. Indeed,
it states that if µT tended to zero, a DNS would be adopted. Actually, this
situation never happens and is only taken into account theoretically.

lim∆f→0 g = 0 (3.110)

lim∆f→0 g2 = 0 (3.111)

Therefore, up to now both the two filter functions would be suitable.
However, as the last requisite, it turns out that also how the filter functions
approaches the zero value is important. Thus, what makes the difference



3.2. TURBULENCE MODELING 55

is actually the limit of the first derivative of the filter function (and conse-
quently the second) as ∆f tends to zero.

lim∆f→0

(
∂g

∂∆f

)
=∞ (3.112)

lim∆f→0

(
∂(g2)

∂∆f

)
= 0 (3.113)

The results show that the g function would approach the zero value with
a vertical tangent line, while g2 goes to zero with an horizontal tangent line.
If the limit for g2 is computed on its second derivative, a positive value is
obtained as a result:

lim∆f→0

(
∂2(g2)

∂∆2
f

)
> 0 (3.114)

This guarantees that for small variations of ∆f about the zero value,
the filter function g2 will not undergo sudden rises. On contrary, the filter
function g would not guarantee a smooth proportionality between ∆f and
the filter function itself. For this reason, g2 is selected, which indeed implies
that g is applied to k and not directly to µT . This setting is very important,
since it allows for a higher possibility that, for any given length scale, the
model prefers a LES resolution to RANS.

Figure 3.10: Filter Function g2(∆f )

The trend of g2 as a function of ∆f is shown by Fig. 3.10. This plot
clearly shows how g2 is clipped to 1 as ∆f equals the integral length of the
modeled scales Lt, as well as how it smoothly tends to zero as the grid size
tends to the fine grid limit.



56 CHAPTER 3. GOVERNING EQUATIONS



Chapter 4

Case Study

This chapter will give an overview about the case study investigated. The
wind turbine on hand will be described in both its structural features and
its aerodynamical properties. The final goal of this thesis is the comparison
of the numerical results from simulations with the already available experi-
mental results provided by V. Dossena et al. [7]. Thus, a brief overview of
the reference paper will be provided as well. Specifically, the experiments
have been performed on diverse machine and flow conditions, but one case
has been selected to be tested numerically. The reasons for this choice will
also be discussed, and the only information that aligns with the purposes of
this thesis will be highlighted from the reference [7].

4.1 Machine Description

This thesis focuses on a H-type vertical-axis wind turbine as case study. The
machine geometry is soon provided by Fig. (4.1). The rotor is composed
by three untwisted blades, connected to the vertical mast by means of two
horizontal supports. It has a swept area of approximately 1.5 m2 (DxH,
1.028 m x 1.5 m) and it is equipped with dihedral blades with unstaggered
NACA 0021 profiles (c = 0.086 m). The blade detail is provided by Fig.
(4.2).

Both the proportion in the machine dimensions and the design of the
supports aim at minimizing the overlap between the wakes generated by the
blade motion and the overall turbulence. Indeed, as previously discussed,
the main obstacles to VAWTs’ good performances are their unsteady aero-
dynamics and time-dependency, which make the interaction between the
machine and the fluid very complex to investigate.

For what concerns materials, the blades are made up by a wooden core
and a reinforcing cladding of CFRP. The two supports, instead, are made
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Figure 4.1: Case study geometry

of aluminum, while the vertical mast is made of steel. The rotor proto-
type has been designed by Tozzi Nord s.r.l., while the test stand and the
acquisition system have been realized by the staff from Università di Trento.

Figure 4.2: Blade Detail

4.2 Brief Overview of the Experimental Tests

Experimental tests were carried out in the wind tunnel facility at Politec-
nico di Milano. It consists in a two-floor building, each hosting a different
section for testing. Precisely, the lower floor is a low-speed test section (14
m width x 3.84 m height) allowing a maximum air velocity of approximately
15 m/s, while the upper floor consists in a high-speed section (4 m x 3.84
m) allowing a maximum velocity of 55 m/s. Wind is generated by 14 fans,
grouped into two parallel rows and driven by an inverter-controlled motor
each. The overall installed electric capacity is 1.4 MW. Specifically, the
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high-speed section has been chosen for tests, which is characterized by a
turbulence level lower than 1%.

Figure 4.3: Test set-up in the large-scale section of the wind tunnel at
Politecnico di Milano

A full-scale model has been tested, thus experiments have been per-
formed in full-similarity conditions. Clearly, this has been possible since the
wind turbine under investigation is designed for micro-generation of power.

To the purposes of [7], the machine was tested in both a confined and
a non-confined environment. Indeed, one of the goals was to highlight the
effect of the wind tunnel blockage on the aerodynamics and performances
of the VAWT on hand. Broadly, the fluid flow is always conditioned by the
presence of the wind tunnel walls and it is often impossible to reproduce an
open-space condition for tests that exactly corresponds to reality. However,
if the object is small enough in comparison with the dimensions of the wind
tunnel itself, the edge effects might be properly confined far enough from
the domain of interest that the results are considered to be accurate.

This requirement was fulfilled by the open-chamber configuration, but
the machine was also tested in a close chamber (an opportunely-built remov-
able test room) to compare the results. The final goal was, indeed, to infer
a correlation model for the blockage effect from this comparison, to pave
the way for other experiments that would not necessarily require a strict
proportionality between the model dimensions and the size of wind tunnel
section. In fact, the goal was to allow future testing of wind-turbine models
with even too big dimensions if compared to the test section and adjust the
results by applying some corrective factor.
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It must be said that diverse blockage correlation models already existed
in literature, but there was no available model for the tested machine design
and this is why the experiments on the close chamber were performed.

In particular, its estimate is very difficult and strongly dependent on
the specific machine type. The reason is that, when crossing the turbine,
the airstream dynamically deforms as a function of both the machine de-
sign and the wind conditions. Also, they influence the deflection that the
airstream undergoes downstream of the machine (we are dealing with a ro-
tating object), which is especially evident for vertical-axis machines. Thus,
every case is different from one another, and the correlations need to be
derived each time. Moreover, despite the fully-stationary conditions of the
flow that can be set upstream, the complex interaction between wind and
turbine also affects the repeatability of the tests and makes the investigation
of the blockage due to the wall very challenging.

Nevertheless, this is not the topic of this thesis, but the specification
of this point is useful to give an overview about the reference paper and
select the information that align with the purposes of this thesis. Precisely,
the only results on the open-chamber configuration have been taken into
account. After all, the blockage effect is a problem strictly correlated to
experimental tests and the issue of edge effects onto the flow stream in
numerical simulations is addressed from a completely different perspective,
as will be soon explained in the next section.

4.3 General Set-up of the Study Case

The first goal is to reproduce a non-confined environment around the tur-
bine, in order to set the same conditions of the open-chamber configuration
from the reference paper. Indeed, this is crucial to allow a correct compari-
son of the results.

It is clear that, differently from experiments, there are no walls to be
taken into account. However, also in numerical set-ups the domain edges
do affect the flow stream and, as a consequence, the results of simulations.
For instance, one condition might set the velocity of the fluid at the domain
boundaries to its far undisturbed value. This definitively makes sense, but
it still represents a constraint on the velocity field with its implications. For
instance, it evidently prevents the fluid from crossing the boundaries, which
can physically happen but is extremely difficult to consider.

There actually exists a solution to these obstacles, which consists in ex-
tending the numerical domain far enough from the turbine, in such a way
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that its edge effects cannot interfere with the flow behavior in the proximity
of the machine and consequently with the turbine behavior. A top view for
the numerical domain chosen for the case on hand is shown by Fig. (4.4). As
it can be noticed, its extension is significant with respect to the machine size.

Figure 4.4: Top view of the numerical domain extension

Fig. (4.5), instead, shows the results of the velocity field from a prelim-
inary 2D simulation that has been performed on the turbine under inves-
tigation, by using an unsteady RANS model (URANS) and with the same
turbine and fluid settings used for the 3D case that is the topic of this thesis.

Figure 4.5: Velocity field at t = 0.5 s
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The simulation was carried out only for a few time-steps (t = 0.5 s is
the time-step shown in the figure), since the goal was to just get a general
overview of the fluid behavior to easily set up the 3D simulation in a proper
way from the very beginning. Indeed, it is not truly trustworthy from the
aerodynamics point of view, since – as stated in Ch. (3.2) – turbulence is
strictly a three-dimensional regime of motion. Especially if the geometry is
complex, only a 3D simulation can provide a reliable description of the fluid
flow. However, it has been useful to get some important hints for the 3D
case.

First of all, it shows that there exists an undisturbed region outside the
domain portion affected by the interaction with the turbine, i.e. far from the
turbine, the velocity equals the magnitude value set upstream. The presence
of this region proves that the edge effects have been properly isolated and,
consequently, that the chosen domain extension is correct.

Secondly, it shows the extension of the turbine turbulent region and the
way the blade wakes interact and overlap (at least, qualitatively). Indeed,
this information is particularly useful when realizing the mesh, since it indi-
cates which regions should be refined more than the others and the way the
cells should better be oriented. Thus, on the one hand, especially for a very
extended domain, it is important to limit a high mesh resolution to a few
selected regions and create a coarser mesh elsewhere, since this allows reduc-
ing the overall number of cells and consequently the computational cost. In
fact, the resulting mesh is always a compromise between the accuracy of the
results (given by a higher refinement) and the computational cost involved.
On the other hand, if the cells are oriented accordingly to the flow stream
(for this case, along a circumference), then the possible numerical issues are
more likely to be held back.

So, from the blade detail in Fig. (4.5), it is evident that the wakes
arrange according to an annulus around the turbine. Therefore, the mesh
should be especially refined along this circumference and, in general, inside
the cylinder shown by Fig. (4.6), which is a detail of Fig. (4.4).

The lateral surface of this cylinder is also chosen to be the interface
between an outer meshed domain, which is still, and an inner one, which
rotates together with the turbine. This solution for dealing with rotating
objects, namely Arbitrary Mesh Interface, will be deepened in Ch. (4).

It must be clarified at this point that, in general, a more meticulous pro-
cedure would require a grid independence test. Especially if a very refined
mesh is required for the zones of interest, the dimension of the cells is set to
the value for which the accepted error (in simulation results) becomes stable
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Figure 4.6: Mesh refinement in the near-turbine region

for even more refined meshes. In other words, the cell size is chosen in such
a way that a higher refinement would involve a non-significant improvement
in the results according to confidence bound set a priori.

To achieve this goal, the simulation is therefore repeated more times with
the same settings, except for the level of mesh refinement, which is improved
at each attempt (for instance, at each step the cell number is doubled). The
trend of some aerodynamic quantity (e.g. the coefficient of power) is de-
rived as a function of the mesh refinement and it is then possible to make
a prediction of the mesh refinement level that allows the analyzed quantity
to converge within the established confidence bound. Thus, this refinement
level is selected for the simulation, if its adoption is compatible with the
available computer tools.

For the case analyzed in this thesis, the grid independent test is unfor-
tunately not feasible. In fact, as already discussed, this case requires a very
extended domain and, of course, a good level of refinement. The result, that
will be presented in the next chapter, is ≈ 45 M cells and definitively implies
a huge computational cost. Therefore, the reason for which the grid test is
not performed is that the repetition of the simulation would be unreason-
ably expensive.

Nevertheless, an evaluation for the mesh quality is already given by the
comparison of the numerical results to the available experimental data. To
some extent, this might be even regarded as a more reliable proof that the
mesh has been realized properly. Indeed, for the case under investigation,
a good agreement with the experimental results is found, thus we simply
conclude that the chosen mesh is opportune for the investigation purposes.
If a confidence bound had been established before, it could have been also
possible to infer whether the mesh was optimized or not (i.e. whether the
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flow properties had converged). However, here the followed procedure is the
reverse one, thus from the comparison we can just agree that the resulting
confidence bound is proper for the investigation purposes.

Actually, a decision was made to reduce the domain extension, and the
number of cells mentioned above is just half of the cell number of the original
mesh attempt. Indeed, on the one hand it is true that the boundaries could
not be moved closer to the turbine. However, on the other hand, one advan-
tageous feature of the turbine on hand is that it is symmetric with respect
to a mid-span horizontal plane. This allowed meshing and simulating only
half of the domain and extend the results to the remaining part. Precisely,
the upper half domain was selected, as shown by Fig. (4.7).

Figure 4.7: Upper symmetric domain; turbine detail.

4.4 Point of operation and flow condition

The measurements have been performed with diverse techniques (mechan-
ical, structural and aerodynamical tools) and a comprehensive description
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of the measurement set-up and test plan is provided by the reference paper
[7]. Indeed, the numerical results have been derived along the same lines
of the experimental test, i.e. the same quantities have been derived at the
same measurement spots.

The fluid unsteady behavior has been described both upstream and
downstream of the turbine, and the main aerodynamic quantities of the ma-
chine have been collected as functions of the rotor angular position. Specif-
ically, much attention has been paid to the description of the wake in terms
of both the deceleration and the deflection of the flow, due to the impact
with the turbine as well as to the interaction among the wakes generated by
each single blade.

To get a thorough description, the pressure and velocity fields have been
evaluated on three different vertical planes, mounted transversally to the
flow stream. With reference to Fig. (4.8), the three traverse planes are
positioned at x = −0.75D (denoted as upstream), x = +0.75D (near) and
x = +1.5D (far), where D is the rotor diameter.

Figure 4.8: Traverse Measurement System

Also the experimental measurements have been performed for the upper
symmetric part of the domain only. Thus, by selecting the numerical results
from the CFD simulation on the same measurement planes, a direct com-
parison is possible. Indeed, both the experimental tests and the numerical
simulation take advantage of the midspan symmetry, thus opting for a much
cheaper procedure. In the end, for both the two cases, the traverse-plane ex-
tension exceeds the top of the blades of 25% their mid-span, to allow taking
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into account the enlargement of the wake spanwise as well. The transversal
dimension of the planes, instead, is the same as the one shown in Fig. (4.4),
i.e. ≈ 6D in whole.

Actually, for the numerical simulation, the aerodynamic fields have been
also evaluated on an extra plane, which is positioned horizontally and co-
incides with the symmetry plane. This plane will be particularly useful to
derive information about the wake longitudinal extension.

Three different operating conditions have been investigated in [7]. In-
deed, the wake description and the main aerodynamic quantities, such as
the integral torque and power coefficients, have been derived for tip-speed
ratios equaling 1.5, 2.5 and 3.5. The frontier cases respectively correspond
to the lowest and the highest load conditions, while the intermediate case
gives the maximum value for the coefficient of power. In [7], these different
operating conditions have been obtained by setting the rotor angular veloc-
ity to a constant value of 400 rpm during tests and varying the air speed in
the wind tunnel within a range of 6 to 16 m/s.

The experimental results for Cp as a function of λ (open chamber) are
shown in Fig. (4.9). The corresponding trend for the torque coefficient,
instead, is provided by Fig. (4.9).

Figure 4.9: Coefficient of power from experimental tests.

The choice of the velocity range for the airstream depends on both the
risk of damage for the turbine and the quality of measurements. In fact,
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Figure 4.10: Coefficient of torque from experimental tests.

the highest threshold has been set to avoid structural problems in the test
model, while the minimum threshold has to guarantee accuracy in the test
results.

For what concerns the intermediate working conditions, they evidence
the evolution of the unstable and time-dependent vortex generation process,
especially at the tip-blades. A very interesting result is a non-symmetric dy-
namic stall occurring for λ ≤ 2. The lift coefficient suddenly goes down as
the blade orientation during rotation exceeds the critical angle of attack,
and the flow detaches. This condition is crucial to understand the turbine
behavior and, exactly for this reason, the case λ = 1.5 has been chosen for
the numerical simulation presented in this work.

The undisturbed velocity of the flow is 14.2 m/s. In Ref. [7] this is the
velocity measured at the turbine walls for the open-chamber configuration.
This information implicitly takes into account any variation on the fluid
velocity occurring in-between the generating fans and the turbine itself. In
the numerical simulation, no variations for the wind velocity will occur in
the upstream region, thus its value can be directly set to 14.2 m/s at the
inlet section. For sure, this is also the velocity at the turbine walls.

By reversing Eq. (2.36), the rotational speed of the turbine is computed:

ω =
λ · v0

R
=

1.5 · 14.2

1.028/2
= 41.44 rad/s (4.1)
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Chapter 5

Geometry Discretization

The spatial discretization of the domain is a crucial step in computational
fluid dynamics and often takes the majority of the time spent on case set-
up. The governing equations are discretized and solved at each subdomain,
thus the computational grid directly affects the quality of the results. In
this chapter, a broad overview on the parameters used to evaluate a good
mesh is provided first. Eventually, the general meshing strategy will be
presented and some past meshing attempts will be discussed with the aim
of explaining the choices at the basis of the final result used in simulations.
An insight into the Sliding Interface method and the usage of an Arbitrary
Mesh Interface will be provided as well.

5.1 Requirements for a Quality Mesh (applied to
the Case-Study)

It is extremely important to mesh the geometry in a proper way, since poor
grids can increase the discretization errors and turn the adopted numerical
schemes unstable. The key points to be taken into account are the problem
geometry, the flow field and the requirements of the algorithm. The final
computational grid is always a compromise between the accuracy of the
solution and the computational cost involved. Indeed, these are opposed
benefits and their balance largely depends on the level of refinement of the
mesh.

The solution for achieving both accuracy and moderate cost is to select
the most meaningful regions from the aerodynamics point of view and in-
crease the mesh resolution in those subdomains only. Indeed, regions with
high gradients are the ones to be refined, such as leading edges, boundary
layers, shear layers, shock regions.

For the case-study under investigation, the most telling subdomains are
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the layers adjoining the blades, where the impact with the flow occurs and
turbulence is generated. However, as stated above, not only should the mesh
refinement be based on the geometry, but also on the aerodynamic problem.
In other words, not all the meshes realized at the boundaries of an airfoil
profile are identical, but they also adapt to the physical problem (how the
flow interacts with the blade itself).

Figure 5.1: Mesh refinement about the turbine blades

This point is especially important for the case on hand, since the turbine
rotates and, as a consequence, the flow impacts each blade at any angle of
attack. More precisely, let us consider the very common case-study of an
airfoil invested by wind, which arrives at an angle of attack α = 0◦÷ ≈ 30◦

and let us suppose that the fluid regime is laminar. For this case, a good
mesh is achieved by just refining the region closest to the leading edge.

For the specific case of this thesis, instead, this is not enough, since the
two sides and the trailing edge also require a high level of refinement and
actually this refinement needs also to be extended to the wake downstream
of each blade, where turbulence is generated. After all, the study of the
flow turbulent behavior after impacting the turbine is the goal of this thesis.
Fig. (5.1) provides a slice of the 3D final mesh, which shows how the mesh
refinement has been applied not only to the airfoil boundaries, but also to
the whole annulus highlighted and, more widely, to the entire domain inside
the external circumference (in red).
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Figure 5.2: C-grid mesh structure for the blade

For the same reasons, a C-grid mesh arrangement has been chosen for
the the blade region, as shown by Fig. (5.2). In fact, this mesh strategy
–highlighted by the red connectors– differs from other techniques, such as
the O-grid applied to airfoils, because it allows a high refinement level of
the whole airfoil boundary and, at the same time, a good accordance with
both the overall mesh domain and the physics of the problem. For instance,
at the trailing edge, the cells align with the fluid flow, instead of arranging
accordingly to circles all around the airfoil. This adaptation of the grid to
the flow stream direction (and above all, to the flow physics, in terms of
properties’ variation) definitively helps the accuracy of the results.

Figure 5.3: Example of O-grid arrangement
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This requirement is often indicated as body/flow conforming, i.e. the
mesh should properly follow the shape of the object and/or the flow. Among
other things, for instance, it implies good cell orthogonality with respect to
the wall boundaries and suitability with the circular overall mesh arrange-
ment along the annulus highlighted in Fig. (5.1).

Other indicators for the mesh suitability are the non-orthogonality, the
skewness and the aspect ratio. The first parameter straightforwardly mea-
sures the non-orthogonality between subsequent sides of adjacent cells. In-
deed, orthogonal cells are preferred. The second parameter, instead, mea-
sures how much each cell deviates from a perfectly equiangular one (for in-
stance, an optimum condition for a quadrilateral cell would be angles close
to 90◦). In general, cells should not be too stretched diagonally, with very
acute angles. In the end , the third parameter is the ratio of the longest to
shortest side of a cell, and should better approach value 1. An AR � 1 is
only used for boundary layers, as wall functions do require a mesh refine-
ment. Therefore, at the walls the cells are usually lengthened alongside the
object profile and gradually increase their thickness towards an optimum
AR. Actually, there is still a condition to be added for a good mesh. This
requirement is smoothness: for instance, no sudden jumps should occur in
the side length of adjacent cells.

Figure 5.4: Skewness; Aspect Ratio; Smoothness

Fig. (5.4) provides a simple illustration of these three indicators, which
are fundamental for a good mesh. Indeed, they widely conditioned the
final mesh for the analyzed case, thus their definition is very important to
understand some of the choices made, which will be discussed later on in
this chapter.
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5.2 Meshing Strategy

The mesh has been realized with the mesh generator Pointwise R©, by start-
ing from a geometry file supplied in the Stereolithography format (STL).
The final grid includes ≈ 45 M volume cells. It is perfectly mapped and
hexahedral. As already stated in Ch. (4), only half of the fluid domain has
been simulated, since the geometry is perfectly symmetrical.

Figure 5.5: Change in resolution across the Arbitrary Mesh Interface

Moreover, the domain has been split into a cylinder, which includes the
turbine and rotates with it, and and external outer domain, which is still.
This has been possible thanks to an Arbitrary Mesh Interface, which allowed
handling the interpolations of the results at the cylinder lateral surface. An
insight into this tool will be provided in the next section. This also allowed
discretely switching from a very refined mesh at the inside to a coarser mesh
at the outside, as shown by Fig. (5.5). As will be proved by the results,
this sudden change did not affect the simulation, since it has been observed
that the aerodynamic quantities smoothly vary across this interface to the
extent that it is impossible to notice it in the final solution by looking at
the pressure and velocity fields. Thus, this strategy has definitively turned
out to be a good option.

The outer domain is composed by cells that gradually increase their size
as they get further from the turbine. In particular, at the left end of Fig.
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(5.7), corresponding to the region closest to the outlet section, the cells
exhibit a very high aspect ratio. Nevertheless, despite this low quality pa-
rameter, equations are not affected by it if the flow impacts the cells in a
direction that is perfectly aligned with the cell orientation (in this case, it
is aligned with the stretched sides of the cell). Therefore, since the outer
domain does not move and these cells are far enough from the turbine, the
flow crosses them perfectly along the longitudinal direction, thus the high
aspect ratio does not represent an issue. After all, the huge extension of the
domain has been set to isolate the boundary effects, but turbulence does
not propagate at that distance.

Figure 5.6: Outer Domain (fixed)

Figure 5.7: Detail of the outer domain.
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Let us now focus on the inner domain. By looking at the geometry of the
turbine, it can be noticed that one obstacle is represented by the presence
of the horizontal support (only one in the symmetrical part analyzed). In
fact, sudden changes in the geometry occur along the vertical direction, as
shown by Fig. (5.8).

To deal with this issue, the overall domain has been split in four differ-
ent sub-volumes along the vertical direction and a 3D-grid has been realized
for each of them separately. Precisely, for each block, a 2D-mesh has been
created first and it has eventually been extruded, by also taking into ac-
count a proper refinement in the vertical direction. For instance, along this
direction, the grid is more refined close to the upper/lower faces of the hori-
zontal support, in such a way that a boundary layer is realized for this latter.

In the end, non-conformal meshes at the interfaces have been stitched
together. Each of these static couplings has been achieved with a Sliding
Interface (actually an enhanced version with respect to the one available in
the official OpenFOAM R©distribution), which will be deepened in the next
sections.

Figure 5.8: Geometry horizontal sections
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Fig. (5.9) shows how the moving domain has been split into sub-volumes.
A zoomed view of the non-conformal meshes is, instead, provided by Fig.
(5.10), with details in Fig. (5.11) and (5.12) . Surface 3b is not taken into
account since stitch 3 is identical to stitch 2. The issues related to the stitch-
ing operation will be discussed in the next sections. Some of the attempts
made prior to the final computational grid will also be taken into account,
since they help understand how the issues due to stitching affected the final
grid.

stitch 1

stitch 2

stitch 3 

1a

2a

3a

1b

2b

3b

1a 1b

2a 2b

3a 3b

+

+

+

Figure 5.9: Sub-volumes for the inner domain

5.3 Arbitraty Mesh interface

Since a dynamic mesh is required to allow motion, the domain was split into
a rotating cylinder and a fixed parallelepiped. There are different solutions
to deal with the interface, i.e. to make the results uniform across the com-
mon edge surface.

For instance, these solutions include finite-element based multipoint con-
straint methods [10], interface capture and tracking methods [29] and cell
centered finite volume methods (CCFVM), which are based on a flow match-
ing protocol [18].
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Figure 5.10: Meshes 1a, 2a, 3a
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Figure 5.11: Mesh 2a: details
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Figure 5.12: Mesh 3a: details
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Figure 5.13: Sketch of the Sliding Interface operation

For the case on hand, the adopted strategy is an Arbitrary Mesh Inter-
face. At the common cylindrical interface, the two domains do have distinct
lateral edges, but their positions overlap (this cannot be noticed from the
pictures, since the two surfaces seem to perfectly coincide). Therefore, this
technique allows simulations across these disconnected (but adjacent) mesh
domains, on condition that they are coupled to each other through the
cyclicAMI boundary conditions. This tool does not involve any topological
changes to the adjoining computational grids and, indeed, it operates by
interpolating the computed fluxes at the interface.

For the analyzed case, the AMI tool has performed very successfully,
since no sudden variations in the pressure and velocity field results are vis-
ible at the interface, but properties smoothly varies throughout the whole
domain. This will be shown and discussed specifically in Ch. (8).

5.4 Sliding Interface

As already mentioned, the computational grid for the inner domain (the ro-
tating cylinder) has been realized by stitching together 4 different sub-blocks.
The tool that allows static coupling is called Sliding Interface and operates
by causing topological changes to the adjacent non-conformal meshes to be
stitched.

The way this tool operates is soon explained. Firstly, it distinguishes the
nodes belonging to one surface from the ones belonging to the other one,
since the basic requirement is that the two surfaces must not share com-
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Figure 5.14: Sliding Interface 3D operation

mon points (even if they overlap). The nodes from the surface identified as
slave are then projected onto the master surface, where the cell sides are
rearranged by taking into account also the new added nodes. As the node
clustering is spread over the interface, towards both the two sides, continuity
is restored between the two adjoining sub-volumes automatically.

Fig. (5.15) and (5.16) show the overlapping stitched meshes. They help
figure out the great flexibility allowed by non-conformal interfaces in build-
ing the mesh (increased D.O.F.). Realizing a single block manually for the
inner domain would have been really hard and would have surely led to
worse quality. Indeed, it has been possible to focus on each single 2D mesh
and optimize it, without considering their connections, which have been re-
alized automatically.

Actually, this is not completely true, as the method does involve some
compromise to work properly. The coupling of non-conformal interfaces,
indeed, can sometimes generate very distorted cells that connect the two
domains or warp the adjacent ones that already exist. When exporting the
mesh to OpenFOAM R©, it then turns out that the mesh is not suitable for
proper simulation, since it does not satisfy the requirements of low skeness
and aspect ratio at some cells.

It must be clarified that, by opportunely setting the right tolerances, the
stitch hardly fails. However, with too large tolerances, the result can some-
times not be the accurate one expected. This is the reason why the final
mesh is the result of numerous attempts and some important decisions have
been made prior to it. The most meaningful attempts will now be briefly
illustrated, just to understand the reasons that have led to the final grid.
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Figure 5.15: Details from stitch 1
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Figure 5.16: Details from stitch 2
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Figure 5.17: Blade/support boundary layers overlapping (past attempt)

Let us consider the 2D mesh corresponding to the horizontal support,
whose details have been provided by Fig. (5.12). It can be noticed that there
is no boundary layer at the sides of the support, i.e. the wall-adjoining cells
exhibit an aspect ratio that approaches 1. This feature is intentional and
stems from a precise choice. Indeed, let us consider Fig. (5.17), showing the
overlapping grids realized in a past attempt, and Fig. (5.18), zooming on
the boundary layer for the support grid.

A mesh refinement at any wall is always recommended. However, as
it can be noticed, in this way cells with very different dimensions come in
touch when stitching the two domains. The result will evidently be very
distorted cells, which can cause errors in the numerical results. This is the
reason why the domain corresponding to the horizontal support has been
meshed as shown by Fig. (5.12).

A similar (but alternative) choice could have involved the blade domain,
instead of the support. The reason for which the support boundary layer
has been removed instead of the blades’ one is quite straightforward. Basi-
cally, the boundary layer is important and its absence always leads to a lack
in the result accuracy. By looking at the vertical extension of the cylinder
sub-domains, it can be noticed that the support height is widely smaller
than the blade span. Thus, the error committed by removing the boundary
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Figure 5.18: Boundary layer at the sides of the support (past attempt)
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layer at the support sides is definitively negligible with respect to the error
that would stem from the absence of a mesh refinement at the blade sides.
Moreover, the physical problems is the aerodynamic interaction of the fluid
with the blades, and the supports just represent necessary structural com-
ponents for the turbine.

An alternative that was also taken into account has been to realize
a proper boundary layer for the support and then project the geometry-
adjoining nodes to the inside, up to the blade walls, in such a way that the
boundary layer for this latter stems from the one created on the support.
Even if this solution might seem convenient, actually the mesh quality at
the blades’ sides (at the best one can do) turns out to be still very poor,
which is definitely not worthy. Moreover, by deriving the new boundary
layer from the one at the support sides, the grid becomes extremely refined
at the blades’ wall and the implication is an extremely small δt for the sim-
ulation due to the Courant-number restriction.

Back to the case, after modifying the grid corresponding to the boundary
layer at the support sides, in order to further ease the stitching procedure
(or maybe, for an excess of zeal), other mesh variations have been done. For
instance, Fig. (5.19) shows how the indicated node, connecting five cells
(which could be troubling), has been moved to another location. Indeed,
in the new position, it ends up at the fluid/wall interface, instead of the
interface between two fluid regions to be stitched.

For the same reasons, the trends of the connectors from the two adjoin-
ing meshes have been somehow more evened out. It can be noticed from
Fig. (5.20) that, especially at the blade suction side and downstream of the
trailing edge, the computational grids seem to better agree (they turn out
to be –let us say– less non-conformal) in the final solution adopted with
respect to the previous attempts.

The last (past) attempt that is worth being considered is the one shown
by Fig. (5.21) and Fig. (5.22). Indeed, at the beginning the idea has been
to just refine the annulus that includes the blades. In fact, from experi-
mental results and from the 2D preliminary simulation performed, a main
trend of the blade wakes perfectly according to the blade trajectories could
be inferred. Thus, this option would have allowed saving a number of cells
and at the same time achieving the same high level of accuracy in the results.

Again, the reason why this option has been overtaken is represented by
the difficulties encountered at the stitching step. In fact, splitting the inner
domain into an inner cylinder and an outer hollow cylinder, would have re-
quired to stitch their lateral common sides as well, by further complicating
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Figure 5.19: Example of re-meshing to facilitate the stitching procedure
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Figure 5.20: Re-meshing detail
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the procedure. In the end, the option of a larger number of cells prevailed
in the trade-off.

Alongside with all these considerations, it can be noticed that a very
drastic option could have also been to completely remove the support from
the simulation. The 3D simulation would have still differed from the 2D one
(3D is necessary for turbulent flows) and the numerical approximations due
to improperly-meshed boundary layers would have been avoided. However,
this option has not been taken into account because it is definitively non
realistic. Trivially, an approximated solution confined in some regions of
the computational domain (the ones closest to the support) is better than
a completely different case-study.

Moreover, the absence of a component would have made the simulation
underestimate its interference with the fluid flow, while the risk of an ap-
proximate solution is –for this case– an overestimation of this interaction.
Thus, from strictly the point of view of engineering, as the simulation is
performed to help design and optimize the turbine, it is actually crucial to
take the support into account as well.

In the end, it should be noticed how the choice of focusing on half do-
main (thanks to symmetry) has hugely facilitated and fastened both the
case set-up and simulation. Indeed, on the one hand, it allowed for a drastic
reduction of the total number of cells, but on the other hand it also allowed
considering just one support. In other words, only three couples of adjacent
non-conformal meshes have been stitched together, but the number could
have been the double.
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Figure 5.21: Annulus refinement (past attempt)
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Figure 5.22: Annulus refinement detail (past attempt)
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Chapter 6

Case Set-Up in
OpenFOAM R©

In this chapter, the OpenFOAM R©set-up for the case under investigation will
be discussed. It will be first shown how to configure the mesh movement
and define the fluid and turbulence properties. Eventually, the settings
for the turbulence model and solver will be presented, together with the
numerics set-up. In the end, this chapter will deal with boundary and initial
conditions.

6.1 Configuring Mesh Movement

The Sliding Interface method and the adoption of Arbitrary Mesh Interfaces
have already been widely discussed in Ch. (5). The rotational velocity of the
moving domain is set to 41.44 rad/s in subdirectory constant/dynamicMeshDict.
The reference system for the mesh exported from Pointwise R©is already
aligned with the rotor axis, thus the rotational axis is simply set to (0 0 1).

solidBodyMotionFvMeshCoeffs

{

cellZone rotor;

solidBodyMotionFunction rotatingMotion;

rotatingMotionCoeffs

{

origin (0 0 0);

axis (0 0 1);

omega 41.44; // rad/s

}

}

93



94 CHAPTER 6. CASE SET-UP IN OPENFOAM R©

6.2 Fluid Properties

Fluid properties are specified in constant/transportProperties.

Precisely, the value to be defined is that of the fluid kinematic viscosity
ν, which is constant since no heat transfer occurs and the fluid is treated as
incompressible. Indeed, this last assumption holds if the flow Mach number
is lower than value 0.3, which is the case. Thus, even if the turbine is in-
vested by air, which is evidently a compressible fluid, this can be treated as
incompressible for the reason explained.

The value set for ν is 1.55 · 10−5 m2/s.

nu [0 2 -1 0 0 0 0] 1.55 E-5;

6.3 Control of Time and of Data-Reading/Writing

Input data relating to the control of time and reading/writing of the solution
data are specified in the system/controlDict dictionary.

The first specification is the application entree. For the case on hand,
the solver pimpleDyMFoam has been chosen. It consists in a transient solver
for incompressible flows (which is consistent with the explanation provided
in the previous section) of Newtonian fluids on a moving mesh and uses the
PIMPLE algorithm.

The results have been saved at each degree of the rotor revolution. This
means that, by considering the rotational speed of the turbine in [◦/s]:

ω = 41.44 rad/s = 2374.337103 ◦/s (6.1)

the time step duration is:

dt = 4.211701863 · 10−4 s (6.2)

Moreover, the end time for the simulation has been set in such a way that
it allows for approximately 5 complete revolutions of the turbine. Therefore,
if one single revolution takes:

t(1 rev) =
2π rad

41.44 rad/s
= 0.1516212671 s (6.3)

the end time is then set to:

t(5 rev) = 0.7581063353 s ≈ 0.76 s (6.4)
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The maximum Courant number has been set to value 5.

Moreover, it should be noticed that for the specific case investigated,
the system/controlDict dictionary also includes the libraries for the im-
plementation of the functionObjects used to save data for post-processing.

Specifically, the main aerodynamic quantities have been computed, at
every time-step, referring to each single blade, to the whole machine, and
to the planes corresponding to the traverse measurement system used in
experimental tests.

6.4 Numerics Set-Up

The adopted turbulence model is the Dynamic Length-scale Resolution Model,
widely discussed in Ch. (3). This has been specified in the constant/

RASProperties dictionary.

The system/fvSchemes dictionary, instead, sets the numerical schemes
for terms, such as derivatives or gradients in equations, that appear in ap-
plications being run.

For time derivatives, a second-order backward scheme has been chosen.
Indeed, with respect to an Euler scheme, which is very typical for simula-
tions using RANS models (especially for stability), it gives more accuracy
when using DLRM and prevents from numerical diffusion.

Secondly, a second-order LUST scheme (limited, low diffusivity) [30] has
been chosen for divergence ∇· terms (∇ ·UU ).

In the end, a second-order scheme, corrected for non-orthogonality, has
been selected for the laplacian (specifically, for ∇2p that appears in the
Navier-Stokes equations).

In the system/fvSolution dictionary, instead, the parameters control-
ling the pressure-velocity coupling algorithm used for the simulation (PIM-
PLE) are specified as follows:

PIMPLE

{

correctPhi yes;

nOuterCorrectors 50;

nCorrectors 3;

nNonOrthogonalCorrectors 0;

pRefCell 0;
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pRefValue 0;

turbOnFinalIterOnly on;

residualControl

{

"(p|U)"

{

tolerance 1e-4;

relTol 0;

}

"(k|omega)"

{

tolerance 1e-4;

relTol 0;

}

}

}

6.5 Initial and Boundary Conditions

The initial and boundary conditions are specified in each variable file of the
0 directory. For each of them, three entrees need to be set: the dimension,
the internalField and the boundaryField.

The dimension entree will be specified every time a quantity is consid-
ered. Let us focus, instead, on the internalField, which represents – for
each variable – the value for the internal computational grid points to be
set at the initial time of the simulation.

The internalField for pressure is then set to 0 and for velocity to
uniform (14.2 0 0). The initial condition on the turbulent kinetic energy k
is given by:

k =
3

2
(UI)2 (6.5)

where I is the turbulence intensity and U is the flow velocity, which
corresponds to v0 at the initial time. From [7], it can be read that experi-
ments were performed in the wind tunnel at a level of turbulence that was
lower than 1%. For external aerodynamics cases, this information is suffi-
cient to suggest using value I = 0.005 in OpenFOAM R©. Thus the initial
internalField for k is set to:
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k =
3

2
(14.2 · 0.005)2 = 0.0075615 m2/s2 (6.6)

The initial value for the specific dissipation rate ω is set to:

ω = C−1/4
µ

√
k

l
= 3.0240 s−1 (6.7)

In this formula, Cµ = 0.09, k is the value computed in Eq. (6.6) and
l = 0.07L with L characteristic length (for this case, the mid-span length
has been considered).

Figure 6.1: Boundary Conditions: Fixed Domain

Let us now focus on the boundary conditions with reference to Fig. (6.1).
At the inlet section, the condition on pressure is zeroGradient:

∂p

∂n
= 0 (6.8)

while U condition is fixedValue, uniform (14.2 0 0), since the flow
crosses the inlet section at velocity:

v0 = 14.2 m/s (6.9)

in its normal direction.

The condition on k is turbulentIntensityKineticEnergyInlet with
value I = 0.5%, as explained above, while condition on ω has been set to
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Figure 6.2: Boundary Conditions: Moving Domain

turbulentMixingLengthFrequencyInlet with l = 0.1.

By focusing on the outlet section, pressure condition is set to fixedValue,
uniform 0, U and k to zeroGradient and ω to the inletOutlet boundary
condition:

p = 0 (6.10)

∂U

∂n
(6.11)

∂k

∂n
(6.12)

∂ω

∂n
(6.13)

In the end, a symmetryPlane condition has been clearly used for the
domain lower surface, while the conditions for the remaining external bound-
aries (i.e. the upper surfaces and the lateral sides) have been set to freestream,
in order to reproduce the non-confined environment for the air stream.
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With reference to Fig. (6.2), on the AMI patches the cyclicAMI bound-
ary condition has been imposed to couple the static and the rotating meshes,
as discussed in Ch. (5).

Walls, instead, are required to fulfill the no-slip condition, which means:

∂k

∂n
= 0 (6.14)

for the turbulent kinetic energy, and opportune laws of the walls for ω
and νT .
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Chapter 7

Results

The presented project is an ongoing work. Indeed, many factors contributed
to make this case-study very complex: the external-aerodynamic problem-
type, the complex flow aerodynamics, the decision to reproduce a non-
confined environment, the huge number of grid cells involved as a conse-
quence, the challenging operating point chosen to study the turbine behav-
ior, the airfoil-based shape of the machine, the implementation of a new
turbulence model.

The consequence has been a huge computational time required for the
simulation, which – let us say – is the price paid for a higher accuracy in
the results. Therefore, this chapter will show the preliminary results of the
simulation only, which correspond to the transient state of the simulated
time range.

It must be said, however, that despite the solution is still approaching
full convergence, these results are definitely interesting as they clearly prove
the correctness of the set-up (e.g. the validity of the AMI strategy for mesh-
movement) and the suitability of the DLRM as turbulence model for this
and similar cases. Moreover, they already allow inferring useful information
on the fluid behavior, to the extent that a comparison with experimental
results from Dossena et al. [7] can already be sketched out.

7.1 Pressure and Velocity Fields on Symmetry Plane

The case-study is about the behavior of a subsonic flow, which implies that
the upstream velocity and pressure fields continuously rearrange as a func-
tion of the time-dependent downstream aerodynamics. If the downstream
region strictly affects the upstream, then at least the steady-state solution
should be awaited to infer general conclusions on the whole domain.

101
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However, this consideration is not in disagreement with the possibility of
capturing some time-specified states. In other words, even during the tran-
sient state, the simulation allows considering an instantaneous snapshot of
the flow pressure and velocity fields as truthful, on condition that of course
those results are just referred to the time step considered.

That having been said, for the case under investigation, even the instan-
taneous descriptions of the flow properties during the transient state seem to
be on the right track for convergence, as at that time steps the flow behavior
definitely approaches the one physically expected.

Figure 7.1: Pressure field on symmetry plane at t = 0.094342 s

Fig. (7.1) and (7.2) show the pressure field on the symmetry horizontal
plane at time t = 0.094342 s. The values for p shown by the legend are
scaled with respect to the cells with value 0, i.e. p is a relative pressure
and this accounts for possible negative values. Indeed, when dealing with
incompressible flows, no density appears in the momentum equation and, in
simulations, the relevant information becomes the pressure gradients (and
no more the absolute value of pressure).

These plots especially highlight how pressure distributes when the flow
impacts each blade at different angles of attack. As it can be noticed, the
second detail picture from the top in Fig. (7.2) provides the most critical
situation, in which the flow impacts the blade at its suction side. On the one
hand, this condition is crucial from the aerodynamics point of view, as the
kinetic-to-mechanical energy conversion is not efficient and energy is mostly
dissipated. On the other hand, this condition is also critical from the nu-
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Figure 7.2: Details of pressure field on symmetry plane at t = 0.094342 s
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Figure 7.3: Details of velocity field on symmetry plane at t = 0.094342 s
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Figure 7.4: Details of velocity field on symmetry plane at t = 0.094342 s
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merical point of view. In fact, the flow approaches the blade almost aligned
with the axial direction and, in doing so, it impacts the longest sides of the
boundary layer cells, which – as formerly discussed in Ch. (5) – are very
stretched along the airfoil profile to give a good near-wall mesh refinement.

Despite this might cause numerical issues, no particular concern arises
from the case under investigation. In fact, the results are close to the ex-
pected ones. This point (which is evident also in the other plots of both
pressure and velocity) is a valid proof of the mesh high quality.

Fig. (7.3) and (7.4), instead, show some details from the velocity field
results, on the same plane and at the same time step. The vortex production
is evident at the blade walls and is further highlighted by the streamlines in
the plots. Also, downstream of the axis, a first development for a Kármán
vortex street can be noticed, which consists in a periodical pattern of swirling
vortices, generated by alternating fluid separation from the two sides of the
axis.

Similar results have been found for time t = 0.115077 s and are shown
by Fig. (7.5) to (7.9). These plots show the further development of the flow,
thus confirming the descriptions just provided.

Figure 7.5: Pressure field on symmetry plane at t = 0.115077 s

7.2 Turbine Operation Overview

The case under investigation represents a low-load condition, since a tip-
speed ratio λ = 1.5 has been chosen. At this point of the simulation, it is
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Figure 7.6: Details of pressure field on symmetry plane at t = 0.115077 s
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Figure 7.7: Velocity field on symmetry plane at t = 0.115077 s

untimely to infer reliable values for the coefficient of power, which should be
computed by time-averaging the results only once the simulation has reached
a steady state condition. Therefore, no conclusion is possible, even though,
– already from the transient state – the value for Cp seems to position on
the growing-trend portion of Fig. (4.9), as the experiments have evidenced.

However, the aspect that is worth being mentioned is the tendency of
the flow to exhibit the same exact behavior (already in the non-steady con-
dition) that has been highlighted by the experimental tests for a low value
of Cp. Indeed, the flow shows a high tendency to stall as well as a marked
non-symmetrical wake on the planes whose normal vector is aligned with
the axial direction. This situation is crucial, since the variation of the flow
angle of attack (evaluated at the blade leading edge) can increase to the
extent that the fluid detaches during most of the turbine revolution.

These are the features on which this case distinguishes from higher-λ
conditions, together with the accentuated periodical trend of the turbulent
wake. The results for the vertical planes will be shown and discussed in
the next section. Here, instead, it is important to give an overview of the
turbine operation and, specifically, to distinguish two different regions as a
consequence of its interaction with the wind.

A top view of the turbine is provided by Fig. (7.10). When the blades
perform a complete revolution, the interaction with the wind can be roughly
split in two phases: a downwind phase (0 < Y/D < 0.5) and an upwind
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Figure 7.8: Details of velocity field on symmetry plane at t = 0.115077 s
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Figure 7.9: Details of velocity field on symmetry plane at t = 0.115077 s
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phase (−0.5 < Y/D < 0). Of course, the discriminating factor is the rela-
tive position of the blades with respect to the direction of the far undisturbed
air stream.

Figure 7.10: Schematics of turbine operation

As will be shown in the next section, the downwind phase is always the
most critical one, especially for what concerns the issue of fluid stall. The
difference in the angle of attack, whether the blades are crossing one region
or the other, is also at the basis of the non-symmetric turbulence that gen-
erates at the blade tips, which has turned out to be evident from the very
beginning of the simulation.

7.3 Pressure and Velocity Fields on Vertical
Sections Far and Near

Fig. (7.12) and (7.13) show the velocity and pressure fields on both sections
near and far referred to the simulation time-step t = 0.115077 s. Also for
this case, a thorough analysis of these property fields should be carried out
by running the simulations for a number of revolutions after the steady-state
condition has been achieved.

Indeed, a good manner of handling the available information from the
simulation would be to collect data on both velocity and pressure fields at
corresponding positions of the turbine for each revolution. Actually, data
can be sampled three times per revolution instead of one, due to the three-
axial symmetry of the turbine and consequently of the physical problem.
For instance, both the velocity- and pressure-field data can be sampled on
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the measurement planes every time any of the three blades passes through
a specified position. These data should eventually be averaged to obtain a
mean field with respect to time.

This procedure would lead to plots that are expected to be similar to
the ones derived by time-averaging experimental results, which are shown
by Fig. (7.11).

Figure 7.11: Time-averaged velocity field on sections near (top) and far
(bottom) from experimental tests.

Back to the results for the case under investigation, it is important to
specify that Fig. (7.11) and (7.12) cannot be directly compared, since – as
mentioned – the plot from the simulation results is an instantaneous snap-
shot of the velocity field and the picture from experimental tests is the result
of a time-averaging procedure of this property.

Nevertheless, once this point has been clarified, it can be actually no-
ticed that the two representations share some clear common features. First
of all, for the chosen tip-speed ratio, the wake is not symmetric and it mainly
develops in the upwind-phase region.
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Figure 7.12: Velocity field on sections near (top) and far (bottom) at
t=0.115077 s
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Figure 7.13: Pressure field on sections near (top) and far (bottom) at
t=0.115077 s
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It might be supposed that this is trivially due to the fact that for −0.5 <
Y/D < 0.0 the blades rotate against the wind, while for 0.0 < Y/D < 0.5 the
wind blows in the same direction of the blades. Actually, this explanation
is incomplete. Indeed, also for higher tip-speed ratios, the downwind-phase
region is more critical and responsible for higher aerodynamic forces, but
the wake definitely appears to approach a symmetric shape.

To be more precise, it is true that the wake is always non symmetric
and the consideration above accounts for this fact. However, how much this
non-symmetry is pronounced is what really makes the difference.

Therefore, the reason is to be found in the higher possibility – for small
tip-speed ratios – of a dynamic stall. If the fluid is more likely to detach,
there will be a high vortex generation at the blade tips during the downwind
phase of the revolution, which in turn, will accentuate the non-symmetry in
the shape of the wake firstly produced for the changes in the blade angle of
attack. On contrary, during the upwind phase, as blades move against the
wind, a higher lift establishes on the blades and stall is usually limited or
inhibited.

To recap, since the impact between the blades and the wind occurs in
both the upwind- and downwind-phase regions, for any λ condition, the wake
exhibits a double peak. Moreover, in all the situations, the two peaks differ
in their intensity as a consequence of the change in the blade-wind relative
position, which in turn is responsible for different aerodynamic forces in the
two regions. Precisely, the turbine rotation is responsible for a non-evenly
distributed lift, which is stable in the central part of the turbine and unbal-
anced on the two sides. In fact, in the downwind-phase region, this force
component is normally weaker.

Given that all conditions show a non-symmetric wake for this reason,
the relevant feature is, however, that the two peaks of the wake especially
differ for the case under investigation. Indeed, a significant detachment of
the flow occurs at the downwind-phase region of the turbine and involves
most of the machine revolution.

Specifically, in this case, stall is responsible for a non-symmetric shape
that involves almost the whole vertical extension of the wake, while for
higher tip-speed ratios only the tip region is involved. By being the dis-
tinctive factor with respect to other flow conditions, this characteristic then
further proves the similarity between Fig. (7.11) and (7.12). Moreover, it
can be noticed that, in both the two couples of figures provided, this non-
symmetry becomes more evident as the wake extends downstream of the
turbine. Thus, another common characteristic is given by a similar flow
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behavior when switching from the near section to the far section.

Similar considerations on the non-symmetric shape of the wake can be
inferred by plotting (on the same measurement planes) the yaw angle. This
parameter measures the deflection of the fluid at each cell and is defined as:

θyaw = arctan
Uy
Ux

(7.1)

The results for the case-study on hand are provided by Fig. (7.15). A
comparison with the results from the experimental tests is also provided,
but the same criteria for interpretation – as the ones specified above for the
velocity field – hold, i.e. a time-averaged plot should not be confused with
an instantaneous snapshot.

Figure 7.14: Time-averaged yaw angle on sections near (top) and far (bot-
tom) from experimental tests.

The pictures show a very good agreement between the results on the
near section and just a rough comparison can be made for the far plane.
This is not a a contradictory result, and actually it is surprising that the
near -section yaw angles are so similar to each other, as a time-averaged plot
on a number of revolutions at a steady state condition is being compared to
an instantaneous plot.

Indeed, it can be inferred that the flow almost starts deflecting to the
final yaw angle at the very beginning of the motion in the regions that are
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Figure 7.15: Yaw angle on sections near (top) and far (bottom) at
t=0.115077 s
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closer to the machine. This is also another validation of the simulation being
run. On the other hand, the results on the far section can be justified by sup-
posing that the wake still needs time to propagate and stabilize downstream.

7.4 Blade-Transit Frequency and Vortex-Detachment
Frequency

The three-axial symmetry of the turbine involves a cyclic fluctuation of the
main aerodynamic forces (if referred to the whole machine) with a period
that equals 1/3 of the rotor period of revolution.

Fig. (7.16) and (7.17) show the coefficients of lift and drag, computed
for the three blades separately and collected in a sigle graph for each pa-
rameter. It can be noticed that the coefficients for each blade do have the
same frequency of the rotor revolution, if considered separately. Throughout
each period they have a growing trend in their amplitudes for half of the
revolution and a decreasing trend for the other half. This has been already
discussed in the previous section, when explaining why, for instance, the lift
force is not evenly balanced in the two regions highlighted.
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Figure 7.16: Trend of the coefficient of lift for the three blades.

A relevant aspect of these plots is actually that there is a higher-frequency
fluctuation overlapping the lower-frequency one already discussed. Thus,
starting from these figures, an explanation has been demanded. Indeed, a
possible interpretation relates the overlapping fluctuations to the periodic
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Figure 7.17: Trend of the coefficient of drag for the three blades.

unsteadiness of the flow in the regions closest to the blade wall. In other
words, this is the frequency at which vortices detach from the blades.

Let us focus on the coefficient of drag of one single blade. Fig. (7.18)
shows the trend for CD referring to blade 1. Moreover, let us pinpoint
two different values, which fulfill the requirement of being subsequent ex-
tremum values of the curve. To this purpose, t=0.03923 s and t=0.04135
s have been selected, which respectively correspond to CD = −0.04378 and
CD = 0.59324.

Fig. (7.19) and (7.20) compare the flow condition at the two selected
times, respectively in terms of pressure computed the walls of blade 1 and
of velocity around this latter. Both the comparisons clearly highlight the
significant differences among the two situations.

Specifically, pressure is definitely higher at t=0.03923 s in the proximity
of the trailing edge (where vortices are generated) and undergoes a sud-
den reduction at t=0.04135 s. The pressure rise and sudden drop can be
explained with vortex generation and eventual flow detachment. This is,
indeed, confirmed by the velocity field computed on the symmetry plane
portion about the blade. The arrows, whose length is scaled with respect to
the velocity value, clearly allow identifying a vortex, which generates in the
proximity of the blade and then propagates downstream.

To conclude, it seems reasonable to infer that the high-frequency fluctu-
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Figure 7.18: Trend of the coefficient of drag for blade 1. Times t=0.03923 s
and t=0.04135 s are highlighted.

ations evidenced in Fig. (7.17) are related to the vortex unsteadiness in the
proximity of the blade walls.

7.5 DLRM validation

As already mentioned, the case under investigation has also represented a
test-case for validating the new turbulence model. Indeed, DLRM, whose
description has been provided in Ch. (3), has been applied to an external
aerodynamic case for the very first time.

DLRM has turned out to be very performing for the case on hand. The
first aspect that deserves to be mentioned is that the pressure and velocity
fields smoothly vary throughout the whole computational domain and no
sudden variations occur when crossing the Arbitrary Mesh Interfaces used
for matching the moving and still sub-domains.

Fig. (7.21) shows the velocity field on the symmetry plane at t=0.115077
s. The AMI patches are highlighted, but no sudden jump in the fluid prop-
erties is visible.

Secondly, it turns out that this model is able to capture the time-
dependent unsteadiness of the flow very accurately. In particular, the vortex
structures are especially captured in those regions of the computational do-
main where the mesh refinement is higher.
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Figure 7.19: Pressure on blade 1 at t=0.03923 s (left) and t=0.04135s (right)

Figure 7.20: Velocity around blade 1 at t=0.03923 s (left) and t=0.04135s
(right).
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Figure 7.21: Velocity field on the symmetry plane at t=0.115077 s. The
Arbitrary Mesh Interfaces (AMI) are highlighted

Indeed, this is clearly related to the higher possibility that the model
switches to LES if the mesh size is smaller. Nevertheless, an overall general
high accuracy can be evidenced throughout the whole domain.

By comparing the results for the case under investigation to the results
of a similar simulation performed on the same case-study but based on a
standard k − ω SST model, these conclusions become evident. Specifically,
Fig. (7.22) and Fig. (7.23) show the comparison between the two models on
the velocity field. Vortex structures are evidenced by means of streamlines.
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Figure 7.22: Comparison between DLRM and k − ω SST on the velocity
field.

Figure 7.23: Comparison between DLRM and k − ω SST on the velocity
field. Vortex structures are highlighted by streamlines.
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Chapter 8

Conclusions and Further
Work

The aim of this thesis was to investigate the flow field around a H-type Dar-
rieus vertical-axis wind turbine. At the same time, this work presented an
external-aerodynamics test-case for DLRM. This turbulence model operates
in URANS or ILES mode, depending on the comparison of the modeled
scales to what can potentially be resolved by the computational grid and
time-step. The flow is fully turbulent and the machine operation is char-
acterized by a tip-speed ratio λ = 1.5, which corresponds to a low-load
condition.

The project represents an ongoing work. Indeed, the high quality of
the computational grid and its spatial extension (≈ 45 M cells), which has
been necessary in order to reproduce a non-confined environment for the
airstream, involved a very high computational time required by the simula-
tion and the solution still needs to fully converge.

Nevertheless, the analysis of the results on the transient regime was car-
ried out and a good consistency with the expected outputs was observed.
Instantaneous descriptions of the flow velocity and pressure fields, at differ-
ent times of the simulation, revealed a good agreement with the available
results from experimental tests. Specifically, a full comparison was not pos-
sible, since instantaneous plots of the fluid properties cannot be directly
compared to time-averaged measurements. The results, indeed, should be
averaged as well, which is possible only once the solution fully converges.
However, many common features between the two sets of results could cer-
tainly be identified, and they revealed relevant aspects of the fluid behavior.

The pressure and velocity fields computed on the horizontal symmetry
plane provided a very accurate description of the flow. Specifically, the anal-
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ysis illustrated how these properties vary in the proximity of the blade walls
as a function of the relative position between the wind and the blades. In
fact, the angle of attack evolves periodically, as the turbine revolves, to the
extent that the wind impacts the blade at any inclination.

The pressure and velocity fields were also analyzed on two vertical planes,
with normal vector aligned with the axial direction, positioned downstream
of the turbine. Namely, the near plane was located at 0.75 D far from the
turbine axis and the far plane at 1.5 D (D denotes the rotor diameter).

Specifically, the wake extension was analyzed, in terms of both fluid de-
celeration and deflection. The velocity field and the yaw angle computation
at each cell showed a highly non-symmetric shape for the wake, character-
ized by two peaks with different intensity. It would surely be an incomplete
explanation to simply relate this non-symmetry to the different relative mo-
tions between the blades and the wind at different phases of the revolution
(whether the blades move against or in the wind direction). In fact, this
shape was found out to be especially related to the high possibility of fluid
stall in low-load operating conditions.

The non-symmetry regards most of the vertical extension of the wake
on the analyzed planes, as well as most of the turbine period of revolution.
Moreover, it becomes more evident as the wake propagates downstream. All
these features are in good agreement with the results of experimental tests.

From the analysis of the drag and lift coefficients referred to each single
blade during the transient regime, another relevant aspect about the fluid
aerodynamics has been inferred. Indeed, these curves clearly showed two
different-frequency fluctuations overlapping. The lower-frequency fluctua-
tion can be directly related to the rotor revolution, i.e. the properties at
the blade walls undergo variations whose period equals the time for one full
rotation of the machine. The higher-frequency fluctuation in the coefficient
curves, instead, was found to be related to the vortex detachment frequency
at the blade trailing edge. This was deduced by comparing the velocity and
pressure fields at two different times, corresponding to subsequent extremum
values of the higher-frequency fluctuation curve. The pressure sudden drop
and the velocity vectors distribution at the blade pressure side confirmed
this explanation.

In the end, the implemented turbulence model turned out to be very
performing for the case under investigation. Therefore, it can be consid-
ered suitable for external-aerodynamics cases as well. On the one hand,
this conclusion was inferred by observing that the properties smoothly vary
throughout the whole domain, and no sudden changes are visible at the in-
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terface between the still and the moving subdomains (AMI). On the other
hand, the results were compared to a similar simulation on the same case-
study that, instead, adopted a standard k − ω SST model. The validity of
DLRM is evident in terms of both accuracy in the description of the flow
and ability to capture the flow unsteadiness.

As already discussed, this thesis is an ongoing project. Thus, future
work will aim to achieve a deeper knowledge of the fluid behavior, on a
longer simulated time, in other to possibly confirm the results highlighted
by the analysis of the transient regime. Indeed, a number of rotations for
the turbine is required in order to opportunely average the steady-state
results in time and make a full comparison with experimental measurements.
Moreover, it would be definitively useful to investigate other load-conditions
for the turbine operation, to achieve a comprehensive description of the flow
behavior. Unfortunately, the high computational cost of these simulations
is the largest restriction and the eventual work definitively will result in a
long-term project.
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