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Abstract

A distinctive trait of the digital era is the easy accessibility to an enormous

quantity of music content. The Music Information Retrieval (MIR) is a

broad research field with the principal aim of extracting salient information

from the audio signals. In this way, the organization of contents in large

libraries results incredibly facilitated. Music Structural Analysis is one of

the topics in MIR.

The purpose of the Music Structure Analysis is to retrieve the structure

of songs at the largest temporal scale, i.e., its division in structural parts

like the Chorus and the Verse, in automatic fashion. The analysis of the

structure of songs benefits in several areas: for example, the improvement

of the auto-tagging systems, or the generation of audio thumbnails, i.e.,

representative summaries of the song.

Music Structural Analysis mainly focuses on the detection of the tem-

poral variation of some characteristics along the music piece. Among the

characteristics that are commonly used there are the harmony, the timbre

and the rhythm. However, the selection of these features is often a problem-

atic procedure, since it is necessary to know which are the most effective to

perform the task, and consequently build procedures to compute them. The

obtained descriptors are generally called hand-crafted, since they are specifi-

cally designed to represent the sought properties. An alternative approach is

represented by the deep learning techniques, which are able to automatically

obtain an abstract representation of data, without the explicit knowledge of

the salient features to extract.

Since the deep learning techniques have proved to be effective in several

areas, in this work we investigate on their use in Music Structural Analy-

sis. More precisely, we use a Deep Belief Network to extract a sequence of

descriptors that is successively given as input to several Music Structural

Analysis algorithms presented in literature. We finally compare the per-

formance of the obtained descriptors with the commonly used hand-crafted

features.
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Sommario

Un tratto distintivo dell’era digitale è la possiblità di accedere facilmente ad

un’enorme quantità di contenuti musicali. Il Music Information Retrieval

(MIR) è un vasto campo di ricerca con il principale obiettivo di estrarre

informazioni salienti dai segnali audio. In questo modo, l’organizzazione di

contenuti in vaste librerie risulta incredibilmente faciliatata. L’Analisi della

Struttura Musicale è una delle applicazioni del MIR.

L’obiettivo dell’Analisi della Struttura Musicale è di estrarre la struttura

delle canzoni alla più alta scala temporale, i.e., la sua suddivisione in parti

strutturali come il Ritornello e la Strofa, in modo automatico. L’analisi

della struttura delle canzoni porta benefici in alcune aree: per esempio, il

miglioramento dei sistemi di auto-tagging, o la generazione di anteprime

audio, i.e., riassunti rappresentativi di canzoni.

L’Analisi della Struttura Musicale si occupa principalmente di individuare

la variazione temporale di qualche proprietà lungo il brano musicale. Tra le

proprietà che sono comunemente usate ci sono armonia, timbro e ritmo. Tut-

tavia, la selezione di queste features è spesso una procedura problematica, in

quanto è necessario conoscere quali siano le più efficaci per eseguire il com-

pito, e di conseguenza sviluppare procedure per calcolarle. I descrittori ot-

tenuti sono generalmente chiamati artigianali, poiché sono specificatamente

progettati per rappresentare le proprietà cercate. Un approccio alternativo

è rappresentato dalle tecniche di apprendimento approfondito, che sono in

grado di ottenere automaticamente una rappresentazione astratta dei dati,

senza la conoscenza esplicita delle features salienti da estrarre.

Poiché le tecniche di apprendimento approfondito hanno dimostrato la

loro efficacia in diverse aree, in questo lavoro investighiamo il loro utilizzo

nell’Analisi della Struttura Musicale. Più precisamente, utilizziamo una

Deep Belief Network per estrarre i descrittori che sono successivamente dati

in ingresso ad alcuni algoritmi di Analisi della Struttura Musicale presentati

in letteratura. Infine, confrontiamo le prestazioni dei descrittori ottenuti

con le features artigianali comunemente usate.
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Chapter 1

Introduction

The digitalization and the widespread diffusion of the Internet led to the

possibility to access to an enormous quantity of information in a simple and

quick way. An important aspect of such phenomenon is the increasing avail-

ability of music contents. The quantity of songs that are accessible from

the Web is larger than a person can listen to in his life, and consequently

both the music listening experience and the music distribution have radically

changed. The traditional paradigms, in which music dealers and magazines

had a role of mediation between the user and the musical contents, can not

be applied to the current scenario. New approaches to the organization, rec-

ommendation and retrieving are needed. The Music Information Retrieval

(MIR) is an interdisciplinary research field that aims to extract information

from music content. As a consequence, it may be useful to design systems

that can help to organize, understand and search songs into music libraries.

MIR community includes researches in the fields of signal processing, ma-

chine learning, music theory, psychology and psychoacoustic.

The context-based approaches are classical attempts to deal with such

a large collection of data. They consist in manually annotating the music

contents with metadata, which are textual description associated with the

songs, like title, author, genre and so on. However, this strategy lacks in

objectivity (the metadata are generally collected from the users on the Web)

and it does not scale well to large and heterogeneous databases. In fact, this

paradigm requires that a large number of people collaborate to provide the

information about the contents, and it is consequently neither complete nor

flexible. An example of incompleteness is the long-tail phenomenon, i.e.,

few musical contents (generally the most famous ones) are annotated by

many users, whereas no information is provided for the rest of data. As far

as the flexibility is concerned, a so large number of people unlikely quickly
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6 Chapter 1. Introduction

react to the possible evolutions of the task, such as the addition of a new

type of metadata in a tagging system. In order to address these issues, in

the recent years a new kind of approach has been proposed, which aims

at extracting information directly from the music content (content-based

approaches), such as acoustic cues, harmony, mood and genre.

There are two main categories of descriptors of music: Low-level features

(LLFs) and Mid-level features (MLFs). The LLFs are objective information

that are extracted from the signal, like some characteristics of the distribu-

tion of its spectrum. The LLFs are deterministic, and consequently easily

scalable to large amounts of data, but lack in semantics. From the LLFs it

is possible to obtain, through the addition of musicological information, the

MLFs, which are able to capture musical aspects like the melody and the

rhythm.

Such features aim to describe the musical events and their ordered rela-

tionship, which is what distinguishes music from an arbitrary sequence of

sounds. In fact, music presents a, generally hierarchical, structure at various

levels, such as the harmonic and the rhythmic ones. The aforementioned fea-

tures change in accordance with the variations within such structures, and

can consequently be used to perform music segmentation, i.e., the opera-

tion that searches the segments that are homogeneous according to some

criterion.

A typical example of music segmentation task is the Music Structural

Analysis, which aims at finding the structure of songs at the largest temporal

scale, i.e., at the semantic level. The structure sought is defined by sections,

which are meaningful intervals within the song. Examples of sections are the

Chorus or the Verse in Pop Music. For the sake of simplicity, in the rest of

this work we will use Music Structural Analysis and Music Segmentation as

synonymous. The purpose of music segmentation is to find the boundaries

of the aforementioned sections, as well as to group them into sets of similar

sections. Such groups are not assigned a label corresponding to their role in

the structure, since music segmentation is not a classification task.

An efficient music segmentation algorithm can be beneficial in several

situations. For example, it may improve music players devices offering the

possibility to browse through the structural parts, or producing interactive

visualization of musical pieces, or even providing representative summary

of songs (audio thumbnail). The analysis of music structures may facilitate

the automatic creation of remixed versions of songs, and may also improve

the actual content recommendation systems, allowing suggestions made at

the level of the structural parts.

As said, the music segmentation procedure consists in searching segments
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that are homogeneous respect to some characteristics, and a measure of

similarity is consequently needed. A common approach is to provide the

representation of songs as sequence of LLFs/MLFs, which are then pairwise

compared. The quality of the comparison strongly depends on the ability of

the features to describe the audio signal in term of its salient properties. Tra-

ditionally, specifically-designed signal processing procedures are exploited to

extract such features, which are for this reason called hand-crafted.

However, two main problems characterize this approach. The first one is

that it is necessary to precisely know which properties of the audio signal

are the most appropriate to address a given task. The second one is that,

even in the case of perfect knowledge of the task, the descriptors may not

be able to completely represent the sought properties.

Thus, the problem of feature selection, which is common also in other

machine learning tasks, has been addressed in the latest years by means of

the deep learning techniques, which allow to avoid the hand-crafted feature

extraction. Deep learning techniques are in fact able to extract an abstract

and multilayer representation of data directly from the signal. The capa-

bility to obtain this type of representation is similar to the human brain

problem solving mechanism, which consists in dividing a problem into sub-

problems and represent information in hierarchical fashion, with increasing

abstraction. With a deep learning architecture it is possible to extract salient

features from the signal in an unsupervised fashion to obtain a rather gen-

eral representation of data, i.e., not task-dependent. A supervised phase can

then be added in order to tune the low-level representation toward a specific

target.

In this work we exploit the deep learning techniques to provide an ab-

stract representation of music, in order to use it for the music segmentation

task. The purpose is to overcome the aforementioned issues related to the

hand-crafted features selection, by extracting a low-level representation di-

rectly from music data. The obtained features can then be compared with

the traditional ones, using several state of the art music segmentation algo-

rithms.

In particular, we train different topologies of a deep learning architecture,

the Deep Belief Network (DBN), in unsupervised fashion, obtaining a general

and not target-oriented features from the data. We then include a supervised

phase in order to make the features specific for the music segmentation task.

Finally, we use four music segmentation algorithms presented in literature

to do a comparison between the traditional and the DBN-based features.

In the Chapter 2 we review the literature in both Music Segmentation

and Deep Learning. The Chapter 3 is devoted to the presentation of the
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theoretical background and the tools that are used in this work. In Chapter

4 we present our system, which includes the features extraction phase and

several segmentation algorithms. In Chapter 5 we show and discuss the

results obtained with our approach, comparing them with the results of the

state of the art. Finally, in Chapter 6 we present the conclusions and the

possible future development of this work.



Chapter 2

State of the Art

In this chapter we provide an overview of the literature in the two main

topics of the thesis: Music Segmentation and Deep Learning.

In Section 2.1 we describe the task of music segmentation. In particular,

we explain how the music segmentation process requires a feature extrac-

tion phase, which is described in Section 2.1.1. Next, we present the two

main categories of segmentation algorithms, respectively in Section 2.1.2 and

Section 2.1.3. Finally, in Section 2.2 we introduce the application of Deep

Learning techniques in the Music Information Retrieval field, and how they

can be beneficial in extracting salient features for the music segmentation.

2.1 Music Segmentation

In Section 2.1.1 we show the extraction of the low-level features that have

been proven to be effective for the music segmentation task. Then, we

present the two main categories of segmentation algorithms, which perform

the structure analysis by considering different principles of segmentation.

In [1], indeed, it is stated that the main principles are the homogeneity,

the contrast, the repetitions, the temporal order and the variations. In

Section 2.1.2 we present the state-based methods, which search the music

structure in terms of homogeneity and contrast, whereas in Section 2.1.3 we

describe the sequence-based methods, which search the music structure in

terms of repetitions, temporal order and variations.

2.1.1 Feature Extraction

In [2], a conducted experiment shows that people, when performing a mu-

sic segmentation task, tend to give more relevance to timbre, harmony and

rhythm. Consequently, signal processing strategies are exploited to extract

9



10 Chapter 2. State of the Art

from the audio signal the low-level descriptors that better capture the afore-

mentioned properties. The feature extraction is performed for each frame

of the song.

As far as harmony is concerned, the most often used descriptor is the

Harmonic Pitch Class Profile (HPCP) [3, 4, 5], which accounts for the dis-

tribution of energy over the musical notes, regardless to the octave. However,

HPCP is negatively affected by key-transposition, which commonly occurs

in songs. In [4] Nieto et al. compute the 2D-Fourier Magnitude Coeffi-

cients on a HPCP representation, obtaining a feature robust with respect to

key-transposition.

As far as timbre is concerned, the Mel-Frequency Cepstral Coefficients

(MFCCs), which describe the spectral envelope of the signal, are generally

computed. MFCCs have been initially applied in the field of speech recogni-

tion [6], but have proven to work well in several music information retrieval

tasks [7, 8], including music segmentation [9, 10, 11].

As far as rhythm is concerned, a common descriptor is the rhythmogram.

Rhythmic patterns are connected to note onsets, which are detected by a

function called perceptual spectral flux (PSF). From the autocorrelation of

the PSF it is possible to derive the rhythmogram. However, rhythm has not

received as much attention as the harmony and the timbre for the music

segmentation task. To the best of our knowledge, the rhythmogram has

been adopted only once [5].

Once the descriptors have been extracted for all the frames, the song can

be described as a sequence of low-level features, which are dependent on

tempo variations. Analogously to the key-transposition, tempo variations

commonly occur in songs, and two segments may be considered similar even

if they are played with different tempo. In order to make the segments ro-

bust to tempo variations, some solutions have been proposed. A method

to make the features tempo-invariant is proposed in [12], where the issue

is addressed making the features beat-synchronous, i.e., averaging the de-

scriptors on intervals whose length is variable and synchronized with the

tempo.

The obtained feature sequence is generally used to compute the Self Sim-

ilarity Matrix (SSM), a matrix collecting the similarity between all the pairs

of frames, by means of a distance measure computed over the corresponding

features. SSM is introduced in [13], and it is exploited in several segmenta-

tion algorithms [3, 13, 14]. In [15] the SSM is computed over some tempo-

scaled versions of the same song, obtaining robustness to tempo variations.

There are some issues in regard to the extracted low-level features. First

of all, they are just loosely related to the properties that they aim to capture
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[16]. Moreover, their design has to face the conflicting goals of sensitivity to

segment changing from one side, and robustness to variations among similar

segments from the other side [15].

We see in Section 2.2 how deep learning techniques may address the two

issues, by extracting an abstract representation of data.

2.1.2 State-based

The state-based approaches search groups of frames that are homogeneous

with respect to some acoustical properties. Hence, they are particularly

effective with songs whose acoustic properties do not significantly varies

within sections [14].

In the state based-approaches, two main phases can be identified: the de-

tection of the instants that define sections (boundaries) and the clustering of

similar sections. Generally the two sub-tasks are sequentially accomplished.

A common method to estimate boundary positions is based on the novelty

curve. Such approach consists in computing a measure of distance between

all the adjacent frames. The operation can be performed either on the

main diagonal of the SSM [17] or directly on the feature sequence [18]. The

result is the novelty curve, from which boundaries are estimated, e.g., by

thresholding [19, 17]. However, this technique may lead to an issue known as

oversegmentation, i.e., too many boundaries are found. In [14] such problem

is addressed by means of the Non-Negative Matrix Factorization applied

to the SSM; the capability of this matrix factorization to yield part-based

representation of data is exploited to cluster consecutive segments previously

obtained from the novelty curve, which are merged as one single segment.

The NMF can be modified with the addition of the convexity constraint,

which makes the structural parts more clear in the decomposition matrices.

In [20] the Convex Non-Negative Matrix Factorization (C-NMF) is used to

detect boundaries.

A common strategy to perform the clustering task consists in using statis-

tical and algebraic operations. In [21], for example, it is defined an algorithm

that realizes the boundaries extraction phase dividing the feature sequence

into fixed-length contiguous segments. Each one of the resulting segment is

then statistically modeled by means of a Gaussian distribution, and com-

pared to all the others. Finally, similar clusters are merged in hierarchical

fashion. In [22] an analogous statistical model is applied to the segments

obtained with the novelty approach. After that, segments are pairwise com-

pared, yielding to a segment-indexed SSM, which is much smaller than its

frame-indexed counterpart; the reduced size of the new matrix makes easier
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the application of another type of matrix factorization, the Single Value De-

composition (SVD). SVD has many applications [23], including the image

segmentation, and it is consequently appealing when dealing with the SSM,

which can be treated as an image representing structural information. Such

factorization produces a certain number of elements, each one accounting

for a specific cluster, and in addition corrects the oversegmentation errors

produced in the previous phase.

Boundaries extraction and clustering are also jointly carried out in [24],

where a MFCC sequence is the input of an Hidden Markov Model (HMM).

However, the sequence of states obtained applying the Viterbi algorithm

to the HMM exhibits oversegmentation. To address this problem, in [25]

the author finds an initial set of clusters from the SSM, from which a new

sequence of features is derived; the HMM is then trained over this new

sequence, obtaining a substantially reduced number of segments.

In [26] the Dynamic Texture Model (DTM), which is an HMM-like tool in

which the hidden states assume continuous instead of discrete values, obtains

better results with respect to the HMM, in the music segmentation task. The

DTM is able to represent smoother state transitions, and it consequently

captures the higher-level dynamics of the audio, like its rhythmic qualities

and its temporal structure.

2.1.3 Sequence-based

The sequence-based methods search repeating patterns within the feature

sequence, and are for this reason also called repetition-based. Differently

from the state based methods, the temporal order of the features is a cru-

cial point in sequence-based algorithms, since two subsequences cannot be

considered similar if the order in which their elements appear is not the

same.

Also the repetition-based methods work with the SSM, in which repeti-

tions appear as stripes parallel to the main diagonal. Unfortunately, it is

not always easy to detect them, due to distortions introduced by several

factors, like variations in dynamics and timbre, or execution of note groups,

modulation, articulation, and tempo progression [15, 27]. For this reason,

the common strategy consists in enhancing the quality of the SSM by means

of two typical image processing techniques: morphological operators and fil-

tering. Morphological operators are used in order to fill small breaks and to

remove too short line segments [28, 29], while filtering is used for noise re-

duction [12, 30, 31]. The tempo-invariant features described in Section 2.1.1

prevent the stripes to be not perfectly parallel to the main diagonal of the
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SSM.

After the enhancement of the SSM, it is possible to apply some algorithms

to find the stripes. In [32] the authors interpret the value corresponding to

each entry of the SSM as a probability value, and define a transition cost.

The Viterbi algorithm is then used to find the optimal paths, which likely

correspond to the searched stripes. Another method involves the compu-

tation of the Hough transform, a tool used to detect straight lines in the

image processing field. In particular, in [33] the Hough transform is com-

puted on the SSM derived from an HMM-model of the audio. An alternative

is presented in [34], in which pattern recognition techniques are used to find

repetitions directly on the feature sequence.

2.2 Deep Learning in Music Information Retrieval

Deep learning architectures are machine learning techniques inspired by the

structure of the mammal brain, and intend to reproduce its problem solving

approach, which consists in organizing the external stimuli in hierarchical

fashion, with progressively higher abstraction [35]. The purpose is to extract

descriptors that are close to the way humans organize information, so that

to overcome some issues related to the hand-crafted feature selection. In

particular, in the traditional approach, it is necessary to select which musical

aspects have to be described, and then to find the descriptors that better

accomplish such task. However, even the most appropriate descriptors may

not perfectly capture the sought musical properties, making the expressive

power of the representation rather inadequate, resulting in the need for

complex semantic interpretation method [36].

On the other hand, the abstract and multilayer representation found with

deep learning techniques is appropriate in several artificial intelligence tasks

[37], and as far as music is concerned, a multilayer representation is consis-

tent with the way human brain organizes it in hierarchical fashion. For this

reason, such representation can have a good impact on the MIR systems

performance, which are highly dependent on the quality of the extracted

features.

It is possible to identify two different types of training strategies for the

deep architectures: the unsupervised approach and the supervised approach.

The former is done over a set of unlabeled data, and it aims at extracting

a rather general representation of the data. The latter requires a labeled

set, and makes the network able to extract a target-oriented representation

of data. In [38] it is shown that a type of deep architecture, the Deep
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Belief Network (DBN), can be trained in both unsupervised and supervised

fashion, as detailed in Chapter 3.

The DBN is adopted in the context of MIR, for several tasks. In [39] the

DBN is trained in unsupervised way in order to extract significant low-level

features, which are successively elaborated by a supervised machine learn-

ing system in order to detect whether or not a song is a bootleg, i.e. an

unofficially-recorded and redistributed content. The proposed method out-

performs the state of the art, showing that features directly learned from

music might better represent audio than the heuristically designed. A DBN

sequentially trained in unsupervised and supervised way is successfully used

also in [40], with the purpose to learn emotion-related features. In [41] the

same approach is adopted, in order to perform the task of genre recogni-

tion and auto-tagging, obtaining better results with respect to the MFCC

features.

In [42] deep learning is employed for music segmentation. In particular, a

Convolutional Neural Network (CNN) is trained in supervised fashion and

employed for the task of boundary detection. The results show a substantial

improvement with respect to all the others boundary detection techniques.

However, deep learning techniques have not yet been employed for both the

tasks of boundary detection and clustering. In this work we use a DBN,

trained in both unsupervised and supervised way, to find a representation

of music pieces. We then use such representation as input for some segmen-

tation algorithms present in literature.



Chapter 3

Theoretical background

In this chapter we present the theoretical background and the tools we need

to develop our project. Initially, we focus on how signal processing tools are

used to analyze the audio signal and to obtain descriptors of relevant acoustic

properties. In particular, we present two widely adopted descriptors, the

Harmonic Pitch Class Profile and the Mel-frequency Cepstral Coefficients,

respectively described in Section 3.1.2 and Section 3.1.3.

Then, we show some basic music segmentation tools. We describe the Self

Similarity Matrix, which collects the structural information of a song, and

the Novelty Curve, which is used to detect boundaries.

Finally, we introduce some machine learning techniques, showing how

they can be used to extract a representation of the input data. In particular,

we describe the neural networks and the deep neural networks.

3.1 Signal Processing Tools

In the MIR field, signal processing strategies are exploited to analyze the

audio signal in order to extract low-level descriptors, which are able to de-

scribe specific acoustic cues. This section gives an overview of the basic

signal processing tools used in the music segmentation task, together with

the description of two commonly extracted descriptors. Initially, we focus

on the Short-Time Fourier Transform (STFT), which provides a frequency

versus time representation of the signal, from which the Harmonic Pitch

Class Profile and the Mel-frequency Cepstral Coefficients can be derived.

The former, often referred to as chromagram, captures information on the

harmonic content of the song, while the latter describes its timbre.

15
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3.1.1 Short-Time Fourier Transform

The Discrete Fourier Transform (DFT) is a widely adopted transform used

to compute the frequency-domain representation of a discrete-time signal:

X(ωk) =
N−1∑
n=0

x(n)e−jωkn, k = −N
2
, . . . ,

N

2
, (3.1)

where:

• ωk = 2π · Fs kN is the k-th frequency sample, which is also called bin;

• N is the number of samples of the time sequence;

• fs is the sampling frequency;

• X(ωk) is the frequency content of the signal at k-th bin;

• x(n) is the n-th time sample of the signal.

For wide signals, it is useful to track the frequency content in its evo-

lution over time. However, the DFT does not provide information on the

temporal occurrence of the frequency content, hence the Short Time Fourier

Transform (STFT) is employed.

The STFT is computed by means of a windowing process. The window is

a simple function, with support Nstft (i.e., the interval where the function

is not zero-valued), which slides over the signal with an hop size Nhop. The

result is the division of the signal into a set of frames of length Nstft, which

can be made overlapping if Nhop < Nstft. When the frames overlap, the

obtained representation provides more information on the temporal dynamic

of the signal.

Xr(ωk) =

Nstft−1∑
n=0

x(n− rNhop)w(n)e−jωkn, k = −
Nstft

2
, . . . ,

Nstft

2
,

(3.2)

where:

• x(n− rNhop)w(n) is n-th sample of the r-th frame;

• ωk = 2πfs
k
N is the k-th frequency bin;

• Xr(ωk) is the r-th frame content at k-th frequency bin.
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Figure 3.1: Spectrogram of the song ”You are going to loose that girl” by The Beatles

It is worth to notice that there is a trade off on the frame length Nstft:

the longer are the frames, the higher is the frequency resolution, and the

lower is the temporal one. The frequency resolution of a discrete-time signal

is given by:

4f =
Fs
Nstft

. (3.3)

A spectrum is computed for each frame, providing a frequency versus

time representation of the signal. Since the spectrum of real signal presents

Hermitian symmetry, it is possible to discard the components related to the

negative frequencies without loosing information on it. Since the phase is

not as informative as the magnitude [43], generally only the latter is consid-

ered. A STFT where the magnitude is computed over only the components

related to positive frequencies is referred to as spectrogram. An example of

spectrogram is depicted if Figure 3.1.

3.1.2 Harmonic pitch class profiles

The Harmonic pitch class profiles (HPCP) aims to describe the harmonic

content of a frame. The harmony is related to musical pitches, that have

two dimensions: height and chroma [44]. The former refers to the octave

to which a note belongs, while the latter tells where a note stands within

that particular octave. The HPCP is often referred to as chromagram and

chroma. The chromagram collects the distribution of the signal’s energy

across a predefined set of pitch classes, whose number is generally 12, 24 or

36 [44]. Since the vector represents the note distribution, its components are

also referred to as bin. The common choice is a vector with 12 components,

one for each semitone of the equal-tempered musical scale. In this way each

bin contains the information about a semitone in a certain frame, discarding
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the octave to which it belongs. Various procedures have been proposed to

compute the chromagram; in the following we show the method described

in [44], where the chromagram is used for the task of chord recognition.

A constant Q-transform is computed over the spectrogram of a song.

The constant Q-transform converts the linearly-spaced frequency scale into

a filter bank of geometrically spaced filters, according to the formula:

fk = f02
k
B , (3.4)

where B is the number of filters per octave, and f0 is a reference fre-

quency. The ratio between the center of a filter and its width is constant,

and the result is a logarithmically-spaced frequency scale, which is close to

the human auditory system [45].

The parameters of the constant Q-transform can be tuned in order to

match the tempered scale, in which the frequencies relative to tones are

geometrically spaced, such that the filterbank of the new scale is centered

on the frequencies of the musical tones. Finally, the chromagram vector

is obtained by summing up the contribution of each tone over the all the

octaves:

CH(r, b) =

M−1∑
m=0

|XCQ (r, b+mB)| , (3.5)

where |XCQ| is the magnitude of the Q-transformed frame spectrum, b is

the chromagram bin (b = 1, ..., 12 in our case), M the number of octaves of

the spectrum, and CH(r, b) the chroma coefficient relative to the bin b of

the r-th frame.

Since the chromagram encodes musically meaningful concepts (the tones)

rather than simple properties of the signal, it is considered a mid-level de-

scriptor. In Figure 3.2 it is shown an example of a chromagram. Around

second 60, it is possible to notice that the D tone is the most present. More-

over, since the harmonic pattern present around second 60 is the same at

second 100, the two intervals probably belong to the same structural part.

3.1.3 Mel-frequency cepstral coefficients

The Mel-Frequency Cepstrum Coefficients (MFCCs) encode the timbral

properties of the signal, and are commonly adopted in timbre-based struc-

ture analysis methods [9, 10, 46].

The MFCCs are computed from a modified version of the spectrogram: in

particular, the amplitude is logarithmically transformed and the frequency
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Figure 3.2: Chromagram of the song ”You are going to loose that girl” by The Beatles

linear scale is converted to a logarithmically-spaced one, in order to ap-

proximately reflect the human’s ear perception [47]. The conversion to the

logarithmic frequency scale is obtained with the following equation:

flog = 2595 log10(1 + flin/700). (3.6)

The spectrum is then pass-filtered by a mel-filter bank, depicted in Fig-

ure 3.3, and the energy within each filter is summed up.

The computation of the MFCC is performed on the resulting reduced

Power Spectrum, by means of another Fourier-related signal processing tool,

the Discrete Cosine Transform (DCT). Among the several variants of DCT,

we show how to compute the DCT-II, as found in [48]:

Cx(k) =
N−1∑
n=0

2x(n) cos
( π

2N
k(2n+ 1)

)
, k = 0, 1, ...N − 1, (3.7)

Figure 3.3: Filterbank needed to compute the MFCC
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Figure 3.4: MFCC of the song ”You are going to loose that girl” by The Beatles

where Cx(k) ∈ R is the k-th coefficients of the DCT computed on the

discrete-time signal x(n), and N is the number of samples of the transformed

signal. Generally only the coefficients from 1 to 13 are kept, because they

are considered the most informative [49], while the others are discarded.

Differently from the chromagram in Figure 3.2, in the example of MFCC

depicted in Figure 3.4 it is not easy to find a recurrent timbral pattern.

However, we can notice that the energy of the signal is mostly distributed

in bin 1 and in bin 3.

3.2 Music Segmentation

The music segmentation concerns two subtasks: the boundary detection

and the labeling of similar parts. The boundaries define the sections in

which the song is divided, while the labels are assigned to sections in order

to highlight their similarity. In particular, the same label is assigned to

sections that belong to the same cluster, i.e., the same structural part.

3.2.1 Self Similarity Matrix

The Self Similarity Matrix (SSM) is a square matrix collecting a measure

of similarities for all the pair of frames in which a song is divided. The

SSM has been introduced by Foote in [13] as a tool needed to perform music

segmentation. The similarity between each couple of frames is evaluated by

means of a distance function. High level of similarities (i.e., low measures of

distance) must be assigned to similar frames, so that the SSM can be seen

as an image representing structural information. Ideally, the entries of the
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Figure 3.5: The ideal SSM for the song ”You are going to loose that girl” by The

Beatles

SSM are zero (minimum distance) if the corresponding frames belong to the

same structural part, and are one (maximum distance) otherwise:

SSM(i, j) =

{
0 i-th and j-th frames belonging to the same cluster

1 otherwise

An example of ideal SSM, represented as an image, is given in Figure 3.5.

It is possible to notice that the section around second 60 and the section

around second 100 belong to the same structural part.

In order to compute the SSM relative to a song, it is necessary to convert

it into a suitable sequence of descriptors (i.e., the feature extraction phase).

Then, those descriptors are pairwise compared by means of a distance func-

tion. The three commonly adopted distance functions are:
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Deuclidean(u,v) = ‖u− v‖,

Dcosine(u,v) = 1− uv

‖u‖‖v‖
,

Dcorrelation(u,v) = 1− (u− µu) · (v − µv)
‖u− µu‖‖v − µv‖

,

where ‖·‖ is the euclidean norm, u and v are two vectors (in our case the

descriptors relative to a pair of frames), and µu and µv are the mean values

of such vectors.

Once the distances have been computed for all the couple of frames, they

are reorganized into matrix form. The generic entry of the SSM is given by:

SSM(i, j) = D(xi,xj), (3.8)

where xi and xj are the descriptors of i-th and j-th frames, and D(·) is a

measure of distance (normalized between 0 and 1). If the distance measure

is symmetric, the resulting SSM is symmetric too.

The SSM changes according to both the descriptors and the distance

measure. In the following we show some SSMs computed with the above

mentioned distances, for a chroma representation (Figure 3.6a, Figure 3.7a,

Figure 3.8a) and for a MFCC representation (Figure 3.6b, Figure 3.7b, Fig-

ure 3.8b).

3.2.2 Novelty Curve

Given an ordered list of elements, the novelty curve (NC) is a tool used

to measure how much two adjacent elements are dissimilar. In [13] Foote

uses the novelty curve in the field of music segmentation, where such list is

the feature sequence in which the song is transformed. The NC is linked

to the concept of contrast, since it shows relevant peaks when the feature

sequence abruptly changes. A common way to compute the NC involves the

correlation of a kernel along the main diagonal of a SSM:

NC(i) =

L/2∑
m=−L/2

L/2∑
n=−L/2

C(m,n)SSM(i+m, i+ n), (3.9)

where C ∈ RL×L is the kernel. Depending on the value assumed by L,

a different number of past and future samples can be included in the com-

putation of the novelty curve. As far as the value of L is concerned, it is
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(a) SSM computed over the chroma rep-

resentation
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(b) SSM computed over the MFCC repre-

sentation

Figure 3.6: Self Similarity Matrices of the song ”You are going to loose that girl” by

”The Beatles” computed with the euclidean distance

chosen in accordance with the desired temporal scale in the NC computa-

tion. As far as the type of kernel is concerned, the simplest kernel is the

checkerboard one, which models the ideal shape of a boundary. An example

of checkerboard kernel with L = 6 is given in Equation 3.10:

C =



1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1


. (3.10)

In order to give more relevance to the center of the kernel than to its

edges, a smoother kernel, such as the Gaussian one, is commonly adopted.

An alternative method obtains the NC directly from the feature sequence,

by computing the finite differences of adjacent features.

After the computation of the NC, a commonly adopted boundary detec-

tion technique consists in searching peaks within it. Different strategies can

be employed, but in general a peak is considered a boundary if it is a local

maximum and if it is greater than a threshold. In Figure 3.9 we show a NC

computed from the SSM in Figure 3.6a, together with the expected (i.e.,

the true) boundaries. It is easy to notice that the peaks of the curve do not

always match with the ground truth boundaries.
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(a) SSM computed over the chroma rep-

resentation
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(b) SSM computed over the MFCC repre-

sentation

Figure 3.7: Self Similarity Matrices of the song ”You are going to loose that girl” by

”The Beatles” computed with the cosine distance
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(a) SSM computed over the chroma rep-

resentation
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(b) SSM computed over the MFCC repre-

sentation

Figure 3.8: Self Similarity Matrices of the song ”You are going to loose that girl” by

”The Beatles” computed with the correlation distance
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Figure 3.9: The novelty curve computer for the song ”You are going to loose that girl”

by The Beatles

3.3 Deep Learning Networks

3.3.1 Machine Learning

Machine learning is a research field that studies how to provide computers

with the ability to learn from data without being explicitly programmed.

The learning process can be of two different kinds: unsupervised and super-

vised. The former aims at finding the unknown structure of unlabeled data,

while the latter uses a labeled set to model a certain relation between raw

data and the corresponding label.

The dataset is commonly split into three parts: training set, validation set

and test set. The first one is used to train the machine learning algorithm.

The second one is used to perform an intermediate testing, which is done

during the training, in order to validate the learnt model. Moreover, the

hyperparameters (parameters of the machine learning model), can be tuned

according to the performance obtained over the validation set. The third

one is completely separated from the learning phase, since it is used only for

evaluating the performance of the model on unseen data.
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3.3.2 Neural Networks

The neural networks are machine learning techniques that make use of archi-

tectures of interconnected elements called neurons. Such nodes implement a

simple, generally non linear transformation of a combination of their inputs.

An example of performed operation is the application of a function to a

weighted sum of inputs:

a = f(
N∑
i=1

wixi + b), (3.11)

where:

• a is the activation of the neuron, i.e., the value that it assumes;

• N is the number of input components;

• xi is the value of the i-th input component;

• wi is the weight associated with the connection between the i-th input

and the reference neuron;

• b is the bias;

• f is generally a non-linear function. A commonly adopted non-linear

function is the sigmoid one, which is computed as:

sigm(z) =
1

1 + e−z
,

where z ∈ R. An example of sigmoid function is depicted in Fig-

ure 3.10.

Neurons are interconnected to form networks. Depending on the way

neurons are linked, as well as the operations that they perform, different

topologies of neural networks can be realized; the usefulness of this kind of

architectures relies on their ability to perform operations like finding the

structure of input data, or classifying them according to some criteria.

In the next sections we focus on a particular category of neural networks,

where neurons are arranged in separate layers. These kinds of construction

are referred to as Deep Learning Architectures, and prove to be particularly

effective in several machine learning tasks [38], due to their ability to learn

rich and complex models of data.
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Figure 3.10: A representation of the sigmoid function, which is commonly used as

neuron activation function

3.3.3 Deep Learning

Deep Learning is a class of neural network topologies that are composed by

several layers of neurons. This type of arrangement aims at reproducing the

human brain, which decomposes external stimuli in a hierarchical fashion

[38]. The hierarchical representation also allows to decompose problems

into subproblems, each associated with one or more abstract concepts. In

order to mimic such capability, each layer of the deep learning architecture

is used to process the information of the previous one, and the obtained

representation of the data is made progressively more abstract.

Different deep learning architectures can be constructed, depending on the

type of adopted layer. In this thesis, we use a Deep Belief Network (DBN),

which is formed by the stacking of several Restricted Boltzmann Machines

(RBM). The RBM is another type of neural network, which belongs to the

family of the energy-based models.

3.3.4 Energy-based models

In the energy-based models, an energy function associates a scalar value to

each configuration of the variables of interest. The function is generally de-

signed in such a way that small energy values are assigned to configurations

that are likely to occur, whereas high values are assigned to the implausi-

ble ones [50]. In this way the function can be used to model a probability
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distribution. A formal relation between energy function and probability

distribution has been proposed in [38]:

P (x) =
e−Energy(x)

Z
, (3.12)

where Energy(x) and P (x) are the energy and the probability associated

with a particular configuration x, respectively. Z is a normalization factor,

and is defined as:

Z =
∑
x̃

e−Energy(x̃), (3.13)

where x̃ is a generic input, and the sum is run over the input space. In

some situations, it is useful to introduce also hidden variables that can cap-

ture salient relationships among the input ones, with consequent improve-

ment of the expressive power of the model. In such model, it is common to

refer to the input variables as to the visible ones. The Equation 3.12 results

slightly modified:

P (x,h) =
e−Energy(x,h)

Z
, (3.14)

where x and Z still denotes the visible variables and the normalization

factor respectively, while h denotes the hidden variables. Since we observe

only the visible variables, we derive the marginal probability:

P (x) =
∑
h

P (x,h) =
∑
h

e−Energy(x,h)

Z
, (3.15)

with the sum that is over the space of all the hidden variables spanned by

x. In order to write a relation similar to 3.12, it is necessary to introduce

the physic-inspired concept of free energy:

FreeEnergy(x) = − log
∑
h

e−Energy(x,h), (3.16)

with the sum that is, again, run over the space of all the hidden variables

spanned by x. The probability of a generic configuration x can now be

written as:

P (x) =
e−FreeEnergy(x)∑
x̃ e
−FreeEnergy(x̃) , (3.17)

where x is a generic visible input and the sum is over the input space.
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A training phase is needed to learn the parameters that better models

the above-mentioned probability distribution. If the structure of the model

is known and the energy function belongs to a family of functions parame-

terized by the model parameters, it is common to perform an unsupervised

training that maximizes the empirical log-likelihood of the training data:

arg max
θ

1

|D|
∑
x̃∈D

logP (x̃) , (3.18)

where θ are the parameters of the model, x̃ is a generic training data, D

is the training set and |D| is the number of elements in the training set. A

very common optimization algorithm is the steepest descent one, an iterative

numerical method that searches the minimum of a function following the

direction of its negative gradient. However, the problem in Formula 3.18 is

in the form of a maximization, so that the minimization is performed on the

negative log-likelihood [38]:

arg min
θ

1

|D|
∑
x̃∈D

− logP (x̃) . (3.19)

In the energy-based models with hidden units, the gradient is computed

as [38]:

∂ logP (x)

∂θ
= −∂ log FreeEnergy(x)

∂θ
+
∑
x̃

P (x̃)
∂FreeEnergy(x̃)

∂θ
. (3.20)

As we said, the steepest descent algorithm follows the direction of the

negative gradient. However, since we are trying to model the distribution of

a training set, the above gradient is replaced by the average of the gradient

itself:

EP̂

[
∂ logP (x)

∂θ

]
= EP̂

[
∂FreeEnergy(x)

∂θ

]
−EP

[
∂FreeEnergy(x)

∂θ

]
, (3.21)

where P̂ is the distribution of the training data, and P is the distribution

of the input variables (i.e., the probability distribution of the elements in

the input space). Therefore, if we could infer the distribution of the input

variables, and if we could tractably compute their free energies, we would

obtain an estimator of the log-likelihood gradient. In the following section

we describe how this problem is addressed when the energy-based model is

the Restricted Boltzmann Machine.
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Figure 3.11: A representation of RBM

3.3.5 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a stochastic neural network

which is composed by a visible layer v and a hidden layer h. The two layers

are fully connected, whereas no connection exists among the units in the

same layer. A representation of RBM is shown in Figure 3.11. The RBM is

trained (generally in unsupervised fashion) in order to become a generative

model, i.e., a system able to model the joint probability of its variables.

The hidden layer h provides a representation of the visible input v, and the

values of both layers define a particular configuration of the network. If the

RBM is successfully trained, it provides a closed-form representation of the

distribution underlying the training data.

Since the RBM belongs to the family of energy-based models, it is char-

acterized by an energy function. The energy function of the RBM (with N

visible units and M hidden units, in the following example), is linear in its

free parameters, and is defined as:

Energy(v,h) = −b>v − c>h− h>Wv, (3.22)

where > indicates the transpose operation, W ∈ RM×N is the matrix of

weights of connection between the visible and hidden layers and b ∈ RN×1,
c ∈ RM×1 are the bias vectors, respectively for the hidden and input layers.

Since the RBM presents also the hidden variables, it is characterized by a

free energy function:

FreeEnergy(x) = −b>v −
∑
i

log
∑
hi

hie
hi(ci+Wix). (3.23)

In [38] it is shown that, if the energy-based model is the RBM, the negative
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log-likelihood gradient can be written as:

∂ logP (x)

∂θ
= −

∑
h

P (h|x)
∂Energy(x,h)

∂θ
+
∑
x,h

P (x,h)
∂Energy(x,h)

∂θ
,

(3.24)

where the first summation is run over the hidden space spanned by the

input variable, while the second one is run over the whole input space. The

energy functions are computed as in Equation 3.22, from which it is possible

to analytically obtain the partial derivatives. Unfortunately, we can not do

the same to obtain the probability distributions, and we need a way to

sample them. A sample of P (h|x) can be analytically computed, due to the

lack of connections between visible and hidden units in the RBM:

P (h = 1|x) =
∏
i

P (hi = 1|x) =
∏
i

sigm(c + Wx). (3.25)

In order to compute a sample of P (x,h), it is possible to employ a Monte-

Carlo sampling procedure, such as the Gibbs sampling, which is particularly

suitable for the RBM architecture [51].

More precisely, the joint distribution of N variables is obtained by running

a Monte Carlo Markov Chain (MCMC) to convergence. Each node of the

chain represents one of such variables, and the convergence is asymptotically

guaranteed. In our case, these variables are represented by the set of visible

and hidden units of the RBM, and the transition operator of the Markov

Chain is the Gibbs sampling. In the generic i-th Gibbs steps, it is computed

P (xi|x−i), which is the probability associated with the i-th random variable,

conditioned to the values assumed by all the others.

The MCMC is initialized by picking an input x0 from the training distri-

bution P̂ . Then, its hidden representation h0 is computed from the model

distribution as:

h0 = sigm(c + Wx0).

Due to the symmetric structure of the RBM, another sample of the visible

units is derived as:

x1 = sigm(b + W>h0).

The procedure can be repeated for the desired number of Gibbs steps,

but this is a very expansive operation. In order to overcome such problem,

the Contrastive Divergence (CD-k) algorithm has been proposed in [52].

The CD-k algorithm introduces two approximations, which allow to obtain

very good results even without waiting the convergence of the chain. The

approximations are the following:
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• the sample is obtained after k steps of sampling, i.e., without waiting

the complete convergence of the MCMC. In particular, one step has

shown to be sufficient to achieve good results (CD-1) [38];

• the expectation EP

[
∂FreeEnergy(x)

∂θ

]
is replaced by a single sample, i.e.,

the free energy is computed only for one visible variable from the input

space.

Thus, the steps of the CD-1 algorithm become:

1. given a visible input x0, compute Q(h0 = 1|x0), i.e., the probability

that the hidden nodes assume the value of 1, given the visible ones:

Q(h0 = 1|x0) = sigm(c + Wx0);

2. from Q(h0 = 1|x0) perform a sampling for each hidden units, in order

to obtain a sample h0;

3. do the same operation for every visible nodes, in order to obtain a

sample x1, starting from h0. P (x1 = 1|h0) = sigm(b + W>h0);

4. then, find again a sample h2 by sampling Q(h1 = 1|x1) = sigm(c +

Wx1);

5. finally, update the parameters of the network by means of the steepest

descent algorithm:

W←−W + ρ(h0x>0 −Q(h1|x1))x>1 ,

b←− b + ρ(x0 − x1),

c←− c + ρ(h0 −Q(h1|x1)),

where ρ is the learning rate used in the steepest descent algorithm;

6. stop if the training has been performed for the desired number of

epoch, otherwise go to step 2.

Notice that the average gradient of the log-likelihood is composed by

two terms, one directly related to the training examples and one related to

the input space, which is sampled by means of the Contrastive-Divergence

algorithm. The training phase is consequently based on sampled examples

that are generated by a non-optimized model. However, the two kinds of

samples are treated in a different way. In fact, in the training phase we

attempt to shape the energy function such that it assigns lower values to

training examples and higher values to samples from the model. The model



3.3. Deep Learning Networks 33

RBM1

RBM2

RBM3

v1 v2 v3 vM

h(1)

h(2)

h(3)

h
(3)
1 h

(3)
2

h
(3)

H(3)

h
(2)

H(2)

h
(1)

H(1)h
(1)
1 h

(1)
2

h
(2)
2h

(2)
1

v

Figure 3.12: A representation of DBN

is trained in order to recognize training examples from sampled examples,

and to model the probability distribution of the former with respect to the

latter. This makes the RBM able to generate samples which are more similar

to the training examples, and to provide an effective representation of the

input.

In the following we show that the learning phase of the DBN involves

a layer-wise unsupervised training of its RBM layers. Since a supervised

learning phase for the DBN may be performed after the unsupervised one,

ρ is often called pre-learning rate.

3.3.6 Deep Belief Networks

A Deep Belief Network (DBN) is a deep learning architecture which is com-

posed by the stacking of several RBMs [53]. A representation of DBN is

depicted in Figure 3.12. Differently from the simple RBM, the multi-layer

structure makes the DBN able to extract more abstract features from the

input data. Each RBM level takes as input the hidden layer of the previous

one. In this way, it is possible to learn features from features and to de-

rive an higher-level representation. The DBN models the joint distribution

between the visible layer and its representation, which is composed by the
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hidden layers of the network, as:

P (v = h(0), h(1), . . . , h(L)) =

(
L−2∏
k=0

P (h(k)|h(k+1))

)
P (h(l−1), h(l)), (3.26)

where h(0) = v is the input data, and it is the bottom of the DBN. The

layer k + 1 stands on the top of the layer k, and L is the number of DBN

layers. The recursive nature of the above formula is motivated by the lack

of connections between nodes of the same layer, that is a property inherited

from the RBM.

The DBN can be trained both in unsupervised and supervised fashion.

With the former approach, the network becomes able to extract only general

features from the input data. The latter is used to obtain target-oriented

features, i.e., a representation of the input data that is suitable for a spe-

cific application. The supervised training is generally performed after the

unsupervised one. In fact, in [52] it is shown that performing a supervised

learning phase starting from a random initialization of the parameters makes

the training more likely to get stuck into a local minimum of the cost func-

tion. However, if the model is initially trained in unsupervised fashion, the

parameters of the network are driven in a better region of the parameter

space, i.e., a region from which the network can more easily converge to a

good solution.

Unsupervised learning for a DBN

The DBN is formed by the stacking of several RBM layers. Each RBM

is a generative model that can be trained in unsupervised way. In [51], the

authors show that a DBN can be trained from the bottom (visible layer)

to the top (last hidden layer) in a layer-wise fashion, which means that the

output of a layer becomes the input of the following one. After the training,

the DBN becomes a more powerful generative model than the simple RBM.

A more structured description of the unsupervised training is given below:

1. the representation h(l) is computed (h(0) = v when l = 0);

2. the l-th layer is trained with the CD-1 algorithm explained in Section

3.3.5, and the parameters W(l) and b(l) are updated;

3. if the training has been performed for the desired number of itera-

tions, the procedure stops and the input of the l+ 1-layer is computed
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from the hidden layer h(l), generally being its mean activations or,

alternatively, its samples.

4. The procedure is repeated for each layer.

The main advantage of the unsupervised method is to make the DBN

able to extract salient features from data, with a training performed over

unlabeled datasets, which are largely available. The extracted features can

be used in several tasks, since they are still rather general, but have an

higher level of abstraction with respect to those obtained with one simple

RBM. The overall unsupervised learning procedure is shown in Figure 3.13.

Supervised learning for a DBN

The purpose of the supervised learning is to obtain a set of network pa-

rameters that makes the DBN able to extract target-oriented features from

the input data. Differently from the unsupervised approach, a labeled train-

ing set is required in the supervised approach. A cost function is defined

depending on the particular task that the DBN is designed to accomplish.

In a classification problem, for example, the cost function measures the

distances between the estimated and the true classes, for a given labeled

training set. Details about how we apply the supervised training to the

music segmentation problem are given in Chapter 4.

The cost function is minimized by means of iterative numerical methods,

and the Steepest Gradient Descent (SGD) presented before is commonly

adopted also here. The minimum is searched moving along the function in

the direction of its negative gradient, and the size of such movement, called

learning rate, is chosen taking into account the trade-off between speed and

accuracy of the convergence. A large step size speeds up the process, as it

reaches more rapidly a region close to the solution, but it likely prevents

the convergence to the optimum. The minimization of the cost function is

Figure 3.13: Diagram of the unsupervised learning
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done by modifying the parameters of the network, and this process is called

fine-tuning.

The phases of the fine-tuning are presented in the following:

1. the network parameters are initialized, either randomly or with an

unsupervised pre-training phase;

2. a representation of the generic visible input v is computed with the

current network parameters θ:

h(1) = T (1)(v),

h(2) = T (2)(h(1)),

...

h(L) = T (L)(h(L−1)),

where T (l) is a function that computes the l-th layer representation

from the previous one. T (l) only depends on the parameters θ(l) of the

corresponding layer, due to the properties of the DBN;

3. a label ŷ = f(h(1), · · · , h(L)) is estimated from the obtained represen-

tation by means of a function f , and a cost function J(y, ŷ) measures

the difference between the estimated label and the true one;

4. the derivatives with respect to all the network parameters (gradient of

the cost function) are computed;

5. all the network parameters are modified. The updating rule for the

generic l-th layer parameter θ at the step k is given by:

θ
(l)
k ← θ

(l)
k−1 − ρ

∂J(y, ŷ)

∂θ(l)
, ∀l = 1, · · · , L,

where ρ is the learning rate;

6. the procedure is repeated from step 2, for the next training example.

The procedure can be repeated for a desired number of epochs, as for the

unsupervised learning.
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3.3.7 The problem of overfitting

In a supervised approach, a machine learning algorithm is trained over a set

of labeled data, in order to predict its output values. However, the algorithm

may be excessively trained, resulting in a poor capability of being general

with unseen data. This problem is commonly referred to as overfitting and

every machine learning algorithm employs several techniques in order to

address it.

Both in the unsupervised and supervised approaches, it is possible to

repeat the training for several iterations (epochs) in order to improve the

power of the model. However, the more epochs are employed, the more

likely the model overfits the training data. For this reason, it is common to

stop the training when the model has not perfectly fit the training data, in

order to be more general. Two main strategies have been proposed for this

so-called “early-stop condition”:

• the learning stops after a fixed number of epochs;

• the prediction performance are periodically computed over the valida-

tion set, and the learning stops when the error over the validation set

starts to decrease.

An early-stopped training phase makes the model more robust to the

noise present in the training set, and consequently more able to extract only

relevant relationships from data.

In this work we train a DBN architecture in both unsupervised and su-

pervised fashion, using a fixed number of epochs as early-stop condition. We

successively use the trained DBN to extract a sequence of descriptors from

a song. The obtained descriptors are then employed to perform the music

segmentation task.
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Chapter 4

System Overview

In this chapter we describe our approach to the music segmentation task.

The main phases of the music segmentation procedure are the feature ex-

traction, the boundary detection and the labeling of similar sections. The

common pipeline of a music segmentation algorithm is shown in Figure 4.1.

The feature extraction phase is performed by means of a deep learning

network applied to a frequency versus time representation of the audio signal.

In Section 4.1, we initially describe how such representation is obtained,

and then we describe the deep learning architecture used to extract relevant

features from it.

Our purpose is to compare the extraction of handcrafted features (chro-

magram and MFCC, in particular) with the features obtained with a deep

learning approach. We test our features with several music segmentation

algorithms proposed in the literature.

4.1 Feature Extraction

In the feature extraction phase, a sequence of suitable descriptors are ex-

tracted from the audio signal. Initially, we compute the spectrogram, which

is a frame-wise representation of the audio signal in the frequency domain.

Figure 4.1: The main phases of the music segmentation task

39
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Figure 4.2: Pipeline of the feature extraction phase

Each frame is then used as visible layer of a DBN in order to extract its

salient features. An illustration of the process is given in Figure 4.2.

In Section 4.1.1 we describe the parameters that characterize the spectro-

gram, and we show how they affect the quality of the music segmentation

task. In Section 4.1.2 we discuss the training of the DBN, both the unsu-

pervised and the supervised ones.

4.1.1 Input processing

In this section we describe the possible inputs of the DBN, aiming at learning

which is the best set of parameters in the computation of the spectrogram.

Then, we use such information to compute the performance with all the

available algorithms. We refer to Chapter 5 for the relative considerations.

Initially we convert the audio signal from the stereo to the mono format,

by means of a simple average applied to the two channels. The audio signal is

characterized by its sampling frequency Fs, which is related to the maximum

frequency Fmax that can be preserved in the conversion between the analog

and the digital domain. The Shannon sampling theorem, in fact, states that

Fmax = Fs/2.

Since in general Fs = 44100Hz, the maximum preserved frequency is

Fmax = 22050Hz. Since the components relative to the high frequencies

may not be as relevant as the lower ones for the music segmentation task

[20], we modify Fmax by reducing Fs to 11025Hz. Such operation, which is

called downsampling, presents the advantage of substantially reducing the

computational effort. We compute the performance of the system, using

both Fs = 44100Hz and Fs = 11025Hz, and we show their qualitative

comparison in Section 5.4.1.

From the (downsampled) audio signal, the STFT is computed. The pa-
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rameters that characterize it are:

• Window function: it is the function used in the windowing process;

• Frame length: it is the number of samples per frame (we refer to the

frame length as Nstft);

• Hop-size: it is the shift size of the windowing process, in samples.

The window function is chosen according to the desired refinement of

the spectrum [56]. Typical choices are the rectangular and the Hamming

windows. The spectrograms computed with the former window are rather

coarse, while those computed with the latter present an higher frequency

resolution [56].

The frame length and the hop-size determine the degree of temporal dy-

namic (i.e., the evolution of the musical properties along the time) captured

by the descriptors, as well as the frequency resolution of the frames, due to

the trade-off between temporal and frequency resolution described in Sec-

tion 3.1.1. We try two combinations of these parameters. In the first case

the frame length and the hop-size coincide, while in the second one the

frame length is larger than the hop-size, so that the frames overlap and the

features can capture both the global and the local properties of the audio

signal.

After the computation of the STFT, the spectrogram of the song is de-

rived, and it is represented by a matrix S ∈ RNs×
Nstft

2
+1, where Ns is the

number of frames of the generic s-th song. All the values of the matrix

are then converted in dB (Ŝ = 20 log10(S)) to resemble the human auditory

system, and normalized between 0 and 1. The purpose of the normalization

is to discard the information on the power of the signal, which may strongly

influence the training phase.

4.1.2 Deep Learning Network

4.1.2.1 Unsupervised Learning

The unsupervised learning aims at discovering the structure of the training

data. In this work we use the DBN that is able, thanks to its layer-wise

architecture, to capture the hidden relations among the input data with an

high level of abstraction. After the unsupervised training, the network is

able to extract a general (i.e., not target-oriented) representation of unseen

data.
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Training dataset creation

The songs used to train the DBN are chosen from the available databases.

The training dataset is then formed as a list of spectrograms, one for each

training song.

The music segmentation task produces an high-level representation of a

song (the division in its sections and the labeling) and, as a consequence, the

labels related to the raw data are song-dependent. However, as explained in

Section 3.3, the unsupervised learning does not require a labeled set, and the

representations of all the songs can be merged. Thus, all the spectrograms,

which are frame-wise representations of the songs, are stacked to form the

overall dataset. The result is a matrix of dimensions NTOT × Nstft, where

NTOT is the total number of frames.

Deep Learning architecture

The deep learning architecture that we use is a Deep Belief Network,

which is characterized by:

• M visible inputs;

• L: the number of DBN layers (i.e., the depth of the network);

• H(l): the number of nodes of the l-th layer, l = 1, ..., L.

The dimension of the network is a crucial point of the learning process.

Given the depth of the network, a DBN with few nodes per layer requires less

computational effort than one with a larger number of nodes per layer, but

may also not be able to capture relevant features from data. We test several

network topologies, and we refer to Chapter 5 for the relative considerations.

The parameters that concern the training are:

• pre-learning rate: it is the learning rate of the Steepest Descent algo-

rithm;

• number of epochs Nep: it is the number of iterations of the learning

phase.

In order to avoid over-fitting (see Section 3.3.7), we use a fixed number

of epochs Nep as early-stop condition.

After the initialization of its parameters, the DBN is trained in an un-

supervised layer-wise fashion, with the CD-1 algorithm explained in Sec-

tion 3.3.6. At the end of the unsupervised learning phase, the system is able

to capture a rather general representation of data.
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4.1.2.2 Supervised Learning

The supervised learning aims at finding a relation between input data and

corresponding label. In our method the data are all the possible pairs

of frames of the song, and the labels are measures of their similarity. In

this work we train a DBN in supervised fashion after an unsupervised pre-

training phase.

Training dataset creation

The music segmentation algorithms are often based on the comparison

of all the pairs of frames. Thus, we define the supervised training set in

such a way that it contains the information of the similarity for each couple

of frames. More specifically, the supervised training set is formed as a set

of elements, each one composed by the spectrogram and the ideal SSM of

a song: the former is represented by a matrix of dimension NK × Nstft,

where NK is the number of frames. The latter is represented by a matrix of

dimension NK ×NK , whose generic entry (i, j) is equal to 0 if the i-th and

the j-th frames belong to the same structural part (i.e., they are similar),

and it is equal to 1 otherwise. Notice that such matrix is the ideal SSM

described in Section 3.2.1.

Cost function definition and training

A crucial point of the supervised learning procedure concerns the set-

up of an adequate fine-tuning strategy. Since several music segmentation

algorithms are based on the computation of the SSM, we propose two types

of fine-tuning, aiming to obtain a set of features from which it is possible

to derive the ideal SSM. The first one is based on the computation of the

euclidean distance between the pairs of descriptors, whereas the second one

is based on a classification layer placed at the top of a deep learning network.

The fine-tuning is realized by means of the Steepest Descent algorithm

described in Section 3.12, which minimizes a cost function through the iter-

ative updating of the network weights. As far as the training parameters are

concerned, there are some rather formal differences with respect to those of

the unsupervised learning. In particular:

• the pre-training learning rate is replaced by the learning rate;

• the minimization is repeated for a fixed number of epochs, which may

be different from that used in the unsupervised pre-training.
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The cost function that we adopt is:

J(y, ŷ) = (y − ŷ)2, (4.1)

where y is the reference label, whereas ŷ is the estimated one. In order

to obtain ŷ, we initially train a DBN in unsupervised fashion. A new deep

learning architecture is successively built by duplicating the DBN, and the

vector uij, which encodes the similarity between the i-th and the j-th frames,

is computed. Its generic k-th entry is:

uij(k) = h
(L)
i (k)− h(L)j (k), (4.2)

where h
(L)
i (k) and h

(L)
j (k) are the k-th components of the last layer rep-

resentations of the i-th and j-th frames, respectively. From the obtained

vector uij, the label is predicted according to the two different fine-tuning

techniques that we propose.

The first one computes the estimated label as:

ŷij =

√√√√H(L)∑
k=1

u2ij(k). (4.3)

ŷij is then normalized between 0 and 1. Notice that such label is the nor-

malized version of the euclidean distance computed between the descriptors.

An illustration of the process is depicted in Figure 4.3.

The second one computes the estimated label as:

ŷij = sigm(wcvij + bc), (4.4)

where wc and bc are the weight vector and the bias (which is a scalar),

respectively, of a one-node classification layer that is added on the top of the

new network. In this second configuration, ŷ is the value assumed by the

classification node, and it is a measure of the dissimilarity between the two

input frames (i.e., the value is 0 when they are similar). Figure 4.4 shows

the overall procedure.

The SSM is usually obtained through the computation of the distance

between each couple of extracted descriptors, as explained in Section 3.2.1.

The second finetuning strategy allows also to compute the SSM by exploiting

the classification layer. The predicted value, in fact, can be seen as the SSM

entry associated with the pair of frames given as input. Thus, in order to

create the SSM, the finetuning based on the classification layer also tries to

model a similarity function.
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Figure 4.3: Architecture defined to estimate the similarity between two input frames

for the finetuning based on the euclidean distance

Figure 4.4: Architecture defined to estimate the similarity between two input frames

for the finetuning based on the classification layer
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4.2 Music Segmentation

The music segmentation task is divided in the two subtasks of boundary

detection and clustering. The boundary detection is the operation that spots

the boundaries of sections within the song, i.e., the time instants when a

section ends and the following begins. The clustering is the operation that

groups together the sections that belongs to the same structural part. The

music segmentation does not perform a classification, so that the assigned

labels do not have a semantics (like Chorus or Verse).

The clustering is not always performed after the boundary detection. In

some cases, for example, the boundary positions are derived from the cluster

assignments. In this work we use the DBN-based features with four state-

of-the-art music segmentation algorithms: Foote [49], Structural Features

(SF) [19], C-NMF [20] and Spectral Clustering (SC) [57](see Table 4.1).

4.2.1 Foote

The algorithm proposed by Foote in [49] is a novelty-based music segmen-

tation algorithm, which works on the Self Similarity Matrix. The algorithm

performs only the boundary detection task.

The main idea of this algorithm consists in performing a correlation of

a kernel along the main diagonal of the Self Similarity Matrix computed

over a suitable representation of the song. The result of the correlation

is the novelty curve. The procedure has been explained in Section 3.2.2,

as it represents a common way to compute the novelty curve. The kernel

is designed in such a way that the correlation takes higher values in the

proximity of a boundary. In the algorithm described in [49] the kernel is

the Gaussian one. Once the novelty curve has been computed and properly

filtered, the peaks are searched in it.

The advantage of the Foote’s algorithm lies in its simplicity, but in con-

trast, the performance are very poor. The inefficiency is mostly due to the

way the novelty curve is computed. The result, in fact, is a rather noisy

Boundary Detection Clustering

Foote Yes No

Structural Features Yes No

C-NMF Yes Yes

Spectral Clustering Yes Yes

Table 4.1: Summary of the tasks performed by the algorithms
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curve, which prevents an effective peak picking phase. In particular, we

have noticed in our experiments that the algorithm presents oversegmenta-

tion. We refer to Chapter 5 for a quantitative evaluation of the problem.

4.2.2 Structure Features

SF, which has been proposed by Joan Serrà et al. in [19], is a novelty-based

algorithm that works on the time-lag matrix, which is a modified version of

the Self-Similarity Matrix, to perform only the boundary detection phase.

In order to derive the SSM, the feature sequence is initially modified in

such a way that it includes some local temporal dynamic. This operation

is performed by replacing each descriptor of the sequence with the con-

catenation of its adjacent descriptors. All the elements of the sequence are

successively pairwise compared and a square matrix is derived. The val-

ues assumed by the entries of such matrix are obtained by means of the

K-nearest neighbors, which is an unsupervised machine learning algorithm.

In particular, the generic entry of such matrix assumes the value of 1 if and

only if the corresponding frames are K-nearest neighbors, whereas the value

is 0 otherwise. Such matrix is then converted to its time-lag version. The

time-lag is a matrix where the rows represent the frame indexes, while the

columns represent the shift, in number of frames, with respect to the index

of the row. The following equations aim to clarify the relation between SSM

and its corresponding time-lag matrix:

SSM(i, j) = D(xi,xj),

TimeLag(i, k) = D(xi,xi+k),

where D is a distance function, whereas xi,xj and xi+k are generic frame

descriptors. k is the shift, i.e., the lag.

The resulting matrix can be seen as a sequence of descriptors, from which

the novelty curve is computed. The boundaries are successively extracted

from the curve, according to a thresholding mechanism: a peak of the curve

is considered a boundary if it is a local maximum and if it is above a,

generally not constant, threshold.

4.2.3 C-NMF

The C-NMF music segmentation algorithm, which has been proposed by

Nieto in [20], exploits the capabilities of the Convex Non-Negative Matrix
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Factorization (C-NMF) to yield a part-based representation of the Self-

Similarity Matrix. Such representation is then used to obtain the structure

of a song.

The SSM is computed over a sequence of descriptors by means of the cor-

relation distance (see Section 3.2.1), and each element SSM(i, j) is replaced

by a value equal to 2SSM(i,j), successively normalized between 0 and 1, and

then factorized. Roughly speaking, a factorization technique allows to find

the approximation of a generic matrix X, which can be written as:

X ≈ FG,

where X ∈ RN×M is the matrix to approximate, and F ∈ FN×R and G ∈
RR×M are the decomposition matrices, with R ∈ N being the rank of the

decomposition. After the decomposition, each element of X can be written

as:

X(i, j) ≈
R∑
k=1

Ak(i, j), (4.5)

where Ak = FkG>k , with Fk and G>k being the k-th column of the matrix

F and the k-th row of the matrix G, respectively.

The Convex-Non Negative Matrix Factorization (C-NMF) is applied to

the SSM, such that SSM ≈ FG, where F ∈ RN×R and G ∈ RR×N . The

C-NMF is the evolution of the Non Negative Matrix Factorization (NMF)

proposed in [14], which forces the decomposition matrices to be positive.

Due to the properties of the NMF, each addend of the summation presented

above is expected to encode the information of a structural part, which

means that a part-based representation of the initial matrix can been ob-

tained. Moreover, the convexity constraint is fulfilled, i.e., each column of F

is a linear combination of the columns of X, where the weights of the linear

combination sum to one. For a detailed description of the C-NMF algorithm

we refer to [58].

After the factorization, the SSM is approximated by the summation of

R matrices, each one encoding the information of a structural part. The

k-means clustering algorithm is applied to the rows of each of these matrix,

with k = 2. A boundary is estimated when two successive frames are clas-

sified as belonging to different classes. Once the potential boundaries for

all the matrices have been obtained, they are combined within a distance

window, so that the close boundaries are merged in their average location.

Thanks to the part-based representation of the initial matrix, it is possible

to know how the energy of each previously found section is spread across

all the structural parts, and to describe the sections in a feature space. All
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the sections are then compared with the Euclidean distance, and classified

as belonging to one of the structural parts. The drawback of the algorithm

is that the number of clusters has to be previously estimated to obtain the

best performance.

4.2.4 Spectral Clustering

The algorithm, proposed by Brian McFee et al. in [57], associates the rep-

resentation of a song with a graph, in which the nodes represent the frames

and the edges measure their similarity. Spectral clustering techniques are

then used to find the structure of the song.

SC uses both the chroma and the MFCC as descriptors. The former is

used to detect similarities between distant frames, while the latter is used to

detect local consistency (i.e., two near frames are generally characterized by

the same timbre). In order to do a comparison with the traditional features,

we replace both the chroma and the MFCC with the DBN-based descriptors.

All the N elements of the feature sequence are compared by means of

the K-nearest neighbors algorithm (see Section 4.2.2), and a binary matrix

R ∈ {0, 1}N×N is obtained. Through the application of signal processing

techniques, R is enhanced to obtain an adjacency matrix, i.e., a matrix in

which the ij-th entry is 1 if and only if the i-th and the j-th nodes of the

graph associated with the song are connected.

The adjacency matrix is successively modified in order to better describe

the relations between pair of nodes (i.e., pair of frames), and the matrix R̂

is formed. In particular, R̂ is not binary anymore, since the values of the

edges become weighted in order to better model the relations among frames.

The process performed to weigh the edges is specifically designed to work

with both the chroma and the MFCC. Thus, among the algorithms that we

use, SC is the most dependent on the traditional features.

The k-means clustering algorithm is then applied to the eigenvectors of

R̂, where k is set to be equal to M, i.e., the number of clusters. The value

of M is estimated according to the desired level of details. Since in the

music segmentation task it is required a detail at the level of frames, M is

chosen as the value that minimizes a cost function related with the frame-

level annotation entropy (we refer to [57] for the details). Clustering and

boundary detection are jointly performed, since the boundaries are simply

estimated as being the changing points of the cluster assignment.
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Chapter 5

Experimental Results

In this chapter we introduce and discuss the evaluation metrics and the re-

sults. In Section 5.1 we show in details the main metrics used to evaluate a

music segmentation algorithm. Then, we describe the datasets that we used

to train the DBNs and to test the performance (see Section 5.2), as well as

the tools that we exploited to implement our system (see Section 5.3). In

Section 5.4 we discuss the parameters used in the features extraction phase.

Then, in Section 5.5 we present the numerical results obtained with the tra-

ditional and with the DBN-based descriptors, both the unsupervised and the

supervised ones. Finally, in Section 5.6 we present some final considerations

about the obtained results.

5.1 Evaluation metrics

In this section we show the metrics that are commonly used to evaluate

the performance of music segmentation systems. There are two families of

metrics: the first one evaluates the boundary detection, whereas the second

one evaluates the clustering.

5.1.1 Metrics for the boundary detection evaluation

As far as the boundary detection is concerned, the similarity between esti-

mated boundaries and the ground truth is evaluated with metrics derived

from the Hit Rate [59], which measures the performance by considering an

estimated boundary as correctly retrieved if it is within a certain interval of

time from the correspondent boundary in the ground truth.

In order to define all the metric related with the Hit-Rate, it is necessary

to provide some definitions:

51
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Time (s)0 25 60 80 115 140 150

(a) Ground truth

(b) Estimated boundaries

Figure 5.1: An example to understand the retrieval metrics

• a correctly retrieved boundary is a True Positive;

• a wrongly retrieved boundary is a False Positive;

• a not detected boundary is False Negative.

The example shown in Figure 5.1 can help to clarify the concepts of True

Positive, False Positive and False Negative. Two measures can then be

defined:

Precision =
|TruePositives|

|TruePositives+ FalsePositives|
;

Recall =
|TruePositives|

|TruePositives+ FalseNegatives|
,

where |·| indicate the cardinality of a set.

The Precision is the ratio of the correctly retrieved boundaries over the

total number of detected boundaries, whereas the Recall is the ratio of the

correctly retrieved boundaries over the total number of the ground-truth

boundaries. Precision and Recall assume values within the range [0, 1].

Since there is a trade-off between Precision and Recall, the Hit-Rate F-

measure has been introduced as a balancing metric. The F-measure is de-

fined as:
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Fα = (1 + α2)
Precision ·Recall

α2 · Precision+Recall
,

where α ∈ [0,∞] is a parameter chosen in accordance with the relevance

given to Precision or Recall. When α ∈ [0, 1] more relevance is given to the

Precision, while when α ∈ [0,∞] more relevance is given to the Recall. In

[60] it is shown that an high value of Precision is perceptually more relevant

than an high value of Recall for the evaluation of segmentation algorithms.

Although in [60] it has been proven that α = 0.58 is the value that properly

balances the perceptual evaluation of Precision and Recall, in this work we

set α = 1, since it is the commonly adopted choice in literature. Notice

that, in the case of perfect matching, the Hit-Rate F-measure assumes the

value of 1.

The Hit-Rate metrics are the F-measure, the Precision and the Recall

computed with an interval of tolerance of ±0.5s and ±3s with respect to

the boundaries of the ground-truth. These intervals are commonly adopted

in the literature. The performance within the 3s interval are always higher

(or, at least equal) than those within the 0.5s interval. In fact, if a boundary

is correctly retrieved within a certain range, it is also correctly retrieved

within a larger one.

5.1.2 Metrics for the clustering evaluation

A cluster is a set of sections that belong to the same structural part. In

order to evaluate the performance, two different structures are compared:

the ground-truth one and the estimated one. The former is usually charac-

terized by semantic labels (such as Chorus and Verse), whereas the latter

is characterized by non-semantic labels (since music segmentation is not a

classification task). An example of clustering is shown in Figure 5.2, in

which both the ground-truth structure (see Figure 5.2a) and the estimated

one (see Figure 5.2b) are presented.

The clustering metrics are designed in such a way to allow the comparison

between the two structures, even though their labels are of different kinds.

In order to define the clustering metrics, two sets are introduced. The set

Fa contains all the pair of frames that belong to the same structural part in

the ground-truth. The set Fe contains all the pair of frames that belong to

the same structural part in the estimation. The more similar the two sets

are, the better is the clustering algorithm.

The sets Fa and Fe can be represented in a 2D structure, which collects

every pair of frames and assigns the value of 1 when the two frames are con-

sidered belonging to the same structural part, and the value of 0 otherwise.
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(a) Expected clustering (b) Estimated clustering

Figure 5.2: An example of expected and estimated clustering

In Figure 5.3, we show a 2D representation of the ground-truth and the

estimated structures. Figure 5.3a is the 2D representation of the structure

shown in Figure 5.2a, whereas Figure 5.3b is the 2D representation of the

structure shown in Figure 5.2b. The grey regions assume the value of 0,

whereas the other regions assume the value of 1 (we use the labels only to

show when the sections belong to the same structural part).

From the sets Fa and Fe, we define the clustering metrics, which are

the pairwise Precision (PP), the pairwise Recall (PR) and the pairwise F-

measure (PF):

PP =
| Fa ∩ Fe |
| Fe |

,

PR =
| Fe ∩ Fa |
| Fa |

,

PFα = 2α · PP · PR
PP + PR

.

The set | Fa ∩ Fe | contains all the pairs of frames that belong to the

same structural part both in the ground-truth and in the estimations. A

graphical representation of this intersection is presented in Figure 5.4. As

for their boundary counterparts, also PP, PR and PF assume a value in the

range [0, 1], where 1 is assigned to PF in case of perfect matching between

estimation and reference.
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(a) 2D representation of the reference

structure. The set Fa is represented by

the non-grey regions

(b) 2D representation of the estimated

structure. The set Fe is represented by

the non-grey regions

Figure 5.3: 2D representation of expected and estimated clustering

Figure 5.4: 2D representation of the set | Fa ∩ Fe |

5.2 The datasets

In order to evaluate our approach, we made use of different datasets well

known in the literature, which are composed by a set of music pieces and

the correspondent annotation for the structural analysis. The annotations

include the positions of the boundaries and the semantic labels of the asso-

ciated sections, for each song of the dataset.
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In order to avoid that the training conditions the test, we used two dif-

ferent datasets for the training and for the test phases. In particular, we

trained the DBNs using the SALAMI database, while the performance of

the system were computed over the Beatles database.

The SALAMI dataset

The Structural Analysis of Large Amounts of Musical Information database

(SALAMI) [61] includes songs of various genres, like pop, jazz, classical and

others. The SALAMI annotations have been provided by experts in Music

Theory and Composition [61].

Since the database is not completely available on-line, we performed the

training of our system with a part of it, which is composed of 267 songs.

The largest part of the songs has a sampling frequency Fs = 44100Hz, but

also other sampling frequencies are present (48000Hz, 32000Hz, 22050Hz).

In our experiments, we re-sampled all the songs with the same sampling

frequency (see Section 5.4). Only 4 songs are in the mono format, while

all the others, which are in the stereo format, are converted to mono as

explained in Section 4.1.1.

The Beatles dataset

The Beatles dataset is composed by 174 songs from the discography of the

Beatles. The performance are usually evaluated over two sets of annotations,

one provided by the Queen Mary University of London1, and the other

one provided by the Tampere University of Technology2. Since the second

database is the most commonly used in literature, we adopted it for the

test. All the songs in the dataset are characterized by a sampling frequency

Fs = 44100Hz, and all are in the stereo format, which have been converted

to mono. We present the list of all the songs by the Beatles in Appendix A.

5.3 Details of the implementation

In this section we describe the tools that we used to implement our music

segmentation system. We initially describe our implementation of a Deep

Belief Network, which is used to extract the descriptors from the audio

signal. Then, we describe the music segmentation framework that we used

to test the performance of our features.

1http://www.cs.tut.fi/sgn/arg/paulus/beatles_sections_TUT.zip
2http://isophonics.net/content/reference_annotations
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Deep learning architecture

We implemented the deep learning architectures using the Python pro-

gramming language [62]. The DBN is a Python class, which is based on a

list of RBM classes. Some Python libraries have been particularly impor-

tant in the development of this work: Numpy and Scipy [63], which provide

powerful numerical computing and signal processing tools, and Theano [64],

which allows to define symbolical expressions.

We extracted the DBN-based descriptors with 5 DBN architectures, all

with a depth of 3 layers, and the 5 DBNs differ in the number of nodes (see

Table 5.1). We tried different combinations of nodes, in order to understand

how the number of nodes per layer influences the ability to extract relevant

features from the audio signals.

All the networks presented above have been trained in unsupervised fash-

ion as described in Section 3.3.6. The unsupervised training phase has been

performed over all the SALAMI dataset, and it is characterized by the fol-

lowing parameters: pre-learning rate = 10−5 and Nep = 5. In a second

stage the DBN has also been trained in supervised fashion, using only the

smallest network, i.e., the DBN(75,50,25) in Table 5.1, since the fine-tuning

is a computationally-expensive operation whose complexity depends on the

number of nodes of the network and on the number of elements in the train-

ing set. More specifically, if N is the number of songs of a dataset and

N s is the mean number of frames per each song, the unsupervised training

dataset is composed by N ·N s frames, whereas the supervised training set

is composed by ≈ N · N s
2

frames, because it is formed by all the pairs of

frames for each song.

Since N s is generally ≈ 103, fewer songs are required to make the su-

pervised training set as large as the unsupervised one. Thus, we performed

the fine-tuning using only 20 songs out of the 267 of the entire SALAMI

Network Architecture H(1) H(2) H(3)

DBN(1000,250,25) 1000 250 25

DBN(100,250,25) 100 250 25

DBN(500,250,200) 500 250 200

DBN(500,750,25) 500 750 25

DBN(75,50,25) 75 50 25

Table 5.1: List of employed DBNs, where H(i) is the number of nodes at the i-th layer

of the DBN
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database. The supervised training is characterized by the following param-

eters: learning rate = 10−4 and Nep = 1.

Music segmentation framework

In Section 4.2 we described the algorithms used to evaluate the perfor-

mance of our system. Those algorithms are present in the literature, and

collected in a framework3 developed by Oriel Nieto. There is a difference

between the description of the C-NMF algorithm (see Section 4.2.3) and its

implementation in the framework. The factorization is performed on the

matrix representing the feature sequence, instead of on the SSM. In fact,

from our preliminary experiments, we notice that this choice guarantees

higher performance.

The framework allows to compute a representation based on three type

of features: the chromagram, the MFCC (described in Section 3.1) and the

Tonnetz (a descriptor that captures the tonal content of the song). Since

the latest is not frequently used in literature, we did not use it for the

evaluations.

We have modified the framework in order to include our feature extraction

phase, which allows to obtain the DBN-based features, i.e., the representa-

tion derived from the DBN (its hidden layers, either taken separately or

jointly). The results are computed using the MirEval Python library [65].

5.4 Experimental setup of the feature extraction

phase

In this section we aim at investigating how the hyper-parameters of the fea-

ture extraction phase affect the final performance. Such parameters are: the

sampling frequency, the length of the frames, the hop-size and the windowing

function. The sampling frequency is related with the maximum frequency

components that is preserved, while all the other parameters are related

with a degree of frequency resolution and of temporal dynamic. Thus, the

main aspects that we investigate are: which frequencies are the most im-

portant when performing music segmentation, and which are the most ad-

visable time/frequency resolution and temporal dynamic. Notice that the

parameters may not be independent, and an exhaustive search would require

to try all their possible combinations. However, this is a computationally-

expansive operation, and we consequently approximate the space parameters

3https://github.com/urinieto/msaf
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Table 5.2: Parameters of the experimental setup

Parameter Value

Sampling Frequency 11025Hz; 44100Hz

Frame Length ≈ 50ms; ≈ 190ms

Hop-size (ms) ≈ 50ms; ≈ 190ms

Windowing function Rectangular; Hamming

by choosing the best parameter at each step, in an heuristic fashion. The

parameters that we try and their value are shown in Table 5.2.

We compute the performance using only two algorithms: SF for the

boundary detection, and C-NMF for the clustering. In fact, in this phase we

only want to obtain a good set of parameters, and then use it to compute

the results with all the available algorithms (see Section 5.5.1).

We present some test-cases, each one aiming to show a comparison of

the performance when a single parameter of the feature extraction phase is

changed. The comparison is presented by means of histograms that show

the average performance of three metrics, i.e., the F-measure 0.5s, the F-

measure 3s and the Pairwise F-measure. The average is computed over

the 5 DBNs trained in unsupervised fashion only, using as descriptor the

concatenation of the three DBN layers.

5.4.1 Sampling Frequency

In this experiment we show the impact of the sampling frequency Fs on the

performance. The sampling frequencies that we tested are Fs = 44100Hz,

since it characterizes the largest number of songs, and Fs = 11025Hz, which

is commonly adopted in the literature. The fixed parameters are:

• rectangular windowing function;

• frame length ≈ 50ms;

• hop-size ≈ 50ms.

The Figure 5.5 clearly shows that the performance are always higher when

the downsampling is performed. This confirms the assumption described in

4.1.1, for which the components relative to the high frequencies may be not

as important as the low ones for the music segmentation task. Moreover,

they can be affected by noise from encoding and instruments. For this

reason, since the sampling frequency has to be a fixed parameter in the

following experiments, from now on we always compute the performance

with Fs = 11025Hz.
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Figure 5.5: Histogram of the performance for varying sampling frequency

5.4.2 Windowing function

In this experiment we understand the influence of the windowing function

on the average performance. We adopt the rectangular and the Hamming

windows, since they differ in the frequency resolution of the resulting repre-

sentation. The fixed parameters are:

• frame length ≈ 190ms;

• hop-size ≈ 190ms;

• Fs = 11025Hz.

Differently from the previous test-case, we use a larger frame length to

increase the frequency resolution. The Hamming window guarantees a finer

representation (i.e., higher frequency resolution) than the rectangular one.

From Figure 5.6 it is possible to notice that the performance computed

with the Hamming function are always lower than those obtained with the

rectangular one. Thus, we deduce that a coarse representation is more

advisable when performing music segmentation.

5.4.3 Frame length

In this experiment we show the impact of the frame length on the perfor-

mance. We choose the sizes that are commonly adopted in the literature,



5.4. Experimental setup of the feature extraction phase 61

F-measure 
 0.5 sec

F-measure 
 3 sec

F-measure 
 pairwise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Av

er
ag

e 
Pe

rf
or

m
an

ce

Rectangular window Hamming window

Figure 5.6: Histogram of the performance for varying windowing function

i.e., ≈ 50ms and ≈ 190ms. With the second value we obtain both an higher

frequency resolution and an higher temporal dynamic. The fixed parameters

are:

• rectangular windowing function;

• hop-size ≈ 50ms;

• Fs = 11025Hz.

In Figure 5.7, differently from the previous test-case, there is not an evi-

dent difference in the performance. The results may suggest that the prop-

erties that depend on the frame length, i.e., the temporal dynamic (see

Section 4.1.1) and the frequency and time resolution (see Section 3.1.1), are

not decisive when performing music segmentation. However, it is also pos-

sible that the obtained descriptors are strongly influenced by the hop-size,

which is still fixed. In particular, the time resolution that is lost when the

frame length is higher, is somehow preserved by the short hop-size. Thus,

in order to understand the real influence of the hop-size, in the following

experiment we make it varying, while the frame length is kept constant.
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Figure 5.7: Histogram of the performance for varying frame length

5.4.4 Hop-size

In this experiment we show the impact of the hop-size on the performance.

We choose the hop-sizes of ≈ 50ms and ≈ 190ms, as commonly done in the

literature. The fixed parameters are:

• rectangular windowing function;

• frame length ≈ 190ms;

• Fs = 11025Hz.

Figure 5.8 shows that the choice of the hop-size is an important aspect

of the feature extraction phase. In particular, for the boundary detection

the performance are higher when the hop-size is ≈ 50ms (i.e., when the

frames overlap). Since the variation of the hop-size (as well as the frame

length) influences the time resolution of the obtained representation, we

deduce that an higher time precision (guaranteed by a short hop-size) has a

positive effect on the boundary detection phase. Moreover, we can confirm

the conclusion drawn in the previous section, i.e., that the time resolution

also depends on the hop-size. As far as the labeling is concerned, we do not

notice any relevant difference.

The quantitative results for each one of the presented test-cases are pro-

vided in Appendix B, where it is possible to notice that the best set of

parameters is: sampling frequency Fs = 11025Hz, frame length ≈ 50ms,
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Figure 5.8: Histogram of the performance for varying hop-size

hop-size ≈ 50ms and rectangular window. Thus, we use this setting to com-

pute the performance for all the algorithms. From the above experiments

we can deduce that the components relative to the higher frequencies should

be discarded and that a coarse representation (i.e., high frequency resolu-

tion) is preferable than a finer one. Moreover, the temporal dynamic is the

parameter that less affect the performance.

5.5 Numerical Results

In this section we present a quantitative evaluation of the performance,

computed with all the algorithms described in Section 4.2. In this way

we can make a comparison between the traditional features (chroma and

MFCC) and the DBN-based descriptors.

The results shown in Section 5.5.1 are computed with the features learnt

in unsupervised fashion only, while the results shown in Section 5.5.3 are

computed with the features learnt with a supervised training performed after

the unsupervised one. We remind that we use the notation DBN(x,y,z) to

refer to the generic DBN with x,y and z nodes in the first, second and third

layer, respectively. We present the results organized in tables, where the

best F-measures are shown in bold.
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Table 5.3: Hit-Rate F-measure, Precision and Recall with interval of tolerance of 0.5 s

and 3 s, computed for all the boundary detection algorithms.

BD Descriptor F0.5s P0.5s R0.5s F3s P3s R3s

F
o
o
te

Chroma 0.1573 0.0928 0.5560 0.2682 0.1592 0.9243

MFCC 0.1688 0.1008 0.5637 0.2824 0.1692 0.9252

DBN 1000, 250, 25 0.1965 0.1217 0.5476 0.3320 0.2065 0.9096

DBN 100, 250, 25 0.1796 0.1092 0.5501 0.3059 0.1866 0.9226

DBN 500, 250, 200 0.1949 0.1205 0.5428 0.3330 0.2069 0.9100

DBN 500, 750, 25 0.1975 0.1224 0.5455 0.3343 0.2080 0.9097

DBN 75, 50, 25 0.1766 0.1060 0.5678 0.2925 0.1763 0.9247

S
F

Chroma 0.3373 0.3190 0.3670 0.7034 0.6653 0.7653

MFCC 0.3351 0.3165 0.3657 0.6826 0.6467 0.7405

DBN 1000, 250, 25 0.3559 0.3356 0.3887 0.7009 0.6637 0.7611

DBN 100, 250, 25 0.3324 0.3184 0.3549 0.6882 0.6605 0.7337

DBN 500, 250, 200 0.3457 0.3279 0.3755 0.7013 0.6679 0.7564

DBN 500, 750, 25 0.3460 0.3273 0.3765 0.7028 0.6668 0.7608

DBN 75, 50, 25 0.3302 0.3127 0.3589 0.6879 0.6531 0.7450

C
-N

M
F

Chroma 0.2619 0.2381 0.3060 0.5527 0.5050 0.6421

MFCC 0.2993 0.2901 0.3047 0.5342 0.5288 0.5659

DBN 1000, 250, 25 0.2991 0.3024 0.3091 0.5817 0.5845 0.6041

DBN 100, 250, 25 0.2984 0.3060 0.3021 0.5796 0.5912 0.5887

DBN 500, 250, 200 0.3003 0.3062 0.3082 0.5821 0.5896 0.6000

DBN 500, 750, 25 0.2884 0.2938 0.2952 0.5831 0.5916 0.5982

DBN 75, 50, 25 0.3079 0.3114 0.3173 0.5753 0.6004 0.5974

S
C

Chroma + MFCC 0.3669 0.3840 0.3698 0.6210 0.6497 0.6258

DBN 1000, 250, 25 0.3470 0.3758 0.3325 0.6090 0.6578 0.5845

DBN 100, 250, 25 0.3154 0.3534 0.2938 0.5931 0.6611 0.5540

DBN 500, 250, 200 0.3437 0.3746 0.3279 0.6107 0.6620 0.5843

DBN 500, 750, 25 0.3479 0.3772 0.3328 0.6112 0.6610 0.5856

DBN 75, 50, 25 0.3303 0.3635 0.3092 0.5976 0.6556 0.5612

5.5.1 Unsupervised Training

We used the parameters of the feature extraction phase that proved to be

the best-performing ones (see Section 5.4): Fs = 11025Hz, frame length of

≈ 50ms, hop-size of ≈ 50ms and rectangular window.
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Boundary detection

As far as the boundary detection is concerned, the results presented in

Table 5.3 show that in general the descriptors extracted with a deep learning

network represent a good alternative to the hand-crafted ones.

The DBN-based features performs significantly better than the traditional

ones with the Foote algorithm. The best performance of the traditional

features is obtained with the MFCC, and our method outperforms it with

all the employed DBNs. In particular, we obtain the best results with the

DBN(500,750,25). The F-measure at 0.5 seconds is 0.1975, and it is higher

with respect to that of the MFCC (i.e., 0.1688). With the aforementioned

DBN the F-measure at 3 seconds is 0.3343 against the 0.2824 of the MFCC.

Also the SF algorithm has proved to efficiently work with the DBN-based

descriptors, even though the difference with respect to the hand-crafted ones

is not as evident as in the Foote algorithm. Again, all the DBNs obtain re-

sults comparable with the state of the art, which is in this case represented by

performance computed with the chroma. We obtain the highest F-measure

at 0.5 seconds (i.e., 0.3559) with the DBN(1000,250,25). Such value signifi-

cantly outperforms the result obtained with the chroma (i.e., 0.3373). The

F-measure at 3 seconds computed with the chroma (i.e., 0.7034) is slightly

higher than 0.7028, which has been obtained by the DBN(500,750,25).

The state of the art of the C-NMF algorithm is represented by the MFCC

for the F-measure at 0.5 seconds, and by the chroma for the F-measure at

3 seconds. Almost all the DBNs outperform the traditional features, and

the DBN(75,50,25) obtains an F-measure at 0.5 seconds of 0.3079, which

is higher than the performance of the MFCC (i.e., 0.2993). The best F-

measure at 3 seconds (i.e., 0.5831) is higher than the performance of the

chroma (i.e., 0.5527), and it has been obtained by the DBN(500,750,25).

The SC algorithm is the only case in which the DBN-based features never

outperform the state of the art. We remind that the SC algorithm is specifi-

cally designed to work with the MFCC and the chroma, and it is not suitable

for the DBN-based features. Nevertheless, we obtain an F-measure at 0.5

seconds of 0.3479 against the 0.3669 of the hand-crafted features, using the

DBN(500,750,25). As far as the F-measure at 3 seconds is concerned, we ob-

tain a value of 0.6112, which is slightly lower with respect to the traditional

ones (i.e., 0.6210).

To summarize the overall results, the highest F-measure at 0.5 seconds

assumes the value of 0.3669 with the SC algorithm (using both MFCC and

chroma as descriptors), while the highest F-measure at 3 seconds assumes

the value of 0.7034 with the SF algorithm (using the chroma as descriptor).
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However, the highest performance obtained with the DBN-based descriptors

are close to the traditional ones. In fact, we obtain an F-measure at 0.5 sec-

onds of 0.3559 with the SF algorithm, using the DBN(1000,250,25). Then,

with the SF algorithm we also obtain an F-measure at 3 seconds of 0.7028,

using the DBN(500,750,25).

Thus, even though the highest performance are obtained with the tra-

ditional features, the DBN-based ones are able to obtain results close to

the state of the art. Moreover, the performance of the DBN-descriptors are

generally significantly higher than those relative to the traditional features,

particularly when the DBN is large (i.e., many nodes per layer). Hence,

since the employed algorithms have been specifically designed to work with

low/mid-level features, we believe that also the DBN-based descriptors ex-

tract a reliable low-level representation of the audio signal. In particular, we

think that the DBNs are able to extract both the timbral and the harmonic

patterns, but also other salient properties, which are not captured by the

chroma and the MFCC.

Clustering

We computed the performance with the C-NMF and with the SC clus-

tering algorithms, and we present the results in Table 5.4. Differently from

the SC algorithm, C-NMF can be used to cluster the sections obtained with

other algorithms, i.e., Foote and SF. In this way, we aim at showing that

the clustering is strongly influenced by the boundary detection phase.

The clustering applied to the sections obtained with Foote using all the

DBNs significantly outperforms the state of the art (i.e., PF = 0.5150, ob-

tained with the chroma). The highest value (PF = 0.5462) is reached with

the DBN(500,250,200).

When SF is used to detect the boundaries, the DBN descriptors obtain

results slightly lower than the state of the art (represented by a PF of 0.4821

using the chroma). The highest value computed with our features is a PF

of 0.4804, which is obtained with the DBN(100,250,25). Notice that such

value is higher than the PF obtained using the MFCC (i.e., 0.4786).

When the C-NMF algorithm is used to both detect boundaries and to

label the sections, the results are remarkably higher than the traditional

ones (i.e., PF of 0.5467 with the chroma, and of 0.5221 with the MFCC).

All the DBNs outperform the state of the art, and we obtain the highest

value (i.e., PF = 0.5905) with the DBN(75,50,25).

Finally, also the performance computed with the SC algorithm are higher

when any among our descriptors is employed. The best result (PF = 0.6562)
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is obtained with the DBN(1000,250,25), which outperforms the state of the

art, i.e., PF = 0.6379 computed using both the chroma and the MFCC.

The DBN-based descriptors proved to be generally better than the hand-

crafted features in the clustering task. Moreover, differently from the bound-

ary detection case, there is not a significant difference between small and

large networks.

Table 5.4: Pairwise F-measure, Precision and Recall computed for all the boundary

detection and clustering algorithms.

BD CL Descriptor PF PP PR

F
o
ot

e

C
-N

M
F

Chroma 0.5150 0.5956 0.4784

MFCC 0.5001 0.5475 0.4924

DBN 1000, 250, 25 0.5380 0.6012 0.5224

DBN 100, 250, 25 0.5341 0.5898 0.5229

DBN 500, 250, 200 0.5462 0.6013 0.5346

DBN 500, 750, 25 0.5393 0.5995 0.5224

DBN 75, 50, 25 0.5365 0.6083 0.5112

S
F

C
-N

M
F

Chroma 0.4821 0.5229 0.4750

MFCC 0.4786 0.5241 0.4703

DBN 1000, 250, 25 0.4736 0.5239 0.4649

DBN 100, 250, 25 0.4804 0.5314 0.4708

DBN 500, 250, 200 0.4782 0.5286 0.4676

DBN 500, 750, 25 0.4771 0.5246 0.4721

DBN 75, 50, 25 0.4713 0.5261 0.4658

C
-N

M
F

C
-N

M
F

Chroma 0.5467 0.5854 0.5421

MFCC 0.5221 0.5415 0.5478

DBN 1000, 250, 25 0.5752 0.6042 0.5951

DBN 100, 250, 25 0.5745 0.5880 0.6045

DBN 500, 250, 200 0.5740 0.5932 0.5997

DBN 500, 750, 25 0.5735 0.5872 0.6071

DBN 75, 50, 25 0.5905 0.6124 0.6110

S
C

S
C

Chroma + MFCC 0.6379 0.5800 0.7553

DBN 1000, 250, 25 0.6562 0.6061 0.7608

DBN 100, 250, 25 0.6394 0.6020 0.7232

DBN 500, 250, 200 0.6521 0.5994 0.7596

DBN 500, 750, 25 0.6551 0.6020 0.7620

DBN 75, 50, 25 0.6561 0.6033 0.7624
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Trade-off between Precision and Recall

Precision and Recall can be seen as indexes of under/over segmentation.

In fact, the higher is the number of detected segments, the more likely the

boundaries are false positives, and at the same time, the more unlikely they

are false negatives. Thus, high values of Precision are generally motivated

by a low number of detected boundaries (i.e., undersegmentation), whereas

high values of Recall are generally motivated by an high number of detected

boundaries (i.e., oversegmentation). As a consequence, when the Precision

tends to decrease, the Recall tends to increase. We show a graphical evalua-

tion of such trade-off in Figure 5.10. Then, in Figure 5.9 we show the values

of pairwise Precision and Recall, for all the algorithms. All the values are

the average of the results computed with all the networks.

In SF, C-NMF and SC Precision and Recall are well balanced, with the

Recall that is generally slightly higher than the Precision. Contrarily, the

Foote algorithm presents an high Hit-Rate Recall (the Hit-Rate Recall at 3

seconds is generally greater than 0.9) and a low Hit-Rate Precision. The poor

performance obtained with Foote confirms that there is oversegmentation.

Figure 5.9: Average values of the pairwise Precision and Recall
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(a) Trade-off at 0.5 sec (b) Trade-off at 3 sec

Figure 5.10: Trade-off between Hit-Rate Precision and Recall

5.5.2 DBN layer used as descriptor

In all the previous test-cases we used the concatenation of the three DBN

layers as descriptor. In this experiment we use each DBN layer separately,

in order to show how they influence the performance. We use SF to perform

the boundary detection and C-NMF to perform the clustering. The results

are presented in Table 5.5.

We remind that the higher is the DBN layer, the more abstract are the

features that it is able to extract (see Section 3.3.3). Thus, we expect that

the first layer captures a representation more close to the acoustic properties

of the audio signal, while the third one captures a more abstract representa-

tion. In this way, we aim at understanding what is the degree of abstractness

required when performing music segmentation. The fixed parameters are:

• rectangular windowing function;

• hop-size ≈ 190ms;

• frame length ≈ 190ms;

• Fs = 11025Hz.

As far as the boundary detection is concerned, the performance computed

using the single layers as descriptors never reach the state of the art, which

is represented by the results obtained with the chroma. However, we out-

perform the state of the art using all the layers of the DBN(500,250,200),

obtaining an F-measure at 0.5 seconds of 0.3457 against 0.3426 and an F-

measure at 3 seconds of 0.7012 against 0.6964 (both relative to the chroma).

The results relative to the MFCC are generally outperformed even when the

first and the second layer are employed alone.
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As far as the clustering is concerned, the results do not consistently de-

pend on the employed descriptor. We obtain the highest pairwise F-measure

value with the first layer of the DBN(500,750,25), i.e., 0.4854, against the

0.4784 of the chroma.

The results also show that the lowest performance are generally obtained

using the last layer as unique descriptor. However, we notice we have better

results when the last layer is large, since it is more representative. The F-

measure at 0.5 seconds obtained with the DBN(500,250,200) is even higher

when computed with the last layer (i.e., 0.3221) then when computed with

the first one (i.e., 0.3197).

Similarly to the test-cases described in Section 5.4, we show in Figure

5.11 an histogram that allows to graphically evaluate the comparison of the

performance. The deeper is the layer, the lower the average performance

are. More precisely, the differences between the first and the second layers

are small, while the performance become poorer when the third layer is

employed. Thus, it seems that the music segmentation task does not require

a too abstract representation, or simply that the algorithms that we use are

designed to work with lower-level features.

Moreover, it is interesting to notice that the average performance com-

puted with the first layer alone are comparable with those obtained when all

the layers are considered. The F-measure at 3s and the PF , in particular,

are even higher with the first layer. This confirms the discussion about the

degree of abstractness required in the task of music segmentation.
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Figure 5.11: Histogram of the performance for varying DBN layer
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Table 5.5: Comparison of the Hit-Rate and pairwise F-measures obtained using differ-

ent combination of DBN layers as descriptor, employing SF and C-NMF as boundary

detection and clustering algorithms, respectively

DBN architecture Descriptor F 0.5 s F 3 s PF

Chroma 0.3426 0.6964 0.4784

MFCC 0.3189 0.6731 0.4743

DBN 1000 , 250 , 25

All Layers 0.3352 0.6813 0.4738

First Layer 0.3329 0.6828 0.4703

Second Layer 0.3363 0.6852 0.4724

Third Layer 0.2835 0.6079 0.4512

DBN 100 , 250 , 25

All Layers 0.3323 0.6882 0.4803

First Layer 0.3122 0.6616 0.4729

Second Layer 0.2980 0.6404 0.4629

Third Layer 0.2796 0.5941 0.4673

DBN 500 , 250 , 200

All Layers 0.3457 0.7012 0.4782

First Layer 0.3197 0.6828 0.4835

Second Layer 0.3386 0.6815 0.4814

Third Layer 0.3221 0.6721 0.4689

DBN 500 , 750 , 25

All Layers 0.3369 0.6892 0.4761

First Layer 0.3307 0.6851 0.4854

Second Layer 0.3281 0.6861 0.4775

Third Layer 0.2796 0.5941 0.4673

DBN 75 , 50 , 25

All Layers 0.2979 0.6421 0.4783

First Layer 0.3134 0.6526 0.4668

Second Layer 0.2897 0.6135 0.4615

Third Layer 0.2835 0.6079 0.4512

5.5.3 Supervised Training

In this section we present the results relative to the supervised training. The

parameters are:

• rectangular windowing function;

• Fs = 11025Hz;

• frame length ≈ 190ms;

• hop-size ≈ 190ms;

• employed network: DBN(75,50,25).
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The parameters are related to the test-case described in Section 5.5.2, but

not the best-performing ones. In fact, since the computational effort for the

fine-tuning process is extremely demanding, we chose a set of parameters in

order to have a good performance and a small number of frames. For the

same reason, given that also a small network performs significantly well, we

trained only the smallest network in supervised fashion.

As described in Section 4.1.2.2, we apply two different fine-tuning ap-

proaches: in the first one the cost function is based on the euclidean distance

computed between the descriptors of a pair of frames; the second one is more

general, since the comparison between pairs of frames is performed by means

of a classification layer placed on the top of a deep learning architecture.

We remind that we have set-up the fine-tuning with the goal of obtaining

the ideal SSM described in Section 3.2.1. Both the cost functions that

we proposed have been defined over the last layer of the DBN. Thus, we

consider important to show also how the performance change, before and

after the fine-tuning, when the single last layer is employed as descriptor.

Moreover, since we have also proposed a different way to compute the SSM,

i.e., exploiting the classification layer, we show the results obtained with the

Foote algorithm when this SSM is employed instead of the traditional one,

i.e., that obtained by means of the euclidean distance. In the following list,

we present the possible inputs for the music segmentation algorithms that

we choose:

• H(all), i.e., all the DBN layers in case of unsupervised training;

• H
(all)
class, i.e., all the DBN layers in case of training performed in super-

vised fashion and cost function based on the classification node;

• H
(all)
eu , i.e., all the DBN layers in case of training performed in super-

vised fashion and cost function based on the euclidean distance;

• H(3), i.e., only the last DBN layer in case of unsupervised training;

• H
(3)
eu , i.e., only the last DBN layer in case of training performed in

supervised fashion and cost function based on the euclidean distance;

• SSMclass, i.e., the SSM computed with the classification layer, only

for the Foote algorithm.

In Table 5.6 we provide the quantitative evaluation of the performance

obtained with the fine-tuning, both for the boundary detection and the

clustering.
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The results show that the fine-tuning efficiently works only in some situ-

ations. In order to understand why, we have to remind that the supervised

training has been realized by providing an information of similarity between

each couple of frames, and may be inefficient when applied to algorithms

that are not based on the comparison of frames.

Boundary Detection

The Foote algorithm (see Section 4.2.1) is based on the computation of

the SSM, and, as expected, the performance are higher after the fine-tuning.

In fact, we notice a slightly improvement on the F-measure at 0.5 seconds,

and a more relevant improvement on the F-measure at 3 seconds.

In the case of supervised training based on the euclidean distance, for

example, when all the layers are employed the F-measure at 0.5 seconds

reaches the value of 0.1640 against the 0.1602 obtained with the unsuper-

vised features. Similar considerations can be done for the case of single last

layer used as descriptor, and also for the performance after the fine-tuning

based on the classification layer.

The difference between the performance is more remarkable as far as the

F-measure at 3 seconds is concerned. We obtain, for example, an F-measure

of 0.2806 against the previously obtained 0.2658.

The fine-tuning based on the classification layer is able to learn a powerful

similarity function (see Section 4.1.2.2). In fact, the performance computed

with the alternative SSM, i.e., based on the classification node, are remark-

ably higher than in the unsupervised case. The F-measure at 0.5 seconds

assumes the value of 0.2081 against the previously obtained result, i.e., F-

measure of 0.1602. Similarly, the F-measure at 3 seconds assumes the value

of 0.4012 and outperforms the previously obtained 0.2658.

The SF algorithm (see Section 4.2.2) is based on the comparison of all

the pairs of frames, but not by means of the euclidean distance. As a

consequence, only the fine-tuning based on the classification layer improves

the unsupervised descriptors. For example, when all the layers are used as

descriptors, the F-measure at 3 seconds assumes the value of 0.6421 in the

unsupervised case, and the value of 0.6007 in the supervised one. Contrarily,

the supervised learning based on the classification layer improve the results.

For example, the F-measure at 0.5 seconds is 0.3070, whereas the previously-

obtained is 0.2979.

The C-NMF algorithm (see Section 4.2.3) does not compute a comparison

among all the pairs of frames. In fact, the results are generally lower after

the supervised training. For example, when the fine-tuning based on the
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Table 5.6: Hit Rate F-measure with interval of tolerance of 0.5 s and 3 s, and pairwise

F-measure, before and after the supervised training, computed for all the algorithms.

BD CL Descriptor F 0.5 s F 3 s PF

Foote C-NMF

Chroma 0.1549 0.2594 0.5103

MFCC 0.1596 0.2693 0.4980

H(all) 0.1602 0.2658 0.5326

H
(all)
class 0.1626 0.2806 0.5178

H
(all)
eu 0.1640 0.2781 0.5152

H(3) 0.1511 0.2524 0.5097

H
(3)
eu 0.1542 0.2590 0.5089

SSMclass 0.2081 0.4012 0.4776

SF C-NMF

Chroma 0.3426 0.6964 0.4784

MFCC 0.3189 0.6731 0.4743

H(all) 0.2979 0.6421 0.4783

H
(all)
class 0.3070 0.6451 0.4656

H
(all)
eu 0.2881 0.6007 0.4741

H(3) 0.2695 0.5613 0.4521

H
(3)
eu 0.2672 0.5673 0.4580

C-NMF C-NMF

Chroma 0.2621 0.5305 0.5368

MFCC 0.2752 0.5209 0.5198

H(all) 0.2818 0.5686 0.5612

H
(all)
class 0.2840 0.5511 0.5582

H
(all)
eu 0.2741 0.5292 0.5351

H(3) 0.2678 0.5535 0.5193

H
(3)
eu 0.2701 0.5376 0.5319

SC SC

MFCC + Chroma 0.3553 0.6096 0.6422

H(all) 0.3049 0.4922 0.5689

H
(all)
class 0.3081 0.5183 0.5933

H
(all)
eu 0.2918 0.4753 0.5390

H(3) 0.2733 0.4264 0.5167

H
(3)
eu 0.2705 0.4128 0.5011
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classification layer is used, the F-measure at 3 seconds is significantly

lower when the fine-tuning based on the euclidean distance is adopted, since

it decreases from 0.5686 to 0.5292.

The SC algorithm (see Section 4.2.4) is based on a comparison among

frames that does not involve the computation of the euclidean distance. As a

consequence, the performance are always lower when the supervised learning

based on the euclidean distance is performed. Contrarily, the performance

are increased when the other fine-tuning technique, i.e., that based on the

classification layer, is employed. For example, the F-measure at 3 seconds,

i.e., 0.5183 is higher than in the unsupervised case, i.e., 0.4922.

Clustering

We used two different algorithms to perform the clustering task, i.e., C-

NMF and SC. As said, the former one is not based on the comparison among

frames, whereas the second one is based on a comparison of frames that does

not involve the computation of the euclidean distance.

Since the fine-tuning has been setup aiming to provide an information

about the similarity among the pair of frames, we do not expect improvement

in the results obtained with the C-NMF algorithm. In fact, independently

on the algorithm used to detect the boundaries, the clustering is always

worse after the supervised training. An example are the performance of the

clustering applied to the sections found with the Foote algorithm, using all

the layers as descriptor. In this case, the pairwise F-measure decreases from

0.5326 to 0.5152.

As far as the SC is concerned, we notice a consistent improvement only

when the supervised learning based on the classification layer is performed.

In fact, the pairwise F-measure is increased from 0.5689 to 0.5933. Contrar-

ily, the performance decrease when the other fine-tuning techniques (i.e.,

based on the euclidean distance) is employed. An example is the pairwise

F-measure that is decreased from 0.5689 to 0.5390, when all the layers are

used.

5.6 Final considerations

Finally, we can conclude that the DBN-based descriptors proved to be a

good alternative to the hand-crafted ones. Our approach reaches and gen-

erally outperforms the state of the art, both in the boundary detection and

in the clustering. As far as the supervised learning is concerned, we ob-
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tained significant improvements when the fine-tuning well integrates with

the employed music segmentation algorithm.



Chapter 6

Conclusions and Future

Developments

6.1 Conclusions

In this thesis, we proposed an alternative way to represent music content

for the music segmentation task. We used the DBN to derive an abstract

representation from the audio signal. In this way, we are able to avoid two

well-known issues of hand-crafted features: the selection of the properties

of the audio signal to describe and the design of specific signal processing

operations that are performed to obtain the sought properties.

The choice of the properties to extract, in fact, requires a deep knowledge

of the task to perform. In the task of music segmentation, for example, the

properties that have been considered the most important ones in the litera-

ture are the harmony and the timbre. However, other salient properties may

be relevant when performing music segmentation, and, as a consequence, the

traditional approach may lack completeness. Moreover, even when all the

salient properties of the audio signal are known, the traditional signal pro-

cessing operations may not be able to properly extract them.

In this thesis we trained several DBNs in unsupervised fashion, and we

computed the performance with several algorithms presented in literature.

Although such algorithms have been designed to work with the traditional

features (the chroma to describe the harmony and the MFCC to describe

the timbre, in particular), we obtained results comparable with the state of

the art, and better in some cases.

Moreover, in order to derive an application-dependent set of learnt fea-

tures, we setup a supervised learning procedure with the aim of deriving the

ideal Self-Similarity Matrix, according to two different fine-tuning strategies.
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The first one is based on the computation of the euclidean distance between

the descriptors of each couple of frames. The second one is based on a clas-

sification layer put on the top of a deep learning architecture that classifies

the frames as belonging to the same structural part or not. With the second

approach, the fine-tuning do not only tune the parameters of the network,

but it also learns a similarity function that allows to build a new type of

SSM. The supervised learning is generally able to improve the performance

of the algorithms that are based on the comparison of the frames. The most

remarkable improvement with respect to the state of the art is obtained with

the SSM computed exploiting the classification layer, confirming the ability

of the neural networks to learn a complex representation of the input data.

6.2 Future Developments

6.2.1 Feature extraction

To the best of our knowledge, a set of descriptors extracted with a deep

learning approach has never been employed as input for a music segmen-

tation algorithm. Since we obtained very promising results, we think that

there is considerable room for improvement in this direction. In particu-

lar, we propose to expand the training databases and to exploit other deep

learning architectures.

Dataset Expansion

The deep learning networks require a massive amount of data to be effi-

ciently trained. In this thesis we used all the available SALAMI database to

perform an unsupervised pre-training phase, and a small part of it to perform

also the supervised one (only for one DBN architecture). Since it is possible

to train a DBN in unsupervised fashion with non-annotated datasets (see

Section 3.3.6), which are largely available on the Web, a possible develop-

ment consists in training a network with a very large number of songs for

the unsupervised phase, and then to fine-tune the learnt parameters with

one of the available annotated datasets.

Deep Learning architectures

In this thesis we employed only one type of deep learning architecture,

the Deep Belief Network, with a depth of three layers. Since the results

confirm the efficiency of the deep learning techniques, we intend to increase
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the depth of the network, as well as to use different types of layers (which

are used to build other deep architectures).

As far as the depth of the network is concerned, the results indicate that

the performance are lower when the employed descriptor is the last layer of

the DBN, and we have consequently deduced that the music segmentation

task does not properly work with a too abstract representation. However,

it is possible that the music segmentation algorithms require a degree of

abstractness that the adopted DBNs have not been able to reach. Thus,

knowing that the depth of the network is a critical aspect of the deep learning

techniques [38], we intend to experiment networks with more than three

layers.

As far as the type of layer is concerned, examples of other possible net-

works are the Convolutional Neural Network (CNN), which is commonly

used in the field of image and video recognition, and the Recurrent Neu-

ral Network (RNN), which is characterized by the introduction of a memory

term that allows to take into consideration the temporal dependencies among

the input data.

The CNN allows to treat the spectrograms as images and to find relevant

patterns within them, using the convolutional layers to detect if the locally

learnt features are also useful for other regions. The CNN has been adopted

in the music processing for the task of musical onset detection in [66], and

for the boundary detection subtask in [42]. We also intend to use the CNN

in the music segmentation task, but to perform the feature extraction phase.

In the RNN the hidden units assume a value that is a function of the

current and of the past input data. Such capability may be useful in the

music analysis, where the dependencies among musical events is of crucial

importance. The RNN has been used to perform musical improvisation in

[67].

6.2.2 Music Segmentation algorithms

Since the employed algorithms have been designed to work with an hand-

crafted representation of music, a possible improvement consists in develop-

ing a music segmentation system that is more suitable for the DBN-based

descriptors. The purpose is to create a system that performs both the fea-

ture extraction phase and the music segmentation, i.e., boundary detection

and clustering.

In this work, we setup the supervised learning that better integrate with

the available algorithms. A possible development consists in realizing the

music segmentation algorithm itself as a deep learning architecture, which
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may properly exploit its supervised training.
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Appendix A

List of songs in the Beatles

dataset

We present now all the songs from the Beatles discography, which has been

used to test the performance of the music segmentation algorithms.

Year Album Title

1963 Please Please Me I Saw Her Standing There

1963 Please Please Me Misery

1963 Please Please Me Anna( Go To Him)

1963 Please Please Me Chains

1963 Please Please Me Boys

1963 Please Please Me Ask Me Why

1963 Please Please Me Please Please Me

1963 Please Please Me Love Me Do

1963 Please Please Me P. S. I Love You

1963 Please Please Me Baby Its You

1963 Please Please Me Do You Want To Know A Secret

1963 Please Please Me A Taste Of Honey

1963 Please Please Me There’s A Place

1963 Please Please Me Twist And Shout

1963 With The Beatles It Won’t Be Long

1963 With The Beatles All I’ve Got To Do

1963 With The Beatles All My Loving

1963 With The Beatles Don’t Bother Me

1963 With The Beatles Little Child

1963 With The Beatles Till There Was You

83



84 Appendix A. List of songs in the Beatles dataset

1963 With The Beatles Please Mister Postman

1963 With The Beatles Roll Oover Beethoven

1963 With The Beatles Hold Me Tight

1963 With The Beatles You Really Got A Hold On Me

1963 With The Beatles I Wanna Be Your Man

1963 With The Beatles Devil In Her Heart

1963 With The Beatles Not A Second Time

1963 With The Beatles Money

1964 A Hard Day’s Night A Hard Day’s Night

1964 A Hard Day’s Night I Should Have Known Better

1964 A Hard Day’s Night If I Fell

1964 A Hard Day’s Night I’m Happy Just To Dance With You

1964 A Hard Day’s Night And I Love Her

1964 A Hard Day’s Night Tell Me Why

1964 A Hard Day’s Night Can’t Buy Me Love

1964 A Hard Day’s Night Any Time At All

1964 A Hard Day’s Night I’ll Cry Instead

1964 A Hard Day’s Night Things We Said Today

1964 A Hard Day’s Night When I Get Home

1964 A Hard Day’s Night You Can’t Do That

1964 A Hard Day’s Night I’ll Be Back

1964 Beatles For Sale No Reply

1964 Beatles For Sale I’m A Loser

1964 Beatles For Sale Baby’s In Black

1964 Beatles For Sale Rock Roll Music

1964 Beatles For Sale I’ll Follow The Sun

1964 Beatles For Sale Mr. Moonlight

1964 Beatles For Sale Kansas City Hey Hey Hey Hey( Medley)

1964 Beatles For Sale Eight Days A Week

1964 Beatles For Sale Words Of Love

1964 Beatles For Sale Honey Don’t

1964 Beatles For Sale Every Little Thing

1964 Beatles For Sale I Don’t Want To Spoil The Party

1964 Beatles For Sale What You’re Doing

1964 Beatles For Sale Everybody’s Trying To Be My Baby

1965 Help! Help!

1965 Help! The Night Before
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1965 Help! You’ve Got To Hide Your Love Away

1965 Help! I Need You

1965 Help! Another Girl

1965 Help! You’re Going To Lose That Girl

1965 Help! Ticket To Ride

1965 Help! Act Naturally

1965 Help! It’s Only Love

1965 Help! You Like Me Too Much

1965 Help! Tell Me What You See

1965 Help! I’ve Just Seen A Face

1965 Help! Yesterday

1965 Help! Dizzy Miss Lizzy

1965 Rubber Soul Drive My Car

1965 Rubber Soul Norwegian Wood( This Bird Has Flown)

1965 Rubber Soul You Won’t See Me

1965 Rubber Soul Nowhere Man

1965 Rubber Soul Think For Yourself

1965 Rubber Soul The Word

1965 Rubber Soul Michelle

1965 Rubber Soul What Goes On

1965 Rubber Soul Girl

1965 Rubber Soul I’m Looking Through You

1965 Rubber Soul In My Life

1965 Rubber Soul Wait

1965 Rubber Soul If I Needed Someone

1965 Rubber Soul Run For Your Life

1966 Revolver Taxman

1966 Revolver Eleanor Rigby

1966 Revolver I’m Only Sleeping

1966 Revolver Love You To

1966 Revolver Here There Everywhere

1966 Revolver Yellow Submarine

1966 Revolver She Said She Said

1966 Revolver Good Day Sunshine

1966 Revolver And Your Bird Can Sing

1966 Revolver For No One

1966 Revolver Doctor Robert
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1966 Revolver I Want To Tell You

1966 Revolver Got To Get You Into My Life

1966 Revolver Tomorrow Never Knows

1967 Sgt Pepper’s Lonely Hearts Club Band Sgt. Pepper’s Lonely Hearts Club Band

1967 Sgt Pepper’s Lonely Hearts Club Band With A Little Help From My Friends

1967 Sgt Pepper’s Lonely Hearts Club Band Lucy In The Sky With Diamonds

1967 Sgt Pepper’s Lonely Hearts Club Band Getting Better

1967 Sgt Pepper’s Lonely Hearts Club Band Fixing A Hole

1967 Sgt Pepper’s Lonely Hearts Club Band She’s Leaving Home

1967 Sgt Pepper’s Lonely Hearts Club Band Being For The Benefit Of Mr. Kite!

1967 Sgt Pepper’s Lonely Hearts Club Band Within You Without You

1967 Sgt Pepper’s Lonely Hearts Club Band When I’m Sixty- Four

1967 Sgt Pepper’s Lonely Hearts Club Band Lovely Rita

1967 Sgt Pepper’s Lonely Hearts Club Band Good Morning Good Morning

1967 Sgt Pepper’s Lonely Hearts Club Band Sgt. Pepper’s Lonely Hearts Club Band( Reprise)

1967 Sgt Pepper’s Lonely Hearts Club Band A Day In The Life

1967 Magical Mystery Tour Magical Mystery Tour

1967 Magical Mystery Tour The Fool On The Hill

1967 Magical Mystery Tour Flying

1967 Magical Mystery Tour Blue Jay Way

1967 Magical Mystery Tour Your Mother Should Know

1967 Magical Mystery Tour I Am The Walrus

1967 Magical Mystery Tour Hello Goodbye

1967 Magical Mystery Tour Strawberry Fields Forever

1967 Magical Mystery Tour Penny Lane

1967 Magical Mystery Tour Baby You’re A Rich Man

1967 Magical Mystery Tour All You Need Is Love

1968 TheWhite Album CD1 Back In The U S S R

1968 TheWhite Album CD1 Dear Prudence

1968 TheWhite Album CD1 Glass Onion

1968 TheWhite Album CD1 Ob- La- Di Ob- La- Da

1968 TheWhite Album CD1 Wild Honey Pie

1968 TheWhite Album CD1 The Continuing Story Of Bungalow Bill

1968 TheWhite Album CD1 While My Guitar Gently Weeps

1968 TheWhite Album CD1 Happiness Is A Warm Gun

1968 TheWhite Album CD1 Martha My Dear

1968 TheWhite Album CD1 I’m So Tired
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1968 TheWhite Album CD1 Blackbird

1968 TheWhite Album CD1 Piggies

1968 TheWhite Album CD1 Rocky Raccoon

1968 TheWhite Album CD1 Don’t Pass Me By

1968 TheWhite Album CD1 Why Don’t We Do It In The Road

1968 TheWhite Album CD1 I Will

1968 TheWhite Album CD1 Julia

1968 TheWhite Album CD2 Birthday

1968 TheWhite Album CD2 Yer Blues

1968 TheWhite Album CD2 Mother Nature’s Son

1968 TheWhite Album CD2 Everybody’s Got Somethingto Hide Except Me And Mr Monkey

1968 TheWhite Album CD2 Sexy Sadie

1968 TheWhite Album CD2 Helter Skelter

1968 TheWhite Album CD2 Long Long Long

1968 TheWhite Album CD2 Revolution1

1968 TheWhite Album CD2 Honey Pie

1968 TheWhite Album CD2 Savoy Truffle

1968 TheWhite Album CD2 Cry Baby Cry

1968 TheWhite Album CD2 Good Night

1969 Abbey Road Come Together

1969 Abbey Road Something

1969 Abbey Road Maxwell’s Silver Hammer

1969 Abbey Road Oh! Darling

1969 Abbey Road Octopus’s Garden

1969 Abbey Road I Want You( She’s So Heavy)

1969 Abbey Road Here Comes The Sun

1969 Abbey Road Because

1969 Abbey Road You Never Give Me Your Money

1969 Abbey Road Sun King

1969 Abbey Road Mean Mr. Mustard

1969 Abbey Road Polythene Pam

1969 Abbey Road She Came In Through The Bathroom Window

1969 Abbey Road Golden Slumbers

1969 Abbey Road Carry That Weight

1969 Abbey Road The End

1969 Abbey Road Her Majesty

1970 Let It Be Twoof Us
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1970 Let It Be Dig a Pony

1970 Let It Be Acrossthe Universe

1970 Let It Be I Me Mine

1970 Let It Be Dig It

1970 Let It Be Let It Be

1970 Let It Be Maggie Mae

1970 Let It Be I’ve Gota Feeling

1970 Let It Be One After909

1970 Let It Be The Longand Winding Road

1970 Let It Be For You Blue

1970 Let It Be Get Back

Table A.1: The Beatles discography



Appendix B

Details of the experimental

setup

We present here the quantitative results relative to the experiments de-

scribed in Section 5.4. Notice that the computation of the Chroma and the

MFCC is always performed with the application of a rectangular window.

Thus, we can not compare the DBN-based descriptors computed with the

Hamming window with the state of the art.

Descriptor F 0.5 s F 3 s PF

Fs = 44100 Frame Length ≈ 50ms Hop-size ≈ 50ms Rectangular window

Chroma 0.3369 0.7120 0.4771

MFCC 0.3266 0.6784 0.4682

DBN 1000 , 250 , 25 0.3022 0.6675 0.4703

DBN 100 , 250 , 25 0.3088 0.6562 0.4635

DBN 500 , 250 , 200 0.3031 0.6284 0.4572

DBN 500 , 750 , 25 0.3068 0.6681 0.4756

DBN 75 , 50 , 25 0.2879 0.5777 0.4645

Fs = 11025 Frame Length ≈ 50ms Hop-size ≈ 50ms Rectangular window

Chroma 0.3373 0.7034 0.4712

MFCC 0.3351 0.6826 0.4760

DBN 1000 , 250 , 25 0.3559 0.7009 0.4736

DBN 100 , 250 , 25 0.3324 0.6882 0.4804

DBN 500 , 250 , 200 0.3457 0.7013 0.4783

DBN 500 , 750 , 25 0.3461 0.7028 0.4772

DBN 75 , 50 , 25 0.3302 0.6879 0.4713

Fs = 11025 Frame Length ≈ 190ms Hop-size ≈ 50ms Rectangular window
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Chroma 0.3371 0.7044 0.4789

MFCC 0.3399 0.6895 0.4763

DBN 1000 , 250 , 25 0.3480 0.7059 0.4718

DBN 100 , 250 , 25 0.3227 0.6847 0.4631

DBN 500 , 250 , 200 0.3351 0.6968 0.4771

DBN 500 , 750 , 25 0.3448 0.6972 0.4796

DBN 75 , 50 , 25 0.3435 0.6849 0.4741

Fs = 11025 Frame Length ≈ 190ms Hop-size ≈ 190ms Rectangular window

Chroma 0.3426 0.6964 0.4784

MFCC 0.3189 0.6731 0.4743

DBN 1000 , 250 , 25 0.3352 0.6813 0.4738

DBN 100 , 250 , 25 0.3323 0.6882 0.4803

DBN 500 , 250 , 200 0.3457 0.7012 0.4782

DBN 500 , 750 , 25 0.3369 0.6892 0.4761

DBN 75 , 50 , 25 0.2979 0.6421 0.4783

Fs = 11025 Frame Length ≈ 190ms Hop-size ≈ 190ms Hamming window

DBN 1000 , 250 , 25 0.3214 0.6793 0.4733

DBN 100 , 250 , 25 0.3045 0.6376 0.4655

DBN 500 , 250 , 200 0.3239 0.6854 0.4671

DBN 500 , 750 , 25 0.3266 0.6849 0.4719

DBN 75 , 50 , 25 0.3054 0.6299 0.4635
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