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A B S T R A C T

The thesis is aimed to show the importance of aeroelastic analysis,
e.g. flutter prediction, in the preliminary design of Contra Rotating
Open Rotor (CROR). To this end, the structural sub-system is mod-
elled with the Finite-Element (FE) solvers NASTRAN® and ANSYS®.
A comparison of natural frequencies and mode shapes is performed us-
ing both tetrahedral and shell element models. The aerodynamic sub-
system is modelled with the Finite-Volume (FV) full potential solver
ST . The solver model unsteady transonic flows by means of an inde-
pendent approximation of the density and velocity potential fields. It
can also model non-isentropic flows thanks to a new form of Kutta
condition [53–55]. An ad hoc technique is developed for simulating the
flow field around two lifting bodies with relative motion, i.e. the front
and rear propeller stages. The flutter analyses are carried out using
the so-called K-E(fficient) method (also used in NASTRAN® aeroelas-
tic toolbox) and a root-tracking non-linear method for computing the
V − g and V −ω diagrams.

The effectiveness of the proposed aeroelastic analysis for Single Ro-
tating Propfan (SRP) is successfully assessed by tackling a set of real-
istic dynamic problems and by comparing the results with reference
experimental and numerical data available in literature and with the
results obtained by the Euler flow solver AeroX [44, 58]. The results of
the CROR cannot be validated because there are neither data available
in the literature nor other alternative procedures.
Key words: aeroelasticity, contra-rotating open rotor, transonic flow,
flutter, full potential.

iv



S O M M A R I O

Questo lavoro di tesi è volto a dimostrare l’importanza dell’analisi
aeroelastica, e.g. predizione del flutter, nell’analisi preliminare di Con-
tra Rotating Open Rotor (CROR). A tal fine, il sistema strutturale è
modellato con i programmi ad elementi finiti NASTRAN® e ANSYS®.
Viene condoto un confronto delle frequenze proprie e delle forme mo-
dali usando sia modelli ad elementi solidi (tetraedri) sia ad elementi
di piastra. Il sistema aerodinamico è modellato con il solutore a po-
tenziale a volumi finiti ST . Il programma risolve correnti transoniche
non stazionarie grazie ad un’approssimazione indipendente per i cam-
pi della densità e del potenziale di velocità. Questo è anche in grado
di risolvere correnti non isentropiche grazie ad una nuova forma del-
la condizione di Kutta [53–55]. È stata sviluppata una tecnica ad hoc
per simulare le correnti attorno a due corpi portanti in moto relativo
(cioè lo stadio anteriore e posteriore). Le analisi di flutter sono effe-
tuate con il metodo K-E(fficiente) (già usato nel toolbox aeroelastico
di NASTRAN®) e con un metodo non lineare di inseguimento degli
autovalori in modo da tracciare i diagrammi V − g e V −ω.

La validazione della tecnica proposta per l’analisi aeroelastica di Sin-
gle Rotating Propfan è ampiamente supportata dal confronto dei risul-
tati ottenuti con i dati sperimentali e numerici presenti in letteratura e
con quelli ottenuti dal solutore euleriano AeroX [44, 58]. Non è stato
possibile validare le tecniche per il CROR poichè non sono presenti
dati in letteratura e non sono reperibili altri strumenti di analisi.
Parole chiave: aeroelasticità, contra-rotating open rotor, regime transo-
nico, flutter, aerodinamica a potenziale.
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1
I N T R O D U C T I O N

In recent years, there has been a renewed interest in open rotor
propulsion systems, since they could be an improved solution for the
next generation of transport aircraft. In fact, open-rotors are more fuel-
efficient and environmentally friendly than turbofan but more noisy
and complex to built. Furthermore, noise, fluid-structure and rotor-
to-rotor interactions remain key issues to be solved for a fully accom-
plished design of open rotor engines.

1.1 what is an open rotor?

Simply explained, an open rotor is a gas turbine whose fan stage is
not within the nacelle. Two common open rotor configurations exist:
puller and pusher. The puller configuration has propellers mounted at
the front of the engine, while the pusher configuration mounts them
directly behind the turbine stage.

(a) Puller CROR. (b) Pusher CROR.

Figure 1: Different configuration in Open Rotors taken from: ®www.redstar.

gr and ®www.gfdiscovery.blogspot.it

Both can have either a single propeller or a pair of contra-rotating
propellers; however, historically [36], puller configurations have gener-
ally had only one propeller while pusher configurations have usually
had two contra-rotating propellers. The advantage of using a second
propeller stage is that the rotational component of velocity (swirl) of
the air leaving the first stage will be realigned through the second
stage, so increasing the effective engine thrust. This means that to

1
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1.2 challenges 2

achieve a given thrust, an open rotor with contra-rotating blades can
have a reduced propeller diameter and/or angular velocity compared
to a single stage engine. Reduced propeller diameter offers the ben-
efit of an easier integration within an aircraft design. As the noise
generated by the propeller increases with the rotational speed of the
blades, reduced propeller angular velocity offers the benefit of a qui-
eter operation; however, the interaction between contra-rotating blades
rows creates additional noise. Moreover, contra-rotating propellers are
suitable for higher speeds, almost as fast as today’s turbofan powered
aircraft. The drawbacks associated with a pair of contra-rotating pro-
pellers are increased weight, complexity and cost. For example, one of
the most compelling issue is related to the solution adopted to drive
the large and slow moving propeller(s). Ref.[69] reports the two com-
mon solutions:

• To use a reduction gearbox driven by a high speed low pressure
turbine. The gearbox is heavy and complex to build; so, unrelia-
bility and maintenance efforts are increased;

• To use directly a low speed, multi-stage, low pressure turbine
which normally operates at faster speeds with respect to the pro-
pellers, but a compromise between fast and low rotational speeds
has to be found [48].

1.2 challenges

In the seventies, the two oil crisis evidenced that aeronautical indus-
tries and airlines could be put at stake by oil providers. To face this is-
sue, in 1975 the U.S. Senate directed NASA to looking for every poten-
tial fuel-saving concept for aircraft engines. The Advanced Turboprop
project [30] led to the concept of Contra-Rotating Open Rotor (CROR).
This CROR concept showed a potential for large fuel savings but led
to significantly high noise emissions due to the absence of a screening
duct. Because of the high noise emissions combined with the decrease
of the price of the oil barrel in the late eighties, the contra-rotating open
rotor never reached the commercial aviation. In our days, more than
50% of the operating costs of airlines is represented by fuel. In paral-
lel, Airbus forecasts a doubled number of passengers by 2031 [2]. For
such reasons, the European commission has established, through the
Advisory Council for Aeronautics Research in Europe (ACARE), a set
of demanding objectives to reduce emissions by 2050. Noise, CO2 and
NOx emissions should be reduced by 65%, 75% and 80%, respectively,
with respect to their 2000s values. Therefore, to allow a sustainable
air transportation, new concepts are needed for both engines and air-
craft in general. Several of them are already feasible, among which:
lightweight construction with advanced composite structure, airport
collaborative decision making, with continuous climb departures and
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less taxing stand by, aerodynamically optimized wing geometries, e.g.
laminar wings, and fuel efficient engines, to name but a few. For the
latter, two main types of engine are currently studied: the Ultra-High
Bypass Ratio (UHBR) engine that is based on a larger fan exhaust en-
gine, thus improving the propulsive efficiency, and the CROR engine,
which relies on two rows of contra-rotating rotors and has already
proved its viability within the framework of NASA Advanced Turbo-
prop project [30]. Nevertheless, a lot of work has still to be done for
the development of aircrafts mounting CROR engines. In fact, there are
not only noise and aeroelastic issues, but also the integration with air-
frames, blades containments and other certification requirements need
further developments. Possible configurations of future airplanes are
reported in fig.(3). Whichever mounting configuration is selected, the
significant weight and interference drag associated with large engine
size will create installation challenges.

Figure 2: Problematic Airframe Installation. ®www.airinsight.com/

From the certification requirements point of view, designers must
demonstrate that the probability of a blade failure is extremely low (in
the order of a single failure per 1 x 108 flying hours). The propeller
blades for the new open rotors will be highly optimized aerodynam-
ically, lighter and less bulky than conventional propeller blades, thus
making their design an extremely challenging task. There is also the
requirement for aircraft manufacturers to ensure that aircraft systems
(e.g. hydraulics systems) and passengers are sufficiently protected in
the case of blade failure. Fulfilling this requirement may involve repo-
sitioning of certain aircraft systems or the use of shielding.

www.airinsight.com/
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(a) ®www.falconairacademy.com/

(b)

(c) ®www.styleofspeed.com

Figure 3: Compatible Aircraft Configurations for Integration with Airframes

www.falconairacademy.com/
www.styleofspeed.com
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1.3 propfan research and development

The Advanced Turboprop project goals [30] were to show fuel and
direct operating cost savings [48] over comparable turbofans and air-
craft interior noise (and vibration) similar to that at turbofans, so to
meet Federal Aviation Regulations [13, 43].

Figure 4: Experimental Setup of SR-
5 propeller [30]

The first activity was the de-
sign of new propellers, knowing
how sweep had been successful
in reducing compressibility losses
in wings, researchers designed
blades with blade tips having 30°
to 60° of sweep [4]. An added ben-
efit of sweep was the potential de-
crease of the noise levels resulting
from the high blade tip speed. The
SR-1 propeller achieved a propul-
sion efficiency of 77% at Mach 0.8,
quite close to the goal and without
flutter instabilities. The changes in

radial thickness distribution dictated by the structural and aeroelastic
design plus the use of titanium instead of steel prevented flutter prob-
lems in the case of SR-1 blade. More blades models were produced
in order to find the best solution for both structural and aerodynamic
requirements, with the testing of SR-3, SR-5 and SR-7 designs [11, 17].

Figure 5: Various Blade Model of [30]
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A lot of aeroelastic analysis were conducted in order to develop pro-
grams that can achieve good correlations with experimental data [5,
7, 21]. The improvements were relevant and good accordances with
experimental data were eventually achieved in [22] and [34] . Further-
more, a lot of experimental test were conducted with the purpose of
building aircraft powered by propfan. The effort was relevant and sev-
eral flight test were carried out [31, 41, 66]. In fig.(6) is represented
the installation of Pratt & Whitney/Allison 578-DX engine onto the
McDonnell Douglas MD-80.

Figure 6: Airframe Installation at Flight Test. ®www.airinsight.com

1.4 aeroelasticity in open rotor research

Design studies on forced excitation, stall flutter and classical flutter
were carried out and predicted the results reported in fig.(7). Forced
excitations occur over the entire flight envelope and are caused by un-
steady, unsymmetrical airflows produced by gusts, up-wash from the
wing, and airframe-induced flow field distortions. It is observed that
forced excitations peak is during flow-speed climb and high-speed
cruise conditions. Stall flutter occurs primarily at low speed and re-

www.airinsight.com
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sults from blade separated flow. Classical flutter, a particular concern
with propfans, happens at high speeds, beyond Mach 0.6. From the
literature, no whirl flutter analysis has been carried out yet.

Figure 7: Flutter Boundaries - [30]

From the structural point of view, it has been shown the inadequacy
of beam based approximations as a viable blade model at high sweeps
and low aspect ratios [9]. The deficiency of the beam model is even
more remarkable when blades are built with composite materials be-
cause the anisotropy behaviour cannot be modelled adequately. For
more details, ref.[28] develops a rigorous formulation, providing some
examples of anisotropic beam, e.g. helicopter rotor blade. So, shell or
solid elements must be used to create a suitable high fidelity model
for modal analysis. The results presented in [23], obtained with NAS-
TRAN CQUAD4 shell elements, show a good agreement with exper-
imental data. Besides, [74] presents a deep analysis on the effects of
centrifugal and Coriolis forces onto the dynamic behaviour of rotating
structures. For stationary analysis, prestress stiffness matrices, trimmed
with centrifugal load, and centrifugal stiffness matrices have to be added
to the classical linear stiffness matrix.

The aerodynamics can be modelled with various strategies. Ref.[52]
compares the flow field obtained by experimental data (laser doppler
velocimetry) with those obtained by subsonic lifting-line theory. The
agreement is only qualitative and it can be inferred that more sophis-
ticated models should been used. Because the similarities between
propfan and turbomachinery, ref.[23] chooses an unsteady strip the-
ory containing blade rows interactions (commonly treated with trav-
elling waves modes). This modified strip theory (as explained in [51])
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takes into account sweep effects. There is a good accordance with ex-
perimental data, so it can be roughly inferred that 3D effects are not
so important in predicting flutter boundaries. Furthermore, the sim-
ple hypothesis of assuming a perfectly rigid disk with independent
deformable blades is valid. Blades interact with each other mainly
because of aerodynamic loads. When transonic regimes are reached,
this modified theories cannot properly represent the aerodynamic flow
field because of the non linearities introduced by shocks. Aerodynamic
interactions among blades have to be correctly modelled, so recent re-
searches prefer CFD analysis on the complete geometry instead of us-
ing 2D theories. Aeroacoustic interactions are also important factors
to be accounted for the study of open rotors because they are the main
cause of vibration and noise emission of this application. As it will be
explained, there is only an aerodynamic coupling between the blades
because, from the structural point of view, they are mostly indepen-
dent bodies that vibrate onto a rigid hub. Nevertheless, an aeroacustic
analysis and a prediction of acoustic vibratory loads are far away from
the scope of this work, which is focused only on the flutter analysis of
open rotors.

1.5 overview of the thesis

The aim of this thesis is two-fold. On one hand, it aims at show-
ing the importance of classical flutter analysis within the aeroelastic
design of open rotors and propfan. On the other hand, it tries to ver-
ify if a full potential (FP) method can be a simplified yet useful tool
in predicting the aerodynamic behaviour of blades, even if Euler and
Navier-Stokes solver are becoming more and more viable tools. It will
be shown that an FP solver provides solutions very similar to Eulerian
ones, even in presence of shocks on blades surface, better correlations
being obtained if entropy corrections are inserted at transonic regimes.
The time needed to perform flutter analysis is always smaller using an
FP solver, so it can be a valid tool in the preliminary design at least.

The thesis is so organized:

Chapter 2. First, the rotating frame formulation of fluid dynamics
explains how Eulerian or Navier-Stokes solvers can treat rotating prob-
lems. The common solution is to use a non-inertial reference frame
so adding two source terms in the right hand side of the momentum
equation (i.e. centrifugal and Coriolis forces). After that, the formula-
tion of the two independent fields full potential solver is reported with
particular focus onto boundary conditions and domain discretization.

Chapter 3. The theoretical background for solving structure sub-
jected to rotating loads is recalled. The purpose of this chapter is
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a better understanding of what common structural FEM solver (i.e.
NASTRAN or ANSYS) do when simulating such a problem. Particu-
lar attention is given to the numerical implementation of the effects of
inertia forces, i.e. the centrifugal and Coriolis loads. Eventually, the
work-flow for solving the eigenvalues problem is presented in order to
build a reduced order structural system.

Chapter 4. This chapter provides an overview of the background
of the closed-loop interaction between the structural and the aerody-
namic sub-system. The aeroelastic interface strategy is the core for con-
necting the aerodynamics to the structure. In particular, the employed
technique for the fluid-structure coupling consists in an interpolation
scheme based on Moving Least Squares. After that, the transpiration
boundary condition, which is at the base of aeroelastic analyses, is ex-
plained. Eventually, the formulation for solving the aerodynamic flow
field for both single and double stage open rotors is detailed.

Chapter 5. This chapter presents an overview of the flutter analysis
methods in the frame of classical aeroelasticity. Primarily, the K-E
and a root-tracking non-linear methods are used for computing the
so-called V − g and V −ω diagrams. Moreover, the identification of
the aerodynamic transfer functions Ham(k,M∞) is described.

Chapter 6. In this chapter the results of the various analysis are re-
ported. Various blade shapes are available from the literature and three
different shape are investigated. Sec.(6.1) shows a correlation analysis
between the full-potential solver and a uRANS solver of ref.[27]. A
comparison with AeroX, an Euler solver developed at POLIMI, is al-
ways carried out to further validate the solutions obtained. In sec.(6.2)
a test case for single stage open rotors is treated. These first two test
cases are the background for the validation and verification of the var-
ious proposed methods for aeroelastic analyses in open rotors applica-
tions. Then, two other cases are investigated in sec.(6.3) and in sec.(6.4).
The first one is the aeroelastic analysis of a single stage rotor, while the
second one is the aeroelastic analysis of a contra-rotating open rotor
(CROR).



2
A E R O DY N A M I C
S U B -S Y S T E M

This chapter is aimed at providing a theoretical background for the
aerodynamic modelling that can be used for solving the flow field
around rotating bodies. In sec.(2.1), the Euler equation of fluid dynam-
ics are derived for a rotating reference frame. Then, sec.(2.2) shows the
formulation of the full-potential method chosen for our aerodynamic
analyses. Eventually, the last sections presents the various boundary
conditions needed to correctly model the case of contra-rotating open
rotor.

2.1 rotating frame formulation of fluid dy-
namics

When simulating fluid flows around aerodynamic bodies that op-
erate under an imposed steady rotation - including turbomachinery,
propeller, and rotor applications - it is useful to write the equation of
motion in a rotating reference frame connected to the body [20, 35].
Therefore, if the rotating velocity is constant, the problem is steady in
the non-inertial frame and a significant reduction of computation time
can be achieved over the time required to solve the problem in the
inertial

∣∣fixed frame, where a time dependent system must be solved.
Using a non inertial frame implies the introduction of apparent forces
in the momentum equation, i.e. the centrifugal and the Coriolis forces.
They act as source terms and can be simply added to the right hand
side of the equations without any complications. In the inertial frame,
there is a different view of the problem. The fluid is at rest and the grid,
i.e. the aerodynamic body, moves with its own velocity. Obviously, ap-
parent forces must not be included in the equations. The drawback
of using such a formulation is that Euler

∣∣Navider-Stokes equations are
not invariant with respect arbitrary rigid motions, e.g. rotations. In
particular, the components of the velocity vector, u = {u, v,w}T , de-
pend on the reference system chosen.

In the followings, the assumption of a constant angular velocity Ω
is considered. An interested reader could look at [40] where a more
general treatment of non-inertial frames is given, albeit only 2D appli-
cations being reported.

10
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2.1.1 Euler Equations for Rotating Flows

In the non inertial frame, the equations can be obtained in term
of the absolute velocity (velocity relative to the inertial frame) or the
velocity relative to the non-inertial frame. In the same way [10], let ur
be the fluid velocity relative to the rotating frame and u be the absolute
velocity. The relationship between ur and u is

u = ur +Ω×R, (2.1)

where R is the distance from the axis of rotation. The unsteady com-
pressible Euler equations for the relative velocity in a frame rotating
with constant angular speed, in absence of external volume force or
heat addition, are given by (e.g. [33] or [57])

∂ρ

∂t
+∇ · [ρur] = 0,

∂(ρur)

∂t
+∇ · [ρur ⊗ur + pI] = −2ρ(Ω×ur) − ρΩ× (Ω×R),

(2.2)
∂Er

∂t
+∇ · [ur(Er + p) + k∇T ] = 0,

with: (2.3)

Er =
p

γ− 1
+
1

2
ρ|ur|

2 −
1

2
ρ|(Ω×R)|2

= E− ρur · (Ω×R), (2.4)

being the total energy per unit volume in the rotating frame. These are
the conservation laws seen by an observer in the rotating frame, and ur
is the velocity field relative to the rotating frame. It is clear that, from
the numerical point of view, the mesh is fixed in time and space, while
the fluid motion can be divided into a "rigid" motion (i.e. rotational)
and a perturbation motion due to the interaction with aerodynamic
bodies.

An alternative form of eqs.(2.2) is obtained by substituting the ex-
pression for ur from eq.(2.1) into eqs.(2.2). After remembering the
identities:

∇ · (~a⊗ ~b) = ~b(∇ · ~a) + (~a · ∇)~b,

∇× (~F× ~G) = ~F(∇ · ~G) − ~G(∇ ·~F) − (~F · ∇)~G+ (~G · ∇)~F, (2.5)

∇ · (Ω×R) = 0, (2.6)

∇(Ω×R) = −Ω× = −

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 ,

the mass conservation with the absolute velocity u becomes,

∂ρ

∂t
+∇ · [ρ(u−Ω×R)] = 0. (2.7)
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Developing the momentum equation,

∂(ρur)

∂t
+∇ · [ρur ⊗ur + pI] = −2ρ(Ω×ur) − ρΩ× (Ω×R),

∂(ρu)

∂t
−
∂ρ

∂t
(Ω×R) +ur∇ · (ρur) + (ρur · ∇)ur +∇p = −2ρ(Ω×ur) − ρΩ× (Ω×R),

∂(ρu)

∂t
− (Ω×R)∇ · (ρur) +ur∇ · (ρur) + (ρur · ∇)ur +∇p = −2ρ(Ω×ur) − ρΩ× (Ω×R),

∂(ρu)

∂t
− (ur +Ω×R)∇ · (ρur) + (ρur · ∇)ur +∇p = −2ρ(Ω×ur) − ρΩ× (Ω×R),

∂(ρu)

∂t
−u∇ · (ρur) + (ρur · ∇)ur +∇p = −ρ(Ω×ur) +∇(Ω×R)ρur − ρΩ× (Ω×R),

∂(ρu)

∂t
−u∇ · (ρur) + (ρur · ∇)ur +∇p = −ρ(Ω×ur) +∇(Ω×R)ρur − ρΩ× (Ω×R),

∂(ρu)

∂t
−u∇ · (ρur) + (ρur · ∇)u+ (ρur · ∇)Ω×R+∇p = −ρΩ×u− ρΩ×ur,

∂(ρu)

∂t
−∇ · (ρur ⊗u) − ρΩ×ur +∇p = −ρΩ×u− ρΩ×ur,

we obtain:

∂(ρu)

∂t
−∇ · (ρur ⊗u) +∇p = −ρΩ×u. (2.8)

Finally, the energy equation:

∂Er

∂t
+∇ · [ur(Er + p) + k∇T ] = 0,

∂E

∂t
−
∂(ρur)

∂t
· (Ω×R) +∇ · [ur(E− ρur · (Ω×R) + p) + k∇T ] = 0,

∂E

∂t
−
∂(ρur)

∂t
· (Ω×R)

+∇ · [ur(E+ p) + k∇T ] −∇ · [ur(ρur · (Ω×R))] = 0. (2.9)

Multiplying the momentum equation 2.8 by (Ω×R) and substitut-
ing it into eq.(2.9), the energy equation becomes:

∂E

∂t
+∇ · [(u−Ω×R)(E+ p) + (Ω×R)p+ k∇T ] = 0.

The governing equations, in terms of absolute velocity, in a rotating
reference frame with constant angular velocity are:

∂ρ

∂t
+∇ · [ρ(u−Ω×R)] = 0,

∂(ρu)

∂t
−∇ · (ρur ⊗u) +∇p = −ρΩ×u, (2.10)

∂E

∂t
+∇ · [(u−Ω×R)(E+ p) + (Ω×R)p+ k∇T ] = 0.

Ref.[1] states that using absolute-velocity formulation allows for a
more accurate evaluation of the fluxes in a finite-volume scheme. Us-
ing eqs.(2.10) for the absolute velocity requires no modification in the
flow solver to either the far field reference state or the relation between
conserved energy and pressure. Just a few simple modifications of the
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code have to be made to solve problem with rotating bodies. Therefore,
a single initial evaluation of Ω×R throughout the field has to be car-
ried out, without having to recompute face speeds and grid normals or
volumes at each time step, as required in the moving-grid formulation.
However, since the source terms are functions of the velocity field, they
must be evaluated at each time step. Hence, using a non-inertial ref-
erence frame is the same as solving either Euler or Navier-Stokes for
rotating applications.

It should be noted that within the assumptions of the specific non-
inertial frame considered here (pure rotation with constant Ω), the far
field conditions are not completely arbitrary. For example, consider
a typical situation in which the absolute velocity at the far field is
constant, V∞, with corresponding constant condition ρ∞ and p∞. In
that case, the continuity and energy equations are satisfied identically
at the far field, but the momentum equation implies:

Ω×V∞ = 0, (2.11)

which requires that either

1. V∞ = 0;

2. V∞ parallel to Ω.

In terms of an application scenario, if a helicopter blade rotates about
(say) the vertical axis, then the non-inertial formulation above is only
applicable for the hover (condition 1) and vertical flight (condition 2).
The open rotor application studied in this work perfectly match the sec-
ond case described, the translational motion, described by V∞, being
assumed to be perfectly aligned with the rotational velocity, Ω. This
peculiarity is also useful to simplify the domain grid using periodic
boundary conditions as explained in sec.(2.5).

2.1.2 Bernoulli Theorem for Rotating Flows

It can be demonstrated that the Bernoulli theorem cannot be for-
mulated in a rotating reference frame. The assumption for using a
non-inertial frame is that the grid

∣∣body is at rest, while the fluid veloc-
ity is the sum of a perturbed and rotational velocity, ur +Ω×R. The
demonstration can start from either eq.(2.2) or eq.(2.10).

Beginning from the momentum equation with relative velocity, eq.(2.2),

∂(ρur)

∂t
+∇ · [ρur ⊗ur + pI] = −2ρ(Ω×ur) − ρΩ× (Ω×R),

ρ
∂ur

∂t
+ (ρur · ∇)ur +∇p = −2ρ(Ω×ur) − ρΩ× (Ω×R),
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using the second identity of eq.(2.5) and defining the local vorticity,
ω = ∇×ur, one obtains

∂ur

∂t
+
1

2
∇(ur ·ur) +

∇p
ρ

= ur × (ω+ 2Ω) +
1

2
∇(‖Ω×R‖2), (2.12)

(2.13)

where the centrifugal force, Ω× (Ω× R), can be rewritten as a cen-
trifugal potential,

Ω× (Ω×R) = −
1

2
∇(‖Ω×R‖2). (2.14)

With the hypothesis of ur = ∇φ and of isentropic flow regime, ∇s = 0,
the above equation becomes

∇
[
∂φ

∂t
+
1

2
‖∇φ‖2 + h−

1

2
∇(‖Ω×R‖2)

]
= ur × (ω+ 2Ω). (2.15)

We can observe that the right hand side of the above equation is not
zero as it is in the classical inertial formulation. There is not a closed
loop where the quantity in the square bracket is conserved. In other
words, the Bernoulli theorem cannot be expressed as a difference be-
tween its local and asymptotic values. Hence, the Bernoulli theorem
cannot be expressed in a non-inertial reference frame.

The same result can be obtained by starting from the momentum
equation in absolute velocity, eq.(2.10). In fact, using another vectorial
identity,

∇× (Ω×R) =Ω(∇ ·R) −���
��:0R(∇ ·Ω) − (Ω · ∇)R+���

��:0(R · ∇)Ω
= 2Ω 6= 0,

it is impossible to state u = ur+Ω×R = ∇Φ because the term,Ω×R,
is rotational and so the fluid velocity cannot be described as gradient
of a potential quantity.

From this analysis, it is shown that the Bernoulli theorem can be
written only in an inertial reference frame. If a rotational motion with
constant angular velocity has to be described, the Arbitrary Lagrangian
Eulerian (ALE) formulation can be used [18]. Hence, the fluid is at rest
and the grid moves with a arbitrary velocity, VG. It can be observed
that the grid velocity VG can be a combination of rotating and trans-
lating motion. In this way, the Bernoulli theorem is the usual

∂φ

∂t
+
1

2
|∇φ|2 + c2∞

γ− 1

((
ρ

ρ∞
)γ−1

− 1

)
= 0, (2.16)

where φ is the perturbed potential, ∇φ = ur. It is remarked that the
potential φ is a variable attached to the moving grid. The perturbed
velocity is calculated at each point of the mesh that moves with the
arbitrary velocity VG. Eq.(2.16) can be restated in a more compact way

∂φ

∂t
+H−H∞ = 0, (2.17)
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where H∞ is the total specific enthalpy at the far field (at which ∇φ
is null because there is no perturbation motion). Now, the total time
derivative is introduced

d∗
dt

=
∂∗
∂t

+VG · ∇∗ , (2.18)

where the transport term is related only to the moving grid, because
there are no relative motions between the velocity potential φ and the
computational mesh. In other words, the potential φ is attached to the
moving grid. It can also be observed that the fluid density ρ and the
potential φ are invariants for any rigid motion, so there is no need to
recompute faces speeds, grid normals, volumes or grid coordinates at
each time step (if mesh deformations are not included). In the next
section, the formulation of the full potential solver used in this work is
presented [53–55].

2.2 non isentropic potential ale flow for-
mulation

2.2.1 Compressible Potential Flow Model

The aim is to model attached flows past aerodynamic bodies at high
Reynolds numbers. These circumstances ensure thin boundary layer
and narrow vortical regions. So the mathematical description of a flow
system is obtained with the approximation of a non-viscous, irrota-
tional flow. Thus, the condition of zero vorticity,

ω(x, t) = ∇×V(x, t) = 0, (2.19)

will be automatically satisfied if the three-dimensional velocity field
can be described by a discontinuous scalar potential function φ, de-
fined as,

V(x, t) = ∇φ(x, t), (2.20)

where the vorticity bounded to lines|surfaces is related to the jump of φ
across them. This is the so-called quasi-potential flow [49]. Assuming
the viscous stress and the heat sources to be negligible, the governing
equations of the flow are [33]:

• The continuity equation,

∂ρ

∂t
+∇ · (ρ∇φ) = 0, (2.21)

• The Bernoulli theorem,

∂φ

∂t
+H−H∞ = 0. (2.22)
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Both the potential function φ and the density function ρ can be de-
fined on a reference domain RG moving according to an absolute ve-
locity field VG on a spatial domain Rg. Both these functions depends
on the spatial position x and time. Hereafter, the dependencies (x, t)
will be omitted to ease the reading.

Let us define the integral form of the continuity equation, i.e. eq.(2.21),
in the fixed spatial domain Rg:∫

V

∂ρ

∂t
dV+

∫
V

∇ · (ρ∇φ)dV = 0. (2.23)

As described in [18], we define the time derivative over moving vol-
umes (respect to RG) as:

d∗
dt

=
∂∗
∂t

+VG · ∇∗ , (2.24)

and appliyng the divergence theorem the continuity equation, eq.(2.23),
becomes: ∫

V

(
dρ

dt
−VG · ∇ρ

)
dV+

∫
Γ

ρV ·ndγ = 0, (2.25)

which represents the proposed ALE formulation of [54].
We can go on with this demonstration in order to arrive at the usual

ALE formulation that can be found in [18]. Recalling that 1 [33],

d(dV)

dt
= ∇ ·VgdV, (2.26)

where VG is the transport velocity of the elementary volume being
followed; the time derivative of the generic mass element becomes:

d(ρdV)

dt
=
dρ

dt
dV+ ρ∇ ·VgdV. (2.27)

Using it in conbination with eq.(2.25), we obtain:∫
V

d(ρdV)

dt
dV−

∫
V

ρ∇ ·VGdV−

∫
V

VG · ∇ρdV+

∫
Γ

ρV ·ndγ =

d
dt

∫
V

ρdV−

∫
V

∇ · (ρVG)dV+

∫
Γ

ρV ·ndγ = 0,

(2.28)

So, the usual ALE formulation is obtained,

d
dt

∫
V

ρdV−

∫
Γ

ρ (V −VG) ·ndγ = 0. (2.29)

The proposed ALE formulation, which leads to eq.(2.25), is indipen-
dent from the time derivative of the control volume. The time deriva-
tive appears outside the integral operator in the usual ALE formula-
tion, eq.(2.29), while remains inside in eq.(2.25). The drawback of the

1 In Cartesian coordinates: dV = dxdydz and V = {Vx,Vy,Vz}T ; so d(dV)
dt =

d(dx)
dt dydz+ dx

d(dy)
dt dz+ dxdy

d(dz)
dt =

(
∂Vx
∂x +

∂Vy

∂y + ∂Vz
∂z

)
dxdydz = ∇ ·VgdV
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proposed ALE formulation is the evaluation of the term ∇ρ, which is
not present in the usual ALE one.

The Bernoulli theorem, eq.(2.22), in the space domain Rg is:

∂φ

∂t
+
1

2
|∇φ|2 + c2∞

γ− 1

((
ρ

ρ∞
)γ−1

− 1

)
= 0. (2.30)

Applying the total time derivative, eq.(2.24), to the potential function
the ALE form,

dφ

dt
−∇φ ·VG +

1

2
|∇φ|2 + c2∞

γ− 1

((
ρ

ρ∞
)γ−1

− 1

)
= 0. (2.31)

The related integral form,∫
V

(
dφ

dt
−∇φ ·VG +H−H∞

)
dV = 0, (2.32)

is obtained, in which the convected reference frame is treated as for
eq.(2.25). Using the time derivative of the elementary mass, eq.(2.27),
the usual integral ALE form can be obtained,

d

dt

∫
V

φdV+

∫
V

(H−H∞)dV−

∫
V

∇ · (φVG)dV = 0, (2.33)

which is somewhat akin to eq.(2.29), even if it is not a balance equation.

Remark. Here, the ALE formulation proposed in [54] will be pre-
ferred because it provides the same scheme for accounting for a mov-
ing grid RG and because it frees from any limitation imposed onto the
mesh motion to satisfy the Geometric Conservation Law (GCL) [29].
So, in order to avoid any numerical complication related to the domain
motion, the ALE formulation will be based on the form of eq.(2.25) and
eq.(2.32).

2.2.2 Entropy Correction and Wake Equations

Starting from the ALE forms of the continuity equation, eq.(2.25),
and Bernoulli theorem, eq.(2.32), an entropy correction model is now
reported, as fully described in ref.[53]. The potential formulation does
not admit non-homoentropic conditions. First, according to Crocco’s
theorem,

T ∇s = ∇H+ω×V, (2.34)

where T is the temperature and H is the total enthalpy, an entropy
gradient implies vorticity in the motion field and so prevents the ex-
istence of a velocity potential. In presence of discontinuities such as
shock waves the Rankine-Hugoniot relations lead to an entropy in-
crease through a shock. If the shock intensity is uniform, then the
entropy will remain uniform downstream of the shock, but with a
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value differing from its initial constant value. In this case, according
to eq.(2.34), the flow remains irrotational. However, if the shock in-
tensity is not constant, which is most likely to occur in practice, for
curved shocks for instance, then eq.(2.34) shows that the flow is not ir-
rotational any more and hence the mere existence of a potential down-
stream of the discontinuity cannot be justified rigorously. Therefore,
the potential flow model in presence of shock discontinuities cannot
be made fully compatible with the system of Euler equations, since the
potential model implies constant entropy and has therefore no mecha-
nisms to generate entropy variations across discontinuities. Moreover,
the terms related to the entropy gradient and to the vorticity, which
appear in the momentum equation, are not state functions and so they
cannot be easily integrated through a generic path to obtain a scalar
equation, i.e. they require a "special" Bernoulli theorem. To tackle
such a problem, the motion field can be divided in two regions fig.(8):
a layer covering the body-wake surface, in which the flow can be non-
homoentropic, and a potential region which embeds the layer.

Figure 8: Domain Decomposition.

According to the above remarks, the Bernoulli theorem, eq.(2.22), is
strictly applicable only in the potential region. However, for relatively
thin entropy layers, the velocity potential can be used for the whole
domain and the entropy gradient that appears in the momentum equa-
tion can be neglected. These assumptions lead to a non-isentropic
approximation of the Bernoulli theorem,

dφ

dt
−∇φ ·VG +

1

2
|∇φ|2 + c2∞

γ− 1

(
K

K∞
(
ρ

ρ∞
)γ−1

− 1

)
= 0, (2.35)

where, thanks to thermodynamics, we have

K =
p

ργ
= es/cv = p1−γ0 . (2.36)

Then, the related ALE entropy transport equation is:

dK

dt
−VG · ∇K+∇φ · ∇K = 0, (2.37)

which must be applied also within the entropy layer. Eq.(2.37) allows
to convect the entropy produced by attached upstream shocks, so that
the wake becomes also a discontinuity for the entropy function.
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In order to freely satisfy the mass conservation across the wake, the
pressure continuity between the lower (l) and the upper (u) side of this
line|surface must be imposed,

∆ (Kργ) = 0, (2.38)

where ∆∗ = ∗u − ∗l is the jump operator across the wake. Writing
the above modified Bernoulli theorem, eq.(2.35), across the wake, the
desired non-isentropic ALE wake equation is obtained:

d∆φ

dt
−∇ (∆φ) ·VG +

1

2
∆|∇φ|2 + c2∞

(γ− 1)K∞ργ−1∞ ∆
(
Kργ−1

)
= 0.

(2.39)
Eqs.(2.21),(2.35),(2.37),(2.38) and (2.39) do not imply dissipative phe-
nomena, so, when a shock occurs, an entropy jump related to the shock
strenght must be introduced in the entropy layer using an approxima-
tion of the Rankine-Hugoniot (R-H) relation [53].

All the above equations are then adimensionalized with respect to
asymptotic values: ρ∞,V∞andK∞, while keeping lengths as dimen-
sional quantities. So, denoting the dimensional quantities with suffix
d, we define the following non-dimensional terms: ρ = ρd/ρ∞,ϕ =

φd/V∞,k = Kd/K∞, t = V∞td,VG = VGd/V∞. Then eqs.(2.25),(2.35),
(2.37),(2.38) and (2.39) become:

dρ

dt
−VG · ∇ρ+∇ · (ρ∇ϕ) = 0, (2.40)

dϕ

dt
−∇ϕ ·VG +

1

2
|∇ϕ|2 + M−2∞

γ− 1

(
kργ−1 − 1

)
= 0, (2.41)

dk

dt
−VG · ∇k+∇ϕ · ∇k = 0, (2.42)

∆ (kργ) = 0, (2.43)

d∆ϕ

dt
−∇ (∆ϕ) ·VG +

1

2
∆|∇ϕ|2 + M−2∞

γ− 1
∆
(
kργ−1

)
= 0, (2.44)

with M =M∞|∇ϕ|/√kργ−1 and Cp = 2(kργ − 1)/(γM2∞). The scalar
equations (2.40), (2.41) and (2.42), the wake conditions, eqs.(2.43) and
(2.44), and the shock condition (Rankine Hugoniot) combined with a
shock velocity estimation in the independent unknowns ρ, ϕ and k,
constitute the FP model.

Remark. the most common strategy adopted so far to solve potential
flows is to evaluate the density using Bernoulli equation (2.22),

ρ =

[
1−

γ− 1

2
M2∞

(
2
dϕ

dt
+ |∇ϕ|2 − 1

)] 1
γ−1

, (2.45)

and then to substitute it in the mass conservation, eq.(2.21). This re-
sults in a conservative second-order differential equation in the un-
known ϕ only. With a mechanical analogy ϕ can be identified as
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a degree of freedom function while the pair ρ-ϕ can be interpreted
as state functions. So the two-fields approach corresponds to for-
mulating the problem directly in state space form. As hinted at al-
ready, the use of two independent approximations for ρ and ϕ to
solve eqs.(2.21) and (2.22) was likely first proposed by Chipman [16]
for unsteady, non lifting, structured 2D profiles. Nonetheless, such
a formulation seems to have been little used, till the recent appear-
ance of the unsteady, unstructured finite volume implementations of
[parinello2010independent, 53, 65]. The two-field approach consider-
ably simplifies the development of a numerical approximation, leading
to a robust resolution scheme. It is also fundamental for an easy ap-
plication of the entropy layer based FP model just presented, making
it closer to the physics of the problem, for both steady and unsteady
flows. The entropy production alters the momentum equation, leading
to a non isentropic Bernoulli equation, eq.(2.41), and consequently to
a non isentropic wake condition, eq.(2.44), while preserving mass con-
servation, eq.(2.40). Moreover, the two-field approach simplifies the
development of the numerical upwinding, needed to stabilize solution
with shocks.

2.3 external boundary conditions

In aircraft application, there are mainly external problems. Such prob-
lems are analytically defined over an unbounded domain. In view of a
numerical solution, an external fictitious boundary must be applied to
the domain, so making viable numerical solutions related to some kind
of "numerical wind tunnel". This new boundary needs special condi-
tions to grant the proper influence of the asymptotic conditions. A non
reflecting boundary is realized by mean of characteristic variables [61].
For hyperbolic equations, like those of an unsteady potential flow, the
number of physical variables that can be imposed on the external far-
field boundary is related to the propagation properties of the system
perturbations. The characteristic theory [33] states that the number
of boundary conditions must be equal to the number of the charac-
teristic variables related to the incoming waves. These conditions can
prevent the reflection of the internal waves on the external boundary.
The mono-dimensional non-reflecting condition is given by:

wi = (wi)∞, (2.46)

where wi are the characteristic variables related to the incoming waves
and ∞ identifies their asymptotic value. Subsonic asymptotic condi-
tions involve just one incoming characteristic and just one boundary
condition. The characteristic variables for monodimensional potential
equations are the so-called Riemann invariants [33]:

w = u± 2c

γ− 1
, (2.47)
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where c is the speed of sound which can be expressed through the
Bernoulli theorem:

c

c∞ =

√√√√1− γ− 1
c2∞

(
∂φ

∂t
+
1

2

((
∂φ

∂x

)2
− u2∞

))
. (2.48)

Then, the non-reflecting condition, eq.(2.46), becomes

u± 2c

γ− 1
= u∞ ± 2c∞

γ− 1
. (2.49)

Eq.(2.49 needs a linearisation to be solved. Defining the perturbed
potential ϕ:

v = u∞i+∇ϕ→ ϕx = u− u∞, (2.50)

eq.(2.48) becomes:

c

c∞ = 1−
γ− 1

2c2∞
(
ϕt +

1

2

(
(u∞ +ϕx)

2 − u2∞
))
' 1− γ− 1

2c2∞ (ϕt + u∞ϕx) .

(2.51)
Combining eq.(2.51) with eq.(2.49), we obtain:

ϕx = ± 1

c∞ (ϕt + u∞ϕx)→ ϕx = ± ϕt

c∞ ∓ u∞ . (2.52)

Using eq.(2.50), the far-field normal inflow is obtained:

u = u∞ ± ϕt

c∞ ∓ u∞ . (2.53)

For a multi-dimensional domain, the non-reflecting condition, eq.(2.53),
becomes:

∂φ

∂n
= Vn∞ ± φt

c∞ ∓ Vn∞ , (2.54)

where Vn∞ is the normal component of the asymptotic speed on the
boundary. This technique leads to a non reflecting condition that is
exact for one dimensional cases but remains only an acceptable ap-
proximation for multi-dimensional cases, when applied normally to
the boundary.

2.4 boundary conditions on the body

The tangential flow condition on the body surface,

Vnrelative = V
n
flow − Vnbody =

∂φ

∂n
− (VG ·n)body = 0, (2.55)

where Vnbody is related to body motions, states the non-permeability
of the solid boundary. Evaluating on the body boundary Γb the last
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term of the integral continuity equation, eq.(2.25), and applying the
boundary condition, eq.(2.55), a density flux appears at the boundary,

Fbody =

∫
Γb

ρVG ·ndΓb. (2.56)

On the other side, the boundary condition, eq.(2.55), has no effect on
the ALE integral form [54] of the Bernoulli theorem, eq.(2.32), because
no boundary integral appears.

A rigorous treatment of unsteady conditions needs a moving do-
main and so an ALE formulation. However, at each time step, the grid
must be deformed on the fluid domain and the associated grid veloc-
ity VG must be computed. So, the ALE formulation can involve an
undue computational effort in some applications. For example, when
the stability of a system around a reference configuration, i.e. the lin-
earised flutter, must be analysed only small boundary motion can be
considered. This allows to use transpiration: the domain is locked and
the body motion is simulated by assigning the corresponding normal
speed at the boundary. Thus, the grid velocity VG can be neglected
in the whole domain except at the solid boundary where the flux
term, eq.(2.56), persists. The transpiration idea was first developed
by Lighthill [39]. He used a method of equivalent sources to simulate
changes in airfoil thickness. Instead of thickening the actual airfoil,
an equivalent surface distribution of sources is used to simulate the
boundary layer. Such an approach has proven to be an effective tool
for reducing the time required for slightly perturbed aerodynamic cal-
culations. A rigorous mathematical justification of the transpiration
can be developed by writing the fluid problem in variational form at
an actual configuration [24]. However, a qualitative explanations is
proposed in chapter 4. Looking at the continuity equation, eq.(2.25),
and the integral Bernoulli theorem, eq.(2.32), the transpiration leads to
neglect the volume terms related to the gradient of the density and the
velocity potential. Actually, such terms rapidly decrease away from
the body, proving the effectiveness of the transpiration technique.

2.5 periodic boundaries

Periodic boundary conditions arise from a particular type of symme-
try, if a component repeats a pattern of a flow distribution more than
twice, thus violating the mirror image requirements needed for sym-
metric boundary condition. In our case, the computational domain
can be divided into N sectors, with N being the number of blades. For
open rotors applications, the complete domain is a hollow cylinder:
the hub is the inner surface, while the far field is the external surface.
In order to reduce the computational effort, the base annulus is di-
vided in N sections. This simplification is valid only if the asymptotic
velocity V∞ is aligned with the angular velocity vector ~Ω as explained
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in sec.(2.1). In fig.(14), it is represented the division of the base annu-
lus in a common configuration of 8 bladed rotor. The internal radius
corresponds to the hub, while the external radius is chosen so avoiding
any problem due to a bounded domain, i.e. typically Rext ' 3÷ 4 b,
where b is the blade span.

Figure 9: Periodic Domain XY view.

The periodic boundary condition is imposed onto the lateral surface
of the reduced domain. These two surfaces are linked together, so that
what leaves one surface is what gets into the other one. The angular
velocity allows the distinction between "outflow" and "inflow" faces.
Knowing that the domain is discretized, the simplest solution to relate
the two faces implies the same mesh over lateral surfaces. So, a one to
one relationship is achieved between the vertices of the two surfaces
(blue and red ones in fig.(10)). In fig.(11), it is represented the lateral
external mesh viewed along the wind direction. It can be inferred that
the lateral surface grid is identical for the two periodic faces.
Having the same grid onto these faces is not so crucial because the
solution can be represented by an interpolating scheme, so loosing the
one to one relationship between the nodes of the outflow and of the
inflow face. In this way, a rectangular interpolating matrix [Aij] is so
created

uinflow = [A] uoutflow, (2.57)
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Figure 10: Periodic Faces.

where, u contains the values of the density ρ and velocity potential φ
of the two surfaces. In this way, the unknowns onto the inflow face
are recovered by those of the outflow face. The matrix [Aij] represents
the linear operator which connects the unknowns of the two surfaces.
However, this solution is not exploited in this work, so the same lateral
grid is always needed.

The periodic boundary conditions are a valuable tool for reducing
the computational effort needed to simulate the aerodynamics of such
systems. They are also valid for steady (the case of a single rotating
rotor) or unsteady simulations (the case of two contra-rotating rotors).

Figure 11: Lateral Surface Mesh.

The mesh generation for a full potential solver is not so easy because
of the wake representation. As a clarification example, fig.(12) repre-
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sents a 2D mesh around a NACA − 0012 airfoil. It can be inferred
that the wake (red points) spills out of the "outflow" face (green line)
and gets into the "inflow" face (cyan line). Furthermore, the upwind
"desymmetrization" bias, introduced for the treatment of supersonic
regions and for the stability of the numerical schemes, imposes also
a space causality between the periodic boundaries. In the example of
fig 12, upwind triangles of the "inflow" line are the triangles of the
"outflow" line.

Figure 12: Example of the periodic boundary for a 2D application.

The next figures (13 and 14) show the computational domain of a
single propeller prop-fan with 8 blades. The propeller wake geometry
is a helicoid (in 3D), which can be expressed in Cartesian coordinates
as

x = ρ cos(Ω t),

y = ρ sin(Ω t), (2.58)

z = V∞ t,
where Ω = {0; 0;Ω} is the angular velocity vector, V∞ = {0; 0;V∞} is
the asymptotic velocity and ρ is the radial position. Knowing Ω, V∞
and the number of blades, it is possible to sketch the wake surface.
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Figure 13: Periodic domain and wake representation for a 3D case - view 1.
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Figure 14: Periodic domain and wake representation for a 3D case - view 2.
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2.6 wake influence and domain size

In this section, the importance of the wake influence on the flow field
around rotating bodies is discussed, remembering also that the domain
size is a key issue to be dealt with when discretizing an infinite domain
in external flows.

In a preliminary analysis, the momentum theory (MT) combined
with the blade element theory (BET) can be used to evaluate the thrust,
the torque and the inflow velocity of a lifting rotor in flight. As ex-
plained in ref.[38], each blade is divided into a number of independent
sections along its span-wise direction. At each section a force balance
is applied involving the 2D section lift and drag with the thrust and
torque produced by the section (BET). At the same time a balance of ax-
ial and angular momentum is applied to evaluate the inflow ratio. This
produces a set of non-linear equations that can be solved, at each sec-
tion, through iterative methods. The resulting values of sections thrust
and torque can then be summed up to predict the overall performance
of the rotor.

As represented in fig.(15), the angle of attack α of a propeller section
is

α = θ−φ, (2.59)

where θ is the geometric incidence and φ is the inflow angle, which
is related to the wake and it is proportional to the thrust generated by
the rotor T . If the induced velocity is uniform on the disk, then

vinduced =

√
T

2ρA
, (2.60)

φ = tan
(vinduced

Ωr

)
, (2.61)

where A is the disk area, Ω is the angular velocity and r is the span
position of the considered section. The primary influence of the wake
is the reduction of the angle of attack which involves a reduction in
thrust.

The influence of the wake has to be considered in our analyses and it
must be included in the domain discretization. Since the grid has fixed
dimensions and the wake cannot move freely, the asymptotic velocity,
V∞, has to be considered so allowing a small angle of attack along the
wing-span. This constraint is related to the limits of a full potential
analysis which gives good approximations of the real flow fields only
at a low angles of attack, i.e. without large separated flows. After
evaluating the asymptotic velocity, we are able to design the blade
wake geometry which is a helicoid (in 3D).

Afterwards, a convergence study is performed in order to under-
stand the number of "wakes" that have to be included in the mesh.
It is clear that these wakes are those released by other blades during
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Figure 15: Blade Element Momentum Theory - www.sites.google.com/site/
aerodynamics4students/

the rotation. Fig.(16) shows the results of such a convergence study.
With a good approximations, it was decided that 9 "wake turns" be-
hind the body are sufficient. If the rotor has 8 blades, this means that
the computational domain contains the wakes released by a complete
revolution of every blade. This is a property that does not change
with the propeller setting angle and so with the asymptotic velocity
V∞. It must be emphasized that more wakes mean larger computa-
tional domains and so a higher computational effort to solve the sys-
tem of eqs.(2.40,2.41,2.42,2.43,2.44). However, the total number of cells
is always moderate because the periodic boundary conditions are ex-
ploited. Moreover, the increase of cells is not so predominant because
the most dense region is around the aerodynamic body (and not far
away from it).

Thanks to the domain periodicity, it is only required to set up a fine
mesh around the body (in order to correctly represent its pressure dis-
tribution) and a medium size mesh onto the wake surfaces (in order to
represent correctly the transport of velocity potential jump, ∆φ, across
the wake).

0 2 4 6 8 10 12
0
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Figure 16: Number of "Wake Turns" VS Thrust Relative Error [%]

www.sites.google.com/site/aerodynamics4students/
www.sites.google.com/site/aerodynamics4students/


3
S T R U C T U R A L S U B -S Y S T E M

This chapter provides an accurate description of the structural sub-
system, in such a view, the choice of the reference frame and the de-
scription of the centrifugal and the Coriolis loads are not simple tasks,
even if the periodicity of the domain can be used to simplify the geome-
try as for the aerodynamic analysis. Usually, the hub is not considered
when modelling the rotor because it is stiffer than blades. So, blades
can be considered structurally independent bodies that interact with
each other through the aerodynamics.

In particular, a complete formulation for rotating bodies, including
the rigid motions of the hub, is discussed, with a particular focus on
the representation of inertial forces, i.e. the afore mentioned Coriolis
and centrifugal ones.

3.1 reference frames

The apparent forces acting on a steadily rotating structure are the
centrifugal and the Coriolis loads, and the dynamic response of the
blades is strongly affected by these actions. Often, the use of a rotating
reference system is the simplest approach to formulate the dynamic
equations. As explained in [26] and [74], the coordinates of a generic
point of a rotating structure is defined using three different coordinates
systems:

• An inertial reference system (to which relate accelerations and
inertia forces);

• A reference system associated to the mean motion of the unde-
formed disk, which is defined by a new origin x0 and by a rota-
tion matrix [α];

• A reference system related to the perturbed motion of the disk,
which is defined by a perturbation ∆x0 of x0 and by a perturba-
tion of rotation matrix [∆Γ].

Using the above description, the generic coordinates of a body point
are:

x = x0 + [α]∆x0 + [α] [∆Γ] (r+u+∆u) (3.1)

Where the position x of each structural point is espressed in fixed co-
ordinates using a moving reference frame:

30
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• x0 is the origin of the moving reference system;

• [α] is the rotation matrix of the moving reference frame;

• ∆x0 is the variation of the moving frame origin;

• [∆Γ] is a pertubation of the orientation of moving reference;

• In the moving reference, the position is given by the undeformed
location r plus a displacement, which is separated into a trimmed
(steady condition) contribution u and a dynamic perturbation
contribution ∆u.

3.2 kinematic relations

After developing the second order matrix approximation of [∆Γ] as
a function of rotation vector ψ:

[∆Γ] = I+∆ψ× +
1

2
∆ψ×∆ψ×, (3.2)

and substituting it in eq.(3.1), one obtains:

x = x0 + [α]∆x0 + [α] (r+u+∆u) − [α] [(r+u)×]∆ψ

+
1

2
[α]∆ψ×∆ψ× (r+u) + [α]∆ψ×∆u︸ ︷︷ ︸

=A

(3.3)

+
1

2
[α]∆ψ×∆ψ×∆u︸ ︷︷ ︸

=B

.

The term "B" of the previous expression can be neglected because
it is a third order term, while the term "A" gives a not negligible con-
tribution to the virtual displacement vector (but it will neglected for
accelerations). In fact, the virtual work, obtained by multiplication be-
tween the virtual variation of "A" and constant acceleration terms, is
not negligible.

Recalling the properties of [α]

[α]T [α] = I, (3.4)
d

dt

(
[α]T [α]

)
= 0,

[α]T ˙[α] = − ˙[α]
T
[α] = ω̄, (3.5)

In which ω̄ is a skew matrix exspressing the body angular velocity in
the moving frame:

ω̄ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . (3.6)
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Differentiating eq.(3.5) with respect to time,

¨[α] =
d

dt
([α]ω̄) = [α] ˙̄ω+ [α]ω̄ω̄. (3.7)

The angular velocity remains constant in our problems so we can drop
the terms with ˙̄ω.

Differentiating with respect to time eq.(3.3), one obtains the velocity
vector

ẋ = ẋ0 + ˙[α]∆x0 + [α]∆ẋ0 + ˙[α](r+u) + [α]u̇

− ˙[α](r+u)×∆ψ− [α](r+u)×∆ψ̇

− [α]u̇×∆ψ+ ˙[α]∆u+ [α]∆u̇. (3.8)

Differentiating with respect to time eq.(3.8), the accelerations are ob-
tained

ẍ = [α]V0 + [α]ω̄V0 + [α]ω̄ω̄∆x0 + [α] ˙̄ω∆x0
+ 2[α]ω̄∆ẋ0 + [α]∆ẍ0 + [α]ω̄ω̄(r+u) + [α] ˙̄ω(r+u)

+ 2[α]ω̄u̇+ [α]ü− [α](r+u)×∆ψ̈− 2 ([α]ω̄[α](r+u)× + [α]u̇×)∆ψ̇

−
(
[α]ω̄ω̄(r+u)× + [α] ˙̄ω(r+u)× + 2[α]ω̄ ˙̄ω+ [α]ü×

)
∆ψ

+ [α](r+u)×∆ψ̈+ [α]ω̄ω̄∆u+ [α] ˙̄ω∆u

+ 2[α]ω̄∆u̇+ [α]∆ü. (3.9)

Introducing the finite element approximation, the displacement vec-
tor can be viewed as the product of a matrix of shape functions and a
vector of appropriate free coordinates:

u = Nq, ∆u = N∆q. (3.10)

Calling:

R = r+u = r+Nq, t =


∆x0
∆ψ

∆q

 ,

the expression of the accelerations, eq.(3.9), becomes:

ẍ = [α]
(
ω̄V0 + V̇0 + ω̄ω̄R+ ˙̄ωR+ 2ω̄Nq̇+Nq̈

)
+ [α]

[
ω̄ω̄+ ˙̄ω − ω̄ω̄R× − ˙̄ωR× − 2ω̄(Nq̇)× + (Nq̈)×

ω̄ω̄N+ ˙̄ωN
]
t+ [α]

[
2ω̄ − 2ω̄R× − 2(Nq̇)× 2ω̄N

]
ṫ

+ [α]
[
I −R× N

]
ẗ. (3.11)

The same approach can be used for the virtual displacement of a
generic material point:

δx =[α]
[
I − [R×] N

]
δt

+ [α]
[
0

1

2
R×∆ψ× −∆ψ×R× − (N∆q)× ∆ψ×N

]
δt. (3.12)
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3.3 virtual work principle of inertia forces

The virtual work of the inertia forces is simply:

δWi =

∫
V

δxTρẍdV. (3.13)

Using eq.(3.11) and eq.(3.12) for accelerations and virtual displacement
respectively, eq.(3.13) becomes:

δWi = δtT
∫
V

 IR×
NT

(ω̄V0 + V̇0 + ω̄ω̄R+ ˙̄ωR+ 2ω̄Nq̇+Nq̈
)
ρdV

+ δtT
∫
V

 IR×
NT

[ω̄ω̄+ ˙̄ω − ω̄ω̄R× − ˙̄ωR×−

2ω̄(Nq̇)× + (Nq̈)×ω̄ω̄N+ ˙̄ωN
]
ρdV t

+ δtT
∫
V

 0
1
2∆ψ×R× −R×∆ψ× + (N∆q)×

NT∆ψ×
T

(ω̄V0 + V̇0
+ ω̄ω̄R+ ˙̄ωR+ 2ω̄Nq̇+Nq̈

)
ρdV

+ δtT
∫
V

 IR×
NT

 2[ω̄ − ω̄R× − (Nq̇)× ω̄N
]
ρdV ṫ

+ δtT
∫
V

 IR×
NT

[I −R× N
]
ρdVẗ. (3.14)

After some calculations, this compact form for the virtual work of
inertia forces is achieved:

δWi = δtT
(
Mẗ+Cc ṫ+Kc t+ Fc

)
, (3.15)

whose terms are reported in the next page.
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F
c
=

    
d
ia
g
[m

]ω̄
V
0
+
d
ia
g
[m

]V̇
0
−
ω̄
S
ω̄

−
S

˙̄ ω
+
∫ V

( 2
ω̄
N
q̇
+
N
q̈
)
ρ
d
V

S
ω̄
V
0
+
S
V̇
0
+
ω̄
Jω̄

+
J

˙̄ ω
+
∫ V

( 2
R
×
ω̄
N
q̇
+
N
q̈
)
ρ
d
V

∫ V

( NT
ω̄
V
0
+
N
T
V̇
0
+
N
T
ω̄
ω̄
R
+
N
T

˙̄ ω
R
+
2
N
T
ω̄
N
q̇
+
N
T
N
q̈
) ρd

V

    ;
(3

.1
6
)

K
c
=

   d
ia
g
[m

]ω̄
ω̄

+
d
ia
g
[m

]
˙̄ ω

A
∫ V

( ω̄ω̄
N

+
˙̄ ω
N
) ρdV

( ω̄ω̄
S
T
) T −

( ˙̄ ω
S
T
) T

B
D

∫ V

( NT
ω̄
ω̄

+
N
T

˙̄ ω
) ρd

V
C
∫ V

( NT
ω̄
ω̄
N

+
N
T

˙̄ ω
N
) ρd

V

   ;
(3

.1
7
)

C
c
=
2

   d
ia
g
[m

]ω̄
ω̄
S
T
−
∫ V

(N
q̇
) ×
ρ
d
V

∫ V
ω̄
N
ρ
d
V

−
( ω̄S

T
) T

−
1 2
( J
ω̄
) ×

+
1 2
Jω̄

+
1 2
ω̄
J
−
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R
×
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q̇
) ×
ρ
d
V
∫ V
R
×
ω̄
N
ρ
d
V

∫ V
N
T
ω̄
ρ
d
V

∫ V

( −
N
T
ω̄
R
×
−
N
T
(N
q̇
) ×

) ρd
V

∫ V
N
T
ω̄
N
ρ
d
V

   ;
(3

.1
8
)

M
=

 di
a
g
[m

]
S
T

∫ V
N
ρ
d
V

S
J

∫ V
R
×
N
ρ
d
V

∫ V
N
T
ρ
d
V
∫ V
N
T
R
×
T
ρ
d
V
∫ V
N
T
N
ρ
d
V

  ;
(3

.1
9
)
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A
=
ω̄
ω̄
S
T
+

˙̄ ω
S
T
−

∫ V

( ω̄ω̄
(N
q̇
) ×

+
˙̄ ω
(N
q̈
) ×
) ρdV

;
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0
)
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=
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0
) ×
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(N
V
0
) ×
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×
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×
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) ×
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×
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) ×
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) ×
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) ×
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−
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The vector Fc represents the generalized inertia forces related to the
mean motion of the structure. These forces are in equilibrium with the
elastic ones and with external loads related to the mean motion. In
this way, the elastic trim of a rotating structure is computed, and, after
it, one can drop these terms from the dynamic equations in order to
study the linear stability of the system.

The matrix Kc introduces the so called spin softening effect. The
existence of this matrix is related to the approach used to describe the
displacements. Thus, adopting a Lagrangian approach, the centrifugal
inertia forces depend on the deformed configuration of the structure,
and so there is a stiffness contribution proportional to the square of
angular velocity.

The matrix Cc represents the effect of Coriolis forces. Indeed, it is
an apparent damping because Coriolis forces do not work for a virtual
displacement. The contribution to damping of the Coriolis forces is
always negligible if a constant angular velocity with no rigid motions
of the hub are considered. In this way, the natural frequencies remain
imaginary and eigenvectors become real (always if there are not other
form of dissipation). Ref.[25] presents a detailed dissertation onto the
effects of centrifugal and Coriolis forces on the mode shapes and fre-
quencies of a rotating system. The Coriolis effect has an influence on
the eigenfrequencies when rigid motion of the hub is accounted; this
is important in structural redesigns where the frequencies must be ad-
justed.
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3.4 virtual work principle of elastic forces

The virtual work of the generalized internal forces will generate a
stiffness matrix. For a general analysis, such a matrix can be parti-
tioned as,

K =

Kx0x0 Kx0ψ Kx0q
Kψx0 Kψψ Kψq
Kqx0 Kqψ Kqq

 (3.24)

where there are the coupling terms between rigid motion and de-
formable displacements. As already mentioned, our concern is mainly
related to Kqq, because the other terms are mainly related to the sup-
port compliances. In this work, the support is supposed to be perfectly
rigid without any relative motion respect to the rotating frame, so only
the term Kqq is modelled here.

In this application, the hypothesis of small displacement-rotation
must be removed but we can hold the hypothesis of small strains.
A "Total Lagragian" (T.L.) or an "Updated Lagragian" (U.L.) approach
- used here - can be equally used to update the pre-stress terms. In the
first approach, all the variables (static and kinematic) are referred to
the initial condition (undeformed shape), while in the second one, the
variables are referred to the last balanced configuration.

In the Total Lagrangian approach, strains and stresses can be splitted
in a reference condition term and a perturbation term:

Stresses Strains

Sij = S
0
ij +∆Sij εij = ε

0
ij +∆εij, (3.25)

with

∆εij = ∆eij +∆ηij, (3.26)

∆eij =
1

2

(
∆ūi,j +∆ūj,i + ūk,i∆ūk,j +∆ūk,iūk,j

)
, (3.27)

∆ηij =
1

2
∆ūk,i∆ūk,j. (3.28)

The suffix "i, j" express the differentiation with respect to the jth co-
ordinates of the ith coordinates; furthermore, the linear term and the
non-linear term of the strain tensor are separated.

Remembering, the expression of the Internal Virtual Work (IVW),

δWd =

∫
V

SijδεijdV (3.29)

=

∫
V

(S0ij +∆Sij)(ε
0
ij +∆εij)dV, (3.30)

introducing a simple stress-strain relationship,

Sij = Cijrsεrs, (3.31)
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one obtain the linearized expression of the IVW (tensorial form)

δWd =

∫
V

S0ijδε
0
ijdV+

∫
V

Cijrs∆εrsδ∆εijdV+

∫
V

S0ijδ∆ηijdV. (3.32)

Developing displacements with proper shape functions and perform-
ing products between various terms, one obtain the matrix form of IVW

δWd =

∫
V

ε0
T
S0dV+ δqT

(∫
V

BL
TDBLdV+

∫
V

BNL
TDBNLdV

)
q.

(3.33)
The matrix BL is the linear trasformation matrix between displacement-
strain, and it can be splitted in BL0, indipendent from pre-deformation,
and BL1, linear dipendent from deformation. So,

BL = BL0 +BL1, (3.34)

eq.(3.33) becomes
δWd = δW0

d + δq
T K̄q, (3.35)

where

δW0
d =

∫
V

ε0
T
S0dV, (3.36)

K̄ = K+KL +KG, (3.37)

K =

∫
V

BL0
TDBL0dV, (3.38)

KL =

∫
V

(
BL0

TDBL1 +BL1
TDBL0 +BL1

TDBL1

)
dV, (3.39)

KG =

∫
V

BNL
TDBNLdV. (3.40)

and

S0 =

S̃0 0̃ 0̃

0̃ S̃0 0̃

0̃ 0̃ S̃0

 0̃ =

0 0 0

0 0 0

0 0 0



S̃0 =

S011 S012 S013
S021 S022 S023
S031 S032 S033


One can refer to [8] for matrices B because they are related to the
chosen finite element interpolation.

As already stated, there are three contributions to the internal work:
the linear stiffness K, which is the common stiffness in small deforma-
tion and small displacement problems, the so-called geometric stiffness
KL, which is related to the deformed shape in the reference condition,
and the prestress stiffness KG, which is related to the stress field in the
reference configuration.
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3.5 numerical procedures

The main solver work-flow is:

1. Assembly and factorization of various matrices;

2. Trim with centrifugal loads;

3. Compute the prestrain and stress stiffness matrix (with the displace-
ment field just calculated);

4. Solve the eigenproblem (frequencies and modes) with and with-
out the Coriolis damping matrix;

5. Build the reduced system;

The first four points will be carried out in a commercial software, i.e.
NASTRAN® and ANSYS®. The approach of the two commercial soft-
ware is documented in [62] and [3] respectively. Examples of a proper
use of various parameters are reported in chapter 6.

3.5.1 Building, assembly and factorization of various matrices

The solver has to build these matrices to perform calculations:

Mass matrix : M =

∫
V

NTρNdV, (3.41)

Elastic stiffness matrix : Ke = K+KL =∫
V

(BL0 +BL1)
T D (BL0 +BL1)dV, (3.42)

Centrifugal stiffness matrix : KC =

∫
V

NTρ (ω̄ω̄N)dV, (3.43)

Coriolis damping matrix : CC =

∫
V

NTρω̄NdV, (3.44)

and this vector

Steady centrifugal load vector : FC =

∫
V

NTρω̄ω̄RdV

Ref.[74] reports a simple form of some terms if a lumped mass matrix
is used. The rigorous definition of eq.(3.41) produces a coupled mass
matrix, but the lumped (diagonal) mass matrix can be obtained by ap-
propriately distributing the elements mass to each node.

In particular, one can redefine:

KC = Ω̃MΩ̃,

CC = 2Ω̃M,

FC = Ω̃MΩ̃{xn}, (3.45)
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where

Ω̃ =


ω̄ 0

ω̄
. . .

0 ω̄


and {xn} contains the nodal coordinates.

3.5.2 Trim with centrifugal loads

The trim determines the static deformed shape due to centrifugal
loads, obtained by eq.(3.45). This implies the resolution of system

K̃(u) u = FC, (3.46)

to establish nodal displacements u due to applied loads. The matrix K̃
depends on the approach chosen between Updated or Total Lagrangian.
Only the treatment of the former approach is here provided.

The small displacement approximation is well acceptable for open
rotors dynamics; the blades being quite rigid (specially those in com-
posite materials) and angular velocities not so high. So, the deformed
shape does not differ significantly from the undeformed one. From
trim analyses conducted, it can be observed that the blade stretches
itself along the radial direction in order to minimize the distance of
any material point from the plane of rotation.

Even if the small displacement assumption is legitimated, the trim
calculation is performed as non linear static analysis (i.e. SOL 106 in
NASTRAN or NON-LINEAR ANALYSIS in ANSYS) in order to be
conservative. The procedure depends on the chosen approach because
that implies different representations for strains and stresses. In the
case of the Updated Lagrangian approach, tab.(1) reports the tensors
employed for representing the strain and stress fields.

U.L.
Stress Cauchy Stress Tensor (τ)
Strain Cauchy Strain Tensor (ε)

Table 1: U.L. strain and stress tensors

Using a variable "t" to identify the different body configurations, in
[8] is reported (

t
tKL +

t
t KNL

)
∆U =t+∆t Res−t+∆tt F, (3.47)
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where

t
tKL =

∫
tV

t
tBL

T
tD

t
tBL

tdV,

t
tKNL =

∫
tV

t
tBNL

T t
tS
t
tBNL

tdV,

t
tF =

∫
tV

t
tBL

T t
tτ̂
tdV.

So, eq.(3.46) becomes an iterative problem as

K̃∆U(i) = Res− F(i−1), (3.48)

in which displacements are obtained when the right-hand-side is lower
of a user-defined tolerance.

3.5.3 Building the prestress stiffness matrix

With the displacement field just calculated, the matrix of eq.(3.40) is

KG =

∫
V

BNL
TDBNLdV. (3.49)

3.5.4 Eigenproblem: frequencies and modes

The eigenproblem solved for this analysis is

−ω2M∆q+ (Ke +KG +Kc)∆q = 0, (3.50)

where appear both centrifugal stiffness KG and centrifugal softening
KC terms.

3.5.5 Building the reduced system

With modes just calculated, the complete reduced system is

Mβ̈+Cβ̇+Kβ = 0, (3.51)

where

M = XTMX

C = XTCcX

K = XTKX.

The size of the reduced model depend on the level of approximation
required. In aeroelastic analysis, few modes can often describe the
structural subsystem fairly well. This model condensation is very use-
ful to efficiently conduct flutter calculations.



4
I N T E R FA C E

4.1 background

Given a fluid and structural system, in principle one can directly
write down the system of Partial Differential Equations (PDEs) govern-
ing the coupled FSI problem and then try to discretize it as a whole.
However, this approach, usually denominated monolithic is hardly ever
used because the numerical model attaining each physical domain has
different mathematical and numerical properties, along with quite pe-
culiar software implementation requirements. The other approach,
called partitioned and often followed in practice, is based on the Do-
main Decomposition paradigm. The basic idea is to develop special-
ized methods to solve each field independently, or better to resort to
existing, well-established numerical techniques for each discipline. So,
to solve a coupled fluid structure problem it is not sufficient to be
able to compute the solution of the structural and of the aerodynamic
model separately, it is also necessary to exchange information between
them: the modification of boundary conditions must be transferred
from the deformable structure to the aerodynamic boundary, and con-
versely, the loads developed by the aerodynamic field must be applied
to the discrete structural model. The way of using the information
exchange during a time integration or a frequency domain simulation
gives rise to further distinctions in the class of partitioned methods
among explicit or implicit coupling, loose or strong coupling.

In addition, to exploiting the large experience gained in the develop-
ment of solvers for each field, the partitioned approach allows another
important freedom: the possibility of using non-compatible discretiza-
tions, such as different discretization size and element types, e.g. beam
elements for structures and flat lifting surfaces for the aerodynamics,
fig.(??). Of course in all these cases the responsibility of a correct in-
formation transfer is left to an interface scheme, which must interpo-
late/extrapolate the data in an appropriate manner. The problem of
building a methodology to couple fluid and structure has always been
a key aspect of aeroelastic methods.

The main properties that must be ideally satisfied by an interface
algorithm are:

• the possibility of interfacing both non-matching surfaces and/or
topologies;

42
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Figure 17: fig:Different Aerodynamic Models

• the capability of dealing with situations where a control point
falls outside the range of the source mesh (extrapolation);

• the efficiency of the interface operator computation and use;

• the exact treatment of rigid translations and rotations;
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• the capability to correctly deal with situations presenting widely
differing node densities;

• the independence from the numerical formulation of the Com-
putational Fluid Dynamics (CFD) and Computational Structural
Dynamics (CSD) solvers;

• the conservation of appropriate exchanged physical quantities
(in particular momentum and energy);

• the possibility of controlling the smoothness of the resulting sur-
face;

• an easy evaluation of the new interface operator in case of mesh
adaptation, either in the source or target grids.

4.2 structural sub-system

In the framework of Ritz’s like numerical methods, the unknown de-
formable structural displacement field s(x, t) is represented as a func-
tion of a complete set of space dependent shape functions Ni(x) and a
set of time dependent generalized displacements qi(t),

s(x, t) '
ns∑
i=1

Ni(x)qi(t) = N(x) q(t). (4.1)

Such an approach translate the structural problem to a system of ODEs,
eq.(3.51),

Mq̈(t) +Cq̇(t) +Kq(t) = Qa(t) (4.2)

where M, C and K are the generalized mass, damping and stiffness
matrices. The array of the Generalized Aerodynamic Forces (GAFs)
Qa(t) is assembled by projecting the aerodynamic pressure field acting
on the body surface S onto the structural shape functions,

Qa(t) = q∞
∫
S

CP(x, t)N(x)T ~n dS (4.3)

To solve the structural problem the set of shape functions Ni(x) and
the number of structural degree of freedom ns must be chosen. The
compact support Lagrange polynomial shape functions of the Finite El-
ement Method (FEM) can be used. So, the generalized displacements
qi(t) become the nodal displacements ~us. However, for such a formu-
lation, the number of degrees of freedom ns needed to obtain an ac-
ceptable accuracy is generally too large. Alternatively, the set of shape
functions can be obtained by means of an appropriate modal conden-
sation, be it through static or vibration modes, often validated through
Ground Vibration Tests (GVTs). Because of the favourable convergence
properties of such shape functions a relatively limited number of de-
grees of freedom is often sufficient to build an accurate and efficient
condensed numerical model of the structural sub-system.
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4.3 fluid-structure coupling

The aeroelastic interface scheme can be represented by means of a
linear operator L which suitably interpolates the structural displace-
ments us onto the aerodynamic boundary nodes displacements ua,

us = L ua (4.4)

As said, a successful aeroelastic interface scheme must link models
with non-matching spatial domains and numerical grids, while ensure
the conservation of the momentum and energy exchanged between
the two sub-systems. The introduction or removal of spurious values
through the interface scheme may affect the overall stability properties
of the aeroelastic system.

Such a property can be translated on the equivalence of the virtual
work made by the aerodynamic forces Faero on the two sub-systems,

δL = δua F
aero
a = δus F

aero
s . (4.5)

Substituting eq.(4.4) in eq.(4.5) we obtain the linear operator which in-
terpolates the aerodynamic forces from the aerodynamic to the struc-
tural system,

Faeros = LT Faeroa (4.6)

4.3.1 Moving Least Squares

The aeroelastic interface operator of eq.(4.4) is here built by means
of an interpolation scheme based on a Moving Least Squares (MLS)
technique [14, 56]. Such a scheme is able to deal with complex configu-
rations and extremely different structural and aerodynamic meshes. A
local approximation of the structural displacement field must be built
by means of a sum of n polynomial basis functions,

ũs(x) =

n∑
k=1

fk(x)ak, (4.7)

where fk(x) is the k-th basis function while ak is the k-th unknown
coefficient. The coefficients ak are obtained by performing a weighted
least square fit for the approximation:

Minimize J(x) =

∫
Ω

W(x− x̄) (ũs(x) − us(x̄))dΩ(x̄) (4.8)

The problem can be localized by choosing compact support weight
functions W(x) such as smooth non-negative Radial Basis Functions
(RBF). The type of function and the support radius must be chosen to
obtain a smooth interpolation and to cover enough structural nodes.
As an example of the robustness and quality of the MLS scheme, the
reconstruction onto the aerodynamic boundary mesh of a deformable
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Figure 18: MLS interface for SR-3 propfan blade. The left-hand image is the
structural mesh for FEM analysis (SHELL elements). The right-
hand image is the aerodynamic mesh for FV analysis.

modal shapes of the FE structural model of SR-3 propfan blade [21] is
shown in fig(18).

The first modal shape is shown in fig.(18). It can be observed a
good representation of the modal displacement onto the aerodynamic
boundary mesh.

4.4 transpiration boundary condition

By using an appropriate interface scheme, the displacement and ve-
locity vector of the structural points, us(t) and u̇s(t), can be inter-
polated onto the aerodynamic points of the body surface, ua(t) and
u̇a(t). There are various way to impose a variation of boundary condi-
tions on the body surface. The most expensive, but conceptually exact
method, consists in deforming the aerodynamic mesh. The Arbitrary
Lagrangian-Eulerian (ALE) formulation allows this approach. The grid
can be seen as a deformable continuum, with its own stiffness matrix,
where an imposed displacement field is given onto its boundaries. In
particular, the far field boundary is constrained with no motion while
its part adjacent to the the body one reproduces the desired deformed
shape. At each time step, the numerical fluxes vector is updated with
its interface velocity contributions [50].

A simpler technique can be exploited after remembering that flut-
ter analyses corresponds to studying the stability properties of a time
invariant linearised aeroelastic system, assuming small displacements
around a steady equilibrium condition. A more efficient strategy con-
sists in modifying the boundary conditions on the body without de-
forming the aerodynamic mesh. The normal speed Vn, called tran-
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spiration velocity, is added to the non penetration boundary condition
onto the body in order to include geometric and kinematic effects of
moving boundaries.

4.4.1 Linearised Formulation

Referring to sec.(2.4), the condition of non penetration (v · ~n)
∣∣
Sb

=

0, where Sb is the body surface, has to be imposed. Thus, the local
velocity and the surface normal vector in the deformed configuration
have to be found. The non-penetration condition can be linearised as

(v · ~n)|Sb = (−V∞ + ṡ) · (~n0 +∆~n)
= −V∞ · ~n0 −V∞ ·∆~n+ ṡ · ~n0 +O(s2), (4.9)

where V∞ is the asymptotic velocity, ṡ is the deformation velocity of
the body surface, ~n0 is the undeformed normal vector and ∆~n is the
variation of the normal vector due to body deformation. At each time
step, the variation of the normal vector ∆~n is calculated with a finite
difference between the undeformed and the deformed normal vectors.

In eq.4.9, there are 3 contributions:

1. The equilibrium contribution V∞ · ~n0;

2. The geometric contribution proportional to the surface displace-
ment (related to ∆~n);

3. The kinematic contribution proportional to the displacement ve-
locity ṡ on the body surface.

So, the normal velocity Vn that modify the body boundary condition
is

Vn = −V∞ ·∆~n+ ṡ · ~n0. (4.10)

The additional contribution to fluxes vector, Ftra, is:

Ftra =

∫
Sb

ρVndSb. (4.11)

The previous equation exploits the superposition principle, so the ge-
ometric contribution can be considered separately from the kinematic
one. It can be observed that the geometric contribution is predominant
at regime, while the kinematic one has effect only during the transient.
As explained in [47], the aerodynamic transfer matrix can also be sepa-
rated in its geometric part [HGam(k)] and in its kinematic part [HCam(k)]

(both matrices are complex):

[Ham(k)] = [HGam(k)] + jk [HCam(k)]. (4.12)
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4.4.2 Non Linear Formulation

Keeping the second order terms of eq.(4.9), the non linear expression
of the normal transpiration velocity, Vn, is

Vn = −V∞ ·∆~n+ ṡ · ~n0 + ṡ ·∆~n. (4.13)

If structural velocities are small, then the normal transpiration veloc-
ity, Vn, becomes linear because the term ṡ is smaller than the geometric
contribution related to V∞.

Although eq.(4.13) is not consistent with the linearised formulation
presented in sec.(4.4.1), the non linear expression of Vn, eq.(4.13), has
an improved range of application in terms of MachM∞, angle of attack
α and thickness t/c respect to the linear formulation of eq.(4.9) [58].

4.5 boundary condition for contra rotat-
ing blade rows

This section explains the numerical technique needed to simulate
the flow field around two contra-rotating bodies. The formulation of
eq.s (2.40),(2.41),(2.42),(2.43) and (2.44) closes the mathematical prob-
lem related to the simulation of the flow field around a single rotor. A
slight extension of the code is required to deal with two contra-rotating
rotor.

The most common strategy so far adopted to simulate the flow field
around different bodies with relative motion is the Chimera method
[15]. However, the implementation of such technique is far away from
the scope in this work.
An alternative strategy consists in simulating the flow field with non-
inertial Multiple Reference of Frame (MRF) combined with ALE scheme
for the translational motion [10]. Given the rotor angular velocity of
a particular domain region, the centrifugal and Coriolis forces can be
directly added to the right hand side of the Navier-Stokes or Euler
equations, as explained in sec.(2.1). Moreover, Mixing Planes (MPs)
are required at the interfaces between regions with different angular
velocities. Nevertheless, the MP approach cannot be exploited for a
full potential solver because the discontinuity of the potential function
(i.e. the wake vorticity) cannot be rigorously transferred through the
interfaces between various regions. In particular, within the frame of
CROR, the second rotor may run into the wake surfaces generated by
the first one. Thus, the mesh generation may become a very hard issue
if wake-wake or body-wake intersections have to be accounted for. Ob-
viously, these complications make it difficult a correct mesh generation.
Fig.(19) shows the various vortex interactions in CRORs.

In order to overcome these issues, an ad hoc technique is developed
and it is based on ghost bodies and transpiration boundary conditions.
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Figure 19: Vortexes interaction in CRORs. [73]

Such a technique simplifies the regions interfacing and prevents the
difficulties related to the mesh generation related to the wake-wake or
body-wake intersections.
It has to be noted that most of the designed CROR are provided with
a different number of blades and different blade shapes between the
two stages. The blades often differ only in size: the forward rotor
has a bigger diameter than the aft rotor, so that tip vortexes generated
by the first stage do not impact onto the blades of the second stage.
The number of blades differs in order to reduce aerodynamic load
oscillations; in common configurations, the front rotor has 10 blades,
while the rear rotor has 8. Actually, for the sake of simplicity, two
hypothesis are made:

• The two rotor stages have the same number of blades;

• The blades geometry of the two stages is identical.

Both assumptions allow to re-use the grid for a single blade (with its
own wake discretization) for contra-rotating simulations.

The time-marching simulation is replicated in the same number as
the propeller stages. In particular, two simulations connected by the
the transpiration boundary condition are processed in parallel. When
simulating the front rotor, the location of the downstream stage in the
primary grid is represented by the rear ghost. The velocity potential
φ(x, t) and density ρ(x, t) fields are evaluated onto the rear ghost con-
tour. Such fields are used to alter the boundary conditions onto the
rear stage of the other simulation with a technique very similar to the
transpiration boundary condition (see next section). Vice-versa, when
simulating the rear rotor, the location of the upstream stage in the pri-
mary grid is represented by the front ghost. The velocity potential
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(a) (b)

Figure 20: Relative motion between the two rotor blades. In the first simula-
tion, the meshed blade is the black one, while the ghost (gray) is
located downstream.

φ(x, t) and density ρ(x, t) fields are evaluated onto the front ghost con-
tour. Such fields are used to alter the boundary conditions onto the
front stage of the other simulation.

Since the the ALE scheme is exploited and the two rotors counter
rotate, the real body (black) is fixed while the ghost (gray) rotates with
a doubled angular velocity which have opposite versus in the two par-
allel simulations. Thus, it is possible to define the angle

Ψ = reminder

(
2 |Ω| t
2π
Nb

)
, (4.14)

as depicted in fig(21). The angle Ψ is constrained between 0 rad and
2π
Nb

rad, where Nb is the number of blades of both stages, in order to
employ periodic boundary conditions. Thus, the gray blade starts its
rotation behind|above the black one (i.e. 0 rad) and come back in this
position after a rotation of 2πNb rad, fig.(21).
The solution of each simulations is replicated as shown in fig.(21) so to
evaluate the density and velocity potential fields at the ghost location
even when the ghost go through the periodic boundary.
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Ψ

(a) Ψ angle in the first simulation.

Ψ

(b) Ψ angle in the second simulation.

Figure 21: Visualization of the Ψ angle in both cases.

The superposition of the solutions of the two simulations provides
the real flow field around the two lifting bodies at a particular time
step. The validity of this technique relies upon the superposition prin-
ciple. Unfortunately, the compressible aerodynamics is not linear but
the (ab)use of the superposition principle gives good results if the cou-
pling between the two lifting bodies can be described as a linear func-
tion. Appendix A shows also the range of validity and the limitations
of this technique for a simple 2D case.
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4.5.1 Boundary Conditions on the Real Body

The boundary conditions on the real body (i.e. the black one in
previous figures) is slightly different from the simple case because an-
other contribution has to be added. The condition of non-permeability
of solid boundaries is always correct but the perturbation introduced
by the ghost has to be taken into account. Now, the density flux at the
solid boundaries of eq.(2.56) counts for another term:

Fbody =

∫
Γb

(ρ0 +∆ρ)VG · ~ndΓb. (4.15)

Where ρ0(x, t̄) is the density field evaluated onto the real body at
time t̄, while ∆ρ(x, t̄− dt) is the perturbation of the density field cal-
culated onto the ghost body at the previous time step. This new term
is useful to accelerate the convergence of the solution when using the
so called ghost technique. In this way, a better representation of the
density field around the body can be obtained.

4.5.2 Transpiration Boundary Condition

The transpiration technique can still be used when simulating the
flow field around contra-rotating open rotors with small blades defor-
mations. Obviously, the normal velocity contribution is the same as
eq.(4.13) but a perturbed density field has to be considered when cal-
culating the boundary condition onto the body surface. So, eq.(4.11)
becomes

Ftra =

∫
Γb

(ρ0 +∆ρ)VndΓb. (4.16)

It should be immediately observed that the front and aft rotor can
have different motions, e.g. when the aerodynamic transfer functions
are calculated (see cap.(5)).



5
F L U T T E R A N A LY S I S

A flutter analysis is the study of the stability properties of an aeroe-
lastic system linearized around a reference condition. Thus, the flutter
analysis concerns the study of the system eigenvalues. In particular,
a flutter occurs when a structural eigenvalue reaches a zero-damping
condition due to the interaction with the surrounding fluid, the lin-
earization around a reference condition being the key to the study of
the stability properties. The hypothesis of linearity (locally at least)
of the aeroelastic system is crucial to reduce the computational costs.
In transonic flow aerodynamic non-linearities tend to be the most im-
portant. Indeed, it is often observed that the transonic flow regime is
inherently non-linear in the governing field equations. Performing a
flutter analysis in these circumstances is not a simple task.

This chapter provides the theoretical background for rotor flutter
analysis. Sec.(5.1) introduces the main features of the rotor aeroelas-
ticity. Sec.(5.2) is focused onto the identification of the aerodynamic
transfer functions Ham(k,M∞) with a time-based aerodynamic solver
so performing the stability analyses in the frame of classical aeroelastic-
ity. Various methods for calculating the eigenvalues of the aeroelastic
system are described in sec.(5.3).

5.1 rotor aeroleasticity

The simplest (and most physical) way to represent the aero-structural
behaviour of a rotor is to describe the motions of all blades, especially
when (as it usually happens) the disk is assumed to be rigid and blades
are thus independent single structures which interact with each other
due to aerodynamic loads. The motion of one blade generates un-
steady loads on the neighbouring blades and these in turn affect the
reference one with a linear superposition (for small perturbation the-
ory) of forces which arise from the same kind of motion. Ref.[37]
exploited the inherent cyclic symmetry of the problem to prove that
a dramatic reduction in the number of system variables is rigorous
for linear analysis and actually the same approach is effective even for
non-linear phenomena (e.g. stall flutter).
It can be inferred that the perturbations affecting the reference blade
(i.e. "0" in fig.(22)) do not act simultaneously but with a precisely
shift in time. So, in the field of aeroelastic analysis, more complex pe-
riodic boundary conditions must be introduced in order to correctly

53
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Figure 22: Physical explanation of influence coefficients [71]

represent the lag of the perturbations coming from the motion of other
blades if a reduced aerodynamic sub-system is modelled. Thus, ref.[37]
introduced the concept of the Inter Blade Phase Angle (IBPA), defined as

σ =
2 π

Nb
, (5.1)

which is an important parameter in rotor aeroelasticity (along with the
more traditional reduced frequency k = ω La

V∞ ). The IBPA is the non-
dimensional spatial frequency of a periodic disturbance that travels
circumferentially down-rotor or up-rotor from blade to blade. The
allowable Nb discrete IBPA values are:

σn =
2π n

Nb
, with n = 0, 1...Nb − 1 (5.2)

or alternatively from −π to π− 2π
Nb

and the positive values are asso-
ciated to forward (in the direction of rotation) travelling waves, while
the negative values are associated to backward travelling waves. In
this way, all blades are equal to each other due to cyclic symmetry and
they vibrate harmonically with the same frequency but with a time-
lag phase angle σ which is constant and uniform from blade to blade.
Thus, the phase angle divided by the angular speed of the perturbation
is the characteristic time lag of the disturbance in a blade passage

∆T =
σn

Ω
. (5.3)

In this way, the simulations for different phase angles σn require phase-
lagged periodic boundary conditions exploiting the reduction of the
computational domain to a single blade passage only.
The implementation of this phase lag is actually complex and compu-
tationally expensive if the simulations are done in the time domain.
The simplest solution is to transform the simulations in the frequency
domain because the time shift can be applied easily and it is not con-
strained to assume the discrete values of σn. Such a solution is not
exploited in this work but it is a future development to be adopted for
a better flutter analysis of CROR.

Another solution consists in modelling more blade passages by ex-
ploiting the fact that the blade-to-blade phase angle is constant and
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uniform and therefore after a certain number of passages the total time-
shift (with respect to a reference blade) returns to zero and a perfect
spatial periodicity is recovered. For example if the blades are assumed
to vibrate at a given frequency but are 180° out of phase the computa-
tional domain requires two blades (or passages); four blades allow to
model σ = ±90°, eight blades for σ = ±45° or σ = ±135° and so on.

Figure 23: A bending vibration with σn = 180° of turbomachines blades is
here represented. It can be inferred that the perturbations are
periodic every two blade passages. [68]

This still decreases the size of the mesh compared to modelling the
whole rotor but it does not allow to rigorously treat flows featuring
a generic time-lag which is not associated to a specific phase angle
σn. However, this solution cannot be of help because the modelling of
more blade passages requires computational capabilities that cannot
be reached with the resources available for the present work.
In conclusion, the flutter analysis here carried out are done only for
a 0° IBPA. Although the analysis are not complete, the partial results
obtained can give a basic idea of the stability of the studied systems.

For further details and for an improved treatment of rotor aeroe-
lasticity, ref.[19] presents an overall vision on the various techniques
adopted in the linearised flutter analysis of turbomachines (which are
very similar to those of a CROR).

5.2 aerodynamic transfer function

The definition of the aerodynamic forces acting on the structural
sub-system is crucial for aeroelastic analyses. As said with a proper
representation of the unsteady boundary condition, the aerodynamic
transfer functions matrix Ham(k,M∞) can be evaluated directly in the
Laplace domain. However, such an approach can involve undue com-
putational costs using non-linear aerodynamic models because a pre-
cise evaluation of the aerodynamic Jacobian matrix must be performed
at each desired steady state. So, the matrix Ham(k,M∞) is here ob-
tained through numerical time marching simulations. At first, the
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steady solution for the aeroelastic system, i.e. the trimmed deformed
condition representing the reference trim condition for the lineariza-
tion, must be reached. Now the vector of the generalized aerodynamic
forces Qa(t) due to a prescribed law of motion of the i-th generalized
displacement qi(t) can be computed. The i-th column of the aerody-
namic transfer functions matrixHam(k,M∞)∣∣i is the ratio between the
Fourier transform of the output and input signal of the aerodynamic
system,

Ham(k,M∞)|i = F(Qa(t))

F(qi(t))
(5.4)

where the operator F(◦) can be efficiently implemented by the Fast
Fourier Transform (FFT) algorithm. Performing such an operation
for each structural degree of freedom the whole aerodynamic transfer
functions matrix Ham(k,M∞) is obtained. It is worthwhile to remark
that each column of the aerodynamic transfer functions matrix can be
computed independently.

The procedure is computationally efficient due to the use of the tran-
spiration to impose the unsteady boundary conditions. The law of mo-
tion for the i-th generalized displacement qi(t) must excite the desired
reduced frequency range [0,kmax]. Defining ω as the frequency of the
vibrational motion of the structure, c as a reference length and V∞ as
the asymptotic velocity, the definition of the reduced frequency k is:

k =
ωc

V∞ , (5.5)

and kmax can be safely assumed to be five, at most. Moreover, the
amplitude of the displacement must be large enough to overcome the
numerical noise but not too large to preserve the small perturbation
hypothesis. Moreover the programming effort and computational over-
head associated with the numerical implementation of such an input
signal must be taken into account. The most widely used options are:
harmonic, impulse, step. The characterization through harmonic input
seems the most natural but it is extremely expensive in terms of com-
putational costs, because each degree of freedom needs to be tested for
a set of imposed frequency. The other two cases, at least ideally, re-
quire just one test for each input to characterize completely the system
in the whole range of frequencies of interest. The better choice is likely
a blended step input, namely:

qi(τ) =


Aq
2

(
1− cos(kqτ)

)
if τ < τq,

Aq if τ > τq,
(5.6)

where the non-dimensional time τ = tV∞
c can be interpreted as the

number of aerodynamic reference lengths travelled per unit time at
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the flight velocity V∞. Remembering this substitution of variables, the
corresponding time derivative q̇i(τ) can be written

q̇i(t) =
dqi(τ)

dτ

dτ

dt
=

{
Aq kq
2

V∞
La sin(kqτ) if τ < τq,

0 if τ > τq.
(5.7)

The reduced frequency kq and equally the adimensional time constant
τq are suitably chosen so to excite the frequency interval of interest
k ∈ [0,kmax] and do not depend on the particular coordinate under
consideration, namely: kq = π/τq and τq = 2π/kmax. The maxi-

0 2 4 6 8 10
0

0,2

0,4

0,6

0,8

1

τ [−]

q
(τ
)/
A
q

[−
]

τq

0 2 4 6 8 10
0

0,2

0,4

0,6

0,8

1

τ [−]

q̇
(τ
)/
A
q

[1
/
s]

τq

Figure 24: Blendend step input q(τ) and its derivative q̇(τ) as a function of
time τ.

mum amplitudeAq is chosen with the aim of exciting the aerodynamic
sub-system with an input signal signal well above the numerical error
threshold but without jeopardizing the hypothesis of small perturba-
tions. Suppose that we are dealing with a detailed Finite Element (FE)
structural model suitably condensed by means of an efficient modal ba-
sis as follows: {us} = [U] q, where the matrix [U] ∈ RNFEM×Nq stores
the modal shapes. Within such a framework the maximum nodal ve-
locity should be suitably small if compared with the flight velocity, e.g.
max({u̇s})/V∞ = ε with ε = tan(1°). Carrying out all the computa-
tions it is possible to write the following relation for the maximum
amplitude Aq, dependent on the particular coordinate under consider-
ation:

Aq =
4 ε La

max([Ui]) kmax
(5.8)

The blended step is computationally efficient because it does not
require excessive time resolution to be described, and prevents Gibbs
phenomena in the transient, typical of a not blended step. Typically,
the number of time steps needed to correctly define the junction is
30 ÷ 40, roughly. To avoid the singularity related to the asymptotic
value (1/jk), the deficiency function must be used and eq.(5.4) becomes,

Ham(k)|i =
Qa∞(t) + jk F

(
Qa(t) −Qa∞(t))

qi∞(t) + jk F
(
qi(t) − qi∞(t)) . (5.9)
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which it is added to the denominator the contribution of the Fourier
transform of the deficiency of the input signal qi(t).

5.3 flutter calculation

Moving to the Laplace domain and recalling the expression of the
GAFs, eq.(4.3), the structural problem, eq.(4.2), falls in the framework
of classical aeroelasticity as an algebraic homogeneous system,[

s2M+ sC+K− q∞Ham(p,M∞)]q(s) = 0. (5.10)

Such a system admits non-trivial solutions if the matrix [A(s,V∞)] is
singular and is closed in the complex unknown s for a given velocity
V∞. Starting from V∞ = 0, the roots loci can be builded for the whole
flight envelope. The so-called V∞ −ω and V∞ − g diagrams, where
g = 2σ/

√
σ2 +ω2 (i.e. σ and ω are the real and imaginary parts of a

complex number respectively), suitably represent the stability proper-
ties of the system. The first intersection in the V∞−g diagram with the
g axis identifies the flutter velocity, i.e. the zero damping condition.

As already said, the most difficult part of the aeroelastic analyses
concerns the definition of the aerodynamic transfer functions matrix
Ham(p,M∞). Usually, it is known for a set of discrete values of p and
M∞ and, generally, for purely harmonic boundary conditions only, i.e.
with p = jk. Thus, common eigenvalue methods cannot be applied
to solve the coupled problem, eq.(5.10), and ad hoc methods must be
used.

The complex eigenvalue problem to be solved depends on the way
in which the aerodynamic loads are included in the equations of mo-
tion or whether certain damping terms are included.
The two methods for flutter analysis used in this work are summarized
in next sections. First, the K-E method is used just to follow the flutter
analysis already provided in the literature. In this way, the validation
of the procedures before described can be proved. Then, a variation of
the well-known p− k method [32] is exploited. The develop of a modi-
fied p−kmethod is mandatory because it can involve some difficulties
in tracking intersecting eigenvalues. The approach used here prevents
such a drawback because each mode is tracked separately from the
others.

5.3.1 K-E(fficient) Method

This method is a simplification of K-method in which are neglected
all viscous sources of the structure or of the control system. The basic
equation for modal flutter analysis by the K-method is
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[
−ω2M+ jωC+ (1+ jg)K

−

(
1

2
ρV2

)
Ham(k,M∞)

]
q(ω) = 0, (5.11)

where g is an artificial structural damping. Note that k, V∞ and ω
are not independent. For the K-method of solution, the aerodynamic
term is converted to an equivalent aerodynamic mass,

[
−
[
M+

ρ

2

( c
2k

)2
Ham(k,M∞)] ω2

1+ jg

+C
jω√
1+ jg

+K

]
q(ω) = 0, (5.12)

or, using the relation k = ωc
2V∞ ,

[[(2k
c

)2
M+

ρ

2
Ham(k,M∞)]( −V2∞

1+ jg

)

+

(
2k

c

)
C

(
jV∞√
1+ jg

)
+K

]
q(ω) = 0. (5.13)

In the K-E method, the equation to be solved becomes eq.(5.13) with
the term containing C deleted; note that complex structural damping
may still be included in K. The solutions are not valid except when
g = 0, since the aerodynamic force terms are valid only for oscillating
motion and g is not a physical damping. The values of g, V∞, and
f ([Hz]) are solved for various values of M∞, k, and ρ. Plots of V∞
versus g can be used to determine the flutter speed(s) (where g goes
through zero to positive values).

Thus, the square of eigenvalues is

λ2 =
−V2∞
1+ jg

= −V2∞ 1− jg1+ g2
= a+ jb, (5.14)

so that

g = −b/a, (5.15)

V∞ =

√
−
a2 + b2

a
, (5.16)

f =
kV∞
πc

. (5.17)

Ref.[22] uses this method to predict flutter boundaries and so it is
a useful test case for validating the formulation proposed to carry out
the aerodynamic transfer function Ham. The results obtained are re-
ported in next chapter. For this case, the K-E method is used but the
next method will be preferred for all other cases.
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5.3.2 Flutter Eigensolution as a Nonlinear Problem

The aeroelastic problem, eq.(5.10), can be seen as a linear homoge-
neous system in q(s) and nonlinear in s [45, 46]. So, a normalization
rule for the generalized coordinates vector q(s) can be added to close
the problem, {

A(s,V∞)q = 0
1
2q
TWq = 1.

(5.18)

where W = diag(Wi) for i = 1, . . . ,n (in which n =length(q)) are ar-
bitrary weights. The obtained nonlinear system can be solved through
the Newton-Raphson method. Linearizing around a reference solution
q0 and s0 we obtain,[

A(s0,V∞) ∂A(s,V∞)
∂s

∣∣∣
s0
q0

qT0W 0

]{
∆q

∆s

}
=

{
−A(s0,V∞)q0
1− 1

2q
T
0Wq0

}
. (5.19)

Such an approach allows to compute the eigenvalue and the eigenvec-
tor all at once. Starting from V∞ = 0 with q = q0 and s = s0, i.e
the structural solution, V∞ −ω and V∞ − g diagrams can be plotted.
The procedure must be repeated starting from each structural eigen-
value avoiding any problem with intersecting curves. In this way, the
whole eigensolution is tracked with a very simple task and without the
drawback of intersecting eigenvalues. Since the aerodynamic transfer
functions matrix Ham(k,M∞) is known for a set of reduced frequen-
cies only a proper interpolation technique must also be implemented.
A linear interpolation will be used here.

Numerical Procedures

The aerodynamic transfer functions are known at particular refer-
ence conditions and for discrete values of Mach M∞ and reduced
frequencies k. As already stated, the frequencies resolution and the
maximum excited frequencies depend on the blended step input cho-
sen, while the asymptotic Mach M∞ depends on the flight condition
considered. This procedure will be employed in test case of sec.(6.3)
and sec.(6.4), while in sec.(6.2) the K-E method is used just to follow
the literature.
A trial transport jet is identified in order to prevent flutter in its flight
envelope. In this way, an high fidelity polar is built using the prelimi-
nary design methods of [59]. Once Penaud diagrams are obtained, the
condition T = D is imposed for a steady rectilinear flight at a discrete
number of blades pitch and various altitudes. At the end of the trim
calculations, every selected pitch angle is matched with an asymptotic
velocities V∞. In particular, the blade pitch angle is referred to the
plane of rotation of the rotor disk.
In the next figures, Penaud diagrams of the test case of sec.(6.3) are
reported for three different altitudes (i.e. 0 m, 5000 m and 10000
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m). Then, the aerodynamic transfer function are calculated at every
trimmed condition (i.e. red squares of figs.(25a,25b,25c)). Finally, the
V − g and V −ω diagrams are obtained by a flutter calculation as a
solution of a non linear problem (5.3.2). Obviously, one cannot start
from null asymptotic velocity, V∞ = 0, but, thanks to experience, the
frequencies and eigenvectors should not change completely from the
structural ones (V∞ = 0), even if V∞ is not null.
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(a) Penaud Diagram at h = 0 m.
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(b) Penaud Diagram at h = 5 km.
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(c) Penaud Diagram at h = 10 km.

Figure 25



6
R E S U LT S

This chapter is aimed at assessing the effectiveness of the proposed
techniques for the aeroelastic analysis of open rotor by comparing the
results -based on our full potential formulation- with reference data
available in the literature and with those obtained through the Euler
flow solver AeroX [44, 58]. In particular, the formulation adopted
in AeroX for simulating rotating flows is briefly presented in sec.(2.1).
Moreover, the aerodynamic analyses performed with both ST andAeroX
are carried out with the same grids because the Eulerian solver can
use the same periodic boundary conditions implemented in our full-
potential formulation.

Four different test cases are investigated. Sec.(6.1) is dedicated at
assessing the potentialities of the full-potential solver ST with aero-
dynamic analyses of single and contra-rotating open rotors. Sec.(6.2)
presents a complete aeroelastic analysis in accordance with ref.[22].
More precisely, after providing an overview of the structural and aero-
dynamic models, the aerodynamic transfer matrices Ham(k,M∞) are
computed as explained in sec.(5.2). Successively, the K-E method is
used for calculating the eigenvalues of the aeroelastic system and fi-
nally the so-called V − g and Vω diagrams show the obtained results.
These two test cases represents the validation

∣∣verification benchmarks
of the here proposed aeroelastic analysis techniques.
In sec.(6.3) and in sec.(6.4) the aeroelastic analyses are conducted with-
out reference to any result available from the literature, but with the
awareness gained from previous benchmarks. In particular, a first anal-
ysis is focused onto single rotating propfan while a following one dis-
cusses the stability of a contra-rotating open rotor. As explained in
sec.(5.1), the flutter analyses are conducted only for a 0° IBPA. More-
over, the CROR, whose responses are time-periodic, is treated as a
small varying system so studying its frozen stability [67].

6.1 test case 1

In this case, only aerodynamic calculation are performed to validate
the solver ST for rotating problems in fluid dynamics. The blade geom-
etry is taken from [63]. The blade characteristic are reported in fig.(26),
which shows the radial distributions of the thickness normalized by
the chord t/c, the blade mean-line sweep angle Φ as well as the twist
distribution β. The selection of the blade airfoils is set in accordance to

63
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the approach of the SR-7L high-speed propeller reported in [64]. The
blade features NACA65-series airfoils near the root to the radial po-
sition of r/R = 0.4 then transitioning to NACA16-series airfoils from
r/R = 0.55 outward. The mean line tip sweep is Φ = 35°. The rotor
diameter isD = 4.2672m (14ft) and the hub-to-tip ratio is d/D = 0.355.
The blade shape is so shown in fig.(27).
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Figure 26: Generic Blade Design Characteristic.

Figure 27: Blade shape available on [63]
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6.1.1 Aerodynamic Analyses of a Single Rotating Propeller (SRP)

This first analyses are performed to verify the reliability and the ac-
curacy of the full-potential results, so the simple case of an 8-blade
SRP is investigated. Ref.[63] performs the simulations using the DLR-
TAU-code, [27], with all its simulations carried out using the Spalart-
Allmaras turbulence model. Ref.[63] fully exploits the Chimera func-
tionality [42], so to enable a variation of the blade pitch settings with-
out any re-meshing. The full rotor is discretized with a structured Eu-
ler HEXA mesh. Such an approach deemed appropriate, as the blade
aerodynamics are properly modelled in such a computation for the
axis-symmetric geometry and no unsteady flow phenomena (save for
separation regions) occur for an SRP in a rotating frame of reference,
in which an inviscid hub rotates at the same rotational speed as the
propeller itself.

The simulations are carried out at the design cruise case with a pro-
peller rotational speed of Ω = 895 RPM. The pitch angle at 75% of the
blade span, β75%, varies from 56° to 63° without changing the flight
condition reported in tab.(2). This flight condition leads to a helical tip
Mach number of Mtip = 1.0068, so that weak shocks are expected on
the blade surface. The geometric angle of attack remains always under
5° at the 75% of the blade span, so separated flow is no expected. Ac-
tually, a small flow separation is generated by the weak shock onto the
outer surface.
For such an application, ST gives very acceptable results even if the en-
tropy correction is turned off. The aerodynamic mesh for the ST solver
is generated as explained in sections 2.5 and 2.6 with the commercial
mesh generator, GAMBIT®. In particular, the discretization adopted
consist of nearly 160k nodes (i.e. 850K tetrahedrons).

M∞ 0.75
h 10668 m

ρ∞ 0.4135 Kg/m3

P∞ 26500 Pa

Table 2: Flight Conditions

Fig.(28) reports comparisons of the thrust coefficient CT , the torque
coefficient Cl, the power coefficient CP and propeller efficiency η, de-
fined as

CT =
T

ρn2D4
, Cl =

C

ρn2D5
,

CP = 2π Cl, η =
CT
Cl

J

2π
. (6.1)
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where:

n = Ω/2π, [1/s]→Propeller Rotational Speed

J = V∞/(nD), [−]→Advance Ratio

C = ρn2D5Cl, [N m]→Torque
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Figure 28: Comparison between the results obtained by the reference [63], ST

and AX.

As it can be seen from the previous figures, the uRANS results show
a good accordance to those obtained with ST while the Eulerian solver
AeroX provides worse somewhat correspondences, in particular for
the efficiency η. As it can be noted, the potential solution is in the
middle between those obtained with uRANS and Euler solvers, so it
is proved another time that full-potential solvers can be a valuable
tool for the preliminary analyses in the frame of Computational Fluid
Dynamics. The differences can be imputed to the effects of the bound-
ary layer that are not modelled in an Euler

∣∣potential solution. The
approximations introduced by ST leads our calculation to more real-
istic results, i.e. closer to uRANS simulations, but, obviously, this is
not a desirable effect. Other differences can be attributed to different
numerical schemes adopted.

Fig.(29) and fig.(30) shows the Mach and Cp distributions respec-
tively onto the upper surface of the blade for the steady state obtained
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with β75% = 60°. As said, the local Mach number reaches transonic
values and a weak shock extending from the tip to the root of the blade
can be noted. These solutions are obtained without the activation of
the entropy correction but the potential solution is very similar to the
Eulerian one. Probably, a better representation of the Cp

∣∣Mach distri-
butions can be obtained with a finer grid onto the blade surface. This
fact will also help to better estimate the position and the intensity of
the shock.

(a) Mach Distribution obtained by ST . (b) Mach Distribution obtained by AX.

Figure 29: Comparison between Mach distributions.

(a) Cp Distribution obtained by ST . (b) Cp Distribution obtained by AX.

Figure 30: Comparison between Cp distributions.
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6.1.2 Aerodynamic Analyses of a Contra-Rotating Open Rotor (CROR)

The mesh for the isolated CROR configuration of [63] consists of
a total of 20 Chimera blocks representing the complete engine (com-
prehending the core engine air intake and exhaust). The complete
20-block Chimera mesh which was used for the uRANS computations
consists of 40.8M nodes with a total of 25 hexahedral layers placed on
all surfaces of the nacelle and of the blades.

The assumption of equally partitioned thrust between both rotors is
used for the case of axis-symmetric flight condition. Furthermore, the
interaction between the blades of the forward and aft rotors have a sig-
nificant effect on the individual blade performance, leading to strongly
modified characteristics respect with the SRP condition. The operating
conditions are the same as the SRP case, as reported in tab.(2). The
"ghost technique", explained in sec.(4.5), is here verified to work rea-
sonably.
Tab.(3) shows a good accordance for the pitch angles at 75% of blade
span. The differences in the set angles are lower than 1°. This er-
ror can be imputed to the different approaches used to describe such
a periodic system. Moreover, the details modelled in our mesh are
significantly less than those of the grid of ref.[63], which models the
whole engine.

Ref.[63] ST

Front Rotor β75% 61 ° 60.5 °
After Rotor β75% 57.9 ° 57 °

Table 3: Blade Pitch Angle at 75% of span-wise direction for equally par-
titioned thrust between both rotors at an angular velocity of
Ω = 895 RPM and at an altitude of 35.000 ft

The flow field exhibits unsteady phenomena which are periodic in
nature, linked to the rotational speed and the number of blades of the
rotor. In particular, the period of an oscillation for Ω = 895 RPM and
Nb = 8 is equal to

T =
1

2Nb

60

Ω
' 4.19 · 10−3 s. (6.2)

Fig.(31) shows the trend of the thrust coefficient of the separated
rotors. It can be inferred that the amplitude of the second stage CT is
greater than the one of the first stage because of the interactions of the
second stage with the wake surfaces released by the first propeller. The
amplitudes of the oscillations of both stage are slightly smaller with
respect to those reported in ref.[63]. In particular, the front rotor seems
to be less affected from the oscillating loads of the second propeller.

Tab.(4) reports the comparison of the mean values of the CT , CP
and η at regime. It can be inferred that the thrust coefficient is well
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approximated by ST (i.e. the relative errors are about 4% and 3% for
the first and the second stage respectively).

Of course, the values of CP and η differ. In fact, the potential solver
underestimates the torque on the rotating axis because it does not com-
prehend the effects of the viscous drag forces of the blade. This fact
involves lower power coefficients, and so greater efficiencies with re-
spect to those calculated with a uRANS simulation.

Front Rotor Rear Rotor
CT Cp η CT Cp η

Ref. 0.3372 1.5956 73.85% 0.3379 1.4838 79.58%
ST 0.3507 1.4544 83.33% 0.3486 1.2649 95.26%

Table 4: Comparison of the most important parameter of CROR.

Figure 31: Trend of the CT of the front (black) and after (gray) rotors.
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6.2 test case 2

In this section, the flutter analysis of the SR− 5 propfan, a 10-blade
wind tunnel model designed by Hamilton Standard in early ′80s, is
carried out. This model was designed during the so-called "Advanced
Turboprop Project" as described in cap.(1). This blade has a tip sweep
of 60°, the maximum value allowed for a metal blade without excessive
stresses, a medium chord of 7.67 cm and a span of about 30 cm. Dur-
ing performance testing in the Lewis transonic wind tunnel, the SR− 5
propeller encountered classical flutter above M∞ = 0.7 and thus could
not achieve its design point.

6.2.1 FE Analyses

The structural grid is taken from [21] where the coordinates of the
grid points, the connection matrices and the material properties are
translated to a NASTRAN® bulk input file. The blade is discretized
only with shell elements so, it will not be carried out a comparison
with solid elements. Only NASTRAN will be used and the so obtained
results are compared with those of the experimental and numerical
data available in the literature. Fig.(32) shows the structural model
available from [21], which consists of both CQUAD8 and CTRIA6 ele-
ments. The blade is fully constrained at its base.

Figure 32: SR-5 NASTRAN® structural model
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Modal Analysis

First, the normal modes of the simply clamped blade are calculated.
The material properties are the same as those reported in tab.(9). In
this case, it has been decided to use the same model available from
ref.[21] but with the CQUAD4 and CTRIA3 elements of NASTRAN
libraries. In this way, the models with linear and parabolic elements
are compared. The eigenvalues obtained with linear shell elements are
very close to those obtained with parabolic ones. For this analysis, the
measured experimental frequencies are available.

Ref.[23] Ref.[74]
NASTRAN

mode Exper. CQUAD8 CQUAD4 HEXA
1st 112.0 114.0 109.4 113.8
2nd 278.0 285.0 281.0 284.0
3rd 483.0 562.0 517.0 558.1
4th 630.0 650.0 647.7 654.3
5th 807.0 720.2 818.4
6th 966.0 970.9 1003.2

Table 5: Non Rotating Normal Frequencies [Hz] of the SR-5 blade

Since the small thickness distribution and the well modelled joint,
there are acceptably small differences among the various models.

Modal Analysis of Rotating Blades

Tab.(6) reports the first 6 normal frequencies for the rotating blade
at an angular velocity of 6800 RPM. The displacement constraint is the
same as above, i.e. a simply clamped plate at its base.

Ref.[23] Ref.[74]
NASTRAN

mode CQUAD8 CQUAD4 HEXA
1st 187.9 160.9 173.7
2nd 292.8 287.0 285.4
3rd 612.6 595.9 598.4
4th 666.9 670.7 647.2
5th 822.3 863.2 816.8
6th 1008.5 1013.4 970.0

Table 6: Rotating Normal Frequencies [Hz] of the SR-5 blade

The errors committed using the CQUAD4 elements are greater when
calculating the rotating normal modes with respect to those of the non
rotating frequencies, probably because the less precise representation
of the trim with centrifugal forces. Fig.(33) shows the first 4 normal
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shapes. It can be inferred that the first two modes are mainly in bend-
ing while the third is mainly torsional.

(a) Rotating 1st Mode, 160.9 Hz. (b) Rotating 2nd Mode, 287.0 Hz.

(c) Rotating 3rd Mode, 595.9 Hz. (d) Rotating 4th Mode, 670.7 Hz.

Figure 33: Rotating Mode Shapes of the SR-5 blade.
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6.2.2 Aerodynamic Analysis

Tab.(7) reports the 4wind tunnel test conditions for the SR-5 propfan
taken from [23]. Since the too high asymptotic Mach number M∞ and

Case No. of Blade Setting V∞ Density Mach No.
No. RPM Blades Angle β75% [m/s] [Kg/m3] M∞

1 6900 5 69.0◦ 277.88 0.9488 0.85

2 6000 10 69.0◦ 263.86 1.0067 0.80

3 6800 10 69.0◦ 237.13 1.0433 0.70

4 6200 10 69.0◦ 280.90 0.9151 0.85

Table 7: SR-5 Operating Conditions

mean angle of attack, the cases 1 and 4 cannot be investigated. In
all the cases, the local Mach number at the blade tip always reaches
transonic values, e.g. fig.(34) which refers to the operating condition
of case 3. In the cases 1 and 4, ST has serious problem to converge at
a steady solution because the angle of attack is too high (about 15°) in
relation to the asymptotic Mach number M∞ = 0.85. Thus, only the
results from cases 2 and 3 are compared with those available from the
literature and from AeroX.

(a) Mach distribution obtained by ST (b) Mach distribution obtained by AX

Figure 34: Comparison between Mach distributions.

The cases 2 and 3 are more "friendly" to ST , so that appropriate
comparisons can be carried out. The maximum local Mach number is
about 1.2 at the tip of the blade and the angle of attack at 75% of the
span is 8° and 14°, respectively for case 2 and case 3.
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(a) Cp distribution obtained by ST (b) Cp distribution obtained by AX

Figure 35: Comparison between Cp distributions.

6.2.3 Flutter Analysis

Tab.(8) reports the reference chords and the mean sweep of the
blade. The latter is used to plot the V − g and V −ω diagrams be-
cause VS = V∞ · cos(Λ). The amplitudes of the blended step input are
calculated using eq.(5.8), so remaining within a linear aerodynamic
regime. Since the maximum value of the excited frequency is k = 1.5,
the value kmax = 3 is chosen to evaluate the length of the transient
of the blended step input. As already said, kmax must be almost the
double of the value of the maximum excited frequency k, in order to
have a good frequency resolution for the aerodynamic transfer matri-
ces Ham(k,M∞).

Case Chord Sweep Angle
No. c [m] Λ [deg]

1 0.07367 50.140

2 0.07366 50.109

3 0.07367 50.138

4 0.07366 50.117

Table 8: Unsteady Aerodynamics Data

The KE method, presented in sec.(5.3.1), is used for these flutter anal-
yses. The damping g and the modified eigenvalues ω of the system
are calculated with eq.(5.13) setting the discrete values of reduced fre-
quencies as 0.1, 0.2, 0.3, 0.6, 0.9, 1.2, 1.5. The aeroelastic system is
reduced to the first 6 modes coming from the structural analysis of the
blade subjected to centrifugal loads only. Fig.(36) and fig.(37) show the
aerodynamic response to the blended step input and the aerodynamic
transfer matrix of the first 2 modes. The related figures compare the
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results obtained with ST (black) and AeroX (gray) for case 2. Although
the asymptotic value is not equal, the frequency content of the aerody-
namic transfer matrices obtained with the two solvers is very similar.
On one side, the differences are caused by the high transonic regime
over the outward surface of the blade, in fact the local Mach number
reaches nearly supersonic values (i.e. 1.25 in case 2). The range of
applicability of the potential solver is at its limits because the entropy
released by the shock is badly approximated even if the entropy cor-
rection implemented is turned on. A more precise solution can be
obtained by using a finer grid, so to predict in a better way the posi-
tion and the intensity of the shock onto the outward surface for both
case 2 and case 3.
On the other side, the values of the amplitudes of the blended step
input are chosen with the aim of exciting the aerodynamic sub-system
with an input signal well above the numerical error threshold but with-
out jeopardizing the hypothesis of small perturbations. In this way, the
aerodynamic forces and shock motion will be linear for small deforma-
tion of the blade.

0 1 2 3 4

−2

−1

0

·10−4

t[ms]

Q
1
1
[m

2
]

0 1 2 3 4

−4

−2

0

·10−4

t[ms]

Q
2
1
[m

2
]

0 1 2 3 4

−2

0

2

·10−5

t[ms]

Q
1
2
[m

2
]

0 1 2 3 4

−1

−0,5

0

0,5

·10−4

t[ms]

Q
2
2
[m

2
]

Figure 36: Aerodynamic Modal Responses of Case 2. Only the first two rows
and columns are reported. ( ) for ST and ( ) for AeroX.

The quality of the images of [23] is poor so only a qualitative accor-
dance can be proven. It can be inferred that the ST solver provides re-
sults very similar to those obtained with the modified strip theory pro-
posed in [51]. In this way, the results obtained within the framework of
Computational Aeroelasticity are justified. Moreover, it is proved that
the modified strip theory proposed in [51] is an appropriate method



6.2 test case 2 76

0 0,5 1 1,5

−0,6

−0,4

−0,2

0

k[−]

H
a
m

,1
1
[m

]
Re

Im

0 0,5 1 1,5

−0,1

0

0,1

k[−]

H
a
m

,2
1
[m

]

Re

Im

0 0,5 1 1,5

−2

−1

0

k[−]

H
a
m

,1
2
[m

]

Re

Im

0 0,5 1 1,5

−0,5

0

k[−]
H

a
m

,2
2
[m

]

Re

Im

Figure 37: Aerodynamic Modal Responses of Case 2. Only the first two rows
and columns are reported. ( ) for ST and ( ) for AeroX.

for computing the aerodynamic solution around a rotating blade.
For both cases there is a flutter of the second mode (i.e. the second
bending one) at the asymptotic velocity of 190 m/s and 179 m/s for
case 2 and case 3 respectively and for critical reduced frequencies be-
tween 0.2 and 0.3. From V − g and Vω diagrams, it can be inferred
that the flutter instability is a coupled bending-torsional one because
the frequencies ω of the second and third normal modes tend to get
closer. This test case proves acceptable reliability of:

• The aerodynamic solvers ST and AeroX;

• The numerical procedures for carrying out the aerodynamic trans-
fer function Ham(k,M∞).
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Figure 38: V-f of Case 2. ( ) for ST and ( ) for AeroX.

Figure 39: Reference V-f of Case 2.
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Figure 40: V-g of Case 2. ( ) for ST and ( ) for AeroX.

Figure 41: Reference V-g of Case 2.
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Figure 42: V-f of Case 2. ( ) for ST and ( ) for AeroX.

Figure 43: Reference V-f of Case 2.
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Figure 44: V-g of Case 2. ( ) for ST and ( ) for AeroX.

Figure 45: Reference V-g of Case 2.
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6.3 test case 3

The blade shape is taken from US Patent [60], which provides the
coordinates of various sections of the blade as sec.(6.1). A CAD model
of the blade is then created with SolidWorks®, as shown in fig.(46):

Figure 46: CAD of the blade [60]

The blade height is about 1.15 meters with a mid chord of 40 cen-
timetres. The blade twist and sweep are aerodynamically optimized so
improving the range of the blade operational flight condition. Ref.[60]
guarantees no flutter instabilities for a common transport jet flight en-
velope. Once more, the procedures described in sec.(5.3.2) is used to
study the flutter boundaries in this case.
As in sec.(6.2), the structural analyses are conducted first. Various
finite elements models are created to assess the best solution for rep-
resenting its structural dynamics. In particular, shell and solid models
are employed. Then, the static aeroelastic problem computing the ref-
erence equilibrium, or "trim", configuration of this blade is presented.
Eventually, after computing the reference equilibrium for the (numer-
ical) linearization of the generalized aerodynamic forces, the aerody-
namic transfer matrices are built and the root-tracking non-linear method
for computing the V − g and V −ω diagrams is used. Such proce-
dures is repeated for different altitudes and asymptotic velocities, as
explained in sec.(5.3.2).

6.3.1 FE Analyses

A comparison between two FEM commercial solvers (i.e. Ansys® and
MSC NASTRAN®) is carried out to better understand their capabilities
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to represent a rotating structural element. For both solver a detailed
solid element model with about 30K tetrahedrons has been developed.

Since the blade has an irregular geometry, the tetrahedral element
is preferred to the hexahedral one. It is well known that 4-node tetra-
hedron can only give a constant stress state so it is better to abound
with this TETRA-element to overcome this issue. Thus, both linear (4
nodes) and parabolic (10 nodes) tetrahedrons are used to model the
blade. It is stressed that only a good approximation of the normal
frequencies and mode shapes is needed to built a reduced aeroelastic
model. It is important to underline that there are small variations of
the eigenvalues and mode shapes with respect to the blade pitch angle
β.

Eventually, a convergence study of normal frequencies is carried out
with a shell elements model so validating the results obtained with
solid elements. For the regression to shell element representation, the
body is approximated with its mid surface and with a function repre-
senting its thickness distribution.

Modal Analysis

As said previously, two different mesh are created but the element
type is always a tetrahedron (linear or parabolic). The material prop-
erties are reported in tab.(9). As suggested by ref.[60], the blade is
modelled as a single piece of Titanium, whose properties are reported
in tab.(9).

Material Titanium alloy
Young Modulus [GPa] 111

ν 0.34

ρ [Kg/m3] 4425.2

Table 9: Material Properties

Ref.[19] demonstrates that the hub is substantially stiffer than the
blades, so it is acceptable to model only a clamped blade. Thus, all its
root degrees of freedom are fully constrained.

A first analysis with the non-rotating blade is performed with a
classical SOL 103 with NASTRAN® and with Normal Modes Calcula-
tion with Ansys®, the related first normal frequencies are reported in
tab.(10).

It is difficult to distinguish bending and torsional modes, since they
are always coupled because of blade twist and sweep. We can observe
that the first two modes are mainly in bending while the third mode is
mainly torsional. From tab.(10), it can be inferred that the model with
linear tetrahedron is not yet converged.
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ANSYS NASTRAN
mode TET10 TET10 TET4

1st 43.54 43.53 58.20

2nd 110.83 110.78 163.95

3rd 178.12 178.07 265.71

4th 216.65 216.45 341.53

5th 340.56 340.45 485.20

6th 353.03 352.48 543.72

Table 10: Non Rotating Normal Frequencies [Hz].

Modal Analysis of the Rotating Blade

A second analysis is performed to evaluate the deformed shape and
the eigenvalues under the centrifugal load. Tab.(11) reports the first 6
normal frequencies for an angular velocity of 1900 RPM.

ANSYS NASTRAN
mode TET10 TET10 TET4

1st 56.90 57.25 63.46

2nd 127.70 127.92 166.64

3rd 195.21 195.54 268.29

4th 235.41 235.50 344.08

5th 356.93 357.31 485.72

6th 371.66 371.48 544.99

Table 11: Rotating Normal Frequencies [Hz] with Ω = 1900RPM.

Fig.(47) shows the first 4 mode shapes under a centrifugal load re-
lated to an angular velocity of 1900 RPM. It is confirmed that that bend-
ing and torsional modes are coupled because of the complex blade
geometry (i.e. mostly caused by the blade sweep).

Tab.(10) and tab.(11) show a good accordance between the normal
frequencies obtained from Ansys® and NASTRAN® when a TET10 el-
ement is used. The results obtained with a linear tetrahedron TET4

are always worse than the former ones, not only in the prediction of
eigenvalues but also in the displacement field resulting from the static
analysis with the centrifugal load. Fig.(48) shows the error between
the deformed shape of TET4 and TET10 models, defined as

err =
||uTET10s (x) −uTET4s (x)||

max (||uTET10s (x)||)
, (6.3)

where uTET10s (x) and uTET4s (x) are the displacement fields obtained
from the static analysis of the two different solid model. It is also
stressed that the grid differs only in the typology of TET element and
not in the number of them.
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(a) 1st Mode. (b) 2nd Mode.

(c) 3rd Mode. (d) 4th Mode.

Figure 47

Dependency of Eigenvalues from Pitch Angle

Here the comparison of frequencies between different pitch angles of
the blade is carried out as reported in fig.(12). The eigenvalues change
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(a) Error between TET4 and TET10 in the de-
formed shape under the centrifugal load.

(b) A zoom on the blade tip shows the differ-
ent displacement fields obtained by TET4
(cyan) and TET10 (red).

Figure 48

with pitch angles because of the different distribution of the centrifugal
load onto the blade. The first two frequencies are more affected to the
variable pitch. The modal shapes, instead, remain nearly unaltered.

β0%[°] 1st 2nd 3rd 4th 5th 6th
45 50.12 117.25 182.73 222.06 345.27 356.48
50 49.95 117.28 182.83 222.22 345.43 356.78
55 49.78 117.26 182.88 222.32 345.53 356.98
60 49.60 117.21 182.87 222.35 345.56 357.07
65 49.42 117.13 182.80 222.31 345.53 357.05
70 49.25 117.01 182.67 222.20 345.43 356.92
75 49.09 116.85 182.49 222.02 345.26 356.68
80 48.95 116.67 182.26 221.78 345.04 356.33

Table 12: Dependency of Eigenvalues with variable pitch angle at
Ω = 895 RPM

Convergence Study with SHELL model

Since plate model is seen as the most reliable and simple solution
to represent the structural system in aeroelastic analyses (as explained
in [22]), various model with an increasing number of shell elements
have been developed to validate the results obtained with the solid
models of previous the section. The blade geometry is simplified with
its mid-plane surface plus a function describing its thickness distribu-
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tion. Only the NASTRAN® solver is used to perform such a study
and its parabolic CQUAD8 element is selected. The related parametric
study has the goal to validate the eigenfrequencies and modal shapes
obtained VS the more complex solid models. Tab.(13) and tab.(14) re-
port the eigenvalues of the coarsest and finest structural grid, for both
rotational and non-rotational conditions. Fig.(49) shows the structural
grids above introduced.

(a) 4x19 CQUAD8 elements. (b) 15x19 CQUAD8 elements.

Figure 49

CQUAD4 CQUAD8

mode coarse fine coarse fine
1st 42.28 43.64 43.15 43.11

2nd 106.95 110.86 108.73 108.64

3rd 164.07 179.45 168.84 166.05

4th 206.76 215.63 211.89 210.54

5th 302.76 336.17 326.43 321.53

6th 332.8 353.66 345.52 340.33

Table 13: Non Rotating Frequencies [Hz] (Case 1)

For the non rotating frequencies, the results obtained with plate or
solid models are very close, as reported in tab.(13) and tab.(10). Nev-
ertheless, even if the blade is slender, there are small differences in the
rotating frequencies between solid and plate models probably because
the blade thickness distribution near the hub and the clamped joint
representation. From the results, it can be inferred that the blade is
best represented by a solid model in this case. However, it is demon-
strated, in accordance with literature [23], that shell models can be a
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CQUAD4 CQUAD8

mode coarse fine coarse fine
1st 48.73 51.16 49.28 53.11

2nd 114.64 118.24 124.70 119.18

3rd 187.89 185.91 184.52 177.31

4th 220.28 223.21 230.27 221.71

5th 346.67 343.50 352.04 340.60

6th 365.85 361.09 369.69 350.92

Table 14: Rotating Frequencies [Hz] with Ω = 895RPM (Case 1)

good approximation for preliminary analyses of rotating blades, their
accordance to experimental data or solid models being better for thin
thickness distributions.

6.3.2 Aerodynamic Analysis

The aerodynamic mesh is generated as already explained in sections
2.5 and 2.6 with GAMBIT®, different grids are developed because of
the variable pitch angle of the blade. In particular, the number of the
aerodynamic meshes is the same as the trimmed asymptotic velocities
V∞ related to the Penaud diagrams, because there is a perfect corre-
lation between the blade pitch angles and the asymptotic velocities
V∞. In other words, there is a different aerodynamic mesh for every
trimmed flight condition, reported in section 5.3.2, because the blade
can be set at different pitch angles, so optimizing its aerodynamic be-
haviour (i.e. to avoid flow separation due to high angles of attack).
Actually, every asymptotic velocity V∞ generates a different wake heli-
coid (as explained in sec.(2.6)). In every grid created, the wake rolling
is reproduced using the specific trimmed V∞ andΩ, in order to reduce
the sources of any errors. Tab.(15) reports the relationships between
the asymptotic velocities V∞ and the blade pitch angles.

Pitch Angle [deg] V∞ [m/s]
45 70

50 90

55 110

60 130

65 150

70 180

75 210

Table 15: Relationship between β0% (at the root of the blade) and V∞
In particular, the discretization adopted consist of nearly 180k nodes

and 1M tetrahedrons for each mesh. The external mesh onto the aero-
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dynamic body is refined at the leading and trailing edges in order to
correctly represent the variation of pressure distribution. A good wake
discretization is obtained with a medium-size uniform discretization.
Fig.(50),fig.(51), fig.(52) and fig.(53) show samples of the comparison of
the Mach and pressure coefficient distributions provided by the full po-
tential scheme, ST and AeroX (AX) Euler solver in some cases. Since
the local Mach number almost reaches the sonic condition, the two
solvers provide nearly the same solutions.

(a) Mach distribution obtained by ST (b) Mach distribution obtained by AX

Figure 50: Mach distributions for V∞ = 70 m/s at h = 0 km.

(a) Cp distribution obtained by ST (b) Cp distribution obtained by AX

Figure 51: Cp distributions for V∞ = 70 m/s at h = 0 km.

It is worth noting that the flight conditions are always subsonic
except for highest pitch angles (or equivalently the highest trimmed
asymptotic velocities V∞) where the local Mach number can be at most
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(a) Mach distribution obtained by ST (b) Mach distribution obtained by AX

Figure 52: Mach distributions for V∞ = 205 m/s at h = 10 km.

(a) Cp distribution obtained by ST (b) Cp distribution obtained by AX

Figure 53: Cp distributions for V∞ = 202 m/s at h = 10 km.

1.1. For this reason, the entropy correction developed in ST had no
appreciable effect because of the relatively weak downstream shock
waves. Thanks to the "friendly" operating conditions, it is possible
to state that the differences between the solutions obtained from ST

and AX are only imputable to the different numerical methods imple-
mented. The rapid variation of the Cp distribution over the outward
surface of the blade can be better approximated by using a finer grid
around the leading and trailing edges, in fact a correct mesh genera-
tion will help in predicting the flow field around lifting bodies.
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6.3.3 Aeroelastic Trim

Within the frame of rotating bodies, the main load acting on the
blades is the centrifugal force but it is right to query if the steady aero-
dynamic load, which is a follower force, is strong enough to introduce
non-negligible deformations. If it is not true, then eigenvalues and
mode shapes can be quite different respect to the case in which only
the centrifugal load acts. In this way, the static aeroelastic equilibrium
has to be computed at every flight operating condition in order to cor-
rectly evaluate the blade deformation, the eigenvalues and the modal
shapes before proceeding with the identification of the aerodynamic
transfer functions Ham(k,M∞).

Recalling eq.(3.37)
K̄ = K+KL +KG, (6.4)

where

K =

∫
V

BL0
TDBL0dV,

KL =

∫
V

(
BL0

TDBL1 +BL1
TDBL0 +BL1

TDBL1

)
dV,

KG =

∫
V

BNL
TDBNLdV,

the non-linear trim with the centrifugal force is

K̄(q)q = FC. (6.5)

Considering also the aerodynamic load, the equilibrium condition yields

K̄(q)q = FC + Faero(q), (6.6)

which is a non-linear problem that must be solved by an iterative solu-
tion, so to update the stiffness matrix K̄(q) and the aerodynamic load
Faero(q) at every step. In order to simplify such problem, only one
step will be performed.
To this end, the non linear trim, eq.(6.5), is performed with the centrifu-
gal load FC so to obtain the solution q0. After that, the linearization
of the steady aerodynamic virtual work, as explained in ref.[12], is
evaluated

δWaero = δqT
1

2
ρV2∞

∫
S

ΦT C0p (~n0 +∆~n) dS̄, (6.7)

where, C0p = C0p(x|S, t̄) is the steady state pressure coefficient onto
the blade surface S, ~n0 is the undeformed normal and ∆~n takes into
account the follower force contribution. Such term is due to the non-
conservative behaviour of the aerodynamic force, which follows the
motion of the body surface, being always oriented along its normal.
Thus, the term containing ∆~n in eq.(6.7) provides a follower stiffness
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matrix, usually called Kaero0 . Eventually, the linearised static aeroelas-
tic trim problem consists in, with an abuse of notation,[

K̄(q0) +K
aero
0

]
∆q =

1

2
ρV2∞

∫
S

ΦT C0p ~n0 dS̄, (6.8)

in which the equilibrium with the centrifugal load is hidden in K̄(q0).
After computing the right hand side of eq.(6.8), the updated pre-strain
stiffness and the aerodynamic follower matrices, a new eigenvalue
problem is solved. In common practice, the pressure load can be added
to NASTRAN® model with a PLOAD chart (i.e. a distributed follower
load). The main purpose of this analysis is to determine changes in
eigenvalues and eigenvectors with respect to those associated only to
a centrifugal-loaded blade.

In this case, it is demonstrated that the effects of the aerodynamic
loads are negligible with respect to those associated to the centrifugal
force and so it is not required to perform the static aeroelastic equi-
librium for every flight condition. In this way, the effectiveness of the
linearization of the aerodynamic virtual work is proved because the
non-linear problem of eq.(6.6) can be solved in only one step.
Tab.(16) reports the first 6 normal frequencies calculated for a blade
pitch angle of 75° at a flight velocity V∞ = 210 m/s and at an angular
velocity of 895 RPM. Fig.(55) demonstrates that the modal shapes in-
cluding the aerodynamic load are practically the same as those of only
the centrifugal load acting (i.e. the differences are less than 1%).

mode Cent+Aero Cent
1st 49.13 49.09

2nd 116.98 116.85

3rd 182.59 182.49

4th 222.28 222.02

5th 345.24 345.26

6th 357.04 356.67

Table 16: Comparing Normal Frequencies [Hz] with or without the aerody-
namic pressure load

As further verification, it is shown that eigenvectors of only cen-
trifugal loaded blade are a good basis for representing the structural
behaviour of the blade. The aerodynamic load is projected onto a re-
duced modal basis as

Qa =
1

2
ρV2∞

∫
S

ΦT C0p ~n0 dS̄, (6.9)

whereQa are the so-called steady state generalized aerodynamic forces.
Then, the additional displacement field due to only aerodynamic forces
can be approximated with

s =

h∑
i=1

Qa,i

Ki
Φi (6.10)



6.3 test case 3 92

where Ki are the generalized stiffness of centrifugal loaded blade.
In this way, the influence of the follower aerodynamic stiffness ma-
trix Kaero0 on the displacement field can be evaluated. The displace-
ment field obtained from a NASTRAN® simulation with both aerody-
namics and centrifugal loads is compared with that computed with
eq.(6.10) (plus the displacement field of the centrifugal loaded blade
only). Fig.(54) reports the relative error between the solutions obtained
with a modal basis of 50 eigenvectors and with a non linear static anal-
ysis performed with NASTRAN®. From fig.(54), it can be inferred that
the differences in the displacement field are very small (i.e. less than
2%), so to prove that the matrix Kaero0 is negligible also for the calcu-
lation of the displacement field and not only for the eigensolution.

Figure 54: Relative error between the solutions calculated with the modal
basis and with SOL 106 in NASTRAN®.

In conclusion, this analysis proves that the equilibrium condition is
predominantly affected by the centrifugal load, so the static aeroelas-
tic trim can be avoided because the aerodynamic loads do not have a
strong influence on the eigenvalues, mode shape and deformed con-
figuration of the blade. Such an approach is the common way in the
literature.
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(a) Error 1st Mode (%)). (b) Error 2nd Mode (%)).

(c) Error 3rd Mode (%)). (d) Error 4th Mode (%)).

Figure 55: Relative error between mode shapes including or not the aerody-
namic load.



6.3 test case 3 94

6.3.4 Flutter Analysis

The aerodynamic transfer functions matrices resulting from a blended
step input computed with AeroX (AX) and ST at different asymp-
totic Mach numbers are shown in appendix B (for a single trimmed
flight condition only). Once again, it is stressed that the aerodynamic
transfer functions are calculated for each trimmed flight condition (i.e.
T = D) and for every altitude considered. Considering that those
reference data are obtained on the same aerodynamic grid but with
different numerical schemes, the agreement is satisfactory in almost
all cases. After performing a parametric stability analysis of the lin-
ear(ized) time-invariant aeroelastic dynamic system it is possible to
build the V −ω and V − g diagrams shown in fig.(56), fig.(57) and
fig.(58). The flutter boundaries are investigated at different altitudes
so verifying the critical conditions in a plausible flight envelope. In
agreement with [60], there are no classical flutter instabilities for this
aeroelastically optimized blade.
The values of the damping g obtained with the full-potential code ST

are more conservative than those obtained with the Euler solver AX.
It can also be observed that the values of g are lower than those of
common wing test cases, e.g. [72]. This fact was already justified by
ref.[5, 6].
It can be inferred that the centrifugal force has greater importance than
the aerodynamic load, so the effects of the latter have less influence on
the (in)stability of the system.
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Figure 56: V − g and V −ω diagrams at 0 meters

V1   [m/s]
60 80 100 120 140 160 180 200 220

g

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

1
2
3
4
5
6

(a)
V1   [m/s]

60 80 100 120 140 160 180 200 220

!

0

50

100

150

200

250

300

350

400

1
2
3
4
5
6

(b)

Figure 57: V − g and V −ω diagrams at 5.000 meters
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Figure 58: V − g and V −ω diagrams at 10.000 meters
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6.4 test case 4

After demonstrating the capabilities of the ST solver, a flutter anal-
ysis of a CROR is performed. The blade shape is the same as the
previous case [60]. The developed CROR is composed of two 8-bladed
stages placed at a distance of d/D = 0.25, in accordance to the guide-
lines explained in ref.[63, 64]. The internal radius is r = 0.76 m and
the disk diameter is D = 3.7041 m. The aerodynamic meshes and the
flight conditions are the same as sec.(6.3).

6.4.1 Aerodynamic Analyses

As already stated, the flight conditions are the same as the test case
of sec.(6.3) so verifying the existence of flutter instabilities in a plausi-
ble flight envelope. First, the assumption of equally partitioned thrust
between both rotors at each asymptotic velocity V∞ must be set ad-
justing the blade pitches by means of the transpiration boundary con-
ditions. In every case, the pitch angles of the blades of the front and
after rotor are modified of about two degrees at most with respect to
the values reported in the first column of tab.(15). Tab.(17) reports the
pitch angles at the root of the blade for every operating condition. It
can be inferred that the blade pitch angle for the two rotors is always
similar, probably because of the particular twist angle distribution β
along the span-wise direction of the blade of [60].

SRP Front Rotor After Rotor
V∞ [m/s] β0% [deg] β0% [deg] β0% [deg]

70 45 44.9 44.8
90 50 50 50.1
110 55 55 55.5
130 60 60 60.7
150 65 65 66.3
180 70 71.1 71.3
210 75 77.5 76.5

Table 17: Pitch Angles β0% for CROR.

6.4.2 Processing of the Aerodynamic Modal Responses

Since the system is periodic due to the combination of the rotational
speed and the number of blades of the two rotors, the classical theory
for predicting instabilities for Linear-Time-Invariant (LTI) system can-
not be used. In the case of CROR which is a Linear-Time-Periodic (LTP)
system, more complex theory, e.g. Floquet, must be used to correctly
predict the instability boundaries. Moreover, the cascade effects due to
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Figure 59: Thrust coefficient CT of the front ( ) and after ( ) rotors at the
asymptotic velocity V∞ = 130 m/s.

non-zero IBPA must be accounted for, as in the case of the linearised
flutter analysis of turbomachines [19]. Such effects modify the damp-
ing g of the system and they are not always negligible as reported in
ref.[5]. In this way, the aerodynamic transfer matrices Ham will de-
pend not only on the reduced frequency k and the asymptotic Mach
number M∞ but also on the IBPA σ. Besides, the Ham(σ̄,k,M∞) for a
particular flight condition and IBPA (σ̄) is a 2× 2 block matrix, whose
main diagonal contains the aerodynamic influences between the blades
of the same rotor while the antidiagonal contains the mutual aerody-
namic influences between the blades of the two stages.
However, as already explained in sec.(5.1), only simulations with 0°
IBPA are carried out. The limitations of such results, in particular for
the case of CROR, do not allow a complete view of the stability region
but are useful to understand the behaviour of such systems. Further-
more, thanks to the small variation of the aerodynamic loads around
the equilibrium condition, a simplification of the above cited theory
can be exploited. Systems that shows small variation around an equi-
librium state are also called, in the literature, small varying systems. In
particular, ref.[67] explains the conditions required for a linear stabil-
ity of the response of a LTP system. A very simple technique deriving
from the theory proposed in [67] is now presented.

In the field of classical aeroelasticity, the hardest thing to do is the
correct identification of the aerodynamic transfer functionsHam(k,M∞)
in the frequency domain. Since the aerodynamic simulations are done
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in the time domain, a Fourier transform of the output signals must
be performed. However, if the signal is periodic in some way, the fre-
quencies spectrum presents many peaks as the found harmonics. In
particular, the multiples of the fundamental harmonic appear:

ωi = Ω N i, for i = 1,2,... (6.11)

where Ω is the angular velocity expressed in rad/s and N is the total
number of blades of the two rotors (this is true if the two stage of pro-
peller have the same number of blades). Fig.(60) shows the magnitude
of the black signal reported in fig.(59). In this case, sinceΩ = 895 RPM,
the fundamental harmonic is 238 Hz.
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Figure 60: Example of the frequency spectrum.

So, the idea is to build the aerodynamic transfer functionsHam(k,M∞)
without the peaks of the various harmonics so obtaining a non-periodic
signal in the time domain. In other words, the frequencies spectrum
has to be filtered in some way in order to represent the variation of the
aerodynamic responses respect to the equilibrium solution (which is
periodic in time).

There are various technique for filtering a signal. The most simple
idea is to use a low pass filter of appropriate order, i.e. Butterworth,
with a cut-off frequency lower than the fundamental harmonic ω1 =

Ω N. Even if the phase lag is recovered with high order filters, the
reduction of the modulus of the transformed signal at low frequencies
still persists. Besides, the frequency spectrum is badly approximated
in the neighbouring of the fundamental harmonic so losing primary
informations about the variation of the aerodynamic load respect to its
steady-periodic state, as can be inferred by fig.(61).

Thus, an interpolation of the frequency spectrum seems to be the
best solution. Actually, the real and the imaginary part of theHam(k,M∞)
are interpolated separately as showed in fig.(62). Moreover, only the
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Figure 61: Example of the filtering of an element of the matrix Ham(k,M∞)
with a Butterworth filter of 15th order and cut-off reduced fre-
quency of 2.27.

reduced frequency spectrum lower than k = 10 is interpolated because
the higher frequency values are not needed in the flutter analysis, i.e.
kmax = 5.
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Figure 62: Example of the interpolation of an element of the matrix
Ham(k,M∞).

6.4.3 Flutter Analyses

The interpolation of the aerodynamic responses above discussed is
used to build the aerodynamic transfer matrices Ham(0°,k,M∞). The
maximum value of the reduced frequency is kmax = 5 and the am-
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plitudes of the inputs are calculated with eq.(5.8). The flutter analysis
exploits the non linear root-tracking of sec.(5.3) and it is carried out
only at an altitude of 0 m. Moreover, it is proven that different results
can be obtained in relation with the beginning of the blended step in-
put in the oscillation period of the aerodynamic load. The transient of
such input must be lesser than one period so simulating nearly a step.
In particular, the chosen transient lasts about an half of a period. In
this way, the assumption of a "frozen" stability analysis is valid because
the change of the aerodynamic boundary conditions is very fast. Thus,
the results are obtained for two different beginnings of the input, i.e.
at Φ = 0° and Φ = 180°. In other words, Φ = 0° means that the input
starts at the beginning of the oscillating period while Φ = 180° means
the half of the oscillating period.

The credibility of the results cannot be proven because there are
no such studies reported in the literature. The assumption of a small
varying system is legitimated by the small variation of the aerodynamic
loads as shown in the case of fig.(59). The results are reported in
fig.(63) and fig.(64). It can be noted that the third mode (torsional) of
the rear rotor assumes positive values of the damping g. In particular,
the flutter velocities are Vf = 212 m/s and Vf = 202 m/s for Φ = 0°
and Φ = 180°, respectively.
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Figure 63: V − g and V −ω with Φ = 0°



6.4 test case 4 101

V1   [m/s]
60 80 100 120 140 160 180 200 220

g

#10-3

-9

-8

-7

-6

-5

-4

-3

-2

-1
Front Rotor

1
2
3
4
5

(a)

V1   [m/s]
60 80 100 120 140 160 180 200 220

!

0

50

100

150

200

250

300

350
Front Rotor

1
2
3
4
5

(b)

V1   [m/s]
60 80 100 120 140 160 180 200 220

g

#10-3

-6

-4

-2

0

2

4

6
Rear Rotor

6
7
8
9
10

(c)

V1   [m/s]
60 80 100 120 140 160 180 200 220

!

0

50

100

150

200

250

300

350
Rear Rotor

6
7
8
9
10

(d)

Figure 64: V − g and V −ω with Φ = 180°
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C O N C L U D I N G R E M A R K S
A N D F U T U R E
D E V E LO P M E N T S

The structural sub-system is modelled with the Finite-Element (FE)
solvers NASTRAN and ANSYS. The comparison of natural frequen-
cies and mode shapes performed using both tetrahedral and shell ele-
ment models proves that the structural dynamic is well approximated
by shell element models, especially when second order elements are
employed. In this way, the accordance with the experimental results is
even better when the thickness distributions of the blade are small.

Among the innovative contributions it is worthwhile to remark the
ghost technique proposed for simulating simultaneously the flow field
around two lifting bodies in relative motion. This technique enables
to re-use the grids of a single rotating propeller for the simulation
of a contra-rotating open rotor without introducing more complicated
strategies, e.g. Chimera methods and Mixing Planes.

The effectiveness of the proposed aeroelastic analysis is successfully
assessed by tackling a set of realistic dynamic problems and by compar-
ing the results with reference experimental and numerical data avail-
able in the literature and with the results obtained by the Euler flow
solver AeroX [44, 58]. In particular, the capabilities of the aerodynamic
solver ST are pointed out comparing the results obtained from uRANS
and Euler simulations of ref.[63]. The results so obtained shows a good
accordance with those of the uRANS simulations even if local Mach
numbers reach high transonic values. Even if the entropy correction
implemented is turned off, the solutions obtained are very similar to
those reported in the literature. Such a fact proves that the entropy cor-
rection is mandatory for simulating transonic flows in 2D analyses (as
reported in ref.[53]) but needs some improvements to be more effective
in 3D, especially for rotating problems. It is also showed that the ad hoc
technique for computing the flow field around CROR gives good cor-
relations with more sophisticated strategies, i.e. Chimera method. The
blade pitch angles obtained for an equally partitioned thrust between
the two rotor are in accordance to those obtained by ref.[63]. Thus, the
transpiration technique can be an effective tool not only for simulating
the generalized aerodynamic responses Qa(t) but also for varying the
blade pitch.
Successively, the benchmark taken by [22], including structural, aero-

102
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dynamic and flutter computations, is addressed. This test case is used
as a validation problem of the strategies employed for computing the
aerodynamic transfer functions Ham(k,M∞) and the eigenvalues of
the reduced order aeroelastic system. The results obtained from ST

and AeroX are less in accordance because the high transonic regime in
combination with high angles of attack along the span-wise direction
of the blade. The reliability of the proposed aerodynamic solver de-
creases when simulating such flows and, probably, even the Eulerian
solution is far away from the reality because the high angles of attack
are symptoms of separating flow.
However, the flutter analysis conducted with the K-E method gives
very acceptable results in accordance with the literature. It can be in-
ferred that in this case the effects related to the transonic flows have a
small influence on the flutter prediction.
Eventually, two complete studies of the patent blade of [60] are sur-
veyed with the awareness gained by the previous validation process.
The static aeroelastic trim analysis conducted for this blade proves that
the effects of the steady aerodynamic loads are negligible with respect
to those of the centrifugal force in terms of eigenvalues, mode shapes
and deformed configurations. Thus, such analysis can be avoided so
performing a trim with the centrifugal load only as it is usually done
in the literature. The flutter boundaries of both propfan and contra-
rotating open rotor are evaluated in a plausible flight envelope. The
stability of the propfan is verified in accordance with the patent. The
damping values g are always smaller (i.e. lower than 0.1) with respect
to those of common wings. Such a fact is well documented in the lit-
erature; so other forms of damping are needed in order to augment
the stability region of such systems. For example, the introduction of
some sort of absorbing supports can be a possible solution.
Eventually, the flutter stability of the CROR is investigated with jus-
tified assumptions related to the resources available for the present
work. Such system, which responses are time-periodic, can be consid-
ered as a small-varying system so enabling a frozen stability analysis.
The results so obtained will be justified in future works because more
complex strategies, e.g. Floquet theory, are required to perform such
analyses.

In conclusion, more improvements can be exploited so allowing a
more detailed flutter analysis because the time-periodic responses of
such system. In addiction, other interesting problems can be faced,
e.g. the aeroacustic prediction of noise emissions. To this end, many
opportunities for future development can be identified:

• The development of a toolbox for the analysis of the aeroacustic
field around a moving lifting body. The solver ST can be modi-
fied for such application in order to solve the non-homogeneous
wave equation proposed by Ffowcs Williams-Hawkings [70]. In
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this way a complete analysis of the aeroacustic sub-system can
be performed;

• The development of the solver ST in the frequency domain. Thanks
to the time-implicit integration scheme implemented, the exact
Jacobian matrices allow to simulate the CROR directly in the fre-
quency domain. In this way, the linear(ised) harmonic analysis of
rotors, including the effect of periodic boundary conditions with
phase lag (i.e. Inter Blade Phase Angles, IBPA, different from
0°), can be easily performed, as in the case of turbomachines.
With such an improvement, the aerodynamic transfer functions
Ham(σ,k,M∞) will depend also by the IBPA. To this end, ad
hoc stability theory for time-varying system (i.e. periodic) can be
exploited to perform a more reliable flutter analysis.



A
VA L I DAT I O N O F " G H O S T
T E C H N I Q U E "

A 2D problem is investigated in order to validate the technique ex-
plained in sec.4.5. Thanks to the simplicity of the investigated test
cases, it is proved the validity and the limits of the proposed method
to solve the flow field around two lifting bodies in relative motion (i.e.
two NACA 0012 airfoils with a unitary chord). Two different config-
urations are investigated with the asymptotic conditions reported in
tab.(18).

P∞ 101325 Pa

ρ∞ 1.225 kg/m3

M∞ 0.5÷ 0.7
α 2°

Table 18: Asymptotic condition for the test cases. The polytropic ideal gas
model (γ = 1.4) is employed.

As already explained in sec.(4.5), the peculiar idea of this method
consist in simulating the flow field around two lifting bodies by ex-
ploiting the superimposition principle.
The so-called real body refers to the aerodynamic body effectively mod-
elled within the mesh, while the ghost is only fictitious.
The ghost body appears only as a contour in the discretized domain
where the density ρ(x, t) and velocity potential φ(x, t) fields have to
be evaluated. Such values are used to modify the boundary conditions
on the real body at the next time step with a slightly modified transpi-
ration technique, sec.(4.5.1).
The numerical procedures are described as follows with the help of
fig.(65) which represents the simple 2D test case of sec.(A.1). At each
time step t̄, two problems are solved in succession:

• Simulation 1: the ghost body is placed below the real body. The
solution is calculated by adding the transpiration contribution
eq.(4.15) (obtained from the previous time step) onto the real body.
After solving the non-linear system of sec.(2.2.2), the transpira-
tion contribution onto the ghost body is updated and it will be
used in "simulation 2";

• Simulation 2: the ghost body is placed above the real body. The
solution is calculated by adding the transpiration contribution
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eq.(4.15) (obtained from "simulation 1") onto the real body. Af-
ter solving the non-linear system of eq.s reported in sec.(2.2.2),
the transpiration contribution is updated and it will be used in
"simulation 1" of the next time step.

Figure 65: The density field ρ(x, t̄) of each STEP is represented.
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a.1 aligned airfoils

The flow field around two NACA 0012 airfoils placed one above
the other is solved numerically. The spatial domain is represented
in fig.(66) and it contains two perfectly aligned airfoils placed at a
distance of 1 m from each other ("Mesh 1").

X

Y

Figure 66: Detail of grid with two NACA.

Another mesh contains only one airfoil centred in the axis origin
("Mesh 2") and the so called ghost technique is applied as previously
explained.

Results

In this section, the results obtained from numerical simulations are
reported. It can be seen a good correlation in the subsonic flight condi-
tion. However, the airfoils are too close when simulating the transonic
condition: the system acts like a supersonic nozzle with the generation
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Figure 67: Detail of the grid with one NACA (XY view).

of a shock at the trailing edges (exhaust). It can be inferred the impor-
tance of the relative position between the two bodies. Thus, this ex-
treme condition has to be avoided in the case of contra-rotating blades.
Fortunately, the relative position between blades is periodic and the
overlap position last for short periods of time.

In next figures are represented the density fields ρ(x, t) near the
bodies and Cp distributions. Eventually, the values of lift, drag and
pitch moment (referred to 25% of chord) coefficients are reported in
tab.(19) and tab.(20).

Reference Mesh Ghost Technique
Body UP Body LOW Body UP Body LOW

CL 3.08 · 10−1 1.43 · 10−1 3.01 · 10−1 1.41 · 10−1
CM 8.59 · 10−3 −1.72 · 10−2 7.30 · 10−3 −1.68 · 10−2

Table 19: Aerodynamic coefficients for M∞ = 0.5. The Reference Mesh gives
the exact solution while the Ghost Technique exploits the so called
formulation.

Reference Mesh Ghost Technique
Body UP Body LOW Body UP Body LOW

CL 1.016 −4.59 · 10−1 4.85 · 10−1 5.07 · 10−2
CM 2.46 · 10−1 −2.73 · 10−1 1.66 · 10−2 −3.63 · 10−2

Table 20: Aerodynamic coefficients for M∞ = 0.7. The Reference Mesh gives
the exact solution while the Ghost Technique exploits the so called
formulation.
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(a) Reference. (b) Ghost.

Figure 69: Density Fields for M∞ = 0.5

(a) Reference. (b) Ghost.

Figure 70: Density Fields for M∞ = 0.7
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a.2 misaligned airfoils

The flow field around two misalignedNACA 0012 airfoils with chord
c = 1 m is solved numerically in order to better understand the limita-
tion of the proposed technique. The spatial domain is represented in
fig.(71) and it contains two misaligned airfoils placed at a distance of
1 m from each other.

X

Y

Figure 71: Detail of grid

Another mesh contains only one airfoil centred in the axis origin
(i.e. the mesh of fig.(67)) and the so called ghost technique is applied as
explained in sec.4.5.

Results

In this section, the results obtained from numerical simulations are
reported. It can be seen that the obtained solutions are very similar in
the subsonic flight condition. The transonic condition is better respect
the case of two aligned NACA. It can be inferred that the technique
works like a "superimposition of effects", so it gives a very good ap-
proximation if the coupling between the two separated flow field so-
lutions is not too strong as the transonic case of the previous section,
fig.(70).

In next figures are represented the density fields ρ(x, t) near the
bodies and Cp distributions. Eventually, the values of lift, drag and
pitch moment (referred to 25% of chord) coefficients are reported in
tab.(21) and tab.(22).
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Reference Mesh Ghost Technique
Body UP Body LOW Body UP Body LOW

CL 3.91 · 10−1 1.93 · 10−1 3.99 · 10−1 2.09 · 10−1
CM 3.19 · 10−3 −1.69 · 10−3 2.66 · 10−3 −1.85 · 10−3

Table 21: Aerodynamic coefficients for M∞ = 0.5. The Reference Mesh gives
the exact solution while the Ghost Technique exploits the so called
formulation.

Reference Mesh Ghost Technique
Body UP Body LOW Body UP Body LOW

CL 5.79 · 10−1 1.98 · 10−1 5.66 · 10−1 2.28 · 10−1
CM 1.05 · 10−3 −3.35 · 10−3 2.19 · 10−3 −5.32 · 10−3

Table 22: Aerodynamic coefficients for M∞ = 0.7. The Reference Mesh gives
the exact solution while the Ghost Technique exploits the so called
formulation.
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(a) Reference. (b) Ghost.

Figure 73: Density Fields for M∞ = 0.5

(a) Reference. (b) Ghost.

Figure 74: Density Fields for M∞ = 0.7



B
A E R O DY N A M I C T R A N S F E R
F U N C T I O N S

In this Appendix, the Generalized Aerodynamic Forces GAFsQam(t)

of sec.(6.3) obtained with ST andAeroX are reported. For each trimmed
condition, it is evaluated a matrix of 6× 6 dimensions, derived from
6 structural modes. There are also the related aerodynamic transfer
functions Ham(k,M∞).

b.1 numerical results

Fig.(75) shows the aerodynamic responsesQam(t) to a blended step
input explained in sec.(5.2). Fig.(76) shows the aerodynamic transfer
matrix Ham(k,M∞) within the interval k ∈ [0, 1].

The maximum value of the reduced frequency is kmax = 5 with
a reference chord La = 0.40 m. In this appendix there are reported
only the aerodynamic responses and matrix for the asymptotic veloc-
ity V∞ = 70 m/s. The adimensional length τ of the transient of the
blended step input is:

τ =
2π

kmax

V∞
La

. (B.1)

The amplitudes of the inputs are calculated with eq.(5.8).

A moderate accordance is observed between the results obtained
with ST and AeroX. The differences can be probably imputed to dif-
ferent numerical schemes implemented (in particular, the aeroelastic
interface method).
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Figure 75: Comparison of the aerodynamic transfer functions matrix
Qam(t) computed with ST ( ) and AeroX ( ) at V∞ = 70 m/s.
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Figure 76: Comparison of the aerodynamic transfer functions matrix
Ham(k,M∞) computed with ST ( ) and AeroX ( ) at
V∞ = 70 m/s. The marker of the real part is the square, while
that of the imaginary part is the circle.
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