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Abstract

A Brain-computer interface (BCI) is a direct communication pathway be-

tween the brain and an external device. This interface uses a special tech-

nique called Electroencephalography (EEG) that allows to record the neural

brain activity focusing on the temporal content of the EEG. This pattern

are events-correlated and are based on the P300 wave signal that is an event

related potential (ERP) component eliticied in the process of decision mak-

ing. Using the oddball paradigm is possible to elicit this wave, in which

low-probability target items are mixed with high-probability non-target (or

“standard”) items.

In particular, BCIs provide a non-muscular communication for individu-

als diagnosed with a late-stage motoneuron disease (e.g., amyotrophic lateral

sclerosis (ALS)). In the final state of the disease, a BCI cannot rely on the

visual modality so this work studies a method to achieve high accuracies

using auditory stimuli only. The presented BCI offers communication with

binary choices (yes/no) independent from vision and it requires only little

time per selection to patients who lost all motor functions and have a short

visual attention span.

The main purpose of this thesis is thus to develop a portable BCI appli-

cation for delivering acoustic stimuli via headphones to participants based

on an auditory three-stimulus oddball paradigm. For this purpose the ap-

plication was trained on three subject in order to test the audio protocol

and the offline classification obtaining an average accuracy of 98.33% and

an average communication speed of 1.14 bits/min.
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Riassunto

Un’ interfaccia cervello-computer (BCI, dall’ inglese Brain-Computer Inter-

face) è un dispositivo che permette la diretta comunicazione tra il cervello ed

un dispositivo esterno. Questo tipo di interfaccia utilizza l’ elettroencefalo-

grafia (EEG, dall’ inglese Electroencephalography) che permette di registrare

l’ attività celebrale focalizzando il contenuto temporale dell’ EEG. Questi

modelli sono evento-correlati e si basano sul segnale d’ onda P300, definito

come un potenziale ad evento correlato (ERP) suscitato nel processo di

scelta di un evento raro. Questo avviene utilizzando il paradigma oddball,

in cui vi è una bassa probabilità di ottenere un bersaglio raro ed un’ alta

probabilità di ottenere un bersaglio voluto.

In particolare, la BCI permette a dei soggetti in cui è stata diagnosti-

cata una malattia degenerativa come ad esempio soggetti con sclerosi laterale

amiotrofica - ALS, dall’ inglese amyotrophic-lateral sclerosis, una comuni-

cazione non muscolare. All’ ultimo stadio della malattia, una BCI non può

essere utilizzata tramite lo stimolo visivo per la poca concentrazione, quindi

è stato esaminato un metodo che raggiunge elevate accuratezze utilizzando

degli stimoli acustici. La BCI presentata in questo lavoro di tesi permette di

comunicare con una scelta binaria tra parole (si/no) indipendentemente dal

segnale visivo, richiedendo bassi tempi di selezione per pazienti che hanno

perso le loro funzioni motorie ed hanno una ridotta capacità di concen-

trazione.

Lo scopo principale della tesi presentata è quello di sviluppare su tablet

un’ applicativo BCI portatile, che permetta di inviare in cuffia al paziente

degli stimoli acustici basati sul paradigma odd-ball a tre stimoli. A questo

scopo l’applicativo sviluppato è stato addestrato e testato su tre soggetti

sani in modo da verificarne il corretto funzionamento, testando inoltre il

protocollo audio tramite classificazione delle scelte binarie, ottenendo un’

accuratezza media del 98.33% ed una velocità di comunicazione di 1.14 bit-

s/min.
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Chapter 1

Introduction

“Music doesn’t lie. If there is something to be changed in this world, then it

can only happen through music.”

Jimi Hendrix

Nowadays, Brain-Computer Interfaces (BCI) are still the most innova-

tive technology in the area of control digital machines directly by means

of signals sent by brain. With this type of technology, people can express

their wills or control equipment through the brain without languages or

actions. These interfaces are also used to provide a communication be-

tween completely disabled patients due to spinal cord injury or motor dis-

ease locked-in state (LIS) patients, in particular the ones that are affected

by amyotrophic lateral sclerosis (ALS). This disease is a progressive neu-

rodegenerative pathology involving motor neurons in the cerebral cortex,

corticospinal tract, brainstem, and spinal cord.

1.1 Scientific research in the BCI field

Research in the field of brain-computer interfaces has its roots in the inves-

tigations and studies about the brain anatomy and physiology. With a BCI

a person ideally does not have to make use of the common output pathways

of peripheral nerves and muscles, which is the main argument in favour of

a BCI system. However, it is only recently that advances in cognitive neu-

roscience and brain imaging technologies have started to provide us with

the ability to interface directly with the human brain. Farwell and Donchin

(1988) showed that it is possible for humans to communicate using a BCI,

by means of their event-related potentials (ERPs; e.g., P300), without the

involvement of their voluntary muscle activity. This ability is made possible
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through the use of sensors that can monitor some of the physical processes

that occur within the brain that correspond with certain forms of thought.

A BCI is a system that allows the communication between the brain and

an external device such as a computer. This communication system enables

the generation of a control signal from brain responses bypassing physical

movements and conveys messages directly from the brain to a computer.

Therefore, it constitutes a novel communication option for people with se-

vere motor disabilities, such as ALS-LIS patients that have only residual

control over few muscles (e.g., vertical eye movement), patients with brain

injuries, or patient suffering neurological diseases in which remain concious,

but cannot move any of their muscles. Depending on the degree of impair-

ment caused by the injury or the progression of the disease, communication

can become very difficult or even impossible. Patients may become unable

to express their opinions and decisions on important questions regarding

their clinical treatment or their living and biologic wills.

This loss of communicative abilities can be overcome with interfaces

that bypass the need for muscular control and detect the user’s intentions

directly from signals recorded from the brain. These brain-computer in-

terfaces (BCIs) are currently not only used for communication but also for

restoration of motor control. So a common principle of all BCI paradigms is

that they must be controllable without the use of muscles to suit the needs

of the aforementioned patient groups.

BCI systems can use a variety of different electro-physiological signals

and currently most BCI paradigms are based on control signals extracted

from the electroencephalogram (EEG). EEG BCIs with ALS patients have

been implemented using different components of the EEG such as slow cor-

tical potentials (SCPs), sensor monitor rhythms (SMR) and event-related

potentials (ERPs). Only one particular EEG based BCI has been success-

ful with this patients. The P300 event-related potential (ERP) [47] elicited

by sensory stimuli as the measured brain response, is the direct result of

a decision of making. The P300 is considered to be an endogenous po-

tential, as its occurrence links not to the physical attributes of a stimulus,

but to a person’s reaction to it. More specifically, the P300 is thought

to reflect processes involved in stimulus evaluation or categorization. The

P300 is elicited by unexpected stimuli with variations in latency between

250 and 700 ms on central to parietal locations [21], and it is elicited using

the oddball paradigm, in which low-probability target items are mixed with

high-probability non-target (or “standard”) items.

Initially it is proposed the visual P300 BCI paradigm with a matrix com-

posed by letters and numbers. A matrix rows and columns flash randomly
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and the user is required to focus attention on the cell with the desired item.

Any cell flashes only twice in a sequence and thus it becomes an oddball

which elicits a P300. In addition to spelling, these visual BCI systems can

also be used to control various applications, such as an internet browser [97],

a painting application [81] and even a wheelchair controller [112]. Generally,

successful use of a BCI is defined by the accuracy achieved (as percent of

targets selected correctly), the content of information of each selection (i.e.,

the number of different targets) and the time needed for one selection. All

three factors determine the speed of the communication possible with the

BCI that usually is defined as information transfer rate (ITR) in bits/min.

The visual P300 BCI permits fast communication without user training

for healthy participants but the performance of patients with motor disease

is usually lower than that of healthy controls. In the latest stage of amy-

otrophic lateral sclerosis (ALS) patients lose all voluntary muscular control

[5], including voluntary fixed visual control, which makes the use of a visual

BCI difficult if not impossible. Since these are the users that would benefit

most from a BCI, P300 BCI systems based on auditory stimulation have

been proposed.

The thesis is focused on a study of BCI for ALS patients that consider an

optimized paradigm employing auditory distinguishable stimuli with mini-

mum effort (S. Halder et al., 2010 [117]).

1.2 Main thesis purpose

Recent studies have led to evaluate an acoustic BCI design based on a three-

stimulus oddball paradigm [76, 69]. This paradigm would permit the ALS

patients a binary selection with high accuracies while still offering a com-

petitive communication speed using the auditory stimulation.

One of the first studies used the words “Yes”, “No”, “Stop”, “Pass” as

possible targets with three healthy subjects and three ALS patients [120].

On average the subjects achieved accuracies of 65% which results in a com-

munication speed of 0.43-1.80 bits/min. A recent study transferred the

P300 spelling matrix to the auditory modality where number were assigned

to identify rows and columns. For selection, the numbers of the rows and

columns were presented to the user [82]. The participants achieved 65%

accuracy. Due to the high number of bits per selection the communication

speed was higher (up to 2.85 bits/min) than in the study by Sellers and

Donchin (2006) [120]. Most recently a similar study was designed with au-

ditory stimulation using sounds instead of words [53] and subjects achieved

on-line accuracies of 60% and off-line accuracies of 70%.
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For ALS patients that are incapable of using multi-class auditory P300

BCI, applied instead of words tones as stimuli for selection. Another study

was realized presenting to participants two streams of rare standard tones,

each consunting an oddball paradigm from two different directions [61]. Par-

ticipants were required to focus their spatial attention on only one of the au-

ditory oddball streams to make a binary selection. Healthy subjects reached

promising accuracies between 63% and 97%.

This thesis project has been realized from the input of Mauro Marchetti,

researcher in Cognitive Science (Ph.D. in Cognitive Sciences at University

of Padova, Department of General Psychology, Padova (Italy)), where he

focused mainly his study with Brain-computer interfaces (BCI) and event-

related potential (ERP) techniques for ALS-LIS patients [89, 129, 90, 124].

This thesis is a collaboration with Politecnico di Milano to study the commu-

nication improvements for patients with this types of pathologies based on

auditory system stimulation. On the specifications given, the thesis is based

on the auditory BCI performed by S. Halder et al. [117]. In this study

a design of an oddball paradigm is used to deliver sounds to the subject

presenting two targets and a series of frequent standard tones randomized

in sequences. Target one and target two differed in one physical property

(loudness, pitch or location). The experiment aimed at determining which

type of stimulus characteristics chosen for discriminating between target 1

and 2 would lead to the best discrimination and thus, to the highest infor-

mation transfer rate (ITR). Selections were made by focusing on either one

of the two targets.

The main purpose of the thesis has been to develop a portable acous-

tic P300 BCI for Android tablets (extending the “Progetto ON” developed

by Politecnico di Milano in collaboration with Info Solution S.p.A. [127]

based on visual P300 BCI communication for Amyotrophic Lateral Sclero-

sis [46]), to allow YES-NO communication to Amyotrophic lateral sclerosis

(ALS) patients, similar to the one proposed by S. Halder et al. [117]. The

application interface has been designed according to the researcher specifica-

tions and developed for delivering acoustic stimuli (e.g., single tone, complex

tones, single words, etc.) via headphones to participants while their EEG is

recorded.

The results have been tested on participants to reproduce the study (S.

Halder et al., 2010) and verify the correct functioning of the application

designed for the auditory oddball brain-computer interface. At this purpose

we have collected and validated several data of healthy subjects in the AI

& R Lab (Artificial Intelligence and Robotics Laboratory of Politecnico di

Milano - Como Campus, Como (Italy)) and the classification protocol is
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tested obtaining results.

1.3 Thesis structure

This thesis consists of 5 chapters structured to drive the reader in under-

standing the choices made and the methodologies used for the study. At the

end there is an appendix with the user manual and a complete example of

use with the application.

This first chapter provides a brief description of the research area of

brain-computer interfaces for ALS-LIS patients, the reasons for a new inter-

face in order to improve the communication speed in the final stage of the

disease, and the aim and motivation of this thesis.

The second chapter explains better the psychological background of the

thesis. In the first section there are some basic knowledge of biology regard-

ing the brain and its nature. In particular basic sound characteristics and

sound propagation, the human auditory system, and some basic notion of

psychoacoustics are presented. Other sections show modern techniques of

neural activity recording and the use of the electroencephalogram (EEG).

The research of the oddball paradigm to make a binary selection on acous-

tic stimulation and why it is better performed than the visual one to ALS

patients at the end of their disease is explained. The last two sections are

concerned with the definition of a brain-computer system and they explain

the EEG signal processing, the possible classification algorithms used in the

BCI field, and the state of the art of current BCI technology applied to ALS

patients for communication.

The third chapter provides an introduction of the study made in this

thesis and it explains in detail how the system is designed, the hardware

composition used, and the connection scheme for this type of acoustic brain-

computer interface applied. The fourth chapter contains the implemented

logic project of the application and the algorithm developed, while the fifth

chapter explains our genetic algorithm used for the classification in order to

obtain results.

In the sixth chapter experimental data acquisition and results obtained

to validate the study and the classification protocol are presented, while

the last chapter (seventh) is dedicated to results discussion and the possible

future developments that may will improve the project that we propose in

this thesis.

Appendix A contains the user manual which describes the application

installation, the main elements with the cables wiring diagram, how to pre-
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pare the participant for the training acoustic session and how to send the

configuration session files to a classificator to get the results offline.
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Chapter 2

Auditory P300-based BCI

“With the power of soul, anything is possible”

Jimi Hendrix

As mentioned in the first chapter, working with brain-computer inter-

faces in Computer Science filed requires a fundamental basic knowledge

about the communication path that goes through the signals produced by

neural activity with the stimulation of human auditory system. Section 2.1

contains elementary notions of brain nature and its fundamental structure,

introducing the aspects of senses and human perceptions through the hearing

stimulation. Section 2.2 defines some important concepts of sound propaga-

tion and how the human auditory system can perceive sounds with basics

notions of psychoacoustics. Section 2.3 explains the electroencephalography

(EEG) technique and its application to BCI world while Section 2.4 explains

in detail the Event-Related Potential P300 based on acoustic stimuli with

the reference to the oddball paradigm. In Section 2.5 we explain how a

brain-computer interface system is built and how the EEG signals are pro-

cessed and classified in order to make an output action. At the end of the

chapter (Section 2.6) we present the state of art of brain-computer interfaces

applied to ALS patients. We show the studies made over the years in order

improve their communication speed until today.

2.1 Basics of Clinical Neurophysiology

The brain is the body’s control center managing just about everything we

do. Whether we are thinking, dreaming, playing sports, or even sleeping,

the brain is involved in some way [52]. A wonder of evolutionary engineer-

ing, the brain is organized into different parts that are wired together in
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a specific way. Each part has a specific job (or jobs) to do, making the

brain the ultimate multitasker. Working in tandem with the rest of the

nervous system, the brain sends and receives messages, allowing for ongoing

communication.

2.1.1 The brain

The cerebrum, the largest part of the human brain, is associated with higher

order functioning, including the control of voluntary behaviour. Thinking,

perceiving, planning, and understanding language all lie within the cere-

brum’s control. The cerebrum is divided into two hemispheres: the right

hemisphere and the left hemisphere. Bridging the two hemispheres is a bun-

dle of fibers called the corpus callosum. The two hemispheres communicate

with each another across the corpus callosum. Covering the outermost layer

of the cerebrum is a sheet of tissue called the cerebral cortex. Because of

its gray color, the cerebral cortex is often referred to as gray matter. The

wrinkled appearance of the human brain also can be attributed to charac-

teristics of the cerebral cortex. More than two-thirds of this layer is folded

into grooves. The grooves increase the brain’s surface area, allowing for in-

clusion of many more neurons. The function of the cerebral cortex can be

understood by dividing it somewhat arbitrarily into zones.

In Figure 2.1 the four main section of the cerebral cortex are presented.

The frontal lobe is responsible for initiating and coordinating motor move-

ments, for higher cognitive skills (such as problem solving, thinking, plan-

ning, and organizing), and for many aspects of personality and emotional

make-up. The parietal lobe is involved with sensory processes, attention,

and language. Damage to the right side of the parietal lobe can result in the

difficulty of navigating spaces, even familiar ones. If the left side is injured,

the ability to understand spoken and/or written language may be impaired.

The occipital lobe helps process visual information, including recognition

of shapes and colors. The temporal lobe helping processing auditory infor-

mation and integrate information from other senses. Neuroscientists also

believe that the temporal lobe has a role in short-term memory through

its hippocampal formation, and in learned emotional responses through its

amygdala.

All these four brain sections constitute the forebrain. Other parts of

the forebrain include the basal ganglia, which are cerebral nuclei deep in

the cerebral cortex (the the thalamus and the hypothalamus). The cere-

bral nuclei help coordinate muscle movements and reward useful behaviors;

the thalamus passes most sensory information on to the cerebral cortex af-

8



Figure 2.1: The top image shows the four main sections of the cerebral cortex: the

frontal lobe, the parietal lobe, the occipital lobe, and the temporal lobe. Functions

such as movement are controlled by the motor cortex, and the sensory cortex re-

ceives information on vision, hearing, speech, and other senses. The bottom image

shows the location of the brain’s major internal structures.

ter helping to prioritize it; and the hypothalamus is the control center for

appetites, defensive and reproductive behaviors, and sleep-wakefulness.

The midbrain consists of two pairs of small hills called colliculi. These

collections of neurons play a critical role in visual and auditory reflexes and

in relaying this type of information to the thalamus. The midbrain also has

clusters of neurons that regulate activity in widespread parts of the central

nervous system and are thought to be important for reward mechanisms and

mood.

The hindbrain includes the pons and the medulla oblongata, which con-

trol respiration, heart rhythms, and blood glucose levels. Another part

of the hindbrain is the cerebellum which, like the cerebrum, also has two

hemispheres. The cerebellum’s two hemispheres help control movement and

cognitive processes that require precise timing, and also play an important

role in Pavlovian learning [103].

The spinal cord is the extension of the brain through the vertebral col-

9



Figure 2.2: Nervous system.

umn. It receives sensory information from all parts of the body below the

head. It uses this information for reflex responses to pain, for example, and

it also relays the sensory information to the brain and its cerebral cortex.

In addition, the spinal cord generates nerve impulses in nerves that con-

trol the muscles and the viscera, both through reflex activities and through

voluntary commands from the cerebrum.

2.1.2 Parts of the nervous system

The nervous system has two great divisions: the central nervous system

(CNS), which consists in the brain and the spinal cord, and the peripheral

nervous system (PNS), which consists of nerves and small concentrations of

gray matter called ganglia. The brain sends messages via the spinal cord to

the body’s peripheral nerves, which control the muscles and internal organs.

In Figure 2.2 the nervous system is represented.

Messages are carried throughout the nervous system by the individual

units of its circuitry: neurons. The next section describes the structure of
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Figure 2.3: Neuron structure.

neurons, how they send and receive messages, and recent discoveries about

these unique cells.

2.1.3 The neuron

Cells within the nervous system, called neurons, communicate with each

other in unique ways. The neuron is the basic working unit of the brain, a

specialized cell within the nervous system that transmit information to other

nerve cells, muscle, or gland cells. The human brain contains between 100

million to 100 billion neurons and neuron consists of a cell body, an axon and

the dendrites. The cell body contains the nucleus and cytoplasm. The axon

extends from the cell body and often gives rise to many smaller branches

before ending at nerve terminals. Dendrites extend from the neuron cell

body and receive messages from other neurons. In Figure 2.3 the neuron

structure is represented.

Neurons communicate with electrical and chemical signals at special con-
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tact points called synapses [42]. Synapses are the contact points where

one neuron communicates with another. The dendrites are covered with

synapses formed by the ends of axons from other neurons. When neurons

receive or send messages, they transmit electrical impulses along their axons,

which can range in length from a tiny fraction of an inch (or centimeter) to

three feet (about one meter) or more. Many axons are covered with a lay-

ered myelin sheath, which accelerates the transmission of electrical signals

along the axon. This sheath is made by specialized cells called glia and the

brain contains at least ten times more glia than neurons.

Nerve impulses involve the opening and closing of ion channels. These

are selectively permeable, water-filled molecular tunnels that pass the cell

membrane and allow ions (electrically charged atoms) or small molecules

to enter or leave the cell. The flow of ions creates an electrical current

that produces tiny voltage changes across the neuron’s cell membrane. The

ability of a neuron to generate an electrical impulse depends on a difference

in charge between the inside and outside of the cell.

When a nerve impulse begins, a dramatic reversal in the electrical poten-

tial occurs on the cell’s membrane, as the neuron switches from an internal

negative charge to a positive charge state. This change is called action po-

tential and passes along the axon’s membrane. When this voltage changes

reach the end of an axon, they trigger a release of a neurotransmitters.

Neurotransmitters are the brain’s chemical message. They are released

at nerve terminals, diffuse across the synapse, and bind to receptors on the

surface of the target cell (often another neuron, but also possibly a muscle or

gland cell). These receptors act as on-and-off switches for the next cell. Each

receptor has a distinctly shaped region that selectively recognizes a partic-

ular chemical messenger. A neurotransmitter fits into this region in much

the same way that a key fits into a lock. When the transmitter is in place,

this interaction alerts the target cell’s membrane potential and triggers a

response from the target cell, such as the generation of an action potential,

the contraction of a muscle, the stimulation of enzyme activity, or the inhi-

bition of neurotransmitter release. Sorting out the various chemical circuits

is vital to understand the broad spectrum of the brain’s functions, including

how the brain stores memories, why sex is such a powerful motivation, and

what makes up the biological basis of mental illness.

2.2 Hearing perception

Hearing allows us to communicate with each other by receiving sounds and

interpreting speech. Like the visual system, our hearing system picks up
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several qualities in the signals it detects (for example, a sound’s location, its

loudness, and its pitch). Our hearing system does not blend the frequencies

of different sounds, as the visual system does when different wavelengths of

light are mixed to produce color. Instead, it separates complex sounds into

their component tones or frequencies so that we can follow different voices

or instruments as we listen to conversations or to music [43, 63].

The hearing mechanism is the final recipient of sounds produced by audi-

tory system. Designers of audio systems must know the range of frequencies

and the sound pressures to which this mechanism responds and the manner

in which speech sounds and music must be presented to the listener if he is

to gain a satisfactory amount of information and pleasure from the audio

signal [147].

In Subsection 2.2.1 defines some basic characteristics of sound and how

it is measured, while in Subsection 2.2.3 is explains more in detail how our

auditory system perception works with some basic knowledge of psychoa-

coustics.

2.2.1 Physical characteristics of sound

This subsection contains basic knowledge of sound propagation and the main

sound physical characteristics that stimulate our hearing perception are de-

fined.

Sound propagation

A sound wave is measured as pressure variation along the direction of prop-

agation. This distribution is defined as sound source and it is characterized

by its acoustic power measured in Watt (W ). The shortest distance between

to corresponding points of the sound wave is called wavelength and it is in-

dicated with λ. Wavelength depends by period T and the speed of sound c

(344 m/s measured at 20◦ Celsius). The relation between these factors is:

λ = c · T. (2.1)

A periodic sound with period T is described in terms of frequency f

measured in Hertz (Hz). The binding between the period T and frequency

f is described in the Equation 2.2

f =
1

T
. (2.2)

Considering the definition in the Equation 2.2 it is possible to define the

relation:

f =
c

λ
, (2.3)
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which highlights how the frequency is inversely proportional to the wave-

length. The speed of sound in air depends on the temperature and increases

of about 0.6 m/sec per degree centigrade, while it is independent to the at-

mospheric pressure and sound frequency. It depends also from the medium

in which it propagates.

A sound source in air is propagated in all directions and its pressure

variation is expanded resulting a spheric wave. Otherwise if we consider a

sound source propagated in a medium (e.g., a pipe), neglecting the effects

at its borders, the pressure variation is propagated only along the direction

of the movement giving a plane wave.

In non ideal situations, a wave propagation through a inhomogeneous

medium gives phenomena called diffraction, reflection and attenuation [115].

Diffraction is given by a real source (e.g., loudspeaker) and the radiation effi-

ciency depends by its wavelength. If the source dimension (considered as the

source radius) of the loudspeaker is smaller than the wavelength, the sound

is irradiated in all directions with the same efficiency and generates a spheric

wave. Otherwise if the wavelength is comparable to source dimension, the

sound is irradiated with different efficiency according to its direction [20].

Reflection happens whenever characteristic of the transmission medium

changes and the main cause is the presence of a discontinuity in it. When

a sound wave which propagates in the air meets an obstacle, this causes

a partial absorption and a reflection of the incident wave on the medium

where the angle of the reflection is the same as the angle of the incidence.

The percentage of the wave absorbed depends on the type of material [20].

Attenuation is a measure of the energy loss of sound propagation. When

sound wave is propagated in a non ideal media there is a thermal consump-

tion of energy. Acoustic attenuation in a lossy medium plays an important

role in many scientific researches and engineering fields, such as medical

ultrasonography, vibration and noise reduction.

Sound intensity

The physical equivalent of sound is the change of air pressure measured

in pascal (Pa). Pressure variation is linked to the perception of sound

volume called loudness: the greater is the sound pressure, the greater is the

perceived sound volume. Usually effective pressure (peff = P0√
2
) is considered

as a reference, which is the root mean square of pressure variations. The

minimum effective pressure that may be perceived is 0.00002 Pa, while the

threshold of pain varies around 20 Pa, in relation to the sound frequency

[20].
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As explained before a sound propagating in an inhomogeneous medium

looses its main characteristics form the source, so the effective sound pressure

measured at the end of the medium varies in relation to its length. A sound

source then is defined by its acoustic power measured in Watt (W ). For

example the acoustic power of normal speech is about 10−5W . The acoustic

intensity (I) is defined as the average power transmitted per unit area in

the direction of sound propagation:

I =
p2eff
ρ · c

(2.4)

where ρ is the transmissive medium density (in air at 20◦ Celsius with

standard atmospheric pressure, ρ = 1.21Kg/m3), peff is the effective pres-

sure and c is the speed of sound in the medium. Considering this values,

the acoustic intensity goes from 10−12W/m2 (hearing threshold) to 1W/m2

(pain threshold).

Sound Pressure Level and Intensity Level

The values of pressure, power and intensity of the acoustic sounds are dis-

tributed in a very wide range of values. For this reason, these variables

are commonly expressed in logarithmic scale comparable with our auditory

system perception [20].

The sound pressure level (SPL) is the logarithm of the ratio between the

measured pressure p and the reference pressure pref

SPL = 20 · log10 · (
p

pref
) (2.5)

where pref implicitly refers to the effective pressure. SPL value is dimen-

sionless and it is expressed in decibel (dB) on a logarithmic scale. In order to

define a reference pressure it is convenient to use the minimum audible one

(0.00002 Pa). For ordinary speech p is about 0.1 Pa and using the Equation

2.5 we obtain SPL = 74 dB [9, p.52].

Similarly, also the power and the acoustic intensity are expressed in

decibel using a reference value. The acoustic intensity level (IL) is defined

as:

IL = 10 · log10 · (
I

Iref
) (2.6)

Being the expression of the acoustic intensity (in the Equation 2.4) con-

taining a square, a multiplication by a factor 10 in the Equation 2.6 is

considered (the squaring in logarithms corresponds to a multiplication by

2).
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As for the SPL, we consider as reference acoustic intensity the mini-

mum audible (10−12W/m2). and the decibel scale assumes values from 0

dB (threshold of hearing) to 120 dB (pain threshold). Although the pain

threshold is around 120 dB, a prolonged exposure to high intensity sound

sources can cause permanent damage to the ear (mainly young people) [95].

2.2.2 The organ of hearing

Human auditory system has a complex structure and performs significantly

advanced functions. Not only it is able to process a large set of stimuli, but

it can precisely identify the height or timbre of a sound, or the direction

from which it came. Many functions of the auditory system are performed

by what we call ear, but great emphasis is placed on the processing that

takes place in the central nervous system.

As explained in Subsection 2.2.1, our ear is stimulated with sound waves

[115]. This sound waves are collected by the external ear (the pinna and the

external auditory canal) and funneled to the tympanic membrane (eardrum)

to make it vibrate [152]. Attached to the tympanic membrane, the malleus

(hammer) transmits the vibration to the incus (anvil), which passes the vi-

bration on to the stapes (stirrup). The stapes pushes on the oval window,

which separates the air-filled middle ear from the fluid-filled inner ear to

produce pressure waves in the inner ear’s snail-shaped cochlea. The separa-

tion of frequencies occurs in the cochlea, which is tuned along its length to

different frequencies, so that a high note causes one region of the cochlea’s

basilar membrane to vibrate, while a lower note has the same effect on a

different region of the basilar membrane.

Hair cells topped with microscopic bundles of hairlike stereocilia (which

are deflected by the overlying tectorial membrane), riding on the vibrating

basilar membrane. Hair cells convert mechanical vibration to electrical sig-

nals, which in turn excite the 30,000 fibers of the auditory nerve that carries

the signal to the brainstem. Because each hair cell rides on a different part

of the basilar membrane, each responds to a different frequency. As a result,

each nerve fiber carries information about a different frequency to the brain.

Auditory information is analyzed by multiple brain centers as it flows to the

superior temporal gyrus, or auditory cortex, the part of the brain involved

in perceiving sound.

In the auditory cortex, adjacent neurons tend to respond to tones of sim-

ilar frequency. However, they specialize in different combinations of tones.

Some respond to pure tones, such as those produced by a flute, and some to

complex sounds like those made by a violin. Some respond to long sounds

16



Figure 2.4: Auditory system.

and some to short, and some to sounds that rise or fall in frequency. Other

neurons might combine information from these specialist neurons to recog-

nize a word or an instrument. In other words, the basilar membrane is a

wide-band mechanical filter which partially separates a complex sound into

its components. As a result, a particular group of nerves is excited more

vigorously by a particular frequency than by other frequencies [2].

Sound is processed in different regions of the auditory cortex on both

sides of the brain. However, for most people, the left side is specialized for

perceiving and producing speech. Damages to the left auditory cortex, such

as from a stroke, can leave someone able to hear but unable to understand

language.

We shall conveniently select a mathematical model to explain the abil-

ity of the ear to detect one tone in the presence of others tones at other

frequencies. This model is the same one as we would use in describing the

properties of an electrical filter for separating one frequency component from

an assemblage of such components. The bandwidths of the hearing process,

as measured by a person’s ability to detect a pure tone in the presence of a

white or pink noise, are commonly called critical bandwidths [51, 73, 44].

To understand how sound is perceived by our auditory system by its
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natural property, Subsection 2.2.3 describes more in detail elements of psy-

choacoustics and sound perception.

2.2.3 Elements of Psychoacoustics

Sound perception is linked to vibrations of the eardrum in the ear and are

caused by small variations in air pressure. The variation of air pressure then

is the physical equivalent of the sound and it can be observed by placing

a sheet of paper over the cone of a loudspeaker: when a sound is emitted,

the paper begins to vibrate. In fact the movement toward the outside of

the speaker diaphragm determines an increase in pressure, and then pushes

out the sheet of paper. Conversely the inward movement of the membrane

causes a decrease in pressure and attracts the sheet toward the speaker. The

eardrum has a similar behaviour: an increase of pressure pushes the tym-

panic membrane towards the interior, while a decrease in pressure attracts it

to the outside. The movements of the eardrum are then transmitted to the

cochlea that turns them into electrical impulses that are sent to the brain

through the nerve endings [115].

This perception consists of various sensations that allows us to distin-

guish a sound from another. The main three sensations that allow the sound

perception are pitch, loudness and timbre. These feelings are the result of

the ear and the brain processing and are not directly measurable, but we

can measure only their corresponding physical quantities.

For periodic sounds the pitch is determined primarily by the fundamen-

tal frequency that is the number of repetitions according to the pattern of

the vibration. Between periodic sounds there are pure tones that are formed

by a singular sinusoidal component. In the frequency domain, a pure tone

is represented by an impulse in correspondence of the frequency of the sinu-

soid. For a sound composed by many harmonics (sinusoids), the fundamen-

tal frequency is the greatest common divisor of the set of frequencies that

constitute the spectrum.

The perceived intensity depends on the flow of energy that accompanies

the vibration. It also depends on other factors such as pitch, duration and

presence of other sounds. In addition to the primary sensations (pitch,

loudness and timbre), directionality is linked to the perception of sound,

and it is linked to the phase difference by which the sound reaches the ears.

As it was explained in Subsection 2.2.2, the cochlea helps us to perceive

the pitch of a pure tone. It is important to say that in front of a pure

tone of a given frequency, the maximum amplitude of the basilar membrane

is localized in a region of the membrane well defined. The x position of
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this region depends on the frequency of the sound. For each frequency

there is a maximal region of sensibility of membrane called resonance region.

The extension of audible frequencies goes from 16 Hz from 20 KHz. The

extension of frequencies that ranges approximately from 20 Hz up to 4000 Hz

covers approximately two thirds of the extension of the basilar membrane

(12 to 35 mm from the base). The remaining portion of the frequency

scale (4000-16000 Hz) is compressed in the remaining third. The range of

frequencies on the abscissa axis corresponds to the first seven octaves of

music, recognized as the most important in music.

The doubling of the frequency (jump of octave) of the sinusoidal stim-

ulus, the resonance region is affected by a displacement constant of 3.5-4

mm, independently of the frequency of departure. In other words, when the

frequency f is multiplied by a given value, the position of the maximum of

the resonance is shifted by a certain amount, following a logarithmic type

law.

Pitch

Pitch is defined as the aspect of auditory sensation in terms of which sounds

may be ordered on a scale extending from low to high, such a music scale. For

a music scale is intended a consideration to the octave as the fundamental

unit: a note considered an octave to another, it means that it has twice the

frequency of the other one. Pitch is a subjective quantity and it is a function

of the frequency of a sound, but it is also dependent upon the sound pressure

level and the composition. In order to have a consistent scale for pitch with

the curve of perception of the height, the mel scale has been introduced. By

definition 1000 Hz corresponds to 1000 mel (with 60 dB of SPL above the

hearing threshold at 1000 Hz) and at each octave mel are doubled [20]. In

Figure 2.5 the audible pitch trend (on the ordinate axis) is represented with

the increment of frequency (on the abscissa axis).

The ability to distinguish between two almost identical stimuli is often

characterized, in psychophysics studies, as a measure of minimum significant

difference called just noticeable difference defined as jnd. Two stimuli are

considered equal if they differ by less than jnd. The studies on the perception

of pitch showed that jnd frequency depends not only on the value of the

initial frequency of the stimulus, but also on the sound intensity, its duration

and the rate of change of the frequency.

It was shown that with the increase of the intensity level of the stimulus

from 40 to 90 dB, for frequencies above 1000 Hz the perceived pitch increases,

while for frequencies below 1000 Hz it decreases from its initial intensity. If
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Figure 2.5: Pitch perception with frequency.

the stimulus is around 1000 Hz, the change is almost zero [138].

Loudness level

The ear is sensitive to an extremely wide dynamic range of power intensity

(from 10−12 to 1 W
m2 ). The choice of the logarithmic scale offers a consider-

able values compression and these values are referred to a reference value

(minimum audible intensity). Subsection 2.2.1 defines a logarithmic scale

with the acoustic intensity level as a function of sound pressure level (SPL).

It is observed that continuous pure tones ( characterized by the same SPL

but at different frequencies) produce different sensations of intensity. So it

is necessary to find experimentally the values of equal perceived intensity

at different frequencies considering a reference SPL at 1000 Hz [50]. This

result is shown in Figure 2.6 and represents curves of equal loudness.

A pure tone with 50 dB of SPL at 1000 Hz is considered flat while is

just audible at 60 Hz. In order to produce the same sensation of intensity at

lower frequency, more energy is necessary than that is required to produce

the same sensation to the reference frequency at 1000 Hz.

The loudness level of sound at frequency f is given by its SPL at fre-

quency 1000 Hz that determines the same perception of the intensity. This

levels are measured in Phon.
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Figure 2.6: Curves of equal-loudness for pure tones. The dotted lines are equal-

loudness contours for bands of noise.

Timbre perception

Timbre is used to denote the “quality” or the “colour” of sound. Timbre

is the attribute that allows us to judge two different sounds that have the

same intensity, the same pitch and the same duration. It is determined from

the power spectrum of the stimulus, the waveform (phase), and the intensity

and temporal characteristics (duration) of the sound.

2.2.4 Processing of the auditory stimulus in nervous system

To perceive a complex tone, with the excitation of the basilar membrane,

our auditory system uses a complex reconstruction mechanism of the funda-

mental frequency with an analysis system of neural information. The first

transfer function of information located on the basilar membrane to the

central nervous system is performed by the hair cells. Every time the mem-

brane is excited they are subject to a mechanical stress in the corresponding

zone and then causes an electrical pulse in the nerve endings each time that

this solicitation exceeds a certain threshold. The cells that form the nerve

endings, which are the basic element processing in the nervous system, are
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the neurons (Section 2.1.3 on page 11).

When a pure tone causes motion in correspondence of a resonance area

of the basilar membrane, hair cells are stimulated and they cause a train of

electrical impulses in the nerve fibers connected to them. A nerve fiber of the

auditory nerve is able to transmit the resonance position on the membrane

(each nervous fiber is associated to one zone) and the temporal distribution

of the impulses with its periodicity and its wave form configuration.

In order to determine time delays and then to process the location of

the information of the sound source, the nervous system uses the cross-

correlation between neural signals from the two ears.

2.3 Measuring brain activity

Brain activity produces electrical and magnetic activity. Therefore, to study

this type of activity, sensors can detect different types of changes in electrical

or magnetic activity, at different times over different areas of the brain.

Brain imaging techniques allow doctors and researchers to inspect activity

within the human brain, without invasive neurosurgery. There are a number

of accepted, safe imaging techniques in use today in research facilities and

hospitals throughout the world.

• Functional magnetic resonance imaging (fMRI) is a non invasive imag-

ing method based on non electrical brain signals that can be used for

BCIs. It works by detecting the changes in blood oxygenation and flow

that occur in response to neural activity. When a brain area is more

active, it consumes more oxygen and to meet this increased demand

blood, flow increases to the active area. fMRI can be used to produce

activation maps showing which parts of the brain are involved in a

particular mental process.

• Computed tomography (CT) scanning builds up a picture of the brain

based on the differential absorption of X-rays. During a CT scan the

subject lies on a table that slides in and out of a hollow, cylindrical

apparatus.

• Positron Emission Tomography (PET) uses trace amounts of short-

lived radioactive material to map functional processes in the brain.

When the material undergoes radioactive decay a positron is emitted,

which can be picked up be the detector. Areas of high radioactivity

are associated with brain activity.
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• Magnetoencephalography (MEG) is an imaging technique used to mea-

sure the magnetic fields produced by electrical activity in the brain via

extremely sensitive devices known as SQUIDs. These measurements

are commonly used in both research and clinical settings. There are

many uses for the MEG, including assisting surgeons in localizing a

pathology, assisting researchers in determining the function of various

parts of the brain, neurofeedback, and others.

• Near infra-red spectroscopy (NIRS) is an optical technique for measur-

ing blood oxygenation in the brain. It works by shining light in the

near infra-red part of the spectrum (700-900nm) through the skull and

detecting how much the re-merging light is attenuated. How much the

light is attenuated depends on blood oxygenation and thus NIRS can

provide an indirect measure of brain activity.

• Electroencephalography (EEG) refers to recording of electrical activity

from the scalp with electrodes. Being this technique the one used for

the study of the thesis it is explained more accurately in Subsection

2.3.1 and 2.3.2.

2.3.1 Electroencephalography

The measurement of brain electrical activity using the electroencephalo-

graph (EEG) provides a non invasive and inexpensive method to directly

measure brain function and make inferences about regional brain activity.

The purpose of this subsection is to provide an overview of the major con-

cepts and methods associated with the use of EEG.

In 1929 Hans Berger has implemented the first recording of human brain

electrical activity using the electroencephalography technique. With his

first report he has demonstrated the scalp-recorded brain activity with an

electroencephalographic measures [57]. In the ensuing years, a rapid devel-

opments in data collection, data reduction and data analysis have resulted

in important progress in this area [17].

Berger used two large pad electrodes soaked in saline, one placed over

the forehead and the other placed at the back of the head. He observed

that there were regular rhythmic waves at about 10Hz in relaxed adults

and noticed that these waves were best seen when subjects had their eyes

closed in the absence of stimulation or other mental activity such as imaging

or problem solving. These waves become known as alpha waves and are

explained more in Subsection 2.3.2. Berger during its work confirmed the

important fact that scalp and direct recordings were essentially identical in
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form except that the amplitude at the scalp was attenuated.

After a few years, however, physiologist Adrian & Matthews (1934) [1]

also observed human EEG activity, which Jasper & Carmichael (1935) [70]

and Gibbs, Davis, & Lennox (1935) [54] confirmed the details of Berger’s

observations. These findings led to the acceptance of the EEG as a real

phenomenon.

Over the ensuing decades, the EEG proved to be very useful in both

scientific and clinical applications. In its raw form, however, the EEG is

a very coarse measure of brain activity, and it is very difficult to use it to

assess the highly specific neural processes that are the focus of cognitive

neuroscience. The drawback of the EEG is that it represents a mixed up

conglomeration of hundreds of different neural sources of activity, making it

difficult to isolate individual neuro-cognitive processes. However, the neural

responses associated with specific sensory, cognitive, and motor events, are

embedded within the EEG and it is possible to extract these responses

from the overall EEG by means of a simple averaging technique (and more

sophisticated techniques, as well). These specific responses are called event-

related potentials (ERP in Section 2.4 on page 30) to denote the fact that

they are electrical potentials associated with specific events.

Descriptive characteristics of the EEG

The EEG can be characterized with respect to many different parameters.

However, the most common used to characterize it are frequency and am-

plitude.

The EEG recording electrodes and their proper function are critical for

acquiring appropriately high quality data for interpretation. Many types of

electrodes exist, often with different characteristics. Basically the following

types of electrodes exist:

• disposable (gel-less, and pre-gelled types)

• reusable disc electrodes (gold, silver, stainless steel or tin)

• headbands and electrode caps

• saline-based electrodes

• needle electrodes

Commonly used scalp electrodes consist of Ag-AgCl disks, 1 to 3 mm in

diameter, with long flexible leads that can be plugged into an amplifier [15].
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AgCl electrodes can accurately record also very slow changes in potential

[45].

In 1958, the International Federation in Electroencephalography and

Clinical Neurophysiology adopted a standardisation for electrode placement

called 10-20 electrode placement system [71]. This system standardized

physical placement and designations of electrodes on the scalp. The head is

divided into proportional distances from prominent skull landmarks (nasion,

preauricular points, inion) to provide adequate coverage of all regions of the

brain. Label 10-20 designates proportional distance in percent between ears

and nose where points for electrodes are chosen. Electrode placements are

labelled according adjacent brain areas: F (frontal), C (central), T (tem-

poral), P (posterior), and O (occipital). The letters are accompanied by

odd numbers at the left side of the head and with even numbers on the

right side. In Figure 2.7 the main standard schematic of 10-20 electrodes

placement system is represented.

As it is known from Subsection 2.1.1 on page 8, different brain areas

may be related to different functions of the brain and each scalp electrode is

located near certain brain centres. Precisely, in frontal zone Fp1 is located

in the area of attention, while Fp2 in judgement area. F7 is located near

centres for rational activities in the area of verbal expression, F3 near motor

planning purpose, Fz near the intentional and motivational centres and it is

placed in the area of working memory, F4 in the area of motor planning for

left upper extremity to make the plan and F8 close to source of emotional

impulses such as anger, joy and happiness.

Cortex around C3, C4 and Cz locations, deals with sensory and motor

functions. In particular C3 is located in the area of right sensorimotor while

C4 in the left area (upper arms, hands) and Cz for mid/left size.

In temporal zone near T3 (verbal memory, visual memory) and T4 (emo-

tional memory) are located emotional processors, while at T5 (verbal under-

standing), T6 (emotional understanding) certain memory functions stand.

In parietal zone near P3 (special temporal information for verbal rea-

soning), P4 (special temporal information for math word problem and non-

verbal reasoning) and Pz contribute to activity of perception and differentia-

tion on cognitive processing. In the occipital zone can be found the primary

visual areas below O1 and O2.

High impedance can lead to distortions which can be difficult to separate

from actual signal. It may allow inducing outside electric frequencies on the

wires used or on the body. In order to prevent signal distortions impedances

at each electrode contact with the scalp should all be bellow 5 K Ohms, and

balanced within 1 K Ohm of each other.
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Figure 2.7: Placement of electrodes for non invasive signal acquisition using EEG.

This standardized arrangement of electrodes over the scalp is known as the Inter-

national 10/20 system and ensures ample coverage over all parts of the head. The

exact positions for the electrodes are at the intersections of the lines calculated

from measurements between standard skull landmarks. The letter at each elec-

trode identifies the particular subcranial lobe (FP Prefrontal lobe, F Frontal lobe,

T Temporal lobe, C Central lobe, P Parietal lobe, O Occipital lobe). The number

or second letter identifies its hemispherical location (Z: denotes line zero and refers

to an electrode placed along the cerebrum’s midline; even numbers represent the

right hemisphere; odd numbers represent the left hemisphere; the numbers are in

ascending order with increasing distance from the midline).

Several different recording reference electrode placements are mentioned

in the literature. Physical references can be chosen as vertex (Cz), linked-

ears, linked-mastoids, ipsilateral-ear, contralateral-ear, C7 reference, bipolar

references, and tip of the nose. Reference-free techniques are represented by

common average reference, weighted average reference, and source deriva-

tion. Each technique has its own set of advantages and disadvantages. The

choice of reference may produce topographic distortion if relatively electri-

cally neutral area is not employed. Linking reference electrodes from two

earlobes (electrodes A1 and A2 ), or mastoids reduces the likelihood of ar-

tificially inflating activity in one hemisphere. Nevertheless, the use of this

method may drift away “effective” reference from the midline plane if the

electrical resistance at each electrode differs [75]. Cz reference is advanta-

geous when it is located in the middle among active electrodes, however for
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Figure 2.8: Five main frequency bands of human brain waves activity.

close points it makes poor resolution. Reference-free techniques do not suffer

from problems associated with an actual physical reference. Referencing to

linked ears and vertex (Cz) are predominant.

With modern instrumentation, the choice of a ground electrode plays no

significant role in the measurement [101]. Forehead (Fpz) or ear location

is preferred [22], but sometimes wrist or leg is also used. The acquisition

of a channel is the combination of all active electrodes with reference and

ground electrodes.

2.3.2 Analysis of EEG signals

As said in Subsection 2.3.1, Hans Berger found that different electrical fre-

quencies could be linked to actions and different stages of consciousness.

This was done by observing subjects performing different task, like solving

mathematical problems, while recording their EEG. In Figure 2.8 the main

graph with the five frequency bands of human brain waves activity is repre-

sented in order to show their relations. On the ordinate axis the amplitude,

measured in mV , is represented while on the abscissa axis time is expressed

in ms.

To obtain basic brain patterns, subjects are instructed to close their eyes

and relax. Brain wave shapes are commonly sinusoidal, they are measured

from peak to peak and normally their range goes from 0.5 to 100 µV in am-

plitude. The contribution of sine waves with different frequencies visualized
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Figure 2.9: Brain waves graph. Gamma waves are for hyper brain activity which

is great for learning. Beta waves are busily engaged in activities and conversation.

Alpha waves becomes in very relaxed state and deepening into meditation. Theta

waves are in drowsy and drifting down into sleep and dreams. Delta waves for

deeply asleep and not dreaming.

in Figure 2.8, is obtained by means of Fourier Transform from the power

spectrum of the raw EEG signal. Although the spectrum is continuous,

ranging from 0 Hz up to one half of sampling frequency, the brain state of

the individual may make certain frequencies more dominant.

Brain waves have been categorized into five basic groups represented in

Figure 2.9:

• Gamma (from 30 to 120 Hz): reflect the mechanism of consciousness.

Beta and gamma waves together have been associated with attention,

perception, and cognition. They are associated with the formation of

ideas, language and memory processing, and various types of learning

[23, 16, 93].

• Beta (from 12 to 30 Hz): are often divided into β1 and β2 to get

a more specific range. These waves are small and fast, associated

with focused concentration and best defined in central and frontal

areas. Many people lack sufficient beta activity, which can cause men-

tal or emotional disorders such as depression and ADHD (Attention-

Deficit/Hyperactivity Disorder) [14, 41] and insomnia. Stimulating
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beta activity can improve emotional stability, energy levels, attentive-

ness and concentration [123, 65, 55].

• Alpha (from 7.5 to 12 Hz): can be usually observed better in the pos-

terior and occipital regions with typical amplitude of about 50 µV

(peak-peak). Alpha activity is induced by closing the eyes and by

relaxation, and inhibited by eye opening or thinking and calculating.

Most of the people are remarkably sensitive to the phenomenon of

”eye closing”, i.e. when they close their eyes their wave pattern signif-

icantly changes from beta into alpha waves. Many studies monitoring

the EEG activity of experienced meditators have revealed strong in-

creases in alpha activity [19]. Alpha activity has also been connected

to the ability to recall memories, lessened discomfort and pain, and

reductions in stress and anxiety [153, 72, 100, 60].

• Theta (from 3.5 to 7.5 Hz): are linked to inefficiency, daydreaming,

and the very lowest waves of theta represent the fine line between being

awake or in a sleep state. Theta is also a very receptive mental state

that has proven useful for hypnotherapy, as well as self-hypnosis using

recorded affirmations and suggestions [151, 119].

• Delta (from 0.5 Hz to 3.5 Hz): are the slowest waves and occurs for

deep, dreamless sleep. Delta is the slowest band of brainwaves. When

your dominant brainwave is delta, your body is healing itself and ”re-

setting” its internal clocks [11].

2.3.3 Practical application of EEG technology

The most used application of EEG is to observe and study records, to search

for, or to understand, brain damages and disorders, like for instance epilepsy

[139]. Empirical research and case studies throughout the decades have

led to functional brain localization (see Figure 2.10), that combined with

electrodes placed according to the 10-20 system (see Figure 2.7 on page 26)

makes activity in these areas observable.

The study of brain waves and how they relate to different mental states,

has led to number of alternative methods and beliefs on how to manipulate

these waves. For instance, in order to become, e.g., more relaxed, focused

and smarter, it is possible to listen a music that plays in specific frequen-

cies bringing the brain waves working into a relaxed state [156]. Besides

this somewhat regarded pseudo-science, there have been a lot of interesting

studies of mental states and how they are effected, reported for instance

in Braverman [13]. According to his article, an increase of alpha activity
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Figure 2.10: Basic functional brain localization map.

is found when taking antidepressants, and addictive drugs like morphine,

heroin and marijuana. It has also been identified that drug users often

lack a natural amount of occurring alpha waves, and thus this can explain

why they become addicts. Alcoholics have been found to have an excess of

occurring beta waves, and that this can inhibit their ability to relax. Al-

cohol research shows that its use increases the amplitude of the slow waves

frequencies and decrease the fast waves.

Braverman talks about “how brain waves symbolizes the various parts of

our consciousness, and that if we get the knowledge and treatment to change

them, we can get closer to get our very balanced brain waves, or happiness”.

One way to get knowledge is to use ERP (Event-related Potential) discussed

below in Section 2.4.

2.4 The Auditory P300 Event-Related Potential

An event-related potential (ERP) (or Evoked-Potential EP to a stimulus) is

the measured brain response that is the direct result of a specific sensory,

cognitive, or motor event [87]. The study of the brain through ERPs pro-

vides a non-invasive means of evaluating brain functioning as described in
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Subsection 2.3.3.

ERPs are electrocortical potentials generated in the brain during the

presentation of a stimulus. The stimulus could be generated by a sensor

or a psychological event. It generates a time delay wave in EEG that can

be detected after processing EEG signals. These methods can be simple

averaging techniques, in which, EEGs are averaged over total time (time

from presenting the stimulus to time when EEG settles down) or advanced

approaches such as linear discriminant analysis or support vector machines

(Section 2.5). There are different types of ERPs based on the source of

stimulus presentation such as visual, auditory and tactile. This section

discusses the P300 which is a formed from auditory evoked potential (AEP)

and focuses on the P300 wave in general.

A year after Berger’s publication of his findings in 1938 (Subsection 2.3.1

on page 23), Pauline Davis, in collaboration with her husband Hallowell,

reported the first study on event-related potentials (ERPs) performed on

awake humans in 1939 [26]. In the following decades, auditory ERP research

added to the basic knowledge about sound processing in the healthy brain

and it improved our understanding of the neurophysiological underpinnings

of various clinical disorders.

The next major advance was the discovery of the P3 or P300 component

by Sutton, Braren, Zubin, and John [140] (explained in detail in Subsection

2.4.5). They found that when subjects could not predict whether the next

stimulus would be auditory or visual, the stimulus elicited a large positive P3

component that peaked around 300 ms post-stimulus. This component was

much smaller when the modality of the stimulus was perfectly predictable.

2.4.1 The P50 component

The P50 is a positive deflection that occurs approximately 50 ms after the

beginning of sound. It is called “the earliest, the smallest in amplitude, the

most variable and consequently the least studied of the auditory ERPs” [59].

Although its amplitude is relatively small, it robustly follows the beginning

of all kinds of sounds, including short clicks or noise bursts. It has been

argued that the P50 reflects pre-attentive arousal due to the appearance

of a new event in the auditory scene. Since off-responses to sound do not

comprise this “warning” element of sound, the P50 is weak, or often absent,

after sound offset [59].
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Figure 2.11: N100-P200 ERP components in response to normal and whispered

speech. The P200 amplitude difference is caused by the intensity difference between

the speech stimuli. Note that amplitude is depicted as ”negative-up”.

2.4.2 The N100-P200 component

The N100 is a relatively large, negative deflection that reliably occurs ap-

proximately 100 ms after an abrupt change in the auditory environment [67].

The N100 (see Figure 2.11) has been described as reflecting neural processes

that are sensitive to stimulus features such the “quickness” of the sound’s

onset and offset, i.e., the sound intensity at the edges.

Hillyard in 1973 [116] investigates N100 component systematically with

a shadowing task in a dichotic listening paradigm (well-known in the field

of auditory cognition and selective attention), in which listeners are asked

to verbally repeat information entering one ear while ignoring different in-

formation presented to other ear.

The P200 (see Figure 2.11) is a positive deflection occurring approxi-

mately 200 ms after the beginning of the sound. Similar to the N100, the

P200 is a salient deflection that reliably occurs across individuals. The P200

amplitude varies with the physical characteristics of a sound, such as its in-

tensity [62] and frequency [142]. It also varies with the acoustic properties of

speech sounds, for example those signalling prosodic content [118]. Figure

2.11 shows the N100-P200 complex in response to normal and whispered

speech [142].
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2.4.3 Mismatch negativity MMN

The mismatch negativity (MMN) is a negative deflection in the EEG wave-

form that typically occurs in between 150-250 ms after the beginning of the

stimulus [110]. In the oddball-paradigm (see Section 2.4.6), MMN occurs

in response to an infrequent stimulus (the deviant) that occurs within a

stream of frequent stimuli (the standard). MMN is considered to reflect

early sensory memory processing involved in matching the incoming stimu-

lus with that of previously processed stimuli. The occurrence of MMN does

not require attentional engagement to the sounds.

Whereas the N100 amplitude, and that of other components, is larger

when a participant pays attention to the stimuli [106], MMN can be obtained

even when participants ignore the stimuli [88, 148] or when they are asleep

[24]. In order to obtain MMN during sleep, however, the difference between

the deviant and standard must be prominent.

With auditory stimuli, MMN can be elicited by an oddball stimulus that

differs from the ongoing stream of stimuli with regard to, for example, inten-

sity, frequency, and duration. Slightly more complex stimulus configurations

also elicit MMN, for example when a sequence of tones that consistently in-

creases in frequency is interrupted by a deviant with the same frequency as

the former tone.

In speech, MMN research has been often used to obtain neural correlates

of voice-onset time (VOT) discrimination in listeners (e.g., [102]). MMN is

obtained through calculation of a difference wave between the waveforms

induced by an equal number of frequent and oddball stimuli. The resulting

waveform tends to peak around 200 ms after stimulus onset, but latency

and amplitude vary with factors such as inter-stimulus interval (ISI), the

ratio of occurrence of frequent and deviant stimuli, the difference in stimulus

characteristics between frequent and deviant stimuli, and so forth.

2.4.4 The N200 component

The N200 is a negative deflection typically evoked in between 180-325 ms

following the presentation of a deviant stimulus. A subcomponent of the

N200 is the auditory MNN and is called N2a [111]. The N2b component of

the N200 is a component that follows the N2a and it is evoked when the

participant pays attention to the stimuli and it often occurs in tandem with

the P300 component (Subsection 2.4.5). The N2c is in the classification

tasks [149].
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2.4.5 The P300 component

The P300 component of the event-related sensory potentials is consistently

related to attention, decision making, and memory updating and therefore

provides a valuable tool for investigation of these processes in the human

brain [108].

The P300 was first reported over 40 years ago [140]. Its discovery comes

from the confluence of increased technological capability for signal averaging

applied to human neuroelectric measures and the impact of information

theory on psychological research [141]. The original studies manipulated

stimulus information to assess how electric brain patterns varied among

conditions [6]. Subsequent results elucidated the roles of stimulus probability

and task relevance, which provided the basis for its functional analysis often

from data obtained with the “oddball” paradigm [38, 155].

The P300 wave also known as P3 is the most important and studied

component of ERPs, which can be recorded/measured after the stimulus

presentation in an EEG. The P300 is observed in an EEG as a significant

positive peak 300 ms to 500 ms after an infrequent stimulus is presented to a

subject. It is suggested to be related to the end of the cognitive processing,

to memory updating after information evaluation or to information transfer

to consciousness [39, 18].

Typical peak latency of this positive wave occurs around 300 ms for most

users, therefore it is called as P300 wave.

• single-stimulus

• oddball

• tree-stimulus

In the typical P300-based experiments three different types of paradigms

are being used.

The single-stimulus paradigm includes one type of stimuli called target.

In a typical oddball paradigm, the subject is normally presented with target

and standard (or irrelevant) stimuli. The three-stimulus paradigm consists

of target, standard and deviant (see Subsection 2.4.6).

Figure 2.12 illustrates variants of the oddball task. The single-stimulus

procedure infrequently presents the target with no other stimuli occurring

(top). The traditional two-stimulus oddball presents an infrequent target

in a background of frequent standard stimuli (middle). The three-stimulus

oddball presents an infrequent target in a background of frequently occurring

standard stimuli and infrequently occurring deviant stimuli (bottom). In
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Figure 2.12: Schematic illustration of the single-stimulus (top), oddball (middle),

and three-stimulus (bottom) paradigms, with the elicited ERPs from the stimuli of

each task at the right [108]. The single-stimulus task presents an infrequent target

(T) in the absence of any other stimuli. The oddball task presents two different

stimuli in a random sequence, with one occurring less frequently than the other

does (target=T, standard=S). The three-stimulus task is similar to the oddball

with a compelling deviant (D) stimulus that occurs infrequently. In each task, the

subject is instructed to respond only to the target and otherwise to refrain from

responding. The deviant elicits a P3a, and target elicits a P3b (P300).

each case, the subject is instructed to respond mentally or physically to the

target stimulus and not respond otherwise.

The P300 component is measured by assessing its amplitude and latency.

Amplitude (µV ) is defined as the difference between the mean pre-stimulus

baseline voltage and the largest positive-going peak of the ERP waveform

within a time window (e.g., 250-500 ms, although the range can vary de-

pending on stimulus modality, task conditions, subject age, etc.). Latency

(ms) is defined as the time from the beginning of stimulus to the point of

maximum positive amplitude within a time window. P300 scalp distribution

is defined as the amplitude change over the midline electrodes (Fz, Cz, Pz),

which typically increases in magnitude from the frontal to parietal electrode
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Figure 2.13: P300 amplitude plotted as a function of target-to-target interval (TTI)

for the target (T) stimulus in an oddball task across sequences of preceding non-

target (N) standard stimuli. The legend defines the symbols used to depict various

nontarget and target sequences. The subject is instructed to respond only to the

target stimulus. P300 amplitude increases independently of local sequence and

global target probability. The regression lines reflect curvilinear best fit for a sec-

ond order polynomial.

sites [109].

Target-to-target interval

Figure 2.13 is illustrates the influence of time-induced limitations on P300

amplitude as a function of target-to-target interval (TTI) for stimulus se-

quences defined by the number of non-target (standard) stimuli that occur

before the detected target [18]. These findings reflect a major empirical

qualification of probability and stimulus sequence on P300 outcomes [135],

as TTI determines how quickly resources can be redirected to process tar-

get stimuli [58]. Short intervals produce smaller P300 components than
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longer intervals, with TTIs of 6-8 seconds or greater eliminating probability

effects. Temporal limitations therefore may originate from memory trace de-

velopment governing the event representational quality that underlies P300

generation.

This theoretical interpretation is supported by P300 findings from “single-

stimulus” paradigms in which only the target stimulus occurs randomly and

variably in time, This task produces P300 components comparable to the

oddball paradigm. Thus, even when the target stimulus probability is uni-

tary, the time between events is the primary determinant of P300 amplitude.

P300 amplitude

Early accounts of P300 emphasized stimulus information and probability

sequence. Subsequent findings described the role of attentional resource al-

location, thereby implying that cognitive demands during task processing

influence P300. Target-to-target interval (TTI) results demonstrated that

component size is small for relatively rapid stimulus presentations, whereas

target stimulus items occurring at longer intervals yield maximum compo-

nent amplitudes. This empirical framework is consonant with the link be-

tween P300 and attentional processing of target stimulus events-phenomena

that appear related to memory processing.

P300 latency

P300 peak latency is proportional to stimulus evaluation timing, is sensi-

tive to task processing demands, and varies with individual differences in

cognitive capability. However, most studies report only a single peak and

response time for specific paradigms rather than fostering a wider theoretical

framework. Evaluation of normal aging and cognitive impairment have used

P300 latency, but fundamental measurement issues on defining individual

peaks is complicated by topographic timing variation, single-trial variability,

multiple intra-component peaks, and an absence of clinical guidelines.

P3a and P3b subcomponents

Since the initial discovery of the P300, research has shown that the P300 is

not a unitary phenomenon. In fact, contains two distinguishable subcom-

ponents: the novelty P3, or P3a, and the classic P300, which has since been

renamed P3b [136]. The P3a is a large, positive deflection with a front-

central distribution and is typically elicited by novel or non-target stimuli

(deviant or distracter) inserted in a series of standard and target stimuli in
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Figure 2.14: ”Idealized” event-related potential waveforms representing stages of

information processing representing shifts from automatic to higher order controlled

processes.

a three-stimulus oddball paradigm, in which behavioural responses to that

stimuli are not required.

The P3b (or classical P3) has a more posterior-parietal scalp distribution

and a somewhat longer latency than P3a. By contrast, it is strongly asso-

ciated with voluntary attention to the stimuli in an oddball paradigm that

does require behavioural responses. The peak amplitude of the P3b varies

with the relative amount of deviant stimuli, as compared to the number of

standard stimuli, while stimulus relevance and the availability of attentional

resources affect the amplitude as well [40].

What is also important is a distinction between P3a and P3b for both

auditory and visual modalities [78]. The P3b component seems to be elicited

exclusively by target stimulus, the only stimulus in the sequence required

obligatory response. Was found that an infrequently presented non-target

tone inserted into the traditional oddball tone sequence, elicited a parietal

P3 of smaller amplitude than the target P3. This component is sometimes

referred to as a “no-go” P3 since response to infrequent non-target is not

required from the subject [104, 105].

ERPs provide a functional measure of neuroelectric brain activity that

occurs time locked to a significant event, reflecting successive stages of in-
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formation processing. Figure 2.14 represents the ERPs across a spectrum of

cognitive information processing. As noted in the figure, this high temporal

resolution allows for the study of the earliest stages of information process-

ing and the subsequent transitions from automatic sensory-based perceptual

processing to higher-order and integrative cognitive operations. Specifically,

the amplitude and latency of the successive peaks can be used to quantify

the level or the amount of processing resources and the time course of cog-

nitive processing which may vary due to mental state, attentional demand

or distraction.

2.4.6 The auditory three-stimulus oddball paradigm

The auditory P300 is typically elicited using a paradigm such that tree

different stimuli are used to generate the waveform. The auditory P300 has

been considered for a long time an endogenous potential, considered to be

the result of a cognitive (internal) event rather than an external event [140].

This cognitive event is a decision that a target occurred. In contrast, an

exogenous potential such as auditory brainstem response is the result of an

external acoustic event and it is therefore influenced by physical stimulus

characteristics [38].

Researchers have shown external acoustic stimulus characteristics, such

as intensity, to affect P300 amplitude and latency [21]. Increasing stimu-

lus intensity will result in an increase in P300 amplitude and will decrease

P300 latency. P300 waveforms have been shown to be larger in amplitude

and shorter in latency at suprathreshold levels (75 dB SPL) compared to

threshold levels [98]. Above 75 dB SPL, the amplitude of the P300 does

not significantly increase, indicating that the exogenous component is max-

imized.

When competing trains of stimuli are presented, the P300 wave is most

prominent in response to stimuli that the subject is attending to. The

direction of attention is usually controlled by the experimenter who requires

the subject to perform a task that involves some stimuli and not others. The

P300 wave generally occurs only in response to task-relevant stimuli. The

perverse desire of subjects to attend to irrelevant stimuli can be prevented

by making the assigned task sufficiently difficult in terms of complexity or

speed that attention to irrelevant stimuli is not possible. When a subject

attends to auditory stimuli in one ear and ignores auditory stimuli in the

other ear, an improbable target only elicits a P300 if it occurs in the attended

ear [116, 37].

The three-stimulus oddball paradigm is a modification of the oddball task
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Figure 2.15: Grand average ERP components for both a target oddball stimulus

and a non target deviant (distracter). Is represented in picture the variation of

ERP amplitude across the N1, P3a, and P3b components in response to the two

stimuli (target and deviant) that vary in contextual salience during a three-stimulus

oddball paradigm.

in which rare non-target stimuli (deviants) are inserted into a sequence of

rare target and frequent standard stimuli. The task given to the subject is

usually to notice the presence of target stimulus and to react to it mentally

or physically [77, 78].

The oddball paradigm has proven a very versatile tool in testing infor-

mation processing. This is due to the fact that different ERP components

are elicited to the standard and deviant stimuli that can be differentiated

by their distinct relationship to the experimental conditions of the oddball

paradigm employed. This is due including stimulus probability of occurrence

as the percentage of stimuli presentation, stimulus onset asynchrony (SOA)

as the amount of time between the onset of one stimulus and the onset of

another stimulus, interstimulus interval (ISI) as temporal interval between

the offset of one stimulus to the onset of another, and the contextual salience

of the stimulus (target or deviant). The three-stimulus oddball task allows

for the separate testing of the effects of non target and deviant (distracter)

stimuli on behavioural performance (during active task) and may help to

elucidate the source of the neural generated effect (scalp distribution).
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For example, a common procedure for the three-stimulus auditory odd-

ball in which pure tones that typically varies in pitch (e.g., 500Hz vs. 750Hz

vs. 1000Hz) and probability of occurrence (e.g. 70% or 80% for frequent

standard tone vs. 30% or 20% for infrequent target tone and deviant) are

presented randomly with an inter-stimulus interval or stimulus onset asyn-

chrony from 1000ms to 2000ms. Discriminating the infrequent target tone

from the deviant tone and the more frequently occurring standard tone,

produces a robust P300 components from both stimulus types that vary in

amplitude. In each task, the subject is instructed to respond only to the

target. That elicits a P3b (P300) component, while the deviant elicits the

P3a as shown in Figure 2.15.

2.5 Brain-computer interfaces

This section explains Brain-Computer Interfaces (BCIs) with the technical

implementation in order to acquire EEG signals given by an external stimu-

lation (i.e., an acoustic stimulation) and in particular how to extract features

and classify them with a mathematical model.

2.5.1 What is a BCI?

In Subsection 2.1.2 on page 10 the role of the central nervous system (CNS)

was explained and how it responds to occurrences in the environment by

producing appropriate outputs. The natural outputs of the CNS are either

neuromuscolar or hormonal. A brain-computer interface (BCI) is a system

that measures CNS activity and converts it into artificial output that re-

places, restores, enhances, supplements, or improves natural CNS output

and thereby changes the ongoing interactions between the CNS and its ex-

ternal or internal environment [154].

Figure 2.16 shows the five kinds of applications that a BCI output might

control and it illustrates each of these by showing one possible example.

• A BCI output could replace natural output that has been lost to injury

or disease. Someone who cannot speak could use a BCI to spell words

that are then spoken by a speech synthesizer. Or one who has lost

limb control could use a BCI to operate a powered wheelchair [154].

• A BCI output could restore lost natural output. Someone with a spinal

cord injury whose arms and hands are paralysed could use a BCI to

control stimulation of the paralysed muscles with implanted electrodes

so that the muscles move the limbs [154].
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Figure 2.16: Design and operation of a brain-computer interface (BCI) system.

Signals produced by brain activity are recorded from the scalp, from the cortical

surface, or from within the brain. These signals are analized to measure signal

features (e.g., amplitudes of EEG rhythms or firing rates of individual neurons)

that correlate with the user’s intent. These features are then translated into com-

mands that control application devices that replace, restore, enhance, supplement,

or improve natural CNS outputs.

• A BCI output could enhance natural CNS output. Someone engaged in

a task that needs continuous attention over a long time (e.g., driving a

car or performing sentry duty) could employ a BCI to detect the brain

activity preceding breaks in attention and then produce an output

(such as a sound) that alerts the person and restores attention. By

preventing the periodic attentional breaks that normally compromise

natural CNS output, the BCI enhances the natural output [154].

• A BCI output could supplement natural CNS output. Someone con-

trolling cursor position with a standard joystick might employ a BCI

to choose items that the cursor reaches. Or a person could use a BCI

to control a third (i.e., robotic) arm and hand. In these examples, the
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BCI supplements natural neuromuscular output with another, artifi-

cial output [154].

• A BCI output might possibly improve natural CNS output. For ex-

ample, a person whose arm movements have been compromised by a

stroke damaging sensorimotor cortex might employ a BCI that mea-

sures signals from the damaged areas and then excites muscles or con-

trols an orthosis that improves arm movement [154].

2.5.2 The components of a BCI

A BCI detects and measures features of brain signals that reveal the user’s

intentions and translates these features in real time into commands that

achieve the user’s intent (Figure 2.16). In order to do this, a BCI system

has four components:

1. Signal acquisition

2. Feature extraction

3. Pattern recognition and Classification

4. Control signal/output commands

A BCI includes an operating protocol that specifies how the onset and

timing of operation is controlled, how the feature translation process is

parametrized, the nature of the commands that the BCI produces, and how

errors in translation are handled. A successful operating protocol enables

the BCI system to be flexible and to serve the particular needs of each of

its users.

The signal acquisition component measures brain signals using a partic-

ular kind of sensor (e.g., scalp electroencephalographic technique described

in Subsection 2.3.1 or intra-cranial electrodes for electrophysiological activ-

ity, functional magnetic resonance imaging for hemodynamic activity). It

amplifies the signals to enable subsequent processing, and it may also filter

them to remove noise such as 60-Hz (or 50-Hz) power line interference. The

amplified signals are digitized and transmitted to a computer or a device.

The feature extraction component analyses the digitized signals to isolate

signal features (e.g., power in specific EEG frequency bands or firing rates of

individual cortical neurons) and expresses them in a compact form suitable

for translation into output commands.

The pattern recognition is provided to the feature translation algorithm

and the Classification methods, which converts them into commands that

43



Figure 2.17: Basic components of a BCI. The image illustrates the map between

the input and output through the translating algorithm. Signals are acquired by

electrodes and then translated into a control signal for an external device (e.g.

wheelchair, neuroprosthesis or exoskeleton) using a sequence of processing steps.

achieve the user’s intent to do something. For example, a particular evoked

potential measure (ERP referred in Subsection 2.4) might be translated

into the selection of a letter to be added to a document being composed.

The translation algorithm should be able to accommodate and adapt to

spontaneous or learned changes in the user’s signal features in order to ensure

that the user’s possible range of feature values covers the full range of device

control and also to make control as effective and efficient as possible.

The commands or control signal that the feature translation algorithm

produces, are the output of the BCI. This commands go to the application

and there produce functions such as letter selection, cursor control, robotic

arm operation, wheelchair movement, etc.

2.5.3 BCI signal acquisition

As discussed in Subsection 2.5.2, translation of intent into action is depen-

dent on expression of the intent in the form of a measurable signal. Proper

acquisition of this signal is important for the functioning of any BCI. The

goal of signal acquisition methods is to detect the voluntary neural activity

generated by the user, whether the signals are acquired invasively or non-

invasively. Each method of signal acquisition is associated with an inherent
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spatial and temporal signal resolution.

At the beginning of the Section 2.3 some possible techniques that are

used to acquire signals from brain activity were mentioned. In particular

the EEG that is a non invasive technique (Subsection 2.3.1 on page 23) it

was treated and in Subsection 2.3.2 the main brain waves that have been

categorized into five basic groups as different signals bands present in the

EEG signal was discussed. Electromagnetic recording from the brain at rest

exhibits endogenous oscillatory activity that is widespread across the entire

brain. This activity can be split into bands as referred in Figure 2.9 on page

28.

The voluntary neural activity generated by the user is obtained with the

event-related potential (ERP) discussed in Section 2.4 and its main P300

component (Subsection 2.4.5). This component is used in a BCI and is

acquired with the EEG in the context of the oddball paradigm (Subsection

2.4.6) as the user’s focusing on precise stimulus. The most common way

to derive ERP from EEG recording is aligning the signals according to the

stimulus onset and then averaging them.

In order to acquire brain signal activity a bioamplifier is used that is a

variation of an instrumentation amplifier. This device is an electrophysiolog-

ical device, used to amplify the signal integrity of the brain electrical activity

high performance differential amplifiers are used, and signals of interest are

in the range of 0.5-100 V over the frequency range of 1-50 Hz.

The amplification process does not only depend on the performance and

specifications of the amplifier, but also closely binds to the types of elec-

trodes to attach on the subject’s body. Types of electrode materials and the

mount position of electrodes affect the acquirement of the signals [15] (see

Subsection 2.3.1 on page 23).

2.5.4 BCI signal processing: ARX Models for Features Ex-

traction

The goal of BCI signal processing is to extract features from the acquired

signals with a mathematical model and classifying them into logical control

commands for BCI applications. Based on this definition, the goal of features

extraction for BCI applications is to obtain features that accurately and

reliably reflect the intent of the BCI user.

The main purpose of the processing and extraction techniques is to char-

acterize an item (i.e., the desired user selection) by discernible measures

whose values are very similar for those in the same category but very dif-

ferent for items in another category. From these measures relevant features
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must be chosen from the numerous choices available since unrelated features

can cause the pattern recognition algorithm to have poor generalization,

they increase the complexity of calculation, and they require more training

samples to obtain a specific level of accuracy.

The methods for extracting features depend largely on the type of neural

signals used in the BCI and the characteristics associated with the underly-

ing neural process.

Neural EEG signals features are defined by spatial location and tempo-

ral/spectral characteristics. In order to optimize the spatial information,

the channels used for BCI control are usually a selected subset of channels.

These can be selected with methods such as principal components analy-

sis (PCA) [134] or independent component analysis (ICA) [7], or based on

a priori knowledge of the functional organization of the relevant cortical

area(s).

Identifying, Selecting and extracting the relevant properties or features

of the signals that better describe the EEG signals are essential steps in

the design of a BCI. The correct selection of the features is crucial, if the

features extracted from EEG are not relevant and do not accurately describe

the EEG signals employed, the classification algorithm will have problem in

selecting the class or label the user intended.

The feature extraction could be divided in two main groups: temporal

and frequential/spectral methods, a third group can be added as hybrid

between temporal and frequency techniques.

Frequency methods are commonly used for the ease of application and

computational speed. The different oscillations or rhythms that characterize

the EEG signals present variations while performing a mental task or with

a steady state evoked potential that a change in the oscillation is highly

related to the stimulus frequency. The most commonly used methods are

power spectral densities and band powers. It is possible to use another

method that performs the Short Time Fourier Transform or the Wavelet

transform to have a time-frequency representation of the signal.

In temporal methods, features present a time dependent variation and

the changes can be as the ones that occur on P300 wave which depend on

the focus of the selected stimulus 300ms later to be generated. The main

temporal methods are AutoRegressive parametric models (e.g., AR). Finally

the signal amplitude method that concatenates the electrodes amplitude

into a feature vector, is used as input into the classification algorithm.

As explained in Subsection 2.4 on page 30, event-related potentials (like

P300) are buried in the ongoing EEG. Methods are needed to extract the

interesting part of the EEG (the P300 in our case) from the recording signals.
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Figure 2.18: Block diagram of an ARX model.

Figure 2.19: Usage of an ARX model for the modeling of ERPs.

The model described here is taken from the B. Dal Seno Phd Thesis

work [121]. This method has been used to extract features in this thesis

work and it is called: ARX (AutoRegressive with an eXogenous input).

Figure 2.18 shows shows the block diagram of an ARX model. In this

diagram, the signal y results from the superposition of a stochastic signal

and a deterministic one: The first (the upper one in the figure) is the output

of a process with a white noise e as input; in Figure 2.19 is the output of an

ARMA (AutoRegressive, Moving Average) system with a fixed input u(·).
In formulas:

y(t) =

q+d−1∑
k=d

bku(t− k)−
p∑
j=1

ajy(t− j) + e(t) (2.7)

where aj and bk are the coefficients of the ARMA system, q and p are

their orders (i.e., the number of coefficients) and d is the delay between the

input and the output. Equation 2.7 can be written also as

A(z)Y (z) = B(z)U(z) + E(z) (2.8)

by using the Z transform [74]; Y(z), U(z), E(z) are the Z transforms of

y(·), u(·), e(·) respectively, and
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Figure 2.20: Data flow in using an ARX model for ERP extraction.

A(z) = 1 +

p∑
j=1

ajz
−j (2.9)

B(z) =

q+d−1∑
k=d

z−k (2.10)

When applied to extraction of an ERP from an EEG recording, the

recording y(·) can be seen as a superposition of two contributions:

y(t) = s(t) + n(t) (2.11)

where s(·) represents the ERP component, and n(·) represents the noisy

component, i.e., the background EEG. The two components are modeled

by the two blocks in the ARX models (see Figure 2.19). The ARMA block

filters the reference signal to get the ERP part. The reference input to the

ARMA block is a pattern that resembles the characteristics of the ERP

to be detected. It is usually obtained by averaging many EEG recordings

where the ERP is supposedly present. The rationale behind this is that the

ERP component s(·) is similar but not exactly equal to the ERP average.

While averaging extracts the ERP component from many recordings where

an ERP is known to be present, the objective of the application of the ARX

model is to extract an ERP component from a single recording. So, it can

be used, for example, to discriminate between stimuli that elicited a P300

and those the did not.

How to use ARX modeling for ERP extraction is shown in Figure 2.20.

The analysis works on segments (called epochs) of EEG recordings, long

enough to cover the expected duration of the ERP with some margin. An

initial batch of epochs of EEG recordings where the ERP is present is used to

build the reference signal u(·), by averaging. For every new EEG recording

the model in Equation 2.7 is identified, with y(·) being the recording to
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be analyzed and u(·) the previously computed ERP average. Identification

of the ARX model is performed by using a least-squares method, which

minimizes the error with a cost function defined as:

J =
1

N

N∑
t=1

e(t)2 (2.12)

where N is the number of samples in an epoch. e(·) is the prediction error

of the model:

e(t) = y(t)− ŷ(t) (2.13)

where

ŷ(t) =

q+d−1∑
k=d

bku(t− k)−
p∑
j=1

ajy(t− j) (2.14)

After the identification, the useful component, s(·), can be computed

by filtering the reference signal u(·) with the filter B(z)/A(z), according to

Equation 2.7:

s(t) =

q+d−1∑
k=d

bku(t− k)−
p∑
j=1

ajs(t− j) (2.15)

The identification and filtering steps are performed separately for each

candidate EEG epoch. For P300 studies, it means one epoch per stimulus.

The resulting signal s(·) contains the ERP when it exists, otherwise is

just noise. For a BCI an automatic classification is required. In Subsection

?? on page ??, our case has been discussed.

Before an ARX model can be used at all, the parameters p, q, and d must

be chosen. Normally, the choice is made by analyzing a training data set, i.e.,

a set of EEG recordings for which it is known whether they contain an ERP

or not. The choice of these parameters cannot be made by using a least-

square criterion defined in the Equation 2.12, because ever increasing the

number of the parameters always makes the model fit better. The magnitude

of the contribution to the goodness of the fit of new parameters must be

taken into account. Akaike Information Criterion (AIC) [3] in the case of

ARX models it can be written as

AIC = 2n+Nlogσ2 (2.16)

where σ2 is the variance of e(·) given by the Equation 2.13, n=p+q, and N

is the number of samples.
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2.5.5 BCI signal processing: Pattern Recognition and Clas-

sification methods

After the features have been selected the next step is to translate them into

a command. This translation can use regression/classification methods. A

classifier is a function that assigns labels to objects. A learning algorithm

is a procedure that finds a good classifier given a set of labeled examples.

A suitable classifier function f : X → Y , where X is the feature space

(X ⊆ <n) and Y a set of possible labels (e.g., Y = {1,+1}, i.e., a binary

classification problem), given a probability distribution p(·, ·) defined over

X x Y, and a training set of pairs 〈xi, yi〉 where xi ∈ X, yi ∈ Y , i = 1, ..., N .

In this subsection two of the classifiers used for this thesis work are

described.

Logistic Classifier

A logistic classifier [83] approximates the probability P (y|x) with a logistic

function:

P (y = +1|x) =
1

1 + exp(ω0 +
∑n

j=1 ωjxj)
(2.17)

P (y = −1|x) = 1− P (y = +1|x) =
exp(ω0 +

∑n
j=1 ωjxj)

1 + exp(ω0 +
∑n

j=1 ωjxj)
(2.18)

where xj are the n components of the vector x. The decision of the class

to assign to a given sample x is taken by comparing the two probabilities

P (y = −1|x) and P (y = +1|x). The parameter vector w can be found by

maximizing its log-likelihood

L(ω) =
N∑
i=1

logP (yi|xi, ω) (2.19)

by using gradient ascent. In order to improve the generalization ability of

the classifier, a penalization term can be added:

Lλ(ω) =
N∑
i=1

logP (yi|xi, ω)− λ‖ω‖2 (2.20)

The additional term penalizes large values of w components. The parameter

λ determines how strong the penalty term is.
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Figure 2.21: SVM: support vectors are surrounded by a circle. On left: the

maximum-margin hyperplane in the separable case. On right: the maximum-

margin hyperplane in the non-separable case.

Support Vector Machines

A support vector machine (SVM) [145] is a supervised learning method used

for classification and regression. It was developed by Vladimir Vapnik in the

late 1970s, while he was addressing the problem of the generalization of a

classifier from a theoretical point of view.

Vapnik found theoretical bounds on the expected risk given the empirical

risk. In the simplest case, an SVM is a hyperplane in the space X. This

hyperplane separates the space in two regions, one for each labels. Samples

are assigned labels depending on which side of the hyperplane they lie (see

Figure 2.21). In formulas:

f(x) = sign(f∗(x)) (2.21)

f∗(x) = 〈w, x〉+ b (2.22)

If the training set is such that there exist an hyperplane that separates

exactly the positive and negative samples, the SVM maximizes the margin

(distance) of the hyperplane from the nearest samples. Equivalently, the

SVM maximizes the distance between positive and negative samples along

the direction ω. Maximizing the margin, the structural risk is minimized.

The training samples that are closest to separating hyperplane, i.e., those

for which it holds

yi(〈ω, x〉+ b) = 1 (2.23)

are called supported vectors. The reason is that the problem of finding the

maximum margin is equivalent to minimize ‖ω‖2 subject to
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yi(〈ω, x〉+ b) ≥ 1 (2.24)

By introducing Lagrange multipliers αi, i = 1, ..., N it is possible to show

[145] that for optimum ω it holds

ω =
∑
i

αiyiωi (2.25)

and αi 6= 0 only for the xi that are support vectors.

If the training set is such that there is no hyperplane that separates

positive and negative samples, some samples are necessarily misclassified

by any hyperplane. In this case, minimizing ‖ω‖2 is not enough, but the

SVM has to find a trade-off between the maximization of the margin and

the minimization of the errors.

A linear classifier proves to be inadequate in the majority of real cases. It

is possible to extend the linear SVMs seen so far and make them non-linear

in a simple and straightforward way. The trick is to map samples x in a

higherdimensional space Θ by means of a non-linear mapping Φ : X → Θ.

The separating hyperplane is now to be found in Θ. A good hyperplane is

more likely to exist in Θ than in X because the number of dimensions of Θ

is greater than that of X, and hence data are more sparse. It is also possible

for Θ to be infinite dimensional, but there must be a way to compute inner

products in such a space. Inner products are needed because they appear

in Equation 2.24. It turns out that is possible to avoid computing inner

products with the so-called kernel trick.

Putting together the Equations 2.24 and 2.25 is obtained

f∗(x) = 〈
∑
i

αiyixi, x〉+ b =
∑
i

αiyi〈xi, x〉+ b (2.26)

and in the mapped space Θ

f∗(x) = 〈
∑
i

αiyiΦ(xi),Φ(x)〉+ b =
∑
i

αiyi〈Φ(xi),Φ(x)〉+ b (2.27)

It is possible to find a kernel function κ such that 〈Φ(xi),Φ(x))〉 =

κ(xi, x), where κ(·, ·) is much easier to compute than the inner product in

Θ. The Equation 2.27 becomes

f∗(x) =
∑
i

αiyiκ(xi, x) + b (2.28)

Is possible to consider some kernel functions examples:
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Figure 2.22: Neural Networks architectures having Multilayer Perceptron and RBM.

• Polynomial κ(x, y) = (1 + 〈x, y〉)2, where d is a parameter.

• Gaussian κ(x, y) = exp(− 〈x,y〉
2

2σ2 ), where σ is a parameter.

• Perceptron κ(x, y) = tanh(b〈x, y〉−c), where b and c are parameters.

The choice of an appropriate kernel for a given data set is still an open

issue; there are no predefined rules for selecting kernels.

There are others different classification methods and they can be divided

using their classifier properties into: neural networks, non-linear Bayesian

classifiers, nearest neighbor classifiers and combinations of classifiers [85].

Neural Networks (NN)

Neural Networks (NN) are non-linear classifiers that use assembly of neu-

rons to produce the boundaries. The most used technique is the Multilayer

Perceptron [8], that uses an input layer where the features are included,

some hidden layers which preocess it and an output layer that defines the

output class (Figure 2.22).

A conventional feed-forward artificial neural network (ANN’s) is a sys-

tem constructed by a finite number of basic elements called neurons, which

are grouped in layers. Every neuron is highly interconnected in the whole

topology; the structure has a number of inputs and outputs that depends

on the system that will be approximated. A neuron is the basic element in

an artificial neural network that simulates biological neurons which receives
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electrical impulses which are received through its dendrites, from other neu-

ron’s axons. The ANN’s are applied to approximate a non-linear system as

being universal approximations.

An extension to ANN are the Restricted Boltzmann Machines (RBM)

that have a bidirectional connection between the layers (see Figure 2.22b.).

Non-linear Bayesian classifiers

There are mainly two types of Bayesian classifiers used for BCI systems:

Bayesian classifiers and Hidden Markov Models (HMM). Both these classi-

fiers produce nonlinear decision boundaries.

Bayesian classifiers are used for BCI system which allows them to reject

uncertain samples more efficiently than discriminative classifiers [85].

They assign the class to the feature vector with the highest probability.

Considering an observed feature vector x, with a Bayesian statistical classi-

fier it is possible to classify it knowing y. The Bayes’ rule is used to obtain

the a posteriori probability P (y|x) that a feature vector has of belonging

to a given class. Assuming for example two classes L and R corresponding

to imaginary left and right movements of the hand, the a posteriori prob-

abilities of each class are computed using Bayes’ rule as in the Equation

2.29:

P (y|x) =
P (y)P (x|y)

P (x)
=

P (y)P (x|y)

P (x|L)P (L) + P (x|R)P (R)

=
P (x|y)

P (x|L) + P (x|R)
(2.29)

Typically it is assumed that the a priori probabilities are equal (P (y) =

P (L) = P (R) = 0.5) since it is supposed the user has no prediction for any

movement.

Nearest Neighbor classifiers

In BCI systems classifiers called k Nearest Neighbor (kNN) are also used

to assign to an unseen point the dominant class among its kNN within the

training set. This algorithms may perform efficiently with low-dimensional

feature vectors [85]. Another types of Nearest Neighbor classifiers used in

BCI system are based on Mahalanobis Distance (MDist) to assign a class to

a feature vector to the nearest prototype.
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Figure 2.23: General scheme of a genetic algorithm.

2.5.6 Genetic Algorithm

Genetic algorithms (GAs) are a class of optimization algorithms that mimic

the way natural evolution works. These algorithms work by considering

potential solutions to the problem, evaluating them, and combining parts

of good solution in order to find better candidate solutions. The range

of problems solved with genetic algorithm is very wide; they have been

used in scheduling, budgeting, optimization of networks, and many classical

problems of operations research.

The father of genetic algorithms can be considered John Holland, who

worked on them in the 1970s at the University of Michigan [64], although

a group at the Technical University of Berlin (Ingo Rechenberg, Hans-Paul

Schwefel, and Peter Bienert) worked on evolution strategies [113] at the same

time, an approach similar to GAs, but different in some important aspects.

The Atlantic Ocean separated the two groups, which worked independently

and unaware of each other for a while. Work in the field continued since,

and many variants have been developed [114].

Candidate solutions for the problem are encoded in chromosomelike data

structures (called chromosomes) which often are just binary strings. Genetic

algorithms work on a subset of all the possible solutions, which is called
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population. A genetic algorithm begins with an initial population of chro-

mosomes, which are normally chosen randomly as in Figure 2.23. At every

iteration of the algorithm, first all the solutions represented by the chro-

mosomes are evaluated with the respect to the optimization problem. This

is operation is in fact the evaluation of the so-called fitness function. The

fitness function is a measure of the goodness of the parameters encoded in

a given chromosome. Fitness values are used to select individuals from the

population. The actual selection process may be done in different ways, and

an individual may be selected more than once, but in any case fitter individ-

uals have greater chance to be selected. Examples of selection are: the best

n individuals; roulette wheel, where individuals are picked at random with

a probability proportional to their fitness; tournament, where many inde-

pendent tournaments between randomly-chosen individuals are performed,

the winner of a tournament being the individual with the best fitness.

Recombination and mutation are then applied to the individuals selected

in the previous step. Recombination (also crossover) is applied to the se-

lected population in pairs: randomly-selected parts of the two chromosomes

are exchanged, so as to form new, different individuals. Normally, recombi-

nation is applied only with a given probability. Mutation is the flipping of

bits of the chromosomes (when they are binary strings). Typically, mutation

is applied to all the bits of chromosomes with a very low probability (less

than 1%). After mutation has been applied, a new population is ready, and

the algorithm restarts from the evaluation. In GA terminology, a generation

is the execution of evaluation, selection, recombination, and mutation.

Generation after generation, the fitness of the population increases, and

thus better and better solutions are found. The process is terminated by

some criterion. It could be something like until the optimum is found, but

there are two problems: Maybe there is no test for optimality, or maybe the

time for finding the optimum is too much, and obtaining a good yet sub-

optimal solution is enough. So, normally a genetic algorithm terminates

after a predefined number of generations, or after a good enough solution

has been found, or when no improvement has been seen for some generations.

Genetic algorithms have been defined as a class of algorithms, because

even after choosing a selection scheme, a termination criterion, and the all

various parameters (e.g., mutation probability), the result is still a schema

of an algorithm and not an actual algorithm. The encoding of solutions in

chromosomes depends on the problem at hand, and a new encoding must be

devised for every new problem. The fitness function is at the heart of GAs,

and it contains the description of the original optimization problem, rewrit-

ten in terms of chromosomes. Thus, there is at least one fitness function for
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every optimization problem, given the encoding. After defining an encoding

and a fitness function, all elements are in place to run an actual genetic algo-

rithm. Sometimes, though, the encoding for a particular problem makes use

of structures that are more complicated than a plain string of bits. In such

cases, recombination and mutation operators must be rewritten accordingly.

The algorithm used for this thesis project was taken from Dal Seno

Doctoral Thesis [121].

2.6 Evolution of the BCI technology

BCIs offer their users new communication and control channels without any

intervention of peripheral nerves and muscles. Hence, many researchers

focus on building BCI applications, in the hope that this technology could

be helpful for those with severe motor disabilities. Various BCI applications

have been developed recently thanks to significant advances in the field of

EEG-based BCI.

EEG signals are used by most BCI applications, because they offer an

acceptable signal quality that combines low cost and easy-to-use equipment.

Thanks to BCI applications, the quality of life of severely disabled people can

be improved. Moreover, BCI applications potentially represent a powerful

tool for revealing hidden information in the user’s brain that cannot be

expressed.

The main target population for BCI applications mainly falls into two

classes. The first group includes Complete Locked-In State (CLIS) patients

who have lost all motor control, because at a terminal stage of ALS or

they suffer severe cerebral palsy. The second group comprises Locked-In

State (LIS) patients who are almost completely paralyzed, but with residual

voluntary movement, such as eye movement, eye blinks, or twitches with the

lip.

Despite the use of the BCI by people who have the most need, they are

increasingly used by healthy people in neuromarketing and video games as

a tool to reveal affective information of the users, which cannot be so easily

reported through conventional interfaces. Likewise, BCI can be used for

some people that suffer from neurological disorders such as schizophrenia or

depression.

Nowadays, there is a vast number of very different BCI applications,

such as word processors, web browsers, brain control of a wheelchair or

neuroprostheses, and games. Despite the most recent significant advances

in BCI technology, there are still many challenges in employing BCI control

for real-world tasks [94]. BCI applications for communication deal with
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Figure 2.24: Original P300 speller. Matrix of symbols displayed on a screen com-

puter which serves as the keyboard or prosthetic device.

severe communication disabilities resulting from neurological diseases. This

kind of application probably represents the most pressing research in the

field of BCI, because communication activity is essential for humans.

Applications for communication purposes outline an operation that typ-

ically displays a virtual keyboard on screen, where the user selects a letter

from the alphabet by means of a BCI. The distinguishing element in each

approach is usually the BCI and the type of control signal. P300-based

BCIs have been proven sufficiently suitable for ALS patients in the early

and middle stages of the disease [90]. Recent progress with P300-based

speller have allowed the development of commercial applications available

to general public [68], while for the auditory BCI there are not any system

available yet for online communication.

2.6.1 ERP-based visual BCI systems

One of the best-known P300 spellers was designed by Farwell and Donchin

in 1988 [47]. In this speller, the 26 letters of the alphabet with other symbols

and command are displayed on-screen in a 6x6 matrix (see Figure 2.24) with

randomly flashing rows and columns. Then, the user focuses attention on the

screen and concentrates successively on the characters to be written, while

the EEG response is monitored. Two P300 are elicited for each looked-for

element on the matrix, when the desired row or column flashed, thereby

allowing the system to identify the desired symbol. The Farwell-Donchin

speller gets an acceptable spelling rate of about 2 characters per minute.

The speller provides an high rate and high accuracy, but its precision can

be improved by reducing perceptual errors when a P300 response is elicited

due to flashing rows or column adjacent to the target symbol, which is the
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Figure 2.25: The proposed region-based paradigm for the improved P300 speller: (a)

The first level of intensification where each group contains up to seven characters;

and (b) One region is expanded at the second level.

major source of error. Hence in 2009 a new letter distribution was proposed

to overcome this problem [48] as shown in Figure 2.25.

The idea is to have several regions flashing instead of using rows and

columns. The characters are placed into a two-level distribution. At the

first level, the characters are distributed into seven groups, each with seven

characters, which are also flashes randomly. The group containing the target

character is found by P300 detection. At second level, the characters in the

detected group are repositioned and the level one procedure is repeated, and

so on until the target character is final selected.

In 2010 Townsend et al. [144] presented a newly enhanced BCI based

on a checkerboard paradigm instead of the standard row/column paradigm

introduced by Farwell and Donchin. In this approach, the standard ma-

trix containing targets was superimposed on a checkerboard and showed a

significantly higher mean accuracy.

In 2011 Ahi et al. [143] improved the Farwell-Donchin P300 speller by

introducing a dictionary to decrease the number of missclassifications in the

spelling. The dictionary was used for checking the candidate word proposed

by the classifier of P300 responses. In case of misspelling, the dictionary

gave a certain number of suggestions from which the system could select.

Additionally, in order to reduce the probability of misspelling due perceptual

errors, the usual letter position in the matrix was changed according to the

analysis of word similarities in the constructed dictionary.
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2.6.2 ERP-based auditory BCI systems

All previous P300 spellers are based on the recording of visual event-related

potentials. However, there is no sense in using visual stimuli in cases of

severely paralyzed patients with impaired vision or poor control of eye move-

ments (as ALS patients at the end of the disease). Here are cited the main

studies and experiments on auditory P300-based BCI system during the

years.

Audiostream

In 2004 Hill et al. [61] developed a brain-computer interface that uses au-

ditory stimuli describing a paradigm that allows a user to make a binary

decision by focusing attention on one out of two concurrent auditory stim-

ulus sequences of “target” and “non-target” beeps. It was shown that an

unrelated user’s EEG data can be classified with an high level of accuracy

with no previous training to direct conscious attention to provide a useful

basis for a BCI.

4-choice

In 2006 Sellers and Donchin [120] evaluated the effectiveness of a BCI sys-

tem that operates by detecting a P300 elicited by one of four randomly

presented stimuli (i.e., YES, NO, PASS, END). The participant’s task was

to attend to one stimulus and disregard the other three. Stimuli were pre-

sented auditorily, visually, or in both modes. It was demonstrated that the

event-related potentials elicited by the target stimuli could be discriminated

from the non-target stimuli.

Auditory speller (Klobassa)

In 2009 Klobassa et al. [79] investigated the efficacy of the use of six envi-

ronmental sounds to operate a 6x6 P300 Speller. It was demonstrated that

an auditory P300 BCI is feasible with a reasonable classification accuracy

and an achievable rate of communication with a participant who has limited

visual modality.

Auditory speller (Furdea)

In 2009 Furdea et al. [53] proposed an auditory stimulation used in order

to make P300 spellers suitable for ALS-LIS patients.
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Figure 2.26: The 5x5 visual support matrix for the auditory ERP speller. The

numbers surrounding the matrix aimed at facilitating finding the target coordinates.

Each number corresponded to an auditory stimulus. For instance, to select the letter

”B” the user was required to focus attention on auditory stimulus ”one” during the

first interval of the trial and on auditory stimulus ”seven” during the second interval

of the trial.

In his experiment a 5x5 matrix was used in both visual and auditory

ERP spellers to reduce the trial duration as a result of the longer stimulus

presentation times required for the auditory modality. Because the stimuli

are auditory rather than visual, the flashes are replaced with presentation

of auditory stimuli that are coded to particular rows and columns of the

matrix (Figure 2.26). Each character’s position in the matrix was coded

by two auditorily presented number words: one corresponding to the row

and one corresponding to the column. To select a particular target charac-

ter, the participant had to attend to the two target stimuli representing the

coordinates of the character in the matrix. In addition to auditory presen-

tation of numbers, the matrix, referred to as visual support matrix. Using

the oddball paradigm, users were required to focus their attention on the

numbers coding the target character by counting how often the numbers

were presented.

Auditory oddball BCI for binary choices

In 2010 Halder et al. [117] proposed an auditory BCI based on a three-

stimulus paradigm. This paradigm is similar to the standard oddball but

includes an additional target (i.e. two target stimuli, one frequent stimu-

lus). This BCI system offers communication with binary choices (yes/no)
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independent from vision. As it requires only little time per selection, it may

constitute a reliable means of communication for patients who lost all motor

function and have a short attention span. The intention of this basic BCI

approach is to provide a means of communication for those users who cannot

achieve a reliable level of control with one of the previously described visual

and auditory BCI systems.

In this study they were able to show that a BCI with a three-stimulus

oddball paradigm is feasible and it can offer either a high reliability or

communication speed achieving an high accuracy and competitive bit-rates.

Until today no other study has been carried out a new method to improve

the accuracies using auditory stimuli only for ALS patient communication.
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Chapter 3

Equipment and Methods

‘When the power of love overcomes the love of power, the world will know

peace.”

Jimi Hendrix

As said in first chapter in Section 1.2 the main purpose of the thesis is to

reproduce the study proposed by Halder in 2010 building a portable auditory

BCI system in order to test on healthy participant the method functional-

ity in more comfortable way, using our EEG signal processing techniques

and offline system classification methods. In Chapter 3 the materials and

methods used to build the portable auditory BCI system are described in

detail.

As introduced in the first chapter, the main thesis project purpose is

to develop a portable auditory brain-computer interface P300-based in or-

der to allow Yes-No communication to Amyotrophic Lateral Sclerosis pa-

tients. In order to do this we have relied on the specification provided by

the psychologist Mauro Marchetti [129]. The experimental work of the the-

sis is structured in mainly three parts: the first one regards the design of

the oddball paradigm and its implementation in the design of the auditory

brain-computer interface application based on that specifications; the sec-

ond part focuses mainly on the implementation of the Auditory P300 BCI

in the “Progetto ON” in parallel with the Visual P300 BCI speller [46], and

the improvement of the previous application drivers that allow the commu-

nication between devices; the third part of the thesis concerns the clinical

in-ear headphones design and the electronic circuit implementation in order

to synchronize in time the acoustic stimuli delivered to the participant with

the EEG signals during the training session. This step was performed in

collaboration with three students in Biomedical Engineering at Politecnico
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di Milano for their Bachelor thesis followed by us during their work [25].

They have also written the user manual revised in the Appendix A.

At the end the portable application is tested on healthy participants

to evaluate its functionality. The EEG data and the audio stimuli are ac-

quired and then sent to a classifier in order to test the audio protocol for

classification.

All the work and the experiments were carried out at the Artificial In-

telligence & Robotic Laboratory of Politecnico di Milano - Como campus.

The data acquired on tablet were elaborated and classified off-line. This

process was performed on a server under the ownership of Politecnico di

Milano, giving back the classifier parameters directly on the portable device

used for the BCI for the classification.

In this chapter we report the design specification made by the psychol-

ogist (Section 3.1) and all the equipment used and developed to build our

Auditory BCI system.

3.1 Design Specifications

The main design specification defined by the psychologist Mauro Marchetti

for his study to us, is to develop a complete interface in order to deliver

a randomized sequence of acoustic stimuli to subjects based on the Three-

stimulus oddball paradigm (see Section 2.4.6 on page 39), similar to the one

proposed by S.Halder et al., (2010) (Figure 3.1).

S. Halder er al. delivered to healthy subjects a randomized sequence

of acoustic stimuli composed by frequent standard tones (pink noise tones)

and two targets (pure tones). They performed three tasks where the two

target stimuli for the binary selection differed in pitch, loudness and location.

The results of the study showed that the Information Transfer Rate (ITR)

(defined as the speed of communication expressed in bits/min) is higher for

the pitch task.

For this thesis we consider simple pure tones as standard tones (e.g., 1000

Hz with a duration of 80 ms instead of pink noise). In order to make a binary

selection we consider two simple words (e.g., YES or NO) as target/deviant

stimuli instead of pure tones. The choice of these two simple words is made

for their ease of recognition in making a binary selection.

In order to do this, the application developed has to be usable for imple-

menting at least the two deviants oddball paradigm, but with the possibility

of implanting the presentation of different sequences of acoustic stimuli.

The application developed should be able to:
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Figure 3.1: Schematic illustration of a single sequence of the three different tasks.

In Graph A (pitch task) the stimuli consisted of two targets one at 100 Hz (white

bar) and another at 1000 Hz (black bar). The second task (loudness task, Graph

B) comprised two targets at 1000 Hz with an amplitude of either 75 dB or 60

dB. Graph C illustrates the third task (direction). The two targets (both at 100

Hz) differed in the direction from which they were presented to the participant

(either the right or left channel of stereo headphones). All three tasks comprised

five presentations of pink noise per sequence which served as standard tones (grey

bars).

1) load the chosen audio files (e.g. wave file) from the SD card.

2) possibility to chose for each stimulus the modality of presentation:

STEREO, MONO LEFT, MONO RIGHT.

3) possibility to manipulate the number if trials of acoustic stimuli pre-

sentation, and the ratio of presentation as the number of ripetition of

each single stimulus:

- standard frequent sound ratio .7

- the deviant 1 word yes ratio .15

- the deviant 2 word no ratio .15

4) possibility to define the interval time of stimuli presentation. The two

possibility of interval choice should be the Stimulus Onset Asynchrony

(SOA) and the Interstimulus Interval (ISI). The ISI or SOA choices

should have other advanced options of timings defined between two

consecutive stimuli:

- possibility to define a fixed time interval in milliseconds

- possibility to define more than one interval (up to five) in mil-

liseconds that are presented randomly during the stimuli presentation

- possibility to define an interval of values (minimum and maxi-

mum) in milliseconds between which randomly selecting values
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5) possibility to save a configuration and easily load it in a further session

6) before delivering an acoustic stimulation to the participant, the appli-

cation should force the experimenter to insert participant ID, to select

one of the saved configuration, and to select the session number.

7) at the end of the session, the file should be saved automatically and

the EEG file should have:

ParticipantID paradigmName sessionN date hour minute

3.2 System Architecture

This section contains the main elements used to build our portable auditory

brain-computer interface system. In order to acquire the EEG signals, the

owner hardware of Politecnico di Milano have been used as for the portable

Speller P300 (“Progetto ON” [46]).

The Figure 3.2 shows the connection scheme between devices for our au-

ditory BCI system implementation. In order to build our BCI system, the

main component of the EEG acquisition hardware is the electroencephalo-

graph. It retrieves brain activity that comes from the electrodes positioned

according to the 10-20 system (Figure 2.7 on page 26). This EEG signals

are then amplified with a specific EEG amplifier. In our case the device is

the BE Light [126].

The EEG amplifier is connected to a network device with a bidirectional

optical fiber which guarantees signals isolation and maintains high quality

signals transmission. This network device is connected to an Access Point

with an Ethernet cable with a static IPv4 (192.168.171.212) in order to have

a directly access to the EEG amplifier in the Local Area Network by the

application. This connection permits the communication between the EEG

amplifier and the Tablet also connected to the access point through DHCP

via WiFi or with a static IPv4 (properly set in the range of 192.168.1.1-255

with a Subnet mask 255.255.255.0).

The EEG signal processing of brain activity stimulation by acoustic se-

quence is directly elaborated in real-time by the application installed on the

tablet. The stereo audio signal before being sent to the participant is split

with a splitter. This signal consists of the acoustic stimuli sequence that

are sent (with a properly designed in-ear headphones) to the participant to

avoid the incorrect calibration of the electrodes. At the same time the stereo

audio signal is sent to a designed electronic circuit which correctly adapts

it to the trigger port of the EEG amplifier converted into a mono signal.
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Figure 3.2: Auditory BCI system. Connection scheme between devices for the train-

ing session. On top is represented the client side where the training is performed.

On bottom image the server unit for the elaboration of the training files.

This triggered signal is synchronous with the acquired EEG data stored in

a proper file directly on the tablet while the stimuli are delivered to the

participant.

At the end of the acoustic training session, the files saved on the Tablet

are uploaded to a synchronized Dropbox shared folder with a server. The

training recordings are elaborated and then the classifier parameters to that

folder are uploaded.

3.3 BE Light EEG amplifier

The BE Light is a compact system for acquisition EEG signals and this unit

is represented in Figure 3.3.

The main purpose of the device is to acquire bioelectric signals from

electrodes with the stimulation of brain activity. The amplification sys-

tem captures the biological signals with appropriate electrodes or transduc-

ers, amplifies them in voltage (µV order), provides anti-aliasing filtering in
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Figure 3.3: BE Light by EBNeuro [126].

order to optimize the digital conversion, converts them into digital form

(analog/digital conversion) and then sends the numeric data with the op-

tical fiber to the host system. The device host system (the tablet in our

auditory BCI system) reads the data and processes them according to its

own logic. With a specific application software is possible to program the

amplifier functionality, determining which channels to acquire, the sampling

rate, etc.

The BE Light uses the optical fiber to isolate the the amplifier and the

patient. The amplifier is not designed to cut the 50 Hz line noise frequency

so all the power supplies and all other components that process or deliver

AC current must be placed at least 50 cm - 1 m from the subject during

the experiments in order to have negligible effects on signals quality. The

device applies to all unipolar, bipolar and polygraphic channels a 1st order

0.1 Hz High-Pass filter. The frequencies over 1 KHz are cut by a Low-Pass

anti aliasing filter applied to the EEG and polygraphic channels, while anti

alias Low-Pass filters are applied to the bipolar channels for frequencies over

2 KHz.

The AC/DC conversion uses 16 bits SAR A/D and the sampling fre-

quency can be chosen between 128, 256, 512, 1024, 2048, 4096 and 8192 Hz.

In our experiments we use a 512 Hz sampling frequency.

The BE Light system provides the possibility to be equipped with the

option “Ohmmeter”. This option allows us to monitor the resistance value

contact of the electrodes through a special matrix of bright LEDs. As we

can see in Figure 3.3 there are 40 patient input channels to the amplification

system. There are 21 EEG unipolar inputs with common reference mainly

used for the 10-20 EEG system (see Figure 2.7 on page 26) with AC coupling.

This inputs are numbered from ”1” to ”21” and accept only the signals that
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come directly from the survey points.

The channels “22”,“23”,“24” are 3 polygraphic unipolar inputs with their

own reference with AC or DC coupling (set by software). The amplified

signal is the difference between each of these electrodes and the signals

polygraphic reference electrode connected to the NEP input. The ‘two ‘NE”

(input Neutral Electrode) are channels for the common reference of the 21

unipolar inputs (AC coupling). They are connected together. The 8 inputs

for 4 bipolar inputs with AC coupling, are the “A”, “B”, “C”, “D” and allow

to amplify the potential difference between the electrode connected to the

“-” input with the one connected to the “+” input. The 4 inputs for patient

isolated ground marked as “ISOGN” are internally connected to each other

and represent the contact ground points (patient ground). The input for the

separated reference of the 3 unipolar inputs (AC or DC coupling) marked

as “NEP” (Neutral Electrode Polygraphic), allow the connection with the

electrode that acts as a reference for the 3 polygraphic unipolar inputs.

The calibration input signal is represented with the channel marked with a

dedicated symbol. This allows to retrieve the calibration signal generated

from the internal acquisition box. It can be used to control the goodness of

the internal amplification.

3.4 EEG electrodes

In order to acquire the EEG signals our EEG acquisitions have been per-

formed using electrodes connected directly on the BE Light. In Figure 3.4

on the right image the Ag-AgCl electrodes disks plugged directly into the

EEG amplifier are represented.

If all the 19 channels are interested for the auditory BCI experiments

the 21 electroencephalographic cap can be used. This cap is composed by 19

electrodes placed on participant according to the 10-20 system (see Figure

2.7 on page 26) while other 2 electrodes are used for the ISOGN and NE

ports on the BE Light.

3.5 BE Net

The BE Net [126] (Figure 3.5) is a device developed by the EBNeuro as the

BE Light. It is directly connected to the power supply and it provides power

also to the BE Light. It establishes the connection in the LAN (Local Area

Network) with a static IPv4 (192.168.171.212) to the Access Point with a

standard Ethernet cable. The digital data converted by the BE Light are
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Figure 3.4: Electrodes used for the experiments. On left image is represented the

electroencephalographic cap with 21 electrodes (19 for the 10-20 system and 2

electrodes for the ISOGN and NE ports on the BE Light). On right the Ag-AgCl

electrodes disks plugged directly into the EEG amplifier are represented.

Figure 3.5: BE Net by EBNeuro [126].

sent to the BE Net through an optical fiber that isolates the EEG signals

and makes them available on the local net in order to be accessed from the

host device.

3.6 Access Point

To build our acoustic BCI system to have a generic access point with an

Ethernet port and a Wi-Fi connection system is necessary. The access point

is used to build a LAN (Local Area Network) in order to allow the com-

munication between the EEG amplifier and the host device (Tablet). The

IPv4 assignment in the local network can be configured with a DHCP (Dy-

namic Host Configuration Protocol) for the Tablet via Wi-Fi connection.

It is also possible assign a static IPv4 configuring it with a subnet mask

255.255.255.0 leaving the static IPv4 132.168.171.212 for the EEG amplifier

connected physically to the access point through the BE Net with a straight
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Ethernet cable.

The access point should be also connected to the Internet with a router

with the proper ISP (Internet Service Provider). This is done to allow the

communication between the application installed on Tablet and the server

unit to share the training files and the classifier parameters on Dropbox

folder.

3.7 Tablet

As we can see in Figure 3.2, the host device that communicates with the

EEG amplifier is a tablet. It is connected to the Access Point with the Wi-Fi

technology based on the IEEE Standard 802.11 (see Section 3.6 for details).

The application developed installed on it allows to control all the BCI sys-

tem functionality. Once established the connection with the BE Light, it is

possible to check the correct impedance with “Ohmmeter” function and vi-

sualize the EEG signals processed on the application with a simple auditory

stimulation. With the tablet is also possible to set all the participant param-

eters, change the desired preferences and set all the proper configurations

before the acoustic training session can start.

The training session generates a stereo audio signal composed by a se-

quence of audio stimuli. This signal before reaching the participant ears

with a customized headphones (see Section 3.8) is split with a simple stereo

splitter.

With the device connected to the Internet is possible to send the training

files generated automatically to the server unit that elaborates them and

returns the classifier parameters to the system.

The application for the auditory BCI is developed for Android devices.

In Figure 3.6 the two host devices tested during all the development phase

are shown. Two tablets with different screen size in order to design an elastic

application interface adapted for both screen devices are chosen.

The first one is the Asus Nexus 7 2013 Wi-Fi version. It has a 7” LED

Backlight WUXGA (1920x1200) Screen IPS Panel equipped with a CPU

Qualcomm R© SnapdragonTM S4 Pro 8064 32-bit Quad-Core 1.5 GHz, GPU

Adreno 320 and 2 GB RAM. On it the last version of AndroidTM Lollipop

5.1.1 is installed.

The second host device tested is the ASUS TransformerPad. It has a

10.1” LED Backlight WXGA (1280x800) Screen IPS Panel equipped with a

CPU Intel R© AtomTM Z3745 32-bit Quad-Core 1.6 GHz with Intel Hyper-

Threading Technology, GPU Intel Gen 7 (Ivy Bridge), 1 GB RAM. On it

the AndroidTM KitKat 4.4.2 is installed.
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Figure 3.6: Host devices used in the auditory BCI system. On the left: Asus Nexus 7

2013 with AndroidTM Lollipop 5.1.1 (7” LED Backlight WUXGA 1920x1200 Screen

IPS Panel). On the right: ASUS Transformer Pad with AndroidTM KitKat 4.4.2

(10.1” LED Backlight WXGA 1280x800 Screen IPS panel).

3.8 In-ear headphones

As said at the beginning of this chapter, the in-ear headphones were de-

signed by three students under our supervision. The BE Light has inside

for each acquisition channel a sophisticated EEG signal amplifier that are

not designed to cut the 50 Hz noise frequencies. It is possible that during

the training session the audio signal synthesized directly in the subject ear

may interfere with the electrodes placed on the patient scalp during the

EEG signals acquisition. This is due the magnetic field generated by the

headphones. A specific in-ear headphones called “clinic headphones” that

maintain a suitable distance from the electrodes placed on the subject to

avoid this phenomena are designed from students.

With this type of headphones, internal components formed by cone, coil

and magnet are separated with a tube in order that only the silicone ear

plugs are near the electrodes. The main drawback is the reduction of the

sound intensity then the original SPL measured as the headphones sensitiv-

ity is attenuated. This is caused by the dispersion/absorption of the sound

propagation inside the medium before reaching the ears (see Section 2.2.1

on page 13 for details).

To design the in-ear headphones their physical characteristics were hy-

pothesized as close as possible for the correct propagation of the acoustic

signal in the ears during the training session. Measures were made to ob-

tain this results and materials that do not attenuate to much the acoustic

signal for the pitch perception are used. The Loudness level (see Section
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Table 3.1: In-ear MDR-EX15LP made by SONY R© technical specification.

Type Closed, dynamic

Driver Unit 9mm

Sensitivity 100 dB/mW

Power Handling Capacity 100mW

Impedance 16 Ohm (1KHz)

Frequency Response 8-22,000 Hz

Magnet Neodymium

Cord Y-shape

Plug Gold-plated L-shaped Stereo Mini

Weight (Without Cord) Approx. 3g

2.2.3 in Chapter 2) defined by the application on Tablet for each channel

(see Section 4.6 on page 88 for details) was measured and tested.

The in-ear MDR-EX15LP made by SONY R© was used and adapted to

this purpose. The technical specification are defined in Table 3.1. In or-

der to realize the customized headphones a special oxygenation mask tube

(OS3xx model) is adapted between the in-ear amplifiers and the silicone

ear plugs. This tube is made of PVC (PolyVinyl Chloride) and its length

(one meter) was chosen as a compromise between the sound attenuation in-

side the medium in order to avoid the magnetic field interference generated

with the electrodes. In Figure 3.7 on the right image the in-ear headphones

developer are represented.

Students using an environmental sound level meter have obtained some

interesting results. They have measured the Sound Pressure Level (SPL)

(see Section 2.2.1 for details) obtaining the sound attenuation inside of the

tube. In Table 3.1 the in-ear Sensitivity is specified as 100dB/mW de-

clared by the manufacturer. This values can be associated to the Loudness

perceived by the subject at maximum volume level of the audio synthesis.

To measure the SPL the sound level meter was placed inside of a glass jar

padded completely with a sponge and cotton as in Figure 3.7 (left image).

This to avoid the possible sound dispersions and obtain the SPL values as

real as possible. The first experiment made was to measure the effective

headphones Sensitivity without the tube and they have realized an average

reading of 97 dB/mW, very close to the one defined in the headphones spec-

ification. This experiment was replicated with a one meter tube obtaining

on average 72 dB/mW. So it can be possible to define that the sound at-

tenuation measured inside the tube is about 25 dB/mW. In Section 4.6 on
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Figure 3.7: On the left image there is the sound level meter placed inside of a

glass jar padded completely with a sponge and cotton used to measure the in-ear

headphones SPL. On the right image there are the in-ear headphones designed with

the PVC (PolyVinyl Chloride) tube.

page 88 is explained how the main setting interface for delivering stimuli is

developed. With the project specification defined (see Section 3.1 on page

64) the values (75 dB, 65 dB and 55 dB) of the volume level sensitivity are

defined for each channel using this type of measures, mapping the effective

float level in Java code (from 0.0f to 1.0f) with the corresponding values

measured with the sound level meter.

3.9 Audio Signal Adapter for EEG synchroniza-

tion

During the training session, the acoustic sequence sent to the participant

stimulates the EEG signals. These signals are acquired by the EEG amplifier

as described in Section 3.3. The application during this phase save each EEG

signals from each electrode directly on device in a specific file (see Section

4.12 on page 113).

In order to make a correct classification when doing experiments with

ERPs induced by external stimuli (see Section 2.4.6 on page 39), it is very

important to have the EEG recording synchronized with the acoustic signal.

Relying on the input dynamics specification of the EEG amplifier, we de-

signed a simple electronic scheme and realized the electronic circuit for this

purpose. This circuit allows to adapt the Tablet audio signal output into

the BE Light input trigger port.
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Figure 3.8: Audio signal adapter electric scheme for the EEG synchronization. U1

is the 3.5 mm input jack where the tablet audio signal enters in the circuit. U2 is

the output 3.5 mm jack where the audio signal goes to the EEG amplifier.

As explained in Section 3.3 on page 67 the BE Light has three poly-

graphic unipolar inputs (22, 23, and 24 ports) with a common separated

reference (NEP port). Via software we have enabled the 22 port as the au-

dio input considering the NEP port as the ground of the signal in the EEG

amplifier. In Table 3.2 Gain/Resolution, Dynamics and Noise specification

for the BE Light are defined.

In Figure 3.8 the electric scheme designed is represented. The input

to the circuit is the Tablet stereo output audio signal (considered with a

maximal dynamics as 1V ) connected with a 3.5 mm audio jack. To obtain

the right maximal dynamics defined in Table 3.2 as the output circuit, a

simple voltage divider is designed for each channel (mono left and mono

right) as in the Equation 3.1.

U2(left) = U1(left)
R2

R1 +R2
;U2(right) = U1(right)

R2

R1 +R2
(3.1)

Knowing the input and the output of the circuit it has been possible to

dimension the resistors obtaining R1 = 27KΩ and R2 = 175Ω. The two

stereo output have to be converted into a mono signal in order to be in-

terfaced to the BE Light 22 and NEP port (yellow connector for the NEP

port and the black one for the 22 port), so they are maintained separated

and then connected together using the jumpers given by the EBNeuro. The

signal conversion is done to trigger each acoustic stimulus delivered in dif-

ferent audio channels (right or left) during the training session in the EEG

amplifier, that has one input channel (see the right image in Figure 3.9).
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Figure 3.9: On the left image there is the audio signal adapter cable developed for

the EEG synchronization. The input is the 3.5 mm stereo jack, while at the output

there are the two stereo channels separated with their respective inputs for the NEP

and the 22 ports. On the right image an example of the cable plugged in the EEG

amplifier is represented: the NEP and the 22 inputs of each channel are connected

together with the jumpers in order to convert the stereo signal into a mono signal.

Table 3.2: Specifications of Gain/Resolution, Dynamics and Noise of the BE Light.

Gain/Resolution Dynamics Noise (0.1Hz - 70Hz)

High: 1
8µV/bit 8000µV ≤ 0.3µV rms

Low: 2µV/bit 128mV ≤ 5µV rm

After the audio circuit realization, before sending an audio signal to

the EEG amplifier, the output voltage was measured and tested with an

oscilloscope in order to verify the correct design. This because the standard

tone at 1000 Hz that is sent to the in-ear headphones is not in the dynamics

of the BE Light. Therefore it was decided to generate with the classic 1000

Hz (as standard tone) a pure tone not audible by human hearing at 20 Hz,

but acquired in the EEG amplifier.

The output dynamics has been measured with a sinusoidal continuous

signal at 20 Hz. At the tablet output with a maximum volume (circuit input

at U1 in Figure 3.8) we measured with an oscilloscope a 720 mV peak to

peak value. At the EEG amplifier input (circuit output U2 in Figure 3.8)

the peak to peak value was 10 mV correctly inside the BE Light dynamics.

Words are perfectly inside this dynamics because the frequency of speech is

about 200 Hz for the yes-no words.
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3.10 Server unit

The training files stored on the device are sent to a Dropbox shared folder

with an account of Politecnico di Milano. This operation is obtained trans-

ferring the registered session (see Section 4.12 on page 113) coupled with

the respective stimulation sequences from the Android application installed

on Tablet. For this purpose we chosed to use the Android API provided by

the Dropbox developers.

A Unix server (with a pubblic IP located in AirLab at Politecnico di

Milano - Como Campus) is used to obtain the classifiers parameters (called

weights) with special genetic algorithm for feature extraction and classifica-

tion (see Chapter 5 on page 117 for details). The training files processing

is performed on Octave code [130]. Once the parameters are obtained, they

are uploaded to the shared Dropbox folder and downloaded on tablet.

It is possible to use any Unix machine to build the server satisfying the

following requirements:

• Full internet connection (24 hours on 24 hours), needed for the Drop-

box functionality.

• 2 GHz Dual Core Processor or more (3 GHz Dual Core advised)

• 2 GB Ram (4 GB advised).

• Unix OS (Debian advised, Tested on Xubuntu 11.10/Ubuntu 12.04

and Linux Mint 13 Maya).

• Cron daemon or similar.

• Dropbox installed as root.

• Octave (≥ 3.6 with Java plugin)

To run the scripts for data processing and obtain the weights for the ap-

plication it is sufficient that the system uses a scheduler (cron) to repeatedly

run a script to check if another instance is already running and eventually

start the process.

We have configured our server in order to check if there are any training

files every 30 minutes (files not trained yet). The server has this specifica-

tions: Intel R© Dual Core Pentium R© 4 CPU @ 3.00 GHz, 1024MB RAM,

Linux Mint 13 Maya OS installed.
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Chapter 4

Application and modules

“I used to live in a room full of mirrors; all I could see was me. I take my

spirit and I crash my mirrors, now the whole world is here for me to see.”

Jimi Hendrix

The most of the thesis work was to develop an acoustic training interface

for delivering acoustic stimuli to subjects while their EEG is recorded with

a P300 stimulation. A special Android application it has been developed

expanding the “Progetto ON” [46] created by Info-Solution S.P.A. [127].

This section contains the main software realization and all the techniques

performed to build the application and the driver optimization. In partic-

ular this section explains the development environment used to build the

application and the libraries implemented for the system’s functionality. It

explains how the Java classes and drivers are adapted in order to allow the

communication between Tablet and the EEG amplifier also for the Audi-

tory P300 BCI and the main acoustic yes-no BCI menu functionality and

all relatives implementations. In the last part of this section (Section 4.12)

explains how the training files are automatically generated during the EEG

signals acquisition and saved on the host device. The methods chosen to

compile them and send it to the server classifier are treated.

4.1 Development Environment

The application has been developed in Android OS with Android Studio

[125]. This development environment is built on IntelliJ IDEA Community

edition, the popular Java IDE by JetBrains [128].

All the code developed, the test phases and the debug of the application

during the acoustic training session were carried out on a DELL Precision
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Figure 4.1: Development environment in the AirLab in Politecnico di Milano - Como

campus.

M6500 with Intel R© CoreTM i7 CPU Q 820 @ 1.73 GHz, 8 GB DDR3 @ 1333

MHz and a GPU NVIDIA R© Quadro R© FX 2800M. Ubuntu Studio 15.04 is

the OS installed [131].

In Figure 4.1 the environment used to develop and test the application

is represented.

4.2 Java classes and drivers adaptation

This section explains how drivers used for the Visual P300 BCI are adapted

to establish the connection between the tablet and the EEG amplifier in

order to execute commands to the BE Light by the application also for the

Acoustic P300 BCI.

The first important thing made was to implement the driver classes in

the main Android Activity [28] class called MainBciAudioActivity . The

interfaces methods to the BE Net device (see Section 3.5 on page 69) are

initialized with a class called Communication that extends a thread. This

class manages connection establishment, status and refresh. Also triggers

the acquisition modes and sets the EEG hardware configuration based on

the configuration status (see Section 4.4 on page 83). Here all the acquisition

channels are added (see Section 4.8 on page 99) with their hardware codes

and dynamic ranges defined by EBNeuro[126].

The BENet driver class is initialized on the static IPv4 192.168.171.212,

with a specified boot port (7023), control port (7024) and data port (7025)

also passing both pointers of the Auditory P300 BCI and the Visual P300

BCI Activities.
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Figure 4.2: Rendering of “Progetto ON” main menu. On the left: representation

of the main menu in the application with the possibility to choose the visual P300

BCI or the Auditory P300 BCI. On the right: Acoustic yes-no BCI menu.

When all the parameters are verified the socket creation is initialized.

The first firmware file uploaded is the one that manages the connection

(conv ctrl.jet). The second one is the mDSP firmware that manages the

connection and the communication with the BE Light (EBX MALL.jet).

The last one is another sDSP firmware file uploaded on the BE Light device

(EBX SSA3.jet). At the end the DSP on BE Net to communicate with BE

Light is configured getting the device hardware informations and capabili-

ties.

Another class implemented and adapted in the Auditory P300 BCI Ac-

tivity is the circular buffer of samples class driver called SampleBuffer

that includes methods for accessing EEG data, filtering and data saving.

This class is initialized with 512 samples in the buffer.

The buffer class driver containing the signal epochs and the related stim-

ulation code is the TrialBuffer class. This class is initialized with a max-

imum of 120 epochs in the trial.

4.3 Acoustic yes-no BCI menu

As said at the beginning of this chapter the acoustic yes-no BCI application

was developed expanding the “Progetto ON” [46] based on a Visual Speller

P300.

As shown in Figure 4.2 the main menu of the application it has been

redesigned with the possibility to choose the old Visual Speller P300 and

the Auditory P300 with a simple customized dialog.

Selecting the Auditory P300 BCI in the pop-up (the left image in Figure

4.2), a new Android Activity is created and then the Acoustic yes-no BCI

menu is initialized (the right image in Figure 4.2). In this Activity all
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Figure 4.3: Acoustic yes-no BCI menu scheme. Brief explanation for each item

selected in the menu.

the drivers that permits the communication between the Tablet and the

EEG amplifier are initialized too (see Section 4.2 on page 80 for details).

With a progressbar animation and screen messages the user can monitor if

the connection has been successful. As we can see in Figure 4.2 when the

connection is successfully established the status is set to “CONNECTED -

wait” in green color. (see Section 4.4 for a more detailed explanation for the

update connection status).

The Acoustic yes-no BCI menu basic scheme is represented in Figure

4.3. After the connection has been carried out between devices the user can

navigate through the menu.

4.3.1 Training session

The main interface for delivering the acoustic stimuli to the participant while

the EEG is recorded is the “TRAINING SESSION”, selectable in the menu

list. In this special interface it is possible to create a new session entering

patient credentials, load the acoustic stimuli from the tablet storage, select

the proper audio synthesis settings and set all the parameters according to

the three-stimulus oddball paradigm (see Section 2.4.6 at page 39). Here

it is possible to save the current patient configuration on the storage and

load it afterwards. During the auditory session the EEG training files are

automatically generated and saved in a specific folder.
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4.3.2 Impedance control

The “IMPEDANCE CONTROL” selection starts the visual representation

of the 10-20 system where the user can enable or disable the acquisition

channels with a screen selection of the desired electrodes. In this screen

the impedance for each electrode selected in real time on a rendered human

head, showing texts of the real impedance values in Ohm are also elaborated

and visualized. These values are refreshed every 2 seconds with a proper

thread that controls the request of values from the EEG amplifier and the

screen elaboration directly on tablet (see Section 4.8 on page 99 for details).

Before any data processing the electrodes must be defined.

4.3.3 View signals

Directly from the current screen visualization the user can select “VIEW

SIGNALS” button in the lateral menu list. Here are elaborated all the

parameters according to the user electrodes selection. Only the new updated

data coming from the EEG amplifier are read and the stimulation of the EEG

signals by an acoustic trigger impulse is visualized only for the channels

selected. The dynamic data acquired and the signal processing visualization

in real time are elaborated with a proper algorithm.

4.3.4 Training BCI sender

“TRAINING BCI SENDER” starts a new Android Activity pausing the

Acoustic yes-no BCI menu and the devices connection. The interface was

designed to contain both the Visual P300 and the Auditory P300 training

files. The user can navigate through the menu and select the desired training

files for a specific participant subdivided in session order, move them in the

archive, delete or send them to the server unit in order to obtain the classifier

parameters.

The “EXIT” button closes the connection and the communication be-

tween the host device and the BE Net and then go back to the main appli-

cation screen.

4.4 Update connection status

The update connection status helps the user to understand the behaviour

of the EEG amplifier during the work of the application. The states are

defined according to the following parameters explained in Table 4.1.
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Table 4.1: Status connection of the BCI system.

Status Label Color Description

CONNECTED wait green The connection between the host

device and the BE Light is suc-

cessfully established.

CONNECTED readImp green Switched BE Light to impedance

analysis mode.

CONNECTED readData green The BE Light is ready to send

and receiving data.

CONNECTED readDummy green Instead of reading data directly

from BE Light, read data from a

file stored on device.

- pause yellow The connection has been estab-

lished to BE Net device and it

is in standby due to transition or

application being moved to back-

ground.

UNCONNECTED eegmissing red The connection has been estab-

lished to BeNet device, but it

can’t send and receive commands

from BE Light, thus the device is

considered unconnected.

UNCONNECTED - red We have no connection to BE

Net. The connection is restored

as soon as possible.

Three types of status color have been chosen to inform the user while

using the application. The red indicates the unsuccessful connection between

the tablet and the BE Light. In this state the application tries to restore the

connection as soon as possible flashing the firmware to the EEG amplifier.

A special case is considered when the connection has been established

to the BE Net device, but it can not send and receive commands from the

BE Light, thus the device is considered unconnected. This state is labelled

as “eegmissing”.

The green color defines the successful connection between the tablet and

the BE Light. This status is obtained once a firmware protocol is updated

to the BE Net and the static IPv4 192.168.171.212 is set. In this case the

status is labeled as “wait” and the BE Light is ready to perform any request

made from the host device.
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There are two sates of the BE Light considered as special cases when the

connection is already established. The first one is when the EEG amplifier

works as “Ohmmeter” (see the Section 3.3 on page 67) and this status is

labeled as “readImp”. The second case is when the BE Light is ready to

send and receiving data. In this state it is required the EEG signals reading

and processing during the acoustic training session stimulation (this phase

is explained in detail in Section 4.12). This status is labeled as “readData”.

There is a standby status considered to a default state when the con-

nection has been established to the BE Net device. This status is labeled

as “pause” and it has a yellow color which represents some transition or the

application Activity being moved to a background state after a while.

4.5 Fragment layout switching algorithm

The layout of the Auditory P300 BCI interface is initialized with the cre-

ation of a new Android Activity [28] class called MainBciAudioActivity .

As mentioned in Section 4.3, at the beginning of the Activity all drivers that

establish the communication between tablet and the EEG amplifier are ini-

tialized. The drivers developed for the Visual P300 BCI are adapted also to

communicate with the Auditory BCI in order to maintain the two interfaces

completely independent. Once the connection is established it is possible to

select the desired item in the menu (see Figure 4.3 on page 82).

The Activity implements on the left side a navigation drawer menu [32]

viewable with a right swipe. It is automatically hidden when an element is

selected. The navigation drawer permits the user to navigate easily in the

application without having to return to the main menu when he want to

change the view. The main Auditory P300 BCI Activity layout scheme is

represented in Figure 4.4.

The main layout of this Activity acts as a container and it is composed

of Fragments [29] placed dynamically in it. With a selection of the desired

item in the Acoustic yes-no BCI menu, each Fragment is inflated with its

own layout in the container with an identifier.

Each Fragment has a life cycle and all elements, objects and functions

created with it are destroyed with the Fragment itself when switching from

one layout to another. In order to inflate each Fragment and visualize its

layout in the Auditory P300 BCI Activity an appropriate algorithm was

designed which allows to interact with each Fragment and maintains un-

changed all the parameters that the user set during the application usage,

despite the exchange between Fragments. This algorithm is implemented

85



Figure 4.4: Main Auditory P300 BCI Activity layout composition. The layout is

composed by a swipe navigation drawer fragment statically inflated in the main

layout. This is called with a right drop from the left side of the screen and the

dynamic Fragment update happens selecting an item in the menu. On item selection

the menu automatically disappears on the screen left side and the fragment is

inflated in the layout.

in the default Fragment called MainBciAudioFragment that is inflated

inside the main Activity.

Suppose that the user has set all the parameters in the Training Frag-

ment and then he wants to view the impedance or the signals behaviour

once again before the acoustic session. At the Impedance check selection

in the menu, the current Training Fragment is replaced by the Impedance

Fragment destroying all settings set before. The idea of the algorithm is

to keep always alive in some way the training Fragment once it is inflated.

This because it is the main layout in which the user interacts more and set

all parameters for the acoustic stimulation. In this way is possible to jump

one layout to another without losing any previous configuration.

The algorithm works only on “TRAINING SESSION”, “IMPEDANCE

CONTROL” and “VIEW SIGNALS” selection in the Acoustic yes-no BCI

menu. Android OS allows to handle Fragments with a stack, so is possible

to push or pop them from that stack. Another important feature is to hide a

a Fragment while another is running over it, leaving the previous hidden on
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the stack. This allows to process only the current layout without processing

the hidden layout by the GPU, while all the parameters initialized of the

hidden Fragment are maintained. At Fragment creation it is possible to set

a String label that identifies them as a tag, so it is possible to recall that

label from the stack.

The model algorithm is defined in Listing 4.1. The Fragments switching

is performed only when the connection is established (see Section 4.4 for de-

tails) in order to maintain the BELight always ready to satisfy the demands

made by the application and preventing the communication errors.

Listing 4.1: Fragment layout switching model algorithm between Training Session,

Impedance Control and View Signals in the Acoustic yes-no BCI menu.

switch(fragment_tag) {

case "training": {

if (no fragment in the stack) {

push training on top;

} else if (one fragment in the stack) {

if (impedance in the stack) {

pop impedance from the stack;

push training on top;

} else if (view signals in the stack) {

pop view signals from the stack;

push training on top;

} else if (training in the stack) {

stay on training;

}

} else if (two fragments in the stack) {

if (training hidden && impedance on top) {

pop impedance from the stack;

} else if (training hidden && view signals on top) {

pop view signals from the stack;

}

}

} break;
case "impedance": {

if (no fragment in the stack) {

push impedance on top;

} else if (one fragment in the stack) {

if (impedance in the stack) {

stay on impedance;

} else if (view signals in the stack) {

pop view signals from the stack;

push impedance on top;

} else if (training in the stack) {

hide training from view;

push impedance on top;

}
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} else if (two fragments in the stack) {

if (training hidden && impedance on top) {

stay on impedance;

} else if (training hidden && view signals on top) {

pop view signals from the stack;

hide training view;

push impedance on top;

}

}

} break;
case "view_signals": {

if (no fragment in the stack) {

push view signals on top;

} else if (one fragment in the stack) {

if (impedance in the stack) {

pop impedance from the stack;

push view signals on top;

} else if (view signals in the stack) {

stay on view signals;

} else if (training in the stack) {

hide training from view;

push view signals on top;

}

} else if (two fragments in the stack) {

if (training hidden && impedance on top) {

pop impedance from the stack;

hide training view;

push view signals on top;

} else if (training hidden && view signals on top) {

stay on view signals;

}

}

} break;

4.6 Auditory P300 Training interface

The Training session is the main interface to initialize a new acoustic training

session. The interface is designed to have a high usability in order to guide

the user to set all the parameters in a proper manner for a right acoustic

stimuli sequence generation based on the Tree-stimulus oddball paradigm

(see Section 2.4.6 on page 39 for details) and on the specifications defined

by psychologist Mauro Marchetti (see Section 3.1 on page 64).

The Training Fragment is initialized by the MainBciAudioFragment

class inflating a new Fragment class called BciAudioTrainingFragment .

Its layout is composed by many other Fragments inflated dynamically at each
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Figure 4.5: Renderings of the acoustic training session in order to initialize a proper

clean session. In the left figure there is a popup window appeared on “add partic-

ipant” selection. In this window the user inserts the credentials and the session is

initialized. The right figure shows an example where the user can load a previous

session saved on SD card for the initialization of the session.

creation directly in Java code. This to obtain high performances during the

usage and to avoid problems of the user interface slowdown during the data

processing.

Initially the interface is locked and the “SAVE” Image Button in the

menu is disabled. The user before starting a new clean session, must insert

the participant credentials or confirm a previous session saved on SD card

in a specific folder.

In Figure 4.5 there is a simple rendering for the session initialization. In

the left figure there is a popup window appeared on “ADD PARTICIPANT”

selection. This is a customized Dialog created with the initialization of a

Fragment class called NewSessionDialogFragment .

In this window the user inserts the credentials and the session is initial-

ized on “OK” button selection. The right figure shows an example where

the user can load a previous session saved on SD card for the initialization

of the session (see Section 4.7 on page 94 for details). The user can select

the desired ID folder where inside there are the .xml files associated to that

ID divided in order of session and select one of them. In this window it

is possible to delete a folder or an xml file listed just holding down them

and confirm the operation. At session creation the “SAVE” Image Button

is enabled (see Section 4.7 on page 94 to see in detail how the saving and

loading algorithms work).

The Fragment class implements a ViewPager [36] and a FragmentStatePa-

gerAdapter [30] in an another class initialized at its creation called BciAu-

dioMain where two Tabs in the layout called with the ActionBar method

[27] are also implemented. Each Tab has associated a specific Fragment
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Figure 4.6: Rendering of the Training Session. In this figure is represented the Main

settings layout.

already inflated in memory managed by a Fragment class called BciAu-

dioFragment . When the desired Tab is pressed, the Fragment associated

to the current selected Tab is the current visualized in the layout container

defined by an id in the ViewPager. One Tab is called MAIN SETTINGS and

visualize a Fragment that is the main screen visualization, while the other

one is called ADVANCED SETTINGS and visualize another Fragment con-

taining the advanced options for the training session. The interface allows

also to switch between these two Fragments with a swipe to the right and to

the left. In Figures 4.6 and Figure 4.7 renderings of the main settings and

the advanced settings Fragments is represented.

In the OptionMenu there is the “RESET” ImageButton. Clicking on

new instance is created and an AlertDialog Fragment called ResetSession-

DialogFragment is visualized. In this layout is asked to restore all the

parameters in the training interface at their initial state.

4.6.1 Main Settings layout

The Main Settings layout is composed by an array of eleven CheckBoxes,

an array of eleven Buttons to synthesize the sound loaded in the associated

channel, and an array composed by eleven Fragments inflated dynamically

through Java code as audio channels. Those Fragments are a repetition of a

unique Fragment class called BciAudioChannelFragment because they

share the same layout.

The Main Settings layout is designed like an audio mixer where the user

can select a channel, load an audio file (.wav file from the SD card in a

specific folder) and deliver it with the in-ear headphones to the participant
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Table 4.2: Mapping between the float volume levels and the Loudness expressed in

dB.

Float level Loudness level

0.2f 55 dB

0.5f 65 dB

1f 75 dB

(see Section 3.8 on page 72 for details). With an up-down scrolling on screen

is possible to visualize all channels.

Each audio channel before running has to be activated with the asso-

ciated CheckBox. An ImageButton in the audio channel layout creates a

new instance which opens a window. The Fragment class initialized here

is the AudioBrowserDialogFragment that is a customized Dialog which

shows a list of all the .wav audio files found in the default folder: “ON/A-

coustic yes no BCI/sounds/”. After the selection of an audio file, the cus-

tomized Dialog is dismissed. The audio is loaded in the current channel

selected its string path location, its name and its size are visualized in a

small gray layout as shown in Figure ??. When the audio file is loaded into

the channel, also the other components of that channel are activated. Spin-

ner contains a list of three values of Loudness Level (see Section 2.2.3 on

page 18 for details) as the Intensity volume perceived from the participant

in the ear expressed in decibel [dB]. These values are mapped in Java code

as float from 0.0f to 1.0f according to the output volume measured from

the in-ear headphones explained in section 3.8 on page 72. In Table 4.2 are

defined these mapping values associated.

It is possible to delete the current audio file in the channel holding down

the “X” ImageButton. This operation set all the parameters at their begin-

ning state.

Then there are two Switches that define the directionality of the audio

file loaded. The audio is synthesized in STEREO with a selection of both

Switches, while if it is selected only one of them the output will be MONO

LEFT or MONO RIGHT.

After setting the parameters defined before it is possible to test the

current audio loaded in the channel with a long selection on the Button

“TEST SOUND” (see Section 4.11 on page 108 for details).

Another Spinner defines the probability of occurrence as the percentage

of stimuli presentation defined in the Three-stimulus Oddball Paradigm (see

Section 2.4.6 on page 39 for details) in order to make possible by the appli-
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cation to understand if in the current channel selected there is a frequent

standard tone (70%) or a target/deviant tone (15%).

It is possible to select all the eleven channels and set them in a cus-

tomizable way, but for a proper sequence generation for the paradigm must

leave selected only three channels: one channel for the frequent sound and

the other two for the target and the deviant sounds. Deselecting a channel

maintains all the parameters defined in order to select it later.

4.6.2 Advanced Settings layout

The Advanced Settings is initialized when the Tab associated in the Training

Fragment is pressed. When it happens the layout of the class BciAudioS-

timuliHeaderFragment is visualized.

This layout is composed by others four Fragments controlled and inflated

dynamically through Java code. Also this layout can be scrolled up-down

and a simple render is shown in Figure 4.7.

The specification defined by Mauro Marchetti for the SOA (Stimuli On-

set Asynchrony) and the ISI (Interstimulus Interval) with their advanced

settings timings defined in Section 3.1 are accessible and editable from user

here in the Advanced Settings layout.

The main elements in this layout are the SOA, the ISI and the FixSTD

CheckBoxes. The selection of the SOA or ISI automatically checks the

FixSTD CheckBox.

In this layout the first Fragment class called BciAudioStimuliNum-

berFragment is inflated. It is the one referred to the number of stimuli

selection. An EditText is defined here where it is possible to edit and update

the default value set as seven stimuli. Clicking on it, a new instance and

a popup window is is initialized as in Figure 4.8. The window created is a

Dialog with a customized layout inflated with the Fragment class called Ed-

itDialogFragment . In this layout there are the current number taken from

the EditText that can be incremented/decremented by one unit clicking on

the arrows or just sliding the progress bar to the right or to the left. The

“DEFAULT VALUE” button set the current value visualized on the Dialog

to the default and the “OK” confirm the new one updating the Edit Text.

The other three Fragments inflated are the advanced timings properties

for the SOA or ISI selection. They are the Fixed Interval, the Intervals and

the Random Intervals Fragments. As defined in Section 3.1 on page 64 these

Fragments are chosen in this way:

• BciAudioStimuliFixedIntervalFragment class allows to define a

fixed timing value between two consecutive stimuli in the sequence.

92



Figure 4.7: Rendering of the Training Session. In this figure is represented the

Advanced Settings layout.

• BciAudioStimuliIntervalsFragment class allows to define five tim-

ing values and set them in a randomized order by the program between

two consecutive stimuli during the sequence.

• BciAudioStimuliRandomIntervalsFragment class allows to de-

fine a minimum and a maximum timing value and set a randomized

timings caught between these two limits in the sequence between two

consecutive stimuli.

Also in the Advanced Settings layout, in order to have a best accessible

interface for defining correct timings and the correct randomized sequence

generation, initially all these three Fragments inflated are disabled.

An algorithm enables/disables them and their elements. When the user

selects the SOA or the ISI CheckBox the complementary timing pattern

type is disabled (i.e., if SOA is selected ISI is not accessible until the SOA is

deselected and vice versa) and all the three Fragments inflated as advanced

settings are initialized. When the user deselects the timing pattern, the

system verify if the timings values are defined or not. If not, they are

updated to their default values, otherwise the value entered previously is

restored.

Each Fragment (Fixed, Intervals and Random) inflated in the Advanced

Settings layout contains a CheckBox and EditTexts (initially disabled for all

the three Fragments) to allow the insertion of the updated timings. When

the user checks the desired advanced interval timing, the EditTexts of the

current Fragment selected are enabled and the other two Fragments with

their elements are completely disabled. At the selection of an Edit Text a
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Figure 4.8: Rendering of the appearance of a customized Dialog on EditText se-

lection. The user can update the value clicking on the arrows incrementing/decre-

menting by one unit or sliding the progress bar.

new instance with a Dialog Fragment (EditDialogFragment) composed

by a customized layout is initialized like in Figure 4.8 and the current value

can be updated.

4.7 Session management

4.7.1 Save session algorithm

In the ActionBar [27] of the Training interface layout there is the “SAVE”

Image Button as shown in Figure 4.6 on page 90. After the session ini-

tialization (see the beginning of Section 4.6) and all the desired settings in

the Main and Advanced Settings, the user can save the session in a specific

.xml file in a default folder on SD card just clicking on it. After that, a

new instance is created and an AlertDialog is visualized on screen like in

Figure 4.9 where the user can confirm or cancel the operation. The class

that performs this operation is called SaveSession .

The saving session algorithm is based on SharedPreferences [33] that

is an interface for accessing and modifying data. When the user select the

“OK” button it starts the algorithm for the current user ID and the current

session set calling the onSavePreferences() function in the referenced Java

class.

According to the SharedPreferences the algorithm creates for each el-

ements defined in the Training interface a key string that is associated to

the current state of the element. This pairing is then saved in an editor

called from SharedPreferences.Editor. The type of the element (i.e., String,

94



Figure 4.9: Rendering of the appearance of an AlertDialog on Save session Image-

Button selection. The user confirm or cancel the operation.

Integer, Boolean, Float) is associated to its value and then the editor is

committed.

The path “ON/Acoustic yes no BCI/configurations/” is defined on the

SD card as the default folder where the SharedPreferences files are saved.

In this path a subfolder named as the patient ID defined in the current

session (i.e., “/configurations/800493/”) is automatically created. Before

being created, it is verified that the folder is already existing. If not that

folder and the output .xml file named as:

ID idvalue session N config.xml

is created. In that file are inserted all the pairs made by the editor with the

Java command objectOutputStream.writeObject(sharedPreferences.getAll()).

The variables idvalue and N are the participant ID and the session number

for the current session.

4.7.2 Load session algorithm

When the user wants to restore a previous session clicks on “LOAD” Im-

ageButton in the Training interface menu. As shown in the right image in

Figure 4.6 on page 90, it possible to select the desired session for the desired

participant ID.

Clicking on the ImageButton a new instance is created that shows a

customized Fragment Dialog with the class LoadSessionDialogFragment

where its layout contains a list of ID folders inside the default path “ON/A-

coustic yes no BCI/configurations/”. The user here can select a desired

folder or delete it with all the configuration files inside, just holding it down
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and confirming the operation. If the desired ID folder is selected, all con-

figuration files inside are visualized in a list. It is also possible to delete a

configuration file holding it down and confirming or simply selecting it to

restore all the items configuration saved.

Also in this case the SharedPreferences is used to restore all the elements

associated with their corresponding state saved on the .xml file. This opera-

tion is performed by the class LoadSession and it is a little more complex

than the saving one. A sort of information retrieval on the .xml file selected

is performed in order to get the type of items and then restore them. This

operation is performed by the loading sessions algorithm . When the

.xml file in the customized Dialog is selected, the class that deals with the

items restoration gets the entire path and the name associated to that file

in its constructor function. Then the onLoadPreferences() function is called

where the file is imported with the ObjectInputStream in order to load the

primitive types.

The global context in the Activity is used to get the SharedPreferences

associated to the file name. In order to restore the state for all the elements,

the SharedPreferences.Editor is used recalling the key String associated to

the states saved in the .xml file.

A Map<String,?> element is initialized so as to associate to it all the

pairings between the strings and objects from the input file. For each entry

value it is obtained the current Key String and the current Object Type.

When the type for the current entry is checked the pairing result is written

in the SharedPreferences.Editor. When all the entries are processed the

editor is committed and the preferences are restored for each element in the

Training interface.

In Listing 4.2 there is an example of the algorithm for saving and loading.

For this example the patient surname string and SOA CheckBox boolean

state are saved and restored from the .xml file on SD card.

Listing 4.2: Listing of saving and loading session algorithms examples.

...

// define the default path

private final static String default_path = "ON/Acoustic_yes_no_BCI

/configurations/";

...

/*

* saving session algorithm

*/

private void onSavePreferences() {

// define the saving file name
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String pref_file = "ID_" + getID() + "_session_" + getN() + "

_config";

// define SharedPreferences

SharedPreferences save_session;

// initialize shared preference object

int mode = getContext().MODE_WORLD_WRITEABLE;

save_session = getContext().getSharedPreferences(pref_file,

mode);

// use an editor to maps the key value with the state object

SharedPreferences.Editor editor = save_session.edit();

...

// pairing example for saving patient surname string

editor.putString(key_surname, getSurname());

...

// pairing example for saving SOA CheckBox boolean state

editor.putBoolean(key_SOA, getSOAstate());

...

// commit

editor.commit();

...

// create a new path for the ID

String ID_path = default_path + getID() + "/";

// associate the path to a file

File configuration_path = new File(Environment.

getExternalStorageDirectory().getPath() + ID_path);

// check if the path exist

if (!configuration_path.exists()) {

// create directory if does not exist

configuration_path.mkdirs();

} else {

Log.d(TAG, "folder: ’" + ID_path + "’ already exists!");

}

// create a new file to generate the xml

File file = new File(Environment.getExternalStorageDirectory()

.getPath() + ID_path, pref_file + ".xml");

// create ObjectOutputStream

ObjectOutputStream output_file = null;
try {

// create output file and write the file in the directory

output_file = new ObjectOutputStream(new FileOutputStream(

file));

output_file.writeObject(save_pref.getAll());

} catch (IOException e) {

e.printStackTrace();

} finally {

try {

if (output_file != null) {

// close output file

output_file.flush();
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output_file.close();

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

/*

* Loading session algorithm

* @config_path: get the full path of the file selected

* @file_name: get the name of file selected

*/

public void onLoadPreferences(String cofig_path, String file_name)

{

// import file

File file = new File(config_path);

ObjectInputStream input_file = null;
try {

// define SharedPreferences

SharedPreferences load_session = null;
// get the preferences

int mode = getContext().MODE_WORLD_WRITEABLE;

load_session = getContext().getSharedPreferences(file_name

,mode);

// create the editor to restore mapping between key

strings and values of the objects

SharedPreferences.Editor editor = load_session.edit();

editor.clear();

// read all entries from file loaded

Map<String, ?> entries = (Map<String, ?>) input_file.

readObject();

// for every values

for (Map.Entry<String, ?> entry : entries.entrySet()) {

// get all values from input file xml

Object object = entry.getValue();

// get all key Strings from input file xml

String key_string = entry.getKey();

// put boolean values to shared preferences

if (object instanceof Boolean) {

editor.putBoolean(key_string, (Boolean) object);

} else if (object instanceof Integer) {

// put integer values to shared preferences

editor.putInt(key_string, (Integer) object);

} else if (object instanceof Float) {

// put float values to shared preferences

editor.putFloat(key_string, (Float) object);

} else if (object instanceof String) {

// put string values to shared preferences
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editor.putString(key_string, (String) object);

}

}

// commit the editor

editor.commit();

/* restore the preferences */

...

// example to retrieve patient surname string

patient_surname = load_session.getString(getKey_surname(),

"");

// set the value

setSurname(patiet_surname);

...

// example to retrieve the boolean state of SOA switch

SOA_state = load_session.getBoolean(getKey_SOA(), false);
// set the value

setSOA(SOA_state);

...

} catch (ClassNotFoundException | IOException e) {

e.printStackTrace();

} finally {

try {

if (input_file != null) {

input_file.close();

}

} catch (IOException ex) {

ex.printStackTrace();

}

}

}

4.8 The 10-20 system implementation

The application “Progetto ON” originally developed for the Visual Speller

P300 [46] was provided with the activation and processing of the data ac-

quired from four EEG channels (Fz, Cz, Pz, Oz) and one EOG channel (see

Figure 2.7 at page 26). During the development of the Auditory P300 BCI

the acquisition channels to the 10-20 system it was decided to be expanded

enabling all the nineteen unipolar channels (Fp1, Fp2, F7, F3, Fz, F4, F8,

T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2 as in Figure 3.3 on page

68 on the BELight device) keeping activated the bipolar channel EOG as

before (A-, A+ as in Figure 3.3 on page 68 on the BELight device).

The main work in this phase was to allow the user to choose and select the

desired acquisition channels directly on the screen and processing data only
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Figure 4.10: Rendering of the impedance control panel. The left image represents

the EOG electrodes visualization rendered on a frontal head model. The right

image represents the 10-20 system visualization rendered over a top head model.

for those channels. To this purpose, drivers and all the specific functions that

recall the interfacing channels developed before are modified and adapted.

4.8.1 Impedance control

Selecting the “IMPEDANCE CONTROL” button in the Acoustic yes-no

BCI menu (see Section 4.3 on page 81 for details) the Fragment called Bci-

ImpedanceFragment for the visual representation of the 10-20 system is

inflated following the Fragment layout switching algorithm described in Sec-

tion 4.5 on page 85. In this Java class the SamplesBuffer and the Com-

munication classes pointers are passed in the constructor function and the

main thread that handles the BELight states is set to readImp status. This

status is the equivalent of the impedance analysis mode.

The main layout of this impedance control Fragment is composed by a

Java class that extends a SurfaceView [35] called BciImpedanceRender .

This class provides a dedicated drawing surface embedded inside a view hi-

erarchy. This is the graphical interface that works with a thread class called

BciImpedanceThread that animates the elements updating the visualiza-

tion changes of the electrodes states on screen device after their activation

by user selection. Figure 4.10 represents the graphical object that contains a

front head model rendered on the left part of the screen with the EOG elec-

trodes visualization while on the right the complete 10-20 electrodes system

is rendered over a top head model.
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Through the Communication thread all the channels are read. Initially

all the 21 electrodes (2 electrodes for the EOG and 19 for the 10-20 system)

are in a default “closed” state in grey color. It means that all the electrodes

are not acquiring signals from their referred channels.

4.8.2 Gesture detector algorithm

The user can select the desired electrode directly on the screen by holding it

and set it in an “open” state. This selection is defined by an algorithm that

finds the user input gesture on the screen called Gesture Detector algorithm

defined in Listing 4.3. The GestureDetector is called by an overridden func-

tion in the SurfaceView defined as onTouchEvent() that passes an event as

the touch on the screen.

In this algorithm initially the coordinates (x and y pixels) of the touch

input on the screen are retrieved with the MotionEvent function. Each

electrode point rendered on the screen has a 20 pixel radius. The algorithm

checks for each electrode if the current coordinates of the pixel selected

are inside its centroid of radius 20 pixel. Then the current state between

“closed” and “open” is verified and it is classified to be set in the opposite

current state.

After the screen selection of the electrode, other states are considered

to evaluate the electrode impedance connected to the subject head skin.

They are “verybad”, “bad”, “decent”, “good”, “optimal” all mapped with

a specific color from red to green. These states are evaluated with some

threshold values in this way:

• verybad (red): < 100 KΩ

• bad: < 50 KΩ

• decent: < 15 KΩ

• good: < 10 KΩ

• optimal (green): < 5 KΩ

Listing 4.3: Gesture Detector algorithm. Initially all the electrodes are in a default

closed state. The user can set them to an open state by a MotionEvent detector

that obtains the coordinates of pixel touched and the centroid of points with radius

20 pixels is checked for correct selection classification.

...
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private final GestureDetector gestureDetector = new
GestureDetector (new GestureDetector.SimpleOnGestureListener()

{

public void onLongPress(MotionEvent event) {

// get x pixel coordinate touched

int x_touched = (int) event.getX();

// get y pixel coordinate touched

int y_touched = (int) event.getY();

/* for all the electrodes plotted check if the coordinates

of pixel selected are inside of the centroid (center

of the electrode) of radius 20 pixels.*/

for (int i = 0; i < electrodes; i++) {

if (x_touched >= x_elec_pos - 20)

&& (x_touched <= x_elec_pos + 20)

&& (y_touched >= y_elec_pos - 20)

&& (y_touched >= y_elec_pos + 20) {

// check if the current electrode is checked or

not

if (!checked) // if not

// set it to open state

setElectrodeChecked(i, true);
else

// set it to closed state

setElectrodeChecked(i, false);
}

}

}

});

@Override

public boolean onTouchEvent(MotionEvent event) {

return gestureDetector.onTouchEvent(event);

}

...

4.9 Dynamic data processing

4.9.1 Signals visualization

This section explains how data are acquired and dynamically processed de-

pending on the activation of the channels with the user selection. Before

requesting data to the circular buffer driver class, at least one electrode

must be selected. It is then possible to select “VIEW SIGNALS” button in

the Acoustic yes-no BCI menu in order to check the data elaborated only

from those channels selected. A new Fragment called BciViewSignals-

Fragment is inflated over the current layout following the Fragment layout
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Figure 4.11: An example of the main central electrodes selection (Fz,Cz,Pz,O1)

with the corresponding signals elaboration.

Figure 4.12: An example of all electrodes selection (10-20 system) with the corre-

sponding signals elaboration.

switching algorithm (see Section 4.5 on page 85 for details).

In this Java class the SamplesBuffer and the Communication classes

pointers are passed in the constructor function and the main thread that

handles the BELight states set it to readData status.

This Fragment inflates another Fragment class called BciDynamicVie-

wSignalsTabHost used to retrieve the electrodes selected by user from the

impedance Fragment and draws only the data signals processed associated

to those electrodes. All the desired data obtained from the SamplesBuffer

are subdivided automatically in groups of five signals each. This in order to

allow the correct visualization of all signals on the tablet screen.

The class uses an algorithm that gets the electrodes selected, subdivides

them in groups of maximum five signals each, and finally adds a tab for each

group created labelled with the current name of electrodes visualized. The

number of tabs is defined with the ActionBar [27] method with the number

of groups created by the algorithm.

This class at its creation implements the rendering of the signals labelled

in the first Tab selected. Another class called BciViewSignalsRender
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Figure 4.13: Advanced menu for audio trigger player in view signals Fragment.

(that extends the SurfaceView [35] method), provides a dedicated drawing

surface with another thread class called BciViewSignalsThread that con-

trols the animation. At each tab selection only the maximum five signals

added to the current group on the screen by a proper thread are rendered. In

Figure 4.11 an example of the main central electrodes selection (Fz, Cz, Pz,

O1) with the corresponding signals elaboration is shown, while in Figure 4.12

an example of all electrodes selection (10-20 system) with the corresponding

signals elaboration is shown as a comparison.

A unique function model is created to draw signals in the rendering

class. The main thread that controls the animation of signals asks to the

SamplesBuffer all samples data (all the channels). Then passes them to the

rendering class in order to compute and to update the desired data for the

current group of signals labelled in the current tab selected by user. After

this, data updated are rendered on screen.

As we can see in Figures 4.11 and 4.12 the class that extends SurfaceView

defines the data signals in a magenta color. After the tab selection the

current label and the peak-to-peak value are computed and visualized.

The trigger value is the representation of the peak-to-peak signal for

the input audio source in the EEG amplifier that comes directly from the

tablet and adapted. This input signal is adapted with a designed cable (see

Section 3.9 on page 74 for details). During the visualization of signals, the

subject can hear a simple pure (or complex) tone or a word through the

in-ear headphones.
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4.9.2 Trigger visualization

The interface is developed also to do this operation in the view signals

Fragment. This class implements a NavigationDrawer[32] hidden on the

right side of the screen. Clicking on the “AUDIO TRIGGER” button in the

ActionBar, the player console appears as in Figure 4.13. The layout of this

extended interface is inflated from the BciViewSignalsPlayTrigger class.

Initially the onCheckChannels() is called to retrieve automatically the name

of each audio file loaded in the respective audio channels (frequent sound,

deviant 1 and deviant 2) previously set in the training interface and they

are associated to a specific array list in the Spinner menu visualized in the

figure.

The acoustic synthesis of the audio selected is executed by a thread

called BciAudioTriggerThread that runs in loop until it is decided that

it should be terminated. The thread is initialized pressing the play icon

in the interface and the current acoustic stimulus selected is synthesized

in loop with a delay interval defined. Doing this it is possible to visualize

directly in the application the audio trigger onset and its relative brain

signals stimulation in time. The thread is stopped by clicking on the stop

icon and the stimulus will not be sent both to the participant and into the

EEG amplifier.

When the “VIEW SETTINGS” (the signals icon in the ActionBar) is

pressed a customized Dialog appears. Here it is possible to select the current

Power Spectral Density (PSD) associated to a desired data channel processed

with a Fast Fourier Transform (FFT). Initially the PSD is calculated on the

data that comes from the first electrode rendered on screen.

4.10 Timings pattern generation algorithm

When the desired electrodes are selected and the correct visualization of

signals stimulated by the trigger audio signal is performed, it is possible to

go back to the TRAINING SESSION trough the Acoustic yes-no BCI menu

if the session is already initialized or to create a new one if not (see Section

4.6 on page 88 for details).

In order to generate a proper acoustic session with the oddball paradigm

all the elements have to be set in a correct way. In Figures 4.6 on page 90

it is possible to see that in the OptionsMenu there is an ImageView with

an “i” symbol. At its selection a new instance with a customized Dialog is

initialized showing the User Guide where it is explained in detail how to set

every elements.
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Clicking on the “GENERATE PATTERN” button all the parameters are

processed by the software and the sequence of stimuli and timings between

them is automatically generated.

The application developed does not initialize the pattern generation al-

gorithm if all the elements required for the generation (training interface

and the electrodes selection) have not been defined correctly. This check is

to avoid errors or crash report by the application.

In order to obtain an audio stimulation a check algorithm function called

onCheckConfiguration() has been developed in the main Fragment class

MainBciAudioFragment . As defined in Section 4.6 on page 88 (under

the Main Settings section) it is possible to select all the eleven channels and

set them in a customized way. For a proper sequence generation only three

channels are needed: one for the frequent sound and the others for the two

deviants. At beginning the check algorithm verifies this condition (at least

three channels). For each channel selected the system verifies the correct

audio loading, the loudness selection, the almost one volume switch selec-

tion and the percentage of occurence definition in the sequence (70% for

standard and 15% for deviants). Also the pattern type (SOA or ISI) and its

advanced timings settings are verified. In order to do this, the application

alerts the user.

After parameters confirmation, a function called onWaitConfiguration()

is executed. This function runs an AsyncTask creating a new background

thread that waits 500 milliseconds at each iteration. This is done in order to

achieve the best loading configuration of channels and parameters avoiding

errors (see Section 4.11 on page 108 for more details).

The software reads each selected channel and initializes a specific Java

class called AudioParameters where all the audio elements are prepared

for the correct acoustic sequence synthesis (see the next Section 4.11 for

details). Another class called AudioConfigurator is initialized. In this

class all values are stored in specific arrays. A function called onSession-

Config() get the timing intervals for the pattern type defined (SOA or ISI)

and initializes other classes to generate the sequence of stimuli and timings

between them.

The first class initialized is the Session . It generates the expected

number of frequent sounds and deviants for the stimuli sequence saving

them in arrays accessible from the other classes.

The second class initialized is the SequenceSyntheser that elaborates

the randomized sequence of stimuli from user input parameters. The Session

class passes its pointer in its constructor. This sequence generated with a

sequence of integers defined as 0;1;2 in a randomized order is mapped. 0
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Figure 4.14: An example of pattern generation algorithm results shown to the user.

A stimuli pattern generated for the oddball is shown in detail. In this figure an

example of the algorithm summary is visualized before the acoustic training session

is initialized. This customized dialog shows on top the parameters setted in the in-

terface. The expected number of frequent sounds, the first and the second deviants

expected with their relative channels associated to load them by the software are

defined. At the end the stimuli sequence order generated by the algorithm in tem-

poral axes and the timing sequence after the first stimulus expressed in milliseconds

are shown.

means the frequent sound, while 1 and 2 are referred to the first and second

deviants. This sequence is stored in an array accessible from the other

classes.

The last class called is the TimingSyntheser . This class generates

intervals between each stimulus for the entire sequence. In its constructor

the Session class passes its pointer in order to access to the randomized

sequence of integers. For each integer of the sequence array, the current

timing (fixed, intervals or random intervals) is checked and it is generated a

timings array N-1 long where N is the number of elements in the sequence

array like in the Example 4.10.1.

Example 4.10.1. Final timing sequence example.

sequence = [s1, s2, s3, ..., sN ];

timings = [t1, t2, t3, ..., tN−1];

final sequence = [s1, t1, s2, t2, s3, t3, ..., sN−1, tN−1, sN ];

If the current timing pattern type is the fixed interval, a timings array

composed by the same value after each element si (where i = 1,...,N) of

the sequence is generated. Else if the intervals is selected, a timings array
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array composed by a randomized order of values associated to the intervals

pattern defined is generated. Else if the random intervals is selected, a

timings array composed by a randomized values between the two defined is

generated. The timings array built is accessible from the other classes.

After the onWaitConfiguration() function execution a new instance that

initialize a Dialog Fragment called AudioElaborationDialogFragment

with a customized layout is created.

In Figure 4.14 an example of pattern generation algorithm is shown to

the user. This Dialog shows on top the parameters set in the interface.

The expected number of frequent sounds, the first and the second deviants

expected with their relative channels associated to load them by the soft-

ware are defined. At the end the stimuli sequence order generated by the

algorithm in temporal axes and the timing sequence after the first stimulus

expressed in milliseconds are shown.

4.11 Synthesis of the acoustics stimuli

This section explains in detail how the audio is processed and synthesized in

the application. Audio processing in Android devices is performed by two

main libraries called SoundPool [34] and MediaPlayer [31].

MediaPlayer class can be used in general to control playback of audio files

and streams. This class is used to synthesize the audio guides that inform

the subject about the status of the session through the in-ear headphones.

A SoundPool is a collection of samples that can be loaded into memory

from a resource inside the APK or from a file in the file system. The Sound-

Pool library uses the MediaPlayer service to decode the audio into a raw

16-bit PCM mono or stereo stream. This allows applications to ship with

compressed streams without having to suffer the CPU load and latency of

decompressing during playback. Being the oddball defined with a sequence

composed by stimuli with short duration that have to be loaded and played

quickly in an efficient way, this library it has been chosen also for the low

latency property.

The Training Fragment (Section 4.6 on page 88) in the Main Setting

layout has eleven channels. The Fragment class that creates in its layout

these channels is the BciAudioFragment . In each channel it is possible to

load a the preferred audio tones or words for binary selection from the SD

card file.

To this purpose two model classes are created to synthesize the stimuli

in the channels selected. One class called AudioParameters controls all
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parameters defined by the user for each channel selected with the Sound-

Pool class. All objects created in this class are defined as arrays composed

by eleven elements (like the number of channels) in order to store for each

channel its volume level i.e, the loudness defined and a SoundPool identifier

that is passed to another class to play sounds. When the class is initial-

ized in its constructor function the pointers of the Activity context and the

BciAudioFragment class are passed to the AudioParameters class.

Its public functions defined in this class is mainly associated to the

channels parameters. The onCheckSwitches() function obtains the integer

pointer to the channel focused. Here the channel selection and which one

of the two switches are selected by defining Boolean variables as mono left,

mono right and stereo are verified.

Another function called setChannelVolume() obtains the current pointer

to the channel and initializes the AudioManager that provides access to the

volume by Android OS. Here the loudness set by the user for that channel

pointed is obtained and associated to a Float array.

Once these parameters are defined, the SoundPool is initialized with

a public function called onResetParameters(). A sound ID is associated

to the channel pointed, the audio path of that channel is loaded and a

setOnLoadCompleteListener() function setting a positive Boolean variable

it is waited. In this way all .wav files are associated to their ID and they

are loaded in memory before the audio sequence is sent. This in order to

perform a correct sounds synthesis avoiding buffering problems during the

sequence of stimuli.

Other public functions are defined to set the audio loaded path in the

channel pointed, and the probability of occurrence defined by user that is

passed to Audio class (initialized in the AudioConfigurator to compute

the sequence of the stimuli) is obtained. A specific public function defined

here is onGuideVolume() in order to prepare the volume for the audio guides

during the session to the participant. The audio volume is initialized for

MediaPlayer class and it is made available to be modified with the device

hardware buttons. The other class that performs the audio synthesis is

the AudioSynthPlayer . This class synthesize the audio for each channel

selected using the configuration acquired by the AudioParameters class.

To calculate the duration of the current stimulus the MediaPlayer class is

used. When this class is created, in its constructor, the SoundPool created

in the AudioParameters class passes the pointers, and also the main Activity

passes its context.

The main public function that can be called from the other classes is

the onDirectionSynth(). The current channel and its sound ID pointers are
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obtained. The MediaPlayer is prepared and when the stimulus starts calling

getCurrentPosition() function is verified. The duration of the stimuli with

the getDuration() function is calculated. From the AudioParameters class

the Boolean variables mono left, mono right and stereo are obtained and for

the current state another function onPlay() is called, the current sound ID

is passed and at the end the stimulus is played.

The Training Fragment (Section 4.6 on page 88) in the Main Setting lay-

out has eleven Buttons; each of them is associated an audio channel. When

the audio is loaded in to a channel it is possible to synthesize it to test the

correct functionality of the loudness and the directionality through the in-ear

headphones to the subject. To perform this operation the BciAudioFrag-

ment is the Fragment class that creates in its layout these eleven Buttons.

When one of these Buttons is held longer, it is verified if the loudness and

at least one of the two switches of the current channel are set passing its

Integer index to the AudioParameters and AudioSynthPlayer classes, so the

sound in the current channel is synthesized.

In Section 4.10 on page 105 how the sequence and timings between stim-

uli are generated was describe and how the audio stimuli are synthesized

with an algorithm in function of the two elements array generated in the

SequenceSyntheser and TimingSyntheser classes is described.

As said in the previous section, in Figure 4.14 on page 107 there is an

example of pattern generation algorithm results that shows to the user a

summary of the sequence delivering. After the “SELECT TARGET” selec-

tion, is checked that at least one electrode is selected from user in impedance

control Fragment. A new AlertDialog AudioUserGuideDialogFragment

is created where a default audio is sent to the subject through the in-ear

headphones (via MediaPlayer). This audio message informs to focus the

attention on a precise stimulus that has to be defined by user.

In Figure 4.15 the Dialog Fragment appeared when the audio message it

has been completely reproduced is represented. The class initialized here is

the PlayDeviantDialogFragment and its customized layout is composed

by a ListVew where automatically displaying the two deviants set. These

deviants are obtained verifying the channels selected in BciAudioFragment

class and for the three classes selected the two that have set the 15% in the

percentage of occurrence are processed. The name of the audio files in these

channels are displayed and the indexes of these channels are passed to an

array composed by two elements.

At the selection of one of the two stimuli, it is synthesized to the sub-

ject through the in-ear headphones the one selected (via SoundPool class).

This stimulus is set to MainBciAudioFragment class as the current target
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Figure 4.15: Current target selection. The left image shows a Dialog Fragment

appearing to the user for defining the current target stimulus and the deviant one.

The right image shows the definition of the target stimulus.

to generate the training files for the classification.

When the “START SESSION” button in the dialog is pressed (Figure

4.15), the current Dialog Fragment is dismissed and a another AlertDialog

Fragment is initialized with the class AudioUserGuideDialogFragment .

During the visualization the subject is informed about the initialization of

the session loading and playing a default .wave file (via MediaPlayer class)

through the in-ear headphones.

In MainBciAudioFragment class a new Fragment called BciAudioSe-

quencerFragment is initialized with the Fragment layout switching algo-

rithm (see Section 4.5 on page 85 for details) hiding the TrainingFragment

layout during its initialization. At its creation the Communication thread

pointer, the TrialBuffer pointer, the SamplesBuffer pointer and the Activity

context are passed in its constructor function.

This is the core class for delivering the acoustic sequence to the subject

while the EEG signals selected in the impedance Fragment are acquired,

processed and two training files are generated (see the next Section 4.12 for

details).

Its layout is shown in Figure 4.16. The elements defined are animated

with a class thread called BciAudioSequencerThread initialized after the

definition of all the elements in the Fragment class (precisely in the onRe-

sume() function). Here also the AudioSynthPlayer class is initialized.

In the thread constructor function are passed the Activity pointer, the

MainBciAudioFragment, BciAudioSequencerFragment, AudioSynthPlayer and

Communication classes pointers. In order to obtain the right interval be-

tween each stimulus synthesized for all the entire sequence another parallel

thread is created. This new thread controls the audio in background that

gets the current interval retrieved from the array generated in the Tim-
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Figure 4.16: Layout for sequence of stimuli delivering in the training session. This

layout is animated and these animation are controlled by a thread. Over the head

is shown only the current target stimulus played. The two icons speakers at the

sides are animated in function of the current stimulus directionality in the sequence.

The first ProgressBar is animated upgrading up to the timing shown below and the

second one is updated up to the total stimuli of the sequence.

ingSyntheser class.

The delay is computed in real time during the acoustic synthesis of each

stimulus in the audio thread. Initially the timing pattern type (SOA or ISI

set by user selection in the interface) is obtained. According to this each

delay is computed considering the current timing get from the array and

the duration of the current stimulus in the sequence with a function called

onTimingStimuli(). If SOA is selected the current delay is considered as the

current timing interval, while if ISI is selected the current delay is the sum

of the current stimulus duration and the current timing. In order to create

the entire sequence with the correct timings, the delay computed between

each stimulus is defined as the sleep state of the audio thread.

While the audio thread is in sleep state, a new Handler for the UI (user

interface) updating is defined. In this handler at each iteration the labels of

the current deviant selected are visualized.

A new parallel thread that maintains the icon speakers in the “on” state

(with the correct directionality) is created. This thread sets the icon speakers

to a full state for all the duration of the current stimulus delivered.

Another thread on the runnable function is created to update the current

timing visualization with a ProgressBar in order to visualize when the next

stimuli will be delivered.
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4.12 Training files

4.12.1 Files generation

When the BciAudioSequencerThread class is initialized, the onCreate-

FileConfiguration() function is executed. This function generates a .txt file

which contains in every row the single information for each stimulus played

in the sequence associated to the EEG stimulation.

The .txt file is automatically compiled and generated in a default direc-

tory on the SD card: “/ON/Acoustic yes no BCI/training/currentID/”.

Inside this folder a subfolder named as the current ID where the log file is

stored is automatically created. This file generated is named as:

id surname Acoustic yes no BCI session N formatDate.txt

where the values id, surname and N are the current participant id, sur-

name and the number of session defined. The formatDate at its definition

is composed with the function SimpleDateFormat expressed as “dd-MM-

yyyy HH:mm:ss”.

The first row of the file is compiled with the timestamp. Next rows are

iteratively compiled at each stimulus delivered in the main acoustic thread.

At the beginning of the audio thread a System.currentMillis() is called to

monitor all the sequence temporal duration and monitor how much time

passes after each stimulus delivered from the beginning. Here a onTrial()

function is called to examine the current stimulus delivered at each iteration

of the audio thread and its properties on a row in the log file. In Table 4.3

there is a description of each column compiled when a stimulus is delivered.

In the onResume() called in the thread class also other functions con-

tained in the SamplesBuffer class are executed. This in order to access

to the EEG data and thus obtain only the data from the electrodes selected

by user. The main function called here is the toggleOutEdf() that obtains

a boolean parameters to write another file which corresponds to a specific

file format with an .edf extension (EDF file [49]). This file is named as the

.txt file and saved in the same folder. In this function another class called

EdfParser provides a static methods to write the data acquired in the .edf

file format calling statically the createEdfFileStream() function.

4.12.2 Files management

In order to obtain the classifier parameters these two training files must

be sent to the AirLab server with the Dropbox application installed on

the Tablet (see Section 3.10 on page 77 for details). A special interface in
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Table 4.3: Single row composition for each stimulus delivered in the training log

file. In this table each element of the row with its description is defined.

Element Description

1st Trial for the Auditory BCI always fixed to 1

2nd The current stimulus numbered in the sequence (from 1

to the total number of stimuli)

3rd The current stimulus coded:

- 1 for freq sound,

- 2 for first deviant

- 3 for second deviant

4th The current stimulus coded is the target

- 1 target

- 0 not target

5th 0 value by default

6th 0 value by default

7th The timing in milliseconds of the current stimulus

elapsed from the beginning of the sequence

the “Progetto ON” application has been modified in order extend also the

training files generated from the Auditory BCI.

In the Acoustic yes-no BCI menu there is an item called “TRAINING

BCI SENDER” (as in Figure 4.3 on page 82). At its selection a new Activity

class called BciResultSender is launched with its layout inflated while the

MainBciAudioActivity is maintained opened in background. In Figure

4.17 is represented the main interface for delivering training files.

The new Activity implements a NavigationDrawer[32] at its creation and

its layout is hidden initially. The user can choose to visualize the training

files between the visual or the auditory BCIs by selection and a new instance

calls the DialogFragment TrainingFolderDialogFragment class. It in-

flates a customized layout that shows the list of the ID folder inside a default

training path passed. If the user wants to visualize the Visual BCI trainings

generated, the default path “/ON/CopySpeller/” is passed, while if the user

wants to visualize the Auditory ones, the “/ON/Acoustic yes no BCI/” is

the path passed as default. Selecting the desired ID folder all the training

files generated inside that folder are listed.

The list of files visualized is obtained by the class ExplorerList . Here

is applied a filter to find all the data recording with the .edf extension in

the current folder and then all of them are displayed as a list.

In the right image in Figure 4.17 it is possible to see how files are viewed
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Figure 4.17: Main interface for delivering training files on DropBox folder. In the

left image there is a screenshot where is possible to choose between the Visual

BCI or the Auditory BCI training files visualization. The right image shows the

complete interface for the training files management.

in the application. The main items in the OptionsMenu are also visualized.

If the “PARTICIPANT ID” ImageButton is selected, appears again the

DialogFragment where is possible to select another ID folder that passes its

path and others training files generated associated to that ID are visualized.

It is also possible to archive files just selecting them and then click on

the “MOVE” ImageButton. This operation moves both the .edf and the

.txt files in the Archive folder.

Another possible operation is to delete data selecting files and clicking on

the “DELETE” ImageButton. An AlertDialog appears to confirm the oper-

ation and both the .txt and .edf files with the same name are permanently

deleted.

After the selection of the desired files, clicking on “SEND” ImageButton

the application gets both the .edf and .txt files. If the tablet is correctly

online and connected to the DropBox folder synchronized, a ProgressDialog

is visualized with a ProgressBar update until all the selected files are not

sent properly. The class DataServInt is imported to do this operation.

From the Activity class the newAuthConnection() function in DataServInt

class is called, a new thread class uploadThread is initialized and finally

the files are uploaded to the server.
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Chapter 5

Classification protocol

“Music is my religion.”

Jimi Hendrix

As explained in Subsection 2.5.5 on page 50, the goal of BCI signal pro-

cessing is to extract features from the acquired signals with a mathematical

model. This is the first step called feature extraction. The second important

step is the translation of these features into a specific command also with

a mathematical model. This step is called classification and the BCI must

decide whether a record signal belongs to two or more possible classes. In

our case the P300-based BCI classifies each stimulus as target or non target.

In this chapter, our genetic algorithm (taken from [91]) tested with our

Auditory BCI is described.

5.1 Feature extraction

The system used for the automatic feature extraction of P300s is based on

a genetic algorithm. This algorithm operates on very simple features ex-

tracted to be used for the classification of P300 epochs, with almost no

preprocessing. The epochs are classified in an affective way without devel-

oping the usual chain of information enhancement based on preprocessing,

feature extraction, and classification. In our case, features are encoded in

variable-length chromosomes, where each encodes one feature, and the fit-

ness of an individual is given by the performance of a classifier trained on

the encoded features. A classifier operating on P300 features is selected by

GA.
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Figure 5.1: Structure of a chromosome encoding features.

5.2 Logistic Classifier

In this particular implementation, features are “tuned” on the use of a simple

logistic classifier as already explained in Section 2.5.5 on page 50. A logistic

classifier [83] approximates the probability P (y|x) with a logistic function:

P (y = +1|x) =
1

1 + exp(ω0 +
∑n

j=1 ωjxj)
(5.1)

P (y = −1|x) = 1− P (y = +1|x) =
exp(ω0 +

∑n
j=1 ωjxj)

1 + exp(ω0 +
∑n

j=1 ωjxj)
(5.2)

where xj are the n components of the vector x. The decision of the class

to assign to a given sample x is taken by comparing the two probabilities

P (y = −1|x) and P (y = +1|x). The parameter vector w can be found by

maximizing, by using gradient ascent, its log-likelihood, with a term added

to penalize large values of ω components:

Lλ(ω) =
N∑
i=1

logP (yi|xi, ω)− λ‖ω‖2 (5.3)

5.3 Encoding

The chromosome of each individual in a population encodes a set of features,

and its logical structure is shown in Figure 5.1.

A chromosome contains a variable number of genes, with an identical

structure, and each gene is formed by five elements. The first three elements

define a feature: the first one is an integer designating one feature extractor

out of a predetermined set, while the two following elements encode two real-

valued parameters for such an extractor. Feature extractors are functions
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Figure 5.2: The weight functions encoded in genes.

with three arguments: a signal from which a feature is extracted, and the

two parameters encoded in genes; these parameters are within the range

[0, +1), and their actual meaning varies from extractor to extractor. The

fourth element of a gene is an integer number, which identifies the EEG

channel where the feature encoded in the gene is to be extracted from. The

last element of a gene is a Boolean flag that determines whether the gene is

active or inactive. Inactive genes are not used to compute the fitness of a

chromosome. Their role is of a genetic reserve, as they can be turned on in a

later generation by mutation. The position of a gene within a chromosome

is not significant.

Six different feature extractors are used, which share a very simple

scheme: the input signal is multiplied by a weight function, and the re-

sult is integrated over time. In other words, feature extractors compute the

cross-correlation between the input and a weight function. If we call s(·) the

EEG signal from the channel the feature is to be extracted from, a feature

extractor constructs a weight function u(·) from the parameters specified

by the gene elements and then computes the resulting feature x with the

formula:

x =
T∑
t=1

u(t)s(t) (5.4)

The six weight functions used by the six feature extractors are shown

in Figure 5.2. The feature that uses the weights shown in the top-right

box is proportional to the average of the input signal over an interval; the

extremes of the interval are determined by the two parameters (A1 and A2
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in the figure) encoded in genes. The weights in the top-left box produce a

similar effect, but the samples at the center of the interval weight more. The

functions in the middle row compute the differences between two adjacent

intervals; again the extremes are encoded in genes. The functions in the

bottom row compute the cross-correlation with a sine wave; genes encode

frequency and phase of the sines. The interval where the bottom-right weight

function is not zero is fixed, and it goes from 0 to 600 ms after the stimulus,

i.e., it is centered around the P300. These last two functions permit to do a

sort of frequency analysis of the signal.

5.4 Fitness and Selection

The fitness of a chromosome is determined by measuring the performance

of a logistic classifier on the features it encodes. To have a fair estimate

of the performance, a 4-fold cross-validation scheme on the training set is

used, and the mean performance on the 4 folds is used as the fitness. The

actual criterion used to evaluate the “performance” depends on the kind of

data. For data recorded, the number of correctly predicted stimuli is used,

with a little bonus for stimuli that can be correctly predicted with less than

the maximum number of repetitions. Let us call l the number of correctly

predicted stimuli out of a total of n, N the number of repetitions in the data

set, and ri, i = 1...n, the number of repetitions needed for the prediction of

the letter i. The fitnessf is then given by:

f =
1

n
(l +

1

l

∑
i∈I

N − ri
N + 1

), (5.5)

where I is the set of correctly predicted stimuli. The second term in the

parentheses computes an index, averaged over the l correct letters, that

grows with the decreasing of ri; this index is always strictly less than 1, and

therefore it contributes to the fitness less than a single correctly predicted

letter. In this way, a higher number of correct stimuli is always preferred to

a lower number of repetitions needed for correct prediction.

Repetitions are taken in their natural order, and ri is computed in way

such that if a letter is correctly predicted by using the first ri repetitions,

then it must be correctly predicted also by using the first ri + 1, ..., N repe-

titions.

The fitness function of our genetic algorithm can be easily changed with-

out modifying anything else in the algorithm. This permits to adapt the fit-

ness computation to a different BCI task, and if there are no letters to spell,

other measures like accuracy, recall, or mutual information can be used.
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Figure 5.3: Crossover operator. The two possible way of applying it are shown.

Figure 5.4: Mutation operator. Gene elements selected for mutation are marked.

In a genetic algorithm, fitness is used to select the most promising in-

dividuals for the next generation. The selection mechanism employed is

tournament selection with elitism, a standard setup in genetic algorithms,

with no particular adaptation. In tournament selection each individual of

the new population is selected by setting up a tournament: a fixed number

k of individuals are chosen at random from the old population, and the one

with the highest fitness is declared the winner and will get in the next genera-

tion. Elitism is the practice of keeping the fittest individual or individuals in

the new generation, even when selection discarded them (e.g., because they

never participated to any tournament), or mutation and selection modified

them.

5.5 Genetic Operators

After selection, the selected population undergoes crossover and mutation.

These two operators have been slightly modified in order to adapt them to

the non-standard chromosome structure we employed. Figure ?? shows how

crossover works. Crossover is applied to pairs of chromosomes in the selected

population (chosen at random) with a probability of 0.7; both chromosomes

are split in two sections at a gene boundary in a random way, and then the

four sections are recombined. Because the order of genes in a chromosome

is not important, one section from one chromosome can be coupled with

either section from the other one, and so there are two different way of

doing crossover. Which way to use is randomly chosen each time, and it

121



is important to use both ways, as this choice increases the mixing of the

genetic material.

Crossover may be applied to individuals with a common ancestor, and

so they may share some genes. In this case, it is very likely that at least one

of the new chromosomes contains duplicated genes, and many duplicates

accumulate with time. These duplicates are ignored for fitness evaluation.

Mutation (see Figure 5.4) operates on gene elements; for each element

in each gene, a random choice is taken whether to mutate it, independently

from each other, but with the same (small) probability, which is 0.005 in this

algorithm. Elements are modified differently accordingly to their type. For

a discrete element (extractor, channel, and active flag), mutation modifies

it by choosing one of the other admissible values for that kind of elements,

at random. For a continuous element (the two extractor parameters), a

perturbation is added according to a Gaussian distribution; if the result lies

outside the admissible interval [0, 1), it is wrapped around, e.g., a value of

0.95 which is perturbed by 0.07 does not result in a new value of 1.02, which

is not legal, but it is wrapped to 0.02.

The use of normalized extractor parameters is useful because the way

mutation works. When mutation is applied to the gene element that encodes

the feature extractor, the parameters are always legal also for the resulting

new feature extractor; moreover, in some cases the old and the new weight

functions are similar, and this helps the GA.

5.6 Population Size and Stop Criterion

The size of the population is constant throughout a GA run. The initial

population is completely random; the length, i.e., the number of genes, for

each chromosome is extracted from a geometric distribution with mean 20.

The actual values for gene elements are taken from uniform distributions

over the whole range of legal values for each element.

The last component to complete the GA description is the stop criterion.

We relied only on the number of generations, after some initial experiments

where we noticed that in all runs no improvements could be seen in both the

fitness of the best individual and the mean fitness of the population after

1015 generations. Figure 5.5 shows how the fitness of a population evolves

in a typical GA run; it is evident that the maximum fitness reaches a plateau

after only 78 generations, and population fitness tends to stabilize around

the 12th generation. In any case, a check on the fitness growth is made

after each run, so as to be sure that evolution has actually stopped: if the
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Figure 5.5: Evolution of fitness over time (generations) for the whole population in

a GA run. Noise has been added to the point positions so as to make visible also

overlapping points.

maximum and mean fitness has been constant for the last 34 generations,

evolution is considered finished.

5.7 Feature Set Validation

After the end of each GA run, the performance of the individuals with a high

fitness is validated on a test set, never used before by the GA. This validation

is done on the individuals with a fitness at least 99% of the fitness of the best

individual in the last generation. Evaluating more than one individual and

not just the best one results in a more robust assessment of the effectiveness

of the method.

For each individual, the features encoded by its chromosome are ex-

tracted from all the training data (i.e., the data used for fitness evaluation),

and a logistic classifier is trained on them. The same features are extracted

from the test set, and the classifier is evaluated on them. The classifier

can also be used online, together with the feature extractors it was trained

on. The feature extractors and the trained logistic classifier are very fast to

apply, and they can be used online in real-time.
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Chapter 6

Training Test and Results

“It’s time for a new National Anthem. America is divided into two definite

divisions. The easy thing to cop out with is sayin’ black and white. You can

see a black person. But now to get down to the nitty-gritty, it’s getting’ to be

old and young - not the age, but the way of thinking. Old and new, actually...

because there’s so many even older people that took half their lives to reach

a certain point that little kids understand now.”

Jimi Hendrix

The goal of this study was to test and evaluate our portable brain-

computer interface application design based on the three-stimulus oddball

paradigm (see Subsection 2.4.6 on page 39) that allows a binary selection.

In order to test the training session functionality and test the classifica-

tion protocol (described in Chapter 5) with our Auditory P300-based BCI,

data have been collected and validated offline. This chapter contains re-

sults obtained in order to show the application behaviour and the offline

classification based on the tree-stimulus oddball paradigm. All results are

validated relying on the goodness of our classifier, performing tests on target

stimuli classification in different acoustic sessions for each subject.

Section 6.1 explains how we have designed the audio trigger detection for

each stimulus in the sequence, Section 6.2 explains how data are acquired,

while Section 6.3 contains all the results computing the accuracies for the

target/non-target classification and the communication speed expressed in

bits/min.

6.1 Threshold detection algorithm

As explained in Section 3.9 on page 74, in order to make a correct classifi-

cation when doing experiments with ERPs induced by external stimuli, it is
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Figure 6.1: Representation of the edf file content. The EEG tracing of Fz, Cz, Pz, and

O1 channels is represented in dark green color, while the tracing of the audio trigger is

represented in black color. In this example the session is composed by 20 randomized

stimuli: 14 standard tones, 3 deviants and 3 targets. The ISI between each stimulus is

1000 ms and the total duration of the session is about 28 seconds.

Figure 6.2: Trigger signal example for the threshold detection algorithm. The left

sinusoid represents the 20 Hz added before the 1000 Hz standard tone, while the right

one represents the 20 Hz added before the deviant/target word.

very important to have the EEG recording synchronized with the acoustic

signal. During all the sessions, the audio trigger signal is recorded from a

specific channel of the EEG amplifier (see Section 3.9 on page 74) with the

EEG data.

An edf file [49] is generated automatically during the session, where the

subject information and the EEG data with the audio signal are stored (see

Subsection 4.12 on page 113 for details). Each acoustic stimulus is identified

with a stimulation code and is said to the system when it is a target or a

non target in a text file. Figure 6.1 shows an example of the edf file content

generated by the application. The tracing of the EEG data is represented
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in dark green color while the tracing of the audio trigger is represented in

black color. The edf and the text files are elaborated by the server in order

to train, test and classify the target stimuli. In the code executed on server,

a trick in order to recognise each acoustic trigger signal that elicits the P300

wave is actuated. Each audio file loaded in the training interface (standard

tone and deviants stimuli), is composed at its beginning by a 20Hz sinusoid

T =
1

20Hz
= 0.05ms (6.1)

long (see Figure 6.2). The server that process data, receive the edf files

where the header (specified with the standard composition [49]) has a tag

added at the end in order to recognise when the file has to be processed for

the Visual BCI or for the Auditory BCI. For example we have implemented

a tag defined as “20Hzfall”. As we can see in Figure 6.1, in particular

the tracing of the audio trigger, the application before sending the stimuli

to the subject, generates a sinusoid at 20 Hz with unitary amplitude one

second long called pre-stimulus. During this time frame (about 6 seconds)

the threshold algorithm for trigger detection is computed, and the genetic

algorithm is performed after this learning time. Is implemented a double

moving window with length

L =
512Hz

20Hz
= 26samples, (6.2)

each, where 512 Hz is the sample-frequency used to process the EEG data.

The area of the pre-stimulus defined as a single period of a 20 Hz tone is

computed as the sum of each windows length until the learning time period

(26 samples) defined as tuning threshold. The threshold is defined as the

65% of the total area for the trigger detection:

TH = prctile(areatuning(thresholdtuning), 65). (6.3)

6.2 Data acquisition

As explained in Section 3.1 on page 64, we have developed the training inter-

face based on the specifications given by the psychologist Mauro Marchetti

[89]. We have collected several data with our BCI ON application. The

EEG was recorded with Ag/Agcl electrodes (see Figure 3.4 on page 70)

positioning them in the Fz, Cz, Pz, and O1 in order to capture the P300

waves on target stimuli. Each channel was referenced and grounded to the

mastoid and the impedances were kept below 5KΩ (see A.3 on page 153 in
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the user manual for details). The EEG was recorded and amplified with the

BE Light A.2.4, notch filtered at 50 Hz and sampled at 512 Hz.

To test the application training behaviour, data from three subjects [25]

have been acquired. All the experiments have been performed in the AirLab

of Politecnico di Milano - Como Campus.

6.2.1 Experimental design

Subjects were seated in a comfortable chair approximately less than one

meter from the EEG amplifier and the electrodes were positioned over their

scalp (see the User Guide in the Appendix A in Section A.3 on page 153

for details). The headphones were placed in the ear to present the auditory

stimuli. Participants were cued about the current target stimulus to pay

attention to, and the beginning and the end of the session was synthesized

directly by the application through an English female voice. During the ex-

periments participants have been instructed to be very relaxed and possibly

to remain with their eyes closed in order to increase their concentration. To

optimize the target detection it was suggested to count each target word.

The experiment consists in 20 randomized stimuli organized in sessions

for each participant. In each session we present pure tones (70% of the

sequence) and two words (each 15% of the sequence), considering 17 non

targets stimuli (14 standard tones and 3 deviants) and 3 target words for

each session. Participants have to concentrate on the designed target re-

ported directly with the application in the in-ear headphones before the

beginning of each session, and discard the other deviants and the standard

tones. We have considered a standard pure tone at 1000 Hz with 80 ms

duration, and the two deviants words yes and no each 500 ms long. All

stimuli were delivered at 75 dB in stereo (both ears). The target designed

for selection was alternated between word yes and no from one session to

another (e.g., sessions 1, 3, 5, 7, 9, 11 selection of word yes; sessions 2, 4,

6, 8, 10, 12 selection of word no). Sessions were designed to elicits both

the P3a (elicited by deviant word) and P3b (classic P300 elicited by target

word) components, accustoming the subject to the same timing delivering

(ISI with a fixed time of 1000 Hz between each stimulus). This is done in

order to test the correct classification of the target word with a confusion

matrix. Before each session, each sound is tested to the participant in order

to verify that the he could differentiate the acoustic stimuli.
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Table 6.1: Confusion matrix.

actual

value

Prediction outcome

p n total

p′
True

Positive

False

Negative
P′

n′
False

Positive

True

Negative
N′

total P N

6.3 Auditory BCI performance

This section contains the results obtained with data collected during the

experiments. Accuracy and communication speed are obtained for each

participant and then averaged to get the performance of our auditory BCI

system. In order do this we have computed for each subject a confusion

matrix

A confusion matrix, also known as a contingency table or an error matrix

[137] is a specific table layout that allows visualization of the performance

of an algorithm. Each column of the matrix represents the instances in a

predicted class, while each row represents the instances in an actual class. A

confusion matrix is represented as in Table 6.1 and its elements are defined

as:

• true positive (TP): is the number of correct predictions that an in-

stance is positive (i.e., a target)

• true negative (TN): is the number of correct predictions that an in-

stance is negative (i.e., a non target)

• false positive (FP): is the number of incorrect predictions that an in-

stance is positive (i.e., a target)

• false negative (FN): is the number of incorrect of predictions that an

instance negative (i.e., a non target)

From the confusion matrix it is possible to define the Accuracy (AC)

(used for our tests) as the proportion of the total number of predictions
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that were correct:

AC =
TP + TN

TP + TN + FP + FN
(6.4)

The communication speed was defined as the number of bits transmitted

per run [107]:

B = log2N + Plog2P + (1− P )log2(
1− P
N − 1

) (6.5)

with N being the number of possible targets (in our case is 2) and P being

the probability of the correct classification (defined as the accuracy). To

compute the ITR (Information Transfer Rate in minutes) we have to consider

the total number of stimuli for each trial (in our case 20) multiplied by the

averaged interval timing between stimuli. This value have to be multiplied

by the total number of trials and then converted to minutes by division of

60 obtaining the time t in minutes needed for a selection with the given

number of trials. Then the bitrate given in the Equation 6.5 is divided by t

in order to obtain the ITR.

6.3.1 Results

To compute the probability of the correct classification for our BCI system,

we have considered a test set of 10% of the training set for each subject. The

first experimental test of our BCI system was performed on three students

and their training sets considered different but homogeneous. In Table 6.2

the training set for each subject considered is shown.

Table 6.2: Training set considered for each subject. The total number of stimuli,

the target and non target are defined for the training set.

Subject Training set Total stimuli Targets Non Targets

1 12 240 36 204

2 10 200 30 170

3 4 80 12 68

The training set for each subject is composed by a trial with 20 standard

tones, 3 deviants and 3 targets per session. The system for the first subject

should classify 36 target words on a total of 240 stimuli; for the second

subject should classify 30 targets on a total of 200 stimuli; for the last

subject should classify 12 targets in a total of 80 stimuli. The elements of

the confusion matrix for each subject computed by the genetic algorithm is

defined in Table 6.3.
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Table 6.3: Elements of confusion matrices for each subject. True Positives (TP),

False Positives (FP), True Negatives (TN), False Negatives (FN).

Subject TP FP TN FN Accuracy [%] Bitrate [Bits/min]

1 36 0 204 0 100 0.25

2 30 0 170 0 100 0.30

3 8 4 68 0 95 2.88

In Table ?? it is possible to see that for the subjects 1, the genetic

algorithm has classified 36 stimuli over 36 target and 204 stimuli over 204

non target. The accuracy obtained is 100% and the bitrate is 0.25 bits/min

reaching the perfect classification. The same result is obtained for the second

subject which has classified 30 stimuli over 30 target and 170 stimuli over

170 non target. The accuracy is 100% and his bitrate is 0.30 bits/min. The

last subject has classified 8 stimuli over 12 targets while the true negatives

are 68 over 68 non targets reaching an accuracy of 95% and a bitrate of 2.88

bits/min. Accuracies and Bitrates for all subjects are then averaged and

reported in Table 6.4.

Table 6.4: Offline classification test results. The bitrate expressed in Bits/min and

the accuracy are computed for each subject and then averaged.

Subjects Accuracy [%] Bitrate [Bits/min]

1 100 0.25

2 100 0.30

3 95 2.88

Mean 98.33 1.14

The averaged accuracy between the three subjects is 98.33% and the

bitrate is 1.14 bits/min. With this results we can state that for our first

testing of the application we have reached an high accuracy and a competi-

tive communication speed as the prerequisite of the thesis work.
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Chapter 7

Conclusion

“When I’m sad, she comes to me

With a thousand smiles, she gives to me free

It’s alright she says it’s alright

Take anything you want from me, anything

Anything.”

Jimi Hendrix - “Little Wing”

For patients with impaired vision at the final stage of the disease, it is

important to have a BCI paradigm that does not require visual feedback

or stimulation. Additionally, an easily attained high level of accuracy is

particularly important when working with ALS patients because the average

accuracy in any kind of BCI tends to be lower than for healthy subjects.

This thesis has presented methods, validated by experiments, in order to

develop a portable auditory brain-computer interface based on P300 to al-

low Yes-No communication to Amyotrophic Lateral Sclerosis patients. This

type of BCI allows to deliver an acoustic randomized sequence composed

by two deviant words and standard tones using the three-stimulus oddball

paradigm. The training interface, has been realized from the input of Mauro

Marchetti, thinking to ease its use by doctors or psychologists that will use

the application for their tests.

The first work done in this thesis was to build an oddball paradigm

generating a randomized sequence of stimuli with a frequent sound and two

deviants. The interface developed is composed by eleven channels that allow

to loading wave files such as pure tones, words and complex tones. For

each channel the user can define the directionality (stereo, mono right or

mono left), the Loudness perceived from the participant (75 dB, 65 dB and

55 dB) with the clinical in-ear headphones developed, and the probability
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of occurrence (70% for standard tone and 15% for deviants). The user

can also set the total number of stimuli of the sequence, and the pattern

of stimuli presentation between SOA and ISI with their advanced settings

(i.e., a fixed interval, five intervals chosen randomly or random intervals

choosing the minimum and the maximum values). The user is forced to

insert the participant credentials and the number of the current session,

with the possibility to save and load it with all the parameters defined from

SD card.

The second step of the work was based on the implementation of the

Auditory BCI with the Visual BCI speller adapting the drivers that allow

the communication between devices. Drivers are implemented in order to

enable the 10-20 system with the possibility to activate the desired electrodes

on the tablet screen, visualize only the behaviour of the signals associated

to the channels selected and finally the training session is performed by

processing only the channels enabled. The training files generation for each

participant ID subdivided in session, and a tag (Auditory or Visual) which

distinguishes the type of the BCI is added to the file name.

The clinical in-ear headphones developed for the experiments are de-

signed to avoid problems with the correct EEG estimation, in order to

maintain a suitable distance from the electrodes positioned over the sub-

jects adding a PVC tube 1 meter long between the in-ear amplifiers and the

silicone ear plugs. An audio signal adapter for the EEG synchronization

with the acoustic stimuli, has been developed to adapt the dynamic audio

signal output of the tablet into the EEG amplifier.

Data acquired from subjects have been used obtaining promising results

for the first preliminary tests of the audio protocol, our methods for filtering

data, extract the features and classify the target words. We have demon-

strated that the oddball BCI paradigm that we have built in the Auditory

BCI application, is able to achieve high accuracy of 98.33% and competitive

bitrates of 1.14 bits/min.

7.1 Future work

The application interface of the Auditory BCI could to be improved with the

saving of the electrodes selection from the user for the current participant.

May be a possibility to select/deselect all electrodes with a single button

would be useful to improve the application usability.

The application drivers have to be optimized in order to maintain a

stable connection between the tablet and the EEG amplifier when the the

EEG data are requested in reading/writing from the circular buffer of the
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BE Light. Thus avoiding the flashing of drivers during the usage of the ap-

plication. Having implemented the electrodes selection of the 10-20 system

in the Auditory BCI using and the dynamic data processing to elaborate

the EEG data, we have to adapt also this feature back to the original Visual

BCI speller.

Another step to do with our application is to implement the online phase

for the ERP classification in real time with a feedback presentation (e.g.,

the classified yes or no words presented acoustically to participants, and

the corresponding word displayed on the monitor to the user). The most

important step will be to examine the use of the application with individuals

diagnosed with amyotrophic lateral sclerosis (ALS).

A next step that we want to do is to adapt our application with the

Emotiv EPOC / EPOC+, that is a revolutionary Brain Computer Interface

with a wireless EEG system that offering high resolution, implementing both

the Visual and the Auditory BCIs.
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[2] Akust. Z. After v.Békésy. Physics Today., volume 8. 1943.

[3] Hirotugu Akaike. A new look at the statistical model identification.

IEEE Transactions on Automatic Control., page 716723., 1974.
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Appendix A

User manual

v1.0 - 8th July 2015

A neural interface, better known as BCI (”Brain-Computer Interface”),

is a direct communication pathway between the brain and an external de-

vice. BCIs are often directed at assisting, augmenting, or repairing human

cognitive or sensory-motor functions. A BCI is a system able to redefine

signals generated by the user’s brain in a defined command, bypassing the

work of muscles and nerves.

With the ON application, the equipment is able to recognize a brain

wave that occurs when a subject focusing his spatial attention on an acoustic

target told with a voice synthesizer before each session. It follows that the

subject should focus only on the choice he did, for example, counting the

number of the target stimulus heard. For a correct operation it is necessary

that the user is concentrated and relaxed. Then a training is necessary to

get a classification of the binary choice.

A.1 How to install the application

To install the application, download the ON application package in the SD

memory card, and then open it. It will launch the Android Play Store;

follow the installation procedure and then agree to the permission request.

For submitting training records and receiving data is recommended to install

Dropbox, an application available for free.

A.2 Hardware component

The hardware set-up is made of many separate components:
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Figure A.1: Auditory BCI set-up scheme.

1. Tablet

2. Access Point

3. BE Net interface

4. BE Light amplifier

5. Audio stereo splitter

6. Clinical headphones

7. Audio signal adapter

The single components interact in the following way (A.1). In the following

each single components is analyzed.

A.2.1 Tablet

The application has to run on Android operating system (3.0 up to Lollipop

5.1.1) with a working Wi-Fi connection. The tablet has to be connected to

a network created from the access point.
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A.2.2 Access Point

A generic access point will be sufficient. The network configuration is

arbitrary as long as you use a range of IPv4 addresses with net mask

255.255.255.0. It is very important to leave one address free to be able

to connect to the network, which has a specific static non-configurable IP

(192.168.171.212).

A.2.3 BE Net

Ethernet interface equipped with an optical fiber for EEG data transmission

from EBNeuro. Works as a power manager for the EEG amplifier. No

specific configuration is mandatory, but it has to be plugged to a power

source.

A.2.4 BE Light

EEG signal amplifier from EBNeuro. It has to be placed at least one meter

to the patient, so that the electrodes can be easily connected. It is powered

by the BE Net with its cable and an optical fiber.

A.2.5 Stereo splitter

Splits the audio signal generated from the tablet so that it can go both into

the BE light through the clinical headphones.

A.2.6 Clinical headphones

In-ear headphones that have been modified in order to not interfere with

the EEG signals reading, isolating the magnetic field generated.

A.2.7 Audio signal adapter

Electrical circuit that reduces the audio output voltage dynamics from the

tablet into the BE Light. This cable has to be plugged in the 22 port and

NEP port (distinguishable from the color of the connectors).

A.3 Patient preparation

Once the application is installed correctly on the tablet, it can be possible

to proceed the stimulation. To do so it is extremely important to prepare

the patient and positioning the electrodes correctly over its scalp according

to the 10-20 system. To do this it is needed:
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• conductive paste

• swabs

• grease removal preparatory gel

• a paper tape measure

According to the necessities, decide which electrodes to position and which

channels activate in the application.

A.3.1 The 10-20 system

The 10-20 system defines the position of the electrodes according to an-

thropometric measurements. The nasion and the inion points are taken as

guides on the anteroposterior midline while auricular points are used on the

coronal-lateral side. The distances between the electrodes are 10% or 20%

of the total distance measured from he nasion and the inion points as in

Figure A.2.

Figure A.2: Electrodes in the 10-20 system.

A.3.2 Patient Preparation Procedure

1. Identify using the paper tape the nasion and inion points as well as

all the points in which you will position your electrodes. If necessary

mark the precise spot using a marker.

2. Prepare the needed electrodes, cleaning them with the grease removal.

Be sure that there is no residual grease on the electrodes.
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3. Put some conductive paste on the electrodes, making sure that it cov-

ers the whole thing.

4. Place the electrodes on the previously marked points. Be sure to avoid

trapping any hair between the skin and the electrode. The electrode

has to be positioned in the position of the 10-20 system.

5. The first two electrodes positioned, should be the ISOGN (ground)

and the NE (reference) and they should be positioned on the mastoid,

behind the ear.

6. Position the remaining electrodes in the correct positions.

7. In the IMPEDANCE CHECK menu verify that the value of the impedances

is correct. If the value is visualized in red or orange, it means that

the impedance is too high. If this happen, replace the electrodes and

trying to find the optimal value. If the problem is generic, it means

that all the electrodes have a high impedance so replace the ISOGN

and the NE electrodes.

8. If the problem continues, replace all the electrodes starting with the

ISOGN and NE. Problems could be due to the electrodes not properly

cleaned.

9. Position the clinical headphones on the patient in a comfortable way.

A.4 Menu of the application

A.4.1 ON home screen

After launching the application, the home screen is visualized (Figure A.3).

Selecting the BCI menu, is possible to choose between the visual and audi-

tory BCI (Figure A.5 on the left). In this manual only the Auditory BCI

is treated. After having selected the auditory BCI, wait a few second to

ensure that the connection has been established correctly. One it happens,

a green sign with written CONNECTED will occur. The home menu of the

acoustic BCI is shown in Figure A.5 on the right.

Inside the auditory BCI menu, you can choose between the following

options:

• Training Session

• Impedance Check
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Figure A.3: Home Screen menu.

Figure A.4: Acoustic yes-no BCI menu.

• View Signals

• Training BCI Sender

A.4.2 Training session

In this interface it is possible to set the auditory stimuli that will reach the

patient.

Main settings

In the first layout there are 11 audio channels, where is possible to activate

or deactivate them through their selection. Once a channel is activated and
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Figure A.5: Main settings and Advanced settings in training session interface.

than a wave audio file is loaded, is possible to define the acoustic audio

synthesis for that file defining a Loudness level (in terms of Sound Pressure

Level [dB]) with its direction in Mono Left, Mono Right or Stereo, and the

percentage of trials for the final stimuli presentation (70 for frequent sound

and 15 for deviants). In order to maintain a correct stimuli presentation is

possible to prepare more than 1 channel for Frequent sound and more than 2

channels for Deviant sounds, but is necessary to leave selected at maximum

3 channels (1 channel for Frequent sound and 2 channels for the Binary

deviants choice) otherwise the application does not generate the sequence

in order to prevent errors and alert the user to see the User Guide.

Advanced settings

In this layout is possible to define:

• The total number of the acoustic stimuli presentation to the partici-

pant.

• The type of interval between two consecutive stimuli (SOA counts the

time interval between the beginning of one stimulus and the beginning

of the next one, while ISI counts the time interval between the end of

one stimulus and the beginning of the next one).

• The relative timing presentation related to the type of interval (FIXED

INTERVAL set the same time interval between all stimuli, INTER-

VALS set a randomized time intervals between stimuli chosen from five

timing defined and RANDOM INTERVALS set a randomized time in-

tervals chosen at random between a minimum and a maximum timings

defined).
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Patient credentials

Every time a training session starts with a new patient, it is important

to insert the patient credentials (Figure A.6) selecting the button “ADD

PARTICIPANT” from the top of the menu.

Figure A.6: Menu to insert patient credentials in the training session interface.

Generate pattern

Figure A.7: Acoustic pattern generation and choose target selection.

When the session is created and all parameters are properly set, is pos-

sible to generate the sequence to deliver. A simple summary of the sequence

and timings generated is shown (Figure A.7). After the selection of the

CHOOSE TARGET button, it needs to define the current target that is

sent via headphones to the patient to pay attention and then initialize the

session selecting the START SESSION button.
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A.4.3 Impedance check

In this menu (Figure A.8) it is possible to check the status of the electrodes

positioned on the patient. A circle that changes color based on the value

of the impedance represents each electrode. Optimal values are < 5kΩ and

are represented by green; If the value is too high the circle will turn orange

(< 5kΩ� 10kΩ) or red (> 10kΩ).

Figure A.8: Impedance check menu.

A.4.4 View signals

Figure A.9: View signals menu.

The menu (Figure A.9) is divided in a three parts. In the upper part of

the screen (in purple) it is possible to visualize the signal trace for each acti-

vated channel. Every trace is associated with the name of the corresponding

electrode and the peak-peak value in µV . In the central part of the screen
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(in green) there is the trigger channel. Whenever the patient will listen to a

stimulus it will be synchronized with the trigger. To view the audio trigger

is possible to play a sound loaded in the training interface and visualize it

on the screen clicking on “AUDIO TRIGGER” button. In the bottom part

of the screen is possible to visualize the power spectral density (in blue). It

is computed using the first electrode positioned on the patient and it allows

to visualize the power distribution with respect to the frequencies. This

allows to visualize the peaks due to environmental electromagnetic noise. Is

the possible to change the channel computing the PSD with in the top right

corner button.

A.4.5 Training BCI sender

In the main menu choose “TRAINING BCI SENDER” to reach the screen

of selection and send the training data (Figure A.10).

Figure A.10: Training BCI sender menu.

Here is possible to visualize the Patient ID folder selected that collects

all the training sessions not unset yet (LAST button) or already archived

(ARCHIVE button). By the selection of one or more training sessions is

possible to execute one of these operations:

1. PATIENT ID : allows to browse the desired ID folders and visualize

all the training files inside it.

2. SEND : allows to send the training session to the data elaboration

server in order to obtain an update of the classifier. Sessions, after

sending, will be automatically archived.

3. MOVE : change the position of the selected sessions from to the LAST

folder and ARCHIVE folder (and vice-versa).
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4. DELETE : delete the training session from the local memory. If the

sessions are already been sent to the server, they are not deleted from

the tablet storage.

A.5 An example of use

To avoid the inadvertent contact, the menu only reacts to prolonged selection

on the screen. To start a new clean session insert the patient credentials (or

confirm the previous ones already entered) clicking in the main menu on

ADD PARTICIPANT Button.

Initially the SAVE button in the menu is disabled until the session cre-

ation. It is possible also to restore a session of a configuration saved before

in device SD card just clicking on LOAD button, browsing the patient ID

folder and select the desired configuration. There is a possibility to reset the

session simply selecting the RESET button and if there is already a session

created for a specific participant, this operation restore all parameters at

their initial state (as a new creation session).

For a correct acoustic stimuli presentation for the training session is

necessary to:

1. Select a channel.

2. Load an audio file for each selected channel.

3. Define the Loudness level for each selected channel.

4. Select the switches (R for Mono right, L for Mono left, and R + L for

Stereo) for each selected channel.

5. Select the percentage of trials for each selected channel.

6. Define the total number of stimuli presentation (the default number is

7).

7. Select the type of the interval presentation between the stimuli SOA

or ISI (Fix STD is automatically set by default).

8. Select and modify the desired time interval between the two stimuli

for the type selected.

9. Activate the desired electrodes from the IMPEDANCE CHECK but-

ton in the main menu.
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Figure A.11: Example of stimuli delivering.

10. Verify the correct signals visualization of the activated electrodes in

the VIEW SIGNALS menu.

11. If everything is correctly visualized, go back to the training interface

and select the on GENERATE PATTERN button to see the acoustic

synthesis pattern generated by system.

12. Click on the SELECT TARGET button to confirm the training session.

13. After an acoustic message to the participant choose the current sound

target for current session (deviant that participant have to focus during

the session).

14. Click on the START SESSION button to initialize the session.

During the acoustic stimuli presentation the current stimulus synthe-

sized, the progression of the total stimuli and the current delay progression

are visualized (Figure A.11)


