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Abstract

Malicious Software, from now on malware, is any software that brings harm to a

computer system.

According to Pandalabs [19] 75 million new malware samples were observed dur-

ing the last year, out of 350 million total malware specimens. This translates to

200,000 new malware samples every day.

Malware industry is rising as a real underground economy that generates huge

illegal pro�ts: stealing bank accounts, abusing credit cards number or penetrating

email accounts. Malware samples are regularly sold on the market, and they can

reach high prices. For this reason automatic malware analysis tools are strongly

needed to optimize analysis time of new samples and understanding of their malicious

behaviors.

Jackdaw [20], an automatic behavior extractor and semantic tagger, was built to

address this need. Jackdaw is a tool that analyzes malware samples exploiting static

and dynamic analysis procedures. Unfortunately, Jackdaw models are created and

saved as logical formulas, and show some limits in preserving information about API

calls numbers and taint dependencies between them. Jackdaw creates a basic model

that does not allow, for example, to track the presence in the model of more �les or

more system resources in use in the analyzed behavior.

This thesis will focus on improving Jackdaw's model generation providing ad-

ditional information with respect to the previous ones. Using static and dynamic

analysis techniques we are going to generate taint dependencies between system calls

and we are going to put them in a graph using taint dependencies analysis.

Our main goal will be to extract common behavioral models from clusters of mal-



ware, created by Jackdaw extracting common API call sequences that these shares.

New behavioral models will be a graphs in which nodes represent API calls and edges

dependencies between them.

The work presented in this thesis leads to the identi�cation of 607 malicious

behaviors models starting from a population of a large dataset of malware samples -

those behaviors were divided into 37 groups of indistinguishable behaviors according

to the old modeling system to prove the e�ective improvements in the quantity of

the behaviors we can distinguish. Thanks to the model introduced in this thesis, the

granularity of malware behavior distinguishable in our population increased of 85%.



Sommario

Un programma malevolo, d'ora in poi malware, è qualsiasi programma che può

danneggiare un sistema informatico.

Secondo McAfee [13] nel 2013 ci sono 100.000 nuovi campioni di malware in

circolazione ogni giorno. Questo numero è in costante crescita se pensiamo che

l'ultimo report pubblicato dopo i primi tre mesi del 2014 da Science Magazine [11]

lo ha ritoccato a 160.000 ed il report di Pandalabs [19] di �ne 2014 parla addirittura

di 75 milioni di nuovi malware usciti nell'ultimo anno su un totale di 350 milioni

attualmente in circolazione: questo si traduce in 200,000 nuovi malware ogni giorno.

L'industria dei malware è quindi in costante crescita come una vera e propria

economia nascosta che genera enormi pro�tti illegalmente: i programmi malevoli

non crescono infatti solo in numero ma diventano anche più so�sticati grazie alle

nuove tecnologie che permettono ad attaccanti malevoli di prendere il controllo della

vittima grazie a nuove tecniche. Oltre ai nuovi malware i vecchi possono essere

riscritti in nuovi, il più delle volte utilizzando strumenti automatici. [9, 23].

I malware generano quindi pro�tto tramite il furto di credenziali bancarie, quello

dei numeri delle carte di credito o più semplicemente tramite l'intrusione in account

di posta elettronica. I malware sono quindi venduti pro�cuamente anche sul mercato:

per esempio un campione di LusyPOS è stato venduto per 2000 dollari americani [1].

Non è di�cile quindi immaginare il ritorno economico che è possibile avere con

l'utilizzo di questi. [3]

Per questa ragione sono fortemente necessari degli strumenti per l'analisi auto-

matica di malware al �ne di ottimizzare il tempo di analisi dei nuovi campioni e

comprenderne il loro comportamento malevolo. I nuovi campioni che escono ogni



giorno non possono essere analizzati manualmente.

Per soddisfare questa necessità è stato costruito Jackdaw [20], un estrattore auto-

matico di comportamenti malevoli. Jackdaw è uno strumento di lavoro che analizza

gli esempi di malware tramite tecniche di analisi statica e dinamica. I malware

analizzati sono quindi clusterizzati su base comportamentale: ogni singolo cluster

è caratterizzato da un comportamento che è presente in ogni singolo malware del

cluster.

Sfortunatamente, Jackdaw estrae un modello comportamentale come formula

logica e presenta delle limitazioni nel mantenere informazioni sulle chiamate ad API

e le dipendenze tra queste interconnesse: Jackdaw crea un modello di base che non

permette, ad esempio, di tenere traccia della presenza di vari �le o di�erenti risorse

di sistema utilizzate contemporaneamente dal comportamento analizzato.

Questa tesi si focalizza sul miglioramento delle procedure di generazione dei

modelli di Jackdaw, proponendo più informazioni rispetto alla versione preceden-

te. Analizzeremo più speci�catamente le limitazioni presenti nell'attuale sistema di

modellizzazione e vedremo quali strumenti possiamo usare per superare le limitazioni

presenti nei modelli di Jackaw. Questo nuovo sistema di modellizzazione ci permet-

terà, quindi, di introdurre nuove caratteristiche rispetto come il tenere traccia di

chiamate multiple della stessa API e delle dipendenze tra queste.

Il lavoro qui illustrato ha quindi portato all'identi�cazione di 607 modelli di com-

portamenti malevoli partendo da una popolazione su�cientemente larga di malware

(3112 campioni). Questi comportamenti sono stati divisi in 37 gruppi di comporta-

menti non distinguibili secondo il vecchio modello, per provare l'e�ettivo migliora-

mento della quantità dei comportamenti che possiamo distinguere. Grazie al modello

presentato in questa tesi la granularità dei comportamenti di malware distinguibili

all'interno della popolazione di malware campione è aumentata dell'85% rispetto al

modello precedente presentato in Jackdaw.
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Chapter 1

Introduction

Malicious Software, from now on malware, is any software that brings harm to a

computer system.

According to McAfee [13] there were 100,000 new malware samples every day in

2013. This number seems to be constantly increasing: the latest report, published

Q1 2014 by Science Magazine states that 160,000 malware specimens are created

every day [11] while Pandalabs [19], at the end of 2014 speaks of 75 million new

samples in the last year, with a total of 350 million, which translates to 200,000 new

ones every day. Figure 1.1 signi�cantly evidentiates this fact.

Malware industry is rising as a real underground economy that generates huge

illegal pro�ts: malware samples don't grow in number only, but also become more

sophisticated, thanks to new technologies that allow malicious attackers to get control

of the victim using new techniques. In addition to new malwares samples old ones

can be mutated into new ones, most of times using automated tools [9, 23].

Malware generates pro�t trough stealing bank accounts, abusing credit cards

number or penetrating email accounts. Malware samples are also pro�tably sold on

the market: for example, a LusyPOS sample was sold on underground markets for

2000 US dollars [1]: it's not di�cult to imagine the economic return of using such

samples. [3]
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1. Introduction

(a) New malware samples every year after Q1 2015

(b) Total Malware in circulation after Q1 2015

Figure 1.1: Malware data after Q1 2015
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For this reason automatic malware analysis tools are strongly needed to optimize

analysis time of new samples and understanding of their malicious behaviors. New

samples that cames out every day cannot be studied manually.

Jackdaw [20], an automatic behavior extractor and semantic tagger, was built

to address this need. Jackdaw is a tool that analyzes malware samples exploiting

static and dynamic analysis procedures. Analyzed malware are clustered together on

a behavioral basis: every single cluster is characterized by behavior that is present

in each malware sample in the cluster.

Unfortunately, Jackdaw extracts a model of such behavior as a logical formula

and presents some limitations in preserving information about the number of API

calls, and taint dependencies between them. Jackdaw creates a basic model that

does not allow, for example, to track the presence in the model of various �les or

di�erent system resources in use.

This thesis will focus on improving Jackdaw model generation, providing addi-

tional information with respect to the previous one. We are going to analyze the

limitations of the current modeling system and see what tools we can use to overcome

existing limitations in Jackdaw models. The new behavioral model will be a graph

in which nodes represent API calls, and edges dependencies between them. This new

modeling system allows us to introduce new characteristics such as tracking multiple

calls of same API and dependencies between API calls.

The work presented in this thesis leads to the identi�cation of 607 malicious

behavior models, starting from a population of a large dataset of malware samples

(3112 samples). Those behaviors were divided into 37 groups of indistinguishable

behaviors according to the old model, which shows the e�ective improvements in

the quantity of the behaviors we can distinguish. Thanks to the model introduced

in this thesis, the granularity of malware behavior distinguishable in our population

increased of 85% than using Jackdaw old modeling system.

The rest of this document is summarized as follows: after the introduction in

Chapter 2 we will describe the challenges of malware analysis, summarize Jackdaw

and present how dynamic behaviors are extracted, introduce the concept of �nger-

3



1. Introduction

print and describe how malware is clustered together. In Chapter 3, we will see how

the proposed approach can synthesize malicious behaviors to produce behavioral

models. Chapter 4 will describe the implementations details, Chapter 5 experimen-

tal results of our approach while in Chapter 6 we will see limitations and future

works.

4



Chapter 2

State of the Art

In this chapter we present Jackdaw and show how using this tool behaviors are

extracted and clustered together.

2.1 Static and Dynamic Analysis

As stated in the Introduction tools of automatic malicious software analysis are

needed. Given a malicious software sample, two basic type of analysis can be per-

formed on it: static and dynamic. Let's see brie�y how they are performed and what

are the advantages and disadvantages of each technique, to understand how they can

be useful for our purposes.

2.1.1 Static Analysis

Static analysis consists in using analysis techniques that does not need to execute

the �le.

Usually, we assume to be able to obtain a readable assembly code using a disas-

sembler, and look at the entire sample composed by its various basic blocks1. Basic

blocks are connected in control �ow graph. We can also produce pseudo-code that

tries to represent the original code (compilation is not usually reversible). We can

look at the whole program, even parts that would not be promptly executed and

contain hidden functionalities: an analyst can �nd out every aspect of the malware.

1 A basic block is a group of instruction that is always executed consecutively

5



2. State of the Art

Unfortunately, this is not an ideal world and there are some strong limitations

to this type of approach: strong code obfuscation techniques can prevent the disas-

sembling itself [10]: for example, uncommon instructions such as opaque constants

calculations, or using a lot of jump instructions. There are also techniques of code

compression and code packing that encrypt the code and allows to see executed in

clear only a little part of it avoiding the unpacking of the whole malware for the ex-

ecution: code is decrypted and/or decompressed only at run-time, and not always in

the same way. [15] In fact, code can be dynamically generated too, obtaining many

di�erent samples of the same malware, simply changing the algorithm or using a

di�erent encryption key: this phenomenon is called polymorphism. Static Analysis

can partially be performed by automatic tools - in our work we use disasm [8] by C.

Krugel to analyze statically the control �ow graph of malware2.

2.1.2 Dynamic Analysis

Dynamic analysis consists in letting malware execute and tracking what happens.

Obviously, executing malware in a device compromises the device itself, so we use a

sandbox. A sandbox is a security mechanism to separate running programs, often

using virtual machines [6]. Often anti-viruses themselves had a sandbox that use to

dynamically analyze malware that are not in database or software that they do not

trust (Sandbox Analysis).

Dynamic analysis allows to track all the modi�cations that are done on the system

trough, for example, Windows API calls, as wells as network connections instantiated

by the malware. Sandboxes such as Cuckoo, track the calls before they happened

with hooking techniques: Other techniques simply look at the di�erence of system

images before and after malware execution.

The big limitation of this approach, di�erently from static analysis, is that not

all the code is tracked, but only the part that is e�ectively executed in the sandbox.

On the other hand, dynamic analysis is immune to obfuscation attempts, and has

no problems with self-modifying programs [2].

2see paragraph 2.2.3.1

6



2.2. Jackdaw

2.2 Jackdaw

Jackdaw [20] is an automatic behavior extractor and semantic tagger. It is used

to extract malicious behaviors from malware samples and it is the tool we want to

improve. We can de�ne a behavior as a group of di�erent API calls sequence that

realize a speci�c goal of the malware.

In the following paragraphs, the main concepts in the behavior extraction and

clusterization that we used for our purposes are presented. Malware is sent for

analysis to both Cuckoo (Dynamic Analysis) and Disasm (Static Analysis): results

are combined to generate taint analysis of malware and at this point behavior is

ready for clustering phase. This procedure is summarized in Figure 2.1.

2.2.1 API call List extraction

The �rst part of Jackdaw concerns about dynamic analysis of the malware sample,

extracting the Windows API calls [14] executed trough hooking techniques. This

part of work in Jackdaw is done by Cuckoo Sandbox and as output is provided the

complete API call list executed by malware in the Sandbox API calls, parameters

included. At this stage those list of API is provided us without taint dependencies

between API calls..

2.2.2 Data Flow Dependency

The process of behaviors identi�cation is performed exploiting data�ow depen-

dency techniques similar to the ones already presents in literature. As general rule

it is possible to de�ne that a dependency exist between instructions A and B when

instruction B execution requires data produced by instruction A [5, 16, 18]. Param-

eter propagation between the various System Calls is traced to reconstruct the call

hierarchy detecting those requirements.

Exploiting data �ow dependency, Jackdaw bound the API calls list into a graph

that represents the malware behavior.

7



2. State of the Art

Figure 2.1: Summary of Jackdaw

2.2.3 Fingerprints and common behaviors

2.2.3.1 Fingerprints

Fingerprint generation is based on the Control Flow Graph of the process: the

main CFG returned by data �ow dependency is divided into sub-CFG that have a

dimension of k3 nodes: one CFG node is a basic block of instruction.

Our target is to map the code portions recognizing similar ones in di�erent parts

of malware or di�erent malwares: every sub-CFG generates one or more strings

3In Jackdaw, coe�cient k, in our procedures set to 10 like in Krugel original paper [8]

8



2.2. Jackdaw

associated uniquely to its structure: those strings are called �ngerprints.

2.2.3.2 Fingerprint matching

Disasm results are produced by static analysis on the sample provided, behavior

are provided by Cuckoo Sandbox on dynamical analysis. The lasts are sent to a

Python module of Cuckoo, that is used at this point to match �ngerprints to API

call list. Code analyzed in this way is mapped by using virtual memory addresses:

basic blocks are marked with an initial and a �nish address, all API calls whose caller

address is between those block limits is mapped to the basic block and consequently

presents the same �ngerprints.

Fingerprints are so inserted in the �nal malware behavior: they are memorized

as a list in the node we will process. The process requires malware to be unpacked.

2.2.4 Clustering

At this point of the analysis we have the behavior results for each sample we

analyze. Our purpose, now, is to cluster together similar behaviors. In this phase

all the behaviors obtained at point 2.2.2 are merged and processed subsequently

independently from the malware sample they belong to.

Sub-graphs obtained are clustered according to similarity of their set of �nger-

prints using ECM Algorithm [22]. Using Jaccard Similarity [4], sets are clustered into

a dictionary, in which �ngerprints are the key to access the set and the list of graphs

that matches those �ngerprints are the values. Clustering phase is summarized in

Figure 2.2. Form of the polygons in tainted behaviors represents various behaviors

of an hypothetical malware analysis: similar forms represents similar behavior, dif-

ferent color are used to represent the fact that those behaviors are similar but not

identical.

9
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Figure 2.2: Clustering process

2.2.5 Model creation

In Jackdaw, after the clustering phase behavior were extracted using the Most

Frequent Rule API extraction.

The cluster behavior is represented as a set of API functions. The API functions

chosen are the ones that appears in 70% of cluster behaviors. The choice of 70% is

an empirical choice, based on experiments.

2.2.5.1 Parameter Models

After this step a model for parameters of each API in the �nal behavioral model

is calculated. These are the three model types we import from Jackdaw: we are

going to brie�y describe them, then we look how a new parameter can or cannot

10



2.2. Jackdaw

match with these models.

• Token Model: The token model creates a set of all the possible values of

the parameter. A new parameter match with this model if parameter value is

present in the set provided by the model itself.

• String Model: Strings are modeled according to length: a mean and variance

are generated. Matches with new samples are given according to Chebyshev

inequality [12,17]

• Ip Model: Matches are done with the IP regular expression. Essentially the

purpose of this model is to classify IP addresses in the three IP classes: local,

private and public

The parameters models are associated to each API call provided after their genera-

tion.

11
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Chapter 3

Proposed Approach

In this chapter we will see how clusters are processed to generate the �nal behavior

models. In section 3.1 we will analize Jackdaw limitations, and set our target to

overcome them. In section 3.2 we show what pre-processing steps we introduce in the

clustering phase. In section 3.3 we will show our modelization choices and process,

in the subsection 3.3.2 we will see how to optimize them during the modelization

process. At the end, in section 3.4 we will see how Jackdaw API call parameters are

reintroduced in our model.

3.1 Problem Statement

We have seen in section 2.2.5 how Jackdaw generates model, unfortunately model

generated with this approach have strong limitations.

The main limitation we want to overcome in this thesis is that API call order and

taint dependencies are not taken into account in the behavioral model: Jackdaw, in

fact, tracks only the presence or the absence of API calls.

This implies, for example, that we cannot distinguish multiple instances of same

actions de�ned by API calls, like opening or writing in a speci�c �le multiple times,

but only the presence or the absence of those actions. Our target is to represent the

malware behavior using a new concept of behavioral model, that permits us to take

care of API call repetitions and behavioral taint dependencies using the minimum

number of API calls possible.
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3. Proposed Approach

It must be noted that behavior instances in most cases are not composed by the

precisely but rather share some common alities that we want to model in a better way

than a simple API call set. In other words, we have to understand those di�erences

and eventually �merge� them. This was achieved by Jackdaw with the 70% treshold.

3.2 Clustering results preprocessing

We choose to discards some behaviors into a preprocessing step.

• Behaviors with one node. Our decision is not to consider these behaviors

because they are simple and already �modeled�

• Behaviors with 100 or more nodes. As we are going to see in the next

paragraphs, our procedures admits as hypothesis that graphs are relatively

small as we are going to transform it into trees and then generates all the

paths. This is true for most of the malware behaviors but not for all. For

performance reasons, big graphs are discarded

• Behaviors with no �ngerprints. All sub-graphs where all API calls has no

�ngerprints are automatically discarded. We cannot clusterize any behavior if

there are no �ngerprints in it according to paragraph 2.2.3.2.

3.3 Model generation using paths

We have seen in the previous section that after the clusterization phase every

cluster is composed by a set of directed graphs, where nodes represents the API calls

and edges represent taint dependencies.

To create the behavioral model we follow this rule: if one or more API calls are

in the �nal behavioral model, they must be, at least in the same quantity, in all the

graphs from which the model is generated. What we are doing is a sort of �graph

intersection�, starting from the assumption that nodes with the same API calls can

be matched. Obviously, this means that the �nal result will be smaller than the

smallest graph in the cluster in terms of number of API nodes.

14



3.3. Model generation using paths

Figure 3.1: Graph Samples

Let's consider the example in Figure 3.1. Each circle represents an API call, with

same colors represents the same call. Each arrow represent a taint dependency. We

�rst identify root nodes and leaves in the directed graph, then generate a list of all

the possible paths that the graph provides: every graph has to be reconsidered in

terms of root nodes, leaf nodes and paths. We can de�ne those concept in this way:

• Root node: a node that has only outcoming edges

• Leaf node: a node that has only incoming edges

• Path: an ordered node list between a root node and a leaf node. Node i and

i+ 1 in the list should have a directed connection from node i and node i+ 1

in the graph.

• Sub-path: every subset of the path list

We reason over path because we assume that each path represents the minimal unit

of behavior we can consider without losing information on dependencies.

Nodes are processed according to the API call they contain: nodes that have

the same API call are considered as matching. This aspect creates a of possible

ambiguity in the creation of our behavioral model that we will see in the Chapter 5.

Model creation can be done using two options created by design choice. First one

computes only the paths, the second one add to the set of the computed paths, also

the sub-paths as shown in Table 3.1. In this last case, we can add in the �nal model

15



3. Proposed Approach

also part of paths that matched between themselves from di�erent models. At the

moment this is only a design choice: we cannot say between the two options what is

the best one, only that the second one will provide obviously large models than the

�rst.

In both cases, the result we want to obtained from the example provided in Figure

3.1 is to match paths A-B-D from Graph 1, E-G-H from Graph 2 and L-M-P from

Graph 3.

We de�ne �common paths� every path that contains the same API calls in the

same order in all the graphs. As we are searching for common paths we start from

one graph and one of its generated paths - let's say that in this case we want to

match path A-B-D, that means �red-yellow-green� API calls. We check in the list of

generated path for the other graphs if there is a path with that condition in Graph

2 and Graph 3 and, if there is, path is added to behavioral model, in other word

the �nal graph is constituted by the set of the common paths of the cluster graphs.

Same API call can be contained into di�erent paths, this information is maintained

during the path generation phase in a way that permits us to reconstruct all the

dependencies during the �nal behavioral export, building a new graphs from the set

of the common paths we have.

3.3.1 Paths approach assumptions

In this sub-paragraph we want to see if our modeliazion choice are valid, what

are the consequences of our simpli�cations and if they can be accepted.

We can start doing it looking at �rst graph of Figure 3.1. With procedures

exposed in the previous section two paths are generated from this graph: A-B-D and

A-C: those paths are independent one by another. In fact, even if nodes B and C

Table 3.1: Paths of the Graph Samples in Figure 3.1

Graph 1 Graph 2 Graph 3

Paths A-B-D; A-C E-G-H; E-G-I; F-G-H; F-G-I L-M-O; L-M-P; L-N
Sub-Paths A-B; A-C; B-D; E-G; F-G; G-H; G-I; L-M; L-N; M-O; M-P
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3.3. Model generation using paths

Figure 3.2: Path models

are both connected to node A, the taint dependency between them simply means

they need the information A provided, but for di�erent purposes. The information

will be, in fact, processed in two di�erent ways, the �rst with node B and D and

the second with node C, but what is done with the API call in nodes B and D does

not a�ect node C and vice-versa. Reasoning by paths has no in�uence in the case

information produced from one API call are needed for two of more subsequently

API calls. There are no side e�ects during the processing phase of information that

those path shares.

In Figure 3.2 is shown, on the other hand, the opposite case in which an API call

(D) depends from information generated from di�erent API calls (B-C). We assume

that these two graphs were clustered together, so they represent two behaviors that

are similar between them and we want to merge. Reasoning by paths we see that D

depends from both B and C in the left graph, and its equivalent API call G depends

only from F in the right graph. Obviously, A and D are the same API calls of E and

G and probably do the same things - the di�erence is the API calls B and C in the

�rst graph and the only API call F in the second graph. There are three possibilities

to explain this in a real case:

• API call F do the same things as B and C combined

17



3. Proposed Approach

Figure 3.3: Graph Ambiguity Cases

• F does the same things of the API as B, and C is useless or junk code

• F does the same things of the API as C, and B is useless or junk code

We cannot decide in which of these three cases we are, thus A-B-D or A-C-D can

independently be chosen to match with E-F-G.

A mistake can be produced in the parameters model of the API chosen, but this

cannot be avoided. No errors are introduced in the �nal API calls model.

3.3.2 Matching improvements

We can improve the matching process avoiding ambiguities and repetitions. Let

us �rst consider Figure 3.3

If we start processing from graph 1, we have one �A-B-C� or �red-yellow-green�

path, and we will match that path with the �rst path we found in the graph 2 and

3, i.e. A2-B21-C21 and A3-B31-C31. On the other hand, if we start processing from

graph 2 we have two paths �A-B-C� to be matched which is redundant. In other

words, path matching operation should track memory of paths already matched. To

solve this, we introduce a �read� �ag: when a path is matched, all nodes on the

matched paths are marked as �read�.

Let's suppose we start processing from graph 2 and we matched A2-B21-C21

path with A1-B1-C1 and A3-B31-C31 path. The situation after the �rst matching,
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3.3. Model generation using paths

Figure 3.4: First Graph Matching

now, is the one in Figure 3.4

At this point, the algorithm checks for a path that can match with A2-B22-C22,

meaning a path that has a Red API call with a read �ag, Yellow API call without

read �ag, Green API call without read �ag. This path cannot match with A1-B1-C1

for the second time, because all of three APIs are marked as read from the previous

match. The path A2-B22-C22 so matches only with A3-B32-C33 and having no

match in graph 1, is not added to result paths. In other words, introducing a read

�ag avoid redundant matches of the paths composed by same API calls.

We can assume, trivially, that A3-B32-C33 is a �better� match for Graph 3 than

the previous one, because B32 node has one child as B1, di�erently from B31 that

has two: in other words, we try to match paths not only from their API but, where

possible, also from the number of taint dependencies presented in the path.

After taking into account node readability we can overcome the second limitation

and make every path matching with a path that not only has the same API but has

the similar number of taint dependencies possible to the path we want to be matched.

To do this task, another abstraction level in our data is added, this time at path

level: every path has given a number that is generated according to his heuristic

formula in this way
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k∑
d=1

(n ∗ d ∗ 10) + d

Where

• d represent the depth of the node in the path. As nodes in the path are stored

from root to leaves, the �rst node has d = 1 and the last node has d equal to

the path length

• n represent the number of the neighbors of the current node in the process

Applying to the path generated from Figure 3.3 the results are the one that follows

in Table 3.2

In this way paths A3-B31-C31 and A3-B32-C33 are di�erent because their API

calls are di�erent. The path matching will be turned into two separate steps:

• Step 1: match all the path with same APIs and same node read conditions in

other graphs

• Step 2: from the paths found at previous step, if multiple matches are avail-

able, choose the one that minimize ∆points (di�erence between path to match

and candidate path for matching)

Path A1-B1-C1 will be matched with A3-B32-C33 in graph C, because its point

di�erence is less than the A3-B31-C31 path, even if this di�erence exists and there

will be some minor di�erences in API calls just because A1 has one dependency and

A3 has two. And about graph 2, we do not care what path will be matched between

Table 3.2: Paths Points in the Graphs

Path Step 1 (A node) Step 2 (B node) Final Step (C node) Total Points

A1-B1-C1 1 ∗ 1 ∗ 10 + 1 = 11 11 + 1 ∗ 2 ∗ 10 + 2 = 33 33 + 3 = 36 36
A2-B21-C21 2 ∗ 1 ∗ 10 + 1 = 21 21 + 1 ∗ 2 ∗ 10 + 2 = 43 43 + 3 = 46 46
A2-B22-C22 2 ∗ 1 ∗ 10 + 1 = 21 21 + 1 ∗ 2 ∗ 10 + 2 = 43 43 + 3 = 46 46
A3-B31-C31 2 ∗ 1 ∗ 10 + 1 = 21 21 + 2 ∗ 2 ∗ 10 + 2 = 63 63 + 3 = 66 66
A3-B31-C32 2 ∗ 1 ∗ 10 + 1 = 21 21 + 2 ∗ 2 ∗ 10 + 2 = 63 63 + 3 = 66 66
A3-B32-C33 2 ∗ 1 ∗ 10 + 1 = 21 21 + 1 ∗ 2 ∗ 10 + 2 = 43 43 + 3 = 46 46
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3.4. Parameters model generation

A2-B21-C21 and A2-B22-C22: for our purpose, having the same composition, they

are the same path and we will accept one of two randomly, discarding the other.

3.4 Parameters model generation

After the generation of the behavioral model with this procedure, we have a

graph in which every node represents an API call. Those API calls lacks of param-

eter modeling: in this step we have to recreate parameters model using paradigms

provided by Jackdaw, explained in the previous chapter in paragraph 2.2.5.

After matching procedures our graph is composed by a list of all the paths that

the graphs presents in the cluster have in common. For each one of those paths,

we stored apart a list of the paths that have matched between themselves during

algorithm execution: let us think, for example, at Figure 3.1: A-B-C matched with

F-G-H and L-M-P. We actually have in the �nal graph information about the fact

that there is a path in common composed by three API calls of �red-green-yellow�

type in that speci�c order: we don't have any information about parameters that

those API calls used during their execution.

Those paths, from now called stored paths, are, by construction, of equal length

and composed by the same type of API calls in the same order. In our parameters

model generation, models of parameters is thus done by confronting together API

calls that stands at the same order in every stored path: this procedure is repeated

for every group of stored paths. This means that as we stated in paragraph 3.3.1 we

choose to model each API call in each common path with one and only one API call

in each graph.

After this generation we isolate every element of all the lists of all the stored paths

in order. In the previous example, for �red� type of API call, we process together

node A, node F and node L from the three graphs to infers their parameters and

generate a model for each one of them. Having the API type and all the occurrences

in the stored paths, next step is to obtain names of the parameters to model for

that API calls. Sharing these API calls the same type, all the parameters names and
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types of the values that those parameters assumes will be the same for all the API

calls of the same type: i.e. we infer API calls names and type from API call A, then

use them to obtain also the values in F and L from known names and types.

There are some parameters that we does not want to model: we know a priori

their names and we have inserted them in a blacklist: all the parameters with a name

in this list are automatically excluded from this process.

Acting as described before, at the end, for every parameter, we have a list of all

values that every parameter assumes in every occurrences for every API call in the

path. The last step is send the list of value to Jackdaw, calling the right Jackdaw

API call to obtain the desired type of model: in our algorithm we modeled parameter

values according to the following list.

• If the type of parameters values is not a String or an Integer the parameter list

is not modeled.

• If the type of parameters values is an integer the parameter list is modeled as

a Token

• If the type of parameters values is not an integer is a String. We will search

with regular expression if there are any String patterns to distinguish if is an

Hex Address, an IP or a String

� If the type of parameters values an Hex address pattern is matched, the

parameter list is not modeled

� If the type of parameters values an IP address pattern is matched, the

parameter list is modeled as IP

� If the type of parameters values nor an Hex or an IP address pattern is

matched, the parameter list is modeled as a String

We are not interest in modeling Hex address because information provided in this

part are not relevant
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Chapter 4

Implementation details

In this chapter we will show the implementation details of the solution we propose.

In paragraph 4.2 we are going to see details of relevant part of our processing, then

in part 4.3 we are going to see the export process of �nal results using graphs. All

those algorithms are coded using Python 2.71.

4.1 Path Generation

We have seen how clusters are created. Now, in Algorithm 4.1 we will see how

paths are calculated from each cluster. Algorithms to �nd root and leaf nodes are

very trivial, they simply search for all nodes and checks edge condition as de�ned

marking them as roots or leaves. The path generation between two nodes is managed

by Networkx Python libraries. In addition, this computation all the one who follows

are done in parallel for each cluster: algorithm 4.1 requires a single cluster as input

and during the execution clusters are processed in parallel.

At the end of Algorithm 4.1 we have in the variable clusterpaths the list that

contains all the paths of the cluster. To �nd the minimum behavior three parameters

are passed:

• Clusterpaths: all the paths generated by the process exposed above

• Clusternumber: the number of the cluster we are currently processing

1https://www.python.org/downloads/release/python-279/
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Algorithm 4.1 Path Calculation

1: procedure ProcessCluster(cluster, clusternumber)
2: clusterpaths ← list

3: graphs ← cluster[graphs]
4: for all g ∈ graphs do
5: singlegraphpaths ← list

6: if allpaths then
7: for all node1 ∈ nodes(g) do
8: for all node2 ∈ nodes(g) do
9: graphpaths ← getAllPaths(node1, node2)
10: for all path ∈ graphpaths do
11: singlegraphpaths ← singlegraphpaths + path
12: end for

13: end for

14: end for

15: else

16: rootnodes ← getRootNodes(g)
17: leaves ← getLeaves(g)
18: for all rootnode ∈ rootnodes do
19: for all leaf ∈ leaves do
20: graphpaths ← allPaths(rootnode, leaf)
21: for all path ∈ graphpaths do
22: singlegraphpaths ← singlegraphpaths + path
23: end for

24: end for

25: end for

26: end if

27: clusterpaths ← clusterpaths + singlegraphpaths
28: end for

29: findMinimumBehavior(clusterpaths, clusternumber, graphs)
30: end procedure

• Graphs: the graphs of the cluster, in order. This is required for parameter

modeling process in section 4.2.5

In addiction to the facts exposed above, cluster paths and graphs are ordered: as

they are both memorized in a list, the �rst element of graphs contains the graphs

associated to the paths of the �rst element of cluster paths. Is also easy to notice

that the complexity of the algorithm to generate paths is very high: a single path

can be found in O (e+ n) complexity where e are the edges and n are the nodes but

number of paths in a graph can be very large: in case of a complete graph of n order,

complexity become O (n!). [21]
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Due to the fact we have to compute all the possible paths between nodes and

roots, we need to establish some requirements in the graph representing behaviors

we analyze and see if they are satis�ed

• Aciclicity: graphs should present no cycles. Due to this fact, one or more

root node can be found, and one or more leaf node can be found.

• Sparse: our graphs are not completely connected. They have only a few edges.

• Node are few: if nodes are many, computational power for executing the

algorithm will be very high

The �rst requirement is always true: graph are always acyclic because they represent

a �ux of API calls obtained by a dynamic analysis: we have a temporal sequence of

the API calls executed. The truth of the second and third requirements is veri�ed

experimentally, as we are going to see in Chapter 5 a large part of graphs meets

those hypotheses, but there is still a little part of big graphs we cannot process.

4.2 Common Behavior Search

The search for the common behavior between all the cluster graphs starts from

the assumption, already stated in the previous chapter, that the behavior we want

to extract will be a graph smaller in terms of API calls than each one of the graph

we actually have in the cluster. For this reason, after have generating all the paths

between root and leaves in each graph of the cluster, our minimization process is

done starting from the �rst graph and its relative generated path list. Algorithm

4.2 takes in input this list in variable clusterpaths and the cluster graphs in variable

graphs.

Algorithm 4.2 essentially is the external shell of our algorithm. From this pro-

cedure are launched the various sub-algorithms that we are going to see in the next

sub-sections to process the cluster producing the common behavior. Those sub-

algorithms are explained as follows: after a path initialization in paragraph 4.2.1,

the last element of the clusterpath list is taken as model for our calculation: from now
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Algorithm 4.2 Minimum Behavior Search

1: procedure findMinimumBehavior(clusterpaths, clusternumber, graphs)
2: initializePaths(clusterpaths, clusternumber, graphs)
3: modelgraph ← clusterpaths.pop
4: �nalgraph ← list

5: �nalparams ← list

6: for i ← 1 to len(modelgraph) do
7: path ← modelgraph[i]
8: if isPathPresentInOtherGrpahs(path, clusterpaths) then
9: pathToMatch ← list(path)
10: allMatchedPaths← getAllMatchedPaths(pathToMatch, clusterpaths)
11: markAsReadNodesInLists(pathToMatch, clusterpaths)
12: markAsReadNodes(pathToMatch, modelgraph)
13: pathparameters← getParameters(path, allMatchedPaths, graphs)
14: �nalgraph ← �nalgraph + path
15: �nalparams ← �nalparams + pathparameters
16: end if

17: end for

18: exportInGraph(�nalgraph, �nalparams, clusternumber)
19: end procedure

that graph will be referred as �model graph� and the other cluster graphs as �other

graphs�. In the act of the �nal behavioral model creation algorithm instantiates two

lists (�nalgraph and �nalparams) that will contains the paths of the �nal graphs and

their occurrences in the cluster graphs in the act of parameters models generation,

as explained in section 3.4.

After this initialization phase, algorithm goes into its core. In sub-section 4.2.2

we are going to see how for is searched a match in other graphs for each path in model

graph. If the search succeeds, in sub-section 4.2.3 we are going to see how matching

phase is done and what post-processing procedure are done on all the paths that

have matched like node �agging.

In this part it is important to set the read �ag �rts in the nodes in other graphs

than in our model graph. This is because during the node marking phase we are

going to repeat the match and if nodes in model graph are �agged before node in

other graphs, matching fails. When node marking has ended, parameters for the

path are calculated with getParameters procedure as explained in sub-section 4.2.5.

At the end we have to generate the output: lists �nalgraph and �nalparams are
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populated. From their values we can build the behavioral model: exportInGraph

procedure is called for the �nal export.

4.2.1 Node initialization

Paths between all roots and leaves are provided by networkx API calls2: calling

the particular API call used in this code snippet we obtain as output all the possible

paths between the two nodes in input. The initialization process shown in Algorithm

4.3 takes this node list and adapts it into a suitable format.

Algorithm 4.3 Node initialization

1: procedure initializePaths(clusterpaths, clusternumber, graphs)
2: for k ← 1 to len(clusterpaths) do
3: for j ← 1 to len(clusterpaths[k]) do
4: for i ← 1 to len(clusterpaths[k][j]) do
5: newnode ← list()
6: newnode ← newnode + clusterpaths[k][j][i]
7: newnode ← newnode + False
8: clusterpaths[k][j][i] ← newnode
9: end for

10: newgraphpaths ← list()
11: newgraphpaths ← newgraphpaths + clusterpaths[k][j]
12: newgraphpaths ← newgraphpaths + computePoints(graphs[k],

clusterpaths[k][j])
13: clusterpaths[k][j] ← newgraphpaths
14: end for

15: end for

16: end procedure

This process transforms the data structure from a simple list of paths in a list of

paths that is associated to an integer, which represents the amount of points of the

paths calculated by the heuristic explained in section 3.3.2. Algorithm used in our

code is exposed in Algorithm 4.4. The neighbors function exposed in the algorithm

is managed by networkx API calls3 and returns the number of neighbors of the node

given.

A �read� �ag is added to each node. The transformation is displayed in Figure

2https://networkx.github.io/documentation/development/reference/generated/networkx.algo-
rithms.simple_paths.all_simple_paths.html

3https://networkx.github.io/documentation/latest/reference/generated/networkx.Graph.neigh-
bors.html
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(a) Data structure Before Initialization

(b) Data structure After Initialization

Figure 4.1: Data structure initialization

4.1. Read �ag is automatically set to False at initialization. The correct structure

is automatically returned in the clusterpaths variable passed as input.

4.2.2 Path searching

The most relevant function of our program, is, without doubts, the search for

paths in other graphs: it is shown in Algorithm 4.5. The procedure cleanpath called

in this way initializes the nodes for matching procedures creating a new list with

node names and relative reading �ags that is processed in the further parts of the
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Algorithm 4.4 Points Computation

1: procedure computePoints(graph, path)
2: points ← 0
3: deep ← 0
4: for all node ∈ path do
5: deep ← deep + 1
6: neighbors ← graph.neighbors(node[name])
7: points ← points + len(neighbors) ∗ deep ∗10+ deep
8: end for

9: return points
10: end procedure

algorithm: this is done because we want to match nodes not by their names, but by

their API call functions.

Algorithm 4.5 Searching for path in other graphs

1: procedure isPathPresentInOtherGraphs(pathtomatch, clusterpaths)
2: cleanpathtomatch ← list

3: for all node ∈ pathtomatch[0] do
4: cleanpathtomatch ← cleanpathtomatch + cleanPath(node)
5: end for

6: for all graphpaths ∈ clusterpaths do
7: hasGraphPath ← False
8: if !isPathPresentInGraph(cleanpathtomatch, graphpaths) then
9: return False
10: end if

11: end for

12: return True
13: end procedure

Before execution of Algorithm 4.6 we have in variable cleanpathtomatch the API

call list of the path, with their read �ags. This is passed as input to procedure

isPathPresentInGraph with the graph to search for the path in. If the search of

the path in one graph fails, the whole procedure halts immediately returning false.

Procedure isPathpPresentInGraph in Algorithm 4.6

Algorithm 4.6 cleans again every path and checks if there is a match in the

speci�ed graph for all the generated paths. At the end, the algorithm returns whether

the path was found or not. Notice that in those two steps we found out if there is a

match, not what is the best match. If the procedure succeeds the getAllMatchedPaths

procedure is called. This procedure does only the matching: it does not modify read
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Algorithm 4.6 Path searching in a single graph

1: procedure isPathPresentInGraph(cleanpathtomatch, graphpathsrpaths)
2: hasGraphPath ← False
3: for all path ∈ graphpaths do
4: for all node ∈ path[0] do
5: cleanpath ← cleanpath + cleanPath(node)
6: if cleanpathtomatch == cleanpath then
7: hasGraphPath ← True
8: end if

9: end for

10: end for

11: return hasgraphpath
12: end procedure

�ag values for each node. Matches between two paths obviously succeed if path is

composed by API calls of the same type, in the same order and with same values

of the read �ag. If match in a graph succeeds, function immediately terminates

returning True as output.

4.2.3 Path Matching

As stated before, these procedures are called only if there is a match. Our purpose

now is not just to get the match, but also to get the best match according to the

heuristic we created. Read state of the node does not have to be checked in this part

because we know that a match exists, so what we simply �nd the best match calling

for every graph the matchPath procedure. The matchPath procedure is shown in

algorithm 4.7

Match succeeds when conditions in section 4.2.3 are met. For every graph the

set of paths that have matched are returned as a list into pathresults variable.

In the second part evaluation of optimal path between this list is done using

points system we explained in section 3.3.2. Final result is returned as output.

4.2.4 Node �agging

After a successful matching phase for a path nodes of this path have to be marked

as read in every graph of the cluster to avoid redundant results for the next algorithm

iterations. The two procedures for this purpose are shown in Algorithm 4.1. Like
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Algorithm 4.7 Path Matching in a Graph

1: procedure matchPath(pathToMatch, graphpaths)
2: pathResults ← List

3: for all node ∈ pathtomatch[0] do
4: cleanpathtomatch ← cleanpathtomatch + cleanPath(node)
5: end for

6: for all path ∈ graphpaths do
7: for all node ∈ path[0] do
8: cleanpath ← cleanpath + cleanPath(node)
9: if cleanpathtomatch == cleanpath then
10: pathResults ← pathResults + path
11: end if

12: end for

13: end for

14: for all path ∈ pathresults do
15: �nalpath ← List

16: di�erence ← MaxInt

17: actualdi�erence ← Abs(path[1] - pathtomatch[1])
18: if actualdi�erence < di�erence then
19: �nalpath ← path
20: di�erence ← actualdi�erence
21: end if

22: end for

23: return �nalpath
24: end procedure

algorithms for path searching even in this case there are two Algorithms: the �rst to

search in all path lists and the second to e�ectively mark nodes as read in the lists.

Procedure set the read �ag of a node as shown in Algorithm 4.8. In the operation

of node �agging, matching between paths is still used: this time its purpose is not to

do node matching but simply to check that the node to mark as read in graphpaths

is exactly the one that matched before.

4.2.5 Parameters model creation

The only aspect that remains out is the parameters model creation. This is done

by the getParameters procedure which purpose is to get the model parameters for

each API node, the procedure is shown in Algorithm 4.9

This is one of the most complex algorithms of our code: procedure is explained

in abstract in section 3.4. It takes as input the path of the model graph, all the
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Algorithm 4.8 Node �agging in a path

1: procedure markAsReadNodes(pathToMark, graphpaths)
2: pathToMark ← pathToMark[path] . Choose the nodelist, discard points
3: for i ← 1 to len(pathToMark) do
4: for all path ∈ graphpaths do
5: nodeList ← path[path]
6: node ← nodeList
7: if cleanPath(pathToMark[i]) == cleanPath(node) then
8: nodeindex ← nodeList.index(node)
9: nodelist ← nodeList.remove(node)
10: node ← setRead(node, True)
11: nodelist ← nodeList.insert(node, nodeindex)
12: end if

13: end for

14: end for

15: end procedure

paths that matched with it and the cluster graphs: API calls of the paths, grouped

by type, are searched in the graphs object to retrieve their parameters. For each

attribute, immediately at the end of parameters retrieval phase model is created

calling getAttributeModel procedure. At the end of this procedure, model for each

API call of the �nal graph is stored in �nalattributelist variable that is returned on

the main procedure.

4.3 Graph Export

Last part of our algorithm concerns the export of our list of common paths and

their parameters into a graph: this is done by Algorithm 4.10. The Algorithm is

logically divided in three parts. In the �rst one, the graph structure is created

adding all the nodes of every common paths: if a node is in two or more paths,

during the addition phase will be automatically discarded. Edges are then created.

As nodes should have di�erent names by design, a number is added to distinguish

di�erent nodes characterized by same API call.

In the second part of the algorithm, models of the parameters generated with

algorithm 4.9 are inserted in the �nal model. In the third one the created behavior
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is exported in both dot4 (for readability) and gpickle5 format (for re-usability) are

done.

4http://www.graphviz.org/
5https://docs.python.org/2/library/pickle.html
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Algorithm 4.9 Parameters model creation procedure

1: procedure getParameters(originalpath, allMatchedPaths, graphs)
2: allMatchedPaths ← allMatchedPaths + originalpath
3: �nalAttributeList ← List

4: for i ← 1 to len(originalpath[0]) do
5: g ← graphs[0]
6: path ← allMatchedPaths[0][0]
7: node ← path[i]
8: globalnodeAPI ← node[0]
9: attributelist ← attributelist + g.node[globalnodeAPI]
10: nodeAttributeValues ← List

11: for all attribute ∈ attributelist do
12: attributeValues ← List

13: for k ← 1 to len(allMatchedPaths) do
14: g ← graphs[k]
15: path ← allMatchedPaths[k][0]
16: node ← newpath[i]
17: nodeAPI ← node[0]
18: attributevalues ← attributevalues + g.node[nodeAPI][attribute]
19: end for

20: �nalattrib ← getAttributeModel(attribute, attributevalues)
21: if �nalattribute then
22: attributevalues ← list()
23: attributevalues ← attributevalues + attribute
24: attributevalues ← attributevalues + �nalattrib
25: nodeattributevalues← attributevalues + nodeattributevalues
26: end if

27: end for

28: newnode ← list()
29: newnode ← newnode + nodeAPI
30: newnode ← newnode + nodeattributevalues
31: �nalattributelist ← �nalattributelist + newnode
32: end for

33: return �nalattributelist
34: end procedure
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Algorithm 4.10 Graph Export

1: procedure exportInGraph(modelgraph, �nalparams, clusternumber)
2: exportgraph ← nx.DiGraph
3: for all path ∈ modelgraph do
4: path ← path[0]
5: previousnode ← null

6: for all node ∈ path do
7: nodename ← getNode(node)
8: exportgraph.AddNode(nodename)
9: if previousnode then
10: exportgraph.AddEdge(previousnode, nodename)
11: end if

12: previousnode ← nodename
13: end for

14: end for

15: for all params ∈ �nalparams do
16: for all node ∈ params do
17: nodename ← getNode(node)
18: for all attribute ∈ node[1] do
19: nodeatt ← attribute[0]
20: valueatt ← attribute[1]
21: exportgraph.node[nodename][nodeatt] ← valueatt
22: end for

23: end for

24: end for

25: nx.WriteDot(exportgraph)
26: nx.WriteGpickle(exportgraph)
27: end procedure
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Chapter 5

Experimental results

In this chapter we report the experimental result we obtained and we explore

reasons for those results and limitations of our work. In section 5.1 we de�ne our

dataset, show the results of our behavior clustering and see how they are a�ected

by our experimental hypothesis exposed in chapter 3. In section 5.2 we are going

to see how our model are composed in details and see di�erences and comparison

with our old behavioral system. In section 5.3 we are going to see concretely how

our approach generates more distinction in models than Jackdaw one and how this

model are di�erent between themselves. At the end, in section 5.4 we are going to

analyze the performance of our experiment.

5.1 Dataset

The dataset used to validate this work is composed by 3112 random malware

samples downloaded from VirusTotal Intelligence service1. They are portable exe

format samples for an x86 Windows Architecture.

We performed static and dynamic analysis on each sample of our dataset using

Jackdaw. Dynamic analysis is performed by Cuckoo with an execution timeout of

10 minutes. We choose samples that produce a valid analysis, provide API calls

executed in the malware sample and their relative �ngerprints. Fingerprints can be

present in part of the API set tracked in the sample or in the whole set. We then

1https://www.virustotal.com/intelligence/
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run clustering as described in [20] .

To meet the hypothesis exposed in paragraph 3.3 part of those behaviors are

discarded in clustering phase, in particular:

• Behaviors with only one node

• Behavior with 100 or more nodes

• Behavior with no �ngerprints

In Table 5.1 there are the results of the clustering analysis. 1269688 behaviors are

generated from 3112 samples, and after the pre-�ltering phase only 5122 are accepted.

Some behaviors can present no �ngerprint due to the fact that not all malware

samples has a properly execution. Some samples returns an empty or corrupt analysis

for the following reasons:

• Cuckoo is a sandbox and sandboxes can be detected. This makes for us

impossible to track or terminate many malware behaviors causing the failure

of the process or an API report with no or few API.

• Some malware samples requires human interaction. As dynamic anal-

ysis hooks only API e�ectively called, if malware requires an interaction to

be executed - for example an installer - those actions won't be tracked by an

automatic Sandbox

• Some malware samples requires other programs. Some malware infected

the system using other software, for example opening RTF document or a PDF

document or images: even if executable are chosen, we cannot exclude that

those executable didn't simply download other type of malware and execute

them. With this approach loading of those samples is tracked, but nothing

else.

• Some malware samples are packed. As seen in previous chapters malware

packed is a problem because brings static analysis to generate �ngerprints not

on the real sample but on the encrypted / compressed one. This causes less
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�ngerprints in analysis, bringing wrong clusterization and leading the process

to an empty results.

We also see, from this analysis, that our hypothesis of graphs that are sparse and

with node low in numbers are veri�ed. If we take into accounts all the behaviors -

from every sample 6,53 behaviors are generated in average and only 0,63 of them are

big, meaning a rate of 9,6%.

From those 5122 accepted behaviors, 607 clusters are generated.

At this point of the analysis we try to �nd how many clusters are generated

according to samples analyzed. We tracked the number of cluster generated every

100 samples processed and we found that the progression is instead linear: results of

this analysis are shown in Figure 5.1 where on x-axis is represented the number of

sample processed and on y-axis the number of the clusters generated at that point

of execution

We can see that cluster progression is linear in the order of numbers of samples

analyzed.

5.1.1 Cluster distributions

At this point of the experimental results, behavior are divided into cluster. Not

all the clusters are suitable as input for our algorithm: some clusters are composed

by only one behavior so common behavior is already modeled, and some clusters

presents one or more graphs that does not meet hypothesis exposed in paragraph

4.1 so their execution could not terminate in acceptable time. According to those

Table 5.1: Behaviors Analysis Results

Result Type #Behaviors

One node 1249339
100 or more nodes 1969
No Fingerprints 13258

Accepted 5122
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Figure 5.1: Cluster generation progression

hypothesis, we choose to distinguish four di�erent types of outcomes for each cluster

regarding the analysis termination:

• Not Valid: in those clusters our hypothesis of little behaviors expressed in

section 3.3 is not valid due to big graphs generated by taint analysis process.

Computation won't terminate in appreciable time and execution of those clus-

ters must be interrupted. Behavior with more than 100 API calls are discarded

during the clusterization phase, but this act only as a �lter and does not exclude

the fact that some cluster cannot terminates due to big graphs.

• Singleton: cluster contains only one graph. In this case algorithm is valid

Table 5.2: Behavior results having more than one API sample

Result Type #Behaviors Average Behaviors per sample

100 or mode nodes 1969 0,63
No Fingerprints 13258 4,26
Fingerprints 5122 1,64

Total 20349 6,53
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and the behavioral model is simply the model of the only graph presented in

the cluster.

• Fail: those clusters are composed by behaviors API calls that are totally dif-

ferent graph by graph, so API calls set intersection of the cluster is empty.

To understand why this can happen: �ngerprints are generated from assembly

code and sequences of di�erent API calls can express the same behavior and

generated from same or similar assembly code.

• Synthesized: those clusters has more than one graph in it and the algorithm

works correctly producing the common cluster behavior we expected

The result of the distribution of the 607 cluster produced from the analysis are

represented in the Table 5.4

Our algorithm fails only 14% of the times, and succeeds in 75% of the clusters2. In

those 75% a valid result is produced, modeling correctly the common behavior of the

cluster. We can't say anything on the rest 10% because is composed by behaviors that

doesn't meet our hypothesis. In �gure 5.2 the numerical distribution of graph per

cluster is shown considering the 457 clusters that have produced a valid result: most

of the clusters have two, three or four behavior to synthesize: distribution is clearly

hyperbolic. Obviously most of the clusters are alone, because we choose malware

randomly: using this approach with speci�c malware family samples produces a

di�erent distribution.

In Figure 5.3 we can see the distribution of the nodes (i.e. API) in the �nal

2 If clusters contains only one behavior, theoretically algorithm succeed

Table 5.3: Clusters data

Data Type Data Value

#clsusters
#samples 0, 20
#graphs
#clusters 8, 43
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Figure 5.2: Graphs distribution

behavioral models: the majority of the graphs has just two nodes as model: only 50

models have 5 or more nodes in �nal graph. This means that our hypothesis of small

graphs is true.

Confronting for every cluster the number of nodes before and after the algorithm

application we can say that approximately 16% of nodes for each graph in cluster

are deleted by the modeling algorithm.

In most of cases (62%) the number of the nodes in �nal result is the average

of the cluster graph nodes: this means that in those type of cluster behaviors were

already very similar. In the other clusters, instead, modeling algorithm produces a

result that is radically di�erent by shape and dimension from each one of the cluster

behaviors, but shares a common core that is detected by the algorithm.

Table 5.4: Cluster distribution

Cluster Type #Cluster Produced Percentage on total

Singleton 263 43,33%
Fail 88 14,50%

Not Valid 62 10,21%
Synthesized 194 31,96%
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5.2. Model Analysis

Figure 5.3: Nodes distribution

5.2 Model Analysis

At the end of process, behavioral models have been produced for each valid

cluster. Here we present two of these models to understand di�erences and similarity

between our models and the ones in Jackdaw. In sub-section 5.2.1 we present a

simpler sample, with no API calls repetition, to understand how our behavioral

model works. In sub-section 5.2.2 instead we present a more complex model, and

make a comparison between them to better understand the di�erences between new

and old behavioral models.

5.2.1 Example 1

In listing 5.1 there a human-readable, dot code of one of synthesized models,

while its graph is represented in Figure 5.4. Dot code representation is used by

Graphviz.

We can see that this sample creates one �le and writes something on it.

This model is generated by 2 graphs in cluster: we clearly see 2 API calls and

one dependency between them. Looking at API call parameters, we can see that
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parameters in behavioral model are di�erent only in bu�er and in �lename due to

the fact that there are di�erent elements in those �elds and only one in the other.

About the parameter �lename, is clear is that �le is stored in C:\Windows\Rescache\

folder. In the �rst sample is in wip\ResCache.hit folder, in the second sample is called

ResCache.mni. Those are the values that will be modeled using Jackdaw models.

About the other information, createdisposition �eld has this parameter set to 5

for all the behaviors modeled and shareaccess is set also to 3. This couple of choices

means that a new �le with that name of 0 bit size is created and this �le cannot be

deleted while is in an open state (example, currently in use by another process).

Listing 5.1: Sample 1 dot Code

1 strict digraph G {

2 "NtCreateFile - 80843" [

3 category="[u'filesystem ']",

4 ShareAccess="[u '3']",

5 repeated="[0]",

6 api="[u'NtCreateFile ']",

7 CreateDisposition="[u '5']",

8 FileName="[

9 u'C:\ Windows\rescache\wip\ResCache.hit ',

10 u'C:\ Windows\rescache\ResCache.mni ']"

11 ];

12 "NtWriteFile - 80844" [

13 category="[u'filesystem ']",

14 Buffer="[

15 u'RESMANI\x00\x00\x00\x00\x00\x00\x00\x00\x00\x88\x13\x00\x00\x00\x00\x02\x00\x00\x00\

x00\x002\x00\x00\x00\x01\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\

xff ',

16 u'RESCHIT\x00\x01\x00\x00\x00\x0c\x02\x00\x00\x10E\xec `\"\\ xd0\x01\x00\x00\x00\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

17 ]",

18 repeated="[0]",

19 api="[u'NtWriteFile ']"

20 ];

21 "NtCreateFile - 80843" -> "NtWriteFile - 80844";

22 }

5.2.2 Example 2

The second sample is in listing 5.2 that corresponds to the graph in Figure 5.5. We

are going to see the step immediately after the graph exposed in previous paragraph:
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Figure 5.4: Sample 1 Graph

two di�erent writes on the same �le. Also in this �le, the behavioral results is

generated from two clusters.

We can see that the �le created, this time, is C:\Windows\rescache\wip\Seg-

ment[number].cmf where [number] can be 0 or 1. Then on the same �le two di�erent

writes are performed. The text of the two writes API calls is in the parameters of

the bu�ers.

Listing 5.2: Sample 2 dot Code

1 strict digraph G {

2 "NtWriteFile - 80852" [

3 category="[u'filesystem ']",

4 Buffer="[

5 u\" RESCSEG\x00\x01\x00\x00\x00\x01\x00\x00\x005\x00\x00\x005\x00\x00\x00\x14\x02\x00\

x00I\xa4\x1f\x00\xa9\xb4\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff

\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x01\x00 \x00\x00\x00\xb1\x15\

x00\x00\x00\x00\x00\x00\xe91\x00\x00sb\x00\x00\x8a\x96\x00\x00\x9b\xb6\x00\x00\x0e\

xe6\x00\x00\xed\x1e\x01\x00\x86_\x01\x00\x12\x8a\x01\x00\xa0\xc0\x01\x00o\xf3\x01\

x00\x1e#\x02\x00bS\x02\x00\x13}\x02\x00O\xac\x02\x006\xe9\x02\x00\xb6)\x03\x00\x10

`\x03\x00\xf0\x9d\x03\x00\xf1\xd1\x03\x009\x04\x04\x00mC\x04\x00\xb0\x85\x04\x00M\

xc8\x04\x00M\x05\x05\x00\x18T\x05\x00\x06\x9f\x05\x00n\xe6\x05\x00 '.\x06\x00\x82l\

x06\x00o\xcf\x06\x00t5\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\",

6 u\" RESCSEG\x00\x01\x00\x00\x00\x00\x00\x00\x00^\x00\x00\x00^\x00\x00\x00\xe7\x03\x00\x00

\xa1\x18?\x00\x01)?\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\

xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x01\x00@\x00\x00\x00y\x08\x00\x00\x00\

x00\x00\x00^C\x00\x00j\x9a\x00\x00\xe7\xd4\x00\x00v\x19\x01\x00\xeeR\x01\x00\x1d\

x96\x01\x00\xe9\xce\x01\x004\xf3\x01\x00\xefD\x02\x00q\x84\x02\x00\x86\xc2\x02\x00\

xc8\xf6\x02\x00\xf1.\x03\x00)m\x03\x00\xc4\xa4\x03\x00\xcc\xea\x03\x00\xdb '\x04\x00

\xa5i\x04\x00r\x9d\x04\x00w\xe9\x04\x00\xa1 ,\x05\x00c~\x05\x00\xec\xbc\x05\x00\x15\

xfe\x05\x00 <D\x06\x00\xbb\x8b\x06\x00y\xc7\x06\x00\xe6\x07\x07\x00\xe0J\x07\x00Nx\

x07\x00\xb9\xc5\x07\x00T\xf9\x07\x00\xf43\x08\x00\xe3u\x08\x00\xa2\xb4\x08\x00\xe3\

xef\x08\x002H \x00\xd0\xa0 \x00\xd0\xa0\n\x00\xd0\xa0\x0b\x00\"

7 ]",

8 repeated="[0]",
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Figure 5.5: Sample 2 Graph

9 api="[u'NtWriteFile ']"

10 ];

11 "NtCreateFile - 80851" [

12 category="[u'filesystem ']",

13 ShareAccess="[u '0']",

14 repeated="[0]",

15 api="[u'NtCreateFile ']",

16 CreateDisposition="[u '5']",

17 FileName="[

18 u'C:\ Windows\rescache\wip\Segment1.cmf ',

19 u'C:\ Windows\rescache\wip\Segment0.cmf'

20 ]"

21 ];

22 "NtWriteFile - 80853" [

23 category="[u'filesystem ']",

24 Buffer="[

25 u '\x00\xb8A\x00MZ\x90\x00\x03\x00\x00\x00\x04\x18\x00\xwritten ff\xff\x00\x00\xb88\x00\

x01\x00@ <\x00\x07\x00O\x03Y\x01\x0e\x1f\xba\x0e\x00\xb4 \xcd!\xb8\x01\x00\x00\x00\

x00L\xcd!This program cannot be run in\x05\x01\x02\x00 DOS mode.\r\r\n$\x1c\x02\

x01u\xf5\xd9E\x14\x9b\x8a\x1d\x00Ll\x0f\x8aD:\x00\n:\x00 \x10\x00\x0eRich\xb9\x00t

\x01\x06\x00PE\x00\x00L\x01\x01\x00\xd5\xc6[J\x94\x00\x00\xe0\x00\x02!\x0b\x01 c\

x00\xf4\x02\xac\x00\xe6 /^\ xbc\x00\x00\x10\x1c\x00)\x009\x00\xd0\x00\x06\x00\x01\x1a

\x00\x05\xb2\x00\xc9\x00(\x08\xb8\x00\xb3\x9e\x030\x00@\xb0\x00@\x01\x9a\x01=\x006\

x00\x07\x00\xa0\x00\x90\xf3_\x03\xf1\x07\x00F .^\ x0b\xfa\x0frsrcJ\x00x\x05\x81\x049\

x07\xf7\x03\xf5\xd8\r\xf7\r\x0b\x07\x00\xd3\xf9\x0f\x01@\x02\xe8\x00\x00\x80 ',

26 u '\x00\xb8A\x00MZ\x90\x00\x03\x00\x00\x00\x04\x18\x00\xff\xff\x00\x00\xb88\x00\x01\x00@

<\x00\x07\x00O\x03Y\x01\x0e\x1f\xba\x0e\x00\xb4 \xcd!\xb8\x01\x00\x00\x00\x00L\xcd

!This program cannot be run in\x05\x01\x02\x00 DOS mode.\r\r\n$\x1c\x02\x01u\xf5\

xd9E\x14\x9b\x8a\x1d\x00Ll\x0f\x8aD:\x00\n:\x00\x0b\x10\x00\x0eRich\xb9\x00t\x01\

x06\x00PE\x00\x00L\x01\x01\x00\x0c\xbf[J\x94\x00\x00\xe0\x00\x02!\x0b\x01 c\x00\

x06\xa4\x00\x01\x00 `\ x7fiu\x10\x1c\x00)\x009\x00\x02\xf1\x00\x01\x1a\x00\x05\xb2\

x00\x00\x00 \xbb\x00N\x1d1\x00@\xb0\x00@\x01\x9a\x01=\x006\x00\x07\x00\xa0\x00\xf8\

xe1 \x07\x00/N.rsrc\xae_\xa1\xffA\x00\x9d\x069\x07\xb8\x05\x07\x00\xd8\r\xf7\r?\

x0b\x07\x00\x11\x06\x01\x08\x00\xa0\x00\x00\x80P\x08\x80\xd1\x028'

27 ]",

28 repeated="[0]",

29 api="[u'NtWriteFile ']"

30 ];

31 "NtCreateFile - 80851" -> "NtWriteFile - 80852";

32 "NtCreateFile - 80851" -> "NtWriteFile - 80853";

33 }
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5.2.3 Comparison with Jackdaw

The previous 2 behavioral models we described are not distinguishable with the

old modeling system in Jackdaw. In fact, using the old modeling system, both

samples are modeled using this formula

B = NtCreateF ile ∧NtWriteF ile

Using graph modeling with taint dependencies, we are able to distinguish the fact

that in the second example two distinct operations WriteFile are present. In fact is

obviously applicable the following rule: all the behavioral model with the same API

set and di�erent number, of API or di�erent API dependencies, are distinguishable

only with the graph behavioral model.

We have 545 clusters that produce behavioral models, but only 69 sets of API

calls in those models - meaning that with Jackdaw old modeling system we can

distinguish at most 69 di�erent behaviors. Obviously, not all 545 models we produced

are di�erent: some of them can be equal, so also our dataset can be shrunk. In the

next paragraph, we will see how we can distinguish our models and what are and

how are di�erences between them.

5.3 Behavior matching comparison

Starting from the same cluster, the API call set presented in the old modeling

system may be di�erent from the API calls set presented in new modeling system.

For Jackdaw design choices, in fact, for being present in the model an API call must

present one or more �ngerprints and has to be present in at least 70% of the clusters

behaviors. In the new behavioral model, the clustering algorithm uses the whole

graph as we have taint dependencies: if an API call has no �ngerprints but has

dependencies (of every grade) from other API calls that have �ngerprints, this API

call is still present in the behavioral model. On the other hand new model considers

only API calls that are present in 100% of cluster graphs. Table 5.5 recaps what we

have just explained.
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5.3.1 To compare the old and the new system

We de�ne �group� a set of clusters whose behaviors are not distinguishable using

the old modeling system. To evaluate if we can distinguish more behavior with new

modeling system, we divide all the clusters into groups.

286 clusters out of 607 belong to a group. 242 using the old modeling system

would present an empty behavior, other 28 present a model that is unique in the set

of behaviors of this clusterization experiment. The remaining 88 clusters marked as

�not valid� are not considered from now.

Table 5.6 lists the behavioral groups formed from the experiment. Every group

is composed by a set of behavioral models, represented by a cluster number, having

in common the API set presents in the old modeling system. In Group Behavior

column, we writeAPI1, API2 to mean B = API1 ∧API2

In each group we generate all the possible couples between graphs.

In each group, for each couple we evaluate if we can distinguish new behavioral

models associated to each cluster of the couple. We can summarize this process with

this formula

GroupDifference =

∑n
i=1 δi
n

Where n is the number of couples in group, and δi is 0 if the two behavioral

graphs representing the new models are not distinguishable, 1 otherwise. To perform

this calculation, we have to rede�ne graph equality applying the de�nition for our

speci�c case. In fact, graph equality is a sub-problem of graph isomorphism, that is

an NP-Hard problem [7]. Due to this fact, Algorithm 5.1 is used to confront if two

behaviors are distinguishable. There can be some rare false positive, but they will

a�ect our results only in negative.

Table 5.5: API call presence in models

Fingerprinted Not Fingerprinted, with dependency

Present in 100% of cluster samples In old and new model In new model only
Present in 70%-100% of cluster samples In old model only Discarded

Present in less than 70% of cluster samples Discarded Discarded
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5.3. Behavior matching comparison

Table 5.6: Behavioral Groups

Group Number of Graphs Group Behavior

1 6 'RegEnumValueW', 'RegOpenKeyExW'
2 4 'LdrGetProcedureAddress', 'NtCreateMutant'
3 5 'NtSetInformationFile'
4 26 'ZwMapViewOfSection'
5 24 'NtWriteFile', 'NtCreateFile'
6 6 'NtSetInformationFile', 'NtOpenFile'
7 11 'LdrGetProcedureAddress'
8 15 'NtQueryKey'
9 12 'NtCreateFile', 'NtReadFile'
10 3 'RegCreateKeyExW'
11 11 'NtSetInformationFile', 'NtCreateFile', 'NtReadFile'
12 5 'RegEnumKeyExW', 'RegOpenKeyExW'
13 3 'RegOpenKeyExW', 'RegEnumKeyW'
14 36 'NtCreateFile'
15 8 'NtSetInformationFile', 'NtCreateFile'
16 26 'NtOpenFile'
17 3 'NtOpenKey'
18 11 'RegOpenKeyExW'
19 2 'NtWriteFile', 'NtCreateFile', 'NtSetInformationFile', 'NtOpenFile'
20 4 'NtOpenFile', 'NtReadFile'
21 8 'NtWriteFile'
22 6 'NtDeviceIoControlFile'
23 6 'NtReadFile'
24 2 'NtCreateSection'
25 2 'RegOpenKeyExA'
26 3 'NtQueryDirectoryFile'
27 3 'RegCreateKeyExW', 'RegOpenKeyExW'
28 3 'NtQueryKey', 'LdrGetProcedureAddress'
29 6 'NtSetInformationFile', 'NtReadFile'
30 2 'NtSetInformationFile', 'NtCreateFile', 'NtWriteFile', 'NtOpenFile', 'NtReadFile'
31 3 'NtSetInformationFile', 'NtWriteFile'
32 2 'ZwMapViewOfSection', 'NtFreeVirtualMemory'
33 9 'NtWriteFile', 'NtCreateFile', 'NtSetInformationFile'
34 2 'NtSetInformationFile', 'NtCreateFile', 'NtWriteFile', 'NtReadFile'
35 2 'GetCursorPos', 'LdrGetProcedureAddress'
36 4 'GetCursorPos'
37 2 'GetSystemMetrics'
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Algorithm 5.1 Graph inequality algorithm

1: procedure areTheSame(G1, G2)
2: G1nodes ← G1.nodes

3: G2nodes ← G2.nodes

4: G1edges ← G1.edges

5: G2edges ← G2.edges

6: if Len(G1nodes)!=Len(G2nodes) then
7: return False
8: end if

9: if Len(G1edges)!=Len(G2edges) then
10: return False
11: end if

12: for all e1 ∈ G1edges do
13: for all e2 ∈ G2edges do
14: if e1 == e2 then
15: G1edges.remove(e1)
16: G2edges.remove(e2)
17: end if

18: end for

19: end for

20: if Len(G1edges)!=Len(G2edges) then
21: return False
22: end if

23: return True
24: end procedure

Algorithm �rst confront number of nodes and edges, for performance reasons,

then confronts the lists of the edges removing all the edges that perform the same

API calls. Checking the number of nodes permits also to avoid ambiguities of graphs

having same edges but di�erent nodes as our graphs are completely connected com-

ponents.

Performing this algorithm on every couple, results on the groups are the ones in

Table 5.7

Average of the group means is set to 90, 31%, but looking more signi�cantly to

total couples number distinguished behaviors are

1801

2116
= 85, 11%

Those percentages indeed proof that due to the new modeling algorithm granularity

of behavior we are able to distinguish is indeed growth. Validity of solution pro-
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vided in this thesis is so proved, so in the next paragraph we are going to quantify

qualitatively what are the di�erences between those models.

5.3.2 Di�erences in behavioral models

In the previous paragraph we have detected how many behaviors we are able to

distinguish now thanks to new modeling system. In this paragraph we are now going

to quantify how much those new behavioral models di�ers from the old behavior

models and between themselves.

5.3.2.1 Node similarity

First of all, we have to consider that every group has an old behavioral model and

a list of new behavioral model that are not distinguishable with the old system. Some

of them may be equals between themselves but, for what said in paragraph 5.3.1,

most of those behaviors are also di�erent. The �rst similarity concept we introduce

to measure this fact is node similarity. Node similarity measures how much the new

behavioral models in each group are di�erent from the old behavioral model that the

group de�nes.

We are aware of the fact that the old behavioral model is characterized by a set

of API calls: for this calculation, we approximate the API set of the old model with

a graph that has one node for every API in the set, no matter the edges. Then we

are going to compute Node similarity from this graph to each one of the other graphs

in the group in this way

NSgroup =
1

n

n∑
i=1

NS0,i

Where NSgroup is the node similarity of the group, n is the number of graph

in the group, NS0,i is the Node similarity between graph 0 (old behavioral graph)

and the i-esime graph of the group. Going one step ahead, we have to de�ne this

similarity.
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NSa,b =
1

n

n∑
i=1

APIpresenti
APItotali

Where n is the length of the set of API calls of the two graph in exam3, APItotali

is the number of times this API call is present in the new model, and APIpresenti is

a coe�cient that is set to 1 if the API is present in old and new model, 0 otherwise.

What this means in concrete? It means that we are calculating similarities between

the two models using similarity between API calls and we are computing similarity

on the number of calls. The new models introduce the possibility to store more than

one API call, so we assume that if API calls are identical (100% similarity) there is

only one API call in both models. If there is more than one API call, similarity is

calculated with the number of API calls in old model (1 or 0, APIpresent) on the

total API calls in the new model (APItotal). So, for example, if there are two API

calls on the new models, similarity is 50% for that API call.

With this model, 100% Node similarity in the group means that all the graphs

have exactly one API call for each API call from the API call set of the old behavioral

model. On the other hand, 0% Node similarity means that old and new model

are composed by totally di�erent API calls - this can happen for what we saw in

paragraph 5.3.1.

5.3.2.2 Arc similarity

We want now to measure similarity between models of the same group and we can

do it measuring similarity on arcs. As there are no arcs in old behavioral models, and

we have no informations about taint dependencies, this similarity is only to compute

di�erences in arcs between the new models and, for this reason, is not computed

between the old behavioral model and the new ones, but for every couple of the

group. The fact to de�ne similarity between graph is, obviously, to complete the

approach and quantify better di�erences between behavior we can distinguish. We

can de�ne the arc similarity of the group with this formula

3as we saw an API call can be present only in one of two models or in both
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ASgroup =
1

n

n∑
i=1

i∑
i=1

ASi,j

Where n is the number of couples, ASi,j the arc similarity of the couple containing

behaviors i and j. The Arc similarity between a couple of graphs is so calculated in

this way

ASi,j =
ARCScommons

ARCStotal

Where ARCScommons is the number of arcs graphs have in common. An arc is

considered in common if it has the same API calls at the beginning and at the end.

Algorithms considers also if a couple of arc in common is already processed or not -

so, for example, if in the �rst graph the arc A->B is present twice and in the second

graph once, similarity will be 2/3 (two arcs in common on a total of three arcs).

Arc similarity set to 0%, means that dependency between the two models are

totally di�erent in terms of API calls (or, in another way, every dependency in the

�rst graph is not present on the second one and vice-versa). Arc similarity set to

100% means that the two graphs presents exactly the same dependencies: this does

not guarantee the equality between the two graphs.

5.3.2.3 Similarity results in models

With the formulas exposed above, similarity are computed for each group. Results

are exposed in table 5.8

In average, average of node similarity of the groups is 29,42% and average of arc

similarity of the groups is 37,24%. In �gure 5.6 we have a look of how this two variable

are distributed in the groups using box plots. For what regards node similarities,

distribution is around 31,4% with 17,4% as �rst quartile and 38% as third quartile:

di�erences between original models are in most of the case less than 40% : this means

that using our models we have a lot of API calls that are presented more than once in

a graph and that we cannot distinguish before. Values of arc similarity are between
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(a) Node Similarity Distribution

(b) Arc Similarity Distribution

Figure 5.6: Similarity distributions

21,3% as �rst quartile, 34,26% as mean, 66,66% as third quartile, meaning that

also dependencies between graphs of the same group are di�erent.

5.4 Performances

The system provided is scalable due to the parallelization of the sample processing

after the clustering phase and the fact we set a timeout for the algorithm execution.

The main bottle-neck of the process is, without any doubt, the �rst part: dynamic

analysis of the samples in cuckoo.

Analysis in cuckoo can be done in parallel creating more virtual machines but
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this requires su�cient hardware capabilities: every Sandbox is a Virtual Machine

with high resource demand in particular an high memory capability is needed. In

our process our VMs hosts Windows 7 with 2GB of RAM and for our purposes, we

analyzed the samples with 8 Virtual Machines, with 2 GB of RAM each.

Clusterization process system is on the other hand really e�cient even if clus-

ters are not processed in parallel: to cluster the �rst 3100 samples 1365 seconds are

needed. We can de�ne our clustering rate in our experiment as 2, 26 samples
second . Cluster-

ization process is linear too so clustering 106 samples takes approximately 122 hours

in the veri�ed hypothesis that clusterization time is also linear. As we can see in

Figure 5.7 that seems not to be completely true: after a �rst phase clusterization

time seems to follow a slower progression than a linear one.

This does not depend from clusterization algorithm itself: in fact the most ex-

pensive part in term of time of this work part is not the clustering action itself but

the load of the gpickle �les in which information from the sample analysis are stored.

More big is the sample analysis, more time is needed to load the �le: the time needed

to cluster the �le can be considered negligible respect to this one.

The decrease of slope in the graph is so due to the fact that the majority of big

�les are present in the �rst 2100 samples of the clusterization process: 1613
1969 = 81%

of the big samples in approximately the �rst 66% of the dataset. Due to this fact,

we can approximate also the clusterization time in a linear way: our graph is caused

by a non-homogeneous distribution of sample analysis size in the cluster.

Synthesizing process depends form the cluster nature and strongly from the ma-

chine nature: Clusters are processed 4 at once, launched at intervals of 0.5 seconds:

after this time, if the cluster doesn't terminate, and additional time of 20 seconds

are given to this group of four clusters. When this time is passed process still in

execution are killed. This means, in a group of 4 clusters in execution, that the �rst

has 2 seconds to terminate, the second 1.5 seconds, the third 1 second and the fourth

0.5 seconds - after this time, if one of the four cluster is not terminated, other 20

seconds are given to the group.
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Figure 5.7: Clusterization Time

Due to this design execution a group of 4 cluster can terminate in 2 second or

in 22 second. It it sure that a group terminates in 22 second if in the group at least

one of four clusters is one of the clusters described as �not valid� in paragraph 5.1.1

because in those clusters execution is not terminated.
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Table 5.7: Behavioral Di�erences

Group Number of Group Couples Di�erent Couples Percentage Di�erent Couples Number

1 15 93,33% 14
2 6 100% 6
3 10 100% 10
4 325 79,69% 259
5 276 56,52% 156
6 15 80% 12
7 55 100% 55
8 105 100% 105
9 66 90,91% 60
10 33 100% 3
11 5 100% 55
12 10 100% 10
13 2 100% 3
14 630 93,33% 588
15 28 96,43% 27
16 325 83,08% 270
17 3 100% 3
18 55 81,82% 45
19 1 100% 1
20 6 50% 3
21 28 96,43% 27
22 10 40% 4
23 10 100% 10
24 1 0% 0
25 1 100% 1
26 3 100% 3
27 3 100% 3
28 3 100% 3
29 15 100% 15
30 1 100% 1
31 3 100% 3
32 1 100% 1
33 36 100% 36
34 1 100% 1
35 6 100% 6
36 1 100% 1
37 1 100% 1
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Table 5.8: Similarity Results

Group Number of Group Couples Node Similarity Arc Similarity

1 15 45,09% 52,75%
2 6 4,37% 26,98%
3 10 10,99% 20,67%
4 325 34,47% 53,49%
5 276 56,69% 55,38%
6 15 64,93% 50%
7 55 7,54% 27,92%
8 105 6,67% 43,5%
9 66 45,27% 33,23%
10 33 33,33% 31,43%
11 5 19,44% 24,26%
12 10 15,6% 24,36%
13 2 18,6% 44,76%
14 630 32,81% 30,89%
15 28 33,49% 36,5%
16 325 31,06% 44,88%
17 3 38,89% 19,87%
18 55 31,41% 40,34%
19 1 35,66% 30%
20 6 57,14% 52,38%
21 28 27,71% 34,26%
22 10 43,33% 86,67%
23 10 10,76% 34,9%
24 1 25% 100%
25 1 13,61% 4,35%
26 3 15,74% 52,38%
27 3 30,16% 31,28%
28 3 44,21% 46,6%
29 15 18,62% 27,42%
30 1 32,36% 16,67%
31 3 24,19% 19,35%
32 1 13,73% 66,67%
33 36 37,76% 37,48%
34 1 35,54% 19,05%
35 6 33,98% 22,9%
36 1 40,28% 34,46%
37 1 18,06% 0%
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Chapter 6

Conclusions

In this thesis we have presented a new way to synthesize and extract malware be-

haviors from known malicious samples through automatic tools from large datasets.

Models are presented into graphs that permits, respect to the old modeling system,

to add some information about presence of multiple API calls of the same type. In

addition of those information also in new models are present information about API

dependencies that were not stored in the previous models. We have so proved that

di�erent malware have behaviors in common and have provided a more e�cient way

to distinct them than in Jackdaw [20] providing not only a quantitative measure of

similarity and di�erences between the two behavioral models but also qualitative: we

can distinguish 85% more behavioral models respect to the old modeling system and

we can say that those models are in average 31% similar in a comparison with old

modeling system and 34% similar between them. This approach however presents

some limitations.
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