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Abstract

Lots of investments have been recently made in developing concentrating solar
power systems (CSP) [1]. In particular central receiver power plants are expected
to become soon competitive with respect to fossil-fuels ones [2].

In order to increase the power cycle efficiency of CSP plants, higher operating
temperature and heat flux densities beyond state-of-the-art systems are needed.
An important step towards this goal is the selection of an efficient heat transfer
fluid, as it has a large effect on the overall performance.

Therefore, the development of new solar receiver concepts using liquid metals as
heat transfer fluids is a promising way of reaching higher temperatures and lowering
costs [3–5].

The heat flux applied on a receiver tube is circumferentially and longitudinally
non-uniform. This creates doubts about the applicability of the available Nusselt
correlations, in principle valid for uniform imposed heat fluxes, and it determines
high thermal stresses in the tube walls. Thus, for a proper thermo-hydraulic, as well
as mechanical design of the receiver, good knowledge of the local wall temperatures
and convective heat transfer coefficients is required.

Computational fluid dynamics is then used in the present work to analyze the
conjugate heat transfer in the receiver tube of a solar thermal tower operated with
a liquid metal, to the purpose of comparing the numerical results with the Nusselt
numbers provided by the available correlations for liquid metals.

The numerical analysis is complicated by the fact that the heat transfer mech-
anism of liquid metals differs from that of ordinary fluids. Consequently, the
Reynolds analogy cannot be applied to these fluid flows.

The performances of different approaches of computing the turbulent heat flux
have been evaluated by comparisons against DNS data, suitable Nusselt correlations
and semi-analytical solutions provided in [6, 7].

A recently proposed four-equation turbulence model [8], considering the thermal
turbulence effects and the dissimilarities between the thermal and dynamical
turbulence fields has been selected to perform the numerical analysis.

Therefore, two additional equations, namely one for the temperature variance
and one for its dissipation rate, have been solved, in order to determine the turbulent
thermal diffusivity. The turbulence model has been implemented through User
Defined Functions (UDFs) and coupled to the CFD code (Fluent v.15).

Simulations have been performed first for a circumferentially uneven and longi-
tudinally uniform heat flux and then for the circumferentially and longitudinally
non-uniform heat flux present on a central receiver tube. A parametric study has
been done for different combinations of the governing parameters: wall thickness
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ratio, solid-to-fluid thermal conductivity ratio, Peclet number, diameter-to-length
ratio.

Detailed results for the inner, outer, fluid bulk temperature, Prt and Nusselt
number have been reported. The calculated average Nusselt numbers closely agree
with those evaluated with appropriate correlations for liquid metals, valid for
uniformly distributed heat flux. Nonetheless, these correlations are not suited to
evaluate the local Nusselt number and wall temperature distribution.

Keywords: Liquid Metals, CFD, Turbulent convection, Conjugate heat transfer,
Pipe flow, Solar receiver, Non-uniform heat flux.



Sommario

Nel presente lavoro di tesi è illustrata l’analisi numerica dello scambio termico
in un tubo di un ricevitore di una torre solare operato con metalli liquidi. Il
flusso termico presente è fortemente non uniforme sia in direzione assiale che
circonferenziale; questo comporta la presenza di alti stress termici e la necessità, in
fase di progettazione, di disporre di stime accurate della temperatura a parete e
del coefficiente di scambio termico. Lo scopo di questo lavoro è quindi quello di
confrontare i risultati numerici ottenuti con le correlazioni disponibili per il calcolo
di Nu nei metalli liquidi.

Il meccanismo di scambio termico dei metalli liquidi è peculiare e differisce da
quello di altri fluidi comuni aventi Pr vicini o superiori all’unità. L’analogia di
Reynolds non è valida per i metalli liquidi e, di conseguenza, diversi metodi per
modellizzare il numero di Prandtl turbolento Prt sono stati utilizzati e confrontati
in questa tesi. Un modello a quattro equazioni recentemente proposto in [8] e
specificatamente calibrato per metalli liquidi è stato scelto per effettuare l’analisi
numerica.

Le simulazioni svolte hanno considerato dapprima un flusso termico longitu-
dinalmente costante e circonferenzialmente non uniforme e in seguito un flusso
termico longitudinalmente e circonferenzialemnte non uniforme modellizzato al fine
di riprodurre quello presente in un ricevitore di una torre solare.

Uno studio parametrico al variare di 4 parametri adimensionali (λ∗, r∗, L/D,
Pe) significativi è stato effettuato. I risultati in termini di temperature a parete
sia esterna sia interna, temperatura di bulk, Prt, e Nu sia locali che globali sono
diffusivamente presentati e commentati.

In paricolare si evince che il numero di Nusselt globale calcolato dalle simulazioni
è in accordo con quello fornito da correlazioni appropriate per metalli liquidi valide
per flussi termici uniformi; tuttavia, le stesse correlazioni, non sono utilizzabili per
calcolare i profili di temperatura a parete o il Nu locale.

Parole Chiave: Metalli liquidi, CFD, Convezione turbulenta, Scambio termico
coniugato, Ricevitore solare, Flusso termico non uniforme.
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Riassunto esteso

Le centrali solari a concentrazione sono una tecnologia promettente per il
futuro della generazione elettrica. Esse infatti sfruttano una delle fonti energetiche
rinnovabili per eccellenza e, grazie alla possibilità di integrare un serbatoio termico,
risolvono il problema dell’aleatorietà della fonte solare e i conseguenti problemi di
dispacciamento. Per questi motivi gli investimenti volti a studiare, progettare e
costruire nuove centrali solari a concetrazione sono esponenzialmente aumentati
negli ultimi anni [1].

In particolare le torri solari a concentrazione sono la tecnologia più promettente
in termini di prospettive di riduzione di costo dell’energia prodotta. Le proiezioni
disponibili mostrano che esse possono diventare competitive rispetto alle centrali
tradizionali in pochi anni [2].

Per aumentare l’efficienza delle centrali a torre solare e diminuire il costo
dell’energia prodotta, è cruciale raggiungere temperature operative più alte e quindi
avere flussi termici maggiori sul ricevitore [9]. La scelta del fluido di scambio termico
influenza molto questi parametri e nuove configurazioni in cui il fluido di scambio
termico impiegato è un metallo liquido sono attualmente allo studio con risultati
promettenti [3–5].

Questa tesi è stata svolta presso il Laboratorio di Metalli Liquidi dell’Istituto
per le Tecnologie Nucleari ed Energetiche del Karlsruhe Institute of Technology
(Germania), dove un ricevitore solare operato con metalli liquidi con una potenza
termica di 10 kW è in costruzione. Lo scopo è quello di riacquisire esperienza
nell’operare sistemi a concentrazione che adottano metalli liquidi come fluido di
scambio termico, validare una metodologia di progettazione adottabile per centrali
di grossa taglia e valutarne i costi.

In questo scenario si inserisce il presente lavoro di tesi che si propone di valuatre,
attraverso simulazioni numeriche, l’applicabilità delle correlazioni per il numero
di Nusselt in teoria valide solo per flussi termici imposti uniformi, a casi in cui il
flusso termico sia non uniforme.

Il flusso termico a cui sono sottoposti i tubi che compongono un ricevitore di
una torre solare è infatti fortemente non uniforme, sia in direzione tangenziale sia
lungo la circonferenza. Questo provoca alti stress termici e la necessità, in fase
di progettazione, di disporre di stime accurate della temperatura a parete e del
coefficiente di scambio termico.

L’analisi numerica è complicata dal fatto che il meccanismo di scambio termico
dei metalli liquidi è peculiare a causa del loro basso numero di Prandtl. Questo
comporta la non validità dell’analogia di Reynolds e la non applicabilità dei consueti
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metodi di modellizzazione del flusso termico turbolento utilizzati per i più comuni
fluidi di scambio termico.

Diversi metodi per il calcolo del numero di Prandtl turbolento Prt sono quindi
illustrati (Sez.3.1.2) e confrontati (Cap.4). Il confronto è stato effettuato utilizzan-
do dati provenienti da simulazioni DNS1, correlazioni e soluzioni semi-analitiche
proposte in [6, 7] per un flusso completamente sviluppato sottoposto ad un flusso
termico che varia cosinusodialmente lungo la circonferenza del tubo.

In particolare un modello a quattro equazioni recentemente proposto in [8] è
stato poi scelto per effettuare l’analisi numerica vera e propria. La peculiarità di
questo modello risiede nel fatto che tiene conto delle diverse scale temporali di
turbolenza presenti nei fluidi a basso numero di Prandtl. Nei metalli liquidi infatti
le scale di turbolenza relative alla quantità di moto differiscono sensibilmente da
quelle relative all’energia termica (vedi Sez.2.2).

Oltre alle equazioni di trasporto per k ed ε due equazioni di trasporto aggiuntive,
una per la varianza della temperatura kθ, e una per il suo tasso di dissipazione εθ,
sono state implementate tramite UDF2s, accoppiate con il codice FLUENT v.15 e
quindi risolte per ottenere il valore di αt in ogni simulazione.

In primo luogo sono state effettuate simulazioni, a diversi Pe, per un flusso
completamente sviluppato sia dinamicamente sia termicamente sottoposto ad un
flusso termico circonferenzialmente non uniforme. I risultati, in termini di profili di
temperatura a parete e Nu, sono stati confrontati con quelli che si otterrebbero
utilizzando una correlazione per Nu valida per metalli liquidi sottoposti ad un
flusso termico uniforme consigliata in [15].

Dai risultati si evince che la correlazione (Eq.(4.1)) fornisce un stima del Nusselt
globale in linea con il valore riscontrato nelle simulazioni, tuttavia i profili di tem-
peratura a parete estrapolati analiticamente a partire dallo stesso Nu, differiscono
sensibilmenete con quelli ottenuti nelle simulazioni numeriche (Sez.5.1).

Successivamente l’analisi completa dello scambio termico coniugato in un tubo
di un ricevitore solare operato con metalli liquidi è stata effettuata. Sono state
effettuate simulazioni per diversi valori dei parametri adimensionali che influenzano
il problema (λ∗, r∗, L/D, Pe).

Il flusso termico applicato in questi casi è non uniforme sia circonferenzialmente
sia logitudinalmente ed è stato modellizzato in modo da ricalcare quello realmente
presente in un ricevitore di una torre solare (Sez.2.1).

Il fatto che il flusso termico vari lungo la direzione assiale impedisce il raggiun-
gimento di una condizione di completo sviluppo dal punto di vista termico, almeno
non con le implicazioni che si avrebbero nel caso di un flusso termico uniforme. I
risultati ottenuti sono stati confrontati con una correlazione, in teoria valida solo
per un flusso termico imposto uniforme, che tenesse conto della regione di sviluppo
termico.

Grafici che mostrano l’andamento dei profili di temperatura di parete esterna
e interna, temperatura di bulk, Prt e Nu sia locale che globale al variare dei
parametri (λ∗, r∗, L/D, Pe) si possono trovare in Sezione 5.2.2. Si può concludere
che la correlazione scelta, nel range di variabilità dei parametri adimensionali

1Direct Numerical Simulation
2User Defined Functions
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considerato, fornisce risultati in accordo con quelli delle simulazioni numeriche per
quanto riguarda il Nu globale, mentre quello locale Nu(x) differisce sensibilmente
da quello stimato. Inoltre i valori di Nu globale calcolati si allontanano da quelli
predetti dalla correlazione all’aumentare di Pe e di L/D.

In definitiva, è possibile affermare che le correlazioni consigliate per il calcolo
del Nu globale per i metalli liquidi, in teoria valide per un flusso termico imposto
uniforme, possono essere applicate in caso di flusso termico non uniforme, prestando
però particolare attenzione nel caso in cui l’assenza di uniformità riguardi anche la
direzione assiale. In ogni caso, tuttavia, i valori di temperatura a parete cos’ come
il Nusselt locale, non sono estrapolabili a partire dai coefficienti di scambio termico
forniti dalle correlazioni.

————————————————————————



Chapter 1

Introduction

1.1 Concentrating Solar Power

Figure 1.1: Sketch of a solar tower

The demand for a more balanced
and sustainable energy mix is worldwide
boosting the research in the solar energy
field. Increasing the share of electrical
energy coming from renewable sources
means both to tackle the climate change
problem and to reduce the energy de-
pendence on fossil fuels. The second
point is extremely important, especially
for those countries that are importing
fossil fuels, often from politically unsta-
ble regions. For these reasons, over the
past decade, almost 80% of European
investments in power generation went to
renewables, especially to wind and solar
technologies (http://www.iea.org/).

CSP1 plant solutions are among the
more promising power production tech-
nologies based on a renewable source.
One of the reasons has to be found in

the possibility to integrate a thermal storage, overcoming dispatchability issues
affecting other solutions based on wind or sun power.

CSP plants are made by a solar collector field concentrating the solar radiation
on a receiver. In the receiver a heat transfer fluid (HTF2) stores up the solar power
as thermal energy. This energy can be transferred to a power conversion system or
be stored in a thermal storage system.

CSP plants can be classified according to the way they focus the sun’s rays.
There are four big categories of CSP plants: parabolic trough, solar tower or central
receiver, linear Fresnel and dish Stirling. Parabolic trough and linear Fresnel

1Concetrating Solar Power
2Heat Transfer Fluid

http://www.iea.org/


Chapter 1. Introduction

systems adopt linear collectors while dish Stirling and solar tower systems are based
on point focus collectors. The main difference is that linear collectors are single-axis
tracking while point focus collectors are two-axis tracking. Parabolic trough and
dish Stirling systems adopt a continuous system of concentration while linear Fresnel
and solar tower systems are based on a discrete one. Continuous concentrators are
mirrors in the form of a parabola, which reflect the solar energy at the focus of
the parabola. The parabolic shape is made by a rigid metallic structure. Discrete
concentration is achieved by several mirrors, which move independently in order
to collect the solar energy at the same focus point. A more detailed description of
CSP systems can be found in [10].

An important parameter to consider when it comes to characterize CSP systems
is the concentration ratio.

CR =
AbsorberArea

ApertureArea
=
Aa
Ap

(1.1)

In equation (1.1) Aa is proportional to the surface of the mirrors while Ap is
proportional to the surface of the receiver. The highest CR is reached in solar
tower systems where hundreds of mirrors concentrate the solar radiation on a single
central receiver (Fig.1.2).

Analyzing the future potentialities of the previous mentioned CSP technologies,
according to [2], on one hand, parabolic troughs technology is the most mature and
shows the lowest development risk. On the other hand, solar towers power plants
are the most promising in terms of reducing their capital costs and improving their
performances.

1.2 Solar tower technologies

1.2.1 Components and operation

In a solar tower system, there are four macro-components:

• The heliostat field, consisting in several two axis tracking mirrors ground
based that reflect the solar radiation onto a receiver located at the top of a
tower (Fig.1.1).

• The receiver, absorbing the solar radiation and transforming it into thermal
energy. There are several kinds of receivers and a good review of current
researches on receiver concepts can be found in [1]. A heat transfer fluid HTF
flow in the receiver, it can be gaseous, liquid and even concepts with solid
particles directly absorbing the radiation are under evaluation.

• The power block, converting thermal energy in to electricity. Usually a
Rankine Cycle is adopted; however concepts adopting close or open Brayton
cycles and combined cycles are currently under research. The fluid performing
the thermodynamic cycle is called working fluid (WF3).

3Working Fluid

2



1.2. Solar tower technologies

• The thermal storage, storing part of the thermal energy coming from the
receiver. This energy can be used to compensate the drop of solar energy due
to passing clouds or, accordingly to the size of the storage, even to produce
electricity at night. Thermal energy can be stored as sensible heat using
liquids or solids, as latent heat using phase-change materials and as chemical
energy. Sensible thermal energy storage using liquids represent the mature
technology, the fluids adopted are called thermal storage fluids (TSF4s).

Depending on the HTF and its integration with the thermal storage system and
the power block, different configurations are possible. In Fig.1.3 three possible
configurations of central receiver power plants are illustrated.

Most of the solar tower power plants currently in operation adopt the configura-
tion B; they are operated with molten salt both as HTF and as TSF. The power
block is usually a Rankine water-steam cycle so water is the WF.

Configuration A involves a direct steam generation, it is a technology still in the
concept phase but it aims at reducing costs and enhancing the thermal efficiency
by eliminating one heat exchanger.

Configuration C has two different fluids for the heat transfer and for the thermal
storage, this configuration is useful when the HTF is expensive or has a low specific
thermal capacity (cp).

Since 1980 there have been several pilot projects proving the feasibility and the
economic potential of central receiver technologies. One good example is Gemasolar
power plant located in Spain. It is a 20 MWe central receiver power plant operated
with molten salt. It adopts configuration B and, thanks to its 15 hours storage
system, it is able to deliver power around the clock (http://www.torresolenergy.
com/TORRESOL/gemasolar-plant/en). Alongside with this project many others,
already in operation or under construction, are moving forward the maturity of
this technology. A lot of investments have been carried on lately on solar tower
systems; in USA 1.2 GW power installation are under construction and worldwide
10.135 GW power installation are announced mainly in USA, Spain and China [1].

1.2.2 Potential

The raising interest in central receiver technologies is due mainly to the fact
that the levelised cost of energy (LCOE5) of these power plants is supposed to lower
in few years, making them competitive with traditional power plants [2] .

The reason is mainly that central receivers arrangements lead to higher con-
centration ratios than other CSP technologies. A higher number of sun rays are
concentrated on a smaller surface so higher temperatures can be reached (see
Fig. 1.2). From the thermodynamic point of view this feature is crucial since the
efficiency of the thermodynamic cycle, used in the power block, is highly dependent
on the maximum reachable temperature.

In fact, the overall ideal conversion efficiency of a CSP plant can be seen as:

ηCSP = ηthηcycle (1.2)

4Thermal Storage Fluid
5Levelised Cost of Energy

3
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Chapter 1. Introduction

Figure 1.2: Photo of Gemasolar power plant (figure taken from http://www.
torresolenergy.com/TORRESOL/gemasolar-plant/en)

In equation (1.2) ηcycle is the efficiency of the thermodynamic cycle adopted in the
power block. It is directly dependent on the higher temperature reachable within

the power block Tmax. In fact, ηcarnot = 1− Tamb
Tmax

and ηcycle is always a fraction of
ηcarnot.

Higher temperatures mean also more compact heat storage systems. However
reaching higher temperature affects also the other components of the system. In
equation (1.2) ηth represents the ratio between the net heat absorbed by the receiver
and the energy concentrated on the receiver itself. Thus, ηth is affected by the
thermal losses at the receiver surface. Radiative and convective heat losses increase
with the surface temperature of the receiver and decrease with its area. Moreover,
the surface temperature reached and the area required are themselves dependent
on the HTF properties.

Thus reaching higher temperatures does not necessarily mean higher efficiencies,
to exploit this potential the whole system has to be designed accordingly. Solar
tower power plants are complex systems. Their design is highly dependent on the
thermodynamic cycle used (Brayton, Rankine), on the receiver specifications and
on the heat transfers fluid properties. Despite this complexity some fixed point can
be derived from [1, 2, 4, 9, 11, 12].

First, the winning configuration among all the possible solar tower systems is
not yet defined. Both from the technical and the economical point of view further
researches are required. In this context, operating pilot power plants is important
in order to gain operation experience, validate design methodologies, evaluate costs
and test production capacities.

Second, even though efforts are required in order to make central receiver
technology mature enough to compete on the market, there are encouraging forecasts

4
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1.2. Solar tower technologies

(a) Configuration A.

(b) Configuration B.

(c) Configuration C.

Figure 1.3: Examples of possible solar tower power plant configurations

5



Chapter 1. Introduction

about the LCOE. In [2] some projections are presented stating that the LCOE of solar
tower power plants will decline by between 30% and 50% by 2020. In particular new
solar tower concepts reaching higher temperatures and adopting ultra-supercritical
steam cycles (USC6) are supposed to reach higher efficiencies and lower the LCOE.

In conclusion, despite the fact that efficiency and costs are affected by multiple
design choices, future researches must focus on central receiver concepts adopting
thermodynamic cycles with and increased Tmax.

1.2.3 Heat transfer fluid selection

The selection of the HTF is crucial in designing a solar tower system. The perfect
HTF has to fulfill several requirements:

• Low melting point, because during nights and cloudy cold days freezing should
be avoided.
• High upper temperature limit, in order to reach higher Tmax. The upper

temperature limit can be set by the boiling point or by the point where the
fluid loses its chemical stability and starts to degrade.
• Large thermal conductivity λ [W/mK], which leads to a more efficient heat

transfer.
• Low viscosity µ [kg/ms], in order to limit the pressure drop.
• Large specific heat capacity cp [J/kgK], which allows the introduction of a

direct thermal storage where the HTF is also the TSF.
• Low cost
• Non-polluting and non-flammable, which means that small leakages do not

affect the surrounding environment and the integrity of the power plant.
• Easy to operate, which is related to its compatibility with other materials in

term of corrosion.

The solar tower power plants currently in operation adopt mainly molten salts
(Hitec7) both as HTF and as TSF. However molten salts show some disadvantages;
their upper temperature limit is about 600◦C and their melting point is high (around
200◦C). The chemical instability of molten salt beyond 600◦C sets a limit for Tmax
and it prevents them from being adopted in central receiver systems that exploit
USC cycles.

In order to overcome these limits and increase Tmax, different HTF have been
proposed and a promising solution seems to be the adoption of liquid metals. Liquid
metals present large thermal conductivity λ, small kinematic viscosity ν and a
wide temperature range over which they remain in the liquid phase. They are
efficient heat transfer media in processes with limited heat exchange surfaces and
high thermal loads. For these reasons they were proposed as high temperature heat
transfer media in CSP systems in 1980’s. Tests were carried out on a demonstration
plant (Plataforma Solar de Almeria) operated with a liquid sodium-cooled central
receiver [13]. Experiments were stopped after a fire caused by a sodium leakage
during improper maintenance works.

6Ultrasupercritical Steam Cycles
7Trade name of a ternary molten salt
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Later, liquid metals have been widely exploited as HTF in fast fission nuclear
reactors so now the operational experience in exploiting liquid metals in complex
systems is much more solid than in the 1980’s. The potentialities of liquid metals
as HTF in central receiver systems have been assessed, indeed, in several recent
researches.

In [9] different solar tower power plant adopting a tubular central receiver
and driving USC cycles are compared. The figure of merit is the LCOE and the
alternatives differ because of the HTF adopted. The analyzed HTFs are a molten
nitrate salt eutectic and several liquid metals; tin, sodium, LBE8 and LiCl-KCl
eutectic. Parameters characterizing the central receiver are optimized considering
the physical and thermodynamic properties of the different HTFs. The reference case
considered is a 50MWel molten salt solar tower power plant with an 8 hours heat
storage adopting configuration B shown in Fig. 1.3. The configurations compared
are type B or C depending on the characteristic in term of price and cp of the HTF.
Results show a significant LCOE reduction potential of about 15% if an USC steam
cycle and a tubular receiver operated with liquid metals with an optimum storage
size are assumed.

Reaching higher temperatures is crucial and in order to achieve this goal a
proper HTF has to be chosen. According to [4, 9, 11, 12] liquid metals, in particular
sodium (Na) and LBE, are very promising options.

1.3 Scope and content

Given this scenario of increased interest in CSP technologies and the potentiali-
ties of solar tower power plants, the Karlsruhe Institute of Technology (KIT) in
collaboration with the Solar Institute of the German Aerospace Center (DLR) have
launched a project whose goals are planning, designing, constructing and operating
a small CSP system in the 10 kW thermal range using liquid metals as HTF [5].

The project involves the KALLA9 team of the Institute for Nuclear and Energy
Technologies IKET10. The facility has been named SOMMER11 and the purposes of
its operation are gaining operation experience, validating a design methodology for
bigger plants and evaluating O&M costs and LCOE for solar tower concepts with
increased Tmax.

The central receiver is a key component and accounts for about 15 % of the
total investment costs [14]. Therefore its design is crucial in order to reach good
operational and economic performances.

Because of the extremely high concentration ratio that characterizes a CSP
system adopting a central receiver configuration, the receiver undergoes severe
thermal stresses. In order to optimize its size and to guarantee operational safety
and long-lasting high performances, heat transfer coefficients and temperature
profiles have to be carefully foreseen during the design phase.

Moreover, the more Tmax increases the more a wrong prediction of local Nusselt

8Lead-Bismut (Pb- Bi) Eutectic
9KArlsruhe Liquid Metal Laboratory

10Institute for Nuclear and Energy Technologies
11SOlar Molten MEtal Receiver
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Chapter 1. Introduction

numbers and wall temperatures can result in unexpected thermal stresses mining
the structural integrity of the receiver.

The design of a central receiver operated with liquid metals is complicated by
the extremely non-uniform boundary conditions present and by the peculiar heat
transfer mechanism of the HTF chosen.

Common Nusselt correlations, such as the Dittus-Boelter correlation or the
Gnielinsky correlation, widely used to compute Nusselt numbers in pipe geometries
are not suitable when liquid metals are involved.

A review of Nusselt correlations suitable for liquid metals can be found in
[15]. Nevertheless, all the correlations suggested in [15] consider the heat transfer
occurring in a pipe undergoing a uniform thermal boundary condition (i.e. constant
imposed heat flux) and their applicability to the case of a central receiver tube,
undergoing an extremely non-uniform heat flux, is questionable.

The goals of this work are then:
• to assess whether the available Nusselt correlations for liquid metals, valid

in principle for a uniformly distributed heat flux, can be applied in order to
evaluate the heat transfer coefficients in a solar receiver tube;
• to define the governing parameters influencing the conjugate heat transfer
problem of a solar receiver tube and assess their influence on the most
important physical values (e.g. wall temperature profiles).

This will give also useful insights for the design of SOMMER.
The present work is organized as following.
In Chapter 2 the boundary conditions present on a solar receiver tube are

presented and modeled and a description of the heat transfer mechanism of liquid
metals is given.

The numerical approach adopted is presented in Chapter 3 together with the
turbulence models used. Because of the peculiar heat transfer mechanism of liquid
metals different approaches for computing the turbulent heat flux are presented
(Sec.3.1.2) and assessed.

In particular a recently proposed four equation k-ε-kθ-εθ turbulence model
specifically calibrated for liquid metals has been implemented through UDFs. The
implementation is validated in Sec.4.1.1. Moreover in Chapter 4 the performances
of the different thermal turbulence models presented in Sec.3.1.2 are evaluated
by comparisons with DNS data, suitable Nusselt correlations and semi-analytical
solutions found in [6, 7].

Finally in chapter 5 results from simulations first for a circumferentially uneven
and longitudinally uniform heat flux and then for the circumferentially and longi-
tudinally non-uniform heat flux present on a central receiver tube are presented.
A parametric study has been done for different combinations of the governing
parameters: wall thickness ratio, solid-to-fluid thermal conductivity ratio, Peclét
number, diameter-to-length ratio and detailed results for the inner, outer, fluid bulk
temperature, Prt and Nusselt number are reported.
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Chapter 2

Problem Description

2.1 The receiver and its boundary conditions
Even though, as explained in section 1.2.1, several receiver concepts are under

research, the most used and proven is the external tube receiver. It is based on
arrays of parallel tubes, which are cooled from the inside by the HTF and heated
from the outside by the concentrated sunlight. The tubes are arranged in order to
form a cylinder, a good example is shown in Fig.2.1a . Adopting this design, only
half of the surface of the tubes is exposed to solar irradiance, while the other half,
facing the inside of the receiver, can be considered as insulated.

(a) Sketch of the external tube receiver of
Solar One power plant (figure taken from
http: // www. powerfromthesun. net/
Book/ chapter10/ chapter10. html ).

(b) Gemasolar-like heat flux distribution on
the receiver on 20th March (figure taken from
[16] ).

Figure 2.1: Example of an external tubular receiver and the heat flux on it

The concentration of sun rays on the receiver is not uniform. Every mirror in the
heliostat field is designed in order to track the sun and reflect the direct radiation
on a target point located on the receiver itself. This process is affected by several
losses such as shadowing, cosine, reflectivity, cleanliness, blocking, atmospheric and

http://www.powerfromthesun.net/Book/chapter10/chapter10.html
http://www.powerfromthesun.net/Book/chapter10/chapter10.html


Chapter 2. Problem Description

spillage losses. Assessing these losses and predicting the heat flux distribution on
the receiver is not the purpose of the present work. What is important to know
is that the resulting heat flux is non uniform and it can be modeled as a circular
Gaussian distribution over the entire receiver area.

Examples of heat flux distributions on a central tubular receiver can be found
in [16]. In Fig.2.1b is shown the heat flux distribution on the receiver surface
computed with a model reproducing the radiation reflected by the heliostat field of
Gemasolar power plant on the 20th of March.

Since the tubes are arranged in a parallel configuration, the boundary conditions
are the same on each tube. Thus, within the present work, just one of the several
parallel tubes is considered. The imposed heat flux on the surface of a single tube
can be modeled as following:
• Longitudinally the heat flux follow a Gaussian law having its peak in the

middle of the tube length (Fig.2.2) ;
• Circumferentially half of the tube perimeter is considered as insulated while

on the other half the heat flux can be modeled with a sinusoidal distribution
(Fig.2.2).

Figure 2.2: Heat flux variability over the length and the axial coordinate of the tube.

The hat flux variability over the axial coordinate is a direct consequence of the
central Gaussian distribution of the heat flux over the receiver surface (Fig. 2.1b).
On the other hand, to model the heat flux variability over the perimeter of the tube,
the reflected radiation is considered constant with y and composed of perfectly
parallel beams, as shown in Fig.2.2 .

Actually, it is a simplification since the beams are not perfectly parallel, because
of the disposition of the heliostats, and the radiation is not constant, because of the
Gaussian distribution. However, since the tube diameter is small if compared to
the receiver diameter (a plausible ratio could be Drec/Dtube ≥ 500), the assumption
of the reflected radiation being constant and perpendicular to y is valid.
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2.1. The receiver and its boundary conditions

Nonetheless, since the surface of the tube is curved, the cosine effect causes a
variability of the heat flux over the tube circumference. The cosine effect consists
in the reduction of radiation by the cosine of the angle between solar radiation
and a surface normal. In Fig.2.2 is shown that the reflected radiation is normal to
the surface of the tube only in ϕ = 180◦. Thus, when ϕ 6= 180◦ the cosine effect
intervenes and the resulting heat flux distribution is sinusoidally varying (Fig.2.2).

In conclusion, the heat flux distribution presents on the external surface of a
tube in a tubular central receiver can be modeled through (2.1).

{
q′′(x̃, ϕ) = −q′′max · cos(ϕ) · f(x̃) if 90◦ ≤ ϕ ≤ 270◦

q′′(x̃, ϕ) = 0 if 0◦ ≤ ϕ ≤ 90◦ ∧ 270◦ ≤ ϕ ≤ 360◦
(2.1)

f(x̃) = exp

[
−1

2

(
x̃L− µ
σ

)2 ]
(2.2)

µ = L/2 (2.3)
σ = L/5 (2.4)
˜̃x = x/L (2.5)

In the equations above L is the pipe length so x̃ is the non-dimensional axial
coordinate. The term f(x̃) reproduces the Gaussian variability of the heat flux over
the pipe length while the term cos(ϕ) accounts for the cosine effect. The factor
q′′max is the maximum value of the heat flux reached in ϕ = 180◦ and x̃ = 0.5.

The resulting heat flux distribution keeps the same form independently from
the pipe length and the q′′max chosen. The values at both ends are always 5 % of
the maximum at the center; this because usually central receivers dimensions are
designed in order to catch 90 % of the reflected radiation and this leads to the fact
that, at the pipe ends, the heat flux assumes a value near to 5 % of q′′max. The
non-dimensional profile of the heat flux is shown in Fig. 2.3a.
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(a) Non-dimensional profile of the heat flux.
At ϕ = 120◦ (solid line), ϕ = 150◦ (dashed
line),ϕ = 150◦ (dot-dashed line) .

(b) Contour of the heat flux imposed computing
the simulations presented in Sec.5.2.2.

Figure 2.3: Heat flux on a central receiver tube
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Chapter 2. Problem Description

Table 2.1: Properties of Mercury, Air and Water at 20◦C

Mercury Air Water

ρ kg/m3 13 579 1,205 998,3
cp kJ/kgK 0,139 1,005 4,183
λ W/mK 8,69 0,026 0,598
ν (m2/s) · 10−6 0,114 15,11 1,004

Pr 0,0249 0,71 7,02

The thermal boundary conditions presented within this section have been applied
to the numerical cases analyzed in Sec.5.2.2 through an UDF (Appendix A Listing
A.1). In Fig.2.3b a contour of the imposed heat flux is shown.

In conclusion, the thermal boundary conditions present on a tube in a solar
receiver are circumferentially and longitudinally uneven. This creates doubts about
the applicability of correlations developed for uniformly heated tubes.

Moreover, the high unevenness of the heat flux can result in high thermal stresses
in the tube walls, whose magnitude depends on the cooling effect of the heat transfer
fluid. Thus, for a proper thermo-hydraulic design, as well as mechanical design of
the receiver, good knowledge of the local wall temperatures and convective heat
transfer coefficients is required.

2.2 Heat transfer mechanism of liquid metals

Liquid metals differ from the other heat transfer media because of their ex-
tremely high thermal conductivity (λ [W/mK]) and their lower specific heat capacity
(cp [J/kgK]). On one hand, their first peculiarity assures higher heat transfer coef-
ficients and makes liquid metals appealing high efficient heat transfer media.

On the other hand, their low specific heat capacity, prevents them from being
adopted as TSF. Thus, a solar tower power plant adopting liquid metals as HTF
cannot adopt configuration B, configuration C is more suitable (see Fig.1.3). Ac-
tually there are exceptions, sodium has a specific heat capacity that is equal to
that of other HTFs such as molten salt, and direct storage concepts are feasible if
sodium is the HTF.

In table 2.1 properties of mercury, air and water are reported, mercury has been
chosen as representative of liquid metals because the table refers properties at 20◦C
and mercury is liquid at that temperature. The table shows that the peculiarities
of liquid metals affect their Prandtl number, which is much lower than that of
water or air. The extremely low Prandtl number is a characteristic encompassing
all liquid metals. They belong to the so-called category of low-Prandtl number
fluids, (for a more comprehensive description of low-Prandtl number fluids thermal
hydraulics see [17]).

Pr =
cp · µ
λ

=
ν

α
(2.6)

The Prandlt number is a non-dimensional parameter, Eq.(2.6), it is the ratio
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2.2. Heat transfer mechanism of liquid metals

between the momentum diffusivity and the thermal diffusivity. It appears in the
non-dimensional form of the energy equation.

The energy equation is one of the conservation equations together with the
continuity equation and the momentum equation. The conservation equations are
the basis of fluid dynamics since they model the behavior of fluids resolving the
flow and the temperature fields.

Liquid metals are Newtonian fluids that can be considered incompressible, sup-
posing their properties constant with the temperature, their conservation equations
take the form (2.7), (2.8), (2.9). They can be non-dimensionalized as (2.11), (2.12),
(2.13), where * indicates non-dimensional quantities obtained using a characteristic
length, velocity and temperature.

In these equations Φ∗ is the dissipation functions that accounts for the dissipation
due to shear stresses. Ec is the Eckert number, it is the ratio between the flow
kinetic energy and enthalpy. It is quite small for incompressible fluids like liquid
metals.

~∇ · ~U = 0 (2.7)

D~U

Dt
= ~f − 1

ρ
~∇p+ ν∇2~U (2.8)

ρcp
DT

Dt
= λ∇2T + µΦ (2.9)

(2.10)

Φ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2]
+

(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2

~∇∗ · ~U∗ = 0 (2.11)

D~U∗

Dt
= −~∇∗p∗ +

1

Re
∇∗ 2~U∗ (2.12)

DT ∗

Dt
=

1

RePr
∇∗ 2T ∗ +

Ec

Re
Φ∗ (2.13)

(2.14)

Looking at the non-dimensional form of the conservation equations it is clear
that, if the pressure gradients and the Eckert number are negligible, the momentum
equation and the energy equation assume the same form except for the presence of
the Prandtl number. If Pr = 1 then the solutions for the dimensionless velocity
and temperature fields are similar.

If a flow over a flat plate is considered, the boundary layer thicknesses of velocity
and temperature are almost the same when the Prandtl number is close to unity.
On the other hand, if Pr << 1, as for liquid metals, temperature and velocity
profiles differ considerably and the thermal boundary layer thickness is much greater
than the velocity boundary layer thickness (See Fig.2.4).

The dissimilarities existing between dimensionless profile of velocity and tem-
perature in low-Prandtl number fluids point out that their heat transfer mechanism
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Chapter 2. Problem Description

Figure 2.4: Comparison between velocity and temperature boundary layers at different
Pr numbers

differs from that of other common HTF, as water or air. The most important
consequence is that the turbulent momentum exchange and the turbulent heat
transfer are not similar and the Reynolds analogy does not hold any more.

2.2.1 The Reynolds analogy

The goal of any CFD analysis is that of solving the conservation equations
in order to obtain the flow and the temperature fields. These equations present
non-linear terms and solving them analytically is possible only in few cases under
strong hypothesis.

Thus, CFD analysis are based on numerical solutions of the conservation equa-
tions. In order to obtain a numerical solution time and space must be discretized,
a time step must be chosen and a mesh of the geometry is needed.

Unfortunately, if the flow is turbulent, as it is in a solar receiver tube, the time
step and the spatial discretization required, in order to obtain a reliable numerical
solution, are extremely small. Turbulent flows are characterized by the presence
of rotational flow structures called turbulent eddies. These eddies makes the flow
unsteady with high frequency fluctuations of the flow properties.

The time step must be smaller enough to catch these fluctuations and the spatial
discretization fine enough to resolve the smallest eddy. These scales of time and
space are called Kolmogorov microscales and their order of magnitude is inversely
proportional to the Re number. Turbulent flows are characterized by high Reynolds
numbers so extremely fine spatial and time discretizations are required. This implies
a too high computational effort.

To overcome this problem the conservation equations are not solved in their
original form. The CFD analysis performed within this work follows the so-called
RANS1 approach. Averaged conservation equations are solved. These equations are
derived from (2.7), (2.8), (2.9) by decomposing the flow properties in to a mean

1Reynolds Averaged Navier Stokes
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2.2. Heat transfer mechanism of liquid metals

value and a fluctuation (Eq. (2.15)). Afterwards a time average of the conservation
equations is performed and the results take the form (2.16), (2.17), (2.18).

ϕ(~x, t) = Φ(~x) + ϕ′(~x, t) (2.15)

Φ(~x) =
1

∆t

∫ t+∆t

t

ϕ(~x, t)

∂U i

∂xi
= 0 (2.16)

∂U i

∂t
+ U j

∂U i

∂xj
= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂U i

∂xj
− u′iu′j

)
(2.17)

∂T

∂t
+ Ui

∂T

∂xi
=

∂

∂xj

(
α
∂T

∂xj
− u′jT ′

)
(2.18)

The averaged conservation equations can be solved using much coarser time
and spatial discretization, because they refer to the properties of the mean flow.
Nevertheless, new unknown terms appear. They are the turbulent stresses or
Reynolds stresses (Eq.(2.19)) and the turbulent heat flux (Eq.(2.20)).

τ tij = −ρ u′iu′j (2.19)

q′′t = −ρ cp u′jT ′ (2.20)

Turbulence models are necessary in order to compute these unknown terms
and make possible the numerical solution of the conservation equations. Many
turbulence models, including the ones used within this work, compute the turbulent
stresses and heat flux through the Boussinesq hypothesis

The Boussinesq hypothesis states that the turbulent stresses are proportional
to the mean rates of deformation and the turbulent heat flux is proportional to
the gradient of the mean temperature (See Eq.(2.21), (2.22)). The constants of
proportionality are the turbulent viscosity µt and the turbulent thermal diffusivity
αt; they are the unknown quantities that are computed by turbulence models.

τij
ρ

= ν
(∂U i

∂xj
+
∂U j

∂xi

)
−→

τ tij
ρ

= νt

(∂U i

∂xj
+
∂U j

∂xi

)
− 2

3
kδij (2.21)

q′′j
ρ cp

= α
∂T

∂xj
−→

q′′j t
ρ cp

= αt
∂T

∂xj
(2.22)

A comprehensive explanation of the turbulence models used within this work and
their methods of computing the turbulent viscosity µt and the turbulent thermal
diffusivity αt is given in the following Chapter.

The Reynolds analogy states that νt = αt. A turbulent Prandtl number can be
defined as (2.23) . The turbulent Prandtl number of the most common HTF, is close
to unity proving the validity of the Reynolds analogy, when it differs from precisely
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1 it is always lesser than 1. On the contrary, the turbulent Prandtl number of liquid
metals is greater than 1, showing that their heat transfer mechanism is different.

Prt =
νt
αt

(2.23)

The Reynolds analogy implies the existence of a similarity between the turbulent
transport features of momentum and heat. The turbulent viscosity is linked to
time and space scales of the turbulent transport of momentum, while the turbulent
thermal diffusivity is related to the time and space scales of the turbulent transport
of heat. These scales are not similar in low-Prandtl number fluids.

(a) Sketch of 3D energy spectra E(k) for
velocity fluctuations and ET (k) for tempera-
ture fluctuations in forced channel flows (Fig.
taken from [18]).

(b) Instantaneous non-dimensional veloc-
ity field (top), non-dimensional temperature
field at Pr = 0.01 (middle) and Pr = 0.025
(bottom). Computed through LES at Reτ =
2000. (Fig. taken from [19]).

Figure 2.5: Evidences of the dissimilarities between momentum and heat turbulent
scales at low Pr numbers

Evidences of these dissimilarities can be found analyzing Fig.2.5. In Fig.2.5a
energy spectra for velocity and temperature fluctuations at different Prandtl numbers
are plotted. Energy spectra are derived performing Fourier transforms, so they
give information about the turbulence structures in terms of frequencies and
wavenumbers.

Energy spectra for velocity fluctuations E(κ) give information about the turbu-
lent kinetic energy contained in turbulent structures having wavenumber κ (see [20]
for further explanation). The maximum wavenumber indicates the smallest eddy.
Energy spectra for temperature fluctuations ET (κ) are related to the temperature
variance and give information about the turbulent thermal energy contained in
turbulent structures having wavenumber κ.

From this figure it is clear that temperature fluctuations at low-Prandtl number
are damped strongly at small scales because of the increased thermal diffusivity.
The biggest wavenumber at which ET (κ) is still significant is much smaller than the
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2.2. Heat transfer mechanism of liquid metals

maximum wavenumber at which E(κ) is still significant; showing that the smallest
spatial scale of momentum turbulence is much lower than that of thermal energy
turbulence.

Fig. 2.5b shows instantaneous non-dimensional velocity and temperature fields
at low Prandtl numbers in a turbulent channel. The dissimilarities between the
two fields are evident. The velocity field is much more complex and shows smaller
turbulent structures. Further explanations about the peculiar heat transfer mecha-
nism of liquid metals can be found in [18, 19] article from witch the figures have
been taken.

A simplified explanation of this phenomenon is given by considering a 2D shear
flow having U2 = 0 (see Fig.2.6). If a fluid packet δm is considered, it will move
along the x2 direction because of the turbulent fluctuations of velocity u′22 . Moving
from point A to point B it will exchange momentum and energy so that in B it
will be in equilibrium with the surrounding fluid. In B the velocity of δm will be
U
δm

1B = U
A

1 + δU1 and the temperature will be T δmB = T
A

+ δT .

Figure 2.6: Fluid packet moving in a 2D flow with U2 = 0

By assuming that the process takes place continuously, the effective velocity in

the x2 direction is proportional to u′22 , (C
√
u′22 ). The turbulent shear stress and

heat flux are equal to the net rate of x1-momentum and energy across an area
parallel to the x1 direction, respectively:

τt = C

√
u′22 ρδU1

q′′t = C

√
u′22 ρcδT

Considering lmix small compared to other dimensions of the system, only the
first term can be retained in the Taylor expansion of δU1 and δT , obtaining then:

τt
ρ

= C

√
u′22 lmix

dU1

dx2

q′′t
cp ρ

= C

√
u′22 lmix

dT

dx2
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By comparing the above equations with Eq.(2.21) and Eq.(2.22) it immediately
appears that νt = αt and thus, from the definition of the turbulent Prandtl number
of Eq.(2.23), that Prt = 1.

This approach relies on the assumption that the transfer mechanism for mo-
mentum and energy is the same. Neither the molecular viscosity nor the thermal
molecular diffusivity play a role because they are considered as negligible with
respect to their turbulent counterparts.

However, the turbulent eddies can transfer momentum not only by effect of
viscous forces but also by effect of the pressure forces. On the other hand there is
no mechanism other than molecular conduction whereby energy can be transferred
to or from an eddy. Therefore the two transfer mechanism are not the same.

Thus, it is not surprising that for liquid metals Prt 6= 1. Indeed, due to the
high thermal conductivity of these fluids, an eddy could lose a substantial amount
of energy by conduction before having traveled a distance lmix. In this case the
turbulent heat transfer is less effective than the turbulent momentum transfer,
resulting in Prt > 1.

On the other hand for fluids with Pr > 1 it is possible for an eddy to lose a
substantial amount of x1-momentum before having traveled the whole lmix distance,
so while still having a velocity in the x2-direction. In this case heat is carried
to a greater distance than momentum. The turbulent momentum transfer is less
effective than the turbulent heat transfer, resulting in Prt < 1.

Indeed, the common approach of adapting the Reynolds analogy for fluids with
Pr around or greater than one, is setting Prt = 0.85. This approach is not suitable
for liquid metals since they usually have Ptt > 1.

In conclusion, the Reynolds analogy does not hold for low-Prandtl number fluids
such as liquid metals. Momentum and energy have different turbulent scales. The
smallest scales of the velocity field are much smaller than the smallest scales of the
temperature field and the turbulence model adopted must take it in to account.

2.3 Problem outline

The numerical analysis of a solar tower receiver tube operated with liquid metals
is relevant because it is subject to peculiar boundary conditions. These boundary
conditions are extremely uneven both circumferentially and longitudinally causing
high thermal stresses that have to be taken in to account while designing the central
receiver system.

The thermo-hydraulics design of the receiver is based on correlations predicting
the heat transfer coefficient h(W/m2K). Wall temperature profiles are then derived
using that heat transfer coefficient. These correlations have been developed starting
from experimental data of uniformly heated tubes. Thus, their applicability to
solar receiver tubes is questionable, especially if they are used to compute the
temperatures at the wall. A numerical analysis can help in assessing the validity of
the correlations.

Nevertheless, it is complicated by the fact that the heat transfer mechanism of
liquid metals differs from that of other common fluids. Usually, the turbulent heat
flux in the energy averaged equation is modeled by setting a constant turbulent
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Prandtl number close to unity by virtue of the validity of the Reynolds analogy. This
approach is no more suitable in modeling the thermal turbulence of liquid metals.
Different turbulence models, taking in to account the peculiarities of low-Prandtl
number fluids, are needed.
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Chapter 3

Methodology Adopted

3.1 Turbulence modeling

The numerical analysis performed within this work follows a RANS approach.
This approach consists in solving the Reynolds averaged conservation equations
(2.16), (2.17), (2.18). The results are velocity and temperature fields of the mean
flow. The effects of the turbulence on the mean flow are represented by the turbulent
stresses and the turbulent heat flux Eq. (2.19), (2.20) that are modeled as (2.21),
(2.22), following Boussinesq hypothesis. The Reynolds stresses than take the form
(3.1), where k = 1/2 (u′2 + v′2 + w′2) is the turbulent kinetic energy.

τ t =



(
2µt

∂Ux

∂x
− 2

3
kρ
)

µt

(∂Ux

∂y
+
∂Uy

∂x

)
µt

(∂Ux

∂z
+
∂U z

∂x

)
µt

(∂Ux

∂y
+
∂Uy

∂x

) (
2µt

∂Uy

∂y
− 2

3
kρ
)

µt

(∂Uy

∂z
+
∂U z

∂y

)
µt

(∂Ux

∂z
+
∂U z

∂x

)
µt

(∂Uy

∂z
+ d∂Uz

∂y

) (
2µt

∂U z

∂z
− 2

3
kρ
)

 (3.1)

The Boussinesq hypothesis imply some approximations. The term
[
(2/3) kρ

]
is necessary to ensure the correct result for the normal Reynolds stresses. In fact,
the trace of τ t is −(u′2 + v′2 + w′2) so it must be equal to −2kρ. If the flow is

incompressible the continuity equation gives
∂U i

∂xi
= 0. In this case without the

term
2

3
kρ, the trace of τ t would be 0. To ensure that the normal Reynolds stresses

sum has always the correct physical value, an equal third of −2kρ is allocated to
each normal stress component. This implies an isotropic assumption for the normal
Reynolds stresses.

Moreover, the turbulent viscosity is considered as a scalar so the ratio between
Reynolds stresses and the mean rate of deformation is assumed to be the same in all
directions. A further explanation about the assumptions underlying the Boussinesq
approximation can be found in [20]. For the purposes of this work, since the flow
analyzed is a simple shear flow in a pipe, the Boussinesq approximations are quite
accurate.
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Turbulence modeling intervenes to compute the turbulent viscosity νt and the
turbulent thermal diffusivity αt. Usually, the most common turbulence models are
focused on computing the turbulent viscosity, while the turbulent thermal diffusivity
is derived from νt by assuming a constant value for the turbulent Prandtl number.

This approach is well proven for fluids subjected to the Reynolds analogy. A
typical value is Prt = 0.85, since it fits very well experimental data for the most
common fluids such as air or water [21]. In section 2.2.1, it is explained that this
approach is not suitable for liquid metals.

Because of the peculiar heat transfer mechanism of liquid metals several tur-
bulence models focused on computing αt are used and compared within this work.
In particular, a recent published two equations (kθ-εθ) turbulence model for the
temperature field (ref.[8]), specifically thought for liquid metals, is assessed.

3.1.1 Flow field turbulence model

The two equation kθ-εθ turbulence model for the temperature field that is
assessed within this work requires a specific turbulence model for computing the
flow field (ref. [22]) called AKN1 model. Therefore, the choice of the turbulence
model to compute the Reynolds stresses has been forced by compatibility issues
with the turbulence model chosen to compute the turbulent heat flux.

AKN k-ε turbulence model

The turbulence model used within this work to compute the turbulent viscosity
is the AKN model. This model has been presented by K. Abe, T. Kondoh and Y.
Nagano in [22].

It is a two-equations turbulence model belonging to the class of low-Reynolds
k-ε models. It requires to solve two additional transport equation; one for the
turbulent kinetic energy k [m2/s2] (3.2) and one for its dissipation rate ε [m2/s3]
(3.3) .

k =
1

2

(
u′2 + v′2 + w′2

)
(3.2)

ε = 2ν
∂u′i
∂xj

∂u′i
∂xj

(3.3)

Turbulence models based on the Boussinesq assumptions usually define a velocity
scale ϑ and a length scale l representative of the large scale turbulence. These
quantities are used to determine the turbulent viscosity νt.

Since νt has dimensions [m2/s], performing a dimensional analysis one finds
that the turbulent viscosity can be expresses as a product of the turbulent velocity
scale and the turbulent length scale (3.4). In k-ε models these scales are computed

1Abe Kondoh Nagano
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from the values of the turbulent kinetic energy and its dissipation rate (3.5).

νt = Cϑl

[
m2

s

]
(3.4)

ϑ = k1/2

[
m

s

]
l =

k3/2

ε
[m] −→ νt = Cν

k2

ε
(3.5)

The peculiarity of AKN turbulence model is that it is a low-Reynolds model.
Low-Reynolds models differ from the high-Reynolds ones because the transport
equation for k and ε that they implement can be integrated down to the walls.

Near to the wall the velocity tend to zero and the local Reynolds number
decreases as well. In this region appropriate non-dimensional quantities can be
defined as u+ (3.6), y+ (3.7), θ+ (3.8). Moreover, it is well proven that, close to the
walls, the dimensionless velocity u+ depends only from y+ (u+ = f(y+)), following
the so-called universal velocity profile.

The profile is linear in the region closest to the wall (y+ < 5), where the behavior
of the fluid is dominated by the viscous stresses (u+ = y+). This region is called
viscous sub-layer.

Moving from the wall turbulent stresses gain importance and, first, there is a
so-called buffer layer where viscous and turbulent effects are of similar magnitude.
Then, a region where turbulent stresses are dominant called log-law layer is found.
Within this region, where 30 < y+ < 500, f(y+) is logarithmic.

In Fig.3.1 the profile of u+ against y+ in a channel with Reτ =
(
uτδ/ν

)
= 640

is reported. This profile, computed through a direct numerical simulation DNS, has
been taken from the DNS database of Kawamura lab http://murasun.me.noda.
tus.ac.jp/turbulence/menu.html ([23] [24]).

u+ =
u

uτ
; uτ =

√
τw
ρ

(3.6)

y+ =
uτ y

ν
(3.7)

θ+ =
Tw − T
Tτ

; Tτ =
q′′

uτ ρ cp
(3.8)

Turbulence models must be able to reproduce the universal velocity profile, thus,
the value of νt that they provide must be consistent. High Reynolds turbulence
models are based on wall-functions, so that the velocity profile at the wall is not
solved and the one presented above is assumed valid. The idea of the wall function
approach is to impose the boundary conditions in a location placed inside the
log-law layer, so that the turbulence model equations are not solved near to the
wall.

Thanks to the known universal behavior of u+ within the log-region, values for
k and ε can be derived and used to create wall functions providing robust boundary
conditions to the additional transport equations; resulting in a νt consistent with
the universal velocity profile at the walls.

If a fluid with a Prandtl number close to unity is considered, the profile of T+

close to the wall, will be similar to that of u+. Thus, three sub-layers can be defined
in the same range of y+ used to describe the behavior of u+, in order to similarly
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Figure 3.1: DNS data of u+ against y+ in a channel flow with Reτ = 640

describe the behavior of T+. In the region closest to the wall (y+ < 5) the thermal
energy transport is dominated by the molecular diffusivity α and θ+ is a linear
function of y+ (θ+ = Pry+).

Within the buffer layer the turbulent thermal diffusivity αt grows and both
turbulent and molecular thermal energy transports affect the flow. The value of the
turbulent diffusivity becomes preponderant within the log layer (30 < y+ < 500).
There the profile of θ+ is logarithmic and the value of α is negligible if compared
to αt. Turbulence models adopting wall-functions consider valid this profile of θ+

at the wall.
Nevertheless, the profile of θ+ near to the wall for a low-Prandtl number fluid is

different. The molecular diffusivity is greater, so it influences the temperature profile
also in regions where fluids, following the Reynolds analogy, are influenced only by
the turbulent diffusivity. The extension of the linear sub-layer is bigger. Where u+

start following a logarithmic function of y+, θ+ still shows a linear behavior.
In Fig.3.2 two profiles of θ+ are reported, one at Pr = 0.025 typical of liquid

metals Fig.3.2b and one at Pr = 0.71 typical of air Fig.3.2a. The profiles have been
taken from the DNS database of Kawamura lab http://murasun.me.noda.tus.
ac.jp/turbulence/menu.html ([23] [24]), and they are referred to a channel with
Reτ = 640 with constant imposed heat flux. The differences are evident; while at
Pr = 0.71 the logarithmic law is well visible starting from y+ ' 30, at Pr = 0.025
the linear sub-layer and the buffer layer dominate the profile up to y+ ' 300.

For these reasons common wall-functions are not suitable for low-Prandtl number
fluids and wall-function specifically thought for these fluids are needed. An attempt
to develop appropriate wall-functions for low-Prandtl number fluids can be found
in [19]. Nonetheless, since the wall-function approach is still not well proven for
liquid metals, the adoption of a low-Reynolds turbulence model as the AKN one, is
well suitable.

Low-Reynolds turbulence models adopt damping functions in order to make
possible the integration of the transport equations of k and ε down to the wall.
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(a) DNS data of θ+ against y+ in a channel
flow with Pr = 0.71 and Reτ = 640.
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(b) DNS data of θ+ against y+ in a channel
flow with Pr = 0.025 and Reτ = 640.

Figure 3.2: Near wall profiles of θ+ at different Prandtl numbers

These wall functions must be consistent with the behavior of the flow next to the
wall.

The peculiarity of AKN model is that its damping functions are derived con-
sidering the Kolmogorov velocity scale uε = (νε)1/4 instead of the friction velocity
uτ . This because the friction velocity is zero at separating and reattaching points
where τw = 0, creating singularity points.

The Kolmogorov velocity, instead, has a finite value on the wall surface and
permits to avoid the presence of singularities at separating and reattaching points.
Thus, the damping functions in the AKN model contain quantities that are referred
to the Kolmogorov velocity scale and that are appropriate to model the near wall
behavior of the flow. These quantities are defined in (3.9), (3.10) where τu is the
time scale of the momentum turbulence.

Rt =
k2

ν ε
Rδ =

y uε
ν

(3.9)

τu =
k

ε
(3.10)

The two additional transport equations proposed by K. Abe, T. Kondoh and Y.
Nagano in [22] are reported in (3.11), (3.12) where −uiuj is modeled using the
expression of τt defined in (2.21).

∂k

∂t
+ Ūj

∂k

∂xj
=

∂

∂xj

{(
ν +

νt
σk

)
∂k

∂xj

}
+ Pk − ε (3.11)

∂ε

∂t
+ Ūj

∂ε

∂xj
=

∂

∂xj

{(
ν +

νt
σε

)
∂ε

∂xj

}
− Cε1

ε

k
Pk − Cε2fε

ε2

k
(3.12)

Pk = −uiuj
∂Uj
∂xj
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The value of the turbulent viscosity is then computed as (3.13).

νt = Cµkτlu (3.13)

τlu =
(
f1µA1µ + f2µA2µ

)
f1µ =

{
1− exp

(
− Rδ

14

)}2

A1µ = τu (3.14)

f2µ = f1µ exp

{(
− Rt

200

)2}
A2µ = τu

5

R
3/4
t

fε =

{
1− exp

(
− Rδ

3.1

)}2[
1− 0.3 exp

{(
− Rt

6.5

)2}]
The values of the model constants are:

Cµ = 0.09, σk = 1.4, σε = 1.4,

Cε1 = 1.5, Cε2 = 1.9 (3.15)

The numerical code used within this work to solve the conservation equations
and the two additional k-ε transport equations is FLUENT v.15. This code provides
some turbulence models that are already implemented. The AKN model is one of
these. It can be found among the low-Prandtl number turbulence models once they
have been enabled (for further details see [25]).

The model constants set by the code differ from that presented in [22], so they
have been modified according to (3.15).

The proper boundary conditions to be set at the wall are reported in (3.16).

d k

d y

∣∣∣∣
w

=
2 k

y
ε
∣∣
w

= ν
2 k

y2
(3.16)

3.1.2 Temperature field turbulence models

The peculiar heat transfer mechanism of liquid metals explained in section
2.2 affects the choice of the suitable turbulence models to compute the turbulent
Prandtl number. There are three possible approaches:

1. Definition of a constant turbulent Prandtl number

This approach introduces the highest level of approximation. It implies not
only that turbulent viscosity and the turbulent thermal diffusivity are propor-
tional, but also that the proportionality constant is the same independently
from the position and from the other local properties of the flow.

Nevertheless, this approach is well proven and it gives quite accurate results
in many cases; especially if fluids having a Prandtl number close to unity or
greater are considered. For example the Pr number of air at room temperature
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and pressure is around 0.71 and that of water at the same conditions is around
7. For these fluids experiments shows that the average Prt measured is 0.85
and it ranges between 0.7 to 0.9 [21].

When liquid metals are considered these values of turbulent Prandtl number
are no more suitable. Correlations based on global values characterizing the
flow as Reynolds and Prandtl numbers, can be used in order to compute an
appropriate constant value of Prt. Within this work the correlation assessed
is the one presented by X. Cheng and N. Tak in [26].

2. Semi-empirical equation providing Prt as a function of global and local flow
properties

This approach still considers the turbulent thermal diffusivity proportional
to the turbulent viscosity, however, it sets the proportionality constant ac-
cordingly to local flow properties. This results in a variable Prt with the
coordinates. The correlation used within this work is that proposed by W. M.
Kays in [21].

3. Two equation kθ-εθ turbulence model

As many turbulence models used to compute the Reynolds stresses relate the
turbulent viscosity to the turbulent kinetic energy and its dissipation rate, the
turbulent thermal diffusivity can be related to the temperature variance and
its dissipation rate. This approach is based on the solution of two additional
transport equations, one for kθ and one for εθ, whose values are than used
to model directly αt. The turbulent thermal diffusivity is not considered
proportional to the turbulent viscosity.

Among the three approaches proposed this one introduces the minor level of
approximation, and it requires the maximum computational cost. The kθ-εθ
model assessed within this work is the one presented by S. Manservisi and F.
Menghini in [8].

Cheng and Tak Prt correlation

Cheng and Tak Prt correlation is presented in [26], it relates the turbulent
Prandtl number to the Peclét number (3.17). The Peclét number, defined as
Pe = RePr is extremely important in describing the heat transfer of liquid metals.
Indeed, many correlations show that the Nusselt number can be consider as a
function of Pe and not of Re and Pr separately, as it is for fluids with higher
Prandtl numbers.

Prt =


4.12 Pe ≤ 1000

0.01Pe[
0.018Pe0.8 − (7.0− A)

]1.25 1000 < Pe ≤ 6000
(3.17)

A =


4.5 Pe ≤ 1000

5.4− 9 · 10−4Pe 1000 < Pe < 2000

3.6 Pe ≥ 2000
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This correlation is specifically thought for LBE whose Prandtl number is around
0.025. This is exactly the Prandtl number used to compute the results in Chapter
5. Moreover, it is based on experimental data and CFD calculations of thermally
and hydrodynamically fully developed turbulent convection in tube geometries with
constant heat flux. Of course, the boundary conditions studied within this work
are different from these ones.

However, it can be inferred that this correlation may be suitable for pipe
geometries with an imposed heat flux in general, that is exactly the problem
analyzed here. For these reasons the Cheng and Tak correlation is chosen, among
many other Prt correlations, to be assessed within this work.

Regarding the numerical calculations performed within this work, the value of
Prt provided by this correlation is known a priori. Buoyancy effects are avoided
and flow properties are considered constant with the temperature, so the value of
Pr is known once the flow properties are chosen.

The flow field is considered as fully developed and the mass flow rate is fixed.
This implies that the Reynolds number is known. Thus, Prt is calculated and
imposed without any additional computation effort.

Kays Prt correlation

Kays Prt correlation (3.18) is presented in [21]. It is an empirical correlation
derived from the fitting of an analytical solution for Prt in pipe flows proposed
in [27], which presumably covers all Prandtl numbers. It depends only on local
quantities through νt and, according to the recent analysis of [19], among three
well established correlations for Prt, it shows the best agreement with DNS data of
liquid metala uniformly heated channel flow.

Prt = 0.85 +
0.7

Pr
νt
ν

(3.18)

Actually, also a modified version of (3.18), where the value 0.7 is substituted with
2.0, is proposed in [21]. This seems to better fit with some available experimental
data for liquid metals. However, the same author does not exclude possible consistent
experimental errors, also because of the large data scatter for these fluids. Thus,
Kays Prt correlation is used within this work in its original form (3.18).

Since Kays Prt correlation is based on local quantities that are computed at
every iteration, the value of Prt changes accordingly. A UDF function is coupled to
the code FLUENT v.15 in order to set the correct value of Prt in every point at
every iteration (Appendix A Listing A.2).

Kays Prt correlation considers the turbulent thermal diffusivity proportional to
the turbulent viscosity as the Cheng and Tak Prt correlation does. Nevertheless, the
proportionality constant varies accordingly to the values of νt. Thus, this correlation
introduce a minor level of approximation that leads to a greater computational
effort. In fact, it requires the solution of a scalar equation at each iteration.
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Manservisi kθ-εθ turbulence model

Manservisi kθ-εθ model differs from the previous approaches because it defines
turbulence scales for the energy equations different from that of the momentum
equation. On one hand, the turbulent length and time scales for the momentum
equation are derived from the values of the turbulent kinetic energy k and its
dissipation rate ε (3.5), (3.10) .

On the other hand, two additional transport equations are defined for the
temperature variance (3.19) and its dissipation rate (3.20). Following this approach
the turbulent scales for the temperature equation can be derived from kθ and εθ,
instead of being considered equal to that of the momentum.

kθ =
1

2
(T ′)2 (3.19)

εθ = α

(
∂T ′

∂xi

)2

(3.20)

The turbulent viscosity and the turbulent thermal diffusivity are no more
proportional. This model introduce the minor level of approximation in respect
to the two presented above, on the other side it requires a greater computational
effort since two additional differential equations must be solved.

K. Abe, T. Kondoh and Y. Nagano presented a two equations kθ-εθ model for
the temperature field in [28]. This model was calibrated for air (Pr = 0.71) and for
a flow field computed with the AKN model presented in section 3.1.1. Manservisi
kθ-εθ model [8] originates from this kθ-εθ model by AKN and for this reason it
requires the flow field to be computed through the AKN model.

However, it is specifically calibrated for liquid metals. In fact, the model con-
stants are derived from another two equation turbulence model for the temperature
field presented in [29], which is specifically thought to be suitable at different
Prandtl numbers including the very low ones. Moreover, the damping function in
αt are different from the one presented in [28], accordingly to the near wall behavior
of low-Prandtl number fluids presented in section 3.1.1.

The resulting additional transport equations take the form (3.21), (3.22), where
−uiT ′ is modeled using the expression of q′′t defined in (2.22).

∂kθ
∂t

+ Ūj
∂kθ
∂xj

=
∂

∂xj

{(
α +

αt
σkθ

)
∂kθ
∂xj

}
+ Pθ − εθ (3.21)

∂εθ
∂t

+ Ūj
∂εθ
∂xj

=
∂

∂xj

{(
α +

αt
σεθ

)
∂εθ
∂xj

}
− εθ
kθ

(
Cp1Pθ − Cd1εθ

)
+
εθ
k

(
Cp2PK − Cd2ε

)
(3.22)

Pθ = −uiT ′
∂T̄

∂xj
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The value of the turbulent thermal diffusivity αt is then computed as (3.23).

αt = Cθkτlθ (3.23)

τlθ =
(
f1θB1θ + f2θB2θ

)
f1θ =

[
1− exp (−0.0526

√
Pr Rδ)

][
1− exp (−0.0714Rδ)

]
B1θ = τuPrt∞

f2θB2θ = τu

(
f2aθ

2R

R + Cγ
+ f2bθ

√
2R

Pr

1.3
√
PrR

3/4
t

)
f2aθ = f1θ exp

(
−4× 10−6R2

t

)
f2bθ = f1θ exp

(
−2.5× 10−5R2

t

)
The values of the model constants are:

Cθ = 0.1, σkθ = 1.4, σεθ = 1.4, Cγ = 0.3,

P rt∞ = 0.9, Cp1 = 0.925, Cd1 = 1, Cp2 = 0.9,

Cd2 =
[
1.9(1− 0.3 exp (−0.0237R2

t ))
][

1− exp (−0.1754Rδ)
]2

The damping functions in the Manservisi kθ-εθ model contain quantities that
are referred both to the turbulent scales of velocity and of temperature. These
quantities are defined in (3.24), (3.25). Three characteristic times are used within
this model: τu the dynamical time, τθ the thermal time and τm the mixed time.
The dynamical time is the one used to compute the turbulent viscosity (3.10). R is
the ratio between the thermal time and the dynamical time and it appears in the
damping function to model the behavior of the turbulent thermal diffusivity within
the linear sub-layer and the buffer layer.

τu =
k

ε
τθ =

kθ
εθ

τm =
τu2R

R + Cγ
(3.24)

Rt =
k2

ν ε
Rδ =

y uε
ν

R =
τθ
τu

(3.25)

The proper boundary conditions to be set at the wall for an imposed heat flux
are reported in (3.26).

kθ
∣∣
w

= 0 εθ
∣∣
w

= α
2 kθ
y2

(3.26)

Manservisi kθ-εθ turbulence model is not available as already implemented in
the code FLUENT v.15. Thus, it has been coupled to the code through UDFs. The
UDF code has been implemented within this work and it is reported in Appendix A
listing A.3.
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3.2. Inlet and outlet boundary conditions

3.2 Inlet and outlet boundary conditions
The velocity and temperature profile of a flow inside a tube changes from the

inlet until the fully developed region. The development of the profiles is due to the
growth of the boundary layer thickness, which, in a confined flow, ends up occupying
the whole section. Once the boundary layer reaches the maximum extension the
flow is fully developed.

In Fig.3.3 a sketch of the development of a turbulent velocity profile in a pipe is
reported. In turbulent flows the fully developed hydrodynamic condition (3.27) is
generally reached for 10 < x/D < 30.

∂u

∂x
= 0 (3.27)

Figure 3.3: Development of the turbulent velocity profile in a tube

From the thermal standpoint a flow is fully developed when Eq.(3.28) is verified;
if the boundary condition at the wall is an imposed constant heat flux this implies
Eq.(3.29).

∂

∂x

(
Tw − T
Tw − Tb

)
= 0 (3.28)

dT

dx
=
dTb
dx

=
dTw
dx

= const ; NuD = f
(
Re, Pr

)
(3.29)

In the equations above Tb is the bulk temperature Eq.(3.30).

Tb =

∫
Ac
ρcp~u · ~nTdAc
ṁcp

(3.30)

In Fig.3.4 the behavior of a thermally developed flow in tubes with a uniform
heat flux is shown. The figure is taken from [30] and it shows a laminar profile for
a fluid with Pr ' 1, where T∞ is the bulk temperature at the inlet.

Usually turbulent and laminar fully developed profiles can be distinguished
because in turbulent flows the temperature assume almost a constant value with
varying r because of the turbulent mixing. The profile is then less smooth with
greater gradients at the wall and with the value at the pipe center being almost
equal to the cross averaged one.
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Figure 3.4: Behavior of a thermally developed region in a laminar flow in tubes with a
uniform heat flux (Fig. taken from [30])

The lack of turbulent mixing makes laminar profiles smoother and with a shape
similar to that of a parabola.

Nevertheless, low-Prandtl number fluids show turbulent temperature profiles
similar to the laminar profiles of fluids with Pr ≥ 1. The higher α implies a higher
importance of the conductive heat transfer with respect to the turbulent mixing,
resulting in smoother temperature profiles Fig.3.5.

The behavior of a fully developed flow is numerically reproduced by applying
cyclic boundary conditions at inlet and outlet sections. The code FLUENT v.15
treats the flow at cyclic boundary as though the opposing periodic plane is a direct
neighbor to the cells adjacent to the first cyclic boundary. Thus, when calculating
the flow through the cyclic boundary adjacent to a fluid cell, the flow conditions at
the fluid cell adjacent to the opposite cyclic plane are used [25].

Figure 3.5: Fully developed turbulent temperature profile at different Pr.

Setting the cyclic boundary conditions at the inlet and outlet sections means
that when calculating the flow at the inlet plane, the flow conditions at the outlet
plane are used.

32



3.2. Inlet and outlet boundary conditions

Getting back to the specific problem that this work is addressing, it has to be
analyzed whether the flow inside a tube of a solar central receiver can be considered
as fully developed or not.

The pipe of a central receiver is part of a complex hydraulic system, the flow
arriving at this portion of the system has already a hydrodynamically well developed
boundary layer. Even though the receiver can be placed after curved pipes the fully
developed condition is reached again after few pipe diameters.

Being the diameter of a tube in a central receiver always one or two orders of
magnitude smaller than the pipe length, the flow field inside can be considered
always as hydrodynamically fully developed, given also the fact that the flow is
always turbulent.

The proper boundary conditions to be set at the inlet and outlet sections for
the momentum equation are then cyclic.

From the thermal point of view things are more complicated. The heat flux
imposed on a receiver tube is far from being constant (see Sec. 2.1). The variability
of the heat flux over the longitudinal axes prevents the temperature profile from
reaching the fully developed condition (3.31) at least with the implications shown
in Eq.(3.29).

∂q

∂x
6= 0 −→ ∂T

∂x
6= const (3.31)

The boundary conditions imposed at the inlet and outlet sections for the energy
equation cannot be cyclic when a heat flux longitudinally varying is imposed. The
suitable boundary conditions are then a uniform value of the temperature at the
inlet and a zero temperature gradient at the outlet.

Actually the proper treatment at the outlet would be the one represented in Fig.
3.6. The zero gradient conditions should be applied on a section downstream of the
last section of the receiver. This assure the simulation to reproduce the behavior of
a tube portion included in a bigger hydraulic system.

Two simulations with Re = 100000, Pr = 0.025, the same fluid and solid
properties, the same pipe thickness and the imposed heat flux (2.1) on L = 30D
have been computed.

In the first case the zero gradient condition has been imposed at x/D = 30 so at
the last section of the tube portion simulated. In the second one the zero gradient
condition has been imposed at x/D = 50, following the approach shown in Fig.3.6.

The results, in term of Nusselt numbers local and global and non-dimensional
profiles of wall temperature, differ so little (less then 3.5%) that the first approach
is considered appropriate.

In conclusion, when a longitudinally varying heat flux is imposed, as it happens
on a tube in a central solar receiver, the suitable boundary conditions are a uniform
value of the temperature at the inlet and a zero temperature gradient at the outlet.

Nevertheless, in Sec.5.1 results computed with a circumferentially varying and
longitudinally constant heat flux are presented. In these cases a fully developed
temperature profile is analyzed. These profile has been simulated by applying cyclic
boundary conditions at the inlet and outlet sections even for the energy equation.
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Chapter 3. Methodology Adopted

Figure 3.6: Proper position for the zero gradient boundary condition

3.3 Numerical set up

All the numerical simulations performed within this work have been computed
assuming a steady-state flow. The predictor-corrector SIMPLE algorithm [31] has
been used for the pressure-velocity coupling. The diffusion terms are discretized
with a central-difference scheme while a second-order upwind scheme is used for
the convective terms [25, 32]. The gradients at the cell center, necessary for the
computation of the scalar values at the cell faces, are computed with the so-called
least-squares method [25]. The pressure values at cell faces are evaluated according
to the method of Rhie and Chow [33] and described in [25].

Buoyancy forces have been neglected and constant thermo physical properties
have been considered. This allows to decouple the energy equation from the
momentum equations. Therefore, first the latter, together with the turbulence
equations of Section 3.1.1, has been numerically solved. Once a converged solution
had been reached, the energy equation, together with the heat turbulence equations
of Section 3.1.2, has been separately solved, keeping the velocity field, k and ε
"frozen".

In the subsequently described simulations, a convergent solution has been
assumed when all the following conditions are satisfied:
• constant average drag coefficient on the walls;
• constant average convective heat transfer coefficient on the walls;
• scaled residuals [25] of continuity, momentum and turbulence parameters

below 10−6.
Recalling the description of the receiver tube and its boundary conditions made

in section 2.1 one finds that there is a symmetry. Thus, only half of the domain
needs to be simulated.
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3.3. Numerical set up

Figure 3.7: Example of the mesh used to compute the results presented in Chapter 5.
(Light gray identifies the fluid zone while the dark gray is the solid one)

The geometry has been discretized using block-structured non-uniform hexahe-
dral elements, as for example shown in Fig. 3.7. It must be emphasized that all
the meshes used within this work assures that every solution computed has several
points within a non-dimensional wall distance, y+, less than one.

This characteristic is essential when a low-Reynolds turbulence model is adopted.
Since the transport equations are integrated down to the walls, the first grid point
needs to be placed within y+ < 1, and the near wall region requires a finer spatial
discretization in the direction normal to the wall. In Fig. 3.7 it can be noticed that
this requirement is fulfilled. The near wall region is located within the light gray
zone, where the mesh lines are so fine that they are hard to distinguish and they
seem a thick dark line.

Both velocity and temperature fields have been considered as being fully devel-
oped in the simulations of Sec.5.1. Therefore cyclic boundary conditions have been
imposed at the inlet and outlet sections of the simulated domains.

For the simulations of Sec.5.2.2 only the flow has been considered as fully
developed, while for the temperature a uniform value has been specified at the inlet
section and a zero gradient at the outlet. In all simulations the mass flow rate has
been imposed in order to obtain the specified Reynolds number.
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Chapter 4

Methodology Validation

Within this chapter the implemented Manservisi kθ-εθ turbulence model is
validated by comparison with the DNS data of [24, 34]. Moreover, simulations
are performed in order to compare the results obtained using the Manservisi kθ-εθ
model with those obtained using the other ways of computing Prt presented in
Sec.3.1.2.

4.1 Validation against DNS data

4.1.1 Channel flow
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Figure 4.1: Non-dimensional velocity profiles of a channel flow at Reτ = 395. Comparison
between DNS data (dashed line) from [24] and RANS simulation with AKN model (solid
line).

DNS database of Kawamura lab (http://murasun.me.noda.tus.ac.jp/turbulence/
menu.html) provides detailed DNS data of turbulent channel flows. These data

http://murasun.me.noda.tus.ac.jp/turbulence/menu.html
http://murasun.me.noda.tus.ac.jp/turbulence/menu.html


Chapter 4. Methodology Validation

have been used to validate the implementation of the Manservisi kθ-εθ turbulence
model and to assess its performances in comparison with the other approaches
suitable to compute Prt presented in Sec.3.1.2.

The channel flow considered is fully developed both from the hydrodynamic
and from the thermal point of view. The mass flow rate has been imposed in order
to obtain a Reτ = 395.

The flow field has been computed with the AKN turbulence model (Sec.3.1.1).
The resulting non-dimensional profile of the velocity is compared with the DNS data
in Fig.4.1. The two profiles are almost perfectly overlapping; proving that the AKN
turbulence model provides quite accurate values of the Reynolds stresses for this
flow.
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Figure 4.2: Prt profiles in a channel flow at Reτ = 395 with Pr = 0.025.Comparison
between DNS data (♦) from [24], RANS simulation with Manservisi kθ-εθ model (solid
line), Prt from Eq.(3.18) (dashed line), Prt = 0.85 (◦), Prt from Eq. (3.17) (+).

The thermal boundary condition applied is a constant imposed heat flux. The
turbulent Prandtl number has been computed following the approaches presented
in Sec.3.1.2, resulting in four different temperature fields. All the temperature fields
have been calculated starting from the flow field computed with the AKN model.

The profiles of Prt are reported in Fig.4.2. The best agreement with the DNS
data is reached with the Manservisi kθ-εθ model. The Kays Prt correlation tends to
infinity at the wall. Nevertheless, this singularity does not affect the validity of the
correlation. High values of Prt imply a very small αt and, in the region next to the
wall αt is in any case negligible if compared to α, thus the resulting temperature
profile is not affected by the very high values of the turbulent thermal diffusivity at
the wall.

In Fig.4.3 the non-dimensional temperature profiles are plotted together with
the DNS data. It can be noticed that both the profiles computed with a constant
Prt number fail in reproducing the temperature at the channel center.
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(b) Zooming at channel center.

Figure 4.3: Non-dimensional temperature profiles in a channel flow at Reτ = 395
with Pr = 0.025. Comparison between DNS data (♦) from [24], RANS simulation with
Manservisi kθ-εθ model (solid line), Prt from Eq. (3.18) (dashed line), Prt = 0.85 (◦),
Prt from Eq. (3.17) (+).
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Chapter 4. Methodology Validation

The temperature profiles are affected by the values of Prt since higher values
of the turbulent Prandtl number implies smaller values of αt. Being smaller the
turbulent heat diffusivity and consequently the turbulent mixing, the differences
between the wall and the local temperatures inside the channel are higher resulting
in higher non-dimensional temperatures.

The Cheng and Tak correlation provides a too high value for Prt while a value
of Prt of 0.85 is too small. The resulting temperature profiles are quite different
from the DNS data.

Both the temperature profiles computed through the Manservisi kθ-εθ model
and the Kays correlation are in well agreement with the DNS data. Only a zoom at
the channel center (Fig.4.3b) highlights the better performance of the Manservisi
model.

In conclusion the implementation of the Manservisi model is validated since
the comparison with the DNS data shows the same results presented by the model
authors in [8]. The Manservisi kθ-εθ turbulence model, in combination with the
AKN model, shows the best agreement with the DNS data, among the other models
assessed, even though the Kays correlation gives also quite satisfactory results.

4.1.2 Pipe flow
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Figure 4.4: Non-dimensional velocity profiles of a pipe flow at ReD = 5500. Comparison
between DNS data (dashed line) from [34] and RANS simulation with AKN model (solid
line).

Since the problem addressed in this work concerns the flow in a pipe, the behavior
of the models when simulating this geometry has to be assessed. Unfortunately the
available DNS data computed at low-Prandtl numbers in pipes are few and they all
refer to very low Reynolds numbers.
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(b) Zooming at pipe center.

Figure 4.5: Non-dimensional temperature profiles in a pipe flow at ReD = 5500 with
Pr = 0.026. Comparison between DNS data (♦) from [24], RANS simulation with
Manservisi kθ-εθ model (solid line), Prt from Eq. (3.18) (dashed line), Prt = 0.85 (◦),
Prt from Eq. (3.17) (+).
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A numerical analysis of a turbulent pipe flow (ReD = 5500) with a uniform
imposed heat flux at Pr = 0.026 performed through DNS can be found in [34]. The
data taken from this article has been used to assess the performance of the different
turbulence models in pipes geometry.

The flow has been considered as fully developed both from the hydrodynamic
and from the thermal point of view. The mass flow rate has been imposed in
order to obtain a ReD = 5500. The flow field has been computed with the AKN
turbulence model and the resulting non-dimensional profile of the velocity matches
very well the DNS data (Fig.4.4).

The temperature profiles have been computed through the different approaches
presented in Section 3.1.2 and they are plotted in their non-dimensional form
together with the DNS data in Fig.4.5. As for the channel flow both the profiles
computed with a constant Prt number are quite different from the DNS data at the
pipe center.

A zoom at the pipe center (Fig.4.5b)highlights that the differences between the
non-dimensional temperature profiles computed with the Manservisi kθ-εθ model
and the Kays correlation are bigger than the ones detected for the channel flow.
The model reaching the best agreement with the DNS data is the Manservisi kθ-εθ
one.

It can be noticed that both the non-dimensional temperature profiles in the
channel and in the pipe are composed entirely by the linear and the buffer layer.
The logarithmic dependence of T+ from y+ is not visible while it is well visible the
logarithmic dependence of u+ from y+ (see Sec.3.1.1).

4.2 Validation against correlation data

In order to assess the performances of the different thermal turbulence models
in pipe geometries at high Reynolds number, a comparison with the data provided
by a suitable Nusselt correlation is here presented. In [15] a review of the available
Nusselt correlations for liquid metals is performed. Considering all the experimental
data of liquid metals flowing in pipes with a constant imposed heat flux, the best
fitting is given by the Skupinski correlation [35] (Eq.(4.1)).

Nu = 4.82 + 0.0185Pe0.827 (4.1)

Simulations adopting the four different approaches to compute the turbulent
Prandtl number have been done at Pe = 2435 and Pr = 0.025 with a constant
imposed heat flux in a pipe geometry. The flow has been considered as fully
developed both from the hydrodynamic and from the thermal point of view.

The Nusselt numbers derived from these simulations have been compared with
the one given by the Skupinski correlation. The results of the comparison are
summarized in table 4.1. The Manservisi kθ-εθ model shows the best agreement
with the correlation with a percentage error of only −3.4%; while none of the results
obtained using any of the other Prt correlations are within ±10%.

This result, together with the one presented in Sec.4.1, confirms the remarks
given in Chapter3. The Manservisi kθ-εθ is the only model, among the ones assessed
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4.2. Validation against correlation data

Table 4.1: Nusselt numbers obtained adopting different Prt models with Pe = 2435 and
percentual differences between them and the NuD resulting from Skupinski correlation
Eq.(4.1).

kθ-εθ Eq. (3.18) Eq. (3.17) Prt = 0.85

NuD 15,96 18,66 12,75 22,72
∆Nu% from Eq.(4.1) −3,4% 13% −30% 37%

Pe
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Figure 4.6: NuD at different Peclét numbers from Skupinski correlation [35] (solid line)
and from simulations with Manservisi kθ-εθ model (4). Dashed lines are ±10% from
Skupinski correlation
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Chapter 4. Methodology Validation

here, providing a time scale for the thermal turbulence different from the one
provided for the momentum turbulence.

This peculiarity is crucial in modeling the heat transfer of liquid metals and
the comparisons with DNS data and proper Nusselt correlations confirm the better
performance of the Manservisi kθ-εθ model. In particular it can be noticed that the
Manservisi kθ-εθ model gives results in better agreement with the DNS data with
respect to the other models especially at the pipe and channel center, where the
value of αt gains importance. Therefore, this shows that the turbulent heat flux is
more precisely computed by the Manservisi kθ-εθ model.

Models adopting a constant turbulent Prandtl number show poor performances
not only when Prt is set equal to 0.85 but also when it is computed using the Cheng
and Tak correlation (3.17) that is specifically thought for liquid metals.

The Kays correlation gives acceptable results and by virtue of the little additional
computational effort that it requires it can be a viable option in computing thermal
fields of liquid metals, even though further assessments on its performances are
required.

In conclusion the Manservisi kθ-εθ model seems the more reliable option to
compute thermal fields of low-Prandtl number fluids.

4.3 Comparison with a semi-analytical solution for
uneven imposed heat flux

To assess the performances of the different thermal models when an uneven heat
flux is applied, DNS or experimental data adopting this kind of boundary conditions
are needed. Unfortunately, according to the author’s knowledge, there are no data
available for liquid metals flowing in pipe undergoing to an uneven imposed heat
flux.

There is, in general, a limited number of experimental investigations for these
boundary conditions, probably because of the difficulties in the experimental setup.
The most comprehensive work is still the old one of [36] for air. Two others, recently
appeared for molten salts [37, 38], are not as complete in the description of the
experimental loop and test conditions as well as in the presented experimental
results.

Nonetheless, a semi-analytical solution for a longitudinally constant and cosinu-
soidally varying heat flux distribution over the whole tube’s periphery, in principle
valid for all Prandtl numbers, has been first given by Reynolds [6] and successively
refined by Gärtner et al. [7]. These semi-analytical solutions are here compared
with the results of RANS simulations adopting the thermal models presented in
Sec.3.1.2.

The semi-analytical solutions proposed consider the case of a hydrodynamically
fully developed flow of a fluid having constant properties. The solutions supply the
fully developed temperature profile in a circular tube with an imposed wall heat
flux having form (4.2).
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4.3. Comparison with a semi-analytical solution

q′′w(ϕ) = q′′0 + F (ϕ) = q′′0 +
∞∑
n=1

[
an sin (nϕ) + bn cos (nϕ)

]
(4.2)

Therefore, the simulations performed consider a case with hydrodynamically
and thermally fully developed flow with a cosinusoidally varying heat flux over the
perimeter having equation (4.2). The properties of the fluid have been considered
constant resulting in a Pr = 0.03. The mass flow rate has been imposed in order
to obtain ReD = 105.

The differential equation governing the temperature field take the form (4.3).
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The semi-analytical solutions to this equation provided in [6, 7] differ in the
way they compute the term (α + αt). Reynolds [6] states that (αt)r = (αt)ϕ, while
the solution by Gärtner [7] accounts for the anisotropy of the turbulent thermal
diffusivity by using two different values of αt ((αt)r 6= (αt)ϕ).

Both the solutions provided are semi-analytical because they adopt models
to compute the value of the turbulent thermal diffusivity. Here the solution by
Reynolds is extensively described, in any case the complete description of the
solution provided by Gärtner et al. can be found in [7].

The local temperature can be expressed as (4.4) where the bulk temperature can
be determined from an overall energy balance. Splitting the temperature difference
in two parts (4.5) and linking it to the imposed heat flux one finds that ∆T0 can
be considered as dependent only on q′′0 while g(r, ϕ) is dependent only on F (ϕ).

Eq.(4.3) can be expressed as (4.8) and since g(r, ϕ) does not contribute to bulk
temperature rise, it has to satisfied the elliptic equation (4.9).

T (r, x, ϕ) = Tb(x)−∆T (r, ϕ) (4.4)
∆T (r, ϕ) = ∆T0(r) + g(r, ϕ) (4.5)

q′′w(ϕ) = λ

(
∂T

∂r

)
r=r0

= λ

(
∂g

∂r

)
r=r0

= F (ϕ) (4.6)
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The final differential equation to be solved take the form (4.10).
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d
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(
r∗E
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− n2E

r∗
Rn = 0 (4.10)
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ν

Pr

Prt

)
; r∗ =

r

r0

Once Rn(r) are known even g(r, ϕ) is known and the non-dimensional tempera-
ture at the wall can be calculated through (4.11).

Tw(ϕ, x)− Tb(x)

〈q′′w〉rλf
=

r0

〈q′′w〉r
[
S0 q

′′
0 +

∞∑
n=1

Sn(an sinnϕ+ bn cosnϕ)
]

(4.11)

Sn = Rn(1) ; S0 =
λ∆Tw 0

q′′0r0

=
2

Nu0

S0 depends on the Nusselt number that is computed using a correlation. It
should be noticed that in the paper of Reynolds [6], the Nusselt number correlation
of Gnielinski [39] has been used to evaluate the wall temperature functions for the
mean harmonic also for low-Pr number fluids. Since this correlation is not suitable
for liquid-metals here the correlation used to compute Nu0 is the Skupinski one
(4.1).

The heat flux imposed has Eq.(4.12) so that an is always 0 and bn is q′′0/2 when
n = 1 otherwise is always 0.

q′′(ϕ) = q′′0
(
1 + 0.5 cos (ϕ)

)
(4.12)

The numerically computed non-dimensional temperature profiles obtained with
the different thermal turbulence model, are compared in Fig. 4.7 with the semi-
analytical results. These results have been computed using the first five harmonics.

A crucial point for the semi-analytical results is the computation of E. In
Reynolds’ article [6] it is modeled assuming a constant value for the Prt and
computing the turbulent viscosity with a zero-equation model proposed by Cess
(see [6]). In [7] the authors used for their calculations a separate expression for the
radial as well as for the tangential turbulent Prandtl number, accounting then for
the anisotropy of the heat flux.

These two semi-analytical results are plotted together with another one computed
using the same expression of [6] for the νt and the Kays correlation Eq.(3.18) for
the Prt.

The non-dimensional temperature profile obtained with Manservisi kθ-εθ model
differs markedly from the semi-analytical ones. The differences are more pronounced
in the region of higher heat flux, i.e. 0◦ < ϕ < 90◦.

As shown in Fig.4.8, the difference in the radial profile of (νt/ν) adopted by
[6] and that resulting from the simulation cannot account for the discrepancy in
the values of the non-dimensional temperature profile. Indeed, the results of the
simulations with the AKN turbulence model and Prt evaluated from the Kays
correlation (3.18) are very close to the semi-analytical ones obtained with the same
correlation for Prt.
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Figure 4.7: Non-dimensional wall temperature profiles at Re = 105, Pr = 0.03. Semi-
analytical solutions from [6] (dashed dotted line), [7] (dashed line), E computed with Cess
and Kays correlations (solid). RANS simulations with AKN model and kθ-εθ model (4),
Kays correlation (o), Prt = 0.85 (+) and Prt from (3.17) (∗).
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Figure 4.8: νt/ν profiles at Re = 105 from Cess equation (solid line) [6] and AKN model
(dashed line).
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Therefore, the main source of discrepancy resides in the different values between
the turbulent Prandtl number calculated with the Manservisi model from those
adopted to compute the semi-analytical profiles.
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Figure 4.9: Prt profiles at Re = 105, Pr = 0.03 with cosinusoidally varying heat flux
from RANS simulations with AKN model and kθ-εθ model at ϕ = 0◦ (o), ϕ = 90◦ (∗),
ϕ = 180◦ (+), Kays correlation (4), Prt = 0.85 (solid line) and Prt from (3.17) (dashed
line).

The Prt profiles are plotted versus the radial coordinate in Fig. 4.9. The values
of Prt from Eq. (3.18) tend to infinity when approaching the wall, because νt tends
to zero. Due to the thicker thermal viscous sublayer of liquid metals compared to
medium-to-high Pr number fluids, these high Prt values might not be an issue since
they imply small values of αt in a region where molecular conduction effectively
dominates.

Moreover, even though the profiles of kθ and εθ vary with the radial coordinate
for different angular coordinates, ϕ, the turbulent Prandtl number profiles only
show a radial dependency.

The wall temperature predicted with the kθ-εθ model is higher than the other
ones in the region of high heat flux and is slightly lower where the non-dimensional
temperature assumes negative values, thus where the heat flux is directed from
the fluid towards the wall. The only exception is the wall temperature predicted
adopting Eq. (3.17) that is higher in 0 < ϕ < 90 and lower in ϕ > 90.

The reason can be found again in the higher predicted Prt, as shown in Fig.4.9,
and therefore in a lower turbulent thermal diffusivity. The latter causes a re-
duced energy mixing and consequently higher differences between wall and bulk
temperatures.

Quite surprisingly, the semi-analytical results from [7] show poor agreement,
not only with those obtained with the Manservisi kθ-εθ turbulence model but also
with the ones evaluated with the AKN model with Prt from Eq. (3.18). It can be
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argued that the correlations used within this article to compute (αt)r and (αt)ϕ
seem not appropriate, at least for liquid metal flows.

In conclusion, the semi-analytical results of [6, 7] are affected by the fact that
they adopt models to compute the values of Prt and νt. In particular they change
considerably with the value of Prt and they can be considered reliable only as much
as the adopted Prt correlation.

4.4 Results of the thermal models assessment
Within this chapter the thermal turbulence models presented in Sec.3.1.2 have

been used to compute different cases. The scope has been to compare the ob-
tained results with data coming from DNS, suitable correlations and semi-analytical
solutions.

Thanks to the comparison with DNS data of channel flow (Sec.4.1.1) the imple-
mentation of the Manservisi kθ-εθ model has been validated. Moreover, being DNS
data more precise than RANS ones, they have been used to assess the performances
of the different thermal turbulence models.

The model giving results in better agreement with the DNS data is the Manservisi
kθ-εθ model. Its better performances are confirmed even at higher Reynolds number
since the cases simulating uniformly heated pipe flows computed with this model
have Nu numbers that are in better agreement with the Skupinski correlation, with
respect to the cases computed adopting other models.

Unfortunately the performances of the thermal models when a non-uniform heat
flux is applied cannot be tested because of the lack of DNS and experimental data
adopting this configuration.

The semi-analytical solutions found for a cosinusoidally varying heat flux over
the perimeter of the tube are affected by the poor reliability of the Prt correlation
they adopt; thus they are not suitable as a basis for comparison.

Nevertheless, it can be concluded that the best suitable and reliable way of
computing the turbulent heat flux for liquid metals is adopting the Manservisi kθ-εθ
model in combination with the AKN model. For this reason these models have been
used to compute the results that are presented within the following chapter.
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Chapter 5

Results

Now that the suitable turbulence model to compute velocity and temperature
fields of a liquid metal flowing in a pipe has been chosen; the heat transfer problem
regarding a tube in a solar tower receiver operated with liquid metals can be finally
addressed.

As already said in Sec.1.3 while designing a central receiver system a proper
and reliable prediction of local and global Nusselt numbers and wall temperatures
is required. This prediction is made using Nusselt correlations. In particular
considering liquid metals the suitable correlations can be: the Skupinski correlation
Eq.(4.1) for a fully developed pipe flow and the Ching-Jen and Chiou correlation
Eq.(5.14) for a developing flow.

Are these correlations, in principle valid only when a uniform heat flux is imposed,
applicable and trustworthy when an extremely uneven heat flux is applied? In order
to answer to this question the results of several RANS simulations are presented
within this Chapter.

Firstly, a circumferentially varying and longitudinally constant heat flux has
been considered and the results are commented in Sec.5.1.

Secondly, in Sec.5.2, a complete analysis of the conjugate turbulent forced
convection of a liquid metal flowing in a tube undergoing the boundary conditions
present in a central receiver system is presented.

5.1 Longitudinally constant and circumferentially
non uniform heat flux

The boundary conditions present on a central solar receiver tube are both
circumferentially and longitudinally uneven as seen in Sec.2.1. Nevertheless, first,
a simplified problem is considered by analyzing cases with an imposed heat flux
circumferentially varying and longitudinally constant.

In particular simulations have been performed for two profiles of circumferentially
uneven heat fluxes. Profile "A" has equation (5.1) and it is reported in Fig.5.1,
while profile "B" is sketched in Fig.5.2 and it has the form (5.2). Profile "B" has
been chosen because it reproduces the heat flux variability, due to the cosine effect
(See Sec.2.1), over the circumference of a pipe in a central receiver.
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A

{
q′′(ϕ) = +q′′max if 90◦ ≤ ϕ ≤ 270◦

q′′(ϕ) = 0 if 0◦ ≤ ϕ ≤ 90◦ ∧ 270◦ ≤ ϕ ≤ 360◦
(5.1)

Figure 5.1: Boundary condition "A".

B

{
q′′(ϕ) = −q′′max · cos(ϕ) if 90◦ ≤ ϕ ≤ 270◦

q′′(ϕ) = 0 if 0◦ ≤ ϕ ≤ 90◦ ∧ 270◦ ≤ ϕ ≤ 360◦
(5.2)

Figure 5.2: Boundary condition "B".

Thanks to the fact that the heat flux profiles considered are longitudinally
constant, the temperature field can reach the fully developed condition characterized
by:

∂T

∂x
=
∂Tb
∂x

=
∂Tw
∂x

= const ; NuD = f
(
Re, Pr

)
Consequently the flow has been considered as fully developed both from the

hydrodynamic and from the thermal point of view. The mass flow rate has been
imposed in order to obtain five different ReD distributed in between 104 < ReD <
2 · 105 with Pr = 0.025.

Circumferentially averaged Nusselt numbers have been derived from the tem-
perature fields computed, as shown in Eq.(5.3). They have been compared with
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the Nusselt numbers provided by the Skupinski correlation within the same range
of ReD. The comparison is shown in Fig.5.3.

〈Nu〉 =
〈q′′w〉D

|〈Tw〉 − Tb|λf
(5.3)

〈A〉 =
1

2π R

∫ ϕ=2π

ϕ=0

A(ϕ)Rdϕ with A being any local variable (5.4)
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Figure 5.3: Comparison between Nusselt numbers from RANS simulation with AKN and
the Manservisi kθ-εθ models and imposed heat flux "A" (�), "B" (o) and from Skupinski
correlation (solid line). Dashed lines are ±10% from Skupinsky correlation
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(a) Boundary condition "A".
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(b) Boundary condition "B" .

Figure 5.4: Comparison between temperature profiles from RANS simulations (�) and
from Eq.(5.7) with Nu provided by Skupinski correlation (o).

The values collapse together at all Peclét numbers and are within a ±10%
range from the Skupinski correlation. It can be inferred that, as already shown in
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literature for medium-to-high Prandtl number fluids, also for liquid metals Nusselt
number correlations for fully developed flow in uniformly heated tubes can be
applied to fully developed cases having a circumferentially non-uniform heat flux
imposed.

Another important variable that is needed while designing a central receiver
system is the wall temperature profile. In particular knowing the maximum value of
the temperature at the wall is important in order to assure the structural integrity.

h(ϕ)
(
Tw(ϕ)− Tb

)
= q′′w(ϕ)

h(ϕ) =
Nu(ϕ)λ

D
; θw(ϕ) =

(Tw(ϕ)− Tb)λ
〈q′′w〉R

(5.5)

θw(ϕ) =
2 q′′(ϕ)w
Nu(ϕ) 〈q′′w〉

(5.6)

θw(ϕ) =
2 q′′(ϕ)w
NuSk 〈q′′w〉

(5.7)

〈θw〉 =
2 〈q′′w〉

NuSk 〈q′′w〉
(5.8)

(5.9)

Usually the wall temperature is computed from the Nusselt number as in
Eq.(5.6). Unfortunately the correlations do not provide a value for the local Nusselt
number Nu(ϕ). They provide only a constant value for Nu. Thus, when equation
(5.6) is used together with the global Nusselt number provided by the Skupinski
correlation becoming Eq.(5.7), the variability of θw(ϕ) is due only to the variability
of the imposed heat flux. Where the imposed heat flux is zero, necessarily, even
the non-dimensional temperature at the wall becomes zero.

Of course the value of θw that results from (5.7) cannot be exact, in fact, what
can be precisely derived from NuSk is only the circumferentially averaged value
of θw through equation (5.8). Nevertheless during the design phase of a central
receiver system, if CFD1 simulations are not performed, there are no other means
except from Eq.(5.7) to get a rough evaluation of the maximum temperature at the
wall.

The other way of computing θw is using the temperature field calculated with the
simulations. Using this way the non-dimensional wall temperature is not zero even
where the imposed heat flux is zero. This because using the computed temperature
field means that θw is calculated through the actual heat flux and not the imposed
one and through the local Nusselt number. Where the actual heat flux tends to zero
also the local Nusselt number will tend to zero, making the value of θw different
from zero.

The non-dimensional wall temperature profiles (θw) resulting from the simula-
tions at Pe = 2435 are compared with the ones calculated from the Nusselt number
provided by the Skupinski correlation using Eq.(5.7) in Fig.5.4. This is useful in
order to assess the error made by using correlations for the global Nusselt number
to evaluate the circumferentially varying temperature at the wall.

1Computational Fluid Dynamic
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The profiles differ considerably and the maximum wall temperature computed
through the RANS simulations is quite higher that the one derived from Eq.(5.7).
Even though the global Nusselt number is quite precisely predicted by the Skupinski
correlation, the same correlation is not suited to compute the wall temperature.
CFD analysis can then be useful while designing a central receiver system in order
to precisely compute the thermal stresses of the pipes.

For the sake of completeness the non-dimensional wall temperature profiles
(Fig.5.5) and the Nusselt numbers (Tab.5.1) resulting from simulations adopting
the different thermal turbulence models presented in Sec.3.1.2 are reported. The
simulations have been computed with Pe = 2510 and boundary condition "B"
(5.2).
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Figure 5.5: Non-dimensional temperature profiles from RANS simulation with Pe = 2510
and boundary condition "B" (5.2) adopting the Manservisi kθ-εθ model (�), the Kays
correlation (3.18) (o), Prt = 0.85 (4), Prt from Eq-(3.17) (+)

Table 5.1: Nusselt numbers obtained adopting different Prt models with Pe = 2510 and
boundary condition "B" and percentual differences between them and the NuD resulting
from simulations adopting Manservisi kθ-εθ.

kθ-εθ Eq. (3.18) Eq. (3.17) Prt = 0.85

〈Nu〉 16,03 18,63 12,74 22,70
∆Nu% from kθ-εθ −− 16,22% 25,82% 41,61%
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5.2 Longitudinally and circumferentially non-uniform
heat flux

Within this section the complete analysis of a solar receiver tube operate with
liquid metals undergoing to the boundary conditions presented in Sec.2.1 and
summarized again in Fig.5.6, is presented.

The problem analyzed is a conjugate heat transfer problem. First of all in
Sec.5.2.1 the parameters governing the temperature field are determined. A para-
metric study has been done for different combinations of the governing parameters
and the results in term of wall and bulk temperatures, Prt and Nusselt numbers
are finally presented in Sec.5.2.2.

It has to be noticed that, since the heat flux applied is non uniform in the axial
direction, the temperature field cannot become fully developed from the thermal
point of view or, at least, it will never reach a condition where ∂T/∂x = const and
NuD is a function of only Re and Pr and not of the axial coordinate.

Thus, here the results in term of Nusselt numbers are compared with the one
provided by a correlation in principle valid in the developing region for liquid metals
undergoing to an uniform heat flux. This correlation is the Ching-Jen and Chiou
correlation Eq.(5.14).

Figure 5.6: Heat flux variability over the length and the axial coordinate of the tube.

5.2.1 Governing parameters

The heat flux imposed on the external tube wall is strongly uneven both in
the axial and in the circumferential direction (Fig.5.6). This makes important the
analysis of the heat conduction inside the tube wall thickness, since it noticeably
affects the temperature field.
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The heat transfer inside the tube wall thickness is governed by Eq.5.10. The
boundary conditions of this equation link the temperature field of the fluid inside
the tube with the one present inside the solid.

There are two sub-domains, solid and fluid, where the temperature field is
described by different differential equations, i.e. (2.18) and (5.10), at the interface
temperature values and gradients must be consistent. This is a conductive-convective
conjugate heat transfer problem.
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(5.10)

The system (5.10) can be non-dimensionalised in order to find the non-dimensional
parameters affecting the temperature field. In order to do this Ri has been chosen
as characteristic length and (〈q′′wi〉Ri/λf ) as characteristic temperature difference.

The resulting non dimensional variables and equations are shown in (5.11),
(5.13), (5.12).

θ =
(T − Tb0)λf
〈q′′wi〉LRi

; r′ =
r

Ri

; x′ =
x

Ri

(5.11)



1

r′
∂

∂r′

(
r′
∂θ

∂r′

)
+

1

(r′)2

∂
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∂r′
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−λs
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∂θ

∂r′

∣∣∣∣s
r′=1

= − ∂θ
∂r′

∣∣∣∣f
r′=1

(5.12)

Similarly to Eq.(5.12) even the differential equation Eq.(2.18) governing the
temperature field of the fluid must be non-dimensionalized using the same character-
istic length and temperature difference. Doing this, another parameter influencing
the non-dimensional temperature field is found: the Peclét number. It can be
deduced that the overall non-dimensional temperature field is dependent on the
non-dimensional coordinates (r′, x′, ϕ) and the four non-dimensional parameters
defined in Eq.(5.13).

r∗ =
Ro

Ri

, λ∗ =
λs
λf

,
L

D
, Pe = ReD · Pr (5.13)

The study of the conjugate turbulent forced convection of a liquid metal flowing
in a tube with circumferentially and longitudinally varying heat flux (2.1) has
been conducted by running simulations for different combination of the governing
parameters as listed in Table 5.2.
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All the simulations have been performed adopting the AKN turbulence model
to compute the flow field, which has been always considered as fully developed.
The temperature field, instead, is obviously not fully developed and it has been
computed adopting the Manservisi kθ-εθ turbulence model.

Table 5.2: Governing parameters used for the parametric study

r∗ λ∗ L/D Pe

1 / 1,2 / 1,5 0,88 / 1,4 / 5,5 10 / 30 / 50 1255 / 2510 / 3766 / 5021

The range of variability of the governing parameters has been chosen in order
to be appropriate for engineering problems related to solar thermal receivers. In
particular the range of variability of λ∗ is restricted because both the fluid and the
solid are metals, so their thermal conductivities are of the same magnitude.

In a central receivers L/D can be even much greater than 50, nevertheless since
this work is addressed to the construction of SOMMER, the range of L/D studied is
related to the dimensions of the facility.

5.2.2 Parametric study results

The final results are here presented in term of wall and bulk temperatures, Nusselt
numbers and turbulent Prandtl numbers. The non-dimensional temperatures are
evaluated as (5.11). The variables plotted are local, circumferentially averaged (〈·〉)
(5.14) or circumferentially and longitudinally averaged (〈·〉L) (5.15).

〈A(x̃)〉 =
1

2π R

∫ ϕ=2π

ϕ=0

A(ϕ)Rdϕ (5.14)

〈A〉L =
1

L

∫ x̃=1

x̃=0

〈A〉 dx̃ (5.15)

First the influence of a varying λ∗ and r∗ is analyzed. In Fig.5.7a the downstream
variation of the dimensionless inner, outer and bulk fluid temperatures is shown
by varying the solid-to-fluid thermal conductivity ratio, λ∗. In Fig.5.7b the same
temperatures are plotted at different outer-to-inner radius ratio, r∗.

It can be seen that the profiles of θb and θwi are perfectly overlapping in both
figures, showing no dependence on these parameters, at least for the specified range
of λ∗ and r∗ here investigated.

Nevertheless, these parameters affect the wall thermal resistance per unit length
that is defined as

Rth =
ln
(
r∗
)

2π λs

[
K/(W m)

]
The wall thermal resistance has a damping effect on the heat flux distribution on

the inner tube’s surface. Conversely, θow decreases by decreasing the wall thermal
resistance, i.e by an increase of λ∗ or a decrease of r∗ as it can be seen respectively
in Fig.5.7a and Fig.5.7b.
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Figure 5.7: Profiles of θow (solid line), θiw (thicker dashed line), θb (dahed-dotted) for
L/D = 30, Pe = 2510 and
a) r∗ = 1.5; λ∗ = 0.88 (o), λ∗ = 1.4 (�), λ∗ = 5.5 (�)
b) λ∗ = 1.4; r∗ = 1 (o), r∗ = 1.2 (�), r∗ = 1.5 (�)
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Figure 5.8: Profiles at λ∗ = 1.4, r∗ = 1.5, L/D = 30 of
a) 〈Nu〉 for Pe = 2510 from the RANS simulation with the kθ-εθ model (solid line) and
from the Ching-Jen and Chiou correlation Eq.(5.14) (dashed line)
b) 〈Nu〉L from the RANS simulations with the kθ-εθ model (o) and from the Ching-Jen
and Chiou correlation Eq.(5.15) (solid line). Dashed lines are ±10% from the correlation
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One important peculiarity of the heat transfer problem here analyzed is that,
because of the variability of the heat flux over the pipe length, the flow here will
never tend to a fully developed condition characterized by (3.29).

This can already be noticed by observing that the bulk and the wall fluid
temperatures in Fig.5.7 do not show a linear dependence on x̃. Moreover, it is
interesting to analyze the profile of the circumferentially averaged Nusselt number.

When a developing pipe flow with a uniform imposed heat flux is analyzed the
value of NuD tends toward the fully developed one as x increase. Correlations
suitable for developing flows give the value of NuD at each value of the axial
coordinate. For liquid metals an appropriate correlation belonging to this set is
the Ching-Jen and Chiou correlation suggested in [39] that provides values for the
local, Eq.(5.16), and the mean Nusselt number, Eq.(5.17), respectively.

〈Nu〉
Nufd

= 1 +
2.4

x/2ri
− 1

(x/2ri)2
(5.16)

〈Nu〉L
Nufd

= 1 +
7

L/2ri
+

2.8

L/2ri
ln

(
L/2ri

10

)
(5.17)

(5.18)

The above equations holds for a uniformly heated duct at Pr < 0.03, Pe > 500,
and L/2ri > 2. Nufd is the fully developed Nusselt number. that has been
evaluated with the correlation of Skupinski [15] instead of using the one proposed
by [39].

In Fig.5.8a the circumferentially averaged Nusselt numbers resulting from the
simulation at Pe = 2510, λ∗ = 1.4, r∗ = 1.5 and L/D = 30 are compared with the
local Nusselt numbers provided by the Ching-Jen and Chiou correlation. As it can
be seen the two values are extremely different and, in particular, while the value
computed from Eq.(5.16) is tending to the fully developed one, the circumferentially
averaged Nusselt number of the simulation goes below the fully developed one and
seems not to tend to any constant value.

This behavior is found again by analyzing the effect of the variability of Pe
(Fig.5.9a) and L/D (Fig.5.9b) on the circumferentially averaged Nusselt number.
Again in these figures it can be seen that the 〈Nu〉 becomes also lower than those
for the fully developed flow, as already found for example by [40] for a sinusoidally
heat flux distribution along a cylindrical fuel element.

Moreover, observing these figures it can be noticed that the Nusselt number
increases with increasing Pe (Fig.5.9a), because of the enhanced turbulence intensity,
and decreases with increasing L/D for the same Pe number because of the lower
temperature gradients at the same x̃ (Fig.5.9b).

This last phenomenon is due to the fact that, when L is greater the same value of
x̃ correspond to a bigger value of the dimensional axial coordinate x. Thus the fluid
when L/D increase reach the same x̃ after having covered a bigger distance, thus
having an increased available developing length. This effect is more accentuated at
low L/D, while the curves tend to collapse together at higher length-to-diameter
ratios.

Despite the fact that the circumferentially averaged Nusselt numbers resulting
from the simulations with the non-uniform imposed heat flux (2.1) are quite different
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Figure 5.9: Profiles of 〈Nu〉 at λ∗ = 1.4, r∗ = 1.5 and
a) L/D = 30, Pe = 1255 (solid line), Pe = 2510 (thicker dashed line), Pe = 3766
(dashed-dotted), Pe = 5021 (dotted)
b) Pe = 2510, L/D = 10 (solid line), L/D = 30 (thicker dashed line), L/D = 50
(dashed-dotted), evaluated with Skupinski correlation (4.1) (dotted)
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from the local Nusselt numbers derived from Eq.(5.16), the global Nusselt numbers
resulting from the same simulations (Fig.5.8b) are within the range of ±10% of the
correlation (5.17).

This is only due to the averaging procedure that flattens the local differences.
Moreover, the error between the computed global Nu and the correlation increases
with increasing Pe number and also with increasing L/D ratio (See Tab.5.3).

Keeping in mind that in a central receiver L/D can reach values up to 500,
this phenomenon creates doubts about the applicability of the correlation. Indeed,
as previously underlined all the available correlations for thermally developing
temperature fields are based on the assumption that the flow will reach a fully
developed condition as x increase. This is not true when a longitudinally varying
heat flux is imposed.

The fully developed condition is supposed to be reached at lower x with increasing
Pe and it is supposed to involve most of the pipe length with increasing L/D. Thus
the difference between the global Nusselt number in a pipe with longitudinally
varying imposed heat flux and the one predicted by the correlations is greater with
increasing Pe number and also with increasing L/D ratio.

Table 5.3: Percentage error between the Nusselt numbers calculated with Eq.(5.15) and
from the simulations with Pe = 2510, λ∗ = 1.4, r∗ = 1.5 and different L/D

L/D = 10 L/D = 30 L/D = 50

2,3% 5,4% 7,9%

Moving forward in the parametric analysis the influence of Pe on the dimen-
sionless inner, outer and bulk fluid temperatures is shown in Fig.5.10a. The
non-dimensional temperatures decrease with increasing Peclét numbers. The de-
crease is more pronounced at low Pe and the non-dimensional temperatures seem
to tend to an asymptotic value with increasing Pe. This is always caused by the
increase of turbulent mixing with Pe.

Indeed, in Fig.5.10b the variation of the cross-section averaged Prt along the
axial coordinate at different Peclét numbers is shown and, as expected, Prt decreases
with increasing Pe showing that αt is increasing together with the turbulence mixing.
Moreover, except for the lowest value of Pe, Prt almost attains a constant value
over the tube’s length and seems to tend to a common value with increasing Pe.

Fig.5.12 illustrates the profiles of the circumferentially averaged Prt versus the
axial coordinate for different length-over-diameter ratios. The values decrease with
increasing L/D. The decrease is more accentuated for low L/D. The values remain
always higher than those for the fully developed case, i.e. for a longitudinally
constant heat flux, except close to the outlet section, where, for high L/D ratios,
they can go slightly beyond the fully developed ones.

Fig.5.11a shows the profiles of θiw and θow along the tube’s axis at different
angular positions. The maximum temperature values can be seen for ϕ = 180◦,
i.e. where also the heat flux has its peak value, as shown in Fig.2.3a. Due to
the decrease of the longitudinal applied heat flux, the temperatures also decrease
starting from a certain axial position greater that x̃ = 0.5. It is interesting to
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Figure 5.10: Results at L/D = 30, λ∗ = 1.4, r∗ = 1.5
a) Profiles of θow (solid line), θiw (thicker dashed line), θb (dashed-dotted) at Pe = 1255
(o), Pe = 2510 (�), Pe = 3766 (�), Pe = 5021 (∗)
b) Profiles of Prt at Pe = 1255 (solid line), Pe = 2510 (thicker dashed line), Pe = 3766
(dashed-dotted), Pe = 5021 (dotted)
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Figure 5.11: Results at λ∗ = 1.4, r∗ = 1.5, L/D = 30 and Pe = 2510 for different ϕ;
ϕ = 0◦ (o), ϕ = 45◦ (�), ϕ = 90◦ (�), ϕ = 135◦ (∗), ϕ = 180◦ (4)
a) Profiles of θow (solid line), θiw (thicker dashed line), θb (dashed-dotted)
b) Profiles of Prt
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Figure 5.12: Profiles of Prt for λ∗ = 1.4, r∗ = 1.5, Pe = 2510 and L/D = 10 (solid line),
L/D = 30 (thicker dashed line), L/D = 50 (dashed-dotted), thermally fully developed
flow with circumferentially uneven imposed heat flux "B" (dotted)

noticed that at ϕ = 0◦ and ϕ = 45◦ the decrease of the temperature is not present.
Here, where the outer wall is adiabatic, the temperatures always slightly increase
due to the circumferential conduction in the wall and in the fluid.

From Fig.5.11b, which shows the profiles of Prt at different angular coordinates
on a section along the tube’s axis, it can be noticed how the values calculated with
the kθ-εθ model are almost independent from the angular position. This behavior
is not surprising since it has been already detected in Sec.5.1 Fig.4.9.

Considering the results found within Chapter 4 the Manservisi kθ-εθ model is
the more reliable one for computing the temperature field of liquid metals in a
turbulent pipe, thus all the conclusions deduced within this section are referred to
simulations computed adopting this model.

However, simulations with Pe = 2510, λ∗ = 1.4, r∗ = 1.5 and L/D = 30 have
been done adopting the different approaches to compute the turbulent Prandtl
number presented in Sec.3.1.2, in order to assess the variability of the results with
the model adopted.

Fig.5.13 shows a comparison between the calculated values of Prt using the
Manservisi kθ-εθ model, the Kays correlation (3.18) and the Cheng and Tak correla-
tion (3.17). As expected Eq.(3.17) strongly overestimates the value of the turbulent
Prandtl number with respect to the others while a constant Prt of 0.85 is very low
if compared with the others.

The dimensionless inner, outer and bulk fluid temperatures (Fig5.14a) and the
circumferentially averaged Nusselts (Fig.5.14b) are dependent on the value of Prt,
a greater Prt means higher dimensionless temperatures and lower Nusselts. This
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5.2. Longitudinally and circumferentially non-uniform heat flux
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Figure 5.13: Profiles of Prt for λ∗ = 1.4, r∗ = 1.5, Pe = 2510, L/D = 30, x̃ = 0.5
computed with kθ-εθ (solid line), Kays correlation Eq.(3.18) (dashed line), Chang and
Tak correlation Eq.(3.17) (dotted), Prt = 0.85 (thicker solid line)

follows exactly what was found while assessing the performances of the different
thermal turbulence models in Chapter 4.

In Tab.5.4 Nusselt numbers from the simulations adopting different thermal
turbulence models are reported together with their percentage difference from the
Nusselt number resulting from the simulation adopting the Manservisi kθ-εθ model.
The variability of Nusselt numbers with changing models increases with x̃, this is
partially due to the fact that Nu is lowering thus the same absolute differences
between the values represent bigger percentages at higher x̃.

The values of ∆〈Nu〉L% can be compared with the one reported in Tab.5.1
referring to simulations at the same Pe but with a longitudinally constant and
circumferentially varying imposed heat flux. It can be noticed that here (Tab.5.4)
the value computed adopting kθ-εθ model is closer to the one computed through the
Chang and Tak correlation than to the one computed adopting the Kays correlation.
This is in contrast with the results found in Tab.5.1.

The reason has to be found in the fact that the Prt computed by the kθ-εθ is
on average greater here where a developing temperature field with a longitudinally
and circumferentially uneven imposed heat flux is considered, with respect to the
one calculated for a developed temperature field with a heat flux variable over the
circumferential direction. Thus, the greater Prt happens to be closer to the very
high one provided by the Cheng and Tak correlation.

In conclusion the main key points that can be deduced from the results illustrated
are:
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Figure 5.14: Profiles at λ∗ = 1.4, r∗ = 1.5, Pe = 2510, L/D = 30 of
a) θow (solid line), θiw (thicker dashed line) and θb (dashed-dotted) computed with kθ-εθ
(o), Kays correlation Eq.(3.18) (�), Chang and Tak correlation Eq.(3.17) (�), Prt = 0.85
(+)
b) 〈Nu〉 computed with kθ-εθ (solid line), Kays correlation Eq.(3.18) (thicker dashed line),
Chang and Tak correlation Eq.(3.17) (dashed-dotted), Prt = 0.85 (thicker solid line)
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5.3. Discretization errors assessment

• The peculiar profile of the heat flux presents on a central receiver tube prevents
the flow inside from reaching the standard thermally fully developed condition
with the implications of Eq.3.29. Thus, the local Nusselt number provided
by suitable correlations is different from the circumferentially averaged one
computed from the simulations.
• It seems that global correlations are, however, suitable to predict a quite

accurate value for the global Nusselt number. Even though it has to be noticed
that the percentage error between the global Nusselt numbers computed from
the correlation and from the simulations increased with Pe and L/D.
• The dimensionless outer wall fluid temperature is affected by Pe, λ∗ and r∗
while the dimensionless inner and bulk fluid temperatures are affected by Pe
and not by λ∗ or r∗, at list for the range here investigated.

Table 5.4: Nusselt numbers obtained adopting different Prt models with λ∗ = 1.4,
r∗ = 1.5, Pe = 2510, L/D = 30 and percentual differences between them and the NuD
resulting from simulations adopting Manservisi kθ-εθ.

kθ-εθ Eq. (3.18) Eq. (3.17) Prt = 0.85

〈Nu〉 at x̃ = 0, 25 28,92 31,00 27,97 35,91
∆Nu% from kθ-εθ −− 7,20% 3,40% 24,17%

〈Nu〉 at x̃ = 0, 50 21,69 23,93 20,35 28,18
∆Nu% from kθ-εθ −− 10,33% 6,59% 29,94%

〈Nu〉 at x̃ = 0, 75 12,44 14,59 10,81 17,77
∆Nu% from kθ-εθ −− 17,28% 15,08% 42,85%

〈Nu〉L 21,30 23,30 20,14 27,29
∆Nu% from kθ-εθ −− 9,39% 5,76% 28,12%

5.3 Discretization errors assessment

The Grid Convergence Index GCI method [41] has been used to quantify
the numerical discretization errors. The method has been used referring to a
representative case computed through AKN and kθ-εθ models with Pe = 2510,
λ∗ = 1.4, r∗ = 1.5, L/D = 30 and the longitudinally and circumferentially uneven
imposed heat flux (2.1).

The solution has been computed for three different grids with a refinement
ratio rij = hi/hj of approximately 1.3. Two characteristic variables, namely the
circumferentially and longitudinally averaged Nusselt number and the friction factor
have been selected as representative variables for the problem under consideration.
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Table 5.5: Discretization errors using the GCI method. The results refer to simulations
computed with AKN and kθ-εθ models, Pe = 2510, λ∗ = 1.4, r∗ = 1.5, L/D = 30,
longitudinally and circumferentially uneven imposed heat flux from Eq.(2.1).

N1, N2, N3 1 274 400 ; 579908 ; 267628
〈Nu〉L Cf

φ1 21,3128 4,6691 · 10−3

φ2 21,2984 4,6697 · 10−3

φ3 21,2929 4,6720 · 10−3

p 3,53 5,73
φ21
ext 21,322 4,669 · 10−3

e21
ext 0,44% 0,011%

GCI21
fine 0,055% 0,004%

h =

[
1

N

N∑
i=1

(
∆Vi

)]1/3

p =
1

ln (r21)

∣∣∣∣ln ∣∣∣∣φ3 − φ2

φ2 − φ1

∣∣∣∣+ q(p)

∣∣∣∣
q(p) = ln

(
rp21 − s
rp32 − s

)
; s = 1 · sgn

(
φ3 − φ2

φ2 − φ1

)
The detailed algorithm to compute the GCI is reported in [41], the resulting

values are summarized in Table 5.5. The quantity φi refers to the calculated
variable value, while the index i = 1; 2; 3 refers to the fine, medium and coarse grid
respectively.

The apparent order of the discretization method is denoted with p. The
quantities φ21

ext and e21
ext indicates the extrapolated values from the medium and

fine grids of the calculated variable and the error, respectively.

φijext =
rpijφj − φi
rpij − 1

eija =

∣∣∣∣φj − φiφj

∣∣∣∣ ; eijext =

∣∣∣∣∣φjiext − φiφjiext

∣∣∣∣∣
GCI21

fine =
1.25 e21

a

rp21 − 1

Both 〈Nu〉L and Cf show monotonic convergence. The numerical uncertainty
in the fine-grid solution is given by the GCI21

fine values and is therefore very small.
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Chapter 6

Conclusions

The heat transfer in a central solar receiver tube operated with a liquid metal
having a representative Prandtl number of 0.025 has been numerically analyzed.

First of all the operation of a central receiver system have been outlined (Sec.1.2),
in particular the heat flux imposed on the receiver surface has been analyzed (Sec.2.1)
deriving a function modeling the imposed heat flux on a single tube (Eq.(2.1)).

Since the resulting heat flux distribution is strongly uneven both circumferentially
and longitudinally, the applicability of Nusselt correlations derived for a uniform
thermal boundary condition is questionable.

The analysis has been then focused on comparisons between the numerical data
computed with uneven imposed heat flux and the data derived from the correlations
suitable for liquid metals, i.e. the Skupinski correlation for fully developed flows
Eq.(4.1) and the Ching-Jen and Chiou correlation for developing flows Eq.(5.14).

Because the Reynolds analogy, that assumes a constant turbulent Prandtl
number close to unity, does not apply to liquid metals, a crucial point for the RANS
analysis has been to follow a suitable approach of computing the turbulent heat
flux.

Different approaches have been analyzed (Sec.3.1.2) and assessed, in particular
a recently proposed kθ-εθ model specifically calibrated for liquid metals has been
implemented and coupled to the solver (FLUENT v.15). Besides the equations for
the turbulent kinetic energy and its dissipation rate, two additional ones, namely
for the temperature variance and its dissipation rate, have been solved, in order to
locally calculate the turbulent thermal diffusivity.

The performances of the different approaches of computing the turbulent heat
flux have been evaluated by comparisons against DNS data (Sec.4.1), suitable Nusselt
correlations (Sec.4.2), semi-analytical solutions founded in [6], [7] (Sec.4.3).

The kθ-εθ model shows a better agreement with the DNS data and the Skupinski
correlation with respect to the other followed approaches, i.e. the Kays correlation
(3.18), the Cheng and Tak correlation (3.17) and a fixed Prt = 0.85. Therefore it
has been chosen to compute the simulations presented in Chapter 5.

Simulations with a circumferentially uneven and longitudinally constant heat
flux have been performed and the results have been presented in Sec.5.1. From the
results it can be inferred that, as already shown in literature for medium-to-high
Prandtl number fluids, also for liquid metals Nusselt number correlations for fully
developed flow in uniformly heated tubes can be applied to fully developed cases
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having a circumferentially non-uniform heat flux imposed. However, it must be
emphasized that these correlations are not suited to evaluate the wall temperature.

Finally in Sec.5.2, the conjugate heat transfer in a solar tower receiver tube
operated with liquid metals has been analyzed for different values of the governing
parameters, i.e. the solid-to-fluid thermal conductivity, the wall thickness ratio, the
Peclét number and the diameter-to-length ratio.

The values have been chosen such as to be useful for engineering applications.
Detailed results for the inner and outer wall temperature, fluid bulk temperature,
Prt and Nusselt number have been reported.

The circumferentially averaged Nusselt numbers along the tube’s axis and the
circumferentially and longitudinally averaged ones have been compared to those
obtained with a correlation valid for developing flows within a uniformly heated
pipe; Eq.(5.14),(5.15).

Although the
first differ substantially from the correlation’s ones, the second are within a

±10% range of the correlation. This is, however, only due to the averaging procedure
that cancels out the local differences.

In particular it must be noticed that the difference between the global Nusselt
number computed from the simulations and the one provided by the correlation
increases with Pe and L/D.

This work has been carried out in collaboration with the KALLA team of the
Institute for Nuclear and Energy Technologies IKET at KIT1, where the SOMMER
facility is under construction. Speaking of the design of SOMMER it can be concluded
that on one hand the wall temperature cannot be derived from the available
correlations.

On the other hand Eq.(5.15) can be adopted to evaluate the overall heat transfer
coefficient in the receiver tubes. This might not be true when the design of a bigger
central receiver system is carried on. In this case L/D can be greater than the
range here analyzed and further simulations are needed to investigate the influence
of this parameter in a broader range.

Future works must focus on carrying on experiments where an uneven heat flux
is imposed on a liquid metal pipe flow. This would be useful in order to get data
to better assess the performance of the Manservisi kθ-εθ model in simulating these
kind of flows.

1Karlsruhe Institute of Technology
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Appendix A

Attached listings

Listing A.1: UDF function for the heat flux boundary condition.

1 #include <udf.h>
2 #include <math.h>
3

4 DEFINE_PROFILE(HEAT_FLUX_GAUSS05 , t, i)
5 {
6 face_t f;
7 real x[ND_ND];
8 real z;
9 real ax;

10 real qmax = 3.8764 E5; /* Maximum Heat Flux */
11 real R = 0.0075; /* Radius of the pipe */
12 real L = 0.30 /* Length of the pipe */
13 real sigmaG = L/5;
14 real nuG = L/2;
15

16 begin_f_loop(f,t)
17 {
18 F_CENTROID(x,f,t);
19 z=x[2];
20 ax = x[0];
21 F_PROFILE(f,t,i) = -((qmax/( sigmaG*sqrt (2*PI)))*exp(-SQR

(ax -nuG)/(2* SQR(sigmaG))))*(z/R);
22 }
23 end_f_loop(f,t)
24 } /* end of function */
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Listing A.2: UDF function of Kays Prt correlation.

1 #include "udf.h"
2

3 real ni(cell_t c, Thread *t)
4 { return C_MU_L(c,t)/C_R(c,t); }
5

6 real alpha(cell_t c, Thread *t)
7 { return C_K_L(c,t)/(C_R(c,t)*C_CP(c,t)); }
8

9 real Pr(cell_t c, Thread *t)
10 { return ni(c,t)/alpha(c,t); }
11

12 DEFINE_PRANDTL_T(pr_t_KAYS ,c,t)
13 { return 0.85+0.7/( Pr(c,t)*C_MU_T(c,t)/C_MU_L(c,t)); }
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Listing A.3: UDFs to couple to FLUENT v.15 in order to make available the implemen-
tation of Manservisi kθ-εθ turbulence model

1 /*
2 * UDF for the turbulence model of Manservisi -Menghini

according to the following papers:
3 * [1] Abe K., Kondoh T., Nagano Y. (1994) A new

turbulence model for predicting fluid flow and heat
transfer in separating and reattaching flows - I.
Flow field calculations , Int. J. Heat Mass Transfer ,
37(1), 139 -151

4 * [2] Abe K., Kondoh T., Nagano Y. (1995) A new
turbulence model for predicting fluid flow and heat
transfer in separating and reattaching flows - I.
Thermal field calculations , Int. J. Heat Mass
Transfer , 38(8) , 1467 -1481

5 * [3] Manservisi S. Menghini F. (2014) A CFD four
parameter heat transfer turbulence model for
engineering applications in HLM , In. Jou. of Heat
and Mass Transfer , 69, 312 -326

6 * [4] Manservisi S. Menghini F. (2014) Triangular rod
bundle simulations of a CFD k-e-kt -et heat transfer
turbulence model for heavy liquid metals , Nuclear
engineering and Design 273 (2014) 251 -270

7 */
8

9 /* This is the implementation for ANSYS Fluent of the
turbulent heat transfer model presented in article
[3] and [4].

10 This implementation concerns only the thermal field ,
you can use it with any k-e model.

11 However the constants are setted for Pr =0.025 starting
from a flow field computed using the turbulence

model (AKN) presented in article [1].
12 Thus the results obtained using a flow field computed

using other turbulence models might be not
trustworthy.

13 */
14

15 /* Loading flow specification */
16 #include <udf.h>
17 #include <math.h>
18

19 /* Turbulence model constants for K_t and TDR_t */
20 #define SIG_KT 1.4
21 #define SIG_DT 1.4
22 #define Cp1 0.925
23 #define Cp2 0.9
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24 #define Cd1 1
25 #define C_EMME 0.3
26 #define C_LAMBDA 0.1
27 #define Prt_inf 0.9
28

29 typedef enum
30 {
31 KT = 0,
32 TDR_KT = 1,
33 N_REQUIRED_UDS
34 }UDS_Scalars;
35

36 typedef enum
37 {
38 TAU_U = 0,
39 TAU_T = 1,
40 P_KT = 2,
41 ALPHA_T = 3,
42 PR_T = 4,
43 P_TKE = 5,
44 SOURCE_Kt = 6,
45 SOURCE_TDR_KT = 7,
46 MUt = 8,
47 tau_lT = 9,
48 N_REQUIRED_UDM
49 }UDM_Memory;
50

51 #define C_Kt(c,t) C_UDSI(c,t,KT)
52 #define C_TDR_KT(c,t) C_UDSI(c,t,TDR_KT)
53 #define C_PKT(c,t) C_UDMI(c,t,P_KT)
54

55 /*
********************************************************************

56 DEFINITIONS USEFUL QUANTITIES
57 **********************************************************************

*/
58

59 real ni(cell_t c, Thread *t)
60 { return C_MU_L(c,t)/C_R(c,t); }
61

62 real alpha(cell_t c, Thread *t)
63 { return C_K_L(c,t)/(C_R(c,t)*C_CP(c,t)); }
64

65 real Pr(cell_t c, Thread *t)
66 { return ni(c,t)/alpha(c,t); }
67
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68 real Re_d(cell_t c, Thread *t)
69 { return C_WALL_DIST(c,t)*pow(C_D(c,t)*ni(c,t) ,0.25)/ni(

c,t); }
70

71 real Re_t(cell_t c, Thread *t)
72 { return SQR(C_K(c,t))/(ni(c,t)*C_D(c,t)); }
73

74 real tau_u(cell_t c, Thread *t)
75 { return C_K(c,t)/C_D(c,t); }
76

77 real tau_t(cell_t c, Thread *t)
78 { return C_Kt(c,t)/C_TDR_KT(c,t); }
79

80 real R(cell_t c, Thread *t)
81 { return tau_t(c,t)/tau_u(c,t); }
82

83 real C_PTKE(cell_t c, Thread *t)
84 { return C_UDMI(c,t,MUt)/C_R(c,t) * SQR(

C_STRAIN_RATE_MAG(c,t)); }
85

86 /*
***********************************************************

87 DAMPING FUNCTIONS
88 *************************************************************

*/
89

90 real f_1a(cell_t c, Thread *t)
91 { return (1.0-exp ( -0.0714* Re_d(c,t))); }
92

93 real f_2a(cell_t c, Thread *t)
94 { return (1.0-exp ( -(0.0526* Re_d(c,t))*sqrt(Pr(c,t)))); }
95

96 real f1t(cell_t c, Thread *t)
97 { return (f_1a(c,t)*f_2a(c,t)); }
98

99 real B1t(cell_t c, Thread *t)
100 { return (tau_u(c,t)*Prt_inf); }
101

102 real f_2ao(cell_t c, Thread *t)
103 { return (f1t(c,t)*exp(-4E-6* SQR(Re_t(c,t)))); }
104

105 real f_2bo(cell_t c, Thread *t)
106 { return (f1t(c,t)*exp(-2.5E-5*SQR(Re_t(c,t)))); }
107

108 real f2tB2t(cell_t c, Thread *t)
109 { return tau_u(c,t)*(f_2ao(c,t)*(2.0*R(c,t)/(R(c,t)+
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C_EMME))+f_2bo(c,t)*sqrt (2*R(c,t)/Pr(c,t))*(1.3/( sqrt
(Pr(c,t))*pow(Re_t(c,t) ,0.75)))); }

110

111 real Cd2(cell_t c, Thread *t)
112 { return SQR(1-exp ( -0.1754* Re_d(c,t)))*(1.9*(1 -0.3* exp

( -0.0237* SQR(Re_t(c,t)))) -1); }
113

114 /*
*************************************************************

115 DEFINE UDS SOURCES
116 ***************************************************************

*/
117

118 DEFINE_SOURCE(KT_src ,c,t,dS,eqn)
119 {
120 real source = C_R(c,t) * (C_PKT(c,t) - C_TDR_KT(c,t));
121 C_UDMI(c,t,SOURCE_Kt)=source;
122 dS[eqn] = 0;
123 return source;
124 }
125

126

127 DEFINE_SOURCE(TDR_KT_src_mans ,c,t,dS ,eqn)
128 {
129 real source1 = (C_TDR_KT(c,t)/C_Kt(c,t))*(Cp1*C_PKT(c,t

)-Cd1*C_TDR_KT(c,t));
130 real source2 = (C_TDR_KT(c,t)/C_K(c,t))*(Cp2*C_PTKE(c,t

)-Cd2(c,t)*C_D(c,t));
131 real source = C_R(c,t)*( source1 + source2);
132 C_UDMI(c,t,SOURCE_TDR_KT)=source;
133 dS[eqn] = C_R(c,t)*(( Cp2*C_PTKE(c,t)-Cd2(c,t)*C_D(c,t))

/C_K(c,t)+(Cp1*C_PKT(c,t))/C_Kt(c,t) -2.0* C_TDR_KT(c,
t)*(Cd1/C_Kt(c,t)));

134 return source;
135 }
136

137 /*
**************************************************************

138 DEFINE UDS FLUXES AND DIFFUSIVITY
139 ***************************************************************

*/
140 DEFINE_DIFFUSIVITY(keMANS_diffusivity ,c,t,eqn)
141 {
142 switch(eqn)
143 {
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144 case KT: return C_R(c,t)*( C_UDMI(c,t,ALPHA_T)/
SIG_KT + alpha(c,t)); break;

145 case TDR_KT: return C_R(c,t)*( C_UDMI(c,t,ALPHA_T)/
SIG_DT + alpha(c,t)); break;

146 default: return 0;
147 }
148 }
149

150 DEFINE_UDS_FLUX(UDS_flux_keMANS , f, t, eqn)
151 {
152 switch(eqn)
153 {
154 case KT: return F_FLUX(f,t); break;
155 case TDR_KT: return F_FLUX(f,t); break;
156 default: return 0;
157 }
158 }
159

160 /*
***********************************************************

161 ADJUST FUNCTIONS
162 *************************************************************

*/
163

164 DEFINE_ADJUST(adjust_keMANS ,d)
165 {
166 Thread *t;
167 cell_t c;
168 real tau_lu , tau_lt;
169 real term1 , term2 , term3;
170

171 thread_loop_c(t,d)
172 if (FLUID_THREAD_P(t))
173 {
174 begin_c_loop(c,t)
175 {
176 C_UDMI(c,t,TAU_U) = tau_u(c,t);
177 C_UDMI(c,t,TAU_T) = tau_t(c,t);
178 tau_lt = f1t(c,t)*B1t(c,t) + f2tB2t(c,t);
179 C_UDMI(c,t,tau_lT)=tau_lt;
180 C_UDMI(c,t,ALPHA_T) = C_LAMBDA*C_K(c,t)*tau_lt

;
181 C_UDMI(c,t,P_TKE) = C_PTKE(c,t);
182

183 if ( NULL != THREAD_STORAGE(t,SV_T_G) )
184 { C_UDMI(c,t,P_KT) = C_UDMI(c,t,ALPHA_T) *
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NV_MAG2(C_T_G(c,t)); }
185 else
186 {
187 Message("\nAllocated temperature gradients !\

n");
188 MD_Alloc_Storage_Vars(d, SV_T_RG , SV_T_G ,

SV_NULL);
189 C_UDMI(c,t,P_KT) = C_UDMI(c,t,ALPHA_T) *

NV_MAG2(C_T_G(c,t));
190 }
191 C_UDMI(c,t,PR_T) = C_UDMI(c,t,MUt)/C_R(c,t)/

C_UDMI(c,t,ALPHA_T);
192 }
193 end_c_loop(c,t)
194 }
195 }/* end of function */
196

197 /*
**************************************************************

198 DEFINE TURBULENT PRANDTL NUMBER
199 ****************************************************************

*/
200

201 DEFINE_PRANDTL_T(pr_t_MANS ,c,t)
202 { return C_UDMI(c,t,PR_T); }
203

204

205 /*
*************************************************************

206 BOUNDARY CONDITIONS
207 ***************************************************************

*/
208

209 DEFINE_PROFILE(TDR_KT_BC_CHF , t, i)
210 {
211 face_t f;
212 cell_t c0;
213 Thread *t0;
214

215 begin_f_loop(f,t)
216 {
217 t0 = THREAD_T0(t);
218 c0 = F_C0(f,t);
219 F_PROFILE(f,t,i) = 2.0* alpha(c0,t0)*C_Kt(c0 ,t0)/SQR(

C_WALL_DIST(c0,t0));
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220 }
221 end_f_loop(f,t)
222 } /* end of function */
223

224 /*
*****************************************************************

225 DEFINE ON DEMAND FUNCTIONS
226 *******************************************************************

*/
227

228 DEFINE_ON_DEMAND(check_UDS_UDM)
229 {
230 /* Domain *d = Get_Domain (1);*/
231 check_uds_udm ();
232 }/* end of function */
233

234

235 /* The thermal field must be computed performing few
iteration with a model already

236 implemented in Fluent. Then this function is needed to
initialise all the quantities

237 in order to perform the first iteration. */
238

239 DEFINE_ON_DEMAND(interpolation_energy)
240 {
241 Domain *d = Get_Domain (1);
242 Thread *t;
243 cell_t c;
244 real tau_lt;
245 real term1 , term2;
246

247 thread_loop_c(t,d)
248 {
249 if (FLUID_THREAD_P(t))
250 { begin_c_loop(c,t)
251 {
252 C_UDSI(c,t,KT) = C_K(c,t);
253 C_UDSI(c,t,TDR_KT)=C_D(c,t);
254 C_UDMI(c,t,TAU_U) = tau_u(c,t);
255 C_UDMI(c,t,TAU_T) = tau_t(c,t);
256 C_UDMI(c,t,ALPHA_T) = C_R(c,t)*C_UDMI(c,t,MUt)

/0.85;
257 if ( NULL != THREAD_STORAGE(t,SV_T_G) )
258 { C_UDMI(c,t,P_KT) = C_UDMI(c,t,ALPHA_T) *

NV_MAG2(C_T_G(c,t)); }
259 else
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260 {
261 Message("\nAllocated temperature gradients !\n"

);
262 MD_Alloc_Storage_Vars(d, SV_T_RG , SV_T_G ,

SV_NULL);
263 C_UDMI(c,t,P_KT) = C_UDMI(c,t,ALPHA_T) *

NV_MAG2(C_T_G(c,t));
264

265 }
266 C_UDMI(c,t,PR_T) = C_UDMI(c,t,MUt)/C_R(c,t)/

C_UDMI(c,t,ALPHA_T);
267 }
268 end_c_loop(c,t)
269 }
270 } /* end of thread_loop_c */
271

272 Message("\nInterpolation successfully executed\n");
273 } /* end of function */
274

275 /*
***************************************************************

276 ** AUXILIARY FUNCTIONS
**

277 ***************************************************************
*/

278

279 void check_uds_udm(void)
280 {
281 /* Check for minimum defined UDS and UDM */
282

283 if (n_uds < N_REQUIRED_UDS || n_udm < N_REQUIRED_UDM)
284 {
285 Message("nERROR: You must define at least %d UDS

and %d UDM\n", N_REQUIRED_UDS , N_REQUIRED_UDM);
286 Internal_Error("Not enough UDSs defined\n");
287 }
288 else
289 { Message("\nCheck completed succesfully .\ nEnough UDS

and/or UDM allocated !\n"); }
290

291 } /* end of check_uds_udm */
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Acronyms

CSP Concetrating Solar Power

HTF Heat Transfer Fluid

It is the fluid used to transfer heat. In this context it transfers the heat produced
concetrating the solar power from the receiver to the power block or the thermal
storage system.

WF Working Fluid

It is the fluid used in the power block. It goes through the thermodynamic cycle.

TSF Thermal Storage Fluid

It is the fluid used in the thermal storage system.

LCOE Levelised Cost of Energy

It is an economic indicator representing the price of electricity required for a
project where revenues would equal costs, including making a return on the
capital invested equal to the discount rate. Power plants using new renewable
technologies are competitive with traditional ones only when their LCOE are
comparable.

USC Ultrasupercritical Steam Cycles

It is a Rankine thermodynamic cycle operating at supercritical pressure.

LBE Lead-Bismut (Pb- Bi) Eutectic

It is an alloy of lead composed by 44.5wt.% Pb + 55.5wt.% Bi.

Hitec Trade name of a ternary molten salt

It is a ternary molten salt composed by 53%KNO3, 40%NaNO2, 7%NaNO3.

SOMMER SOlar Molten MEtal Receiver

Experimental facility at Karlsruhe Institute of Technology.

KALLA KArlsruhe Liquid Metal Laboratory

Team researching liquid metals heat transfer potentialities at IKET.

IKET Institute for Nuclear and Energy Technologies

Department at KIT.



Acronyms

KIT Karlsruhe Institute of Technology

UDF User Defined Functions

It is a C function that can be dynamically loaded with the ANSYS FLUENT
solver to enhance its standard features.

RANS Reynolds Averaged Navier Stokes

This acronym is used to identify the time averaged form of the conservation
equations (see Eq. 2.16, 2.17, 2.18)

AKN Abe Kondoh Nagano

K. Abe, T. Kondoh and Y. Nagano are the authors of the AKN turbulence model
(Ref. [22], [28])

DNS Direct Numerical Simulation

is a simulation in computational fluid dynamics in which the conservation equa-
tions are numerically solved without any turbulence model. This means that the
whole range of spatial and temporal scales of the turbulence must be resolved.

CFD Computational Fluid Dynamic
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