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Abstract

An accurate modelling of icing phenomena is fundamental in aeronautical applications for
both aircraft design and for the in-flight safety. During the past years, a number of icing
models have been developed in order to perform accurate icing simulations to reduce the
costs of wind tunnel testing. Unfortunately, in-flight icing modeling still presents some
limitations. In the present work, a new unsteady model based on the exact unsteady
solution of the Stefan problem is derived for the first time to assess the influence of the
unsteadyness of the temperature profile within the ice layer on ice accretion. A local
correction to the air temperature is also included to account for the dependence of the
outer (air) temperature on the flow field. A novel mesh deformation procedure was also
developed and implemented in the PoliMIce suite, which is based on the Shepard inter-
polation method. Numerical simulations of two-dimensional airfoil in icing conditions
were carried out to assess the correctness of the new model and its behavior in rime
and glaze ice conditions. Numerical simulations relied upon the open-source OpenFOAM
suite for the computation of the aerodynamic flow field and of the droplet trajectories.
Simulations performed in Ch. 5 showed that the contributions of the unsteady terms is
not significant in the considered cases, apart from an initial transitory. In this lapse, the
derivative of the temperature at the wall is higher than the one calculated by the Myers
model. This behavior is possibly important in the design of an anti-icing system for the
evaluation of the heat flux to apply at the wall. On the other hand, the introduction
of the local temperature gives more accurate results in the ice shape prediction. In the
rime ice case, the occurrence of the characteristic horn structures is observed and the ice
thickness at the stagnation point is found to be closer to the experimental one.

Keywords: ice, icing models, Myers, Stefan problem, exact solution, unsteady prob-
lem, similarity solution, mesh deformation, Shepard, PoliMIce, OpenFOAM.
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Sommario

Un’accurata modellazione dei fenomeni di formazione di ghiaccio in applicazioni aero-
nautiche è di fondamentale importanza sia per la progettazione di nuovi aeromobili, sia
per garantirne la sicurezza in volo. Durante gli anni passati sono stati proposti modelli
di previsione del ghiaccio sempre più accurati ma che mostrano tutt’ora alcune limita-
zioni. In questo lavoro di tesi viene proposto e discusso un nuovo modello di previsione
della formazione del ghiaccio basato sulla soluzione esatta instazionaria del problema di
Stefan per mezzo di un approccio in similitudine. A differenza dei modelli già esistenti
in cui gli scambi termici sono calcolati usando il valore di temperatura all’infinito a mon-
te, in questo lavoro, anche per le simulazioni incomprimibili, viene definito e ricostruito
il campo di temperatura locale vicino alla parete utilizzando le relazioni isoentropiche.
Viene inoltre sviluppato e implementato un nuovo deformatore di griglia per il software
PoliMIce basato sull’algoritmo di interpolazione di Shepard.

I casi test presi come riferimento nel Ch. 5 per verificare le novità proposte sono
stati scelti in modo da comprendere sia situazioni dominate dal ghiaccio rime, che si-
tuazioni dominate dal ghiaccio glaze. I risultati, ottenuti mediante il software PoliMIce
accoppiato al solutore aerodinamico OpenFOAM, mostrano come il rilassamento del vincolo
di stazionarietà non porti a sostanziali benefici per quanto riguarda la forma finale del
ghiaccio ma interessi solamente il transitorio iniziale. In questa fase si mostra come la
derivata della temperatura a parete sia maggiore della stessa calcolata con l’altro modello
di riferimento (modello di Myers); ciò può essere interessante da tenere in considerazio-
ne durante la progettazione di un sistema antighiaccio basato sul riscaldamento della
parete. Ulteriori studi sono necessari per definire le condizioni in cui questa differenza
diventa rilevante. D’altra parte, l’utilizzo del campo di temperatura locale unitamen-
te alla modellazione del flusso di acqua superficiale, mostra un notevole miglioramento
nella previsione della forma finale assunta dal ghiaccio. Nel caso di accrescimento rime
si mostra come questa modifica comporti la comparsa di formazioni a “corna” e di uno
spessore di ghiaccio al punto di ristagno più vicino al valore misurato sperimentalmente.

Keywords: ghiaccio, modello di accrescimento, Myers, problema di Stefan, soluzione
esatta, problema instazionario, soluzione di similarità, deformazione di griglia, Shepard,
PoliMIce, OpenFOAM.
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Chapter 1

Introduction

Icing phenomenon plays a critical role in aircraft design and in aviation safety research
programs.

Indeed, several reports and statistical analyses (see [12], [13], [14]) have shown how
every year a non-negligible number of in-flight accidents occurs due to icing problems.
Fortunately not every accident involves life loss, but some cases have been very catas-
trophic. For example, two of the most recent and tragic cases has been the crash of the
American Eagle Flight 4184 in 1994 (68 deaths) [15] and the crash of the COMAIR Flight
3272 in 1997 (29 deaths) [16]. In the first accident an unexpected ice accretion over a
wing caused a problem to the movement of an aileron and the consequent loss of control
of the plane. In the second case a thin rough ice accretion over the lifting surfaces lead
to a loss of control during the landing phase. In Fig. 1.1 some statistics about accidents
caused by icing are shown to provide an indication of the icing risks.

In addition to these safety issues, industries are interested in icing research for eco-
nomical reasons. For example, the increase of drag due to structural icing is reflected in
an increase of fuel consumption and so, in costs.

For these reasons, since the 1940s several experiments have been performed to inves-
tigate the physics of structural icing and its effects on the aircraft parts (wings, probes,
propellers, etc) in order to develop more effective anti-icing systems and to identify the
most critical conditions during the flight. At the same time, the first theoretical ap-
proaches to the phenomenon were suggested by Hardy (1946) [17], Langmuir & Blodgett
(1946) [18] and Messinger (1953) [7] who proposed the first, and still in use, model to
describe the ice accretion over aircraft surfaces.

In the following years many research structures such as the NACA (now NASA),
the Royal Aerospace Establishment (RAE), the Defence Evaluation and Research Agency
(DERA), the Office National d’Etudes et de Recherches Aérospatiales (ONERA), the
Centro Italiano Ricerca Aerospaziale (CIRA) and many others from different countries
contributed to the creation of a wide database of experimental results and the develop-
ment of various icing prediction codes.

The aim of the ice accretion codes are diverse and nowadays they represent a funda-
mental tool in aircraft design. They can be used to predict the ice shapes, to investigate

1



2 CHAPTER 1. INTRODUCTION

Total weather accidents Leading factors in icing accidents

All weather
(2842)

88%

Icing
(388)

12%

Structural icing
(153)

40%

Ground accumulation
(32)

8%

Induction icing
(203)

52%

Figure 1.1: A statistical overview of icing accidents.
Data are collected from a sample of 3230 accidents occurred between

the years 1990-2000. Data are taken from Ref. [1].

the performance degradation of the lifting surfaces and to help the design of the anti-
icing prevention systems. These numerical analyses have also and important role in the
reduction of the number of preliminary tests in wind tunnel and so in the reduction of
the preliminary design costs. A very reliable software can substitute a certain number of
expensive tests in wind tunnel: icing tests require special wind tunnels that can operate
at low temperatures, so their costs are much more than usual aeronautical wind tunnels.

1.1 Fundamentals of ice accretion

In this section it is proposed a brief explanation of the physics of ice accretion and an
overview of the different types of ice that can occur in aeronautical applications. The
attention is mainly focused on the parameters governing the phenomenon and on the
atmospheric conditions that can facilitate the appearance of the ice.

1.1.1 Parameters governing the ice accretion

Ice accretion happens when a plane flies through a cloud containing supercooled water.
Water droplets in supercooled state are particular because they have a temperature at
or below 273 K (0 °C) but they still remain liquid. When these droplets impact over a
cold surface their unstable state of equilibrium is broken and they quickly freeze on it.

The rate at which the ice grows depends on different parameters. The most relevant
ones are: the Liquid Water Content (LWC), the collection efficiency (and so the shape),
the droplet size (MVD), the airspeed, the surface roughness and of course the outside air
temperature.
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Liquid Water Content (LWC )

The Liquid Water Content (LWC) represents the density of the supercooled liquid water
contained in the cloud and it is expressed in grams of water per cubic meters of air [g/m3].
The amount of water in the cloud straightly affects the ice accretion rate but not always
high values of LWC correspond to high values of accretion rate. That’s because if the
temperature is not low enough, the collected water tends to accumulate and flow away
before freezing completely.

Typical values of LWC are between 0.2 and 1.5 g/m3 depending on the type of cloud
(see tab. 1.1).

Cloud type LWC [g/m3]

Fog 0.06
Stratus 0.28 ÷ 0.3

Stratocumulus 0.44
Cirrus 0.06

Cumulus 0.25 ÷ 0.3
Cumulonimbus 1.00 ÷ 3.0

Stratus 0.30

Table 1.1: Typical values of LWC in different cloud types taken from Ref. [10].

Mean Volume Diameter (MVD)

The Mean Volume Diameter (MVD) is a statistical value representing the mean diam-
eter of the droplets carried by the cloud (usually measured in µm). MVD is strongly
dependant on the air temperature: small droplets are typical of low temperature clouds,
instead large droplets appear in warmer clouds. As the temperature decreases, droplets
have to reduce their radius to reduce their surface and minimize the heat exchange with
the surrounding air. In atmosphere, water can stay in supercooled state until maximum
233 K (-40 °C).

The dimensions of the droplets affects foremost the impact limits and the way the
surface collect the water from the cloud. Large droplets have a large mass and a large
inertia, so they tend to follow a straight trajectory and not to follow the streamlines
around the body. On the other hand small droplets are more sensitive to the irregular
shapes of the body (horns, spikes, high curvatures in general).

Typical values of MVD are between 15 and 40 µm. Droplets with higher values
are called Supercooled Large Droplets (SLD) and they are characteristic of the freezing
rain. SLD is a very critical condition for flight because the resulting ice is highly spread
along the surfaces affecting the whole pressure field and the ice accretion is very rapid
(even if the outside air temperature is slightly below 0 °C). An example of this kind of
ice accretion is shown in Fig. 1.2. The aforementioned incident of the American Eagle



4 CHAPTER 1. INTRODUCTION

Flight 4184 occurred in SLD conditions during a freezing rain because the ice suddenly
froze the ailerons movements [15].

Figure 1.2: An example of the effects of the freezing rain over a wing. The ice
covers the entire surface of the wing. Image taken from Ref. [2].

Collection efficiency (β)

The collection efficiency is one of the most important parameter in ice accretion because
it is strictly related to the accretion rate. It represents the distribution of the water
collected by the surface from the cloud and can be an index of how much surface will be
affected by the ice accretion. It is defined as the ratio between the area far upstream and
the area on the surface enclosed by the same droplet impact trajectories. It is a local
value and, according to Fig.1.3, on a three-dimensional geometry it can be expressed as:

β =
dA∞
dAi

(1.1)

Typical values of the collection efficiency are between 0 (clean surface) and 0.8 (stag-
nation points) where high values of β are related to high values of the ice-accretion rate.
The collection efficiency is heavily affected by several parameter like the chord length,
the airspeed, the MVD and the air temperature. For example, airfoils with small leading
edge radius or high values of MVD are related to high value of the collection efficiency.
An overview of these behaviours can be seen in Fig. 1.4.

Airspeed (V )

Airspeed affects many aspects of the ice-accretion process. First of all it is involved in
the droplet collection, high velocities let the surface intercept more air and so a potential
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Aircraft icing 2893

dAi

droplet flux tube
dA ¥

Figure 9. De¯nition of the local catch e± ciency on a three-dimensional geometry,
 = dA1 =dAi .

Tan (1991) for Rolls-Royce plc (UK), who, in turn, have developed an advanced code
(T. R. Kingston 1996, unpublished work).

(g) Example results

In view of the potentially vast number of cases that could be analysed, this sec-
tion provides only a brief selection of data, su¯ cient to give the reader a broad
understanding of the important parameters.

(i) Parametric results

By way of example, the DERA code TRAJICE2 has been run to illustrate the
e¬ects of key parameters on the collection e¯ ciency distribution. Additional results
are presented by Gent (1984, 1994b), while a comparison of results against other
droplet trajectory codes may be found in Bidwell & Mohler (1995). The results in
 gure 10 show the e¬ect of aerofoil chord, droplet size, airspeed, temperature and
altitude on the amount of water intercepted for conditions similar to the wing of a
turboprop aircraft. The wing incidence was taken to be 4¯.

It will be seen that aerofoil chord and droplet size have a marked e¬ect on water
catch, whereas airspeed, once above a certain threshold, altitude and temperature
have a much smaller e¬ect.

(ii) Accuracy checks

Examples of the accuracy that may be achieved from a two-dimensional trajectory
analysis code may be found in Gent (1994b) and Gent et al . (1993). An example of
a relatively close agreement is shown in  gure 11. This shows a comparison between
predicted results obtained by Gent (1994b) and results measured by NASA from
experimental tests conducted in the 1950s. The results show that a single calculation
based on the VMD is likely to provide a reasonably accurate indication of the total
mass of water impacting on the surface. However, accurate estimates for the limits
of droplet impingement require the actual spectrum of droplets to be analysed.

Examples of the accuracy of a three-dimensional calculation may be found in
Dart (1995) and particularly in Bidwell & Mohler (1995), which shows an extensive
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Figure 1.3: Definition of the local collection efficiency over a three-dimensional
surface. Figure taken from Ref. [3].

greater mass of water. This may increases the ice accretion rate. On the other side, the
airspeed is also responsible of an aerodynamic heating term due to friction effects and of
the wall shear stress that drive away the surface water.

Air temperature and Surface temperature

Icing process is controlled by the heat exchanges between the impinging supercooled
droplets, the ice already developed, the aircraft surface and the atmosphere. The outside
air temperature governs the amount of the heat exchanged between the water layer and
the outside atmosphere: the lower the outside temperature, the higher the heat exchange
ratio and the fastest the ice accretion process. Air temperature influences also the droplet
size (MVD), clouds with lower temperature contain droplets with smaller radius.

The control of the surface temperature is one of the most used methods to prevent or
delay the ice accretion. It is important to note that the process is however governed by
the heat fluxes so, if the heat flux imposed at the surface is not sufficient to balance the
heat lost by convection and evaporation on the superficial water, the surface temperature
can be lead to the freezing point and the icing process can occur anyway.

Surface roughness (k)

The surface roughness (k) is a very difficult parameter to be measured. It is usually
expressed in term of equivalent sand grain roughness (µm) and it is a very sensitive
parameter in the computation of the convective heat transfer coefficient (hc). Its value
fixes the transition point between the laminar and the turbulent boundary layer and so it
sets a different law for the hc calculation on different portion of the surface. A turbulent
boundary layer has generally a greater values of the hc because of its higher grade of
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Figure 10. Illustration of the e® ect of the key parameters ((a) aerofoil chord, (b) airspeed, (c)
droplet diameter, (d) altitude and OAT) on water collection e± ciency.

range of comparisons for the NASA three-dimensional code. An example of a three-
dimensional catch is shown in  gure 12, which is taken from Dart (1995). This is a
comparison against the experimental data reported in Bidwell & Mohler (1995) for
a 30¯ swept NACA 0012 section wing.

(h) Limitations and future research required

The codes available for steady two-dimensional ®ow appear to be well validated
against experimental data, although care still needs to be exercised when applying
them. For instance, a calculation based on VMD only is unlikely to give an accurate
indication of the limits of droplet impingement which are determined by the larger
droplets contained within the cloud spectrum. Accurate impact limit calculations
therefore require knowledge of the droplet spectrum. Also, for large chord wings and
bodies, it may again provide inaccurate results if droplet trajectory calculations are
based on VMD rather than individual droplet sizes. Fortunately, the civil certi cation
requirements prescribe the droplet diameter range to be investigated.
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Figure 1.4: Effects of the key parameters on the collection efficiency: (a) Airfoil
chord, (b) Airspeed, (c) MVD, (d) Altitude (outside air temperature). Figure

taken from Ref. [3].

internal mixing. A more complete analysis of icing roughness modelling can be found in
[19].

1.1.2 Types of aeronautical ice accretions

Ice accretion process can lead to different kinds of ice formations with different ice pro-
prieties and behaviours depending on the external weather conditions. The three main
categories of aeronautical ice accretion are: rime ice, glaze (or clear) ice and mixed ice.
At the end of the section, the weather conditions for these different types of ice accretion
are summarized in Tab. 1.2.

Ice accretion process is generally subdivided in two phases: a first period of rime-ice
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accretion followed by the glaze-ice accretion [11]. The duration of the rime and glaze
phases depends on the weather conditions, for example at temperatures near the 273 K
(0 °C) the glaze phase appears almost immediately, otherwise in very cold situations the
rime phase lasts for long time.

Rime ice

Rime ice is the ice accretion with the milky opaque aspect (see Fig. 1.5). It forms in
conditions of low temperature (below 263 K, -10 °C), low LWC values, small MVD, and
low velocities. It is the result of a very rapid (almost instantaneous) freezing of the
collected water which traps inside some bubbles of air. These bubbles give the rime ice
its typical opaque aspect.
Rime ice is generally very rough and porous due to the air bubbles and forms accretions
with smooth shapes interesting the leading edge of the wings. Its density is lower than
the glaze ice (around 880 g/m3 for rime ice against 920 g/m3 for glaze ice) and it is easier
to be removed by the de-icing systems due to its friability.

Figure 1.5: An example of rime-ice accretion. Image taken from Ref. [4].

Glaze ice

Glaze ice, also called clear ice, is the ice accretion with the clear and translucent aspect
(see Fig. 1.6). It forms at high velocities, warmer temperatures (near 273 K, 0 °C) and
in clouds with high values of LWC. In glaze-ice accretion process the surface is always
covered by a thin film of unfrozen water that is driven back by the wall shear stresses
before completely freeze. This aft solidification lead to the formation of horns in the
vicinity of the leading edge that can protrude widely toward the direction of motion.
Glaze ice is denser and harder than the rime ice and it is more difficult to be broken by
the de-icing systems. In this category can be included also the freezing rain.
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Figure 1.6: An example of glaze-ice accretion. Image taken from Ref. [5].

Mixed ice

Mixed ice is the transitional state between the rime and the glaze ice. It forms at
temperature between 258 K and 265 K and has intermediate characteristics between the
rime and the glaze ice.

Ice type Air Temp. [K] LWC MVD Velocity
Rime < 263 low low low
Mixed 258 ÷ 265 medium medium medium
Clear 263 ÷ 273 high high high

Table 1.2: Summary of the whether conditions and the related common ice
accretion typologies.

1.2 In-flight icing risks and protection systems

Icing effects over an aircraft may be very different; they can affect the performances,
reduce the functionalities of the on-board systems and preclude the safety.
Regarding the loss of the aerodynamic performance many studies showed a reduction
of the maximum lift and an incredible increase in the drag (i.e. see Fig. 1.7). The
unexpected reduction of the maximum lifting coefficient is reflected by an increase of
the stall speed which in some situations, like during the landing phase, can be very
hazardous. For example, as reported by an AGARD report of the 1997, a 35% loss in
maximum lift is related to a 24% increase of the stall speed (see Fig. 1.7 from [3]).
On the other side the increase of the drag affects significantly the efficiency of the wing
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and of the entire aircraft: it is not unusual that the drag coefficient increases more than
the 200% [3]. Beyond the economical effects, these aerodynamic limitations affects also
the manoeuvrability of the plane, for example the performance degradation of the tail
surfaces can modify the pitch response of the aircraft.

(a) CL degradation (b) CD degradation

Figure 1.7: Aerodynamic performance degradation due to ice accretion.
Figures taken from Ref. [3].

Other problems caused by icing regard the blockage of the moving surfaces, like the
ailerons, the obstruction of the engine intake or the carburetor inlets, and the occlusion
of the aircraft probes, such as for example the Pitot tube. In all these cases in-flight
safety can be compromised.
For aircraft with piston-engines the ice accretion in the carburetor lead to a reduction of
the intake air and a consequent drop in the engine power. To avoid this problem, there
are specific charts showing the critical atmospheric conditions for the carburetor in use.
In the same way, for turbojet and turbofan engines, ice formation over the intake reduces
the amount of the captured air and the detachment of the ice accreted over the initial
stages of the compressor may possibly lead to the damage of some rotor or stator blades.
Regarding the probes, the Pitot tube is particularly vulnerable because of its very small
curvature radius and small pressure taps; its obstruction may alter the measure of the
flight speed.

In order to delay or prevent ice formation or to remove the accreted ice, different
systems and methods have been developed. The two main categories of ice protection
systems are the de-icing systems and the anti-icing systems:
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De-icing systems are activated during the flight and are used to break the ice already
accreted. To this category belong for example pneumatic systems that break the ice
deforming specific parts of the surface (i.e. the leading edge). These deformable parts
are usually made by strong rubber. An example of a pneumatic anti-icing system is
shown in Fig. 1.8.

Figure 1.8: Example of a pneumatic de-icing system.
Images taken from Ref. [1].

Anti-icing systems concern the prevention and the delay of the ice formation. To
this category belong systems that heat-up the surface of the wing and chemicals or foams
that delay the ice accretion. Foams and chemicals are applied on ground before the flight
over the surfaces to protect. These substances, like the glycol, are usually sprayed and
have the function to lower the freezing point of water or to create a layer on which the
ice slip away. On the other hand, the heating systems are activated during the flight and
their activation may lead to the formation of the so-called “runback-ice”; a kind of ice
derived from the melted ice that flows away and re-freezes afterwards. For this reason it
is very important to determine the right moment to activate the protection systems. An
example of the application of the chemicals is shown in Fig. 1.9.

An extensive overview of anti-icing and de-icing systems can be found in reference [20].

1.3 Icing Models

Starting from the fundamental formulations proposed by F. Neumann, B.P. Clapeyron
and G. Lamé, among others, J. Stefan in 1889 gave the first mathematical description of
the liquid water-ice two-phase problem, in connection with ice formation in the polar sea
[21]. Moving from these early works, the so-called Stefan problem was then generalized to
describe many different physical systems where phase change can possibly occur, such as
for example chemical processes and melting/solidification in industrial metal processes.

The two most used aeronautical icing models have been developed by Messinger in
1953 [7] and by Myers in 2001 [11]. Messinger’s model was the first aeronautical icing
model and it is based on an equation enforcing the equilibrium of the heat fluxes at
the surface, whereas Myers presented an extension of the Messinger model based on a
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Figure 1.9: Example of the application of the anti-icing chemicals.
Image taken from Ref. [6].

simplified formulation of the Stefan problem. The model formulated by Myers introduce
a more accurate description of the transition from rime to glaze-ice regime and, differently
from the Messinger model, in which the substrate is assumed to be isolated, Myers added
a description of the heat diffusion problem through the ice and the water layers in order
to account for the heat transfer at the aircraft surface [11]. During the last years these
two icing models have been slightly modified and improved with the introduction of a
more accurate description of the liquid film behaviour [22], [23], more accurate methods
for the computation of the convective heat transfer [19], and a more suitable treatment
of the run-back ice [19], [24]. Nowadays these models remains the basis of the icing
prediction codes.

1.4 Numerical and experimental researches

From the 1960s, with the rapid improvements in computer development, the numerical
simulation became more and more influential in aircraft design. The first computers
could only afford to solve potential flow simulation, but nowadays a desktop computer
can solve the full Navier-Stokes equations in a reasonable amount of time. During the
last years, several CFD (Computational Fluid Dynamic) codes have been developed to
simulate more and more accurately the real behaviour of fluids and the CFD has become
a fundamental tool in aerodynamic research.

In icing studies, numerical simulations are very important in the preliminary design
of the lifting surfaces and anti-icing systems. In this way it is possible to reduce the
number, and so the costs, of the preliminary tests in wind tunnel. They can provide a
preliminary idea of the performance degradation, they can be used to obtain the most
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critical ice shape that can occur during a flight of the plane and they can facilitate the
design of the anti-icing systems.

1.5 Goals and structure of the thesis

The aim of the present work is to develop a new icing model based on the unsteady
exact solution of the Stefan problem in the glaze ice regime. The present manuscript is
organised as follows.

In Ch. 1 the physical description of the problem was introduced, the most important
parameters governing the ice accretion were presented and the different types of ice that
can occur in aeronautical applications were analysed.

In Ch. 2 the quasi-steady models describing the icing problem are presented. The
attention is mainly focused on the hypothesis used to develop these models. In § 2.1 the
first model developed by Messinger is briefly described, then in the following sections
the models based on the Stefan problem are presented. The Stefan problem concern the
phase-change problems and it is the base of the Myers model ad its modified version
shown in § 2.2.2 and §. 2.2.3.

In Ch. 3 the novel unsteady icing model is presented. The quasi-steady hypothesis is
relaxed in the glaze-ice regime and the exact solution of the Stefan problem is deduced
using a similarity approach. In § 3.3 some comparisons between the quasi-steady and
the unsteady model are discussed.

In Ch. 4 the importance of the use of the local temperature near the body instead of
the upstream static temperature is discussed with some comparisons.

In Ch. 5 the icing code PoliMIce is briefly introduced and the new model is applied in
different atmospheric conditions in order to show the behaviour of the new improvements
introduced in Ch. 3 and Ch. 4.



Chapter 2

Quasi-steady ice accretion models

In this chapter the state of the art of icing models is presented. The attention is mainly
focused on their approximation hypothesis and inconsistencies in order to lay the foun-
dations for Ch. 3.

In § 2.1 the first icing model proposed by Messinger (1953) is discussed, while in §. 2.2
the most recent model proposed by Myers (2001) and later modified by Gori (2013) are
presented. These two models are both based on the approximate solution of the Stefan
problem whereas the Messinger’s consists only in a heat balance at the surface. Before
that, in § 2.2.1, the Stefan problem is briefly recalled.

2.1 Messinger model

Messinger model has been developed in 1953 by Bernard Messinger and exposed in his
paper “Equilibrium Temperature of an UnHeated Icing Surface as a Function of Air
Speed” [7]. In this work Messinger proposed an analysis of the equilibrium temperature
reached by an unheated surface in several icing conditions and with different values of
the parameters presented in § 1.1.1.

Messinger’s model is based on the energy balance between the water (or ice) layer
and the atmosphere surrounding the surface. The thermal fluxes involved in the process
are: the heat lost by convection, the heat lost by sublimation or evaporation, the heat lost
due to the warming of the impinging water, the heat gained from the release of the latent
heat of fusion, the heat gained from the viscous effects and the heat gained from the
kinetic energy of the impact of the droplets. These contributions are shown in Fig. 2.1,
are summarized in Tab. 2.1 and they will be extensively discussed in § 2.2.2.

The model is based on two main hypothesis:

- The temperature within the water and the ice layer is assumed to be constant and
equal to the equilibrium temperature.

- The substrate is insulated.

13
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A new idea in this model is the introduction of the freezing fraction, a quantity defined
as the mass of ice divided by the mass of the incoming fluid.

Figure 2.1: Scheme of the heat exchange terms involved in Messinger model.
Figure taken from Ref. [7].

A problem of the Messinger model is the assumption of the isothermal ice layer,
this lead to a freezing fraction that changes instantaneously from zero to one without
transition. According to the Stefan studies [[21]], the freezing fraction is a continuous
function that decreases monotonically. Another limitation of the model is that it doesn’t
take into account the thermal conduction through the substrate due to its insulation.
As a result of these limitations, the total ice accretion is under-estimated respect to the
experimental results.

Heat sources
Convection (q̇c)

Sublimation or Evaporation (q̇s, q̇e)
Warming of the impinging water (q̇w)

Release of the latent heat of fusion (q̇l)
Viscous effects (q̇v)
Kinetic energy (q̇k)

Table 2.1: Thermal fluxes involved in the Messinger model: heat loss are written
in red whereas heat gained in green.
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2.2 Models based on the Stefan problem

The first theoretical work on phase-change problems have been proposed by G. Lamé
and E. Clapeyron in their 1831 paper “Mémoire sur la solidification par refroidissement
d’un globe liquide” [25]. In this work the two authors were interested in the investigation
of water solidification due to liquid cooling. Few years later, in 1889, the mathematician
Joseph Stefan during his studies in ice formation in polar sea, proposed the first complete
mathematical model describing the ice accretion phenomenon [21]. This model is still
used in many problems such as the metal melting in industrial processes or the ice
formation from water cooling, and in the early years it has been improved to taking into
account multiphase processes (see for example Ref. [26]).

2.2.1 The Stefan problem

The Stefan problem is a set of four Partial Differential Equations (PDEs) describing the
evolution of a single-component two-phase system during a phase change. Its complete
solution gives the temperature distribution within the solid and the liquid layers and the
position of the interface at each time. This kind of problem belongs to the family of the
so-called moving-boundary problems because the position of the solid-liquid interface is
unknown and depends on the time and on the solution itself.

Considering the reference system in Fig. 2.2, the one-dimensional Stefan problem
reads 
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(2.1)

where the subscripted index s and l stands for the solid and the liquid phase and the z
coordinate is aligned along the normal of the surface. Typical values for the parameters
entering in equations 2.1 are reported in Tab. 2.2.

The first and the second equations of 2.1 describe the heat diffusion within the solid
and the liquid phase respectively. The third equation is the continuity equation and
enforces the mass conservation law. The source term in this equation may be for example
the mass lost by the evaporation and the mass gained from an external source. The fourth
equation is the so-called Stefan condition and it is an energy balance relating all the heat
fluxes involved in the phase change at the solid-liquid interface. It guarantees that the
latent heat due to the phase change is equal to the net flux of heat from and towards the
upper (Q̇↑up) and the lower (Q̇↓down) layers. In other words it can be interpreted as the
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Figure 2.2: Reference system for a mono-dimensional two-phases Stefan problem.

velocity of the moving boundary produced by the difference between the heat fluxes at
the interface.
In Fig. 2.3 a visual representation of Q̇↑up and Q̇↓down is given in order to help the
comprehension of the next sections.

ICE

WATER / AIR
Qup

Qdown

Figure 2.3: Representation of the Q̇↑
up and Q̇↓

down.

The two icing models that will be presented in the next two sections both introduce
a number of assumptions leading to a simplified formulation of the complete problem. In
particular the problem is transformed to a set of Ordinary Differential Equations (ODEs)
instead of PDEs. Solving this simpler system allows to obtain a closed-form solutions and
to develop procedures which are adequately simple to be implemented in icing prediction
codes.

2.2.2 Myers model

Myers model has been developed by Tim G. Myers in 2001 [11] as an extension of the
original Messinger model described in § 2.1. In its work Myers proposed a simplified solu-
tion of the one-dimensional Stefan problem in order to take into account the conduction
of the heat in the ice layer. With the introduction of some simplification, the temperature
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profile within the ice layer can be calculated instead of assuming to be a constant function
like in Messinger [7]. In this way also the freezing fraction assumes a more suitable shape.

First of all it is now recalled for ease the Stefan problem shown in Eq. 2.1 with some
adaptations for aeronautical purpose:
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The subscripted indexes are become i for the ice phase and w for the water phase and
the source term in the mass conservation law has been adapted using the parameters of
Ch. 1.1. Therefore the source term is β LWCV∞ and it represents the amount of water
collected every second from the atmosphere by the surface. Indeed, once multiplied by
the surface, this term has the dimensions of [kg/s].

The hypotheses introduced by Myers are now summarized:

- The physical properties of ice and water do not depend on the temperature

- The phase change from water to ice occurs at a fixed temperature assumes to be
the freezing temperature (273 K).

- The substrate (i.e. the wall) is maintained at a constant temperature, usually
assumed to be equal to the air temperature. This assumption is justified by the
great dimensions of the body and the high value of the thermal conductivity of its
material (usually aluminium).

- Droplets are in thermal equilibrium with the surrounding air, so their temperature
is supposed to be equal to the air temperature.

- The time scale governing the heat diffusion problem is larger than the ice accretion
time scale. This hypothesis will be verified later.

- The water layer (if present) is infinitesimal, therefore its internal temperature can
be considered approximately constant.

In his formulation, Myers derived two different accretion laws for the rime-ice and the
glaze-ice, defining a criterion based on the so-called rime limit thickness (Bg) in order
to discern whether rime or glaze ice occurs. In the following sections these two accretion
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models, are presented but firstly it is necessary to introduce the heat fluxes involved in
the process.

Heat fluxes

The heat fluxes involved in the process are now briefly explained.

Q̇c: is the convective heat flux exchanged between the ice (Q̇ci) or the water (Q̇cw)
layer and the surrounding air.

Q̇c? = hc?(T − T∞)A (2.3)

where hc? is the convective heat transfer coefficient and the ? symbol is a placeholder
standing for ice or water.

Q̇e and Q̇s: are respectively, the evaporation and the sublimation heat fluxes exchanged
between the ice (Q̇s) or the water (Q̇e) layer and the surrounding air. Both of these heat
fluxes have the same form:

Q̇e,s = χe,s [e(T )− e(T∞)] A (2.4)

χ is the evaporation (or sublimation) coefficient and e(T ) is the evaporation (or sublima-
tion) function. The e(T ) function returns the vapour pressure from the temperature and
in a certain region near the 273 K (0 °C) it can be approximated as a linear function, so

Q̇e,s = χe,s e0 (T − T∞) A (2.5)

For further informations see [11].

Q̇d: is the term that take into account the cooling provided by the incoming droplets.
This heat flux exists because the droplets that impact on the surface release their latent
heat and it is present in the energy balance only when the droplets have a temperature
different from the upstream static temperature. The Q̇d reads:

Q̇d = β LWCV∞Cw(T − Td)A (2.6)

where Td is the droplet temperature. In many cases this term is considered to be zero
because T and Td are supposed to be equal.

Q̇k: is the heat flux associated to the kinetic energy of the impacting droplets.

Q̇k =
1

2
(β LWCV∞A)V 2

∞ (2.7)

Q̇l: is the heat flux associated to the release of the latent heat of fusion or solidification.

Q̇l = ρiLF
∂B

∂t
A (2.8)
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where LF is the latent heat of fusion of the water. Its value is reported in Tab. 2.2.

Q̇a: is the heat flux associated to the aerodynamic heating. It is produced by the friction
of the air over the surface.

Q̇a =
1

2

Rc hc V
2
∞

Cpair
A (2.9)

where hc is the convective heat transfer coefficient, Rc is the adiabatic recovery factor to
take into account the compressibility of the air and Cpair is the specific heat of the air
evaluated at constant pressure.

Q̇irr: is the radiative heat flux but it is usually neglected.

Q̇irr = σ
(
T 4 − T 4

∞
)
A (2.10)

Parameters Value

Density [Kg/m3] ρiglaze 917
ρirime 800
ρw 1000

Latent heat [J/Kg] LS 2.83 · 103

LF 3.344 · 105

LE 2.26 · 106

Specific heat [J/KgK] Cpair 1014
Ci 2050
Cw 4218

Evaporation coeff. [m/s] χe 11.0
Sublimation coeff. [m/s] χs 13.77 · 10−3

Vapour pressure [Pa/K] e0 27.03

Convective coeff [W/m2K] his 1000
haw 500

Thermal conductivity [W/mK] Kw 0.571
Ki 2.18

Table 2.2: Typical values of the parameters used to calculate the heat fluxes
taken from Ref. [11].
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Rime-ice problem

As seen in Ch. 1.1, rime-ice accretion occurs with very low temperatures, low values
of the MVD and low velocities. In these conditions the collected water freezes almost
instantaneously and so the accretion scheme is only composed by the surrounding air,
the ice layer and the wall (Fig. 2.4).

ICE

z

AIR
B(t)

T(z, t)

Figure 2.4: Reference system for the rime-ice problem.

The boundary conditions for the rime-ice accretion are:
T (0,t) = Twall

−Ki
∂T

∂z

∣∣∣∣
B

=
(
Q̇ci + Q̇s + Q̇d

)
−
(
Q̇ai + Q̇k + Q̇l

)
, Q̇↑up

(2.11)

where the term Q̇↑up represents the total net amount of heat exchanged by the ice surface
with the external airflow.

The hypothesis that the ice growth rate is significantly slower than the heat con-
duction rate through the ice layer leads to a substantial simplification of the equation
system. The Fourier equation in the ice (Eq. 2.1.a) becomes a quasi-steady ODE, so

∂2T

∂z2
≈ 0 (2.12)

However, this simplification can be applied only under certain conditions. According to
Myers [11], the non-dimensional typical height of the ice layer is

B̂ ≈ Ki

(1− φ)β LWCV∞CPi
(2.13)

where φ is the fraction of water that remains liquid. In rime ice this value is zero because
the whole water freezes instantaneously. Using the coefficient values in Tab. 2.2 and
the reference values of the icing parameters in Tab. 2.3, the Eq. 2.13 gives a typical ice
thickness of B̂ ∼ 2.4 cm.
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Parameter Value
φ 0
β 0.55

LWC 0.001 g/m3

V∞ 90 m/s

Table 2.3: Reference parameter used in Eq. 2.13.

So, the aforementioned simplification can be applied until B � 2.4 cm.

Under this condition the heat diffusion equation can be approximated to the leading-
order quasi-steady problem. The temperature profile within the ice layer can be retrieved
by integrating twice Eq. 2.12 with the proper boundary conditions 2.11. This leads to a
linear temperature profile within the ice layer which results in the following expression:

T (z) = Twall +
Q̇ai + Q̇k + Q̇l −

(
Q̇ci + Q̇d + Q̇s

)
A

(
Ki +

B

A (Twall − T∞)

(
Q̇ci + Q̇d + Q̇s

)) z (2.14)

It can be further simplified in

T (z) ≈ Twall +
Q̇ai + Q̇k + Q̇l −

(
Q̇ci + Q̇d + Q̇s

)
AKi

z (2.15)

because the second term at the denominator is usually very much smaller than Ki.

The accretion rate in the rime-ice condition can be immediately derived from the
mass conservation law (Eq. 2.1.d) because the water height h(t) is null and so also its
first derivative is zero. Therefore

∂B

∂t
=
β LWCV∞

ρi
(2.16)

The ice thickness B(t) is obtained by the integration of Eq. 2.16 with the initial condition
B(x,0) = 0. This leads to:

B(t) =

∫ t

0

β LWCV∞
ρi

dt =
β LWCV∞

ρi
t (2.17)

In rime-ice condition it can be observed that the accretion rate ∂B/∂t is constant in time
and so the ice thickness B(t) is a linear function of time.
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Glaze-ice problem

Glaze-ice accretion occurs when the entire amount of the collected water does not freezes
and a certain quantity flows along the surface or the underlying ice. In this condition
the surface is always covered by a thin film of unfrozen water and the reference system
is the one in Fig. 2.5.

ICE

WATER

z
AIR

B(t)+h(t)

B(t)

T(z, t)

ϑ(z, t)

Figure 2.5: Reference system for the glaze-ice problem.

The boundary conditions have to be split in two part. In the water layer they are:
T (0,t) = Tfreezing

−Ki
∂T

∂z

∣∣∣∣
B

=
(
Q̇ci + Q̇e + Q̇d

)
−
(
Q̇ai + Q̇k

)
, Q̇↑up

(2.18)

while in the ice layer they are two Dirichlet conditions:T (0,t) = Twall,

T (B,t) = Tfreezing.
(2.19)

The second equation is justified by the hypothesis that the phase transition occurs at
constant temperature equal to the freezing temperature Tfreezing.

The time scale separation argument addressed in the previous section can be also applied
in the glaze-ice regime in the water layer. In a non-dimensional form and using the same
parameters of the previous section (Tab. 2.2 and Tab. 2.3), the typical maximum water
height can be expressed as follows:

ĥ ≈ Kw

φβ LWCV∞Cw
∼ 0.003m (2.20)

The only parameter that changes respect Eq. 2.13 is the value of φ. Indeed, in the water
layer φ > 0 and the maximum height is reached when the entire water remain liquid, so
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when φ = 1. In aeronautical applications the typical height of the liquid film is of the
order of 1/10mm, so the condition h� 3mm is verified almost everywhere on the surface
and the heat equation in the water layer can be simplified in the quasi-steady ODE

∂2ϑ

∂z2
≈ 0. (2.21)

Integrating twice Eq. 2.21 the resulting function ϑ(z) is a linear function in z and observing
that the leading order term at the denominator is Kw, it can be further simplified

ϑ(z) = Tfreezing +
Q̇ai + Q̇k −

(
Q̇ci + Q̇d + Q̇e

)
A

(
Kw +

h

A (Tsurface − T∞)

(
Q̇ci + Q̇d + Q̇e

)) (z −B) ≈

≈ Tfreezing +
Q̇ai + Q̇k −

(
Q̇ci + Q̇d + Q̇e

)
AKw

(z −B)

(2.22)

Even if this function is formally linear in z, the temperature can be considered constant
and equal to the freezing temperature because of the very small variation across the ice
layer due to the very thin water height assumption.

ϑ(z) ≈ Tfreezing (2.23)

However the exact form of Eq. 2.22 is important in the evaluation of the ∂ϑ/∂z derivative
in the Stefan condition (Eq. 2.1.d). An important consequence of the isothermal hypoth-
esis in the water layer is that the heat fluxes can be calculated using Tfreezing instead of
the unknown temperature at the free water surface Tsurface.

In the ice layer the simplification to the quasi-steady ODE is still valid, so

∂2T

∂z2
≈ 0 (2.24)

can be integrated twice with the boundary conditions Eq. 2.19 to obtain the temperature
profile T (z):

T (z) = Twall +
Tfreezing − Twall

B
z (2.25)

In order to obtain the glaze-ice accretion rate it is necessary to use the Stefan condition
here recalled

ρLF
∂B

∂t
= −Kw

∂ϑ

∂z

∣∣∣∣
B(t)+

+Ki
∂T

∂z

∣∣∣∣
B(t)−

. (2.26)

Once derived Eq. 2.15 and Eq. 2.22 and substituted in the Stefan condition, the accretion
rate is deduced to be:

∂B

∂t
=

1

ρiglazeLf

Q̇ci + Q̇d + Q̇e −
(
Q̇ai + Q̇k

)
A

+Ki
Tfreezing − Twall

B

 =

=
1

ρiglazeLf

(
Q̇↑up

A
+Ki

Tfreezing − Twall

B

) (2.27)
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Rime-ice limit thickness

In his formulation Myers introduced the idea of an ice limit thickness in order do define
the transition between the rime-ice and the glaze-ice accretion. The rime-ice limit thick-
ness, namely Bg, is defined as the thickness at which the glaze condition first appear,
therefore it is the first instant at which the water begin to accumulate on the surface.
From this point on, the phenomenon is described by the glaze-ice equations.

The rime-ice limit thickness is calculated using the Stefan condition (Eq. 2.2.d) and
the mass conservation law (Eq. 2.2.c) in which the water height is set to zero. Once the
ice growth rate ∂B/∂t is obtained from the mass conservation law (Eq. 2.2.c) and it is
substituted in the Stefan condition (Eq. 3.13), the resulting ice limit thickness is

Bg =
AKi (Tfreezing − Twall)

ALfβ LWCV∞ − Q̇↑up
. (2.28)

Myers proposed to compare the ice at each time with this ice limit thickness and to
use the rime or the glaze-ice accretion law depending on the cases:

• B < Bg or Bg < 0: the rime accretion law is used,

• B > Bg: the glaze accretion law is used.

This approach leads to a smooth freezing fraction function that decreases monotonically
in time similarly to the Stefan predicted one in Ref. [21].

2.2.3 Modified Myers model

In the Master Thesis developed here at Politecnico di Milano by Garabelli and Gori in
2013 [27], a modified version of the Myers’ model has been proposed. The modifications
concern either the rime and the glaze ice condition. In the first one it is modified the
mass conservation law in order to take into account the water that can flow from a neigh-
bouring glaze cell, instead in the second one, it is proposed a new temperature profile
within the ice layer. The result of these modification is reflected in a new equation for
the rime-ice limit thickness Bg.

This new modified model is however based on the same hypothesis introduced by
Myers shown in § 2.2.2.

Rime-ice problem

Sometimes a rime cell can collect water not only from the impinging water droplets but
also from the liquid film coming from a glaze region of the surface (Fig. 2.6). This
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condition is not included in the Myers’ model and lead to a modification of the mass
conservation law which now reads:

Aρi
∂B

∂t
+Aρw

∂h

∂t
= ṁd + ṁw

in − ṁw
out − ṁs (2.29)

The ṁw
? terms represent the mass flux of the water flowing over the surface: the sub-

scripted index in stands for the mass entering in the control domain, instead out stands
for the mass leaving the domain. Fig. 2.6 shows the scheme used in the mass balance
Eq. 2.29.

Figure 2.6: Mass balance scheme of a rime cell (i) situated near a glaze one (i-1 ).

Considering that:

- Over the surface characterized by the rime ice, the ṁw
out is zero and

- ∂h
∂t is zero because, from hypothesis, when the liquid film is present it is maintained
at a constant height of 1/10 mm,

Eq. 2.29 can be manipulated to obtain the rime-ice accretion rate:

∂B

∂t
=

[
ṁd + ṁw

in − ṁs

Aρi

]
=

=

[
β LWCV∞ + ṁw

in − Q̇s/Ls

Aρi

] (2.30)

Integrating Eq. 2.30 with the initial condition of B(0) = 0, the ice thickness equation
reads

B(t) =

∫ t

0

[
β LWCV∞ + ṁw

in − Q̇s/Ls

Aρi

]
dt =

=

[
β LWCV∞ + ṁw

in − Q̇s/Ls

Aρi

]
t

(2.31)
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Glaze-ice problem

In the glaze-ice condition, this model introduces a modification in the temperature dis-
tribution within the ice layer. The reason for this modification is to better respect the
hypothesis of the high thermal conductivity of the wall.
The new temperature function is chosen in order to have:

• T (0) = Twall

• T (B) = Tfreezing

• ∂T
∂z

∣∣
0
→ +∞ : at the wall the thermal flux tend to infinity due to the high thermal

conductivity of the wall.

The third condition is guaranteed by the use of a function like this:

T (z) = a
√
z + b (2.32)

where a and b are two coefficients defined by the imposition of the first and the second
constrain. This lead to the following temperature profile:

T (z) = Twall +
(Tfreezing − Twall)√

B

√
z (2.33)

instead of the Myers linear one

T (z) = Twall +
(Tfreezing − Twall)

B
z (2.34)

In Fig. 2.7 it is shown the qualitative difference between the two profiles. It can be
observed that the new profile reaches the water-ice interface with a smaller value of the
∂T/∂z derivative and this fact will influence the glaze rate accretion because of the Stefan
condition. In particular the growth rate is expected to be less than Myers’ one.

The analytical derivative at the interface is indeed equal to the half of the same
derivative calculate with the linear temperature profile

∂T

∂z

∣∣∣∣
B

=
(Tfreezing − Twall)

2B
(2.35)

Following the same procedure used in the previous section, the resulting glaze-ice accre-
tion rate calculated with the new temperature profile is

∂B

∂t
=

1

ρiglazeLF


(
Q̇c + Q̇e + Q̇d − Q̇k − Q̇a

)
A

+ ki
(Tfreezing − Twall)

2B

 =

=
1

ρiglazeLF

[
Q̇↑up
A

+ ki
(Tfreezing − Twall)

2B

] (2.36)
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Figure 2.7: Qualitative representation of the linear temperature profile (dashed
line) and the modified quadratic profile (continuous line) within the ice layer in

glaze conditions.

As stated before, this modification predicts low values of the accretion rate because the
second term, the one from Eq. 2.35, is the half of the corresponding Myers term in
Eq. 2.27.

Rime limit thickness

The rime limit thickness is obtained substituting the equation of the mass conservation
law with the ∂h/∂z derivative set to zero, into the Stefan condition. These two equations
are here recalled: 

Aρi
∂B

∂t
+
�
�
�
�

Aρw
∂h

∂t
= ṁd + ṁw

in − ṁw
out − ṁs

ρLF
∂B

∂t
= −Kw

∂ϑ

∂z

∣∣∣∣
B(t)+

+Ki
∂T

∂z

∣∣∣∣
B(t)−

(2.37)

Introducing the aeronautical parameters and the temperature derivative ∂ϑ/∂z and elim-
inating the term ṁw

out, the resulting system is
Aρi

∂B

∂t
= Aβ LWCV∞ + ṁw

in − ṁs

ρiLF
∂B

∂t
=
Q̇↑up
A

+Ki
∂T

∂z

(2.38)
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After some manipulation and the introduction of Eq. 2.35, the rime limit thickness is

Bg =
AKi (Tfreezing − Twall)

2
[
LF
(
β LWCV∞A+ ṁw

in − Q̇s/Ls
)
− Q̇↑up

] (2.39)

This modified model predict a Bg that is the half of the one predicted by the original
model. In this way the glaze ice condition is reached earlier and the resulting ice thickness
at the end of the process is less than in the Myers model. Fig. 2.8 shows the difference
between the Bg calculated with the original and the modified model. In addition, the
corresponding collection efficiency distribution is reported.

Original Myers
Modified Myers

Figure 2.8: Comparison between the rime limit thickness calculated with the
Myers’ model and the modified model.

The assumption of a parabolic dependency on the normal coordinate to the surface is
inconsistent with the temperature profile assumed in § 2.2.3. The temperature function
does not respect the Fourier equation in the ice layer

∂2T

∂z2
≈ 0 (2.40)
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The second derivative of T (z) = Twall +
(Tfreezing−Twall)√

B

√
z is indeed

∂2T

∂z2
=

1

4

(Tfreezing − Twall)√
B

z−
3/2 (2.41)

that is never zero apart for z →∞.

Apart for this aspect, this modified model provides generally better results in ice-
shape prediction [27].
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Chapter 3

An unsteady ice accretion model

In this chapter a novel model based on the exact solution of the Stefan problem is pre-
sented. In the rime-ice regime the new model closely follows the Myers formulation,
however, differently from the original model, it introduces a different accretion law ac-
counting for mass transfer occurring from a rime cell to an adjacent glaze cell (as the
modified model in § 2.2.3). In the glaze-ice accretion the quasi-steady approximation is
relaxed in order to take into account situations with fast ice accretion. In § 3.2 the exact
temperature profile is derived for the first time and in § 3.3 some comparisons between
the mono-dimensional quasi-steady and unsteady model are presented.
In the last section (§ 3.4) a brief summary of the models discussed up to now is proposed.

3.1 The problem

As already observed in § 2.2.2, the quasi-steady solution of the heat diffusion problem in
the ice layer holds when condition 2.13 is satisfied. Although this approximation allows
the heat diffusion equations to be reduced from a system of Partial Differential Equations
(PDEs) to an equivalent of Ordinary Differential Equations (ODEs), in many aircraft ic-
ing applications, such as very fast wet accretions (for example in SLD conditions), the
expected ice thickness does not satisfy the mentioned constraints and the initial tran-
sitory became relevant. The mentioned assumption affect the original model equations
describing glaze ice growth in such a way that the models fails to predict the correct ice
shape.

The starting point of the proposed formulation is the Stefan problem (Eq. 2.1), which
is here recalled for ease of reference using the proper ice accretion parameters introduced
in §. 1.1:

31
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∂T

∂t
= αi

∂2T

∂z2

∂ϑ

∂t
= αw

∂2ϑ

∂z2

ρLF
∂B

∂t
= −Kw

∂ϑ

∂z

∣∣∣∣
B(t)+

+Ki
∂T

∂z

∣∣∣∣
B(t)−

ρi
∂B

∂t
+ ρw

∂h

∂t
= βLWCV∞

(3.1)

The subscripted index i and w stands for the ice and the water phase respectively and
α? = K?

ρ?C?
represent the thermal conductivity of the ice or the water. The reference

system is reported in Fig. 2.2 and typical values of the coefficients are reported in Tab.
2.2.

As already discussed in § 2.2.2, aeronautical working conditions are such that the wa-
ter film is nearly everywhere very thin (around 1/10 mm), thus justifying the assumption
of infinite conduction through the water. According to this hypothesis, the temperature
of the liquid film can be considered approximately constant and equal to the freezing
temperature of water. In the present formulation, the water layer is supposed to be
infinitesimally thin, so that it can be assimilated to an interface where to impose the
Dirichlet boundary conditions. In this context, the Fourier equation in the water layer
is discarded and the complete Stefan problem is reduced to:

∂T

∂t
= αi

∂2T

∂z2

ρLF
∂B

∂t
= −Kw

∂ϑ

∂z

∣∣∣∣
B(t)+

+Ki
∂T

∂z

∣∣∣∣
B(t)−

ρi
∂B

∂t
+ ρw

∂h

∂t
= βLWCV∞

(3.2)

3.2 Similarity solution in glaze-ice conditions

An unsteady exact solution for the above simplified Stefan problem is deduced using a
similarity approach (like in [28] and [29]) in order to determine the temperature profile in
the ice layer and the glaze-ice accretion rate. Similarity approach means that the initial
problem is changed to a problem of only one variable made by the combination of other
variables and the solution is everywhere the same (same shape) but with a different scale
factor.
Solving the Fourier equation in the ice layer by means of a similarity solution requires
that the boundary conditions satisfy certain properties, for example it can be imposed
a constant value of the temperature or a heat flux proportional to the

√
t (see [29]). In

this work the temperatures at the wall and at the ice-water interface are specified.
For this reason this approach is applied in the glaze-ice condition because the temperature
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at the ice-water interface is supposed to be fixed (in time) and equal to the freezing
temperature. Similarly to Myers model (§ 2.2.2), the two Dirichlet boundary conditions
for temperature read:

T (0,t) = Twall (3.3a)
T (B(t),t) = Tfreezing (3.3b)

The heat diffusion equation in the ice layer is a PDE function of space and time and
it is reduced to a more simple ODE thanks to the definition of the following similarity
variable:

ξ(z,t) =
z√
t

(3.4)

The temperature profile in the ice layer is now expressed in terms of the only similarity
variable ξ as a combination of z and t:

T (z,t)→ Θ(ξ(z,t)) (3.5)

Using the chain rule of derivation, the time and space derivatives of T (z,t) can be
expressed as function of ξ as:

∂T

∂t
=
∂T

∂ξ

∂ξ

∂t
= − x

2t
√
t

Θ′(ξ) = − ξ

2t
Θ′(ξ) (3.6a)

∂2T

∂z2
=
∂2T

∂ξ2
∂2ξ

∂z2
=

1

t
Θ′′(ξ) (3.6b)

which substituted into 3.2.a, the heat equation in the ice layer becomes:

−Θ′(ξ)
ξ

2t
= αi Θ′′(ξ)

1

t

2αi Θ′′(ξ) + ξΘ′(ξ) = 0. (3.7)

Defining the parameterM (ξ) = C1 e
ξ2/4αi it can be demonstrated that Eq. 3.7 is equivalent

to
∂

∂ξ

(
M (ξ)

∂Θ(ξ)

∂ξ

)
= 0 (3.8)

whose solution is:

Θ(ξ) = A

∫ ξ

0
exp

(
− s2

4αi

)
ds+D

Θ(ξ) = A erf
(

ξ

2
√
αi

)
+D (3.9)
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A and D are two integration constants which have to be determined by applying the
boundary conditions in 3.3, so:

T (0,t) = Twall −→ D = Twall (3.10a)

T (B(t),t) = Tfreezing −→ A =
Tfreezing − Twall

erf(λ)
(3.10b)

where
λ =

B(t)

2
√
αit

(3.11)

Substituting the integration constant Eq. 3.10 and the definition of ξ (Eq. 3.4) in Eq. 3.9
it yields the exact temperature profile the ice layer:

T (z,t) = Twall + (Tfreezing − Twall)

erf
(

z

2
√
αit

)
erf(λ)

(3.12)

Figure 3.1: Qualitative representation of the linear temperature profile (dashed
line) and the exact temperature profile (continuous line) within the ice layer in

glaze conditions.

The temperature solution deduced right now is not actually a well defined solution
because it depends on the interface position B(t) which is still unknown. B(t) appears
indeed in the definition of the parameter λ (Eq. 3.11).

In order to close the problem, the Stefan condition (Eq. 3.13) is now applied and after
some manipulation, this leads to a non-linear equation in λ, which needs to be solved to
determine the unknown position of the ice-water interface.
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The procedure that allows to retrieve B(t) and the accretion rate ∂B/∂t starts from
the calculation of the derivatives of the temperature and of the position of the ice-water
interface involved in the Stefan condition. The Stefan condition is here recalled for
convenience:

ρLF
∂B

∂t
= −Kw

∂ϑ

∂z

∣∣∣∣
B(t)+

+Ki
∂T

∂z

∣∣∣∣
B(t)−

. (3.13)

1. Calculation of the temperature gradient ∂ϑ
∂z

∣∣
B(t)+

in the water layer at
the interface

The calculation of the temperature gradient in the water layer at the interface
requires initially to analyse the thin film approximation discussed in § 2.2.2. Fol-
lowing Myers [11], it is assumed that if

ĥ� Kw

φβ LWCV∞Cw
(3.14)

the heat equation in the water layer (Eq. 2.1b) reduces to the leading-order quasi-
steady problem

d2ϑ

dz
≈ 0 with 0 < z < h, (3.15)

which, integrated with the appropriate boundary condition T (0) = Tf , yields to a
linear temperature profile in the water layer of the form

ϑ(z) =
dϑ

dz
z + Tf (3.16)

Being ϑ(z) a linear function of z, it follows that:

∂ϑ

∂z

∣∣∣∣
B(t)+

=
∂ϑ

∂z

∣∣∣∣
B(t)+h(t)

(3.17)

and the heat balance at the water-air interface reads:

−Kw
∂ϑ

∂z

∣∣∣∣
B(t)+

=
(
Q̇cw + Q̇e

)
+ Q̇d −

(
Q̇aw + Q̇k

)
=

= H̄1 (ϑ(h,t)− Tlocal) + H̄2 (ϑ(h,t)− T∞)−
(
Q̇aw + Q̇k

)
=

, Q̇↑∗up

(3.18)

where H̄1 =
(
H̄aw + χe0

)
and H̄2 = β LWCV∞Cw. Differently from Myers for-

mulation [11], the heat fluxes expressing the heat exchanged by convection and by
evaporation at the water-air interface include the local temperature of the airflow
outside the boundary layer instead of the free-stream temperature:

Q̇cw = H̄aw (ϑ(h,t)− Tlocal) (3.19a)

Q̇e = χ [e (ϑ(h,t))− e(Tlocal)] ≈ χe0 (ϑ(h,t)− Tlocal) (3.19b)
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The importance of using of the local temperature instead of the free-stream static
temperature will be discussed in Ch. 4.

Substituting Eq. 3.16 into Eq. 3.18 yields:

− ∂ϑ

∂z

∣∣∣∣
B(t)+

=
H̄1 (Tfreezing − T∞) + H̄2 (Tfreezing − Tlocal)−

(
Q̇aw + Q̇k

)
Kw +

(
H̄1 + H̄2

)
h(t)

(3.20)

The thin film approximation that holds for typical aeronautical conditions (h(t) ≈
1/10 mm and ϑ ≈ Tfreezing everywhere) is now introduced and the term

(
H̄1 + H̄2

)
h(t)

in Eq. 3.21 is neglected with respect to Kw. Hence, the final form of the tempera-
ture gradient at the water-air interface is

− ∂ϑ

∂z

∣∣∣∣
B(t)+

≈
H̄1 (Tfreezing − T∞) + H̄2 (Tfreezing − Tlocal)−

(
Q̇aw + Q̇k

)
Kw

=

=
Q̇↑∗up

Kw

(3.21)

2. Calculation of the temperature gradient ∂T
∂z

∣∣
B(t)−

in the ice layer at the
interface

The derivation of the exact temperature profile (Eq. 3.12) in the ice layer at the
interface leads to

∂T

∂z
=

(Tfreezing − Twall)

erf (λ)

2√
π

d

dz

∫ z

2
√
αit

0
e−y

2
dy

 =

=
(Tfreezing − Twall)

erf (λ)

exp

(
−
(

z

2
√
αit

)2
)

√
παit

(3.22)

that evaluated in z = B(t)− leads to the temperature gradient in the ice layer at
the ice-water interface:

∂T

∂z

∣∣∣∣
B(t)−

=
(Tfreezing − Twall)

erf(λ)

exp
(
−λ2

)
√
παit

(3.23)
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3. Calculation of the accretion rate from the exact temperature solution

Recalling Eq. 3.11, the position of the water-ice interface reads

B(t) = 2λ
√
αit, (3.24)

so the accretion rate can be expressed as function of λ

∂B

∂t
= λ

√
αi
t

(3.25)

Combining Eq. 3.21, Eq. 3.23 and Eq. 3.25 in the Stefan condition (Eq. 3.13) the result
is a non-linear equation in the unknown λ:

Lfρi

√
αi
t
λ−Ki

(Tfreezing − Twall)

erf(λ)

exp
(
−λ2

)
√
παit

− Q̇↑∗up = 0 (3.26)

An iterative procedure for the solution of the above equation, like a Newton-Raphson
method, yields the value of λ, from which it can be retrieved B(t).
The accretion rate results trivially from the substitution of the interface derivative
(Eq. 3.23 and Eq. 3.21) into the Stefan condition (Eq. 3.13) and the inclusion of the
parameter λ just computed:

ρLF
∂B

∂t
= −Kw

∂ϑ

∂z
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+Ki
∂T
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(
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(Tfreezing − Twall)

erf(λ)

exp
(
−λ2

)
√
παit

+ Q̇↑∗up

)
(3.27)

Finally, integrating in time with the initial condition B(0) = 0 it is therefore obtained
the ice thickness at time t:

B(t) =
1

ρiglaze Lf

(
Ki

(Tfreezing − Twall)

erf(λ)

exp
(
−λ2

)
√
παit

+ Q̇↑∗up

)
t (3.28)

In practical applications, such as in the ice accretion software PoliMIce that will be
introduced in §. 5.1.3, the ice accretion problem is discretized in time, so the thickness of
the ice layer at the current time step can be calculated by means of an explicit Forward
Euler Algorithm

B (tn+1) = B(n+1) = B(n) +
∂B

∂t

∣∣∣∣(n) ∆t (3.29)
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In the same way, the glaze-ice accretion rate is evaluated on the basis of the ice thickness
– and hence the parameter λ – related to the previous time step:

λn =
B(n−1)

2
√
αit(n−1)

(3.30)

and

∂B

∂t

∣∣∣∣(n) =
1

ρiglaze Lf

(
Ki

(Tfreezing − Twall)

erf(λ(n))
exp

(
−
(
λ(n)2

))√
παit(n)

+ Q̇↑∗ (n)up

)
(3.31)

Rime-ice limit thickness

Following Myers’ approach [11], the criterion allowing to discern whether the rime or
glaze accretion law is to be employed is based on the definition of the rime limit thick-
ness. As already discussed in §. 2.2.2, the rime limit thickness Bg is the maximum rime
ice thickness, beyond which only the glaze ice can grow. According to the formulation
presented in the aforementioned section, the rime limit thickness results from the sub-
stitution of the mass balance equation 3.2c, with h set to zero, into the Stefan condition
(Eq. 3.13). A non-linear equation in λ, is obtained:

1

ρi
β LWCV∞ −Ki

(Tfreezing − Twall)

erf (λ)

exp
(
−λ2

)
√
παit

− Q̇↑∗up = 0 (3.32)

As before, λ is calculated with an iterative method and then the limiting thickness Bg
can be obtained substituting λ in Eq. 3.24.

Similarly of the ice thickness B and the ice accretion rate ∂B/∂t, the non-linear Eq. 3.32
is not solved but it is used the modified version of the ice thickness limit described in
§ 2.2.3 because it is faster and more robust.
It is here recalled:

Bg =
AKi (Tfreezing − Twall)

2
[
Lf
(
β LWC V∞A− Q̇s/Ls

)
−
(
Q̇c + Q̇s + Q̇d − Q̇k − Q̇a

)] (3.33)
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3.3 Comparison between the models

In this section some comparisons between the Myers model and the exact solution are
discussed.

As demonstrated at the beginning of the previous section, Eq. 3.12 shows how the
temperature profile within the ice layer depends on the combination of time and the final
thickness (B). For this reason it can be said that the behaviour of the function is related
to the (mean) ice accretion rate.
The temperature profiles are recalled in the following Tab. 3.1:

Model T (z,t)

Myers Twall +
(Tfreezing − Twall)

B
z

Unsteady exact solution Twall + (Tfreezing − Twall)

erf
(

z

2
√
αit

)
erf(λ)

Table 3.1: Temperature profile within the glaze-ice layer using the Myers model
or the exact unsteady solution.

The λ parameter was defined in Eq. 3.11 as λ = B(t)

2
√
αit

In order to perform some comparisons between the exact temperature profile and the
liner Myers profile in glaze conditions, some values of t and B are imposed in Eq. 3.12.
Figure 3.2 shows 4 different temperature profiles in 4 different conditions. The temper-
ature profiles were obtained considering a fixed value of 2 cm for the ice thickness and 4
different value of the accretion time: 100, 200, 300, and 400 seconds. These values were
chosen in order to represent the SLD cases from the NASA report in reference [9] (based
on the cases 080395) and they are reported in Tab. 3.2:

Case Time [s] Ice thickness [m] Mean accretion rate [m/s]

(a) 100 0.02 2 · 10−4

(b) 200 0.02 1 · 10−4

(c) 300 0.02 0.6 · 10−4

(d) 400 0.02 0.5 · 10−4

Table 3.2: Values of the accretion rates used in Fig. 3.2.

The exact temperature profiles collapse to the Myers linear profile for low values
of the accretion rate, instead the two profiles are more and more different when the
accretion rate increase. It means that the unsteady correction of the Myers model is
more significant in situations of fast ice growth.
The departure from the linearity affect especially the values of the temperature derivative
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at the wall and at the ice-water interface. The first one represents the heat flux conduced
from the wall, whereas the second one is related to the speed at which the interface moves
(Eq. 3.13).
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(a) B = 0.02 m ; t = 100 s
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(b) B = 0.02 m ; t = 200
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(c) B = 0.02 m ; t = 300 s
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(d) B = 0.02 m ; t = 400 s

Figure 3.2: Comparisons between the linear temperature profile predicted by the
Myers model and the exact unsteady one. The outside air temperature is 270 K,
the ice thickness is 2 cm and the accretion time varies from 100 to 400 seconds.

In Tab. 3.3 are reported the percentage errors between the derivative at the wall and
at the interface. This difference is calculated as

∆% =

(
∂T

∂z

∣∣∣∣
Myers

− ∂T

∂z

∣∣∣∣
exact

)
∂T

∂z

∣∣∣∣
Myers

(3.34)

so, positive values mean that the Myers’ function is steeper than the exact one.
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Case ∆ wall
% ∆ interf.

%

(a) −28.04% +44.05%
(b) −13.95% +24.67%
(c) −9.27% +17.08%
(d) −6.94% +13.05%

Table 3.3: Errors in the derivative values at the wall and at the interface between
the Myers model and the exact solution.

The error committed by the Myers model is reported in Fig. 3.3 and, as seen in
Tab. 3.3 it is usually positive at the interface and negative at the wall, therefore with
a linear temperature profile, the derivative at the wall is under-estimated whereas it is
over-estimated at the interface.

In atmospheric conditions providing a very fast ice growth, the importance of this
discrepancy between the two models may become relevant. For example, in situations
like the previous one, an anti-icing system designed with the Myers model results to be
under-dimensioned because the heat flux at the wall is the 20 ÷ 30 % less then the needed
one.
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Figure 3.3: Error between the derivative computed with the linear temperature
profile and the exact unsteady temperature profile at the wall (red) and at the

interface (blue).
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3.4 Summary

In this section, a brief summary of the models explained in this chapter is given and the
main differences among each others are summarized in Tab. 3.4 for clarity.

Model Tair ṁw
in Tglaze(z)

Myers T∞ no Linear: T (z) ∝ z
Modified Myers T∞ yes Quadratic: T (z) ∝

√
z

Unsteady Tlocal yes Exact: T (z) ∝ erf(z)

Table 3.4: Summary of the main characteristics of the models presented in the
previous sections.

The Stefan problem is the starting point to derive these models. The main hypothesis
used to derive the Myers model is the use of a quasi-steady approach which lead to a
linear temperature profile within the glaze-ice layer. The mathematical formulation is
consistent with its hypothesis but it is not able to represent the high conductivity of the
wall. In order to solve this problem a modified version of the Myers model has been
proposed in a master theses here at Politecnico di Milano. The modification consists in
the imposition of a quadratic temperature profile within the glaze-ice layer with infinite
derivative at the wall. In this model a modification of the mass balance equation is also
introduce. In this way, the water flowing from a glaze cell to a rime one is now consid-
ered. This model is however not consistent with its hypothesis, the second derivative of
the temperature is indeed not equal to zero. In the last model it is considered the Ste-
fan problem with its unsteady part and the exact temperature profile in the glaze-ice is
deduced with a similarity approach. Moreover, in this model it is performed a correction
in the temperature field with the introduction of the local temperature field which will be
better described in Ch. 4. These models differ also to each other in the rime limit thick-
ness. The introduction of the aforementioned hypothesis lead to three different equations
for the computation of the Bg. However, the unsteady model in practical application
uses the modified version of the Bg.

From now on, the unsteady model with the local temperature correction and the
contribution of the ṁw

in in the mass equation law is also called “PoliMIce model”.



Chapter 4

Local temperature correction

The new unsteady model derived in Ch.3 is now improved by considering the local value
of the temperature along the airfoil, instead of the upstream static temperature consid-
ered in both the Myers and the improved Myers models. In § 4.1 the definition of local
temp is given and in § 4.2 the heat fluxes are corrected with the introduction of the local
temperature. In § 4.3 the isentropic relations used to reconstruct the local temperature
field are recalled and in § 4.3 a numerical simulation is performed on a test case to show
the comparison between the local temperature field and the upstream static tempera-
ture. The isentropic relations are used to compute the temperature field from the total
temperature and the local value of the velocity.

4.1 The local temperature

Ice accretion growth is a process very sensitive to the temperature, for example, as shown
in Ch. 2, a change of few degrees in air temperature can lead to a different kind of ice
accretion: rime or glaze. These conditions are governed by two different accretion laws
and so, at the end of the process, the resulting ice shape (and ice thickness) may be very
different. An accurate description of the temperature field is important in the evaluation
of the heat fluxes involved in the heat balance equation.
The temperature near the surface is different from point to point because air is a com-
pressible fluid and then is subjected to temperature variation related to changes in pres-
sure and density. This variation is therefore strictly related to the velocity field generated
by the geometry of the body, and it is very important also at low velocities. From the en-
ergy conservation law, regions with high velocities are related to lower temperature while,
on the other side, regions with low velocities are related to higher temperature. The max-
imum value in temperature is reached at the stagnation point because the velocity is zero.

The term local temperature represent the air temperature near the surface just outside
the thermal boundary layer. The thermal boundary layer, like the velocity (or viscous)
boundary layer, is a thin layer of air surrounding the surface in which the viscosity effects
are not negligible. In this volume the temperature changes along the normal direction

43
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from the surface temperature to the upstream temperature T∞ (Fig. 4.1(a)). In this
work, due to the importance of the compressibility effects, the static temperature outside
the boundary layer is replaced by the so-called local temperature, so the asymptotic
temperature T∞ in Fig. 4.1(a) is replaced with the local temperature.

(a) Temperature profile within the thermal boundary layer.

(b) Velocity profile within the viscous boundary layer.

Figure 4.1: Viscous and thermal boundary layers.

The thickness of the thermal boundary layer is ruled by the Prandtl number, this
is a dimensionless number representing the relation between the viscous diffusion rate
(ν) and the thermal diffusion rate (α) and its value is a characteristic of the considered
medium.

Pr =
ν

α
=
cpµ

k
(4.1)

ν = µ/ρ is the kinematic viscosity, α = k/ρacp is the thermal diffusivity, k is the thermal
conductivity, cp is the specific heat and ρa is the density of the air. A typical value for
the Prandtl number in air is around 0.7÷ 0.8.
When Pr is less than 1, it means that the heat diffuses quickly compared to the velocity,
therefore it gives also informations about the thickness relation between the velocity
boundary layer and the heat boundary layer.

• Pr < 1 means that the thermal diffusivity dominates, so δT > δν
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• Pr = 1 means that the thermal and the viscous diffusivity are equivalent, so
δT = δν

• Pr > 1 means that the viscous diffusivity dominates, so δT < δν

where δT is the thermal boundary layer and δν is the viscous boundary layer. These
different behaviours are summarized in Fig. 4.2.
A more accurate realation between δν and δT is given by equation

δν
δT
≈ Pr

1/3 (4.2)

With the Prandtl number in air, this ratio is around 0.88÷0.93, so the two boundary
layers can be considered approximately the same height.
With this approximation, the local temperature chosen for the computation of the heat
fluxes becomes the temperature just outside the viscous boundary layer.

δΤ
δν

δΤ > δν

δΤ < δν

x

Pr < 1

Pr = 1

Pr > 1

Figure 4.2: Thermal boundary layer thickness in relation to the viscous
boundary layer and the Prandtl number.

4.2 Thermal fluxes correction

The heat fluxes introduced in § 2.2.2 which exchange heath with the atmosphere are all
related to the upstream static temperature, therefore the temperature is uniform in the
entire flow field thus the value heat exchanged at each point over the surface relies on
the same value of temperature.
The thermal fluxes that can be corrected including the local temperature are the convec-
tive heat flux, the evaporative heat flux and the sublimation heat flux:

• Q̇c? = hc?(T − T∞)A −→ Q̇c? = hc?(T − Tlocal)A

• Q̇e,s = χe,s e0 (T − T∞) A −→ Q̇e,s = χe,s e0 (T − Tlocal) A

In this way each point on the surface exchanges heat towards a different air temper-
ature. These new fluxes definitions are used in the heat balance equation.
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4.3 Reconstruction of the temperature field

In this section it is explained how to reconstruct the temperature field starting from the
pressure distribution. If a compressible computation is available the temperature field is
directly given, otherwise it is reconstructed using the isentropic relations.

At high Reynolds numbers, the flow field around a surface my be split in two region
with different properties: the boundary layer and the external flow. In the first region the
fluid is rotational (∇× u 6= 0) because the viscous forces dominate the flow behaviour,
whereas, on the other hand, the external flow can be considered inviscid because the
inertial forces dominates over the viscous ones. From the Crocco equation

(∇× u)× u = T∇s−∇H (4.3)

can be seen that an irrotational fluid with constant total enthalpy is also isentropic along
the streamlines (Eq. 4.4), therefore the temperature field can be reconstruct using the
isentropic relations.

(((
((((

((
u · [(∇× u)× u] = u · (T∇s)−

���
���

���
�

u ·
[
∇
(
h+

V 2

2

)]
u · (T∇s) = 0 (4.4)

In compressible and steady-state conditions,

u · ∇
(
h+

V 2

2

)
= 0 (4.5)

where u is the velocity vector, V is its module and h is the specific enthalpy.
This equation shows that the quantity

(
h+ V 2

2

)
has no variation in the direction of u,

so

h+
V 2

2
= const (4.6)

over a given streamline.
On the other hand, in incompressible flows Eq. 4.6 reduces to

P +
1

2
ρV 2 = const (4.7)

over a given streamline. This equation is particularly important in this work because
the aerodynamic solver used to perform the simulations in Ch. 5 is a steady-state incom-
pressible solver.
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During an isentropic transformation

Pvγ = const (4.8)

where v is the specific volume (v = 1/ρ) and γ is the ratio of the specific heat calculated
at constant pressure and constant volume (γ = cp/cv). From Eq. 4.8, after some manip-
ulations and the introduction of the stagnation quantities T0 and P0, it is deduced the
isentropic relation between temperature and pressure:

P

P0
=

(
T

T0

) γ
γ−1

(4.9)

This is the equation used to reconstruct the temperature field T (x,y,z):

T = T0

(
P

P0

) γ−1
γ

(4.10)

where T and P are functions of the position: T = T (x,y,z) and P = P (x,y,z).

The stagnation quantities are obtained bringing the fluid to the rest along an isen-
tropic process and remain constant within the flow field. P0 is obtained from the
Bernoulli’s Eq. 4.7,

P0 = P +
1

2
ρV 2 (4.11)

while T0 is obtained introducing the definition of the enthalpy h = cpT in Eq. 4.6:

T0 = T +
V 2

2cp
(4.12)

Numerical simulations

Two simulations were performed at 0 (clean surface) and 360 seconds (iced surface) with
the data reported in Tab. 4.1.

Fig. 4.3(b) and Fig. 4.4(b) show the ∆T between the local temperature computed
using Eq. 4.10 and the free stream temperature T∞: ∆T = (localTemp− T∞).

α [deg] V∞ [m/s] T∞ [K] P∞ [Pa] chord [m]
4 67 267.6 95000 0.53

Table 4.1: Flight conditions for the reference case

Fig. 4.3 and Fig. 4.4 highlight the relation between the flow field and the temperature
field anticipated at the beginning of this section. Regions of high velocities are related to
regions of low temperatures and vice versa. Moreover the temperature at the stagnation
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point reaches the maximum within the temperature field. The difference between the
maximum and the minimum temperature in the temperature field is around 4 degrees at
0 seconds and 6 degrees after 360 seconds. The increase of this gap is due to the irregular
shape of the ice accretion which introduces more regions of high velocities. Ice shape in
Fig. 4.4 shows the accretion of two “horns” where the local temperature is less than the
asymptotic one, in particular in the upper side of the airfoil this horn is wider than the
lower one. On the other hand at the stagnation point the ice accretion has a “hole” and
it shows its minimum thickness due to the maximum temperature in the temperature
field.

(a) Flow field at 0 s

(b) ∆T field at 0 s

Figure 4.3: Flow field and the corresponding ∆T field after the reconstruction of
the temperature field computed at 0 seconds.
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(a) Flow field at 360 s

(b) ∆T field at 360 s

Figure 4.4: Flow field and the corresponding ∆T field after the reconstruction of
the temperature field computed at 360 seconds.
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Chapter 5

Numerical simulations

In this chapter the ice accretion software used for the simulations is introduced and
exemplary bi-dimensional simulations are performed and discussed in order to highlight
the behaviour of the unsteady model introduced in Ch. 3 and the advantages introduced
by the use of the local temperature.
In the first sections the functioning and the set up of the aerodynamic solver, the icing
solver and the mesh deformer are briefly introduced, whereas in § 5.2 the results of the
simulations are discussed and compared with the respective experimental cases found in
literature.

As an improvement over the previous version of PoliMIce, a new mesh deformation
procedure based on the Shepard’s interpolation algorithm is developed and implemented
in § 5.1.4.

5.1 Structure of the icing suite PoliMIce

An icing software is generally composed by several modules each one specialized to solve
a different aspect of the problem. In Fig. 5.1 is shown the flowchart of the PoliMIce 1

icing suite in use. The suite it composed by:

• The aerodynamic solver. It is the part in charge of the computation of the
aerodynamic field and the particle tracking of the droplets in order to define their
impact points on the surface and, consequently, the collection efficiency. For this
purpose, the OpenFOAM® suite is used.

• The icing solver. It is the core of the icing code; it implements the icing models
discussed before (§ 2.1, § 2.2.2 and Ch. 3) and provides the ice thickness and its final
shape. For this purpose, the PoliMIce icing code developed here at Politecnico di
Milano is used.

1A clarification is needed: in this section the name PoliMIce is used to indicate either the complete
icing suite and the ice accretion code because of its key role within the suite. For clarity, “PoliMIce” is
used to refer to the icing solver, whereas “PoliMIce” represents the complete suite.

51
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• The mesh deformer. This is a fundamental tool that deforms the mesh around
the surface to freeze in order to follow the evolution of the growing ice. In this
work it has been developed a code based on the Shepard’s method, an interpolation
method which belongs to the Inverse Distance Weighted (IDW) methods.

Among these parts, an interface is needed to let the different software communicate
to each others. In the following sections these parts are analysed paying particular at-
tention to their set-up (boundary conditions, parameter setting,...).

Figure 5.1: Block diagram illustrating the flowchart of the icing suite in use.

The total simulation time is subdivided into sub-intervals and the loop shown in
Fig. 5.1 is executed until the final time is reached. During each loop the OpenFOAM solver
computes the aerodynamic flow filed and the particle tracking, then the PoliMIce accretes
the ice and at the end, the mesh is deformed and arranged for the next loop by the mesh
deformer. The aerodynamic field around the body is considered to be the same during
the chosen sub-time interval, so the field is lead to convergence towards a steady-state
solution and therefore a full-unsteady aerodynamic simulation is not needed.
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5.1.1 Aerodynamic solver: OpenFOAM® – SimpleFoam

OpenFOAM (Open Field Operation and Manipulation) is a free, open source CFD software
package widely used for solving fluid flows involving chemical reactions, turbulence and
heat transfer.

The aerodynamic solver used to perform the simulation in §. 5.2 is the SimpleFoam
solver coupled with the Spalart-Allmaras turbulence model. SimpleFoam is a steady-
state solver for incompressible, turbulent flow. It computes the flow field solving the
steady-state RANS equations with a finite volume discretization and it is based on the
SIMPLE algorithm (Semi-Implicit M ethod for Pressure-Linked Equations). This is an
iterative algorithm which starting from an initial guess, corrects the values of the pressure
in order to satisfy the incompressible constrain. In the present work, the convergence of
the algorithm is evaluated by the convergence of the aerodynamic coefficients Cd and Cl.
For a more detailed explanation of the SimpleFoam algorithm see Ref [30].

The turbulence model

The Spalart-Allmaras model is a one-equation turbulence model widely used in aero-
dynamic applications because of its ability to dealt with separate flows. It solves the
transport equation for the turbulent viscosity ν̃ which is obtained from the equation of
the turbulent viscosity νt. The Spalart-Allmaras model implemented in OpenFOAM follows
the formulation proposed in Ref. [31] which is slightly different from the original Spalart-
Allmaras formulation [32] because of a different treatment of the boundary conditions.
For a deeper explanation o f the model refer to Ref. [32] and Ref. [31].

The boundary conditions

The boundary conditions imposed in the simulations involve the velocity u, the pressure
P , the turbulent viscosity νt and the variable ν̃ for the Spalart-Allmaras turbulence
model.
The velocity and the pressure values are taken from the reference cases chosen from
literature, whereas the value of νt and ν̃ are more difficult to be obtained and they
usually come from empirical or semi-empirical relations. Fig. 5.2 and Tab. 5.1 show the
domain and the boundary conditions implemented in OpenFOAM.

Suitable values for the variables used in the Spalart-Allmaras model are:

• ν̃wall = 0

• 3 νt∞ < ν̃∞ < 5 νt∞ (5.1)
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Figure 5.2: Computational domain.

Boundary U p nuTilda nut

inlet freeStream freeStreamPressure freeStream freeStream
uniform uniform uniform

(V∞ cosα 0 V∞ sinα) ν̃∞ νt∞
outlet freeStream freeStreamPressure freeStream freeStream

uniform uniform uniform
(V∞ cosα 0 V∞ sinα) ν̃∞ νt∞

topAndBottom freeStream freeStreamPressure freeStream freeStream
uniform uniform uniform

(V∞ cosα 0 V∞ sinα) ν̃∞ νt∞
wall fixedValue zeroGradient fixedValue Wall function

uniform (0 0 0) uniform 0 uniform 0

Table 5.1: Boundary conditions used for the OpenFOAM simulations.

Following [33] or [34], the value of ν̃∞ used in this work are:

• ν̃∞ = 0.000342929 · V∞c

• νt∞ ≈
ν̃∞
24

(5.2)

where c is the airfoil chord length. At the wall ν̃wall is set to zero and a wall function for
νt is used in order to speed up the computation.
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5.1.2 Particle tracking: OpenFOAM® –
uncoupledKinematicParcelFoam

The particle tracking method used in the following simulation is based on a Lagrangian
approach. This model perform a force balance over each single droplet assuming that

• the droplets are spherical and no collisions are possible,

• the forces acting on the droplets are only the gravity, the buoyancy forces and the
aerodynamic drag,

• the droplets does not influence the aerodynamic field, they are only transported by
the flow field.

The equation of motion of the droplets is based on the following force equilibrium

md
d~ud
dt

= ~Faero + ~Fg (5.3)

where the subscripted index d stands for the droplets. A more detailed explanation is
resent to Ref. [3] or Ref. [35].
The importance of an accurate evaluation of the droplets trajectories is reflected into
an accurate definition of the collection efficiency parameter (β) which is a fundamental
parameter governing the ice accretion process.

The computation of the droplets trajectories is performed using the uncoupledKine-
maticParcelFoam solver implemented in OpenFOAM. This solver perform a numerical in-
tegration of the equation of motion starting from an initial cloud of droplets specified
into a setup file. Droplets are treated as a passive scalar, so they do not interact with the
surrounding aerodynamic field and when the simulation time is over the solver returns
the wall cells where the droplets have collided. At this point these informations pass to
the interface which computes the collection efficiency β.
An example of the uncoupledKinematicParcelFoam application is shown in Fig. 5.3.

5.1.3 Ice accretion solver: PoliMIce

The PoliMIce code is the core of the icing suite. It receives as input the aerodynamic
data and the particle tracking results computed by OpenFOAM and provides the ice thick-
ness and shape after the accretion time-step. Reasonable values for the time-step is
around 10 seconds.
The PoliMIce code can performs simulations using all the models introduced before
except the Messinger’s one (Myers model, modified Myers model, full-unsteady model)
associated to the upstream static temperature T∞ or the local temperature Tlocal. In this
way it is easy to perform some comparisons between the models.
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(a) Droplets positions at different times: t = 0.01 s, t = 0.02 s and t = 0.04 s

(b) Impact limits over an iced airfoil

Figure 5.3: Example of droplets trajectories and impact limits in a
bi-dimensional case.

5.1.4 Mesh deformer: Shepard method

One of the most relevant problem in mesh warping concern the ability of the code to
take into account punctual deformations without “breaking” the mesh. In many cases
(i.e. in Fig. 5.4) the appearance of horns and irregular icing structures bring the warping
process to stretch some portions of the mesh too much or to penetrate some cells into
each others.

In this work an Inverse Distance Weighting method (IDW) is used due to its robust-
ness in these situations.

The algorithm

Shepard’s algorithm [36] belongs to the IDW methods, a class of interpolation meth-
ods based on a weighted average process and generally used to interpolate bi or tri-
dimensional spatial data. The weights appearing in the average process are the inverse
of the distances between the two considered points, therefore the nearest points to the
unknown have the greatest influence on its finale value.
Given a known discrete field U , the interpolation of the variable u(x) at the generic point
x depends on the inverse of the distance of the surrounding N points. Each point is a
known sample ui = u(xi) of the U field.
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Figure 5.4: Example of a wrecked mesh in the case of punctual deformations.
The skewness and the aspect ratio of many elements are not appropriate for a

CDF computation.

The interpolation equation is:

u(x) =



N∑
i=1

wi(x)ui

N∑
i=1

wi(x)

, if d(x,xi) 6= 0

ui, if d(x,xi) = 0

(5.4)

where the weights are wi(x) =
1

d(x,xi)p
and the distance between the points x and xi

is d(x,xi).
The exponent p in the weight relation increases (or decreases) the influence of the closest
values to the interpolated point. The higher is p, the most influence the nearest points
have.

In order to speed up the code execution, a modified version of the weight is used.
In this formulation only the points within a certain distance R from x are taken into
account for the weight computation:

wi(x) =

(
max(0, R− d(x,xi))

Rd(x,xi)

)2

(5.5)

An example of the reliability of the algorithm can be seen in Fig. 5.5 where a local
deformation does not produce a singularity but it is “absorbed” and spread to a group of
contiguous points.
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Figure 5.5: Example of the application of the Shepard’s method in a case with
punctual deformations. The quality of the resulting mesh is suitable for an

aerodynamic simulation.

5.2 Test cases

Exemplary test cases regarding both rime and glaze ice accretion over two-dimensional
airfoil are now discussed.

Test conditions were chosen with the aim of verify and affirm the critical aspect of
the novel icing model. In particular atmospheric temperature for the first test case in
§ 5.2.1 is slightly less than the ice melting point thus being representative of conditions
where ice grows mostly as glaze type. Test case showed in § 5.2.2 is instead exemplifying
the opposite circumstances, i.e. rime-ice accretion is prevailing over the airfoil. Further
details about the following test cases, as well as informations regarding the experimental
set up can be found in Ref. [8] and Ref. [9]. Results are compared against prediction
from other ice accretion solvers and against experimental results.

In the following sections, the PoliMIce model refers to the complete new model with
the unsteady exact temperature profile, the correction of the local temperature and
the introduction of the ṁw

in. The Myers model is instead the pure model without any
correction.

5.2.1 Glaze-ice test case

The main goal of this simulation is to show the benefits of the introduction of the unsteady
exact temperature profile within the ice layer, this modification is indeed applicable only
during the glaze-ice accretion. The reference case is the number 31 in Ref. [8] and
it provides favourable conditions for the glaze-ice accretion since the beginning of the
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simulation. Furthermore, the use of the modified version of the rime limit thickness
accelerate the rime-glaze transition and the resulting ice is completely glaze.
The atmospheric conditions for this test case are reported in Tab. 5.2.

Airfoil NACA 0012 [ – ]
α 4 [deg]

V∞ 58.1 [m/s]
T∞ 269.1 [K]
P∞ 95600 [Pa]
LWC 1.3 [g/m3]
MVD 20 [µm]

c 0.53 [m]
time 480 [s]

Table 5.2: Simulation data for the glaze-ice test case

Results obtained using the original Myers’ model, the PoliMIce model and the exper-
imental shape taken from Ref. [8] are compared in Fig. 5.6. The total exposure time is
480 s and the flow-field update interval is 10 s.

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-0.04
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PoliMIce

Experimental

Figure 5.6: NACA0012: comparison of PoliMIce predictions with numerical
results for the original Myers’ model and experimental ice shape from Ref. [8] for

the glaze ice case in Tab. 5.2.

Experimental results evidence a large ice structure one the upper portion of the
leading edge and ice formation on the lower portion that extends for 0.08 m (airfoil
chord is 0.53 m). The Myers’ model predicts a quite regular and smooth shape and
the system of highly complex ice structures is loosely represented. The proposed model
instead match more closely the experimental result and it predicts the occurrence of the
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ice structure protruding from the leading edge. The size of the latter one is however
poorly captured and the ice thickness at the stagnation point is sightly closer to the
experimental results but it is however over-estimated.

With particular reference to the estimation of the ice thickness in the close proximity
of the stagnation point, both improvements that were introduced with respect to the
Myers’ model – the more accurate description of the heat diffusion problem through the
ice layer and the inclusion of a variable temperature profile within the boundary layer
– contribute to match the experimental results more closely. The ability of representing
irregular structures is possibly due to the inclusion of the ṁw

in term in the rime ice
accretion and the use of the local temperature field nearby the airfoil. Fig. 5.7 shows a
comparison between the unsteady model with and without the contribution of the ṁw

in.
The air temperature is referred to its local value.

unsteady,  min
w,  Tlocal

unsteady,  Tlocal

Figure 5.7: NACA0012: comparison of the unsteady model with and without the
contribution of the ṁw

in in the mass balance. The air temperature is referred to
its local value.

Ice is known to grow first as rime ice and then, after the thickness exceeds the Bg
value, to continue growing as glaze ice: simulation data show that the Bg function has
a relative minimum in the region close to the stagnation point. This is possibly directly
dependent on the collection efficiency distribution which, on the other hand, reaches its
maximum in the same cells. Then the higher amount of water hitting this portion of
the surface causes glaze ice to appear first and hence the liquid film starts flowing over
the airfoil towards the trailing edge along both the upper and the lower side. The film
is driven by the wall shear stress, under the action of the external air stream. So water
flows into the neighbouring cells that, due to their position along the airfoil chord, are
layered by a lower value of β and T. In this cells the Bg is then higher and rime ice,
which is faster than glaze, grows for a longer time thus producing the double-horn irreg-
ular shape.
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Fig. 5.8(a) and Fig. 5.8(b) shows the ice shapes predicted by the Myers and the
PoliMIce model, respectively, in the case of uniform or local air temperature. The blue
line shows the numerical ice shapes obtained with a uniform temperature field surround-
ing the wing. The uniform temperature is equal to the free stream one. On the other
hand, the red line reports the numerical ice shape obtained including the effects of the lo-
cal temperature field near the surface. This local value is obtained from the aerodynamic
solver following the isentropic relations recalled in Ch. 4. The inclusion of this simple
correction is found to be beneficial for predicting of the ice thickness at the stagnation
point and also the ice structure in the upper portion of the leading edge. As shown in
Fig. 4.3 and Fig. 4.4 (in Ch. 4), the temperature at the stagnation point is higher than
the free stream one, so the process described before regarding the accretion of the horns
is facilitated thanks to the lower quantity of water that freezes at this point and the
corresponding higher quantity that can flow aft. Comparing Fig. 5.7 and Fig. 5.8(a) it
is observed that the only temperature correction is not sufficient to provide the irregular
shape but the combination with the inclusion of the ṁw

in gives better results.
Fig 5.9 shows the comparison between the simulation performed with the linear tem-

perature profile within the ice and the exact unsteady one. The two lines are almost
overlapped, so the correction of the unsteady temperature is not so relevant in this case.
The zoom on the first time steps near the stagnation point shows that at the beginning
of the icing process the exact temperature profile predict a slightly more thick ice, then
the accretion rate reduces and the trend is inverted. At the end of the simulation the
ice predicted by the Myers model is slightly thicker than the unsteady one and from
200 seconds on, this difference is maintained constant. This confirm that the unsteady
correction may be more useful during the initial transitory. Graph in Fig. 5.10 represents
the difference of the two ice thickness in the first 200 seconds of accretion.

In conclusion, Fig. 5.11 reports a comparison of the present numerical results with
those obtained by the LEWICE, ONERA and TRAJICE icing sofwtare. All these soft-
ware overestimate the location of the ice-free region in the upper portion of the airfoil,
which is however underestimated by the PoliMIce software. The LEWICE, ONERA and
TRAJICE software also deliver a better estimate of the ice thickness at the stagnation
point with respect to the present model. The ice shape predicted by the three software
is very smooth, which possibly corresponds to the earlier occurrence of glaze ice.
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(a) Glaze-ice test for the NACA 0012 airfoil (Tab. 5.2). Comparison of numerical results obtained from
the Myers’ model by assuming a uniform air temperature equal to the free stream temperature and by
including the local temperature field obtained by CFD simulations.
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(b) Glaze-ice test for the NACA 0012 airfoil (Tab. 5.2). Comparison of numerical results obtained from
the new complete unsteady model by assuming a uniform air temperature equal to the free stream
temperature and by including the local temperature field obtained by CFD simulations.

Figure 5.8: Glaze-ice test for the NACA 0012 airfoil.
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Linear,  Tlocal

Exact unsteady,  Tlocal

Figure 5.9: NACA0012: comparison between the unsteady model and the linear
Myers model. The air temperature is referred to its local value.
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Figure 5.10: NACA0012: comparison of the unsteady model with and without
the contribution of the ṁw

in in the mass balance.
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Figure 5.11: NACA0012: comparison of PoliMIce predictions with numerical
results for the LEWICE, ONERA and TRAJICE software in the glaze ice case in
Tab. 5.2. In all plots, the thick black line is the experimental ice shape reported

in Ref. [8].
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5.2.2 Rime-ice test case

The test case presented in this section corresponds to the ice accretion an aircraft may
experience while flying at very low temperature conditions for a significant time. The test
case conditions were chosen from Ref. [9] mainly because of its low values of temperature
and LWC which are indexes of a possible rime-ice accretion. The aim of this simulation
is indeed to investigate how the novel model behaves in representing the final ice shape
in rime-ice conditions and in particular the attention is focused on the local temperature
correction. The atmospheric conditions of the simulation are summarized in Tab. 5.3.

Airfoil GLC 305 [ – ]
α 1.5 [deg]

V∞ 128.6 [m/s]
T∞ 262.9 [K]
P∞ 125484 [Pa]
LWC 0.43 [g/m3]
MVD 20 [µm]

c 0.91 [m]
time 360 [s]

Table 5.3: Simulation data for the rime-ice test case

Fig. 5.12 shows the comparison between the PoliMice complete model, the Myers
model and the experimental results taken from the aforementioned report. The exper-
imental result evidence the accretion of two horns protruding towards the direction of
motion and separated by a region of low ice thickness in the proximity of the stagnation
point. The ice accretion is not spread along the wing but it grows near the leading edge
due to its rime characteristics and the small angle of attack produce a slightly asymme-
try, indeed the upper horn is slightly longer than the other.

The main differences between the Myers model and the PoliMIce complete model is
the ability of the PoliMIce model to capture the horns formations and to better represent
the thickness at the stagnation point. The Myers model predicts a smooth shape with
its maximum thickness at the stagnation point where the experimental result predicts
its minimum value. PoliMIce instead is more accurate even if the upper horn accretion
direction is slightly different from the experimental one and the the thickness at the
stagnation point is over-estimated respect to the experimental accretion. This improve-
ments is produced by the combination of the effects of the local temperature and the
introduction of the ṁw

in. The temperature at the stagnation point is higher than the
surrounding regions, so the ice grows less and more water appears. This water then flows
away entering in the regions where the temperature is locally low and freezes. Comparing
Fig. 5.14(a) and Fig. 5.14(b) it is interesting to observe that the the two modifications
introduced separately does not provide a such good result but affect only the ice thickness
at the stagnation point. The Fig. 5.14(a) indeed does not have the ṁw

in contribution and
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Figure 5.12: GLC 305: comparison of PoliMIce predictions with numerical
results for the original Myers’ model and experimental ice shape from Ref. [9] for

the rime ice case in Tab. 5.3.

the horns does not appear also with the local temperature correction.
The results provided by the exact unsteady model (without the ṁw

in contribution)
and the Myers model are expected to be the same because of the preponderance of the
rime-ice accretion. Fig. 5.13 illustrate indeed the likeness of the two curves.

Linear,  Tlocal

Exact unsteady,  Tlocal

Figure 5.13: GLC 305: comparison of the unsteady model with and without the
contribution of the ṁw

in in the mass balance.
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(b) PoliMIce

Figure 5.14: Rime ice test for GLC 305 airfoil (Tab. 5.3). Comparison of
numerical results obtained by assuming a uniform air temperature equal to the
free stream temperature and by including the local temperature field obtained by

CFD simulations, for the Myers’ and the PoliMIce models.
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Chapter 6

Conclusions and future works

In the present thesis, a novel unsteady model for ice accretion over aircraft flying in
icing conditions was derived. The new model is based on the exact solution of the
unsteady Stefan problem and it represents an improvement over current ice accretion
models, including the well-known Myers model, which are based on the assumption that
the temperature profile within the ice layer is constant over time. To this purpose, the
exact solution for the unsteady temperature profile was derived for the first time and
applied to ice accretion simulations over two-dimensional airfoils. The exact solution for
the temperature profile is as follows:

T (z,t) = Twall + (Tfreezing − Twall)

erf
(

z

2
√
αit

)
erf(λ)

where the parameter λ,

λ =
B(t)

2
√
αit

is computed by iterating starting from the Stefan condition.
A local correction to the air temperature is also included to account for the depen-

dence of the outer (air) temperature on the flow field, whereas in the Myers model the
outer air temperature is assumed to be constant and equal to its free-stream value. The lo-
cal value of the temperature outside the boundary layer is computed from the free-stream
temperature and from the local velocity by assuming an isentropic transformation.

A novel mesh deformation procedure was also developed and implemented in the
PoliMIce suite, which is based on the Shepard interpolation method. The new mesh
deformation algorithm represents an improvement over the original one that was based
on the representation of the grid as elastic continuum.

Numerical simulations of two-dimensional airfoil in icing conditions were carried out
to assess the correctness of the new model and its behaviour in rime and glaze ice con-
ditions. Numerical simulations relied upon the open-source OpenFOAM suite for the com-
putation of the aerodynamic flow field and of the droplet trajectories.

69
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Simulations performed in Ch. 5 showed that the contributions of the unsteady terms
is not significant in the considered cases, apart during the initial transitory. In this
lapse, the derivative of the temperature at the wall is higher than the one calculated by
the Myers model. This behaviour is possibly important in the design of an anti-icing
system for the evaluation of the heat flux to apply at the wall. On the other hand,
the introduction of the local temperature gives more accurate results in the ice shape
prediction. After this modification, the ice shapes resulting from the simulations are
generally more irregular with the appearance of “horn” structures. In the rime case it is
also observed a more accurate prediction of the ice thickness at the stagnation point.

The present work highlighted the need of a more deeper investigation on the con-
ditions in which the unsteady effects become relevant, for example super-cooled large
droplets (SLD) conditions or conditions in which the aircraft quickly reduces its altitude.
The icing model could be further modified in order to take into account the presence of
an anti-icing system.

An interesting area for further investigation is the modelling of the flow of surface
water. In the current implementation the superficial water is simply modelled as a plane
surface with a fixed height of 1/10 mm where the water flows toward the direction of
the wall shear stress but it is not affected by its intensity. Under this assumption, it is
not possible neither the accumulation nor the reduction of the water content in a given
portion of the surface where the shear stress changes module or direction. A possibility
is to develop a multidimensional model of the shallow-water like the one reported in
Ref. [22]. Another improvement regarding the water layer is the introduction of a model
for the splash of the droplets when they impact the surface and the introduction of the
possibility for the water layer to separate from the body. In this way a consequently
re-introduction of the water in the airflow is possible. In order to increase the accuracy
of the ice shape prediction, a multi-zone model could also be developed in order to take
into account the different surface roughness conditions along the surface produced by
rivulets, beads and runback-ice like in Ref. [19].
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